1
|
Cong J, Cheng B, Liu J, He P. RTEF-1 Inhibits Vascular Smooth Muscle Cell Calcification through Regulating Wnt/β-Catenin Signaling Pathway. Calcif Tissue Int 2021; 109:203-214. [PMID: 33713163 PMCID: PMC8273062 DOI: 10.1007/s00223-021-00833-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2020] [Accepted: 02/25/2021] [Indexed: 12/24/2022]
Abstract
Vascular calcification (VC) is highly prevailing in cardiovascular disease, diabetes mellitus, and chronic kidney disease and, when present, is associated with cardiovascular events and mortality. The osteogenic differentiation of vascular smooth muscle cells (VSMCs) is regarded as the foundation for mediating VC. Related transcriptional enhancer factor (RTEF-1), also named as transcriptional enhanced associate domain (TEAD) 4 or transcriptional enhancer factor-3 (TEF-3), is a nuclear transcriptional factor with a potent effect on cardiovascular diseases, apart from its oncogenic role in the canonical Hippo pathway. However, the role and mechanism of RTEF-1 in VC, particularly in calcification of VSMCs, are poorly understood. Our results showed that RTEF-1 was reduced in calcified VSMCs. RTEF-1 significantly ameliorated β-glycerophosphate (β-GP)-induced VSMCs calcification, as detected by alizarin red staining and calcium content assay. Also, RTEF-1 reduced alkaline phosphatase (ALP) activity and decreased expressions of osteoblast markers such as Osteocalcin and Runt-related transcription factor-2 (Runx2), but increased expression of contractile protein, including SM α-actin (α-SMA). Additionally, RTEF-1 inhibited β-GP-activated Wnt/β-catenin pathway which plays a critical role in calcification and osteogenic differentiation of VSMCs. Specifically, RTEF-1 reduced the levels of Wnt3a, p-β-catenin (Ser675), glycogen synthase kinase-3β (GSK-3β), and p-GSK-3β (Ser9), but increased the levels of p-β-catenin (Ser33/37). Also, RTEF-1 increased the ratio of p-β-catenin (Ser33/37) to β-catenin proteins and decreased the ratio of p-GSK-3β (Ser9) to GSK-3β protein. LiCl, a Wnt/β-catenin signaling activator, was observed to reverse the protective effect of RTEF-1 overexpression on VSMCs calcification induced by β-GP. Accordingly, Dickkopf-1 (Dkk1), a Wnt antagonist, attenuated the role of RTEF-1 deficiency in β-GP-induced VSMCs calcification. Taken together, we concluded that RTEF-1 ameliorated β-GP-induced calcification and osteoblastic differentiation of VSMCs by inhibiting Wnt/β-catenin signaling pathway.
Collapse
Affiliation(s)
- Jingjing Cong
- Department of Geriatrics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022, Hubei, China
| | - Bei Cheng
- Department of Geriatrics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022, Hubei, China
| | - Jinyu Liu
- Department of Rehabilitative Medicine, Wuhan NO.1 Hospital, Wuhan, 430022, Hubei Province, China
| | - Ping He
- Department of Geriatrics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022, Hubei, China.
| |
Collapse
|
2
|
Diwekar-Joshi M, Watve M. Driver versus navigator causation in biology: the case of insulin and fasting glucose. PeerJ 2020; 8:e10396. [PMID: 33365205 PMCID: PMC7735078 DOI: 10.7717/peerj.10396] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Accepted: 10/29/2020] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND In biomedicine, inferring causal relation from experimental intervention or perturbation is believed to be a more reliable approach than inferring causation from cross-sectional correlation. However, we point out here that even in interventional inference there are logical traps. In homeostatic systems, causality in a steady state can be qualitatively different from that in a perturbed state. On a broader scale there is a need to differentiate driver causality from navigator causality. A driver is essential for reaching a destination but may not have any role in deciding the destination. A navigator on the other hand has a role in deciding the destination and the path but may not be able to drive the system to the destination. The failure to differentiate between types of causalities is likely to have resulted into many misinterpretations in physiology and biomedicine. METHODS We illustrate this by critically re-examining a specific case of the causal role of insulin in glucose homeostasis using five different approaches (1) Systematic review of tissue specific insulin receptor knock-outs, (2) Systematic review of insulin suppression and insulin enhancement experiments, (3) Differentiating steady state and post-meal state glucose levels in streptozotocin treated rats in primary experiments, (4) Mathematical and theoretical considerations and (5) Glucose-insulin relationship in human epidemiological data. RESULTS All the approaches converge on the inference that although insulin action hastens the return to a steady state after a glucose load, there is no evidence that insulin action determines the steady state level of glucose. Insulin, unlike the popular belief in medicine, appears to be a driver but not a navigator for steady state glucose level. It is quite likely therefore that the current line of clinical action in the field of type 2 diabetes has limited success largely because it is based on a misinterpretation of glucose-insulin relationship. The insulin-glucose example suggests that we may have to carefully re-examine causal inferences from perturbation experiments and set up revised norms for experimental design for causal inference.
Collapse
Affiliation(s)
- Manawa Diwekar-Joshi
- Biology, Indian Institute of Science Education and Research, Pune, Maharashtra, India
| | - Milind Watve
- Deenanath Mangeshkar Hospital and Research Centre, Pune, Maharashtra, India
| |
Collapse
|
3
|
Slater T, Haywood NJ, Matthews C, Cheema H, Wheatcroft SB. Insulin-like growth factor binding proteins and angiogenesis: from cancer to cardiovascular disease. Cytokine Growth Factor Rev 2019; 46:28-35. [PMID: 30954375 DOI: 10.1016/j.cytogfr.2019.03.005] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Accepted: 03/15/2019] [Indexed: 12/22/2022]
Abstract
Angiogenesis is a tightly regulated activity that is vital during embryonic development and for normal physiological repair processes and reproduction in healthy adults. Pathological angiogenesis is a driving force behind a variety of diseases including cancer and retinopathies, and inhibition of angiogenesis is a therapeutic option that has been the subject of much research, with several inhibitory agents now available for medical therapy. Conversely, therapeutic angiogenesis has been mooted as having significant potential in the treatment of ischemic conditions such as angina pectoris and peripheral arterial disease, but so far there has been less translation from lab to bedside. The insulin-like growth factor binding proteins (IGFBP) are a family of seven proteins essential for the binding and transport of the insulin-like growth factors (IGF). It is being increasingly recognised that IGFBPs have a significant role beyond simply modulating IGF activity, with evidence of both IGF dependent and independent actions through a variety of mechanisms. Moreover, the action of the IGFBPs can be stimulatory or inhibitory depending on the cell type and environment. Specifically the IGFBPs have been heavily implicated in angiogenesis, both pathological and physiological, and they have significant promise as targeted cell therapy agents for both pathological angiogenesis inhibition and therapeutic angiogenesis following ischemic injury. In this short review we will explore the current understanding of the individual impact of each IGFBP on angiogenesis, and the pathways through which these effects occur.
Collapse
Affiliation(s)
- Thomas Slater
- Leeds Institute of Cardiovascular & Metabolic Medicine, School of Medicine, University of Leeds, United Kingdom
| | - Natalie J Haywood
- Leeds Institute of Cardiovascular & Metabolic Medicine, School of Medicine, University of Leeds, United Kingdom
| | - Connor Matthews
- Leeds Institute of Cardiovascular & Metabolic Medicine, School of Medicine, University of Leeds, United Kingdom
| | - Harneet Cheema
- Leeds Institute of Cardiovascular & Metabolic Medicine, School of Medicine, University of Leeds, United Kingdom
| | - Stephen B Wheatcroft
- Leeds Institute of Cardiovascular & Metabolic Medicine, School of Medicine, University of Leeds, United Kingdom.
| |
Collapse
|
4
|
Clemmons DR. Role of IGF-binding proteins in regulating IGF responses to changes in metabolism. J Mol Endocrinol 2018; 61:T139-T169. [PMID: 29563157 DOI: 10.1530/jme-18-0016] [Citation(s) in RCA: 72] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Accepted: 03/21/2018] [Indexed: 12/22/2022]
Abstract
The IGF-binding protein family contains six members that share significant structural homology. Their principal function is to regulate the actions of IGF1 and IGF2. These proteins are present in plasma and extracellular fluids and regulate access of both IGF1 and II to the type I IGF receptor. Additionally, they have functions that are independent of their ability to bind IGFs. Each protein is regulated independently of IGF1 and IGF2, and this provides an important mechanism by which other hormones and physiologic variables can regulate IGF actions indirectly. Several members of the family are sensitive to changes in intermediary metabolism. Specifically the presence of obesity/insulin resistance can significantly alter the expression of these proteins. Similarly changes in nutrition or catabolism can alter their synthesis and degradation. Multiple hormones such as glucocorticoids, androgens, estrogen and insulin regulate IGFBP synthesis and bioavailability. In addition to their ability to regulate IGF access to receptors these proteins can bind to distinct cell surface proteins or proteins in extracellular matrix and several cellular functions are influenced by these interactions. IGFBPs can be transported intracellularly and interact with nuclear proteins to alter cellular physiology. In pathophysiologic states, there is significant dysregulation between the changes in IGFBP synthesis and bioavailability and changes in IGF1 and IGF2. These discordant changes can lead to marked alterations in IGF action. Although binding protein physiology and pathophysiology are complex, experimental results have provided an important avenue for understanding how IGF actions are regulated in a variety of physiologic and pathophysiologic conditions.
Collapse
Affiliation(s)
- David R Clemmons
- Department of MedicineUNC School of Medicine, University of North Carolina, Chapel Hill, North Carolina, USA
| |
Collapse
|
5
|
Teng K, Deng C, Xu J, Men Q, Lei T, Di D, Liu T, Li W, Liu X. Nuclear localization of TEF3-1 promotes cell cycle progression and angiogenesis in cancer. Oncotarget 2017; 7:13827-41. [PMID: 26885617 PMCID: PMC4924681 DOI: 10.18632/oncotarget.7342] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2015] [Accepted: 01/29/2016] [Indexed: 01/09/2023] Open
Abstract
TEF3-1 (transcriptional enhancer factor 3 isoform 1), also known as TEAD4 (TEA domain family member 4), was recently revealed as an oncogenic character in cancer development. However, the underlying molecular pathogenic mechanisms remain undefined. In this paper, we investigated nuclear TEF3-1 could promote G1/S transition in HUVECs, and the expression levels of cyclins and CDKs were upregulated. Additionally, if TEF3-1 was knocked down, the expression of cyclins and CDKs was downregulated while the expression of P21, a negative regulator of the cell cycle, was upregulated. A microarray analysis also confirmed that TEF3-1 overexpression upregulates genes that are related to cell cycle progression and the promotion of angiogenesis. Moreover, we observed that nuclear TEF3-1 was highly expressed during the formation of vascular structures in gastric cancer (GC). Finally, tumor xenograft experiments indicated that, when TEF3-1 was knocked down, tumor growth and angiogenesis were also suppressed. Taken together, these results demonstrate for the first time that TEF3-1 localization to the nucleus stimulates the cell cycle progression in HUVECs and specifically contributes to tumor angiogenesis. Nuclear TEF3-1 in HUVECs may serve as an oncogenic biomarker, and the suppression of TEF3-1 may be a potential target in anti-tumor therapy.
Collapse
Affiliation(s)
- Kaixuan Teng
- Ministry of Education Laboratory of Combinatorial Biosynthesis and Drug Discovery, College of Pharmacy, Wuhan University, Wuhan, 430071, P.R. China
| | - Cuilan Deng
- Ministry of Education Laboratory of Combinatorial Biosynthesis and Drug Discovery, College of Pharmacy, Wuhan University, Wuhan, 430071, P.R. China
| | - Jie Xu
- Ministry of Education Laboratory of Combinatorial Biosynthesis and Drug Discovery, College of Pharmacy, Wuhan University, Wuhan, 430071, P.R. China
| | - Qiuxu Men
- Ministry of Education Laboratory of Combinatorial Biosynthesis and Drug Discovery, College of Pharmacy, Wuhan University, Wuhan, 430071, P.R. China
| | - Tao Lei
- Ministry of Education Laboratory of Combinatorial Biosynthesis and Drug Discovery, College of Pharmacy, Wuhan University, Wuhan, 430071, P.R. China
| | - Da Di
- Ministry of Education Laboratory of Combinatorial Biosynthesis and Drug Discovery, College of Pharmacy, Wuhan University, Wuhan, 430071, P.R. China
| | - Ting Liu
- College of Life Sciences, Wuhan University, Wuhan, 430072, P.R. China
| | - Wenhua Li
- College of Life Sciences, Wuhan University, Wuhan, 430072, P.R. China
| | - Xin Liu
- Ministry of Education Laboratory of Combinatorial Biosynthesis and Drug Discovery, College of Pharmacy, Wuhan University, Wuhan, 430071, P.R. China
| |
Collapse
|
6
|
Che P, Liu J, Shan Z, Wu R, Yao C, Cui J, Zhu X, Wang J, Burnett MS, Wang S, Wang J. miR-125a-5p impairs endothelial cell angiogenesis in aging mice via RTEF-1 downregulation. Aging Cell 2014; 13:926-34. [PMID: 25059272 PMCID: PMC4331751 DOI: 10.1111/acel.12252] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/23/2014] [Indexed: 12/05/2022] Open
Abstract
Increasing evidence suggests that microRNAs (miRNAs) play important roles in impaired endothelial cell (EC) angiogenesis during aging. However, their exact roles in the aging process remain unclear. We aimed to determine whether miRNAs cause angiogenesis defects in ECs during aging and to uncover the underlying mechanisms. To study the miRNA-induced changes in ECs during aging, we performed microarray analyses on arterial ECs collected from young and aging mice. Using qRT–PCR, we showed that microRNA-125a-5p (mir-125a-5p) expression was approximately 2.9 times higher in old endothelial cells (OECs) compared with samples collected from young animals. Western blot assays showed a lower expression level of an mir-125a-5p target known as related transcriptional enhancer factor-1 (RTEF-1) in OECs compared with its expression levels in young cells. Overexpression of mir-125a-5p in young endothelial cells (YECs) using pre-mir-125a-5p caused the downregulation of RTEF-1, endothelial nitric oxide synthase (eNOS) and vascular endothelial growth factor (VEGF) and resulted in impaired angiogenesis, as evidenced by spheroid sprouting and tube formation assays in vitro. Conversely, repression of mir-125a-5p in OECs using anti-mir-125a-5p increased RTEF-1, eNOS and VEGF expression and improved EC angiogenesis. Importantly, impaired angiogenesis caused by knock-down of RTEF-1 was not efficiently rescued by anti-mir-125a-5p. Dual-luciferase reporter gene analysis showed that RTEF-1 is a direct target of mir-125a-5p, which regulates angiogenesis by repressing RTEF-1 expression and modulating eNOS and VEGF expression. These findings indicate that mir-125a-5p and RTEF-1 are potential therapeutic targets for improving EC-mediated angiogenesis in elderly individuals.
Collapse
Affiliation(s)
- Peng Che
- Department of Vascular Surgery The First Affiliated Hospital of Sun Yat‐sen University NO. 58 Zhongshan Road 2 Guangzhou 510080 China
| | - Jun Liu
- Department of Cardiology The First Affiliated Hospital of Sun Yat‐Sen University NO. 58 Zhongshan Road 2 Guangzhou 510080 China
| | - Zhen Shan
- Department of Vascular Surgery The First Affiliated Hospital of Sun Yat‐sen University NO. 58 Zhongshan Road 2 Guangzhou 510080 China
| | - Ridong Wu
- Department of Vascular Surgery The First Affiliated Hospital of Sun Yat‐sen University NO. 58 Zhongshan Road 2 Guangzhou 510080 China
| | - Chen Yao
- Department of Vascular Surgery The First Affiliated Hospital of Sun Yat‐sen University NO. 58 Zhongshan Road 2 Guangzhou 510080 China
| | - Jin Cui
- Department of Vascular Surgery The First Affiliated Hospital of Sun Yat‐sen University NO. 58 Zhongshan Road 2 Guangzhou 510080 China
| | - Xiaonan Zhu
- Department of Pharmacology Laboratory The First Affiliated Hospital of Sun Yat‐sen University NO.58 Zhongshan Road 2 Guangzhou 510080 China
| | - Junwei Wang
- Department of Vascular Surgery The First Affiliated Hospital of Sun Yat‐sen University NO. 58 Zhongshan Road 2 Guangzhou 510080 China
| | - Mary Susan Burnett
- Cardiovascular Research Institute MedStar Health Research Institute Washington DC 20010 USA
| | - Shenming Wang
- Department of Vascular Surgery The First Affiliated Hospital of Sun Yat‐sen University NO. 58 Zhongshan Road 2 Guangzhou 510080 China
| | - JinSong Wang
- Department of Vascular Surgery The First Affiliated Hospital of Sun Yat‐sen University NO. 58 Zhongshan Road 2 Guangzhou 510080 China
| |
Collapse
|
7
|
Guo S, Philbrick MJ, An X, Xu M, Wu J. Response gene to complement 32 (RGC-32) in endothelial cells is induced by glucose and helpful to maintain glucose homeostasis. Int J Clin Exp Med 2014; 7:2541-2549. [PMID: 25356107 PMCID: PMC4211757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2014] [Accepted: 08/26/2014] [Indexed: 06/04/2023]
Abstract
Endothelium dysfunction has been understood primarily in terms of abnormal vasomotor function, which plays an important role in the pathogenesis of diabetes and chronic diabetic complications. However, it has not been fully studied that the endothelium may regulate metabolism itself. The response gene to complement 32 (RGC-32) has be considered as an angiogenic inhibitor in the context of endothelial cells. We found that RGC-32 was induced by high fat diet in vivo and by glucose or insulin in endothelial cells, and then we set out to investigate the role of endothelial RGC-32 in metabolism. DNA array analysis and qPCR results showed that glutamine-fructose-6-phosphate aminotransferase [isomerizing] 1 (GFPT1), solute carrier family 2 (facilitated glucose transporter), member 12 (SLC2A12, GLUT12) and glucagon-like peptide 2 receptor (GLP2R) may be among possible glucose metabolism related downstream genes of RGC-32. Additionally, in the mice with endothelial specific over-expressed RGC-32, the disposal of carbohydrate was improved without changing insulin sensitivity when mice were faced with high fat diet challenges. Taken together, our findings suggest that RGC-32 in the endothelial cells regulates glucose metabolism related genes and subsequent helps to maintain the homeostasis of blood glucose.
Collapse
Affiliation(s)
- Shuzhen Guo
- School of Preclinical Medicine, Beijing University of Chinese MedicineBeijing, China
- Cardiovascular Institute, Beth Israel Deaconess Medical Center, Harvard Medical SchoolBoston, MA, USA
| | - Melissa J Philbrick
- Cardiovascular Institute, Beth Israel Deaconess Medical Center, Harvard Medical SchoolBoston, MA, USA
| | - Xiaojing An
- Cardiovascular Institute, Beth Israel Deaconess Medical Center, Harvard Medical SchoolBoston, MA, USA
| | - Ming Xu
- Cardiovascular Institute, Beth Israel Deaconess Medical Center, Harvard Medical SchoolBoston, MA, USA
| | - Jiaping Wu
- Cardiovascular Institute, Beth Israel Deaconess Medical Center, Harvard Medical SchoolBoston, MA, USA
| |
Collapse
|
8
|
Guo S. Insulin signaling, resistance, and the metabolic syndrome: insights from mouse models into disease mechanisms. J Endocrinol 2014; 220:T1-T23. [PMID: 24281010 PMCID: PMC4087161 DOI: 10.1530/joe-13-0327] [Citation(s) in RCA: 329] [Impact Index Per Article: 32.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Insulin resistance is a major underlying mechanism responsible for the 'metabolic syndrome', which is also known as insulin resistance syndrome. The incidence of the metabolic syndrome is increasing at an alarming rate, becoming a major public and clinical problem worldwide. The metabolic syndrome is represented by a group of interrelated disorders, including obesity, hyperglycemia, hyperlipidemia, and hypertension. It is also a significant risk factor for cardiovascular disease and increased morbidity and mortality. Animal studies have demonstrated that insulin and its signaling cascade normally control cell growth, metabolism, and survival through the activation of MAPKs and activation of phosphatidylinositide-3-kinase (PI3K), in which the activation of PI3K associated with insulin receptor substrate 1 (IRS1) and IRS2 and subsequent Akt→Foxo1 phosphorylation cascade has a central role in the control of nutrient homeostasis and organ survival. The inactivation of Akt and activation of Foxo1, through the suppression IRS1 and IRS2 in different organs following hyperinsulinemia, metabolic inflammation, and overnutrition, may act as the underlying mechanisms for the metabolic syndrome in humans. Targeting the IRS→Akt→Foxo1 signaling cascade will probably provide a strategy for therapeutic intervention in the treatment of type 2 diabetes and its complications. This review discusses the basis of insulin signaling, insulin resistance in different mouse models, and how a deficiency of insulin signaling components in different organs contributes to the features of the metabolic syndrome. Emphasis is placed on the role of IRS1, IRS2, and associated signaling pathways that are coupled to Akt and the forkhead/winged helix transcription factor Foxo1.
Collapse
Affiliation(s)
- Shaodong Guo
- Division of Molecular Cardiology, Department of Medicine, College of Medicine, Texas A&M University Health Science Center, Scott & White, Central Texas Veterans Health Care System, 1901 South 1st Street, Bldg. 205, Temple, Texas 76504, USA
| |
Collapse
|
9
|
Ma J, Zhang L, Tipton AR, Wu J, Messmer-Blust AF, Philbrick MJ, Qi Y, Liu ST, Liu H, Li J, Guo S. Structural and functional analysis of the related transcriptional enhancer factor-1 and NF-κB interaction. Am J Physiol Heart Circ Physiol 2013; 306:H233-42. [PMID: 24213609 DOI: 10.1152/ajpheart.00069.2013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The related transcriptional enhancer factor-1 (RTEF-1) increases gene transcription of hypoxia-inducible factor 1α (HIF-1α) and enhances angiogenesis in endothelium. Both hypoxia and inflammatory factor TNF-α regulate gene expression of HIF-1α, but how RTEF-1 and TNF-α coordinately regulate HIF-1α gene transcription is unclear. Here, we found that RTEF-1 interacts with p65 subunit of NF-κB, a primary mediator of TNF-α. RTEF-1 increased HIF-1α promoter activity, whereas expression of p65 subunit inhibited the stimulatory effect. By contrast, knockdown of p65 markedly enhanced RTEF-1 stimulation on the HIF-1α promoter activity (7-fold). A physical interaction between RTEF-1 and p65 was confirmed by coimmunoprecipitation experiments in cells and glutathione S-transferase (GST)-pull-down assays. A computational analysis of RTEF-1 crystal structures revealed that a conserved surface of RTEF-1 potentially interacts with p65 via four amino acid residues located at T347, Y349, R351, and Y352. We performed site-directed mutagenesis and GST-pull-down assays and demonstrated that Tyr352 (Y352) in RTEF-1 is a key site for the formation of RTEF-1 and p65-NF-κB complex. An alanine mutation at Y352 of RTEF-1 disrupted the interaction of RTEF-1 with p65. Moreover, expression of RTEF-1 decreased TNF-α-induced HIF-1α promoter activity, IL-1β, and IL-6 mRNA levels in cells; however, the effect of RTEF-1 was largely lost when Y352 was mutated to alanine. These results indicate that RTEF-1 interacts with p65-NF-κB through Y352 and that they antagonize each other for HIF-1α transcriptional activation, suggesting a novel mechanism by which RTEF-1 regulates gene expression, linking hypoxia to inflammation.
Collapse
Affiliation(s)
- Jieliang Ma
- College of Life Science, Liaoning University, Shenyang, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Circulation Research
Thematic Synopsis Diabetes and Obesity. Circ Res 2013; 113:e62-75. [DOI: 10.1161/circresaha.113.302431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
11
|
Guo S. Molecular Basis of Insulin Resistance: The Role of IRS and Foxo1 in the Control of Diabetes Mellitus and Its Complications. ACTA ACUST UNITED AC 2013; 10:e27-e33. [PMID: 24015152 DOI: 10.1016/j.ddmec.2013.06.003] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Insulin/IGF-1 signaling plays a central role in control of cellular metabolism and survival, while insulin receptor substrate (IRS) protein -1 and -2 and downstream PI-3 kinase→Akt→Foxo1 signaling cascade play key roles in many functions of insulin/IGF-1. Dysregulation of this branch of signaling cascades may provide a mechanism for insulin resistance as we observed in cells, animals, and even humans. Targeting this branch of IRS→Foxo1 signaling may provide us with fundamental strategies for drug development in the future.
Collapse
Affiliation(s)
- Shaodong Guo
- Division of Molecular Cardiology, Cardiovascular Research Institute, College of Medicine, Texas A&M University Health Science Center, Scott & White; Central Texas Veterans Health Care System, Temple, TX 76504, USA
| |
Collapse
|
12
|
|