1
|
Che Y, Tian Y, Chen R, Xia L, Liu F, Su Z. IL-22 ameliorated cardiomyocyte apoptosis in cardiac ischemia/reperfusion injury by blocking mitochondrial membrane potential decrease, inhibiting ROS and cytochrome C. Biochim Biophys Acta Mol Basis Dis 2021; 1867:166171. [PMID: 34015450 DOI: 10.1016/j.bbadis.2021.166171] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 05/04/2021] [Accepted: 05/11/2021] [Indexed: 01/29/2023]
Abstract
Irreversible cardiomyocyte death is one of the main reasons of heart failure following cardiac injury. Therefore, controlling cardiomyocyte death is an effective method to delay the progression of cardiac disease after injury. IL-22 plays critical roles in tissue homeostasis and repair, and has become an important bridge between the immune system and specific tissues or organs. However, whether IL-22 can prevent of cardiomyocyte apoptosis from cardiac injury remains unclear. Therefore, the present work would address the above question. Our results showed that, in vitro, IL-22 prevented cardiomyocyte apoptosis induced by Angiotensin II via enhancing the activity of SOD, blocking the decrease of mitochondrial membrane potential, inhibiting ROS production and release of cytochrome C. The similar results were also found in vivo and patients. Our results shed a light on the therapy of cardiac injury.
Collapse
Affiliation(s)
- Yang Che
- International Genome Center, Jiangsu University, Zhenjiang 212013, China; Department of Immunology, Jiangsu University, Zhenjiang 212013, China
| | - Yu Tian
- International Genome Center, Jiangsu University, Zhenjiang 212013, China; Department of Immunology, Jiangsu University, Zhenjiang 212013, China
| | - Rong Chen
- International Genome Center, Jiangsu University, Zhenjiang 212013, China; Department of Immunology, Jiangsu University, Zhenjiang 212013, China
| | - Lin Xia
- International Genome Center, Jiangsu University, Zhenjiang 212013, China
| | - Fang Liu
- International Genome Center, Jiangsu University, Zhenjiang 212013, China
| | - Zhaoliang Su
- International Genome Center, Jiangsu University, Zhenjiang 212013, China; Department of Immunology, Jiangsu University, Zhenjiang 212013, China.
| |
Collapse
|
2
|
Chen JS, Pei Y, Li CE, Li YN, Wang QY, Yu J. Comparative efficacy of different types of antihypertensive drugs in reversing left ventricular hypertrophy as determined with echocardiography in hypertensive patients: A network meta-analysis of randomized controlled trials. J Clin Hypertens (Greenwich) 2020; 22:2175-2183. [PMID: 33190366 DOI: 10.1111/jch.14047] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 08/24/2020] [Accepted: 08/27/2020] [Indexed: 11/30/2022]
Abstract
Reversing left ventricular hypertrophy (LVH) can reduce the incidence of adverse cardiovascular events. However, there is no clear superiority-inferiority differentiation between angiotensin-converting enzyme inhibitors (ACEI), angiotensin receptor blockers (ARB), beta-blockers (BB), calcium channel blockers (CCB), and diuretics in reversing LVH in hypertensive patients. To provide further evidence for choosing the optimal antihypertensive drug for improving LVH, we performed a network meta-analysis of randomized controlled trials (RCTs) based on the Cochrane library database, Embase, and Pubmed, and identified 49 studies involving 5402 patients that were eligible for inclusion. It was found that ARB could improve LVH in hypertensive patients more effectively than CCB (MD -4.07, 95%CI -8.03 to -0.24) and BB (MD -4.57, 95%CI -8.07 to -1.12). Matched comparison of renin-angiotensin system inhibitors (RASi) showed that the effect of ACEI in reducing left ventricular mass index (LVMi) was not effective as that of ARB (MD -3.72, 95%CI -7.52 to -0.11). The surface under the cumulative ranking for each intervention indicated that the use of ARB was more effective among the different types of antihypertensive drugs (97%). This network meta-analysis revealed that the use of ARB in antihypertensive therapy could achieve better efficacy in reversing LVH in hypertensive patients.
Collapse
Affiliation(s)
- Jian-Shu Chen
- Lanzhou University Second College of Clinical Medicine, Lanzhou, China
| | - Ying Pei
- Lanzhou University Second College of Clinical Medicine, Lanzhou, China
| | - Cai-E Li
- Lanzhou University Second College of Clinical Medicine, Lanzhou, China
| | - Yin-Ning Li
- Lanzhou University Second College of Clinical Medicine, Lanzhou, China
| | - Qiong-Ying Wang
- Lanzhou University Second College of Clinical Medicine, Lanzhou, China
| | - Jing Yu
- Lanzhou University Second College of Clinical Medicine, Lanzhou, China.,Department of Cardiology, Second Hospital of Lanzhou University, Lanzhou, China
| |
Collapse
|
3
|
Steven S, Frenis K, Kalinovic S, Kvandova M, Oelze M, Helmstädter J, Hahad O, Filippou K, Kus K, Trevisan C, Schlüter KD, Boengler K, Chlopicki S, Frauenknecht K, Schulz R, Sorensen M, Daiber A, Kröller-Schön S, Münzel T. Exacerbation of adverse cardiovascular effects of aircraft noise in an animal model of arterial hypertension. Redox Biol 2020; 34:101515. [PMID: 32345536 PMCID: PMC7327989 DOI: 10.1016/j.redox.2020.101515] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Revised: 03/18/2020] [Accepted: 03/19/2020] [Indexed: 02/06/2023] Open
Abstract
Arterial hypertension is the most important risk factor for the development of cardiovascular disease. Recently, aircraft noise has been shown to be associated with elevated blood pressure, endothelial dysfunction, and oxidative stress. Here, we investigated the potential exacerbated cardiovascular effects of aircraft noise in combination with experimental arterial hypertension. C57BL/6J mice were infused with 0.5 mg/kg/d of angiotensin II for 7 days, exposed to aircraft noise for 7 days at a maximum sound pressure level of 85 dB(A) and a mean sound pressure level of 72 dB(A), or subjected to both stressors. Noise and angiotensin II increased blood pressure, endothelial dysfunction, oxidative stress and inflammation in aortic, cardiac and/or cerebral tissues in single exposure models. In mice subjected to both stressors, most of these risk factors showed potentiated adverse changes. We also found that mice exposed to both noise and ATII had increased phagocytic NADPH oxidase (NOX-2)-mediated superoxide formation, immune cell infiltration (monocytes, neutrophils and T cells) in the aortic wall, astrocyte activation in the brain, enhanced cytokine signaling, and subsequent vascular and cerebral oxidative stress. Exaggerated renal stress response was also observed. In summary, our results show an enhanced adverse cardiovascular effect between environmental noise exposure and arterial hypertension, which is mainly triggered by vascular inflammation and oxidative stress. Mechanistically, noise potentiates neuroinflammation and cerebral oxidative stress, which may be a potential link between both risk factors. The results indicate that a combination of classical (arterial hypertension) and novel (noise exposure) risk factors may be deleterious for cardiovascular health. Noise exposure causes non-auditory cardiovascular/cerebral adverse health effects by oxidative stress and inflammation. Aircraft noise causes exacerbated adverse effects on blood pressure and endothelial dysfunction in hypertensive mice. Aircraft noise and hypertension potentiate inflammation, ROS formation and oxidative damage in the brain, vessels and heart. Aircraft noise and hypertension seem to have enhanced adverse effects on stress responses in different organs.
Collapse
Affiliation(s)
- Sebastian Steven
- Center for Cardiology, Cardiology I - Laboratory of Molecular Cardiology, University Medical Center of the Johannes Gutenberg-University, Mainz, Germany; Center for Thrombosis and Hemostasis, University Medical Center of the Johannes Gutenberg-University, Mainz, Germany
| | - Katie Frenis
- Center for Cardiology, Cardiology I - Laboratory of Molecular Cardiology, University Medical Center of the Johannes Gutenberg-University, Mainz, Germany
| | - Sanela Kalinovic
- Center for Cardiology, Cardiology I - Laboratory of Molecular Cardiology, University Medical Center of the Johannes Gutenberg-University, Mainz, Germany
| | - Miroslava Kvandova
- Center for Cardiology, Cardiology I - Laboratory of Molecular Cardiology, University Medical Center of the Johannes Gutenberg-University, Mainz, Germany
| | - Matthias Oelze
- Center for Cardiology, Cardiology I - Laboratory of Molecular Cardiology, University Medical Center of the Johannes Gutenberg-University, Mainz, Germany
| | - Johanna Helmstädter
- Center for Cardiology, Cardiology I - Laboratory of Molecular Cardiology, University Medical Center of the Johannes Gutenberg-University, Mainz, Germany
| | - Omar Hahad
- Center for Cardiology, Cardiology I - Laboratory of Molecular Cardiology, University Medical Center of the Johannes Gutenberg-University, Mainz, Germany; German Center for Cardiovascular Research (DZHK), Partner Site Rhine-Main, Mainz, Germany
| | - Konstantina Filippou
- Center for Cardiology, Cardiology I - Laboratory of Molecular Cardiology, University Medical Center of the Johannes Gutenberg-University, Mainz, Germany
| | - Kamil Kus
- Jagiellonian Centre for Experimental Therapeutics (JCET), Jagiellonian University, Krakow, Poland
| | - Chiara Trevisan
- Institute of Neuropathology, University Hospital, Zurich, Switzerland
| | | | - Kerstin Boengler
- Department of Physiology, Justus-Liebig University Gießen, Germany
| | - Stefan Chlopicki
- Jagiellonian Centre for Experimental Therapeutics (JCET), Jagiellonian University, Krakow, Poland; Chair of Pharmacology, Jagiellonian University Medical College, Krakow, Poland
| | | | - Rainer Schulz
- Department of Physiology, Justus-Liebig University Gießen, Germany
| | - Mette Sorensen
- Danish Cancer Society, Copenhagen, Denmark; Department of Natural Science and Environment, Roskilde University, Roskilde, Denmark
| | - Andreas Daiber
- Center for Cardiology, Cardiology I - Laboratory of Molecular Cardiology, University Medical Center of the Johannes Gutenberg-University, Mainz, Germany; German Center for Cardiovascular Research (DZHK), Partner Site Rhine-Main, Mainz, Germany.
| | - Swenja Kröller-Schön
- Center for Cardiology, Cardiology I - Laboratory of Molecular Cardiology, University Medical Center of the Johannes Gutenberg-University, Mainz, Germany
| | - Thomas Münzel
- Center for Cardiology, Cardiology I - Laboratory of Molecular Cardiology, University Medical Center of the Johannes Gutenberg-University, Mainz, Germany; German Center for Cardiovascular Research (DZHK), Partner Site Rhine-Main, Mainz, Germany.
| |
Collapse
|
4
|
Blanch i Salvador J, Egger M. Obstruction of ventricular Ca 2+ -dependent arrhythmogenicity by inositol 1,4,5-trisphosphate-triggered sarcoplasmic reticulum Ca 2+ release. J Physiol 2018; 596:4323-4340. [PMID: 30004117 PMCID: PMC6138286 DOI: 10.1113/jp276319] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Accepted: 07/06/2018] [Indexed: 11/08/2022] Open
Abstract
KEY POINTS Augmented inositol 1,4,5-trisphosphate (IP3 ) receptor (IP3 R2) expression has been linked to a variety of cardiac pathologies. Although cardiac IP3 R2 function has been in the focus of research for some time, a detailed understanding of its potential role in ventricular myocyte excitation-contraction coupling under pathophysiological conditions remains elusive. The present study focuses on mechanisms of IP3 R2-mediated sarcoplasmic reticulum (SR)-Ca2+ release in ventricular excitation-contraction coupling under IP3 R2-overexpressing conditions by studying intracellular Ca2+ events. We report that, upon IP3 R2 overexpression in ventricular myocytes, IP3 -induced Ca2+ release (IP3 ICR) modulates the SR-Ca2+ content via "eventless" SR-Ca2+ release, affecting the global SR-Ca2+ leak. Thus, IP3 R2 activation could act as a SR-Ca2+ gateway mechanism to escape ominous SR-Ca2+ overload. Our approach unmasks a so far unrecognized mechanism by which "eventless" IP3 ICR plays a protective role against ventricular Ca2+ -dependent arrhythmogenicity. ABSTRACT Augmented inositol 1,4,5-trisphosphate (IP3 ) receptor (IP3 R2) function has been linked to a variety of cardiac pathologies including cardiac arrhythmias. The functional role of IP3 -induced Ca2+ release (IP3 ICR) within ventricular excitation-contraction coupling (ECC) remains elusive. As part of pathophysiological cellular remodelling, IP3 R2s are overexpressed and have been repeatedly linked to enhanced Ca2+ -dependent arrhythmogenicity. In this study we test the hypothesis that an opposite scenario might be plausible in which IP3 ICR is part of an ECC protecting mechanism, resulting in a Ca2+ -dependent anti-arrhythmogenic response on the cellular scale. IP3 R2 activation was triggered via endothelin-1 or IP3 -salt application in single ventricular myocytes from a cardiac-specific IP3 R type 2 overexpressing mouse model. Upon IP3 R2 overexpression, IP3 R activation reduced Ca2+ -wave occurrence (46 vs. 21.72%; P < 0.001) while its block increased SR-Ca2+ content (∼29.4% 2-aminoethoxydiphenyl borate, ∼16.4% xestospongin C; P < 0.001), suggesting an active role of IP3 ICR in SR-Ca2+ content regulation and anti-arrhythmogenic function. Pharmacological separation of ryanodine receptor RyR2 and IP3 R2 functions and two-dimensional Ca2+ event analysis failed to identify local IP3 ICR events (Ca2+ puffs). SR-Ca2+ leak measurements revealed that under pathophysiological conditions, "eventless" SR-Ca2+ efflux via enhanced IP3 ICR maintains the SR-Ca2+ content below Ca2+ spark threshold, preventing aberrant SR-Ca2+ release and resulting in a protective mechanism against SR-Ca2+ overload and arrhythmias. Our results support a so far unrecognized modulatory mechanism in ventricular myocytes working in an anti-arrhythmogenic fashion.
Collapse
Affiliation(s)
| | - Marcel Egger
- Department of PhysiologyUniversity of BernBuehlplatz 5CH‐3012BernSwitzerland
| |
Collapse
|
5
|
Xiao YF, Zeng ZX, Guan XH, Wang LF, Wang CJ, Shi H, Shou W, Deng KY, Xin HB. FKBP12.6 protects heart from AngII-induced hypertrophy through inhibiting Ca 2+ /calmodulin-mediated signalling pathways in vivo and in vitro. J Cell Mol Med 2018; 22:3638-3651. [PMID: 29682889 PMCID: PMC6010737 DOI: 10.1111/jcmm.13645] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Accepted: 03/08/2018] [Indexed: 12/12/2022] Open
Abstract
We previously observed that disruption of FK506‐binding protein 12.6 (FKBP12.6) gene resulted in cardiac hypertrophy in male mice. Studies showed that overexpression of FKBP12.6 attenuated thoracic aortic constriction (TAC)‐induced cardiac hypertrophy in mice, whereas the adenovirus‐mediated overexpression of FKBP12.6 induced hypertrophy and apoptosis in cultured neonatal cardiomyocytes, indicating that the role of FKBP12.6 in cardiac hypertrophy is still controversial. In this study, we aimed to investigate the roles and mechanisms of FKBP12.6 in angiotensin II (AngII)‐induced cardiac hypertrophy using various transgenic mouse models in vivo and in vitro. FKBP12.6 knockout (FKBP12.6−/−) mice and cardiac‐specific FKBP12.6 overexpressing (FKBP12.6 TG) mice were infused with AngII (1500 ng/kg/min) for 14 days subcutaneously by implantation of an osmotic mini‐pump. The results showed that FKBP12.6 deficiency aggravated AngII‐induced cardiac hypertrophy, while cardiac‐specific overexpression of FKBP12.6 prevented hearts from the hypertrophic response to AngII stimulation in mice. Consistent with the results in vivo, overexpression of FKBP12.6 in H9c2 cells significantly repressed the AngII‐induced cardiomyocyte hypertrophy, seen as reductions in the cell sizes and the expressions of hypertrophic genes. Furthermore, we demonstrated that the protection of FKBP12.6 on AngII‐induced cardiac hypertrophy was involved in reducing the concentration of intracellular Ca2+ ([Ca2+]i), in which the protein significantly inhibited the key Ca2+/calmodulin‐dependent signalling pathways such as calcineurin/cardiac form of nuclear factor of activated T cells 4 (NFATc4), calmodulin kinaseII (CaMKII)/MEF‐2, AKT/Glycogen synthase kinase 3β (GSK3β)/NFATc4 and AKT/mTOR signalling pathways. Our study demonstrated that FKBP12.6 protects heart from AngII‐induced cardiac hypertrophy through inhibiting Ca2+/calmodulin‐mediated signalling pathways.
Collapse
Affiliation(s)
- Yun-Fei Xiao
- Institute of Translational Medicine, Nanchang University, Nanchang, China.,School of Life Science, Nanchang University, Nanchang, China
| | - Zhi-Xiong Zeng
- Institute of Translational Medicine, Nanchang University, Nanchang, China.,School of Life Science, Nanchang University, Nanchang, China
| | - Xiao-Hui Guan
- Institute of Translational Medicine, Nanchang University, Nanchang, China
| | - Ling-Fang Wang
- Institute of Translational Medicine, Nanchang University, Nanchang, China.,School of Life Science, Nanchang University, Nanchang, China
| | - Chan-Juan Wang
- Institute of Translational Medicine, Nanchang University, Nanchang, China
| | - Huidong Shi
- Georgia Cancer Center, Augusta University, Augusta, GA, USA
| | - Weinian Shou
- Riley Heart Research Center, Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Ke-Yu Deng
- Institute of Translational Medicine, Nanchang University, Nanchang, China
| | - Hong-Bo Xin
- Institute of Translational Medicine, Nanchang University, Nanchang, China.,School of Life Science, Nanchang University, Nanchang, China
| |
Collapse
|
6
|
Mathieu S, El Khoury N, Rivard K, Paradis P, Nemer M, Fiset C. Angiotensin II Overstimulation Leads to an Increased Susceptibility to Dilated Cardiomyopathy and Higher Mortality in Female Mice. Sci Rep 2018; 8:952. [PMID: 29343862 PMCID: PMC5772611 DOI: 10.1038/s41598-018-19436-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Accepted: 11/15/2017] [Indexed: 11/09/2022] Open
Abstract
Heart failure (HF) is associated with high mortality and affects men and women differently. The underlying mechanisms for these sex-related differences remain largely unexplored. Accordingly, using mice with cardiac-specific overexpression of the angiotensin II (ANGII) type 1 receptor (AT1R), we explored male-female differences in the manifestations of hypertrophy and HF. AT1R mice of both sexes feature electrical and Ca2+ handling alterations, systolic dysfunction, hypertrophy and develop HF. However, females had much higher mortality (21.0%) rate than males (5.5%). In females, AT1R stimulation leads to more pronounced eccentric hypertrophy (larger increase in LV mass/body weight ratio [+31%], in cell length [+27%], in LV internal end-diastolic [LVIDd, +34%] and systolic [LVIDs, +67%] diameter) and dilation (larger decrease in LV posterior wall thickness, +17%) than males. In addition, in female AT1R mice the cytosolic Ca2+ extrusion mechanisms were more severely compromised and were associated with a specific increased in Ca2+ sparks (by 187%) and evidence of SR Ca2+ leak. Altogether, these results suggest that female AT1R mice have more severe eccentric hypertrophy, dysfunction and compromised Ca2+ dynamics. These findings indicate that females are more susceptible to the adverse effects of AT1R stimulation than males favouring the development of HF and increased mortality.
Collapse
Affiliation(s)
- Sophie Mathieu
- Research Center, Montreal Heart Institute, 5000 Bélanger, Montréal, Québec, Canada.,Faculty of Pharmacy, Université de Montréal, Montréal, Québec, Canada
| | - Nabil El Khoury
- Research Center, Montreal Heart Institute, 5000 Bélanger, Montréal, Québec, Canada.,Department of Pharmacology and Physiology, Faculty of Medicine, Université de Montréal, Montréal, Québec, Canada
| | - Katy Rivard
- Research Center, Montreal Heart Institute, 5000 Bélanger, Montréal, Québec, Canada.,Faculty of Pharmacy, Université de Montréal, Montréal, Québec, Canada
| | - Pierre Paradis
- Lady Davis Institute, McGill University, Montreal, Québec, Canada
| | - Mona Nemer
- Ottawa University, Ottawa, Ontario, Canada
| | - Céline Fiset
- Research Center, Montreal Heart Institute, 5000 Bélanger, Montréal, Québec, Canada. .,Faculty of Pharmacy, Université de Montréal, Montréal, Québec, Canada.
| |
Collapse
|
7
|
Guo L, Yin A, Zhang Q, Zhong T, O’Rourke ST, Sun C. Angiotensin-(1–7) attenuates angiotensin II-induced cardiac hypertrophy via a Sirt3-dependent mechanism. Am J Physiol Heart Circ Physiol 2017; 312:H980-H991. [PMID: 28411231 DOI: 10.1152/ajpheart.00768.2016] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2016] [Revised: 04/10/2017] [Accepted: 04/10/2017] [Indexed: 11/22/2022]
Abstract
The objectives of the present study were to investigate the effect of ANG-(1–7) on the development of cardiac hypertrophy and to identify the intracellular mechanism underlying this action of ANG-(1–7). Blood pressure and heart rate were recorded using radiotelemetry before and after chronic subcutaneous infusion of control (PBS), ANG II, ANG-(1–7), or ANG II + ANG-(1–7) for 4 wk in normotensive rats. Chronic administration of ANG-(1–7) did not affect either basal blood pressure or the ANG II-induced elevation in blood pressure. However, ANG-(1–7) significantly attenuated ANG II-induced cardiac hypertrophy and perivascular fibrosis in these rats. These effects of ANG-(1–7) were confirmed in cultured cardiomyocytes, in which ANG-(1–7) significantly attenuated ANG II-induced increases in cell size. This protective effect of ANG-(1–7) was significantly attenuated by pretreatment with A779 (a Mas receptor antagonist) or Mito-TEMPO (a mitochondria-targeting superoxide scavenger) as well as blockade of Sirt3 (a deacetylation-acting protein) by viral vector-mediated overexpression of sirtuin (Sirt)3 short hairpin (sh)RNA. Western blot analysis demonstrated that treatment with ANG-(1–7) dramatically increased Sirt3 expression. In addition, ANG-(1–7) attenuated the ANG II-induced increase in mitochondrial ROS generation, an effect that was abolished by A779 or Sirt3 shRNA. Moreover, ANG-(1–7) increased FoxO3a deacetylation and SOD2 expression, and these effects were blocked by Sirt3 shRNA. In summary, the protective effects of ANG-(1–7) on ANG II-induced cardiac hypertrophy and increased mitochondrial ROS production are mediated by elevated SOD2 expression via stimulation of Sirt3-dependent deacetylation of FoxO3a in cardiomyocytes. Thus, activation of the ANG-(1–7)/Sirt3 signaling pathway could be a novel therapeutic strategy in the management of cardiac hypertrophy and associated complications. NEW & NOTEWORTHY Chronic subcutaneous ANG-(1–7) has no effect on ANG II-induced elevations in blood pressure but significantly attenuates ANG II-induced cardiac hypertrophy and fibrosis by a mitochondrial ROS-dependent mechanism. This protective effect of ANG-(1–7) against the action of ANG II action is mediated by stimulation of sirtuin-3-mediated deacetylation of FoxO3a, which triggers SOD2 expression.
Collapse
Affiliation(s)
- Lirong Guo
- Department of Pathophysiology, Basic College of Medical Sciences, Jilin University, Changchun, Jilin, China
| | - Ankang Yin
- Yangzhou First People’s Hospital, Yangzhou, Jiangsu, China
| | - Qi Zhang
- Medical Research Center, Shaanxi University of Chinese Medicine, Xianyang, Shaanxi, China; and
| | - Tiecheng Zhong
- Department of Pharmaceutical Sciences, North Dakota State University, Fargo, North Dakota
| | - Stephen T. O’Rourke
- Department of Pharmaceutical Sciences, North Dakota State University, Fargo, North Dakota
| | - Chengwen Sun
- Department of Pharmaceutical Sciences, North Dakota State University, Fargo, North Dakota
| |
Collapse
|
8
|
Vernochet C, Damilano F, Mourier A, Bezy O, Mori MA, Smyth G, Rosenzweig A, Larsson NG, Kahn CR. Adipose tissue mitochondrial dysfunction triggers a lipodystrophic syndrome with insulin resistance, hepatosteatosis, and cardiovascular complications. FASEB J 2014; 28:4408-19. [PMID: 25005176 PMCID: PMC4202105 DOI: 10.1096/fj.14-253971] [Citation(s) in RCA: 124] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2014] [Accepted: 06/16/2014] [Indexed: 12/11/2022]
Abstract
Mitochondrial dysfunction in adipose tissue occurs in obesity, type 2 diabetes, and some forms of lipodystrophy, but whether this dysfunction contributes to or is the result of these disorders is unknown. To investigate the physiological consequences of severe mitochondrial impairment in adipose tissue, we generated mice deficient in mitochondrial transcription factor A (TFAM) in adipocytes by using mice carrying adiponectin-Cre and TFAM floxed alleles. These adiponectin TFAM-knockout (adipo-TFAM-KO) mice had a 75-81% reduction in TFAM in the subcutaneous and intra-abdominal white adipose tissue (WAT) and interscapular brown adipose tissue (BAT), causing decreased expression and enzymatic activity of proteins in complexes I, III, and IV of the electron transport chain (ETC). This mitochondrial dysfunction led to adipocyte death and inflammation in WAT and a whitening of BAT. As a result, adipo-TFAM-KO mice were resistant to weight gain, but exhibited insulin resistance on both normal chow and high-fat diets. These lipodystrophic mice also developed hypertension, cardiac hypertrophy, and cardiac dysfunction. Thus, isolated mitochondrial dysfunction in adipose tissue can lead a syndrome of lipodystrophy with metabolic syndrome and cardiovascular complications.
Collapse
Affiliation(s)
- Cecile Vernochet
- Section on Integrative Physiology and Metabolism, Joslin Diabetes Center, Boston, Massachusetts, USA; Department of Medicine, Harvard Medical School, Boston, Massachusetts, USA
| | - Federico Damilano
- Department of Medicine, Harvard Medical School, Boston, Massachusetts, USA; Cardiovascular Division, Department of Medicine, Beth Israel Deaconess Medical Center, Boston, Massachusetts, USA; and
| | - Arnaud Mourier
- Department of Mitochondrial Biology, Max Planck Institute for Biology of Ageing, Cologne, Germany
| | - Olivier Bezy
- Section on Integrative Physiology and Metabolism, Joslin Diabetes Center, Boston, Massachusetts, USA; Department of Medicine, Harvard Medical School, Boston, Massachusetts, USA
| | - Marcelo A Mori
- Section on Integrative Physiology and Metabolism, Joslin Diabetes Center, Boston, Massachusetts, USA; Department of Medicine, Harvard Medical School, Boston, Massachusetts, USA
| | - Graham Smyth
- Section on Integrative Physiology and Metabolism, Joslin Diabetes Center, Boston, Massachusetts, USA; Department of Medicine, Harvard Medical School, Boston, Massachusetts, USA
| | - Anthony Rosenzweig
- Department of Medicine, Harvard Medical School, Boston, Massachusetts, USA; Cardiovascular Division, Department of Medicine, Beth Israel Deaconess Medical Center, Boston, Massachusetts, USA; and
| | - Nils-Göran Larsson
- Department of Mitochondrial Biology, Max Planck Institute for Biology of Ageing, Cologne, Germany
| | - C Ronald Kahn
- Section on Integrative Physiology and Metabolism, Joslin Diabetes Center, Boston, Massachusetts, USA; Department of Medicine, Harvard Medical School, Boston, Massachusetts, USA;
| |
Collapse
|
9
|
Mellor KM, Curl CL, Chandramouli C, Pedrazzini T, Wendt IR, Delbridge LMD. Ageing-related cardiomyocyte functional decline is sex and angiotensin II dependent. AGE (DORDRECHT, NETHERLANDS) 2014; 36:9630. [PMID: 24566994 PMCID: PMC4082583 DOI: 10.1007/s11357-014-9630-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2013] [Accepted: 02/07/2014] [Indexed: 05/19/2023]
Abstract
Clinically, heart failure is an age-dependent pathological phenomenon and displays sex-specific characteristics. The renin-angiotensin system mediates cardiac pathology in heart failure. This study investigated the sexually dimorphic functional effects of ageing combined with angiotensin II (AngII) on cardiac muscle cell function, twitch and Ca(2+)-handling characteristics of isolated cardiomyocytes from young (~13 weeks) and aged (~87 weeks) adult wild type (WT) and AngII-transgenic (TG) mice. We hypothesised that AngII-induced contractile impairment would be exacerbated in aged female cardiomyocytes and linked to Ca(2+)-handling disturbances. AngII-induced cardiomyocyte hypertrophy was evident in young adult mice of both sexes and accentuated by age (aged adult ~21-23 % increases in cell length relative to WT). In female AngII-TG mice, ageing was associated with suppressed cardiomyocyte contractility (% shortening, maximum rate of shortening, maximum rate of relaxation). This was associated with delayed cytosolic Ca(2+) removal during twitch relaxation (Tau ~20 % increase relative to young adult female WT), and myofilament responsiveness to Ca(2+) was maintained. In contrast, aged AngII-TG male cardiomyocytes exhibited peak shortening equivalent to young TG; yet, myofilament Ca(2+) responsiveness was profoundly reduced with ageing. Increased pro-arrhythmogenic spontaneous activity was evident with age and cardiac AngII overexpression in male mice (42-55 % of myocytes) but relatively suppressed in female aged transgenic mice. Female myocytes with elevated AngII appear more susceptible to an age-related contractile deficit, whereas male AngII-TG myocytes preserve contractile function with age but exhibit desensitisation of myofilaments to Ca(2+) and a heightened vulnerability to arrhythmic activity. These findings support the contention that sex-specific therapies are required for the treatment of age-progressive heart failure.
Collapse
Affiliation(s)
- Kimberley M. Mellor
- />Department of Physiology, University of Melbourne, Melbourne, VIC Australia
- />Department of Physiology, University of Auckland, Auckland, New Zealand
| | - Claire L. Curl
- />Department of Physiology, University of Melbourne, Melbourne, VIC Australia
| | | | | | - Igor R. Wendt
- />Department of Physiology, Monash University, Melbourne, VIC Australia
| | - Lea M. D. Delbridge
- />Department of Physiology, University of Melbourne, Melbourne, VIC Australia
| |
Collapse
|
10
|
Negro A, Boehm M. Cardiomyocyte maturation: It takes a village to raise a kid. J Mol Cell Cardiol 2014; 74:193-5. [PMID: 24874422 DOI: 10.1016/j.yjmcc.2014.05.012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2014] [Accepted: 05/16/2014] [Indexed: 11/25/2022]
Affiliation(s)
- Alejandra Negro
- Center for Molecular Medicine, National Heart, Lung, and Blood Institute, NIH, 10 Center Drive, MSC 1454, Building 10-CRC, Room 5E-3232, Bethesda, MD 20892-1454, USA.
| | - Manfred Boehm
- Center for Molecular Medicine, NHLBI-NIH, 10 Center Drive, MSC 1454, Building 10-CRC, RM 5 East 3132, Bethesda, MD 20892, USA.
| |
Collapse
|
11
|
Angiotensin-(1-7) and angiotensin-(1-9): function in cardiac and vascular remodelling. Clin Sci (Lond) 2014; 126:815-27. [PMID: 24593683 DOI: 10.1042/cs20130436] [Citation(s) in RCA: 99] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The RAS (renin-angiotensin system) is integral to cardiovascular physiology; however, dysregulation of this system largely contributes to the pathophysiology of CVD (cardiovascular disease). It is well established that AngII (angiotensin II), the main effector of the RAS, engages the AT1R (angiotensin type 1 receptor) and promotes cell growth, proliferation, migration and oxidative stress, all processes which contribute to remodelling of the heart and vasculature, ultimately leading to the development and progression of various CVDs, including heart failure and atherosclerosis. The counter-regulatory axis of the RAS, which is centred on the actions of ACE2 (angiotensin-converting enzyme 2) and the resultant production of Ang-(1-7) [angiotensin-(1-7)] from AngII, antagonizes the actions of AngII via the receptor Mas, thereby providing a protective role in CVD. More recently, another ACE2 metabolite, Ang-(1-9) [angiotensin-(1-9)], has been reported to be a biologically active peptide within the counter-regulatory axis of the RAS. The present review will discuss the role of the counter-regulatory RAS peptides Ang-(1-7) and Ang-(1-9) in the cardiovascular system, with a focus on their effects in remodelling of the heart and vasculature.
Collapse
|
12
|
The zebrafish as a novel animal model to study the molecular mechanisms of mechano-electrical feedback in the heart. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2012; 110:154-65. [PMID: 22835662 DOI: 10.1016/j.pbiomolbio.2012.07.006] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2012] [Accepted: 07/16/2012] [Indexed: 02/07/2023]
Abstract
Altered mechanical loading of the heart leads to hypertrophy, decompensated heart failure and fatal arrhythmias. However, the molecular mechanisms that link mechanical and electrical dysfunction remain poorly understood. Growing evidence suggest that ventricular electrical remodeling (VER) is a process that can be induced by altered mechanical stress, creating persistent electrophysiological changes that predispose the heart to life-threatening arrhythmias. While VER is clearly a physiological property of the human heart, as evidenced by "T wave memory", it is also thought to occur in a variety of pathological states associated with altered ventricular activation such as bundle branch block, myocardial infarction, and cardiac pacing. Animal models that are currently being used for investigating stretch-induced VER have significant limitations. The zebrafish has recently emerged as an attractive animal model for studying cardiovascular disease and could overcome some of these limitations. Owing to its extensively sequenced genome, high conservation of gene function, and the comprehensive genetic resources that are available in this model, the zebrafish may provide new insights into the molecular mechanisms that drive detrimental electrical remodeling in response to stretch. Here, we have established a zebrafish model to study mechano-electrical feedback in the heart, which combines efficient genetic manipulation with high-precision stretch and high-resolution electrophysiology. In this model, only 90 min of ventricular stretch caused VER and recapitulated key features of VER found previously in the mammalian heart. Our data suggest that the zebrafish model is a powerful platform for investigating the molecular mechanisms underlying mechano-electrical feedback and VER in the heart.
Collapse
|
13
|
Pahlavan S, Oberhofer M, Sauer B, Ruppenthal S, Tian Q, Scholz A, Kaestner L, Lipp P. Gαq and Gα11 contribute to the maintenance of cellular electrophysiology and Ca2+ handling in ventricular cardiomyocytes. Cardiovasc Res 2012; 95:48-58. [DOI: 10.1093/cvr/cvs162] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
|
14
|
Jin CZ, Jang JH, Wang Y, Kim JG, Bae YM, Shi J, Che CR, Kim SJ, Zhang YH. Neuronal nitric oxide synthase is up-regulated by angiotensin II and attenuates NADPH oxidase activity and facilitates relaxation in murine left ventricular myocytes. J Mol Cell Cardiol 2012; 52:1274-81. [PMID: 22484619 DOI: 10.1016/j.yjmcc.2012.03.013] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2011] [Revised: 03/21/2012] [Accepted: 03/22/2012] [Indexed: 02/08/2023]
Abstract
Angiotensin II (Ang II) is critical in myocardial pathogenesis, mostly via stimulating NADPH oxidase. Neuronal nitric oxide synthase (nNOS) has recently been shown to play important roles in modulating myocardial oxidative stress and contractility. Here, we examine whether nNOS is regulated by Ang II and affects NADPH oxidase production of intracellular reactive oxygen species (ROS(i)) and contractile function in left ventricular (LV) myocytes. Our results showed that Ang II induced biphasic effects on ROS(i) and LV myocyte relaxation (TR(50)) without affecting the amplitude of sarcomere shortening and L-type Ca(2+) current density: TR(50) was prolonged at 30 min but was shortened after 3h (or after Ang II treatment in vivo). Correspondingly, ROS(i) was increased, followed by a reduction to control level. Quantitative RT-PCR and immunoblotting experiments showed that Ang II (3h) increased the mRNA and protein expression of nNOS and increased NO production (nitrite assay) in LV myocyte homogenates, suggesting that nNOS activity may be enhanced and involved in mediating the effects of Ang II. Indeed, n(omega)-nitro-l-arginine methyl ester (l-NAME) or a selective nNOS inhibitor, S-methyl-l-thiocitrulline (SMTC) increased NADPH oxidase production of superoxide/ROS(i) and abolished faster myocyte relaxation induced by Ang II. The positive lusitropic effect of Ang II was not mediated by PKA-, CaMKII-dependent signaling or peroxynitrite. Conversely, inhibition of cGMP/PKG pathway abolished the Ang II-induced faster relaxation by reducing phospholamban (PLN) Ser(16) phosphorylation. Taken together, these results clearly demonstrate that myocardial nNOS is up-regulated by Ang II and functions as an early adaptive mechanism to attenuate NADPH oxidase activity and facilitate myocardial relaxation.
Collapse
Affiliation(s)
- Chun Zi Jin
- Department of Physiology, Seoul National University College of Medicine, Seoul, Republic of Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Rivard K, Grandy SA, Douillette A, Paradis P, Nemer M, Allen BG, Fiset C. Overexpression of type 1 angiotensin II receptors impairs excitation-contraction coupling in the mouse heart. Am J Physiol Heart Circ Physiol 2011; 301:H2018-27. [DOI: 10.1152/ajpheart.01092.2010] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Transgenic mice that overexpress human type 1 angiotensin II receptor (AT1R) in the heart develop cardiac hypertrophy. Previously, we have shown that in 6-mo AT1R mice, which exhibit significant cardiac remodeling, fractional shortening is decreased. However, it is not clear whether altered contractility is attributable to AT1R overexpression or is secondary to cardiac hypertrophy/remodeling. Thus the present study characterized the effects of AT1R overexpression on ventricular L-type Ca2+ currents ( ICaL), cell shortening, and Ca2+ handling in 50-day and 6-mo-old male AT1R mice. Echocardiography showed there was no evidence of cardiac hypertrophy in 50-day AT1R mice but that fractional shortening was decreased. Cellular experiments showed that cell shortening, ICaL, and Cav1.2 mRNA expression were significantly reduced in 50-day and 6-mo-old AT1R mice compared with controls. In addition, Ca2+ transients and caffeine-induced Ca2+ transients were reduced whereas the time to 90% Ca2+ transient decay was prolonged in both age groups of AT1R mice. Western blot analysis revealed that sarcoplasmic reticulum Ca2+-ATPase and Na+/Ca2+ exchanger protein expression was significantly decreased in 50-day and 6-mo AT1R mice. Overall, the data show that cardiac contractility and the mechanisms that underlie excitation-contraction coupling are altered in AT1R mice. Furthermore, since the alterations in contractility occur before the development of cardiac hypertrophy, it is likely that these changes are attributable to the increased activity of the renin-angiotensin system brought about by AT1R overexpression. Thus it is possible that AT1R blockade may help maintain cardiac contractility in individuals with heart disease.
Collapse
Affiliation(s)
- Katy Rivard
- Research Centre, Montreal Heart Institute, Montreal,
- Faculty of Pharmacy, Université de Montréal, Montreal,
| | - Scott A. Grandy
- Research Centre, Montreal Heart Institute, Montreal,
- Faculty of Pharmacy, Université de Montréal, Montreal,
| | - Annie Douillette
- Research Centre, Montreal Heart Institute, Montreal,
- Faculty of Pharmacy, Université de Montréal, Montreal,
| | | | | | | | - Céline Fiset
- Research Centre, Montreal Heart Institute, Montreal,
- Faculty of Pharmacy, Université de Montréal, Montreal,
| |
Collapse
|
16
|
Dickhout JG, Carlisle RE, Austin RC. Interrelationship between cardiac hypertrophy, heart failure, and chronic kidney disease: endoplasmic reticulum stress as a mediator of pathogenesis. Circ Res 2011; 108:629-42. [PMID: 21372294 DOI: 10.1161/circresaha.110.226803] [Citation(s) in RCA: 177] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Synthesis of transmembrane and secretory proteins occurs within the endoplasmic reticulum (ER) and is extremely important in the normal functioning of both the heart and kidney. The dysregulation of protein synthesis/processing within the ER causes the accumulation of unfolded proteins, thereby leading to ER stress and the activation of the unfolded protein response. Sarcoplasmic reticulum/ER Ca2+ disequilibrium can lead to cardiac hypertrophy via cytosolic Ca2+ elevation and stimulation of the Ca2+/calmodulin, calcineurin, NF-AT3 pathway. Although cardiac hypertrophy may be initially adaptive, prolonged or severe ER stress resulting from the increased protein synthesis associated with cardiac hypertrophy can lead to apoptosis of cardiac myocytes and result in reduced cardiac output and chronic heart failure. The failing heart has a dramatic effect on renal function because of inadequate perfusion and stimulates the release of many neurohumoral factors that may lead to further ER stress within the heart, including angiotensin II and arginine-vasopressin. Renal failure attributable to proteinuria and uremia also induces ER stress within the kidney, which contributes to the transformation of tubular epithelial cells to a fibroblast-like phenotype, fibrosis, and tubular cell apoptosis, further diminishing renal function. As a consequence, cardiorenal syndrome may develop into a vicious circle with poor prognosis. New therapeutic modalities to alleviate ER stress through stimulation of the cytoprotective components of the unfolded protein response, including GRP78 upregulation and eukaryotic initiation factor 2α phosphorylation, may hold promise to reduce the high morbidity and mortality associated with cardiorenal syndrome.
Collapse
Affiliation(s)
- Jeffrey G Dickhout
- Department of Medicine, Division of Nephrology McMaster University and St Joseph's Healthcare Hamilton, 50 Charlton Ave, East Hamilton, Ontario, Canada, L8N 4A6
| | | | | |
Collapse
|
17
|
Messa P, Cafforio C, Alfieri C. Clinical impact of hypercalcemia in kidney transplant. Int J Nephrol 2011; 2011:906832. [PMID: 21760999 PMCID: PMC3132802 DOI: 10.4061/2011/906832] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2011] [Revised: 03/31/2011] [Accepted: 04/20/2011] [Indexed: 12/20/2022] Open
Abstract
Hypercalcemia (HC) has been variably reported in kidney transplanted (KTx) recipients (5–15%). Calcium levels peak around the 3rd month after KTx and thereafter slightly reduce and stabilize. Though many factors have been claimed to induce HC after KTx, the persistence of posttransplant hyperparathyroidism (PT-HPT) of moderate-severe degree is universally considered the first causal factor. Though not proven, there are experimental and clinical suggestions that HC can adversely affect either the graft (nephrocalcinosis) and other organs or systems (vascular calcifications, erythrocytosis, pancreatitis, etc.). However, there is no conclusive evidence that correction of serum calcium levels might avoid the occurrence of these claimed clinical effects of HC. The best way to reduce the occurrence of HC after KTx is to treat as best we can the secondary hyperparathyroidism (SHP) during the uraemic stages. The indication to Parathyroidectomy (PTX), either before or after KTx, in order to prevent or to treat, respectively, HC after KTx, is still a matter of debate which has been revived by the availability of the calcimimetic cinacalcet for the treatment of PT-HPT. However, we still need to better clarify many points as regards the potential adverse effects related to either PTX or cinacalcet use in this clinical set, and we are waiting for the results of future randomized controlled trials to achieve some more definite conclusions on this topic.
Collapse
Affiliation(s)
- Piergiorgio Messa
- Nefrologia, Dialisi e Trapianto Renale, Ospedale Maggiore-Policlinico-Mangiagalli-Regina Elena, IRCCS, 20122 Milano, Italy
| | | | | |
Collapse
|
18
|
Liang W, Oudit GY, Patel MM, Shah AM, Woodgett JR, Tsushima RG, Ward ME, Backx PH. Role of phosphoinositide 3-kinase {alpha}, protein kinase C, and L-type Ca2+ channels in mediating the complex actions of angiotensin II on mouse cardiac contractility. Hypertension 2010; 56:422-9. [PMID: 20696985 DOI: 10.1161/hypertensionaha.109.149344] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Although angiotensin II (Ang II) plays an important role in heart disease associated with pump dysfunction, its direct effects on cardiac pump function remain controversial. We found that after Ang II infusion, the developed pressure and +dP/dt(max) in isolated Langendorff-perfused mouse hearts showed a complex temporal response, with a rapid transient decrease followed by an increase above baseline. Similar time-dependent changes in cell shortening and L-type Ca(2+) currents were observed in isolated ventricular myocytes. Previous studies have established that Ang II signaling involves phosphoinositide 3-kinases (PI3K). Dominant-negative inhibition of PI3Kalpha in the myocardium selectively eliminated the rapid negative inotropic action of Ang II (inhibited by approximately 90%), whereas the loss of PI3Kgamma had no effect on the response to Ang II. Consistent with a link between PI3Kalpha and protein kinase C (PKC), PKC inhibition (with GF 109203X) reduced the negative inotropic effects of Ang II by approximately 50%. Although PI3Kalpha and PKC activities are associated with glycogen synthase kinase-3beta and NADPH oxidase, genetic ablation of either glycogen synthase kinase-3beta or p47(phox) (an essential subunit of NOX2-NADPH oxidase) had no effect on the inotropic actions of Ang II. Our results establish that Ang II has complex temporal effects on contractility and L-type Ca(2+) channels in normal mouse myocardium, with the negative inotropic effects requiring PI3Kalpha and PKC activities.
Collapse
Affiliation(s)
- Wenbin Liang
- Room 68, Fitzgerald building, 150 College Street, Toronto, Ontario, Canada
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Dhingra R, Kirshenbaum LA. Negative inotropy by angiotensin II is mediated via phosphoinositide 3-kinase alpha-protein kinase C-coupled signaling pathway. Hypertension 2010; 56:349-50. [PMID: 20696991 DOI: 10.1161/hypertensionaha.110.156158] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
20
|
Swift F, Tovsrud N, Sjaastad I, Sejersted OM, Niggli E, Egger M. Functional coupling of α2-isoform Na+/K+-ATPase and Ca2+ extrusion through the Na+/Ca2+-exchanger in cardiomyocytes. Cell Calcium 2010; 48:54-60. [DOI: 10.1016/j.ceca.2010.06.006] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2010] [Revised: 05/10/2010] [Accepted: 06/30/2010] [Indexed: 10/19/2022]
|
21
|
Li X, Zhang X, Li F, Chen L, Li L, Qin X, Gao J, Su T, Zeng Y, Liao D. 14-3-3 mediates apelin-13-induced enhancement of adhesion of monocytes to human umbilical vein endothelial cells. Acta Biochim Biophys Sin (Shanghai) 2010; 42:403-9. [PMID: 20539940 DOI: 10.1093/abbs/gmq036] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
To investigate whether apelin-13 induced THP-1 monocytes (MCs) adhesion to ECV304 human umbilical vein endothelial cells (HUVECs) via 14-3-3 signaling transduction pathway and the potential novel physiological function and signaling transduction pathway of apelin-APJ, HUVECs ECV304 were cultured in DMEM and MCs THP-1 were cultured in RPMI 1640 medium. Monocyte adhesion and the expression of vascular cell adhesion molecule-1 (VCAM-1) and 14-3-3 were measured with monocyte adhesion assay and western blot analysis. Data showed that apelin-13 increased adhesion of MCs to HUVECs in a concentration- and time-dependent manner, which reached their peaks at 1 mM and 12 h, respectively. Similarly, apelin-13 induced the expression of HUVECs adhesion molecule, VCAM-1, in a concentration- and time-dependent manner, reached their peaks at 1 microM and 12 h, respectively. Apelin-13 induced the expression of 14-3-3 in a concentration- and timedependent manner, which reached their peaks at 1 mM and 5 min, respectively. Furthermore, the potent 14-3-3 inhibitor difopein significantly reduced the expression of 14-3-3 and VCAM-1 in apelin-13 stimulated HUVECs, and difopein significantly inhibited the effect of apelin-13 on induction of MCs adhesion to HUVECs. These data suggested that 14-3-3 mediated the induction of adhesion of MCs to HUVECs by Apelin-13.
Collapse
Affiliation(s)
- Xin Li
- Institute of Pharmacy and Pharmacology, University of South China, Hengyang, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Varoni MV, Palomba D, Macciotta NP, Antuofermo E, Deiana G, Baralla E, Anania V, Demontis MP. Brain renin-angiotensin system modifies the blood pressure response to intracerebroventricular cadmium in rats. Drug Chem Toxicol 2010; 33:302-9. [DOI: 10.3109/01480540903418496] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
23
|
Egger M, Domenighetti AA. Adaptive and Maladaptive Remodeling of Cardiomyocyte Excitation-Contraction Coupling by Angiotensin II. Trends Cardiovasc Med 2010; 20:78-85. [DOI: 10.1016/j.tcm.2010.06.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|