1
|
Nikpay M. Multiomics Screening Identified CpG Sites and Genes That Mediate the Impact of Exposure to Environmental Chemicals on Cardiometabolic Traits. EPIGENOMES 2024; 8:29. [PMID: 39189255 PMCID: PMC11348123 DOI: 10.3390/epigenomes8030029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 07/19/2024] [Accepted: 07/24/2024] [Indexed: 08/28/2024] Open
Abstract
An understanding of the molecular mechanism whereby an environmental chemical causes a disease is important for the purposes of future applications. In this study, a multiomics workflow was designed to combine several publicly available datasets in order to identify CpG sites and genes that mediate the impact of exposure to environmental chemicals on cardiometabolic traits. Organophosphate and prenatal lead exposure were previously reported to change methylation level at the cg23627948 site. The outcome of the analyses conducted in this study revealed that, as the cg23627948 site becomes methylated, the expression of the GNA12 gene decreases, which leads to a higher body fat percentage. Prenatal perfluorooctane sulfonate exposure was reported to increase the methylation level at the cg21153102 site. Findings of this study revealed that higher methylation at this site contributes to higher diastolic blood pressure by changing the expression of CHP1 and GCHFR genes. Moreover, HKR1 mediates the impact of B12 supplementation → cg05280698 hypermethylation on higher kidney function, while CTDNEP1 mediates the impact of air pollution → cg03186999 hypomethylation on higher systolic blood pressure. This study investigates CpG sites and genes that mediate the impact of environmental chemicals on cardiometabolic traits. Furthermore, the multiomics approach described in this study provides a convenient workflow with which to investigate the impact of an environmental factor on the body's biomarkers, and, consequently, on health conditions, using publicly available data.
Collapse
Affiliation(s)
- Majid Nikpay
- Omics and Biomedical Analysis Core Facility, University of Ottawa Heart Institute, Ottawa, ON K1Y 4W7, Canada
| |
Collapse
|
2
|
Feng Y, Feng Y, Gu L, Mo W, Wang X, Song B, Hong M, Geng F, Huang P, Yang H, Zhu W, Jiao Y, Zhang Q, Ding WQ, Cao J, Zhang S. Tetrahydrobiopterin metabolism attenuates ROS generation and radiosensitivity through LDHA S-nitrosylation: novel insight into radiogenic lung injury. Exp Mol Med 2024; 56:1107-1122. [PMID: 38689083 PMCID: PMC11148139 DOI: 10.1038/s12276-024-01208-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Revised: 02/06/2024] [Accepted: 02/07/2024] [Indexed: 05/02/2024] Open
Abstract
Genotoxic therapy triggers reactive oxygen species (ROS) production and oxidative tissue injury. S-nitrosylation is a selective and reversible posttranslational modification of protein thiols by nitric oxide (NO), and 5,6,7,8-tetrahydrobiopterin (BH4) is an essential cofactor for NO synthesis. However, the mechanism by which BH4 affects protein S-nitrosylation and ROS generation has not been determined. Here, we showed that ionizing radiation disrupted the structural integrity of BH4 and downregulated GTP cyclohydrolase I (GCH1), which is the rate-limiting enzyme in BH4 biosynthesis, resulting in deficiency in overall protein S-nitrosylation. GCH1-mediated BH4 synthesis significantly reduced radiation-induced ROS production and fueled the global protein S-nitrosylation that was disrupted by radiation. Likewise, GCH1 overexpression or the administration of exogenous BH4 protected against radiation-induced oxidative injury in vitro and in vivo. Conditional pulmonary Gch1 knockout in mice (Gch1fl/fl; Sftpa1-Cre+/- mice) aggravated lung injury following irradiation, whereas Gch1 knock-in mice (Gch1lsl/lsl; Sftpa1-Cre+/- mice) exhibited attenuated radiation-induced pulmonary toxicity. Mechanistically, lactate dehydrogenase (LDHA) mediated ROS generation downstream of the BH4/NO axis, as determined by iodoacetyl tandem mass tag (iodoTMT)-based protein quantification. Notably, S-nitrosylation of LDHA at Cys163 and Cys293 was regulated by BH4 availability and could restrict ROS generation. The loss of S-nitrosylation in LDHA after irradiation increased radiosensitivity. Overall, the results of the present study showed that GCH1-mediated BH4 biosynthesis played a key role in the ROS cascade and radiosensitivity through LDHA S-nitrosylation, identifying novel therapeutic strategies for the treatment of radiation-induced lung injury.
Collapse
Affiliation(s)
- Yang Feng
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Medical College of Soochow University, 215123, Suzhou, China
- Department of Oncology, Wuxi No.2 People's Hospital, Jiangnan University Medical Center, 214002, Wuxi, China
| | - Yahui Feng
- Laboratory of Radiation Medicine, Second Affiliated Hospital of Chengdu Medical College, China National Nuclear Corporation 416 Hospital, 610051, Chengdu, China
| | - Liming Gu
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Medical College of Soochow University, 215123, Suzhou, China
| | - Wei Mo
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Medical College of Soochow University, 215123, Suzhou, China
| | - Xi Wang
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Medical College of Soochow University, 215123, Suzhou, China
| | - Bin Song
- West China Second University Hospital, Sichuan University, 610041, Chengdu, China
| | - Min Hong
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Medical College of Soochow University, 215123, Suzhou, China
| | - Fenghao Geng
- West China Second University Hospital, Sichuan University, 610041, Chengdu, China
| | - Pei Huang
- Department of Oncology, Wuxi No.2 People's Hospital, Jiangnan University Medical Center, 214002, Wuxi, China
| | - Hongying Yang
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Medical College of Soochow University, 215123, Suzhou, China
| | - Wei Zhu
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Medical College of Soochow University, 215123, Suzhou, China
| | - Yang Jiao
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Medical College of Soochow University, 215123, Suzhou, China
| | - Qi Zhang
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Medical College of Soochow University, 215123, Suzhou, China
| | - Wei-Qun Ding
- Department of Pathology, Stephenson Cancer Centre, College of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA
| | - Jianping Cao
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Medical College of Soochow University, 215123, Suzhou, China.
| | - Shuyu Zhang
- Laboratory of Radiation Medicine, Second Affiliated Hospital of Chengdu Medical College, China National Nuclear Corporation 416 Hospital, 610051, Chengdu, China.
- West China Second University Hospital, Sichuan University, 610041, Chengdu, China.
- Laboratory of Radiation Medicine, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, 610041, Chengdu, China.
- NHC Key Laboratory of Nuclear Technology Medical Transformation (Mianyang Central Hospital), 621099, Mianyang, China.
| |
Collapse
|
3
|
Zhang L, Wu X, Hong L. Endothelial Reprogramming in Atherosclerosis. Bioengineering (Basel) 2024; 11:325. [PMID: 38671747 PMCID: PMC11048243 DOI: 10.3390/bioengineering11040325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 03/22/2024] [Accepted: 03/25/2024] [Indexed: 04/28/2024] Open
Abstract
Atherosclerosis (AS) is a severe vascular disease that results in millions of cases of mortality each year. The development of atherosclerosis is associated with vascular structural lesions, characterized by the accumulation of immune cells, mesenchymal cells, lipids, and an extracellular matrix at the intimal resulting in the formation of an atheromatous plaque. AS involves complex interactions among various cell types, including macrophages, endothelial cells (ECs), and smooth muscle cells (SMCs). Endothelial dysfunction plays an essential role in the initiation and progression of AS. Endothelial dysfunction can encompass a constellation of various non-adaptive dynamic alterations of biology and function, termed "endothelial reprogramming". This phenomenon involves transitioning from a quiescent, anti-inflammatory state to a pro-inflammatory and proatherogenic state and alterations in endothelial cell identity, such as endothelial to mesenchymal transition (EndMT) and endothelial-to-immune cell-like transition (EndIT). Targeting these processes to restore endothelial balance and prevent cell identity shifts, alongside modulating epigenetic factors, can attenuate atherosclerosis progression. In the present review, we discuss the role of endothelial cells in AS and summarize studies in endothelial reprogramming associated with the pathogenesis of AS.
Collapse
Affiliation(s)
- Lu Zhang
- Department of Medicine, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Xin Wu
- Department of Medicine, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Liang Hong
- Department of Medicine, University of Illinois at Chicago, Chicago, IL 60612, USA
- Department of Biomedical Engineering, University of Illinois at Chicago, Chicago, IL 60612, USA
- Department of Physiology and Biophysics, University of Illinois at Chicago, Chicago, IL 60612, USA
| |
Collapse
|
4
|
Tamargo IA, Baek KI, Kim Y, Park C, Jo H. Flow-induced reprogramming of endothelial cells in atherosclerosis. Nat Rev Cardiol 2023; 20:738-753. [PMID: 37225873 PMCID: PMC10206587 DOI: 10.1038/s41569-023-00883-1] [Citation(s) in RCA: 38] [Impact Index Per Article: 38.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/25/2023] [Indexed: 05/26/2023]
Abstract
Atherosclerotic diseases such as myocardial infarction, ischaemic stroke and peripheral artery disease continue to be leading causes of death worldwide despite the success of treatments with cholesterol-lowering drugs and drug-eluting stents, raising the need to identify additional therapeutic targets. Interestingly, atherosclerosis preferentially develops in curved and branching arterial regions, where endothelial cells are exposed to disturbed blood flow with characteristic low-magnitude oscillatory shear stress. By contrast, straight arterial regions exposed to stable flow, which is associated with high-magnitude, unidirectional shear stress, are relatively well protected from the disease through shear-dependent, atheroprotective endothelial cell responses. Flow potently regulates structural, functional, transcriptomic, epigenomic and metabolic changes in endothelial cells through mechanosensors and mechanosignal transduction pathways. A study using single-cell RNA sequencing and chromatin accessibility analysis in a mouse model of flow-induced atherosclerosis demonstrated that disturbed flow reprogrammes arterial endothelial cells in situ from healthy phenotypes to diseased ones characterized by endothelial inflammation, endothelial-to-mesenchymal transition, endothelial-to-immune cell-like transition and metabolic changes. In this Review, we discuss this emerging concept of disturbed-flow-induced reprogramming of endothelial cells (FIRE) as a potential pro-atherogenic mechanism. Defining the flow-induced mechanisms through which endothelial cells are reprogrammed to promote atherosclerosis is a crucial area of research that could lead to the identification of novel therapeutic targets to combat the high prevalence of atherosclerotic disease.
Collapse
Affiliation(s)
- Ian A Tamargo
- Wallace H. Coulter Department of Biomedical Engineering, Emory University and Georgia Institute of Technology, Atlanta, GA, USA
- Molecular and Systems Pharmacology Program, Emory University, Atlanta, GA, USA
| | - Kyung In Baek
- Wallace H. Coulter Department of Biomedical Engineering, Emory University and Georgia Institute of Technology, Atlanta, GA, USA
| | - Yerin Kim
- Wallace H. Coulter Department of Biomedical Engineering, Emory University and Georgia Institute of Technology, Atlanta, GA, USA
| | - Christian Park
- Wallace H. Coulter Department of Biomedical Engineering, Emory University and Georgia Institute of Technology, Atlanta, GA, USA
| | - Hanjoong Jo
- Wallace H. Coulter Department of Biomedical Engineering, Emory University and Georgia Institute of Technology, Atlanta, GA, USA.
- Molecular and Systems Pharmacology Program, Emory University, Atlanta, GA, USA.
- Department of Medicine, Emory University School, Atlanta, GA, USA.
| |
Collapse
|
5
|
Associations of Biopterins and ADMA with Vascular Function in Peripheral Microcirculation from Patients with Chronic Kidney Disease. Int J Mol Sci 2023; 24:ijms24065582. [PMID: 36982658 PMCID: PMC10056709 DOI: 10.3390/ijms24065582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 03/10/2023] [Accepted: 03/13/2023] [Indexed: 03/17/2023] Open
Abstract
We hypothesized that patients with chronic kidney disease (CKD) display an altered plasma amino acid (AA) metabolomic profile that could contribute to abnormal vascular maintenance of peripheral circulation in uremia. The relationships between plasma AAs and endothelial and vascular smooth muscle function in the microcirculation of CKD patients are not well understood. The objective of this study is to investigate to what extent the levels of AAs and its metabolites are changed in CKD patients and to test their relationship with endothelial and vascular smooth muscle function. Patients with CKD stages 3 and 5 and non-CKD controls are included in this study. We report that there was a significant reduction of the biopterin (BH4/BH2) ratio, which was accompanied by increased plasma levels of BH2, asymmetric dimethylarginine (ADMA) and citrulline in patients with CKD-5 vs. CKD-3 vs. controls. In vivo augmentation index measurement showed a positive association with ADMA in all participants. The contribution of nitric oxide, assessed by ex vivo assay, showed a negative association with creatinine, ADMA and citrulline in all participants. In CKD-5, BH4 negatively correlated with ADMA and ornithine levels, and the ex vivo endothelium-mediated dilatation positively correlated with phenylalanine levels. In conclusion, uremia is associated with alterations in AA metabolism that may affect endothelium-dependent dilatation and vascular stiffness in microcirculation. Interventional strategies aiming to normalize the AA metabolism could be of interest as treatment options.
Collapse
|
6
|
Vasquez-Vivar J, Shi Z, Tan S. Tetrahydrobiopterin in Cell Function and Death Mechanisms. Antioxid Redox Signal 2022; 37:171-183. [PMID: 34806400 PMCID: PMC9293684 DOI: 10.1089/ars.2021.0136] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 11/12/2021] [Accepted: 11/13/2021] [Indexed: 01/07/2023]
Abstract
Significance: Tetrahydrobiopterin (BH4) is most well known as a required cofactor for enzymes regulating cellular redox homeostasis, aromatic amino acid metabolism, and neurotransmitter synthesis. Less well known are the effects dependent on the cofactor's availability, factors governing its synthesis and recycling, redox implications of the cofactor itself, and protein-protein interactions that underlie cell death. This review provides an understanding of the recent advances implicating BH4 in the mechanisms of cell death and suggestions of possible therapeutic interventions. Recent Advances: The levels of BH4 often reflect the sum of synthetic and recycling enzyme activities. Enhanced expression of GTP cyclohydrolase, the rate-limiting enzyme in biosynthesis, increases BH4, leading to improved cell function and survival. Pharmacologically increasing BH4 levels has similar beneficial effects, leading to enhanced production of neurotransmitters and nitric oxide or reducing oxidant levels. The GTP cyclohydrolase-BH4 pairing has been implicated in a type of cell death, ferroptosis. At the cellular level, BH4 counteracts anticancer therapies directed to enhance ferroptosis via glutathione peroxidase 4 (GPX4) activity inhibition. Critical Issues: Because of the multitude of intertwined mechanisms, a clear relationship between BH4 and cell death is not well understood yet. The possibility that the cofactor directly influences cell viability has not been excluded in previous studies when modulating BH4-producing enzymes. Future Directions: The importance of cellular BH4 variations and BH4 biosynthetic enzymes to cell function and viability makes it essential to better characterize temporal changes, cofactor activity, and the influence on redox status, which in turn would help develop novel therapies. Antioxid. Redox Signal. 37, 171-183.
Collapse
Affiliation(s)
- Jeannette Vasquez-Vivar
- Redox Biology Program, Department of Biophysics, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Zhongjie Shi
- Department of Pediatrics, Wayne State University, Detroit, Michigan, USA
| | - Sidhartha Tan
- Department of Pediatrics, Wayne State University, Detroit, Michigan, USA
- Division of Neonatology, Children's Hospital of Michigan, Wayne State University and Central Michigan University, Detroit, Michigan, USA
| |
Collapse
|
7
|
Soares JPM, Gonçalves DA, de Sousa RX, Mouro MG, Higa EMS, Sperandio LP, Vitoriano CM, Rosa EBS, dos Santos FO, de Queiroz GN, Yamaguchi RSS, Pereira G, Icimoto MY, de Melo FHM. Disruption of Redox Homeostasis by Alterations in Nitric Oxide Synthase Activity and Tetrahydrobiopterin along with Melanoma Progression. Int J Mol Sci 2022; 23:5979. [PMID: 35682659 PMCID: PMC9181279 DOI: 10.3390/ijms23115979] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Revised: 05/16/2022] [Accepted: 05/20/2022] [Indexed: 12/12/2022] Open
Abstract
Cutaneous melanoma emerges from the malignant transformation of melanocytes and is the most aggressive type of skin cancer. The progression can occur in different stages: radial growth phase (RGP), vertical growth phase (VGP), and metastasis. Reactive oxygen species contribute to all phases of melanomagenesis through the modulation of oncogenic signaling pathways. Tetrahydrobiopterin (BH4) is an important cofactor for NOS coupling, and an uncoupled enzyme is a source of superoxide anion (O2•-) rather than nitric oxide (NO), altering the redox homeostasis and contributing to melanoma progression. In the present work, we showed that the BH4 amount varies between different cell lines corresponding to distinct stages of melanoma progression; however, they all presented higher O2•- levels and lower NO levels compared to melanocytes. Our results showed increased NOS expression in melanoma cells, contributing to NOS uncoupling. BH4 supplementation of RGP cells, and the DAHP treatment of metastatic melanoma cells reduced cell growth. Finally, Western blot analysis indicated that both treatments act on the PI3K/AKT and MAPK pathways of these melanoma cells in different ways. Disruption of cellular redox homeostasis by the altered BH4 concentration can be explored as a therapeutic strategy according to the stage of melanoma.
Collapse
Affiliation(s)
- Jaqueline Pereira Moura Soares
- Department of Physiological Sciences, Santa Casa de São Paulo School of Medical Sciences, São Paulo 01224-001, Brazil; (J.P.M.S.); (R.X.d.S.); (R.S.S.Y.)
| | - Diego Assis Gonçalves
- Department of Parasitology, Microbiology and Immunology, Juiz de Fora Federal University, Juiz de Fora 36036-900, Brazil;
- Micro-Imuno-Parasitology Department, Federal University of Sao Paulo, São Paulo 05508-090, Brazil
| | - Ricardo Xisto de Sousa
- Department of Physiological Sciences, Santa Casa de São Paulo School of Medical Sciences, São Paulo 01224-001, Brazil; (J.P.M.S.); (R.X.d.S.); (R.S.S.Y.)
| | - Margareth Gori Mouro
- Nefrology Discipline, Federal University of Sao Paulo, São Paulo 05508-090, Brazil; (M.G.M.); (E.M.S.H.)
| | - Elisa M. S. Higa
- Nefrology Discipline, Federal University of Sao Paulo, São Paulo 05508-090, Brazil; (M.G.M.); (E.M.S.H.)
| | - Letícia Paulino Sperandio
- Department of Pharmacology, Federal University of Sao Paulo, São Paulo 05508-090, Brazil; (L.P.S.); (G.P.)
| | - Carolina Moraes Vitoriano
- Department of Pharmacology, Institute of Biomedical Science, Universidade de São Paulo, São Paulo 05505-000, Brazil; (C.M.V.); (E.B.S.R.); (F.O.d.S.); (G.N.d.Q.)
| | - Elisa Bachir Santa Rosa
- Department of Pharmacology, Institute of Biomedical Science, Universidade de São Paulo, São Paulo 05505-000, Brazil; (C.M.V.); (E.B.S.R.); (F.O.d.S.); (G.N.d.Q.)
| | - Fernanda Oliveira dos Santos
- Department of Pharmacology, Institute of Biomedical Science, Universidade de São Paulo, São Paulo 05505-000, Brazil; (C.M.V.); (E.B.S.R.); (F.O.d.S.); (G.N.d.Q.)
| | - Gustavo Nery de Queiroz
- Department of Pharmacology, Institute of Biomedical Science, Universidade de São Paulo, São Paulo 05505-000, Brazil; (C.M.V.); (E.B.S.R.); (F.O.d.S.); (G.N.d.Q.)
| | - Roberta Sessa Stilhano Yamaguchi
- Department of Physiological Sciences, Santa Casa de São Paulo School of Medical Sciences, São Paulo 01224-001, Brazil; (J.P.M.S.); (R.X.d.S.); (R.S.S.Y.)
| | - Gustavo Pereira
- Department of Pharmacology, Federal University of Sao Paulo, São Paulo 05508-090, Brazil; (L.P.S.); (G.P.)
| | - Marcelo Yudi Icimoto
- Biophysics Department, Federal University of Sao Paulo, São Paulo 05508-090, Brazil;
| | - Fabiana Henriques Machado de Melo
- Department of Pharmacology, Institute of Biomedical Science, Universidade de São Paulo, São Paulo 05505-000, Brazil; (C.M.V.); (E.B.S.R.); (F.O.d.S.); (G.N.d.Q.)
- Institute of Medical Assistance to Public Servants of the State (IAMSPE), São Paulo 04039-000, Brazil
| |
Collapse
|
8
|
Wu J, Fang S, Lu KT, Kumar G, Reho JJ, Brozoski DT, Otanwa AJ, Hu C, Nair AR, Wackman KK, Agbor LN, Grobe JL, Sigmund CD. Endothelial Cullin3 Mutation Impairs Nitric Oxide-Mediated Vasodilation and Promotes Salt-Induced Hypertension. FUNCTION (OXFORD, ENGLAND) 2022; 3:zqac017. [PMID: 35493997 PMCID: PMC9045850 DOI: 10.1093/function/zqac017] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 03/29/2022] [Accepted: 03/30/2022] [Indexed: 01/13/2023]
Abstract
Human hypertension caused by in-frame deletion of CULLIN3 exon-9 (Cul3∆9) is driven by renal and vascular mechanisms. We bred conditionally activatable Cul3∆9 transgenic mice with tamoxifen-inducible Tie2-CREERT2 mice to test the importance of endothelial Cul3. The resultant mice (E-Cul3∆9) trended towards elevated nighttime blood pressure (BP) correlated with increased nighttime activity, but displayed no difference in daytime BP or activity. Male and female E-Cul3∆9 mice together exhibited a decline in endothelial-dependent relaxation in carotid artery. Male but not female E-Cul3∆9 mice displayed severe endothelial dysfunction in cerebral basilar artery. There was no impairment in mesenteric artery and no difference in smooth muscle function, suggesting the effects of Cul3∆9 are arterial bed-specific and sex-dependent. Expression of Cul3∆9 in primary mouse aortic endothelial cells decreased endogenous Cul3 protein, phosphorylated (S1177) endothelial nitric oxide synthase (eNOS) and nitric oxide (NO) production. Protein phosphatase (PP) 2A, a known Cul3 substrate, dephosphorylates eNOS. Cul3∆9-induced impairment of eNOS activity was rescued by a selective PP2A inhibitor okadaic acid, but not by a PP1 inhibitor tautomycetin. Because NO deficiency contributes to salt-induced hypertension, we tested the salt-sensitivity of E-Cul3∆9 mice. While both male and female E-Cul3∆9 mice developed salt-induced hypertension and renal injury, the pressor effect of salt was greater in female mutants. The increased salt-sensitivity in female E-Cul3∆9 mice was associated with decreased renovascular relaxation and impaired natriuresis in response to a sodium load. Thus, CUL3 mutations in the endothelium may contribute to human hypertension in part through decreased endothelial NO bioavailability, renovascular dysfunction, and increased salt-sensitivity of BP.
Collapse
Affiliation(s)
- Jing Wu
- Deparment of Physiology, Cardiovascular Center, Medical College of Wisconsin, Milwaukee, 53226 Wisconsin, USA
| | - Shi Fang
- Deparment of Physiology, Cardiovascular Center, Medical College of Wisconsin, Milwaukee, 53226 Wisconsin, USA,Department of Neuroscience and Pharmacology, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, 52242 Iowa, USA
| | - Ko-Ting Lu
- Deparment of Physiology, Cardiovascular Center, Medical College of Wisconsin, Milwaukee, 53226 Wisconsin, USA
| | - Gaurav Kumar
- Deparment of Physiology, Cardiovascular Center, Medical College of Wisconsin, Milwaukee, 53226 Wisconsin, USA
| | - John J Reho
- Deparment of Physiology, Cardiovascular Center, Medical College of Wisconsin, Milwaukee, 53226 Wisconsin, USA
| | - Daniel T Brozoski
- Deparment of Physiology, Cardiovascular Center, Medical College of Wisconsin, Milwaukee, 53226 Wisconsin, USA
| | - Adokole J Otanwa
- Department of Neuroscience and Pharmacology, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, 52242 Iowa, USA
| | - Chunyan Hu
- Department of Neuroscience and Pharmacology, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, 52242 Iowa, USA
| | - Anand R Nair
- Department of Neuroscience and Pharmacology, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, 52242 Iowa, USA
| | - Kelsey K Wackman
- Deparment of Physiology, Cardiovascular Center, Medical College of Wisconsin, Milwaukee, 53226 Wisconsin, USA
| | - Larry N Agbor
- Department of Neuroscience and Pharmacology, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, 52242 Iowa, USA
| | - Justin L Grobe
- Deparment of Physiology, Cardiovascular Center, Medical College of Wisconsin, Milwaukee, 53226 Wisconsin, USA
| | | |
Collapse
|
9
|
Feng Y, Feng Y, Gu L, Liu P, Cao J, Zhang S. The Critical Role of Tetrahydrobiopterin (BH4) Metabolism in Modulating Radiosensitivity: BH4/NOS Axis as an Angel or a Devil. Front Oncol 2021; 11:720632. [PMID: 34513700 PMCID: PMC8429800 DOI: 10.3389/fonc.2021.720632] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 08/12/2021] [Indexed: 12/16/2022] Open
Abstract
Ionizing radiation and radioactive materials have been widely used in industry, medicine, science and military. The efficacy of radiotherapy and adverse effects of normal tissues are closed related to cellular radiosensitivity. Molecular mechanisms underlying radiosensitivity are of significance to tumor cell radiosensitization as well as normal tissue radioprotection. 5,6,7,8-Tetrahydrobiopterin (BH4) is an essential cofactor for nitric oxide synthases (NOS) and aromatic amino acid hydroxylases, and its biosynthesis involves de novo biosynthesis and a pterin salvage pathway. In this review we overview the role of BH4 metabolism in modulating radiosensitivity. BH4 homeostasis determines the role of NOS, affecting the production of nitric oxide (NO) and oxygen free radicals. Under conditions of oxidative stress, such as UV-radiation and ionizing radiation, BH4 availability is diminished due to its oxidation, which subsequently leads to NOS uncoupling and generation of highly oxidative free radicals. On the other hand, BH4/NOS axis facilitates vascular normalization, a process by which antiangiogenic therapy corrects structural and functional flaws of tumor blood vessels, which enhances radiotherapy efficacy. Therefore, BH4/NOS axis may serve as an angel or a devil in regulating cellular radiosensitivity. Finally, we will address future perspectives, not only from the standpoint of perceived advances in treatment, but also from the potential mechanisms. These advances have demonstrated that it is possible to modulate cellular radiosensitivity through BH4 metabolism.
Collapse
Affiliation(s)
- Yang Feng
- School of Radiation Medicine and Protection, State Key Laboratory of Radiation Medicine, Soochow University, Suzhou, China
| | - Yahui Feng
- China National Nuclear Corporation 416 Hospital (Second Affiliated Hospital of Chengdu Medical College), Chengdu, China
| | - Liming Gu
- School of Radiation Medicine and Protection, State Key Laboratory of Radiation Medicine, Soochow University, Suzhou, China
| | - Pengfei Liu
- School of Radiation Medicine and Protection, State Key Laboratory of Radiation Medicine, Soochow University, Suzhou, China
| | - Jianping Cao
- School of Radiation Medicine and Protection, State Key Laboratory of Radiation Medicine, Soochow University, Suzhou, China
| | - Shuyu Zhang
- China National Nuclear Corporation 416 Hospital (Second Affiliated Hospital of Chengdu Medical College), Chengdu, China.,West China Second University Hospital, Sichuan University, Chengdu, China.,West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, China
| |
Collapse
|
10
|
Lei G, Mao C, Yan Y, Zhuang L, Gan B. Ferroptosis, radiotherapy, and combination therapeutic strategies. Protein Cell 2021; 12:836-857. [PMID: 33891303 PMCID: PMC8563889 DOI: 10.1007/s13238-021-00841-y] [Citation(s) in RCA: 215] [Impact Index Per Article: 71.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Accepted: 03/29/2021] [Indexed: 12/19/2022] Open
Abstract
Ferroptosis, an iron-dependent form of regulated cell death driven by peroxidative damages of polyunsaturated-fatty-acid-containing phospholipids in cellular membranes, has recently been revealed to play an important role in radiotherapy-induced cell death and tumor suppression, and to mediate the synergy between radiotherapy and immunotherapy. In this review, we summarize known as well as putative mechanisms underlying the crosstalk between radiotherapy and ferroptosis, discuss the interactions between ferroptosis and other forms of regulated cell death induced by radiotherapy, and explore combination therapeutic strategies targeting ferroptosis in radiotherapy and immunotherapy. This review will provide important frameworks for future investigations of ferroptosis in cancer therapy.
Collapse
Affiliation(s)
- Guang Lei
- Department of Radiation Oncology, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, China.,Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Chao Mao
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Yuelong Yan
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Li Zhuang
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Boyi Gan
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA. .,The University of Texas MD Anderson UTHealth Graduate School of Biomedical Sciences, Houston, TX, USA.
| |
Collapse
|
11
|
De Novo Profiling of Long Non-Coding RNAs Involved in MC-LR-Induced Liver Injury in Whitefish: Discovery and Perspectives. Int J Mol Sci 2021; 22:ijms22020941. [PMID: 33477898 PMCID: PMC7833382 DOI: 10.3390/ijms22020941] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 01/08/2021] [Accepted: 01/15/2021] [Indexed: 12/18/2022] Open
Abstract
Microcystin-LR (MC-LR) is a potent hepatotoxin for which a substantial gap in knowledge persists regarding the underlying molecular mechanisms of liver toxicity and injury. Although long non-coding RNAs (lncRNAs) have been extensively studied in model organisms, our knowledge concerning the role of lncRNAs in liver injury is limited. Given that lncRNAs show low levels of sequence conservation, their role becomes even more unclear in non-model organisms without an annotated genome, like whitefish (Coregonus lavaretus). The objective of this study was to discover and profile aberrantly expressed polyadenylated lncRNAs that are involved in MC-LR-induced liver injury in whitefish. Using RNA sequencing (RNA-Seq) data, we de novo assembled a high-quality whitefish liver transcriptome. This enabled us to find 94 differentially expressed (DE) putative evolutionary conserved lncRNAs, such as MALAT1, HOTTIP, HOTAIR or HULC, and 4429 DE putative novel whitefish lncRNAs, which differed from annotated protein-coding transcripts (PCTs) in terms of minimum free energy, guanine-cytosine (GC) base-pair content and length. Additionally, we identified DE non-coding transcripts that might be 3′ autonomous untranslated regions (3′UTRs) of mRNAs. We found both evolutionary conserved lncRNAs as well as novel whitefish lncRNAs that could serve as biomarkers of liver injury.
Collapse
|
12
|
Ebenhoch R, Prinz S, Kaltwasser S, Mills DJ, Meinecke R, Rübbelke M, Reinert D, Bauer M, Weixler L, Zeeb M, Vonck J, Nar H. A hybrid approach reveals the allosteric regulation of GTP cyclohydrolase I. Proc Natl Acad Sci U S A 2020; 117:31838-31849. [PMID: 33229582 PMCID: PMC7750480 DOI: 10.1073/pnas.2013473117] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Guanosine triphosphate (GTP) cyclohydrolase I (GCH1) catalyzes the conversion of GTP to dihydroneopterin triphosphate (H2NTP), the initiating step in the biosynthesis of tetrahydrobiopterin (BH4). Besides other roles, BH4 functions as cofactor in neurotransmitter biosynthesis. The BH4 biosynthetic pathway and GCH1 have been identified as promising targets to treat pain disorders in patients. The function of mammalian GCH1s is regulated by a metabolic sensing mechanism involving a regulator protein, GCH1 feedback regulatory protein (GFRP). GFRP binds to GCH1 to form inhibited or activated complexes dependent on availability of cofactor ligands, BH4 and phenylalanine, respectively. We determined high-resolution structures of human GCH1-GFRP complexes by cryoelectron microscopy (cryo-EM). Cryo-EM revealed structural flexibility of specific and relevant surface lining loops, which previously was not detected by X-ray crystallography due to crystal packing effects. Further, we studied allosteric regulation of isolated GCH1 by X-ray crystallography. Using the combined structural information, we are able to obtain a comprehensive picture of the mechanism of allosteric regulation. Local rearrangements in the allosteric pocket upon BH4 binding result in drastic changes in the quaternary structure of the enzyme, leading to a more compact, tense form of the inhibited protein, and translocate to the active site, leading to an open, more flexible structure of its surroundings. Inhibition of the enzymatic activity is not a result of hindrance of substrate binding, but rather a consequence of accelerated substrate binding kinetics as shown by saturation transfer difference NMR (STD-NMR) and site-directed mutagenesis. We propose a dissociation rate controlled mechanism of allosteric, noncompetitive inhibition.
Collapse
Affiliation(s)
- Rebecca Ebenhoch
- Medicinal Chemistry, Boehringer Ingelheim Pharma GmbH & Co. KG, 88397 Biberach an der Riss, Germany
| | - Simone Prinz
- Structural Biology, Max Planck Institute of Biophysics, 60438 Frankfurt am Main, Germany
| | - Susann Kaltwasser
- Structural Biology, Max Planck Institute of Biophysics, 60438 Frankfurt am Main, Germany
| | - Deryck J Mills
- Structural Biology, Max Planck Institute of Biophysics, 60438 Frankfurt am Main, Germany
| | - Robert Meinecke
- Medicinal Chemistry, Boehringer Ingelheim Pharma GmbH & Co. KG, 88397 Biberach an der Riss, Germany
| | - Martin Rübbelke
- Medicinal Chemistry, Boehringer Ingelheim Pharma GmbH & Co. KG, 88397 Biberach an der Riss, Germany
| | - Dirk Reinert
- Medicinal Chemistry, Boehringer Ingelheim Pharma GmbH & Co. KG, 88397 Biberach an der Riss, Germany
| | - Margit Bauer
- Medicinal Chemistry, Boehringer Ingelheim Pharma GmbH & Co. KG, 88397 Biberach an der Riss, Germany
| | - Lisa Weixler
- Medicinal Chemistry, Boehringer Ingelheim Pharma GmbH & Co. KG, 88397 Biberach an der Riss, Germany
| | - Markus Zeeb
- Medicinal Chemistry, Boehringer Ingelheim Pharma GmbH & Co. KG, 88397 Biberach an der Riss, Germany
| | - Janet Vonck
- Structural Biology, Max Planck Institute of Biophysics, 60438 Frankfurt am Main, Germany
| | - Herbert Nar
- Medicinal Chemistry, Boehringer Ingelheim Pharma GmbH & Co. KG, 88397 Biberach an der Riss, Germany;
| |
Collapse
|
13
|
de Queiroz JV, Vieira JCS, de Oliveira G, Braga CP, da Cunha Bataglioli I, da Silva JM, de Paula Araújo WL, de Magalhães Padilha P. Identification of Biomarkers of Mercury Contamination in Brachyplatystoma filamentosum of the Madeira River, Brazil, Using Metalloproteomic Strategies. Biol Trace Elem Res 2019; 187:291-300. [PMID: 29740802 DOI: 10.1007/s12011-018-1363-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Accepted: 04/24/2018] [Indexed: 12/17/2022]
Abstract
Predator fish can accumulate high levels of mercury, which qualifies them as potential indicators of this toxic metal. The predatory species Brachyplatystoma filamentosum, popularly known as filhote, is among the most consumed species in the Brazilian Amazon. Continuing the metalloproteomic studies of mercury in Amazonian fishes that have been developed in the last 5 years, the present paper provides the data of protein characterization associated with mercury in muscle and liver samples of filhote (Brachyplatystoma filamentosum) collected in the Madeira River, Brazilian Amazon. The mercury concentration in the muscle and liver samples was determined by graphite furnace atomic absorption spectrometry (GFAAS). The protein fraction was extracted in an aqueous medium, and later, a fractional precipitation procedure was performed to obtain the protein pellets. Then, the proteome of the tissue samples of this fish species was separated by two-dimensional polyacrylamide gel electrophoresis (2D-PAGE), and a mercury mapping of the protein spots was carried out by GFAAS after acid digestion. Protein spots that had mercury were characterized by mass spectrometry with electrospray ionization in sequence (ESI-MS/MS) after tryptic digestion. It was possible to characterize 11 mercury-associated protein spots that presented biomarker characteristics and could be used to monitor mercury in fish species of the Amazon region. Thus, the metalloproteomic strategies used in the present study allowed us to characterize 11 mercury-associated protein spots. It should be noted that the protein spots identified as GFRP, TMEM186, TMEM57B, and BHMT, which have coordination sites for elements with characteristics of soft acids, such as mercury, can be used as biomarkers of mercury contamination in monitoring studies of this toxic metal in fish species from the Amazon region.
Collapse
Affiliation(s)
- João Vitor de Queiroz
- School of Veterinary Medicine and Animal Science, São Paulo State University (UNESP), Botucatu, Brazil
| | | | | | | | | | | | | | - Pedro de Magalhães Padilha
- School of Veterinary Medicine and Animal Science, São Paulo State University (UNESP), Botucatu, Brazil
- Institute of Biosciences, São Paulo State University (UNESP), Botucatu, Brazil
| |
Collapse
|
14
|
Li J, Liu S, Cao G, Sun Y, Chen W, Dong F, Xu J, Zhang C, Zhang W. Nicotine induces endothelial dysfunction and promotes atherosclerosis via GTPCH1. J Cell Mol Med 2018; 22:5406-5417. [PMID: 30091833 PMCID: PMC6201367 DOI: 10.1111/jcmm.13812] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Accepted: 06/30/2018] [Indexed: 12/23/2022] Open
Abstract
Smoking is a major preventable risk factor for atherosclerosis. However, the causative link between cigarette smoke and atherosclerosis remains to be established. The objective of this study is to characterize the role of GTP cyclohydrolase 1 (GTPCH1), the rate-limiting enzyme for de novo tetrahydrobiopterin (BH4) synthesis, in the smoking-accelerated atherosclerosis and the mechanism involved. In vitro, human umbilical vein endothelial cells were treated with nicotine, a major component of cigarette smoke, which reduced the mRNA and protein levels of GTPCH1 and led to endothelial dysfunction. GTPCH1 overexpression or sepiapterin could attenuate nicotine-reduced nitric oxide and -increased reactive oxygen species levels. Mechanistically, human antigen R (HuR) bound with the adenylateuridylate-rich elements of the GTPCH1 3' untranslated region and increased its stability; nicotine inhibited HuR translocation from the nucleus to cytosol, which downregulated GTPCH1. In vivo, nicotine induced endothelial dysfunction and promoted atherosclerosis in ApoE-/- mice, which were attenuated by GTPCH1 overexpression or BH4 supplement. Our findings may provide a novel and promising approach to atherosclerosis treatment.
Collapse
Affiliation(s)
- Jingyuan Li
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Health; The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular MedicineQilu Hospital of Shandong UniversityJinanShandongChina
| | - Shangming Liu
- Department of Histology and EmbryologyShandong University School of MedicineJinanChina
| | - Guangqing Cao
- Department of Cardiovascular SurgeryQilu Hospital of Shandong UniversityJinanShandongChina
| | - Yuanyuan Sun
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Health; The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular MedicineQilu Hospital of Shandong UniversityJinanShandongChina
| | - Weiqian Chen
- Departmen of Cardiovascular Surgery of the First Affiliated Hospital & Institute for Cardiovascular ScienceSoochow UniversitySuzhouChina
| | - Fajin Dong
- Department of UltrasonographySecond Clinical College of Jinan UniversityShenzhen People's HospitalShenzhenChina
| | - Jinfeng Xu
- Department of UltrasonographySecond Clinical College of Jinan UniversityShenzhen People's HospitalShenzhenChina
| | - Cheng Zhang
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Health; The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular MedicineQilu Hospital of Shandong UniversityJinanShandongChina
| | - Wencheng Zhang
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Health; The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular MedicineQilu Hospital of Shandong UniversityJinanShandongChina
| |
Collapse
|
15
|
Heikal L, Starr A, Hussein D, Prieto-Lloret J, Aaronson P, Dailey LA, Nandi M. l-Phenylalanine Restores Vascular Function in Spontaneously Hypertensive Rats Through Activation of the GCH1-GFRP Complex. JACC Basic Transl Sci 2018; 3:366-377. [PMID: 29963647 PMCID: PMC6018612 DOI: 10.1016/j.jacbts.2018.01.015] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Revised: 10/27/2017] [Accepted: 01/24/2018] [Indexed: 12/11/2022]
Abstract
Tetrahydrobiopterin is an essential cofactor for NO production. Limitation of endogenous tetrahydrobiopterin reduces NO bioavailability, enhances oxidative stress, and impairs vascular function. Orally supplemented tetrahydrobiopterin has therapeutic challenges because it is rapidly oxidized in vivo. Here, the authors demonstrate that l-phenylalanine, when administered orally, raises vascular tetrahydrobiopterin, restores NO, reduces superoxide, and enhances vascular function in spontaneously hypertensive rats. This effect is achieved by activation of a protein complex (GCH1-GFRP) involved in the biosynthesis of tetrahydrobiopterin. Activation of this protein complex by l-phenylalanine or its analogues represents a novel therapeutic target for vascular disorders underpinned by reduced NO bioavailability.
Reduced nitric oxide (NO) bioavailability correlates with impaired cardiovascular function. NO is extremely labile and has been challenging to develop as a therapeutic agent. However, NO bioavailability could be enhanced by pharmacologically targeting endogenous NO regulatory pathways. Tetrahydrobiopterin, an essential cofactor for NO production, is synthesized by GTP cyclohydrolase-1 (GCH1), which complexes with GCH1 feedback regulatory protein (GFRP). The dietary amino acid l-phenylalanine activates this complex, elevating vascular BH4. Here, the authors demonstrate that l-phenylalanine administration restores vascular function in a rodent model of hypertension, suggesting the GCH1-GFRP complex represents a rational therapeutic target for diseases underpinned by endothelial dysfunction.
Collapse
Key Words
- ACh, acetylcholine
- ANOVA, analysis of variance
- BH2, dihydrobiopterin
- BH4, tetrahydrobiopterin
- EC50, effective concentration for 50% maximal response
- EDHF, endothelium derived hyperpolarizing factor
- GCH1, GTP cyclohydrolase-1
- GFRP, GCH1 feedback regulatory protein
- L-phe, l-phenylalanine
- L-tyr, l-tyrosine
- NO, nitric oxide
- ROS, reactive oxygen species
- SHR, spontaneously hypertensive rat(s)
- WKY, Wistar Kyoto rat(s)
- cardiovascular disease
- eNOS, endothelial nitric oxide synthase
- endothelium
- l-phenylalanine
- nitric oxide
- tetrahydrobiopterin
- vascular activity
Collapse
Affiliation(s)
- Lamia Heikal
- Institute of Pharmaceutical Sciences, Faculty of Life Sciences and Medicine, King's College London, London, United Kingdom
| | - Anna Starr
- Institute of Pharmaceutical Sciences, Faculty of Life Sciences and Medicine, King's College London, London, United Kingdom
| | - Dania Hussein
- Institute of Pharmaceutical Sciences, Faculty of Life Sciences and Medicine, King's College London, London, United Kingdom
| | - Jesus Prieto-Lloret
- Division of Asthma, Faculty of Life Sciences and Medicine, King's College London, London, United Kingdom
| | - Phil Aaronson
- Division of Asthma, Faculty of Life Sciences and Medicine, King's College London, London, United Kingdom
| | - Lea Ann Dailey
- Institute of Pharmaceutical Sciences, Faculty of Life Sciences and Medicine, King's College London, London, United Kingdom
| | - Manasi Nandi
- Institute of Pharmaceutical Sciences, Faculty of Life Sciences and Medicine, King's College London, London, United Kingdom.,Cardiovascular Division, Faculty of Life Sciences and Medicine, King's College London, London, United Kingdom
| |
Collapse
|
16
|
NO Signaling in the Cardiovascular System and Exercise. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 1000:211-245. [DOI: 10.1007/978-981-10-4304-8_13] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
17
|
Lowe FJ, Luettich K, Talikka M, Hoang V, Haswell LE, Hoeng J, Gaca MD. Development of an Adverse Outcome Pathway for the Onset of Hypertension by Oxidative Stress-Mediated Perturbation of Endothelial Nitric Oxide Bioavailability. ACTA ACUST UNITED AC 2017. [DOI: 10.1089/aivt.2016.0031] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Frazer J. Lowe
- British American Tobacco (Investments) Ltd., Group Research and Development, Southampton, United Kingdom
| | - Karsta Luettich
- Philip Morris International R&D, Philip Morris Products S.A. (part of Philip Morris International group of companies), Neuchatel, Switzerland
| | - Marja Talikka
- Philip Morris International R&D, Philip Morris Products S.A. (part of Philip Morris International group of companies), Neuchatel, Switzerland
| | - Vy Hoang
- Selventa, One Alewife Center, Cambridge, Massachusetts
| | - Linsey E. Haswell
- British American Tobacco (Investments) Ltd., Group Research and Development, Southampton, United Kingdom
| | - Julia Hoeng
- Philip Morris International R&D, Philip Morris Products S.A. (part of Philip Morris International group of companies), Neuchatel, Switzerland
| | - Marianna D. Gaca
- British American Tobacco (Investments) Ltd., Group Research and Development, Southampton, United Kingdom
| |
Collapse
|
18
|
Li P, Yin YL, Guo T, Sun XY, Ma H, Zhu ML, Zhao FR, Xu P, Chen Y, Wan GR, Jiang F, Peng QS, Liu C, Liu LY, Wang SX. Inhibition of Aberrant MicroRNA-133a Expression in Endothelial Cells by Statin Prevents Endothelial Dysfunction by Targeting GTP Cyclohydrolase 1 in Vivo. Circulation 2016; 134:1752-1765. [PMID: 27765794 PMCID: PMC5120771 DOI: 10.1161/circulationaha.116.017949] [Citation(s) in RCA: 102] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2016] [Accepted: 09/20/2016] [Indexed: 12/17/2022]
Abstract
Supplemental Digital Content is available in the text. Background: GTP cyclohydrolase 1 (GCH1) deficiency is critical for endothelial nitric oxide synthase uncoupling in endothelial dysfunction. MicroRNAs (miRs) are a class of regulatory RNAs that negatively regulate gene expression. We investigated whether statins prevent endothelial dysfunction via miR-dependent GCH1 upregulation. Methods: Endothelial function was assessed by measuring acetylcholine-induced vasorelaxation in the organ chamber. MiR-133a expression was assessed by quantitative reverse transcription polymerase chain reaction and fluorescence in situ hybridization. Results: We first demonstrated that GCH1 mRNA is a target of miR-133a. In endothelial cells, miR-133a was robustly induced by cytokines/oxidants and inhibited by lovastatin. Furthermore, lovastatin upregulated GCH1 and tetrahydrobiopterin, and recoupled endothelial nitric oxide synthase in stressed endothelial cells. These actions of lovastatin were abolished by enforced miR-133a expression and were mirrored by a miR-133a antagomir. In mice, hyperlipidemia- or hyperglycemia-induced ectopic miR-133a expression in the vascular endothelium, reduced GCH1 protein and tetrahydrobiopterin levels, and impaired endothelial function, which were reversed by lovastatin or miR-133a antagomir. These beneficial effects of lovastatin in mice were abrogated by in vivo miR-133a overexpression or GCH1 knockdown. In rats, multiple cardiovascular risk factors including hyperglycemia, dyslipidemia, and hyperhomocysteinemia resulted in increased miR-133a vascular expression, reduced GCH1 expression, uncoupled endothelial nitric oxide synthase function, and induced endothelial dysfunction, which were prevented by lovastatin. Conclusions: Statin inhibits aberrant miR-133a expression in the vascular endothelium to prevent endothelial dysfunction by targeting GCH1. Therefore, miR-133a represents an important therapeutic target for preventing cardiovascular diseases.
Collapse
Affiliation(s)
- Peng Li
- From School of Pharmacy and School of Basic Medical Sciences, Xinxiang Medical University, China (P.L., Y.-L.Y., M.-L.Z., F.-R.Z., P.X., G.-R.W., S.-X.W.); The Key Laboratory of Cardiovascular Remodeling and Function Research, Qilu Hospital, Shandong University, Jinan, China (T.G., H.M., Y.C., F.J., S.-X.W.); Department of Pharmacology, School of Pharmacy, Central South University, Changsha, China (X.-Y.S., L.-Y.L.); The Key Laboratory for Zoonosis Research, Institute of Zoonosis, Jilin University, Changchun, China (Q.-S.P.); and Hubei Key Laboratory of Cardiovascular, Cerebrovascular, and Metabolic Disorders, Hubei University of Science and Technology, Xianning, China (C.L.)
| | - Ya-Ling Yin
- From School of Pharmacy and School of Basic Medical Sciences, Xinxiang Medical University, China (P.L., Y.-L.Y., M.-L.Z., F.-R.Z., P.X., G.-R.W., S.-X.W.); The Key Laboratory of Cardiovascular Remodeling and Function Research, Qilu Hospital, Shandong University, Jinan, China (T.G., H.M., Y.C., F.J., S.-X.W.); Department of Pharmacology, School of Pharmacy, Central South University, Changsha, China (X.-Y.S., L.-Y.L.); The Key Laboratory for Zoonosis Research, Institute of Zoonosis, Jilin University, Changchun, China (Q.-S.P.); and Hubei Key Laboratory of Cardiovascular, Cerebrovascular, and Metabolic Disorders, Hubei University of Science and Technology, Xianning, China (C.L.)
| | - Tao Guo
- From School of Pharmacy and School of Basic Medical Sciences, Xinxiang Medical University, China (P.L., Y.-L.Y., M.-L.Z., F.-R.Z., P.X., G.-R.W., S.-X.W.); The Key Laboratory of Cardiovascular Remodeling and Function Research, Qilu Hospital, Shandong University, Jinan, China (T.G., H.M., Y.C., F.J., S.-X.W.); Department of Pharmacology, School of Pharmacy, Central South University, Changsha, China (X.-Y.S., L.-Y.L.); The Key Laboratory for Zoonosis Research, Institute of Zoonosis, Jilin University, Changchun, China (Q.-S.P.); and Hubei Key Laboratory of Cardiovascular, Cerebrovascular, and Metabolic Disorders, Hubei University of Science and Technology, Xianning, China (C.L.)
| | - Xue-Ying Sun
- From School of Pharmacy and School of Basic Medical Sciences, Xinxiang Medical University, China (P.L., Y.-L.Y., M.-L.Z., F.-R.Z., P.X., G.-R.W., S.-X.W.); The Key Laboratory of Cardiovascular Remodeling and Function Research, Qilu Hospital, Shandong University, Jinan, China (T.G., H.M., Y.C., F.J., S.-X.W.); Department of Pharmacology, School of Pharmacy, Central South University, Changsha, China (X.-Y.S., L.-Y.L.); The Key Laboratory for Zoonosis Research, Institute of Zoonosis, Jilin University, Changchun, China (Q.-S.P.); and Hubei Key Laboratory of Cardiovascular, Cerebrovascular, and Metabolic Disorders, Hubei University of Science and Technology, Xianning, China (C.L.)
| | - Hui Ma
- From School of Pharmacy and School of Basic Medical Sciences, Xinxiang Medical University, China (P.L., Y.-L.Y., M.-L.Z., F.-R.Z., P.X., G.-R.W., S.-X.W.); The Key Laboratory of Cardiovascular Remodeling and Function Research, Qilu Hospital, Shandong University, Jinan, China (T.G., H.M., Y.C., F.J., S.-X.W.); Department of Pharmacology, School of Pharmacy, Central South University, Changsha, China (X.-Y.S., L.-Y.L.); The Key Laboratory for Zoonosis Research, Institute of Zoonosis, Jilin University, Changchun, China (Q.-S.P.); and Hubei Key Laboratory of Cardiovascular, Cerebrovascular, and Metabolic Disorders, Hubei University of Science and Technology, Xianning, China (C.L.)
| | - Mo-Li Zhu
- From School of Pharmacy and School of Basic Medical Sciences, Xinxiang Medical University, China (P.L., Y.-L.Y., M.-L.Z., F.-R.Z., P.X., G.-R.W., S.-X.W.); The Key Laboratory of Cardiovascular Remodeling and Function Research, Qilu Hospital, Shandong University, Jinan, China (T.G., H.M., Y.C., F.J., S.-X.W.); Department of Pharmacology, School of Pharmacy, Central South University, Changsha, China (X.-Y.S., L.-Y.L.); The Key Laboratory for Zoonosis Research, Institute of Zoonosis, Jilin University, Changchun, China (Q.-S.P.); and Hubei Key Laboratory of Cardiovascular, Cerebrovascular, and Metabolic Disorders, Hubei University of Science and Technology, Xianning, China (C.L.)
| | - Fan-Rong Zhao
- From School of Pharmacy and School of Basic Medical Sciences, Xinxiang Medical University, China (P.L., Y.-L.Y., M.-L.Z., F.-R.Z., P.X., G.-R.W., S.-X.W.); The Key Laboratory of Cardiovascular Remodeling and Function Research, Qilu Hospital, Shandong University, Jinan, China (T.G., H.M., Y.C., F.J., S.-X.W.); Department of Pharmacology, School of Pharmacy, Central South University, Changsha, China (X.-Y.S., L.-Y.L.); The Key Laboratory for Zoonosis Research, Institute of Zoonosis, Jilin University, Changchun, China (Q.-S.P.); and Hubei Key Laboratory of Cardiovascular, Cerebrovascular, and Metabolic Disorders, Hubei University of Science and Technology, Xianning, China (C.L.)
| | - Ping Xu
- From School of Pharmacy and School of Basic Medical Sciences, Xinxiang Medical University, China (P.L., Y.-L.Y., M.-L.Z., F.-R.Z., P.X., G.-R.W., S.-X.W.); The Key Laboratory of Cardiovascular Remodeling and Function Research, Qilu Hospital, Shandong University, Jinan, China (T.G., H.M., Y.C., F.J., S.-X.W.); Department of Pharmacology, School of Pharmacy, Central South University, Changsha, China (X.-Y.S., L.-Y.L.); The Key Laboratory for Zoonosis Research, Institute of Zoonosis, Jilin University, Changchun, China (Q.-S.P.); and Hubei Key Laboratory of Cardiovascular, Cerebrovascular, and Metabolic Disorders, Hubei University of Science and Technology, Xianning, China (C.L.)
| | - Yuan Chen
- From School of Pharmacy and School of Basic Medical Sciences, Xinxiang Medical University, China (P.L., Y.-L.Y., M.-L.Z., F.-R.Z., P.X., G.-R.W., S.-X.W.); The Key Laboratory of Cardiovascular Remodeling and Function Research, Qilu Hospital, Shandong University, Jinan, China (T.G., H.M., Y.C., F.J., S.-X.W.); Department of Pharmacology, School of Pharmacy, Central South University, Changsha, China (X.-Y.S., L.-Y.L.); The Key Laboratory for Zoonosis Research, Institute of Zoonosis, Jilin University, Changchun, China (Q.-S.P.); and Hubei Key Laboratory of Cardiovascular, Cerebrovascular, and Metabolic Disorders, Hubei University of Science and Technology, Xianning, China (C.L.)
| | - Guang-Rui Wan
- From School of Pharmacy and School of Basic Medical Sciences, Xinxiang Medical University, China (P.L., Y.-L.Y., M.-L.Z., F.-R.Z., P.X., G.-R.W., S.-X.W.); The Key Laboratory of Cardiovascular Remodeling and Function Research, Qilu Hospital, Shandong University, Jinan, China (T.G., H.M., Y.C., F.J., S.-X.W.); Department of Pharmacology, School of Pharmacy, Central South University, Changsha, China (X.-Y.S., L.-Y.L.); The Key Laboratory for Zoonosis Research, Institute of Zoonosis, Jilin University, Changchun, China (Q.-S.P.); and Hubei Key Laboratory of Cardiovascular, Cerebrovascular, and Metabolic Disorders, Hubei University of Science and Technology, Xianning, China (C.L.)
| | - Fan Jiang
- From School of Pharmacy and School of Basic Medical Sciences, Xinxiang Medical University, China (P.L., Y.-L.Y., M.-L.Z., F.-R.Z., P.X., G.-R.W., S.-X.W.); The Key Laboratory of Cardiovascular Remodeling and Function Research, Qilu Hospital, Shandong University, Jinan, China (T.G., H.M., Y.C., F.J., S.-X.W.); Department of Pharmacology, School of Pharmacy, Central South University, Changsha, China (X.-Y.S., L.-Y.L.); The Key Laboratory for Zoonosis Research, Institute of Zoonosis, Jilin University, Changchun, China (Q.-S.P.); and Hubei Key Laboratory of Cardiovascular, Cerebrovascular, and Metabolic Disorders, Hubei University of Science and Technology, Xianning, China (C.L.)
| | - Qi-Sheng Peng
- From School of Pharmacy and School of Basic Medical Sciences, Xinxiang Medical University, China (P.L., Y.-L.Y., M.-L.Z., F.-R.Z., P.X., G.-R.W., S.-X.W.); The Key Laboratory of Cardiovascular Remodeling and Function Research, Qilu Hospital, Shandong University, Jinan, China (T.G., H.M., Y.C., F.J., S.-X.W.); Department of Pharmacology, School of Pharmacy, Central South University, Changsha, China (X.-Y.S., L.-Y.L.); The Key Laboratory for Zoonosis Research, Institute of Zoonosis, Jilin University, Changchun, China (Q.-S.P.); and Hubei Key Laboratory of Cardiovascular, Cerebrovascular, and Metabolic Disorders, Hubei University of Science and Technology, Xianning, China (C.L.)
| | - Chao Liu
- From School of Pharmacy and School of Basic Medical Sciences, Xinxiang Medical University, China (P.L., Y.-L.Y., M.-L.Z., F.-R.Z., P.X., G.-R.W., S.-X.W.); The Key Laboratory of Cardiovascular Remodeling and Function Research, Qilu Hospital, Shandong University, Jinan, China (T.G., H.M., Y.C., F.J., S.-X.W.); Department of Pharmacology, School of Pharmacy, Central South University, Changsha, China (X.-Y.S., L.-Y.L.); The Key Laboratory for Zoonosis Research, Institute of Zoonosis, Jilin University, Changchun, China (Q.-S.P.); and Hubei Key Laboratory of Cardiovascular, Cerebrovascular, and Metabolic Disorders, Hubei University of Science and Technology, Xianning, China (C.L.)
| | - Li-Ying Liu
- From School of Pharmacy and School of Basic Medical Sciences, Xinxiang Medical University, China (P.L., Y.-L.Y., M.-L.Z., F.-R.Z., P.X., G.-R.W., S.-X.W.); The Key Laboratory of Cardiovascular Remodeling and Function Research, Qilu Hospital, Shandong University, Jinan, China (T.G., H.M., Y.C., F.J., S.-X.W.); Department of Pharmacology, School of Pharmacy, Central South University, Changsha, China (X.-Y.S., L.-Y.L.); The Key Laboratory for Zoonosis Research, Institute of Zoonosis, Jilin University, Changchun, China (Q.-S.P.); and Hubei Key Laboratory of Cardiovascular, Cerebrovascular, and Metabolic Disorders, Hubei University of Science and Technology, Xianning, China (C.L.)
| | - Shuang-Xi Wang
- From School of Pharmacy and School of Basic Medical Sciences, Xinxiang Medical University, China (P.L., Y.-L.Y., M.-L.Z., F.-R.Z., P.X., G.-R.W., S.-X.W.); The Key Laboratory of Cardiovascular Remodeling and Function Research, Qilu Hospital, Shandong University, Jinan, China (T.G., H.M., Y.C., F.J., S.-X.W.); Department of Pharmacology, School of Pharmacy, Central South University, Changsha, China (X.-Y.S., L.-Y.L.); The Key Laboratory for Zoonosis Research, Institute of Zoonosis, Jilin University, Changchun, China (Q.-S.P.); and Hubei Key Laboratory of Cardiovascular, Cerebrovascular, and Metabolic Disorders, Hubei University of Science and Technology, Xianning, China (C.L.).
| |
Collapse
|
19
|
Barasa BA, van Oirschot BA, Bianchi P, van Solinge WW, Heck AJR, van Wijk R, Slijper M. Proteomics reveals reduced expression of transketolase in pyrimidine 5′-nucleotidase deficient patients. Proteomics Clin Appl 2016; 10:859-69. [DOI: 10.1002/prca.201500130] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2015] [Revised: 06/29/2016] [Accepted: 06/30/2016] [Indexed: 01/08/2023]
Affiliation(s)
- Benjamin A. Barasa
- Biomolecular Mass Spectrometry and Proteomics Group; Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences; Utrecht University; Utrecht The Netherlands
- Netherlands Proteomics Centre; Utrecht The Netherlands
| | - Brigitte A. van Oirschot
- Laboratory for Red Blood Cell Research; Department of Clinical Chemistry and Haematology; University Medical Center Utrecht; Utrecht The Netherlands
| | - Paola Bianchi
- Oncohematology Unit; Physiopathology of Anemias Unit; Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico; Milan Italy
| | - Wouter W. van Solinge
- Laboratory for Red Blood Cell Research; Department of Clinical Chemistry and Haematology; University Medical Center Utrecht; Utrecht The Netherlands
| | - Albert J. R. Heck
- Biomolecular Mass Spectrometry and Proteomics Group; Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences; Utrecht University; Utrecht The Netherlands
- Netherlands Proteomics Centre; Utrecht The Netherlands
| | - Richard van Wijk
- Laboratory for Red Blood Cell Research; Department of Clinical Chemistry and Haematology; University Medical Center Utrecht; Utrecht The Netherlands
| | - Monique Slijper
- Biomolecular Mass Spectrometry and Proteomics Group; Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences; Utrecht University; Utrecht The Netherlands
- Netherlands Proteomics Centre; Utrecht The Netherlands
| |
Collapse
|
20
|
Hussein D, Starr A, Heikal L, McNeill E, Channon KM, Brown PR, Sutton BJ, McDonnell JM, Nandi M. Validating the GTP-cyclohydrolase 1-feedback regulatory complex as a therapeutic target using biophysical and in vivo approaches. Br J Pharmacol 2015; 172:4146-57. [PMID: 26014146 PMCID: PMC4543619 DOI: 10.1111/bph.13202] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2014] [Revised: 05/12/2015] [Accepted: 05/13/2015] [Indexed: 11/26/2022] Open
Abstract
BACKGROUND AND PURPOSE 6R-L-erythro-5,6,7,8-tetrahydrobiopterin (BH4 ) is an essential cofactor for nitric oxide biosynthesis. Substantial clinical evidence indicates that intravenous BH4 restores vascular function in patients. Unfortunately, oral BH4 has limited efficacy. Therefore, orally bioavailable pharmacological activators of endogenous BH4 biosynthesis hold significant therapeutic potential. GTP-cyclohydrolase 1 (GCH1), the rate limiting enzyme in BH4 synthesis, forms a protein complex with GCH1 feedback regulatory protein (GFRP). This complex is subject to allosteric feed-forward activation by L-phenylalanine (L-phe). We investigated the effects of L-phe on the biophysical interactions of GCH1 and GFRP and its potential to alter BH4 levels in vivo. EXPERIMENTAL APPROACH Detailed characterization of GCH1-GFRP protein-protein interactions were performed using surface plasmon resonance (SPR) with or without L-phe. Effects on systemic and vascular BH4 biosynthesis in vivo were investigated following L-phe treatment (100 mg·kg(-1) , p.o.). KEY RESULTS GCH1 and GFRP proteins interacted in the absence of known ligands or substrate but the presence of L-phe doubled maximal binding and enhanced binding affinity eightfold. Furthermore, the complex displayed very slow association and dissociation rates. In vivo, L-phe challenge induced a sustained elevation of aortic BH4 , an effect absent in GCH1(fl/fl)-Tie2Cre mice. CONCLUSIONS AND IMPLICATIONS Biophysical data indicate that GCH1 and GFRP are constitutively bound. In vivo, data demonstrated that L-phe elevated vascular BH4 in an endothelial GCH1 dependent manner. Pharmacological agents which mimic the allosteric effects of L-phe on the GCH1-GFRP complex have the potential to elevate endothelial BH4 biosynthesis for numerous cardiovascular disorders.
Collapse
Affiliation(s)
- D Hussein
- Institute of Pharmaceutical Science, Faculty of Life Sciences & Medicine, King's College LondonLondon, UK
| | - A Starr
- Institute of Pharmaceutical Science, Faculty of Life Sciences & Medicine, King's College LondonLondon, UK
| | - L Heikal
- Institute of Pharmaceutical Science, Faculty of Life Sciences & Medicine, King's College LondonLondon, UK
| | - E McNeill
- British Heart Foundation Centre of Research Excellence, Division of Cardiovascular Medicine, University of Oxford, John Radcliffe HospitalOxford, UK
| | - K M Channon
- British Heart Foundation Centre of Research Excellence, Division of Cardiovascular Medicine, University of Oxford, John Radcliffe HospitalOxford, UK
| | - P R Brown
- The Randall Division of Cell and Molecular Biophysics, Faculty of Life Sciences & Medicine, King's College LondonLondon, UK
| | - B J Sutton
- The Randall Division of Cell and Molecular Biophysics, Faculty of Life Sciences & Medicine, King's College LondonLondon, UK
| | - J M McDonnell
- The Randall Division of Cell and Molecular Biophysics, Faculty of Life Sciences & Medicine, King's College LondonLondon, UK
| | - M Nandi
- Institute of Pharmaceutical Science, Faculty of Life Sciences & Medicine, King's College LondonLondon, UK
| |
Collapse
|
21
|
Rabender CS, Alam A, Sundaresan G, Cardnell RJ, Yakovlev VA, Mukhopadhyay ND, Graves P, Zweit J, Mikkelsen RB. The Role of Nitric Oxide Synthase Uncoupling in Tumor Progression. Mol Cancer Res 2015; 13:1034-43. [PMID: 25724429 PMCID: PMC4470720 DOI: 10.1158/1541-7786.mcr-15-0057-t] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2015] [Accepted: 02/21/2015] [Indexed: 02/07/2023]
Abstract
UNLABELLED Here, evidence suggests that nitric oxide synthases (NOS) of tumor cells, in contrast with normal tissues, synthesize predominantly superoxide and peroxynitrite. Based on high-performance liquid chromatography analysis, the underlying mechanism for this uncoupling is a reduced tetrahydrobiopterin:dihydrobiopterin ratio (BH4:BH2) found in breast, colorectal, epidermoid, and head and neck tumors compared with normal tissues. Increasing BH4:BH2 and reconstitution of coupled NOS activity in breast cancer cells with the BH4 salvage pathway precursor, sepiapterin, causes significant shifts in downstream signaling, including increased cGMP-dependent protein kinase (PKG) activity, decreased β-catenin expression, and TCF4 promoter activity, and reduced NF-κB promoter activity. Sepiapterin inhibited breast tumor cell growth in vitro and in vivo as measured by a clonogenic assay, Ki67 staining, and 2[18F]fluoro-2-deoxy-D-glucose-deoxyglucose positron emission tomography (FDG-PET). In summary, using diverse tumor types, it is demonstrated that the BH4:BH2 ratio is lower in tumor tissues and, as a consequence, NOS activity generates more peroxynitrite and superoxide anion than nitric oxide, resulting in important tumor growth-promoting and antiapoptotic signaling properties. IMPLICATIONS The synthetic BH4, Kuvan, is used to elevate BH4:BH2 in some phenylketonuria patients and to treat diseases associated with endothelial dysfunction, suggesting a novel, testable approach for correcting an abnormality of tumor metabolism to control tumor growth.
Collapse
Affiliation(s)
| | - Asim Alam
- Department of Radiation Oncology, Virginia Commonwealth University, Richmond, Virginia
| | - Gobalakrishnan Sundaresan
- Department of Radiology and Center for Molecular Imaging, Virginia Commonwealth University, Richmond, Virginia
| | - Robert J Cardnell
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson, Houston, Texas
| | - Vasily A Yakovlev
- Department of Radiation Oncology, Virginia Commonwealth University, Richmond, Virginia
| | - Nitai D Mukhopadhyay
- Department of Biostatistics, Virginia Commonwealth University, Richmond, Virginia
| | - Paul Graves
- Department of Radiation Oncology, New York Methodist Hospital, Weill Cornell Medical College, Brooklyn, New York
| | - Jamal Zweit
- Department of Radiology and Center for Molecular Imaging, Virginia Commonwealth University, Richmond, Virginia
| | - Ross B Mikkelsen
- Department of Radiation Oncology, Virginia Commonwealth University, Richmond, Virginia.
| |
Collapse
|
22
|
Modulation of Radiation Response by the Tetrahydrobiopterin Pathway. Antioxidants (Basel) 2015; 4:68-81. [PMID: 26785338 PMCID: PMC4665563 DOI: 10.3390/antiox4010068] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2014] [Revised: 01/07/2015] [Accepted: 01/13/2015] [Indexed: 02/07/2023] Open
Abstract
Ionizing radiation (IR) is an integral component of our lives due to highly prevalent sources such as medical, environmental, and/or accidental. Thus, understanding of the mechanisms by which radiation toxicity develops is crucial to address acute and chronic health problems that occur following IR exposure. Immediate formation of IR-induced free radicals as well as their persistent effects on metabolism through subsequent alterations in redox mediated inter- and intracellular processes are globally accepted as significant contributors to early and late effects of IR exposure. This includes but is not limited to cytotoxicity, genomic instability, fibrosis and inflammation. Damage to the critical biomolecules leading to detrimental long-term alterations in metabolic redox homeostasis following IR exposure has been the focus of various independent investigations over last several decades. The growth of the "omics" technologies during the past decade has enabled integration of "data from traditional radiobiology research", with data from metabolomics studies. This review will focus on the role of tetrahydrobiopterin (BH4), an understudied redox-sensitive metabolite, plays in the pathogenesis of post-irradiation normal tissue injury as well as how the metabolomic readout of BH4 metabolism fits in the overall picture of disrupted oxidative metabolism following IR exposure.
Collapse
|
23
|
Go YM, Kim CW, Walker DI, Kang DW, Kumar S, Orr M, Uppal K, Quyyumi AA, Jo H, Jones DP. Disturbed flow induces systemic changes in metabolites in mouse plasma: a metabolomics study using ApoE⁻/⁻ mice with partial carotid ligation. Am J Physiol Regul Integr Comp Physiol 2014; 308:R62-72. [PMID: 25377480 DOI: 10.1152/ajpregu.00278.2014] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Disturbed blood flow (d-flow) occurring in branched and curved arteries promotes endothelial dysfunction and atherosclerosis, in part, by altering gene expression and epigenomic profiles in endothelial cells. While a systemic metabolic change is known to play a role in atherosclerosis, it is unclear whether it can be regulated by local d-flow. Here, we tested this hypothesis by carrying out a metabolomics study using blood plasma samples obtained from ApoE(-/-) mice that underwent a partial carotid ligation surgery to induce d-flow. Mice receiving sham ligation were used as a control. To study early metabolic changes, samples collected from 1 wk after partial ligation when endothelial dysfunction occurs, but before atheroma develops, were analyzed by high-resolution mass spectrometry. A metabolome-wide association study showed that 128 metabolites were significantly altered in the ligated mice compared with the sham group. Of these, sphingomyelin (SM; m/z 703.5747), a common mammalian cell membrane sphingolipid, was most significantly increased in the ligated mice. Of the 128 discriminatory metabolites, 18 and 41 were positively and negatively correlated with SM, respectively. The amino acids methionine and phenylalanine were increased by d-flow, while phosphatidylcholine and phosphatidylethanolamine were decreased by d-flow, and these metabolites were correlated with SM. Other significantly affected metabolites included dietary and environmental agents. Pathway analysis showed that the metabolic changes of d-flow impacted broad functional networks. These results suggest that signaling from d-flow occurring in focal regions induces systemic metabolic changes associated with atherosclerosis.
Collapse
Affiliation(s)
- Young-Mi Go
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, Emory University, Atlanta, Georgia
| | - Chan Woo Kim
- Division of Cardiology, Department of Medicine, Emory University, Atlanta, Georgia; Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, Georgia
| | - Douglas I Walker
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, Emory University, Atlanta, Georgia; Department of Civil and Environmental Engineering, Tufts University, Medford, Massachusetts; and
| | - Dong Won Kang
- Division of Cardiology, Department of Medicine, Emory University, Atlanta, Georgia; Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, Georgia
| | - Sandeep Kumar
- Division of Cardiology, Department of Medicine, Emory University, Atlanta, Georgia; Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, Georgia
| | - Michael Orr
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, Emory University, Atlanta, Georgia
| | - Karan Uppal
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, Emory University, Atlanta, Georgia
| | - Arshed A Quyyumi
- Division of Cardiology, Department of Medicine, Emory University, Atlanta, Georgia
| | - Hanjoong Jo
- Division of Cardiology, Department of Medicine, Emory University, Atlanta, Georgia; Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, Georgia
| | - Dean P Jones
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, Emory University, Atlanta, Georgia;
| |
Collapse
|
24
|
Bendall JK, Douglas G, McNeill E, Channon KM, Crabtree MJ. Tetrahydrobiopterin in cardiovascular health and disease. Antioxid Redox Signal 2014; 20:3040-77. [PMID: 24294830 PMCID: PMC4038990 DOI: 10.1089/ars.2013.5566] [Citation(s) in RCA: 164] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2013] [Revised: 11/01/2013] [Accepted: 12/02/2013] [Indexed: 01/03/2023]
Abstract
Tetrahydrobiopterin (BH4) functions as a cofactor for several important enzyme systems, and considerable evidence implicates BH4 as a key regulator of endothelial nitric oxide synthase (eNOS) in the setting of cardiovascular health and disease. BH4 bioavailability is determined by a balance of enzymatic de novo synthesis and recycling, versus degradation in the setting of oxidative stress. Augmenting vascular BH4 levels by pharmacological supplementation has been shown in experimental studies to enhance NO bioavailability. However, it has become more apparent that the role of BH4 in other enzymatic pathways, including other NOS isoforms and the aromatic amino acid hydroxylases, may have a bearing on important aspects of vascular homeostasis, inflammation, and cardiac function. This article reviews the role of BH4 in cardiovascular development and homeostasis, as well as in pathophysiological processes such as endothelial and vascular dysfunction, atherosclerosis, inflammation, and cardiac hypertrophy. We discuss the therapeutic potential of BH4 in cardiovascular disease states and attempt to address how this modulator of intracellular NO-redox balance may ultimately provide a powerful new treatment for many cardiovascular diseases.
Collapse
Affiliation(s)
- Jennifer K Bendall
- Division of Cardiovascular Medicine, British Heart Foundation Centre of Research Excellence, University of Oxford , John Radcliffe Hospital, Oxford, United Kingdom
| | | | | | | | | |
Collapse
|
25
|
Pathak R, Pawar SA, Fu Q, Gupta PK, Berbée M, Garg S, Sridharan V, Wang W, Biju PG, Krager KJ, Boerma M, Ghosh SP, Cheema AK, Hendrickson HP, Aykin-Burns N, Hauer-Jensen M. Characterization of transgenic Gfrp knock-in mice: implications for tetrahydrobiopterin in modulation of normal tissue radiation responses. Antioxid Redox Signal 2014; 20:1436-46. [PMID: 23521531 PMCID: PMC3936502 DOI: 10.1089/ars.2012.5025] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2012] [Revised: 02/22/2013] [Accepted: 03/22/2013] [Indexed: 01/17/2023]
Abstract
AIMS The free radical scavenger and nitric oxide synthase cofactor, 5,6,7,8-tetrahydrobiopterin (BH4), plays a well-documented role in many disorders associated with oxidative stress, including normal tissue radiation responses. Radiation exposure is associated with decreased BH4 levels, while BH4 supplementation attenuates aspects of radiation toxicity. The endogenous synthesis of BH4 is catalyzed by the enzyme guanosine triphosphate cyclohydrolase I (GTPCH1), which is regulated by the inhibitory GTP cyclohydrolase I feedback regulatory protein (GFRP). We here report and characterize a novel, Cre-Lox-driven, transgenic mouse model that overexpresses Gfrp. RESULTS Compared to control littermates, transgenic mice exhibited high transgene copy numbers, increased Gfrp mRNA and GFRP expression, enhanced GFRP-GTPCH1 interaction, reduced BH4 levels, and low glutathione (GSH) levels and differential mitochondrial bioenergetic profiles. After exposure to total body irradiation, transgenic mice showed decreased BH4/7,8-dihydrobiopterin ratios, increased vascular oxidative stress, and reduced white blood cell counts compared with controls. INNOVATION AND CONCLUSION This novel Gfrp knock-in transgenic mouse model allows elucidation of the role of GFRP in the regulation of BH4 biosynthesis. This model is a valuable tool to study the involvement of BH4 in whole body and tissue-specific radiation responses and other conditions associated with oxidative stress.
Collapse
Affiliation(s)
- Rupak Pathak
- Division of Radiation Health, University of Arkansas for Medical Sciences, Little Rock, Arkansas
| | - Snehalata A. Pawar
- Division of Radiation Health, University of Arkansas for Medical Sciences, Little Rock, Arkansas
| | - Qiang Fu
- Division of Radiation Health, University of Arkansas for Medical Sciences, Little Rock, Arkansas
| | - Prem K. Gupta
- Department of Pharmaceutical Sciences, University of Arkansas for Medical Sciences, Little Rock, Arkansas
| | - Maaike Berbée
- Division of Radiation Health, University of Arkansas for Medical Sciences, Little Rock, Arkansas
| | - Sarita Garg
- Division of Radiation Health, University of Arkansas for Medical Sciences, Little Rock, Arkansas
| | - Vijayalakshmi Sridharan
- Division of Radiation Health, University of Arkansas for Medical Sciences, Little Rock, Arkansas
| | - Wenze Wang
- Division of Radiation Health, University of Arkansas for Medical Sciences, Little Rock, Arkansas
| | - Prabath G. Biju
- Division of Radiation Health, University of Arkansas for Medical Sciences, Little Rock, Arkansas
| | - Kimberly J. Krager
- Division of Radiation Health, University of Arkansas for Medical Sciences, Little Rock, Arkansas
| | - Marjan Boerma
- Division of Radiation Health, University of Arkansas for Medical Sciences, Little Rock, Arkansas
| | - Sanchita P. Ghosh
- Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, Bethesda, Maryland
| | - Amrita K. Cheema
- Department of Oncology, Georgetown University Medical Center, Washington, District of Columbia
| | - Howard P. Hendrickson
- Department of Pharmaceutical Sciences, University of Arkansas for Medical Sciences, Little Rock, Arkansas
| | - Nukhet Aykin-Burns
- Division of Radiation Health, University of Arkansas for Medical Sciences, Little Rock, Arkansas
| | - Martin Hauer-Jensen
- Division of Radiation Health, University of Arkansas for Medical Sciences, Little Rock, Arkansas
- Surgical Service, Central Arkansas Veterans Healthcare System, Little Rock, Arkansas
| |
Collapse
|
26
|
Abstract
6R l-erythro-5,6,7,8-tetrahydrobiopterin (BH4) is an essential cofactor for several enzymes including phenylalanine hydroxylase and the nitric oxide synthases (NOS). Oral supplementation of BH4 has been successfully employed to treat subsets of patients with hyperphenylalaninaemia. More recently, research efforts have focussed on understanding whether BH4 supplementation may also be efficacious in cardiovascular disorders that are underpinned by reduced nitric oxide bioavailability. Whilst numerous preclinical and clinical studies have demonstrated a positive association between enhanced BH4 and vascular function, the efficacy of orally administered BH4 in human cardiovascular disease remains unclear. Furthermore, interventions that limit BH4 bioavailability may provide benefit in diseases where nitric oxide over production contributes to pathology. This review describes the pathways involved in BH4 bio-regulation and discusses other endogenous mechanisms that could be harnessed therapeutically to manipulate vascular BH4 levels.
Collapse
Affiliation(s)
- Anna Starr
- Pharmacology and Therapeutics Group, Institute of Pharmaceutical Science, School of Biomedical Sciences, King's College London, Franklin Wilkins Building, 150 Stamford Street,London SE1 9NH, United Kingdom
| | | | | |
Collapse
|
27
|
|
28
|
Abstract
Nitric oxide (NO), a key regulator of cardiovascular function, is synthesized from L-arginine and oxygen by the enzyme nitric oxide synthase (NOS). This reaction requires tetrahydrobiopterin (BH4) as a cofactor. BH4 is synthesized from guanosine triphosphate (GTP) by GTP cyclohydrolase I (GTPCH) and recycled from 7,8-dihydrobiopterin (BH2) by dihydrofolate reductase. Under conditions of low BH4 bioavailability relative to NOS or BH2, oxygen activation is "uncoupled" from L-arginine oxidation, and NOS produces superoxide (O (2) (-) ) instead of NO. NOS-derived superoxide reacts with NO to produce peroxynitrite (ONOO(-)), a highly reactive anion that rapidly oxidizes BH4 and propagates NOS uncoupling. BH4 depletion and NOS uncoupling contribute to overload-induced heart failure, hypertension, ischemia/reperfusion injury, and atrial fibrillation. L-arginine depletion, methylarginine accumulation, and S-glutathionylation of NOS also promote uncoupling. Recoupling NOS is a promising approach to treating myocardial and vascular dysfunction associated with heart failure.
Collapse
Affiliation(s)
- Matthew S. Alkaitis
- Nuffield Department of Clinical Laboratory Sciences, University of Oxford, John Radcliffe Hospital, Oxford, UK
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD USA
| | - Mark J. Crabtree
- Department of Cardiovascular Medicine, University of Oxford, John Radcliffe Hospital, Oxford, UK
| |
Collapse
|
29
|
Carnicer R, Hale AB, Suffredini S, Liu X, Reilly S, Zhang MH, Surdo NC, Bendall JK, Crabtree MJ, Lim GBS, Alp NJ, Channon KM, Casadei B. Cardiomyocyte GTP cyclohydrolase 1 and tetrahydrobiopterin increase NOS1 activity and accelerate myocardial relaxation. Circ Res 2012; 111:718-27. [PMID: 22798524 DOI: 10.1161/circresaha.112.274464] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
RATIONALE Tetrahydrobiopterin (BH4) is an essential cofactor of nitric oxide synthases (NOS). Oral BH4 supplementation preserves cardiac function in animal models of cardiac disease; however, the mechanisms underlying these findings are not completely understood. OBJECTIVE To study the effect of myocardial transgenic overexpression of the rate-limiting enzyme in BH4 biosynthesis, GTP cyclohydrolase 1 (GCH1), on NOS activity, myocardial function, and Ca2+ handling. METHODS AND RESULTS GCH1overexpression significantly increased the biopterins level in left ventricular (LV) myocytes but not in the nonmyocyte component of the LV myocardium or in plasma. The ratio between BH4 and its oxidized products was lower in mGCH1-Tg, indicating that a large proportion of the myocardial biopterin pool was oxidized; nevertheless, myocardial NOS1 activity was increased in mGCH1-Tg, and superoxide release was significantly reduced. Isolated hearts and field-stimulated LV myocytes (3 Hz, 35°C) overexpressing GCH1 showed a faster relaxation and a PKA-mediated increase in the PLB Ser16 phosphorylated fraction and in the rate of decay of the [Ca2+]i transient. RyR2 S-nitrosylation and diastolic Ca2+ leak were larger in mGCH1-Tg and ICa density was lower; nevertheless the amplitude of the [Ca2+]i transient and contraction did not differ between genotypes, because of an increase in the SR fractional release of Ca2+ in mGCH1-Tg myocytes. Xanthine oxidoreductase inhibition abolished the difference in superoxide production but did not affect myocardial function in either group. By contrast, NOS1 inhibition abolished the differences in ICa density, Ser16 PLB phosphorylation, [Ca2+]i decay, and myocardial relaxation between genotypes. CONCLUSIONS Myocardial GCH1 activity and intracellular BH4 are a limiting factor for constitutive NOS1 and SERCA2A activity in the healthy myocardium. Our findings suggest that GCH1 may be a valuable target for the treatment of LV diastolic dysfunction.
Collapse
Affiliation(s)
- Ricardo Carnicer
- Department of Cardiovascular Medicine, University of Oxford, Level 6, West Wing, John Radcliffe Hospital, OX3 9DU, United Kingdom
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
|
31
|
Du J, Teng RJ, Lawrence M, Guan T, Xu H, Ge Y, Shi Y. The protein partners of GTP cyclohydrolase I in rat organs. PLoS One 2012; 7:e33991. [PMID: 22479495 PMCID: PMC3313957 DOI: 10.1371/journal.pone.0033991] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2012] [Accepted: 02/22/2012] [Indexed: 02/03/2023] Open
Abstract
Objective GTP cyclohydrolase I (GCH1) is the rate-limiting enzyme for tetrahydrobiopterin biosynthesis and has been shown to be a promising therapeutic target in ischemic heart disease, hypertension, atherosclerosis and diabetes. The endogenous GCH1-interacting partners have not been identified. Here, we determined endogenous GCH1-interacting proteins in rat. Methods and Results A pulldown and proteomics approach were used to identify GCH1 interacting proteins in rat liver, brain, heart and kidney. We demonstrated that GCH1 interacts with at least 17 proteins including GTP cyclohydrolase I feedback regulatory protein (GFRP) in rat liver by affinity purification followed by proteomics and validated six protein partners in liver, brain, heart and kidney by immunoblotting. GCH1 interacts with GFRP and very long-chain specific acyl-CoA dehydrogenase in the liver, tubulin beta-2A chain in the liver and brain, DnaJ homolog subfamily A member 1 and fatty aldehyde dehydrogenase in the liver, heart and kidney and eukaryotic translation initiation factor 3 subunit I (EIF3I) in all organs tested. Furthermore, GCH1 associates with mitochondrial proteins and GCH1 itself locates in mitochondria. Conclusion GCH1 interacts with proteins in an organ dependant manner and EIF3I might be a general regulator of GCH1. Our finding indicates GCH1 might have broader functions beyond tetrahydrobiopterin biosynthesis.
Collapse
Affiliation(s)
- Jianhai Du
- Department of Surgery, Medical College of Wisconsin, Milwaukee, Wisconsin, United States of America
- Children's Research Institute, Medical College of Wisconsin, Milwaukee, Wisconsin, United States of America
- * E-mail: (JD); (YS)
| | - Ru-Jeng Teng
- Children's Research Institute, Medical College of Wisconsin, Milwaukee, Wisconsin, United States of America
- Cardiovascular Center, Medical College of Wisconsin, Milwaukee, Wisconsin, United States of America
- Department of Pediatrics, Medical College of Wisconsin, Milwaukee, Wisconsin, United States of America
| | - Matt Lawrence
- Human Proteomics Program and Department of Physiology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Tongju Guan
- Department of Surgery, Medical College of Wisconsin, Milwaukee, Wisconsin, United States of America
- Children's Research Institute, Medical College of Wisconsin, Milwaukee, Wisconsin, United States of America
| | - Hao Xu
- Department of Surgery, Medical College of Wisconsin, Milwaukee, Wisconsin, United States of America
- Children's Research Institute, Medical College of Wisconsin, Milwaukee, Wisconsin, United States of America
- Cardiovascular Center, Medical College of Wisconsin, Milwaukee, Wisconsin, United States of America
| | - Ying Ge
- Human Proteomics Program and Department of Physiology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Yang Shi
- Department of Surgery, Medical College of Wisconsin, Milwaukee, Wisconsin, United States of America
- Children's Research Institute, Medical College of Wisconsin, Milwaukee, Wisconsin, United States of America
- Patient Centered Research, Aurora Health Care, Milwaukee, Wisconsin, United States of America
- * E-mail: (JD); (YS)
| |
Collapse
|
32
|
Zhang Z, Wang M, Xue SJ, Liu DH, Tang YB. Simvastatin ameliorates angiotensin II-induced endothelial dysfunction through restoration of Rho-BH4-eNOS-NO pathway. Cardiovasc Drugs Ther 2012; 26:31-40. [PMID: 22083280 DOI: 10.1007/s10557-011-6351-3] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Endothelial dysfunction contributes to the initiation and development of hypertension. We previously found that simvastatin moderately decreases blood pressure in 2-kidney-2-clip (2k2c) renal hypertension, but the precise mechanisms are still unclear. The present study was designed to examine the protective actions of simvastatin in 2k2c-evoked endothelial dysfunction and also delineate the underlying mechanisms. Here we show that 2k2c-induced elevation in plasma angiotensin II impaired acetylcholine-induced endothelium-dependent vascular relaxation, suppressed endothelial NO synthase (eNOS) activity and reduced nitric oxide (NO) production. Additionally, the levels of tetrahydrobiopterin (BH4), an essential cofactor of eNOS, as well as the activity of GTP cyclohydrolase I (GTPCH I), the rate-limiting enzyme for BH4 synthesis, were markedly reduced. Administration of simvastatin significantly improved acetylcholine-induced endothelium-dependent carotid arteries relaxation at 9 weeks in reno-hypertensive rats. Notably, GTPCH I activity, BH4 production, p-eNOS expression and NO levels in the vascular endothelium were elevated as a result of simvastatin administration. In cultured rat arterial endothelial cells, simvastatin restored BH4, GTPCH I activity and NO release impaired by angiotensin II, and pretreatment with mevalonate (MVA) or geranylgeranyl pyrophosphate (GGPP) abolished the beneficial effects exerted by simvastatin. Moreover, RhoA inhibitor C3 exoenzyme, Rho kinase inhibitor Y-27632 and dominant negative mutant of RhoA prevented BH4 and NO loss due to Ang II treatment. Taken together, normalization of BH4-eNOS-NO pathway at least in part accounts for the beneficial actions of simvastatin on vascular endothelium during 2k2c hypertension, and RhoA-Rho kinase pathway is involved in regulation of BH4 production.
Collapse
Affiliation(s)
- Zheng Zhang
- Department of pharmacology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China
| | | | | | | | | |
Collapse
|
33
|
Alberts-Grill N, Rezvan A, Son DJ, Qiu H, Kim CW, Kemp ML, Weyand CM, Jo H. Dynamic immune cell accumulation during flow-induced atherogenesis in mouse carotid artery: an expanded flow cytometry method. Arterioscler Thromb Vasc Biol 2012; 32:623-32. [PMID: 22247254 DOI: 10.1161/atvbaha.111.242180] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
OBJECTIVE Inflammation plays a central role in atherosclerosis. However, the detailed changes in the composition and quantity of leukocytes in the arterial wall during atherogenesis are not fully understood in part because of the lack of suitable methods and animal models. METHODS AND RESULTS We developed a 10-fluorochrome, 13-parameter flow cytometry method to quantitate 7 major leukocyte subsets in a single digested arterial wall sample. Apolipoprotein E-deficient mice underwent left carotid artery (LCA) partial ligation and were fed a high-fat diet for 4 to 28 days. Monocyte/macrophages, dendritic cells, granulocytes, natural killer cells, and CD4 T cells significantly infiltrated the LCA as early as 4 days. Monocyte/macrophages and dendritic cells decreased between 7 and 14 days, whereas T-cell numbers remained steady. Leukocyte numbers peaked at 7 days, preceding atheroma formation at 14 days. B cells entered LCA by 14 days. Control right carotid and sham-ligated LCAs showed no significant infiltrates. Polymerase chain reaction and ELISA arrays showed that expression of proinflammatory cytokines and chemokines peaked at 7 and 14 days postligation, respectively. CONCLUSION This is the first quantitative description of leukocyte number and composition over the life span of murine atherosclerosis. These results show that disturbed flow induces rapid and dynamic leukocyte accumulation in the arterial wall during the initiation and progression of atherosclerosis.
Collapse
Affiliation(s)
- Noah Alberts-Grill
- School of Medicine, Emory University, Woodruff Memorial Bldg, Rm 2005, Atlanta, GA 30322, USA
| | | | | | | | | | | | | | | |
Collapse
|
34
|
Moens AL, Kietadisorn R, Lin JY, Kass D. Targeting endothelial and myocardial dysfunction with tetrahydrobiopterin. J Mol Cell Cardiol 2011; 51:559-63. [PMID: 21458460 DOI: 10.1016/j.yjmcc.2011.03.009] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2010] [Revised: 03/11/2011] [Accepted: 03/16/2011] [Indexed: 11/24/2022]
Abstract
Tetrahydrobiopterin (BH(4)) is an essential cofactor for aromatic amino acid hydroxylases and for all three nitric oxide synthase (NOS) isoforms. It also has a protective role in the cell as an antioxidant and scavenger of reactive nitrogen and oxygen species. Experimental studies in humans and animals demonstrate that decreased BH(4)-bioavailability, with subsequent uncoupling of endothelial NOS (eNOS) plays an important role in the pathogenesis of endothelial dysfunction, hypertension, ischemia-reperfusion injury, and pathologic cardiac remodeling. Synthetic BH(4) is clinically approved for the treatment of phenylketonuria, and experimental studies support its capacity for ameliorating cardiovascular pathophysiologies. To date, however, the translation of these studies to human patients remains limited, and early results have been mixed. In this review, we discuss the pathophysiologic role of decreased BH(4) bioavailability, molecular mechanisms regulating its metabolism, and its potential therapeutic use as well as pitfalls as an NOS-modulating drug. This article is part of a special issue entitled ''Key Signaling Molecules in Hypertrophy and Heart Failure.''
Collapse
Affiliation(s)
- An L Moens
- Maastricht University Medical Centre, Cardiovascular Research Institute Maastricht, Dept. of Cardiology, Maastricht, The Netherlands.
| | | | | | | |
Collapse
|
35
|
Abstract
BH4 (6R-L-erythro-5,6,7,8-tetrahydrobiopterin) is an essential cofactor of a set of enzymes that are of central metabolic importance, including four aromatic amino acid hydroxylases, alkylglycerol mono-oxygenase and three NOS (NO synthase) isoenzymes. Consequently, BH4 is present in probably every cell or tissue of higher organisms and plays a key role in a number of biological processes and pathological states associated with monoamine neurotransmitter formation, cardiovascular and endothelial dysfunction, the immune response and pain sensitivity. BH4 is formed de novo from GTP via a sequence of three enzymatic steps carried out by GTP cyclohydrolase I, 6-pyruvoyltetrahydropterin synthase and sepiapterin reductase. An alternative or salvage pathway involves dihydrofolate reductase and may play an essential role in peripheral tissues. Cofactor regeneration requires pterin-4a-carbinolamine dehydratase and dihydropteridine reductase, except for NOSs, in which the BH4 cofactor undergoes a one-electron redox cycle without the need for additional regeneration enzymes. With regard to the regulation of cofactor biosynthesis, the major controlling point is GTP cyclohydrolase I. BH4 biosynthesis is controlled in mammals by hormones and cytokines. BH4 deficiency due to autosomal recessive mutations in all enzymes, except for sepiapterin reductase, has been described as a cause of hyperphenylalaninaemia. A major contributor to vascular dysfunction associated with hypertension, ischaemic reperfusion injury, diabetes and others, appears to be an effect of oxidized BH4, which leads to an increased formation of oxygen-derived radicals instead of NO by decoupled NOS. Furthermore, several neurological diseases have been suggested to be a consequence of restricted cofactor availability, and oral cofactor replacement therapy to stabilize mutant phenylalanine hydroxylase in the BH4-responsive type of hyperphenylalaninaemia has an advantageous effect on pathological phenylalanine levels in patients.
Collapse
Affiliation(s)
- Ernst R Werner
- Division of Biological Chemistry, Biocenter, Innsbruck Medical University, Innsbruck A-6020, Austria
| | | | | |
Collapse
|
36
|
Rezvan A, Ni CW, Alberts-Grill N, Jo H. Animal, in vitro, and ex vivo models of flow-dependent atherosclerosis: role of oxidative stress. Antioxid Redox Signal 2011; 15:1433-48. [PMID: 20712399 PMCID: PMC3144429 DOI: 10.1089/ars.2010.3365] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Atherosclerosis is an inflammatory disease preferentially occurring in curved or branched arterial regions, whereas straight parts of the arteries are protected, suggesting a close relationship between flow and atherosclerosis. However, evidence directly linking disturbed flow to atherogenesis is just emerging, thanks to the recent development of suitable animal models. In this article, we review the status of various animal, in vitro, and ex vivo models that have been used to study flow-dependent vascular biology and atherosclerosis. For animal models, naturally flow-disturbed regions such as branched or curved arterial regions as well as surgically created models, including arterio-venous fistulas, vascular grafts, perivascular cuffs, and complete, incomplete, or partial ligation of arteries, are used. Although in vivo models provide the environment needed to mimic the complex pathophysiological processes, in vitro models provide simple conditions that allow the study of isolated factors. Typical in vitro models use cultured endothelial cells exposed to various flow conditions, using devices such as cone-and-plate and parallel-plate chambers. Ex vivo models using isolated vessels have been used to bridge the gap between complex in vivo models and simple in vitro systems. Here, we review these flow models in the context of the role of oxidative stress in flow-dependent inflammation, a critical proatherogenic step, and atherosclerosis.
Collapse
Affiliation(s)
- Amir Rezvan
- Division of Cardiology, Department of Medicine, Emory University, Atlanta, Georgia 30322, USA
| | | | | | | |
Collapse
|
37
|
Li L, Du Y, Chen W, Fu H, Harrison DG. A novel high-throughput screening assay for discovery of molecules that increase cellular tetrahydrobiopterin. JOURNAL OF BIOMOLECULAR SCREENING 2011; 16:836-44. [PMID: 21693765 PMCID: PMC4677475 DOI: 10.1177/1087057111411088] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Tetrahydrobiopterin (BH(4)) is an essential cofactor for the nitric oxide (NO) synthases and the aromatic amino acid hydroxylases. Insufficient BH(4) has been implicated in various cardiovascular and neurological disorders. GTP cyclohydrolase 1 (GTPCH-1) is the rate-limiting enzyme for de novo biosynthesis of BH(4). The authors have recently shown that the interaction of GTPCH-1 with GTP cyclohydrolase feedback regulatory protein (GFRP) inhibits endothelial GTPCH-1 enzyme activity, BH(4) levels, and NO production. They propose that agents that disrupt the GTPCH-1/GFRP interaction can increase cellular GTPCH-1 activity, BH(4) levels, and NO production. They developed and optimized a novel time-resolved fluorescence resonance energy transfer (TR-FRET) assay to monitor the interaction of GTPCH-1 and GFRP. This assay is highly sensitive and stable and has a signal-to-background ratio (S/B) greater than 12 and a Z' factor greater than 0.8. This assay was used in an ultra-high-throughput screening (uHTS) format to screen the Library of Pharmacologically Active Compounds. Using independent protein-protein interaction and cellular activity assays, the authors identified compounds that disrupt GTPCH-1/GFRP binding and increase endothelial cell biopterin levels. Thus, this TR-FRET assay could be applied in future uHTS of additional libraries to search for molecules that increase GTPCH-1 activity and BH(4) levels.
Collapse
Affiliation(s)
- Li Li
- The Division of Cardiology, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia, USA
| | | | | | | | | |
Collapse
|
38
|
Li L, Chen W, Rezvan A, Jo H, Harrison DG. Tetrahydrobiopterin deficiency and nitric oxide synthase uncoupling contribute to atherosclerosis induced by disturbed flow. Arterioscler Thromb Vasc Biol 2011; 31:1547-54. [PMID: 21512164 PMCID: PMC3117114 DOI: 10.1161/atvbaha.111.226456] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
OBJECTIVE Tetrahydrobiopterin (BH(4)) is a critical cofactor for nitric oxide (NO) synthesis by NO synthase (NOS). Recently, we demonstrated that disturbed flow produced by partial carotid ligation decreases BH(4) levels in vivo. We therefore aimed to determine whether atherosclerosis induced by disturbed flow is due to BH(4) deficiency and NOS uncoupling and whether increasing BH(4) would prevent endothelial dysfunction, plaque inflammation, and atherosclerosis. METHODS AND RESULTS We produced a region of disturbed flow in apolipoprotein E(-/-) mice using partial carotid ligation and fed these animals a high-fat diet. This caused endothelial NOS uncoupling as characterized by increased vascular superoxide production, altered vascular reactivity, and a change in endothelial NOS migration on low-temperature gel. These perturbations were accompanied by severe atherosclerosis, infiltration of T cells and macrophages, and an increase in cytokine production. Treatment with BH(4) recoupled NOS, decreased superoxide production, improved endothelium-dependent vasodilatation, and virtually eliminated atherosclerosis. BH(4) treatment also markedly reduced vascular inflammation and improved the cytokine milieu induced by disturbed flow. CONCLUSIONS Our results highlight a key role of BH(4) deficiency and NOS uncoupling in atherosclerosis induced by disturbed flow and provide insight into the effect of modulating vascular BH(4) levels on atherosclerosis and inflammation at these sites of the circulation.
Collapse
MESH Headings
- Animals
- Apolipoproteins E/deficiency
- Apolipoproteins E/genetics
- Atherosclerosis/drug therapy
- Atherosclerosis/enzymology
- Atherosclerosis/etiology
- Atherosclerosis/immunology
- Atherosclerosis/physiopathology
- Biopterins/administration & dosage
- Biopterins/analogs & derivatives
- Biopterins/deficiency
- Carotid Artery, Common/drug effects
- Carotid Artery, Common/enzymology
- Carotid Artery, Common/immunology
- Carotid Artery, Common/physiopathology
- Carotid Artery, Common/surgery
- Cytokines/metabolism
- Disease Models, Animal
- Dose-Response Relationship, Drug
- Endothelium, Vascular/drug effects
- Endothelium, Vascular/enzymology
- Endothelium, Vascular/immunology
- Endothelium, Vascular/pathology
- Inflammation/drug therapy
- Inflammation/enzymology
- Inflammation/etiology
- Inflammation/immunology
- Inflammation/physiopathology
- Inflammation Mediators/metabolism
- Ligation
- Macrophages/immunology
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Nitric Oxide Synthase Type III/metabolism
- Oxidative Stress/drug effects
- Regional Blood Flow
- Superoxides/metabolism
- T-Lymphocytes/immunology
- Vasodilation/drug effects
- Vasodilator Agents/pharmacology
Collapse
Affiliation(s)
- Li Li
- The Division of Cardiology, Department of Medicine, Emory University School of Medicine, Atlanta, GA 30322
- The Graduate Program of Molecular and Systems Pharmacology, Emory University School of Medicine, Atlanta, GA 30322
| | - Wei Chen
- The Division of Cardiology, Department of Medicine, Emory University School of Medicine, Atlanta, GA 30322
| | - Amir Rezvan
- The Division of Cardiology, Department of Medicine, Emory University School of Medicine, Atlanta, GA 30322
| | - Hanjoong Jo
- The Division of Cardiology, Department of Medicine, Emory University School of Medicine, Atlanta, GA 30322
- Wallace H. Coulter Department of Biomedical Engineering at Georgia Tech and Emory University, Decatur, GA 30033
| | - David G. Harrison
- The Division of Cardiology, Department of Medicine, Emory University School of Medicine, Atlanta, GA 30322
- The Graduate Program of Molecular and Systems Pharmacology, Emory University School of Medicine, Atlanta, GA 30322
- The Atlanta Veterans Administration Hospital, Decatur, GA 30033
| |
Collapse
|
39
|
Chen W, Li L, Brod T, Saeed O, Thabet S, Jansen T, Dikalov S, Weyand C, Goronzy J, Harrison DG. Role of increased guanosine triphosphate cyclohydrolase-1 expression and tetrahydrobiopterin levels upon T cell activation. J Biol Chem 2011; 286:13846-51. [PMID: 21343293 PMCID: PMC3077585 DOI: 10.1074/jbc.m110.191023] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2010] [Revised: 01/25/2011] [Indexed: 12/27/2022] Open
Abstract
Tetrahydrobiopterin (BH(4)) is an essential co-factor for the nitric-oxide (NO) synthases, and in its absence these enzymes produce superoxide (O(2)(·-)) rather than NO. The rate-limiting enzyme for BH(4) production is guanosine triphosphate cyclohydrolase-1 (GTPCH-1). Because endogenously produced NO affects T cell function, we sought to determine whether antigen stimulation affected T cell GTPCH-1 expression and ultimately BH(4) levels. Resting T cells had minimal expression of inducible NOS (NOS2), endothelial NOS (NOS3), and GTPCH-1 protein and nearly undetectable levels of BH(4). Anti-CD3 stimulation of T cells robustly stimulated the coordinated expression of NOS2, NOS3, and GTPCH-1 and markedly increased both GTPCH-1 activity and T cell BH(4) levels. The newly expressed GTPCH-1 was phosphorylated on serine 72 and pharmacological inhibition of casein kinase II reduced GTPCH-1 phosphorylation and blunted the increase in T cell BH(4). Inhibition of GTPCH-1 with diaminohydroxypyrimidine (1 mmol/liter) prevented T cell BH(4) accumulation, reduced NO production, and increased T cell O(2)(·-) production, due to both NOS2 and NOS3 uncoupling. GTPCH-1 inhibition also promoted TH(2) polarization in memory CD4 cells. Ovalbumin immunization of mice transgenic for an ovalbumin receptor (OT-II mice) confirmed a marked increase in T cell BH(4) in vivo. These studies identify a previously unidentified consequence of T cell activation, promoting BH(4) levels, NO production, and modulating T cell cytokine production.
Collapse
Affiliation(s)
- Wei Chen
- From the Cardiology Division and Department of Medicine, Emory University School of Medicine, Atlanta, Georgia 30322
| | - Li Li
- From the Cardiology Division and Department of Medicine, Emory University School of Medicine, Atlanta, Georgia 30322
| | - Torben Brod
- From the Cardiology Division and Department of Medicine, Emory University School of Medicine, Atlanta, Georgia 30322
| | - Omar Saeed
- From the Cardiology Division and Department of Medicine, Emory University School of Medicine, Atlanta, Georgia 30322
| | - Salim Thabet
- From the Cardiology Division and Department of Medicine, Emory University School of Medicine, Atlanta, Georgia 30322
| | - Thomas Jansen
- From the Cardiology Division and Department of Medicine, Emory University School of Medicine, Atlanta, Georgia 30322
| | - Sergey Dikalov
- From the Cardiology Division and Department of Medicine, Emory University School of Medicine, Atlanta, Georgia 30322
| | - Cornelia Weyand
- the Division of Immunology and the Department of Medicine, Stanford University School of Medicine, Palo Alto, California 94304, and
| | - Jorg Goronzy
- the Division of Immunology and the Department of Medicine, Stanford University School of Medicine, Palo Alto, California 94304, and
| | - David G. Harrison
- From the Cardiology Division and Department of Medicine, Emory University School of Medicine, Atlanta, Georgia 30322
- the Atlanta Veterans Affairs Medical Center, Decatur, Georgia 30033
| |
Collapse
|
40
|
McCullough DJ, Davis RT, Dominguez JM, Stabley JN, Bruells CS, Behnke BJ. Effects of aging and exercise training on spinotrapezius muscle microvascular PO2 dynamics and vasomotor control. J Appl Physiol (1985) 2011; 110:695-704. [PMID: 21212242 DOI: 10.1152/japplphysiol.01084.2010] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
With advancing age, there is a reduction in exercise tolerance, resulting, in part, from a perturbed ability to match O(2) delivery to uptake within skeletal muscle. In the spinotrapezius muscle (which is not recruited during incline treadmill running) of aged rats, we tested the hypotheses that exercise training will 1) improve the matching of O(2) delivery to O(2) uptake, evidenced through improved microvascular Po(2) (Pm(O(2))), at rest and throughout the contractions transient; and 2) enhance endothelium-dependent vasodilation in first-order arterioles. Young (Y, ∼6 mo) and aged (O, >24 mo) Fischer 344 rats were assigned to control sedentary (YSED; n = 16, and OSED; n = 15) or exercise-trained (YET; n = 14, and OET; n = 13) groups. Spinotrapezius blood flow (via radiolabeled microspheres) was measured at rest and during exercise. Phosphorescence quenching was used to quantify Pm(O(2)) in vivo at rest and across the rest-to-twitch contraction (1 Hz, 5 min) transition in the spinotrapezius muscle. In a follow-up study, vasomotor responses to endothelium-dependent (acetylcholine) and -independent (sodium nitroprusside) stimuli were investigated in vitro. Blood flow to the spinotrapezius did not increase above resting values during exercise in either young or aged groups. Exercise training increased the precontraction baseline Pm(O(2)) (OET 37.5 ± 3.9 vs. OSED 24.7 ± 3.6 Torr, P < 0.05); the end-contracting Pm(O(2)) and the time-delay before Pm(O(2)) fell in the aged group but did not affect these values in the young. Exercise training improved maximal vasodilation in aged rats to acetylcholine (OET 62 ± 16 vs. OSED 27 ± 16%) and to sodium nitroprusside in both young and aged rats. Endurance training of aged rats enhances the Pm(O(2)) in a nonrecruited skeletal muscle and is associated with improved vascular smooth muscle function. These data support the notion that improvements in vascular function with exercise training are not isolated to the recruited muscle.
Collapse
Affiliation(s)
- Danielle J McCullough
- Dept. of Applied Physiology & Kinesiology, Univ. of Florida, Gainesville, FL 32611, USA
| | | | | | | | | | | |
Collapse
|
41
|
Chiu JJ, Chien S. Effects of disturbed flow on vascular endothelium: pathophysiological basis and clinical perspectives. Physiol Rev 2011; 91:327-87. [PMID: 21248169 PMCID: PMC3844671 DOI: 10.1152/physrev.00047.2009] [Citation(s) in RCA: 1446] [Impact Index Per Article: 111.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Vascular endothelial cells (ECs) are exposed to hemodynamic forces, which modulate EC functions and vascular biology/pathobiology in health and disease. The flow patterns and hemodynamic forces are not uniform in the vascular system. In straight parts of the arterial tree, blood flow is generally laminar and wall shear stress is high and directed; in branches and curvatures, blood flow is disturbed with nonuniform and irregular distribution of low wall shear stress. Sustained laminar flow with high shear stress upregulates expressions of EC genes and proteins that are protective against atherosclerosis, whereas disturbed flow with associated reciprocating, low shear stress generally upregulates the EC genes and proteins that promote atherogenesis. These findings have led to the concept that the disturbed flow pattern in branch points and curvatures causes the preferential localization of atherosclerotic lesions. Disturbed flow also results in postsurgical neointimal hyperplasia and contributes to pathophysiology of clinical conditions such as in-stent restenosis, vein bypass graft failure, and transplant vasculopathy, as well as aortic valve calcification. In the venous system, disturbed flow resulting from reflux, outflow obstruction, and/or stasis leads to venous inflammation and thrombosis, and hence the development of chronic venous diseases. Understanding of the effects of disturbed flow on ECs can provide mechanistic insights into the role of complex flow patterns in pathogenesis of vascular diseases and can help to elucidate the phenotypic and functional differences between quiescent (nonatherogenic/nonthrombogenic) and activated (atherogenic/thrombogenic) ECs. This review summarizes the current knowledge on the role of disturbed flow in EC physiology and pathophysiology, as well as its clinical implications. Such information can contribute to our understanding of the etiology of lesion development in vascular niches with disturbed flow and help to generate new approaches for therapeutic interventions.
Collapse
Affiliation(s)
- Jeng-Jiann Chiu
- Division of Medical Engineering Research, National Health Research Institutes, Taiwan
| | | |
Collapse
|
42
|
Hanson AD, Gregory JF. Folate biosynthesis, turnover, and transport in plants. ANNUAL REVIEW OF PLANT BIOLOGY 2011; 62:105-25. [PMID: 21275646 DOI: 10.1146/annurev-arplant-042110-103819] [Citation(s) in RCA: 145] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Folates are essential cofactors for one-carbon transfer reactions and are needed in the diets of humans and animals. Because plants are major sources of dietary folate, plant folate biochemistry has long been of interest but progressed slowly until the genome era. Since then, genome-enabled approaches have brought rapid advances: We now know (a) all the plant folate synthesis genes and some genes of folate turnover and transport, (b) certain mechanisms governing folate synthesis, and (c) the subcellular locations of folate synthesis enzymes and of folates themselves. Some of this knowledge has been applied, simply and successfully, to engineer folate-enriched food crops (i.e., biofortification). Much remains to be discovered about folates, however, particularly in relation to homeostasis, catabolism, membrane transport, and vacuolar storage. Understanding these processes, which will require both biochemical and -omics research, should lead to improved biofortification strategies based on transgenic or conventional approaches.
Collapse
Affiliation(s)
- Andrew D Hanson
- Horticultural Sciences Department, University of Florida, Gainesville, Florida 32611, USA
| | | |
Collapse
|
43
|
Higgins CE, Gross SS. The N-terminal peptide of mammalian GTP cyclohydrolase I is an autoinhibitory control element and contributes to binding the allosteric regulatory protein GFRP. J Biol Chem 2010; 286:11919-28. [PMID: 21163945 DOI: 10.1074/jbc.m110.196204] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
GTP cyclohydrolase I (GTPCH) is the rate-limiting enzyme for biosynthesis of tetrahydrobiopterin (BH4), an obligate cofactor for NO synthases and aromatic amino acid hydroxylases. BH4 can limit its own synthesis by triggering decameric GTPCH to assemble in an inhibitory complex with two GTPCH feedback regulatory protein (GFRP) pentamers. Subsequent phenylalanine binding to the GTPCH·GFRP inhibitory complex converts it to a stimulatory complex. An N-terminal inhibitory peptide in GTPCH may also contribute to autoregulation of GTPCH activity, but mechanisms are undefined. To characterize potential regulatory actions of the N-terminal peptide in rat GTPCH, we expressed, purified, and characterized a truncation mutant, devoid of 45 N-terminal amino acids (Δ45-GTPCH) and contrasted its catalytic and GFRP binding properties to wild type GTPCH (wt-GTPCH). Contrary to prior reports, we show that GFRP binds wt-GTPCH in the absence of any small molecule effector, resulting in allosteric stimulation of GTPCH activity: a 20% increase in Vmax, 50% decrease in KmGTP, and increase in Hill coefficient to 1.6, from 1.0. These features of GFRP-stimulated wt-GTPCH activity were phenocopied by Δ45-GTPCH in the absence of bound GFRP. Addition of GFRP to Δ45-GTPCH failed to elicit complex formation or a substantial further increase in GTPCH catalytic activity. Expression of Δ45-GTPCH in HEK-293 cells elicited 3-fold greater BH4 accumulation than an equivalent of wt-GTPCH. Together, results indicate that the N-terminal peptide exerts autoinhibitory control over rat GTPCH and is required for GFRP binding on its own. Displacement of the autoinhibitory peptide provides a molecular mechanism for physiological up-regulation of GTPCH activity.
Collapse
Affiliation(s)
- Christina E Higgins
- Department of Pharmacology, Weill Medical College of Cornell University, New York, NY 10021, USA
| | | |
Collapse
|
44
|
Münzel T, Gori T, Bruno RM, Taddei S. Is oxidative stress a therapeutic target in cardiovascular disease? Eur Heart J 2010; 31:2741-8. [PMID: 20974801 DOI: 10.1093/eurheartj/ehq396] [Citation(s) in RCA: 318] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
An abnormal production of reactive oxygen species (ROS) and the subsequent decrease in vascular bioavailability of nitric oxide (NO) have long been proposed to be the common pathogenetic mechanism of the endothelial dysfunction, resulting from diverse cardiovascular risk factors such as hypercholesterolaemia, diabetes mellitus, chronic smoking, metabolic syndrome, and hypertension. Superoxide produced by the nicotinamide dinucleotide phosphate (NADPH) oxidase, mitochondrial sources, or the xanthine oxidase may react with NO, thereby resulting in excessive formation of peroxynitrite, a reactive nitrogen species that has been demonstrated to accelerate the atherosclerotic process by causing direct structural damage and by causing further ROS production. Despite this sound biological rationale and a number of pre-clinical and clinical lines of evidence, studies testing the effects of classical antioxidants such as vitamin C, vitamin E, or folic acid in combination with vitamin E have been disappointing. Rather, substances such as statins, angiotensin-converting enzyme inhibitors, or AT1-receptor blockers, which possess indirect antioxidant properties mediated by the stimulation of NO production and simultaneous inhibition of superoxide production (e.g. from the NADPH oxidase), have been shown to improve vascular function in pre-clinical and clinical studies and to reduce the incidence of cardiovascular events in patients with cardiovascular disease. Today, oxidative stress remains an attractive target for cardiovascular prevention and therapy. However, a deeper understanding of its source, and of its role in vascular pathology, is necessary before new trials are attempted.
Collapse
Affiliation(s)
- Thomas Münzel
- II Medizinische Klinik für Kardiologie/Angiologie, University Medical Center of the Johannes Gutenberg University Mainz, Langenbeckstrasse 1, 55131 Mainz, Germany.
| | | | | | | |
Collapse
|
45
|
Ni CW, Qiu H, Rezvan A, Kwon K, Nam D, Son DJ, Visvader JE, Jo H. Discovery of novel mechanosensitive genes in vivo using mouse carotid artery endothelium exposed to disturbed flow. Blood 2010; 116:e66-73. [PMID: 20551377 PMCID: PMC2974596 DOI: 10.1182/blood-2010-04-278192] [Citation(s) in RCA: 129] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2010] [Accepted: 05/19/2010] [Indexed: 02/01/2023] Open
Abstract
Recently, we showed that disturbed flow caused by a partial ligation of mouse carotid artery rapidly induces atherosclerosis. Here, we identified mechanosensitive genes in vivo through a genome-wide microarray study using mouse endothelial RNAs isolated from the flow-disturbed left and the undisturbed right common carotid artery. We found 62 and 523 genes that changed significantly by 12 hours and 48 hours after ligation, respectively. The results were validated by quantitative polymerase chain reaction for 44 of 46 tested genes. This array study discovered numerous novel mechanosensitive genes, including Lmo4, klk10, and dhh, while confirming well-known ones, such as Klf2, eNOS, and BMP4. Four genes were further validated for protein, including LMO4, which showed higher expression in mouse aortic arch and in human coronary endothelium in an asymmetric pattern. Comparison of in vivo, ex vivo, and in vitro endothelial gene expression profiles indicates that numerous in vivo mechanosensitive genes appear to be lost or dysregulated during culture. Gene ontology analyses show that disturbed flow regulates genes involved in cell proliferation and morphology by 12 hours, followed by inflammatory and immune responses by 48 hours. Determining the functional importance of these novel mechanosensitive genes may provide important insights into understanding vascular biology and atherosclerosis.
Collapse
Affiliation(s)
- Chih-Wen Ni
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA
| | | | | | | | | | | | | | | |
Collapse
|
46
|
Abstract
Tetrahydrobiopterin (BH4) is a multifunctional cofactor of aromatic amino acid hydroxylases and nitric oxide synthase (NOS) as well as an intracellular antioxidant in animals. Through regulation of NOS activity BH4 plays a pivotal role not only in a variety of normal cellular functions but also in the pathogenesis of cardiovascular and neurodegenerative diseases, which develop under oxidative stress conditions. It appears that a balanced interplay between BH4 and NOS is crucial for cellular fate. If cellular BH4 homeostasis maintained by BH4 synthesis and regeneration fails to cope with increased oxidative stress, NOS is uncoupled to generate superoxide rather than NO and, in turn, exacerbates impaired BH4 homeostasis, thereby leading to cell death. The fundamental biochemical events involved in the BH4-NOS interplay are essentially the same, as revealed in mammalian endothelial, cardiac, and neuronal cells. This review summarizes information on the cellular BH4 homeostasis in mammals, focusing on its regulation under normal and oxidative stress conditions.
Collapse
|
47
|
Khandelwal AR, Hebert VY, Dugas TR. Essential role of ER-alpha-dependent NO production in resveratrol-mediated inhibition of restenosis. Am J Physiol Heart Circ Physiol 2010; 299:H1451-8. [PMID: 20709862 DOI: 10.1152/ajpheart.00369.2010] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Resveratrol (Resv), a red wine polyphenol, is known to exhibit vascular protective effects and reduce vascular smooth muscle cell mitogenesis. Vascular smooth muscle cell proliferation is a critical factor in the pathogenesis of restenosis, the renarrowing of vessels that often occurs after angioplasty and/or stent implantation. Although Resv has been shown to be an estrogen receptor (ER) modulator, the role of the ER in Resv-mediated protection against restenosis has not yet been elucidated in vivo. Therefore, with the use of a mouse carotid artery injury model, our objective was to determine the role of ER in modulating Resv-mediated effects on neointimal hyperplasia. Female wild-type and ER-α(-/-) mice were administered a high-fat diet ± Resv for 2 wk. A carotid artery endothelial denudation procedure was conducted, and the mice were administered a high-fat diet ± Resv for an additional 2 wk. Resv-treated wild-type mice exhibited a dramatic decrease in restenosis, with an increased arterial nitric oxide (NO) synthase (NOS) activity and NO production. However, in the ER-α(-/-) mice, Resv failed to afford protection and failed to increase NO production, apparently because of a decreased availability of the NOS cofactor tetrahydrobiopterin. To verify the role of NO in Resv-mediated effects, mice were coadministered Resv plus a nonselective NOS inhibitor, N(G)-nitro-l-arginine methyl ester (l-NAME). Cotreatment with l-NAME significantly attenuated the antirestenotic properties of Resv. These data thus suggest that Resv inhibits vascular proliferative responses after injury, predominately through an ER-α-dependent increase in NO production.
Collapse
Affiliation(s)
- Alok R Khandelwal
- Department of Pharmacology, Toxicology and Neuroscience, Louisiana State University Health Sciences Center, Shreveport, Louisiana 71103, USA
| | | | | |
Collapse
|
48
|
Harrison DG, Chen W, Dikalov S, Li L. Regulation of endothelial cell tetrahydrobiopterin pathophysiological and therapeutic implications. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2010; 60:107-32. [PMID: 21081217 DOI: 10.1016/b978-0-12-385061-4.00005-2] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Tetrahydrobiopterin (BH(4)) is a critical cofactor for the nitric oxide synthases. In the absence of BH(4), these enzymes become uncoupled, fail to produce nitric oxide, and begin to produce superoxide and other reactive oxygen species (ROS). BH(4) levels are modulated by a complex biosynthetic pathway, salvage enzymes, and by oxidative degradation. The enzyme GTP cyclohydrolase-1 catalyzes the first step in the de novo synthesis of BH(4) and new evidence shows that this enzyme is regulated by phosphorylation, which reduces its interaction with its feedback regulatory protein (GFRP). In the setting of a variety of common diseases, such as atherosclerosis, hypertension, and diabetes, reactive oxygen species promote oxidation of BH(4) and inhibit expression of the salvage enzyme dihydrofolate reductase (DHFR), promoting accumulation of BH(2) and NOS uncoupling. There is substantial interest in therapeutic approaches to increasing tissue levels of BH(4), largely by oral administration of this agent. BH(4) treatment has proved effective in decreasing atherosclerosis, reducing blood pressure, and preventing complications of diabetes in experimental animals. While these basic studies have been very promising, there are only a few studies showing any effect of BH(4) therapy in humans in treatment of these common problems. Whether BH(4) or related agents will be useful in treatment of human diseases needs additional study.
Collapse
Affiliation(s)
- David G Harrison
- Department of Medicine, Division of Cardiology, Emory University School of Medicine, Atlanta Veterans Administration Medical Center, Decatur, Georgia, USA
| | | | | | | |
Collapse
|