1
|
El-Akabawy G, El-Kersh SOF, El-Kersh AOFO, Amin SN, Rashed LA, Abdel Latif N, Elshamey A, Abdallah MAAEM, Saleh IG, Hein ZM, El-Serafi I, Eid N. Dental pulp stem cells ameliorate D-galactose-induced cardiac ageing in rats. PeerJ 2024; 12:e17299. [PMID: 38799055 PMCID: PMC11127642 DOI: 10.7717/peerj.17299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 04/03/2024] [Indexed: 05/29/2024] Open
Abstract
Background Ageing is a key risk factor for cardiovascular disease and is linked to several alterations in cardiac structure and function, including left ventricular hypertrophy and increased cardiomyocyte volume, as well as a decline in the number of cardiomyocytes and ventricular dysfunction, emphasizing the pathological impacts of cardiomyocyte ageing. Dental pulp stem cells (DPSCs) are promising as a cellular therapeutic source due to their minimally invasive surgical approach and remarkable proliferative ability. Aim This study is the first to investigate the outcomes of the systemic transplantation of DPSCs in a D-galactose (D-gal)-induced rat model of cardiac ageing. Methods. Thirty 9-week-old Sprague-Dawley male rats were randomly assigned into three groups: control, ageing (D-gal), and transplanted groups (D-gal + DPSCs). D-gal (300 mg/kg/day) was administered intraperitoneally daily for 8 weeks. The rats in the transplantation group were intravenously injected with DPSCs at a dose of 1 × 106 once every 2 weeks. Results The transplanted cells migrated to the heart, differentiated into cardiomyocytes, improved cardiac function, upregulated Sirt1 expression, exerted antioxidative effects, modulated connexin-43 expression, attenuated cardiac histopathological alterations, and had anti-senescent and anti-apoptotic effects. Conclusion Our results reveal the beneficial effects of DPSC transplantation in a cardiac ageing rat model, suggesting their potential as a viable cell therapy for ageing hearts.
Collapse
Affiliation(s)
- Gehan El-Akabawy
- Department of Basic Medical Sciences, College of Medicine, Ajman University, Ajman, United Arab Emirates
- Centre of Medical and Bio-allied Health Sciences Research, Ajman University, Ajman, United Arab Emirates
- Department of Anatomy and Embryology, Faculty of Medicine, Menoufia University, Menoufia, Egypt
| | | | | | - Shaimaa Nasr Amin
- Department of Anatomy, Physiology and Biochemistry, Faculty of Medicine, The Hashemite University, Zarqa, Jordan
- Department of Physiology, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Laila Ahmed Rashed
- Department of Medical Biochemistry, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Noha Abdel Latif
- Department of Medical Pharmacology, Faculty of Medicine, Cairo University, Cairo, Egypt
- Department of Medical Pharmacology, Armed Forces College of Medicine, Cairo, Egypt
| | - Ahmed Elshamey
- Samanoud General Hospital, Samannoud City, Samanoud, Gharbia, Egypt
| | | | - Ibrahim G. Saleh
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Al-Azhar University, Cairo, Egypt
- Department of Clinical Pharmacy and Pharmacy Practice, Faculty of Pharmacy, Sinai University, Kantra, Ismailia, Egypt
| | - Zaw Myo Hein
- Department of Basic Medical Sciences, College of Medicine, Ajman University, Ajman, United Arab Emirates
- Centre of Medical and Bio-allied Health Sciences Research, Ajman University, Ajman, United Arab Emirates
| | - Ibrahim El-Serafi
- Department of Basic Medical Sciences, College of Medicine, Ajman University, Ajman, United Arab Emirates
| | - Nabil Eid
- Department of Anatomy, Division of Human Biology, School of Medicine, International Medical University, Kuala Lumpur, Malaysia
| |
Collapse
|
2
|
Yu W, Gargett T, Du Z. A Poisson distribution-based general model of cancer rates and a cancer risk-dependent theory of aging. Aging (Albany NY) 2023; 15:8537-8551. [PMID: 37659107 PMCID: PMC10522393 DOI: 10.18632/aging.205016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 08/20/2023] [Indexed: 09/04/2023]
Abstract
This article presents a formula for modeling the lifetime incidence of cancer in humans. The formula utilizes a Poisson distribution-based "np" model to predict cancer incidence, with "n" representing the effective number of cell turnover and "p" representing the probability of single-cell transformation. The model accurately predicts the observed incidence of cancer in humans when a reduction in cell turnover due to aging is taken into account. The model also suggests that cancer development is ultimately inevitable. The article proposes a theory of aging based on this concept, called the "np" theory. According to this theory, an organism maintains its order by balancing cellular entropy through continuous proliferation. However, cellular "information entropy" in the form of accumulated DNA mutations increases irreversibly over time, restricting the total number of cells an organism can generate throughout its lifetime. When cell division slows down and fails to compensate for the increased entropy in the system, aging occurs. Essentially, aging is the phenomenon of running out of predetermined cell resources. Different species have evolved separate strategies to utilize their limited cell resources throughout their life cycle.
Collapse
Affiliation(s)
- Wenbo Yu
- Centre for Cancer Biology, SA Pathology and University of South Australia, Adelaide, SA, Australia
- Cancer Clinical Trials Unit, Royal Adelaide Hospital, Adelaide, SA, Australia
- School of Medicine, The University of Adelaide, Adelaide, SA, Australia
| | - Tessa Gargett
- Centre for Cancer Biology, SA Pathology and University of South Australia, Adelaide, SA, Australia
- Cancer Clinical Trials Unit, Royal Adelaide Hospital, Adelaide, SA, Australia
- School of Medicine, The University of Adelaide, Adelaide, SA, Australia
| | - Zhenglong Du
- Department of Molecular and Biomedical Science, School of Biological Sciences, The University of Adelaide, Adelaide, SA, Australia
| |
Collapse
|
3
|
Song KS, Nimse SB, Kim J, Warkad SD, Kim T. ID-Checker Technology for the Highly Selective Macroscale Delivery of Anticancer Agents to the Cancer Cells. J Med Chem 2022; 65:12883-12894. [PMID: 36194724 PMCID: PMC9575670 DOI: 10.1021/acs.jmedchem.2c00646] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Indexed: 11/28/2022]
Abstract
Cancer cells deploy several glucose transport protein (GLUT) channels on the cell membranes to increase glucose uptake. Cancer cells die within 24 h in the absence of glucose. Thus, preventing the deployment of GLUT channels can deprive them of glucose, resulting in apoptosis within 24 h. Herein, we developed the ID-Checker with a glucose tag that ensures its highly specific macroscale delivery of anticancer agents to the cancer cells through the GLUT channels. ID-Checker presented here showed IC50 values of 0.17-0.27 and 3.34 μM in cancer and normal cell lines, respectively. ID-Checker showed a selectivity index of 12.5-20.2, which is about 10-20 times higher than that of known anticancer agents such as colchicine. ID-Checker inhibits the microtubule formation, which results in the prevention of the deployment of GLUT channels in 6 h and kills the cancer cells within 24 h without any damage to normal cells.
Collapse
Affiliation(s)
- Keum-soo Song
- Biometrix
Technology, Inc., 2-2
Bio Venture Plaza 56, Chuncheon 24232, South Korea
| | - Satish Balasaheb Nimse
- Institute
of Applied Chemistry and Department of Chemistry, Hallym University, Chuncheon 200702, South Korea
| | - Junghoon Kim
- Biometrix
Technology, Inc., 2-2
Bio Venture Plaza 56, Chuncheon 24232, South Korea
| | | | - Taisun Kim
- Institute
of Applied Chemistry and Department of Chemistry, Hallym University, Chuncheon 200702, South Korea
| |
Collapse
|
4
|
Park YS, Park BW, Choi H, Lee SH, Kim M, Park HJ, Kim IB. Chorion-derived perinatal mesenchymal stem cells improve cardiac function and vascular regeneration: preferential treatment for ischemic heart disease. Hellenic J Cardiol 2022; 66:52-58. [DOI: 10.1016/j.hjc.2022.05.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 05/24/2022] [Accepted: 05/24/2022] [Indexed: 11/04/2022] Open
|
5
|
Hussein MAA, Hussein HAM, Thabet AA, Selim KM, Dawood MA, El-Adly AM, Wardany AA, Sobhy A, Magdeldin S, Osama A, Anwar AM, Abdel-Wahab M, Askar H, Bakhiet EK, Sultan S, Ezzat AA, Abdel Raouf U, Afifi MM. Human Wharton's Jelly Mesenchymal Stem Cells Secretome Inhibits Human SARS-CoV-2 and Avian Infectious Bronchitis Coronaviruses. Cells 2022; 11:1408. [PMID: 35563714 PMCID: PMC9101656 DOI: 10.3390/cells11091408] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 04/19/2022] [Accepted: 04/20/2022] [Indexed: 02/04/2023] Open
Abstract
Human SARS-CoV-2 and avian infectious bronchitis virus (IBV) are highly contagious and deadly coronaviruses, causing devastating respiratory diseases in humans and chickens. The lack of effective therapeutics exacerbates the impact of outbreaks associated with SARS-CoV-2 and IBV infections. Thus, novel drugs or therapeutic agents are highly in demand for controlling viral transmission and disease progression. Mesenchymal stem cells (MSC) secreted factors (secretome) are safe and efficient alternatives to stem cells in MSC-based therapies. This study aimed to investigate the antiviral potentials of human Wharton’s jelly MSC secretome (hWJ-MSC-S) against SARS-CoV-2 and IBV infections in vitro and in ovo. The half-maximal inhibitory concentrations (IC50), cytotoxic concentration (CC50), and selective index (SI) values of hWJ-MSC-S were determined using Vero-E6 cells. The virucidal, anti-adsorption, and anti-replication antiviral mechanisms of hWJ-MSC-S were evaluated. The hWJ-MSC-S significantly inhibited infection of SARS-CoV-2 and IBV, without affecting the viability of cells and embryos. Interestingly, hWJ-MSC-S reduced viral infection by >90%, in vitro. The IC50 and SI of hWJ-MSC secretome against SARS-CoV-2 were 166.6 and 235.29 µg/mL, respectively, while for IBV, IC50 and SI were 439.9 and 89.11 µg/mL, respectively. The virucidal and anti-replication antiviral effects of hWJ-MSC-S were very prominent compared to the anti-adsorption effect. In the in ovo model, hWJ-MSC-S reduced IBV titer by >99%. Liquid chromatography-tandem mass spectrometry (LC/MS-MS) analysis of hWJ-MSC-S revealed a significant enrichment of immunomodulatory and antiviral proteins. Collectively, our results not only uncovered the antiviral potency of hWJ-MSC-S against SARS-CoV-2 and IBV, but also described the mechanism by which hWJ-MSC-S inhibits viral infection. These findings indicate that hWJ-MSC-S could be utilized in future pre-clinical and clinical studies to develop effective therapeutic approaches against human COVID-19 and avian IB respiratory diseases.
Collapse
Affiliation(s)
- Mohamed A. A. Hussein
- Department of Microbiology, Faculty of Science, Al-Azhar University, Assiut 71524, Egypt; (M.A.A.H.); (A.M.E.-A.); (A.A.W.); (E.K.B.); (M.M.A.)
| | - Hosni A. M. Hussein
- Department of Microbiology, Faculty of Science, Al-Azhar University, Assiut 71524, Egypt; (M.A.A.H.); (A.M.E.-A.); (A.A.W.); (E.K.B.); (M.M.A.)
| | - Ali A. Thabet
- Department of Zoology, Faculty of Science, Al-Azhar University, Assiut 71524, Egypt; (A.A.T.); (M.A.-W.); (H.A.)
| | - Karim M. Selim
- Reference Laboratory for Veterinary Quality Control on Poultry Production, Animal Health Research Institute, Agricultural Research Center, Dokki, Giza 12618, Egypt;
| | - Mervat A. Dawood
- Clinical Pathology, Mansoura Research Center for Cord Stem Cells (MARC-CSC), Faculty of Medicine, Mansoura University, El Mansoura 35516, Egypt;
| | - Ahmed M. El-Adly
- Department of Microbiology, Faculty of Science, Al-Azhar University, Assiut 71524, Egypt; (M.A.A.H.); (A.M.E.-A.); (A.A.W.); (E.K.B.); (M.M.A.)
| | - Ahmed A. Wardany
- Department of Microbiology, Faculty of Science, Al-Azhar University, Assiut 71524, Egypt; (M.A.A.H.); (A.M.E.-A.); (A.A.W.); (E.K.B.); (M.M.A.)
| | - Ali Sobhy
- Department of Clinical Pathology, Faculty of Medicine, Al-Azhar University, Assiut 71524, Egypt;
| | - Sameh Magdeldin
- Proteomics and Metabolomics Research Program, Basic Research Department, Children’s Cancer Hospital, (CCHE-57357), Cairo 57357, Egypt; (S.M.); (A.O.); (A.M.A.)
- Department of Physiology, Faculty of Veterinary Medicine, Suez Canal University, Ismailia 41522, Egypt
| | - Aya Osama
- Proteomics and Metabolomics Research Program, Basic Research Department, Children’s Cancer Hospital, (CCHE-57357), Cairo 57357, Egypt; (S.M.); (A.O.); (A.M.A.)
| | - Ali M. Anwar
- Proteomics and Metabolomics Research Program, Basic Research Department, Children’s Cancer Hospital, (CCHE-57357), Cairo 57357, Egypt; (S.M.); (A.O.); (A.M.A.)
| | - Mohammed Abdel-Wahab
- Department of Zoology, Faculty of Science, Al-Azhar University, Assiut 71524, Egypt; (A.A.T.); (M.A.-W.); (H.A.)
| | - Hussam Askar
- Department of Zoology, Faculty of Science, Al-Azhar University, Assiut 71524, Egypt; (A.A.T.); (M.A.-W.); (H.A.)
| | - Elsayed K. Bakhiet
- Department of Microbiology, Faculty of Science, Al-Azhar University, Assiut 71524, Egypt; (M.A.A.H.); (A.M.E.-A.); (A.A.W.); (E.K.B.); (M.M.A.)
| | - Serageldeen Sultan
- Department of Microbiology, Virology Division, Faculty of Veterinary Medicine, South Valley University, Qena 83523, Egypt;
| | - Amgad A. Ezzat
- Department of Medical Microbiology and Immunology, Faculty of Medicine, Al-Azhar University, Assiut 71524, Egypt;
| | - Usama Abdel Raouf
- Department of Botany and Microbiology, Faculty of Science, Aswan University, Aswan 81528, Egypt;
| | - Magdy M. Afifi
- Department of Microbiology, Faculty of Science, Al-Azhar University, Assiut 71524, Egypt; (M.A.A.H.); (A.M.E.-A.); (A.A.W.); (E.K.B.); (M.M.A.)
| |
Collapse
|
6
|
Efficacy and safety of mesenchymal stem cells in the treatment of systemic sclerosis: a systematic review and meta-analysis. Stem Cell Res Ther 2022; 13:118. [PMID: 35313985 PMCID: PMC8935249 DOI: 10.1186/s13287-022-02786-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 02/17/2022] [Indexed: 11/28/2022] Open
Abstract
Background Systemic sclerosis (SSc) is an autoimmune disease with high morbidity and mortality characterized by fibrosis of the skin and internal organs. Some studies have investigated the use of stem cells to treat SSc. Herein, a systematic review and meta-analysis was conducted to determine the efficacy and safety of mesenchymal stem cells (MSCs) in the treatment of SSc. Methods PubMed, Embase, Cochrane Library, Web of Science, OVID, China National Knowledge Infrastructure and Wanfang databases were searched up to February 1, 2021. Literature screening, data extraction and quality assessment were conducted independently by two researchers in according to the inclusion and exclusion criteria. The discrepancies were resolved by a third researcher. Results A total of 9 studies encompassing 133 SSc patients were included in the study. Compared to the baseline after treatment with MSCs: 1. The modified Rodnan skin score (mRSS) was significantly reduced in patients with SSc (P < 0.00001). 2. MSCs decreased the number of digital ulcer, mouth handicap scale, and visual analog scale of hand pain in SSc patients (P = 0.0007 and P = 0.03, respectively). 3. No statistical differences were detected in Raynaud's condition score and Cochin hand function scale score at 6 months of MSCs therapy (P = 0.5 and P = 0.62). 4. After 12 months of follow-up, MSCs improve carbon monoxide diffusing capacity and forced vital capacity of SSc patients (P < 0.05). 5. Overall, MSCs application was safe; a few cases exhibited swelling at the injection site, diarrhea and arthralgia, which had self-recovery, and no severe adverse events occurred in the included trials. Conclusions MSC therapy improves the degree of skin thickening, lung function, and mouth opening and relieves finger ulcers and pain in patients with SSc without severe adverse events. Thus, MSCs or MSCs combined with plasma and traditional medicine might be an effective and promising treatment of SSc patients. PROSPERO registration number: CRD42020200350
Collapse
|
7
|
Saleh M, Fotook Kiaei SZ, Kavianpour M. Application of Wharton jelly-derived mesenchymal stem cells in patients with pulmonary fibrosis. Stem Cell Res Ther 2022; 13:71. [PMID: 35168663 PMCID: PMC8845364 DOI: 10.1186/s13287-022-02746-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 01/26/2022] [Indexed: 12/12/2022] Open
Abstract
Pulmonary fibrosis is a devastating disease that eventually leads to death and respiratory failure. Despite the wide range of drugs, including corticosteroids, endothelin antagonist, and pirfenidone, there is no effective treatment, and the only main goal of treatment is to alleviate the symptoms as much as possible to slow down the progression of the disease and improve the quality of life. Lung transplantation may be a treatment option for a few people if pulmonary fibrosis develops and there is no established treatment. Pulmonary fibrosis caused by the COVID19 virus is another problem that we face in most patients despite the efforts of the international medical communities. Therefore, achieving alternative treatment for patients is a great success. Today, basic research using stem cells on pulmonary fibrosis has published promising results. New stem cell-based therapies can be helpful in patients with pulmonary fibrosis. Wharton jelly-derived mesenchymal stem cells are easily isolated in large quantities and made available for clinical trials without causing ethical problems. These cells have higher flexibility and proliferation potential than other cells isolated from different sources and differentiated into various cells in laboratory environments. More clinical trials are needed to determine the safety and efficacy of these cells. This study will investigate the cellular and molecular mechanisms and possible effects of Wharton jelly-derived mesenchymal stem cells in pulmonary fibrosis.
Collapse
Affiliation(s)
- Mahshid Saleh
- Department of Applied Cell Sciences, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| | - Seyedeh Zahra Fotook Kiaei
- Department of Pulmonary and Critical Care, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Maria Kavianpour
- Department of Applied Cell Sciences, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
8
|
Pandey V, Madi S, Gupta P. The promising role of autologous and allogeneic mesenchymal stromal cells in managing knee osteoarthritis. What is beyond Mesenchymal stromal cells? J Clin Orthop Trauma 2022; 26:101804. [PMID: 35242531 PMCID: PMC8857498 DOI: 10.1016/j.jcot.2022.101804] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 01/25/2022] [Accepted: 02/05/2022] [Indexed: 12/20/2022] Open
Abstract
Mesenchymal stromal cells (MSCs) express a wide range of properties anticipated to be beneficial for treating genetic, mechanical, and age-related degeneration in diseases such as osteoarthritis (OA). Although contemporary conservative management of OA is successful in many patients with mild-moderate OA, it often fails to improve symptoms in many patients who are not a candidate for any surgical management. Further, existing conservative treatment strategies do not prevent the progression of the disease and therefore fail to provide a long-term pain-free life. On the other hand, tremendous progress has been taking place in the exciting field of regenerative medicine involving MSCs (autologous and allogeneic), with promising translation taking place from basic science to the bedside. In this review, we comprehensively discuss the potential role of MSCs in treating OA, both autologous and off-the-shelf, allogeneic stem cells. Further, newer therapies are in the offing to treat OA, such as exosomes and growth factors.
Collapse
Affiliation(s)
- Vivek Pandey
- Sports Injury and Arthroscopy Division, Orthopaedics, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, India,Corresponding author. Sports injury and arthroscopy division, Orthopaedics, Kasturba medical college, Manipal. Manipal academy of Higher education, Manipal, 576104, India.
| | - Sandesh Madi
- Sports Injury and Arthroscopy Division, Orthopaedics, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, India
| | - Pawan Gupta
- Stempeutics Research Pvt. Ltd, Manipal Hospital, Whitefield, Banaglore, 560048, India
| |
Collapse
|
9
|
Zibandeh N, Genc D, Ozgen Z, Duran Y, Goker K, Baris S, Ergun T, Akkoc T. Mesenchymal stem cells derived from human dental follicle modulate the aberrant immune response in atopic dermatitis. Immunotherapy 2021; 13:825-840. [PMID: 33955241 DOI: 10.2217/imt-2020-0257] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Background: Atopic dermatitis (AD) is an inflammatory cutaneous disorder. The advancements in the understanding of AD immunological pathogenesis have caused the development of therapies that suppress the dysregulated immune response. We aimed to evaluate the immunomodulatory effect of dental stem cells (dental follicle-mesenchymal stem cells [DF-MSCs]) on AD patients. Materials & methods: We investigated the immunoregulatory potential of DF-MSCs on T cell response in AD and compared them with psoriasis and healthy individuals and the underlying mechanisms. Results: DF-MSCs significantly reduced Fas, FasL and TNFR II frequency in T cells, increased naive T cell population while reducing memory T cell, decreased inflammatory cytokine levels and promoted Tregs frequency in the AD population. Conclusion: These results imply that DF-MSCs are modulating inflammation through decreasing T cell apoptosis, inducing Treg expansion and stabilizing cytokine levels.
Collapse
Affiliation(s)
- Noushin Zibandeh
- Division of Pediatric Allergy & Immunology, Marmara University, Istanbul, Turkey.,Koc University Research Center for Translational Medicine, Koc University, Istanbul, Turkey
| | - Deniz Genc
- Division of Pediatric Allergy & Immunology, Marmara University, Istanbul, Turkey
| | - Zuleyha Ozgen
- Department of Dermatology, Marmara University, Istanbul, Turkey
| | - Yazgul Duran
- Division of Pediatric Allergy & Immunology, Marmara University, Istanbul, Turkey
| | - Kamil Goker
- Department of Oral & Maxillofacial Surgery, Marmara University, Istanbul, Turkey
| | - Safa Baris
- Division of Pediatric Allergy & Immunology, Marmara University, Istanbul, Turkey
| | - Tulin Ergun
- Department of Dermatology, Marmara University, Istanbul, Turkey
| | - Tunc Akkoc
- Division of Pediatric Allergy & Immunology, Marmara University, Istanbul, Turkey
| |
Collapse
|
10
|
Extracellular vesicles isolated from mesenchymal stromal cells primed with neurotrophic factors and signaling modifiers as potential therapeutics for neurodegenerative diseases. Curr Res Transl Med 2021; 69:103286. [DOI: 10.1016/j.retram.2021.103286] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 02/10/2021] [Accepted: 03/01/2021] [Indexed: 12/17/2022]
|
11
|
Namestnikova DD, Gubskiy IL, Revkova VA, Sukhinich KK, Melnikov PA, Gabashvili AN, Cherkashova EA, Vishnevskiy DA, Kurilo VV, Burunova VV, Semkina AS, Abakumov MA, Gubsky LV, Chekhonin VP, Ahlfors JE, Baklaushev VP, Yarygin KN. Intra-Arterial Stem Cell Transplantation in Experimental Stroke in Rats: Real-Time MR Visualization of Transplanted Cells Starting With Their First Pass Through the Brain With Regard to the Therapeutic Action. Front Neurosci 2021; 15:641970. [PMID: 33737862 PMCID: PMC7960930 DOI: 10.3389/fnins.2021.641970] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Accepted: 02/08/2021] [Indexed: 12/13/2022] Open
Abstract
Cell therapy is an emerging approach to stroke treatment with a potential to limit brain damage and enhance its restoration after the acute phase of the disease. In this study we tested directly reprogrammed neural precursor cells (drNPC) derived from adult human bone marrow cells in the rat middle cerebral artery occlusion (MCAO) model of acute ischemic stroke using human placenta mesenchymal stem cells (pMSC) as a positive control with previously confirmed efficacy. Cells were infused into the ipsilateral (right) internal carotid artery of male Wistar rats 24 h after MCAO. The main goal of this work was to evaluate real-time distribution and subsequent homing of transplanted cells in the brain. This was achieved by performing intra-arterial infusion directly inside the MRI scanner and allowed transplanted cells tracing starting from their first pass through the brain vessels. Immediately after transplantation, cells were observed in the periphery of the infarct zone and in the brain stem, 15 min later small numbers of cells could be discovered deep in the infarct core and in the contralateral hemisphere, where drNPC were seen earlier and in greater numbers than pMSC. Transplanted cells in both groups could no longer be detected in the rat brain 48-72 h after infusion. Histological and histochemical analysis demonstrated that both the drNPC and pMSC were localized inside blood vessels in close contact with the vascular wall. No passage of labeled cells through the blood brain barrier was observed. Additionally, the therapeutic effects of drNPC and pMSC were compared. Both drNPC and pMSC induced substantial attenuation of neurological deficits evaluated at the 7th and 14th day after transplantation using the modified neurological severity score (mNSS). Some of the effects of drNPC and pMSC, such as the influence on the infarct volume and the survival rate of animals, differed. The results suggest a paracrine mechanism of the positive therapeutic effects of IA drNPC and pMSC infusion, potentially enhanced by the cell-cell interactions. Our data also indicate that the long-term homing of transplanted cells in the brain is not necessary for the brain's functional recovery.
Collapse
Affiliation(s)
- Daria D. Namestnikova
- Department of Neurology, Neurosurgery and Medical Genetics, Pirogov Russian National Research Medical University of the Ministry of Healthcare of Russian Federation, Moscow, Russia
- Radiology and Clinical Physiology Scientific Research Center, Federal Center of Brain Research and Neurotechnologies of the Federal Medical Biological Agency of Russian Federation, Moscow, Russia
| | - Ilya L. Gubskiy
- Department of Neurology, Neurosurgery and Medical Genetics, Pirogov Russian National Research Medical University of the Ministry of Healthcare of Russian Federation, Moscow, Russia
- Radiology and Clinical Physiology Scientific Research Center, Federal Center of Brain Research and Neurotechnologies of the Federal Medical Biological Agency of Russian Federation, Moscow, Russia
| | - Veronica A. Revkova
- Cell Technology Laboratory, Federal Research and Clinical Center of Specialized Medical Care and Medical Technologies of the Federal Medical Biological Agency of Russian Federation, Moscow, Russia
| | - Kirill K. Sukhinich
- Laboratory of Problems of Regeneration, Koltzov Institute of Developmental Biology of the Russian Academy of Sciences, Moscow, Russia
| | - Pavel A. Melnikov
- Cell Technology Laboratory, Federal Research and Clinical Center of Specialized Medical Care and Medical Technologies of the Federal Medical Biological Agency of Russian Federation, Moscow, Russia
- Department of Fundamental and Applied Neurobiology, Serbsky Federal Medical Research Centre of Psychiatry and Narcology of the Ministry of Healthcare of Russian Federation, Moscow, Russia
| | - Anna N. Gabashvili
- Laboratory of Biomedical Nanomaterials, National University of Science and Technology “MISIS”, Moscow, Russia
| | - Elvira A. Cherkashova
- Department of Neurology, Neurosurgery and Medical Genetics, Pirogov Russian National Research Medical University of the Ministry of Healthcare of Russian Federation, Moscow, Russia
- Radiology and Clinical Physiology Scientific Research Center, Federal Center of Brain Research and Neurotechnologies of the Federal Medical Biological Agency of Russian Federation, Moscow, Russia
| | - Daniil A. Vishnevskiy
- Department of Neurology, Neurosurgery and Medical Genetics, Pirogov Russian National Research Medical University of the Ministry of Healthcare of Russian Federation, Moscow, Russia
| | - Victoria V. Kurilo
- Department of Neurology, Neurosurgery and Medical Genetics, Pirogov Russian National Research Medical University of the Ministry of Healthcare of Russian Federation, Moscow, Russia
| | - Veronica V. Burunova
- Laboratory of Cell Biology, Orekhovich Institute of Biomedical Chemistry of the Russian Academy of Sciences, Moscow, Russia
| | - Alevtina S. Semkina
- Department of Neurology, Neurosurgery and Medical Genetics, Pirogov Russian National Research Medical University of the Ministry of Healthcare of Russian Federation, Moscow, Russia
- Laboratory of Biomedical Nanomaterials, National University of Science and Technology “MISIS”, Moscow, Russia
| | - Maxim A. Abakumov
- Department of Neurology, Neurosurgery and Medical Genetics, Pirogov Russian National Research Medical University of the Ministry of Healthcare of Russian Federation, Moscow, Russia
- Laboratory of Biomedical Nanomaterials, National University of Science and Technology “MISIS”, Moscow, Russia
| | - Leonid V. Gubsky
- Department of Neurology, Neurosurgery and Medical Genetics, Pirogov Russian National Research Medical University of the Ministry of Healthcare of Russian Federation, Moscow, Russia
- Radiology and Clinical Physiology Scientific Research Center, Federal Center of Brain Research and Neurotechnologies of the Federal Medical Biological Agency of Russian Federation, Moscow, Russia
| | - Vladimir P. Chekhonin
- Department of Neurology, Neurosurgery and Medical Genetics, Pirogov Russian National Research Medical University of the Ministry of Healthcare of Russian Federation, Moscow, Russia
- Department of Fundamental and Applied Neurobiology, Serbsky Federal Medical Research Centre of Psychiatry and Narcology of the Ministry of Healthcare of Russian Federation, Moscow, Russia
| | | | - Vladimir P. Baklaushev
- Cell Technology Laboratory, Federal Research and Clinical Center of Specialized Medical Care and Medical Technologies of the Federal Medical Biological Agency of Russian Federation, Moscow, Russia
| | - Konstantin N. Yarygin
- Laboratory of Cell Biology, Orekhovich Institute of Biomedical Chemistry of the Russian Academy of Sciences, Moscow, Russia
- Russian Medical Academy of Continuous Professional Education of the Ministry of Healthcare of the Russian Federation, Moscow, Russia
| |
Collapse
|
12
|
Abstract
Systemic sclerosis (SSc) is a rare autoimmune disorder with a high mortality rate. There are still many unknowns concerning the pathophysiology of this disease, due to its clinical heterogeneity. Since there is still no curative treatment, researchers focus on finding novel methods to help the patients. One of the valid options is cellular therapy, and mesenchymal stem cells (MSCs)-based therapy yields great expectations. These cells possess especially valuable attributes regarding key points of SSc. Nevertheless, the effectiveness and safety of this therapy must undergo a rigorous process of verification. In preclinical trials, animal models proved to be a valuable source of scientific knowledge regarding SSc. Because of that, it has been possible to test autologous or allogeneic MSCs from various sources in many clinical trials. A lot of aspects still have to be determined to assess their potential in the management of SSc, probably in association with other therapies.
Collapse
|
13
|
Abstract
The need to search for new, alternative treatments for various diseases has prompted scientists and physicians to focus their attention on regenerative medicine and broadly understood cell therapies. Currently, stem cells are being investigated for their potentially widespread use in therapies for many untreatable diseases. Nowadays modern treatment strategies willingly use mesenchymal stem cells (MSCs) derived from different sources. Researchers are increasingly aware of the nature of MSCs and new possibilities for their use. Due to their properties, especially their ability to self-regenerate, differentiate into several cell lineages and participate in immunomodulation, MSCs have become a promising tool in developing modern and efficient future treatment strategies. The great potential and availability of MSCs allow for their various clinical applications in the treatment of many incurable diseases. In addition to their many advantages and benefits, there are still questions about the use of MSCs. What are the mechanisms of action of MSCs? How do they reach their destination? Is the clinical use of MSCs safe? These are the main questions that arise regarding MSCs when they are considered as therapeutic tools. The diversity of MSCs, their different clinical applications, and their many traits that have not yet been thoroughly investigated are sources of discussions and controversial opinions about these cells. Here, we reviewed the current knowledge about MSCs in terms of their therapeutic potential, clinical effects and safety in clinical applications.
Collapse
Affiliation(s)
- Aleksandra Musiał-Wysocka
- 1 Department of Transplantation, Jagiellonian University Medical College, Cracow, Poland.,Both the authors contributed equally in this article
| | - Marta Kot
- 1 Department of Transplantation, Jagiellonian University Medical College, Cracow, Poland.,Both the authors contributed equally in this article
| | - Marcin Majka
- 1 Department of Transplantation, Jagiellonian University Medical College, Cracow, Poland
| |
Collapse
|
14
|
Bolli R, Hare JM, Henry TD, Lenneman CG, March KL, Miller K, Pepine CJ, Perin EC, Traverse JH, Willerson JT, Yang PC, Gee AP, Lima JA, Moyé L, Vojvodic RW, Sayre SL, Bettencourt J, Cohen M, Ebert RF, Simari RD. Rationale and Design of the SENECA (StEm cell iNjECtion in cAncer survivors) Trial. Am Heart J 2018; 201:54-62. [PMID: 29910056 PMCID: PMC7282462 DOI: 10.1016/j.ahj.2018.02.009] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Accepted: 02/07/2018] [Indexed: 12/26/2022]
Abstract
OBJECTIVES SENECA (StEm cell iNjECtion in cAncer survivors) is a phase I, randomized, double-blind, placebo-controlled study to evaluate the safety and feasibility of delivering allogeneic mesenchymal stromal cells (allo-MSCs) transendocardially in subjects with anthracycline-induced cardiomyopathy (AIC). BACKGROUND AIC is an incurable and often fatal syndrome, with a prognosis worse than that of ischemic or nonischemic cardiomyopathy. Recently, cell therapy with MSCs has emerged as a promising new approach to repair damaged myocardium. METHODS The study population is 36 cancer survivors with a diagnosis of AIC, left ventricular (LV) ejection fraction ≤40%, and symptoms of heart failure (NYHA class II-III) on optimally-tolerated medical therapy. Subjects must be clinically free of cancer for at least two years with a ≤ 30% estimated five-year risk of recurrence. The first six subjects participated in an open-label, lead-in phase and received 100 million allo-MSCs; the remaining 30 will be randomized 1:1 to receive allo-MSCs or vehicle via 20 transendocardial injections. Efficacy measures (obtained at baseline, 6 months, and 12 months) include MRI evaluation of LV function, LV volumes, fibrosis, and scar burden; assessment of exercise tolerance (six-minute walk test) and quality of life (Minnesota Living with Heart Failure Questionnaire); clinical outcomes (MACE and cumulative days alive and out of hospital); and biomarkers of heart failure (NT-proBNP). CONCLUSIONS This is the first clinical trial using direct cardiac injection of cells for the treatment of AIC. If administration of allo-MSCs is found feasible and safe, SENECA will pave the way for larger phase II/III studies with therapeutic efficacy as the primary outcome.
Collapse
Affiliation(s)
| | - Joshua M Hare
- University of Miami Miller School of Medicine, Miami, Florida
| | | | | | - Keith L March
- Indiana University School of Medicine, Indianapolis, Indiana
| | - Kathy Miller
- Indiana University School of Medicine, Indianapolis, Indiana
| | - Carl J Pepine
- University of Florida School of Medicine, Gainesville, Florida
| | | | - Jay H Traverse
- Minneapolis Heart Institute Foundation at Abbott Northwestern Hospital, Minneapolis, MN
| | | | - Phillip C Yang
- Stanford University School of Medicine, Stanford, California
| | | | | | - Lem Moyé
- UT Health School of Public Health, Houston, TX.
| | | | | | | | | | - Ray F Ebert
- NIH, National Heart, Lung, and Blood Institute, Bethesda, MD
| | - Robert D Simari
- University of Kansas School of Medicine, Kansas City, Kansas
| | | |
Collapse
|
15
|
Abstract
Cardiovascular disease (CVD) accounts for more deaths globally than any other single disease. There are on average 1.5 million episodes of myocardial infarction (heart attack) each year in the United States alone with roughly one-third resulting in death. There is therefore a major need for developing new and effective strategies to promote cardiac repair. Intramyocardial transplantation of mesenchymal stem cells (MSCs) has emerged as a leading contender in the pursuit of clinical intervention and therapy. MSCs are potent mediators of cardiac repair and are therefore an attractive tool in the development of preclinical and clinical trials. MSCs are capable of secreting a large array of soluble factors, which have had demonstrated effects on pathogenic cardiac remolding, fibrosis, immune activation, and cardiac stem cell proliferation within the damaged heart. MSCs are also capable of differentiation into cardiomyocytes, endothelial cells, and vascular smooth muscle cells, although the relative contribution of trilineage differentiation and paracrine effectors on cardiac repair remains the subject of active investigation.
Collapse
|
16
|
Garbern JC, Daly KP. Into the hearts of babes: Stem cell therapy for pediatric heart failure. J Heart Lung Transplant 2017; 36:830-832. [PMID: 28365176 DOI: 10.1016/j.healun.2017.03.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Accepted: 03/03/2017] [Indexed: 11/29/2022] Open
Affiliation(s)
- Jessica C Garbern
- Transplant Research Program, Boston Children's Hospital, Boston, Massachusetts; Department of Cardiology, Boston Children's Hospital, Boston, Massachusetts; Department of Pediatrics, Harvard Medical School, Boston, Massachusetts
| | - Kevin P Daly
- Transplant Research Program, Boston Children's Hospital, Boston, Massachusetts; Department of Cardiology, Boston Children's Hospital, Boston, Massachusetts; Department of Pediatrics, Harvard Medical School, Boston, Massachusetts.
| |
Collapse
|
17
|
Maslov M, Foianini S, Lovich M. Delivery of drugs, growth factors, genes and stem cells via intrapericardial, epicardial and intramyocardial routes for sustained local targeted therapy of myocardial disease. Expert Opin Drug Deliv 2017; 14:1227-1239. [PMID: 28276968 DOI: 10.1080/17425247.2017.1292249] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
INTRODUCTION Local myocardial delivery (LMD) of therapeutic agents is a promising strategy that aims to treat various myocardial pathologies. It is designed to deliver agents directly to the myocardium and minimize their extracardiac concentrations and side effects. LMD aims to enhance outcomes of existing therapies by broadening their therapeutic window and to utilize new agents that could not be otherwise be implemented systemically. Areas covered: This article provides a historical overview of six decades LMD evolution in terms of the approaches, including intrapericardial, epicardial, and intramyocardial delivery, and the wide array of classes of agents used to treat myocardial pathologies. We examines delivery of pharmaceutical compounds, targeted gene transfection and cell implantation techniques to produce therapeutic effects locally. We outline therapeutic indications, successes and failures as well as technical approaches for LMD. Expert opinion: While LMD is more complicated than conventional oral or intravenous administration, given recent advances in interventional cardiology, it is safe and may provide better therapeutic outcomes. LMD is complex as many factors impact pharmacokinetics and biologic result. The choice between routes of LMD is largely driven not only by the myocardial pathology but also by the nature and physicochemical properties of the therapeutic agents.
Collapse
Affiliation(s)
- Mikhail Maslov
- a Department of Anesthesiology, Pain Medicine and Critical Care , Steward St. Elizabeth's Medical Center/Tufts University School of Medicine , Boston , MA , USA
| | - Stephan Foianini
- a Department of Anesthesiology, Pain Medicine and Critical Care , Steward St. Elizabeth's Medical Center/Tufts University School of Medicine , Boston , MA , USA
| | - Mark Lovich
- a Department of Anesthesiology, Pain Medicine and Critical Care , Steward St. Elizabeth's Medical Center/Tufts University School of Medicine , Boston , MA , USA
| |
Collapse
|
18
|
|
19
|
Abstract
Heart failure remains a major cause of death and disability, requiring rapid development of new therapies. Bone marrow-derived mesenchymal stem cell (MSC)-based therapy is an emerging approach for the treatment of both acute and chronic heart failure. Following successful experimental studies in a range of models, more than 40 clinical trials of MSC-based therapy for heart failure have now been registered, and the results of completed clinical trials so far have shown feasibility and safety of this approach with therapeutic potential suggested (though preliminarily). However, there appear to be several critical issues to be solved before this treatment could become a widespread standard therapy for heart failure. In this review, we comprehensively and systemically summarize a total of 73 preclinical studies and 11 clinical trial reports published to date. By analyzing the data in these reports, (1) improvement in the cell delivery method to the heart in order to enhance donor cell engraftment, (2) elucidation of mechanisms underpinning the therapeutic effects of the treatment differentiation and/or treatment secretion, and (3) validation of the utility of allogeneic MSCs which could enhance the efficacy and expand the application/indication of this therapeutic approach are highlighted as future perspectives. These important respects are further discussed in this review article with referencing latest scientific and clinical information.
Collapse
Affiliation(s)
- Takuya Narita
- Cardiothoracic Surgery, National Heart Centre, Singapore, Singapore
| | | |
Collapse
|
20
|
Abstract
Stem cell based-therapies are novel therapeutic strategies that hold key for developing new treatments for diseases conditions with very few or no cures. Although there has been an increase in the number of clinical trials involving stem cell-based therapies in the last few years, the long-term risks and benefits of these therapies are still unknown. Detailed in vivo studies are needed to monitor the fate of transplanted cells, including their distribution, differentiation, and longevity over time. Advancements in non-invasive cellular imaging techniques to track engrafted cells in real-time present a powerful tool for determining the efficacy of stem cell-based therapies. In this review, we describe the latest approaches to stem cell labeling and tracking using different imaging modalities.
Collapse
Affiliation(s)
- Amit K Srivastava
- Russell H. Morgan Department of Radiology and Radiological Science, Division of MR Research, The Johns Hopkins University School of Medicine, 217 Traylor Building, 720 Rutland Avenue, Baltimore, MD, 21205-1832, USA
| | | |
Collapse
|
21
|
Gotts JE, Matthay MA. Endogenous and exogenous cell-based pathways for recovery from acute respiratory distress syndrome. Clin Chest Med 2014; 35:797-809. [PMID: 25453426 PMCID: PMC4254691 DOI: 10.1016/j.ccm.2014.08.015] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Regenerative medicine has entered a rapid phase of discovery, and much has been learned in recent years about the lung's response to injury. This article first summarizes the cellular and molecular mechanisms that damage the alveolar-capillary barrier, producing acute respiratory distress syndrome (ARDS). The latest understanding of endogenous repair processes is discussed, highlighting the diversity of lung epithelial progenitor cell populations and their regulation in health and disease. Finally, the past, present, and future of exogenous cell-based therapies for ARDS is reviewed.
Collapse
Affiliation(s)
- Jeffrey E Gotts
- Departments of Medicine and Anesthesia, Cardiovascular Research Institute, University of California, San Francisco, 505 Parnassus Avenue, San Francisco, CA 94143-0624, USA
| | - Michael A Matthay
- Departments of Medicine and Anesthesia, Cardiovascular Research Institute, University of California, San Francisco, 505 Parnassus Avenue, San Francisco, CA 94143-0624, USA.
| |
Collapse
|
22
|
MSCs and hyaluronan: Sticking together for new therapeutic potential? Int J Biochem Cell Biol 2014; 55:1-10. [DOI: 10.1016/j.biocel.2014.07.022] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2014] [Revised: 07/28/2014] [Accepted: 07/30/2014] [Indexed: 12/29/2022]
|
23
|
Bashir J, Sherman A, Lee H, Kaplan L, Hare JM. Mesenchymal stem cell therapies in the treatment of musculoskeletal diseases. PM R 2014; 6:61-9. [PMID: 24439148 DOI: 10.1016/j.pmrj.2013.05.007] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2012] [Revised: 05/01/2013] [Accepted: 05/03/2013] [Indexed: 12/17/2022]
Abstract
The application of regenerative strategies to musculoskeletal ailments offers extraordinary promise to transform management of the conditions of numerous patients. The use of cell-based therapies and adjunct strategies is under active investigation for injuries and illnesses affecting bones, joints, tendons, and skeletal muscle. Of particular interest to the field is the mesenchymal stem cell, an adult stem cell found in bone marrow and adipose tissue. This cell type can be expanded ex vivo, has allogeneic application, and has the capacity for engraftment and differentiation into mesodermal lineages. Also of major interest in the field is the use of platelet-rich plasma, a strategy to concentrate endogenous cytokines and growth factors with reparative potential. Here we review the biological basis, clinical studies, safety, and current state of mesenchymal stem cell and platelet-rich plasma therapies in the treatment of musculoskeletal disease.
Collapse
Affiliation(s)
- Jamil Bashir
- Department of Rehabilitation Medicine, University of Miami Miller School of Medicine, Miami, FL(∗)
| | - Andrew Sherman
- Department of Rehabilitation Medicine, University of Miami Miller School of Medicine, Miami, FL(†)
| | - Henry Lee
- Department of Rehabilitation Medicine, University of Miami Miller School of Medicine, Miami, FL(‡)
| | - Lee Kaplan
- Department of Orthopedics, University of Miami Miller School of Medicine, Miami, FL(§)
| | - Joshua M Hare
- Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, 1600 NW 10th Ave, Miami, FL 33136(¶).
| |
Collapse
|
24
|
Ajibade DA, Vance DD, Hare JM, Kaplan LD, Lesniak BP. Emerging Applications of Stem Cell and Regenerative Medicine to Sports Injuries. Orthop J Sports Med 2014; 2:2325967113519935. [PMID: 26535296 PMCID: PMC4555618 DOI: 10.1177/2325967113519935] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Background: The treatment of sports-related musculoskeletal injuries with stem cells has become more publicized because of recent reports of high-profile athletes undergoing stem cell procedures. There has been increased interest in defining the parameters of safety and efficacy and the indications for potential use of stem cells in clinical practice. Purpose: To review the role of regenerative medicine in the treatment of sports-related injuries. Study Design: Review. Method: Relevant studies were identified through a PubMed search combining the terms stem cells and cartilage, ligament, tendon, muscle, and bone from January 2000 to August 2013. Studies and works cited in these studies were also reviewed. Results: Treatment of sports-related injuries with stem cells shows potential for clinical efficacy from the data available from basic science and animal studies. Conclusion: Cell-based therapies and regenerative medicine offer safe and potentially efficacious treatment for sports-related musculoskeletal injuries. Basic science and preclinical studies that support the possibility of enhanced recovery from sports injuries using cell-based therapies are accumulating; however, more clinical evidence is necessary to define the indications and parameters for their use. Accordingly, exposing patients to cell-based therapies could confer an unacceptable risk profile with minimal or no benefit. Continued clinical testing with animal models and clinical trials is necessary to determine the relative risks and benefits as well as the indications and methodology of treatment.
Collapse
Affiliation(s)
- David A Ajibade
- South Carolina Orthopaedic Institute, Orangeburg, South Carolina, USA
| | - Danica D Vance
- UHealth Sports Performance and Wellness Institute, Miller School of Medicine, University of Miami, Miami, Florida, USA. ; Interdisciplinary Stem Cell Institute, Miller School of Medicine, University of Miami, Miami, Florida, USA
| | - Joshua M Hare
- UHealth Sports Performance and Wellness Institute, Miller School of Medicine, University of Miami, Miami, Florida, USA. ; Interdisciplinary Stem Cell Institute, Miller School of Medicine, University of Miami, Miami, Florida, USA
| | - Lee D Kaplan
- UHealth Sports Performance and Wellness Institute, Miller School of Medicine, University of Miami, Miami, Florida, USA. ; Interdisciplinary Stem Cell Institute, Miller School of Medicine, University of Miami, Miami, Florida, USA
| | - Bryson P Lesniak
- UHealth Sports Performance and Wellness Institute, Miller School of Medicine, University of Miami, Miami, Florida, USA. ; Interdisciplinary Stem Cell Institute, Miller School of Medicine, University of Miami, Miami, Florida, USA
| |
Collapse
|
25
|
Yan J, Tie G, Xu TY, Cecchini K, Messina LM. Mesenchymal stem cells as a treatment for peripheral arterial disease: current status and potential impact of type II diabetes on their therapeutic efficacy. Stem Cell Rev Rep 2014; 9:360-72. [PMID: 23475434 DOI: 10.1007/s12015-013-9433-8] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Mesenchymal stem cells (MSCs), due to their paracrine, transdifferentiation, and immunosuppressive effects, hold great promise as a therapy for peripheral arterial disease. Diabetes is an important risk factor for peripheral arterial disease; however, little is known of how type II diabetes affects the therapeutic function of MSCs. This review summarizes the current status of preclinical and clinical studies that have been performed to determine the efficacy of MSCs in the treatment of peripheral arterial disease. We also present findings from our laboratory regarding the impact of type II diabetes on the therapeutic efficacy of MSCs neovascularization after the induction of hindlimb ischemia. In our studies, we documented that experimental type II diabetes in db/db mice impaired MSCs' therapeutic function by favoring their differentiation towards adipocytes, while limiting their differentiation towards endothelial cells. Moreover, type II diabetes impaired the capacity of MSCs to promote neovascularization in the ischemic hindlimb. We further showed that these impairments of MSC function and multipotency were secondary to hyperinsulinemia-induced, Nox4-dependent oxidant stress in db/db MSCs. Should human MSCs display similar oxidant stress-induced impairment of function, these findings might permit greater leverage of the potential of MSC transplantation, particularly in the setting of diabetes or other cardiovascular risk factors, as well as provide a therapeutic approach by reversing the oxidant stress of MSCs prior to transplantation.
Collapse
Affiliation(s)
- Jinglian Yan
- Division of Vascular and Endovascular Surgery, University of Massachusetts Medical School, 55 Lake Avenue North, Worcester, MA 01655, USA
| | | | | | | | | |
Collapse
|
26
|
Heldman AW, DiFede DL, Fishman JE, Zambrano JP, Trachtenberg BH, Karantalis V, Mushtaq M, Williams AR, Suncion VY, McNiece IK, Ghersin E, Soto V, Lopera G, Miki R, Willens H, Hendel R, Mitrani R, Pattany P, Feigenbaum G, Oskouei B, Byrnes J, Lowery MH, Sierra J, Pujol MV, Delgado C, Gonzalez PJ, Rodriguez JE, Bagno LL, Rouy D, Altman P, Foo CWP, da Silva J, Anderson E, Schwarz R, Mendizabal A, Hare JM. Transendocardial mesenchymal stem cells and mononuclear bone marrow cells for ischemic cardiomyopathy: the TAC-HFT randomized trial. JAMA 2014; 311:62-73. [PMID: 24247587 PMCID: PMC4111133 DOI: 10.1001/jama.2013.282909] [Citation(s) in RCA: 411] [Impact Index Per Article: 37.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
IMPORTANCE Whether culture-expanded mesenchymal stem cells or whole bone marrow mononuclear cells are safe and effective in chronic ischemic cardiomyopathy is controversial. OBJECTIVE To demonstrate the safety of transendocardial stem cell injection with autologous mesenchymal stem cells (MSCs) and bone marrow mononuclear cells (BMCs) in patients with ischemic cardiomyopathy. DESIGN, SETTING, AND PATIENTS A phase 1 and 2 randomized, blinded, placebo-controlled study involving 65 patients with ischemic cardiomyopathy and left ventricular (LV) ejection fraction less than 50% (September 1, 2009-July 12, 2013). The study compared injection of MSCs (n=19) with placebo (n = 11) and BMCs (n = 19) with placebo (n = 10), with 1 year of follow-up. INTERVENTIONS Injections in 10 LV sites with an infusion catheter. MAIN OUTCOMES AND MEASURES Treatment-emergent 30-day serious adverse event rate defined as a composite of death, myocardial infarction, stroke, hospitalization for worsening heart failure, perforation, tamponade, or sustained ventricular arrhythmias. RESULTS No patient had a treatment-emergent serious adverse events at day 30. The 1-year incidence of serious adverse events was 31.6% (95% CI, 12.6% to 56.6%) for MSCs, 31.6% (95% CI, 12.6%-56.6%) for BMCs, and 38.1% (95% CI, 18.1%-61.6%) for placebo. Over 1 year, the Minnesota Living With Heart Failure score improved with MSCs (-6.3; 95% CI, -15.0 to 2.4; repeated measures of variance, P=.02) and with BMCs (-8.2; 95% CI, -17.4 to 0.97; P=.005) but not with placebo (0.4; 95% CI, -9.45 to 10.25; P=.38). The 6-minute walk distance increased with MSCs only (repeated measures model, P = .03). Infarct size as a percentage of LV mass was reduced by MSCs (-18.9%; 95% CI, -30.4 to -7.4; within-group, P = .004) but not by BMCs (-7.0%; 95% CI, -15.7% to 1.7%; within-group, P = .11) or placebo (-5.2%; 95% CI, -16.8% to 6.5%; within-group, P = .36). Regional myocardial function as peak Eulerian circumferential strain at the site of injection improved with MSCs (-4.9; 95% CI, -13.3 to 3.5; within-group repeated measures, P = .03) but not BMCs (-2.1; 95% CI, -5.5 to 1.3; P = .21) or placebo (-0.03; 95% CI, -1.9 to 1.9; P = .14). Left ventricular chamber volume and ejection fraction did not change. CONCLUSIONS AND RELEVANCE Transendocardial stem cell injection with MSCs or BMCs appeared to be safe for patients with chronic ischemic cardiomyopathy and LV dysfunction. Although the sample size and multiple comparisons preclude a definitive statement about safety and clinical effect, these results provide the basis for larger studies to provide definitive evidence about safety and to assess efficacy of this new therapeutic approach. TRIAL REGISTRATION clinicaltrials.gov Identifier: NCT00768066.
Collapse
Affiliation(s)
- Alan W Heldman
- The Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine2Department of Medicine, University of Miami Miller School of Medicine, Miami, Florida
| | - Darcy L DiFede
- The Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine
| | - Joel E Fishman
- Department of Radiology, University of Miami Miller School of Medicine, Miami, Florida
| | - Juan P Zambrano
- The Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine2Department of Medicine, University of Miami Miller School of Medicine, Miami, Florida
| | - Barry H Trachtenberg
- The Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine2Department of Medicine, University of Miami Miller School of Medicine, Miami, Florida
| | - Vasileios Karantalis
- The Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine
| | - Muzammil Mushtaq
- The Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine2Department of Medicine, University of Miami Miller School of Medicine, Miami, Florida
| | - Adam R Williams
- The Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine4Department of Surgery, University of Miami Miller School of Medicine, Miami, Florida
| | - Viky Y Suncion
- The Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine
| | - Ian K McNiece
- The Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine2Department of Medicine, University of Miami Miller School of Medicine, Miami, Florida8MD Anderson Cancer Center, Houston, Texas
| | - Eduard Ghersin
- Department of Radiology, University of Miami Miller School of Medicine, Miami, Florida
| | - Victor Soto
- The Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine2Department of Medicine, University of Miami Miller School of Medicine, Miami, Florida
| | - Gustavo Lopera
- The Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine2Department of Medicine, University of Miami Miller School of Medicine, Miami, Florida5Miami Veterans Affairs Healthcare System, Miami, Florida
| | - Roberto Miki
- Department of Medicine, University of Miami Miller School of Medicine, Miami, Florida
| | - Howard Willens
- Department of Medicine, University of Miami Miller School of Medicine, Miami, Florida
| | - Robert Hendel
- Department of Medicine, University of Miami Miller School of Medicine, Miami, Florida
| | - Raul Mitrani
- Department of Medicine, University of Miami Miller School of Medicine, Miami, Florida
| | | | - Gary Feigenbaum
- The Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine2Department of Medicine, University of Miami Miller School of Medicine, Miami, Florida
| | - Behzad Oskouei
- The Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine2Department of Medicine, University of Miami Miller School of Medicine, Miami, Florida
| | - John Byrnes
- The Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine2Department of Medicine, University of Miami Miller School of Medicine, Miami, Florida
| | - Maureen H Lowery
- Department of Medicine, University of Miami Miller School of Medicine, Miami, Florida
| | - Julio Sierra
- The Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine
| | - Mariesty V Pujol
- The Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine
| | - Cindy Delgado
- The Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine
| | - Phillip J Gonzalez
- The Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine
| | - Jose E Rodriguez
- The Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine
| | - Luiza Lima Bagno
- The Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine
| | - Didier Rouy
- Biocardia Corporation, San Carlos, California
| | | | | | - Jose da Silva
- The Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine
| | | | - Richard Schwarz
- The Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine
| | | | - Joshua M Hare
- The Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine2Department of Medicine, University of Miami Miller School of Medicine, Miami, Florida
| |
Collapse
|
27
|
Telukuntla KS, Suncion VY, Schulman IH, Hare JM. The advancing field of cell-based therapy: insights and lessons from clinical trials. J Am Heart Assoc 2013; 2:e000338. [PMID: 24113326 PMCID: PMC3835242 DOI: 10.1161/jaha.113.000338] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Kartik S Telukuntla
- Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, Miami, FL
| | | | | | | |
Collapse
|
28
|
Cibelli J, Emborg ME, Prockop DJ, Roberts M, Schatten G, Rao M, Harding J, Mirochnitchenko O. Strategies for improving animal models for regenerative medicine. Cell Stem Cell 2013; 12:271-4. [PMID: 23472868 DOI: 10.1016/j.stem.2013.01.004] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The field of regenerative medicine is moving toward translation to clinical practice. However, there are still knowledge gaps and safety concerns regarding stem cell-based therapies. Improving large animal models and methods for transplantation, engraftment, and imaging should help address these issues, facilitating eventual use of stem cells in the clinic.
Collapse
Affiliation(s)
- Jose Cibelli
- Michigan State University, Cellular Reprogramming Laboratory, Department of Animal Science, B270 Anthony Hall, East Lansing, MI 48824, USA
| | | | | | | | | | | | | | | |
Collapse
|
29
|
Asumda FZ. Age-associated changes in the ecological niche: implications for mesenchymal stem cell aging. Stem Cell Res Ther 2013; 4:47. [PMID: 23673056 PMCID: PMC3706986 DOI: 10.1186/scrt197] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Adult stem cells are critical for organ-specific regeneration and self-renewal with advancing age. The prospect of being able to reverse tissue-specific post-injury sequelae by harvesting, culturing and transplanting a patient's own stem and progenitor cells is exciting. Mesenchymal stem cells have emerged as a reliable stem cell source for this treatment modality and are currently being tested in numerous ongoing clinical trials. Unfortunately, the fervor over mesenchymal stem cells is mitigated by several lines of evidence suggesting that their efficacy is limited by natural aging. This article discusses the mechanisms and manifestations of age-associated deficiencies in mesenchymal stem cell efficacy. A consideration of recent experimental findings suggests that the ecological niche might be responsible for mesenchymal stem cell aging.
Collapse
Affiliation(s)
- Faizal Z Asumda
- Saint James School of Medicine, 1480 Renaissance Drive, Park Ridge, Chicago, IL, 60068, USA
| |
Collapse
|
30
|
Abstract
A set of general principles can guide preclinical testing strategies for evaluating the tumorigenicity of regenerative medicine products.
Collapse
Affiliation(s)
- Alexander M Bailey
- Office of Cellular, Tissue, and Gene Therapies, Center for Biologics Evaluation and Research, FDA, Rockville, MD 20852, USA.
| |
Collapse
|
31
|
Zheng Y, He L, Wan Y, Song J. H3K9me-enhanced DNA hypermethylation of the p16INK4a gene: an epigenetic signature for spontaneous transformation of rat mesenchymal stem cells. Stem Cells Dev 2012; 22:256-67. [PMID: 22873822 DOI: 10.1089/scd.2012.0172] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
To explore the mechanisms underlying spontaneous transformation of mesenchymal stem cells (MSCs), changes in senescence-associated molecules, particularly the epigenetic modification of the p16(INK4a) gene, including histone H3 lysine 27/9 methylation (H3K27/9me) and DNA methylation, were investigated in cultured adult rat bone marrow MSCs at different stages during the transformation process. It was shown that the MSCs underwent replicative senescence after 24 to 25 population doublings, characterized by positive staining for senescence-associated β-galactosidase, increased expression of p16(INK4a) and p21, and downregulated phosphorylation of Rb. The upregulation of p16(INK4a) was associated with decreased expression of enhancer of the zeste homolog 2 (Ezh2), and reduced levels of H3K27me and DNA methylation in the p16(INK4a) gene. At week 4 of senescence, reproliferating cells emerged among the senescent MSCs. These senescence-escaped MSCs lost their senescence-related markers (including p16(INK4a)) and became highly proliferative. In addition to H3K27me, another H3 modification pattern, H3K9me, appeared in the p16(INK4a) gene, accompanied by an enhanced DNA methylation. With continued culture, the senescence-escaped MSCs did not show any sign of growth arrest and gained the capacity for anchorage-independent growth. These immortalized (transformed) MSCs showed further enhanced DNA methylation of the p16(INK4a) gene by increased H3K9me. Ezh2 knockdown with shRNA eliminated H3K27me-mediated DNA methylation of the p16(INK4a) gene in presenescent MSCs, but had no effect on H3K9me-enhanced DNA hypermethylation in the cells after senescence escape. These findings identify an Ezh2- and H3K27me-independent, but H3K9me-enhanced, DNA hypermethylation of the p16(INK4a) gene, which might be an epigenetic signature for MSC spontaneous transformation.
Collapse
Affiliation(s)
- Yong Zheng
- Department of Anatomy and Embryology, Center for Medical Research, Wuhan University School of Medicine, Wuhan, People's Republic of China
| | | | | | | |
Collapse
|
32
|
Affiliation(s)
- O. O. Maslova
- Institute of Genetic and Regenerative Medicine, NAMS of Ukraine
| |
Collapse
|
33
|
Augustin M, Mahar MAA, Lakkisto P, Tikkanen I, Vento A, Pätilä T, Harjula A. VEGF overexpression improves mesenchymal stem cell sheet transplantation therapy for acute myocardial infarction. J Tissue Eng Regen Med 2012. [DOI: 10.1002/term.1471] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Affiliation(s)
| | | | | | | | - Antti Vento
- Department of Cardiothoracic Surgery; Helsinki University Central Hospital; Finland
| | - Tommi Pätilä
- Department of Cardiothoracic Surgery; Helsinki University Central Hospital; Finland
| | - Ari Harjula
- Department of Cardiothoracic Surgery; Helsinki University Central Hospital; Finland
| |
Collapse
|
34
|
|
35
|
|