1
|
Veru-Lesmes F, Rho A, Joober R, Iyer S, Malla A. Socioeconomic deprivation and blood lipids in first-episode psychosis patients with minimal antipsychotic exposure: Implications for cardiovascular risk. Schizophr Res 2020; 216:111-117. [PMID: 31899097 DOI: 10.1016/j.schres.2019.12.019] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Revised: 10/16/2019] [Accepted: 12/19/2019] [Indexed: 10/25/2022]
Abstract
BACKGROUND The influence of socioeconomic deprivation on the cardiovascular health of patients with psychosis-spectrum disorders (PSD) has not been investigated despite the growing recognition of social factors as determinants of health, and the disproportionate rates of cardiovascular mortality observed in PSD. Discordant results have been documented when studying dyslipidemia -a core cardiovascular risk factor- in first-episode psychosis (FEP), before chronic exposure to antipsychotic medications. The objective of the present study is to determine the extent to which socioeconomic deprivation affects blood lipids in patients with FEP, and examine its implications for cardiovascular risk in PSD. METHODS Linear regression models, controlling for age, sex, exposure to pharmacotherapy, and physical anergia, were used to test the association between area-based measures of material and social deprivation and blood lipid levels in a sample of FEP patients (n = 208). RESULTS Social, but not material deprivation, was associated with lower levels of total and HDL cholesterol. This effect was statistically significant in patients with affective psychoses, but not in schizophrenia-spectrum disorders. CONCLUSIONS Contrary to other reports from the literature, the relationship between socioeconomic disadvantage and blood lipid levels was contingent on the social rather than the material aspects of deprivation. Furthermore, this association also depended on the main diagnostic category of psychosis, suggesting a complex interaction between the environment, psychopathology, and physical health. Future studies exploring health issues in psychosis might benefit from taking these associations into consideration. A better understanding of the biology of blood lipids in this context is necessary.
Collapse
Affiliation(s)
- Franz Veru-Lesmes
- Prevention and Early Intervention Program for Psychosis, Montreal, Quebec, Canada; Douglas Mental Health University Institute, Montreal, Quebec, Canada; Department of Psychiatry, McGill University, Montreal, Quebec, Canada
| | - Aldanie Rho
- Prevention and Early Intervention Program for Psychosis, Montreal, Quebec, Canada; Douglas Mental Health University Institute, Montreal, Quebec, Canada
| | - Ridha Joober
- Prevention and Early Intervention Program for Psychosis, Montreal, Quebec, Canada; Douglas Mental Health University Institute, Montreal, Quebec, Canada; Department of Psychiatry, McGill University, Montreal, Quebec, Canada
| | - Srividya Iyer
- Prevention and Early Intervention Program for Psychosis, Montreal, Quebec, Canada; Douglas Mental Health University Institute, Montreal, Quebec, Canada; Department of Psychiatry, McGill University, Montreal, Quebec, Canada
| | - Ashok Malla
- Prevention and Early Intervention Program for Psychosis, Montreal, Quebec, Canada; Douglas Mental Health University Institute, Montreal, Quebec, Canada; Department of Psychiatry, McGill University, Montreal, Quebec, Canada.
| |
Collapse
|
2
|
Ito SM, Yamanashi Y, Takada T, Suzuki H. Clinical Importance of Drug-Drug Interaction Between Warfarin and Prednisolone and Its Potential Mechanism in Relation to the Niemann-Pick C1-Like 1-Mediated Pathway. Circ J 2019; 83:471-480. [DOI: 10.1253/circj.cj-18-0807] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Sayo M Ito
- Department of Pharmacy, The University of Tokyo Hospital, Faculty of Medicine, The University of Tokyo
| | - Yoshihide Yamanashi
- Department of Pharmacy, The University of Tokyo Hospital, Faculty of Medicine, The University of Tokyo
| | - Tappei Takada
- Department of Pharmacy, The University of Tokyo Hospital, Faculty of Medicine, The University of Tokyo
| | - Hiroshi Suzuki
- Department of Pharmacy, The University of Tokyo Hospital, Faculty of Medicine, The University of Tokyo
| |
Collapse
|
3
|
Priyadarshini S, Pradhan B, Griebel P, Aich P. Cortisol regulates immune and metabolic processes in murine adipocytes and macrophages through HTR2c and HTR5a serotonin receptors. Eur J Cell Biol 2018; 97:483-492. [PMID: 30097291 DOI: 10.1016/j.ejcb.2018.07.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Revised: 07/25/2018] [Accepted: 07/26/2018] [Indexed: 12/22/2022] Open
Abstract
Epidemiological studies implicate stress as an important factor contributing to the increasing prevalence of metabolic disorders. Studies have correlated visceral obesity and atherosclerosis with hyper-cortisolemia, a sequela of chronic psychological stress in humans and animals. Although several hormonal markers of stress have been associated with various metabolic disorders, the mechanism by which these hormones alter metabolic functions have not been established. We used an in vitro model system, culturing 3T3-L1 pre-adipocytes and RAW 264.7 macrophages in the presence or absence of cortisol, to analyze cell signaling pathways mediating changes in metabolic functions. Our analysis revealed that cortisol up-regulated the expression and function of two serotonin (S) receptors, HTR2c and HTR5a. HTR2c and HTR5a were also directly involved in mediating cortisol enhanced adipogenesis when pre-adipocytes were cultured alone or in the presence of macrophages. Finally, cortisol treatment of pre-adipocytes co-cultured with macrophages enhanced adipogenesis in both macrophages and pre-adipocytes.
Collapse
Affiliation(s)
- Sushri Priyadarshini
- School of Biological Sciences, National Institute of Science Education and Research (NISER), HBNI, PO- Bhimpur-Padanpur, Jatni, Khurda, Odisha, 752050, India
| | - Biswaranjan Pradhan
- School of Biological Sciences, National Institute of Science Education and Research (NISER), HBNI, PO- Bhimpur-Padanpur, Jatni, Khurda, Odisha, 752050, India
| | - Philip Griebel
- VIDO-Intervac, University of Saskatchewan, Saskatoon, SK, S7N 5E3, Canada; School of Public Health, University of Saskatchewan, Saskatoon, SK, S7N 5A8, Canada
| | - Palok Aich
- School of Biological Sciences, National Institute of Science Education and Research (NISER), HBNI, PO- Bhimpur-Padanpur, Jatni, Khurda, Odisha, 752050, India.
| |
Collapse
|
4
|
Kawano T, Ouchi R, Ishigaki T, Masuda C, Miyasaka T, Ohkawara Y, Ohta N, Takayanagi M, Takahashi T, Ohno I. Increased Susceptibility to Allergic Asthma with the Impairment of Respiratory Tolerance Caused by Psychological Stress. Int Arch Allergy Immunol 2018; 177:1-15. [PMID: 29874662 DOI: 10.1159/000488289] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2017] [Accepted: 03/09/2018] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Bronchial asthma is characterized by type 2 T helper (Th2) cell inflammation, essentially due to a breakdown of immune tolerance to harmless environmental allergens. Etiologically, experiences of psychological stress can be associated with a heightened prevalence of asthma. However, the mechanisms underlying stress-related asthma development are unclear. In this study, we examined whether psychological stress increases susceptibility to allergic asthma by downregulating immune tolerance. METHODS Female BALB/c mice were sensitized with ovalbumin/alum, followed by ovalbumin inhalation. Ovalbumin inhalation induced immune tolerance before sensitization occurred. Some mice were exposed to restraint stress during tolerance induction or sensitization. Asthma development was evaluated by airway responsiveness, inflammation, cytokine expression, and IgE synthesis. Sensitization was evaluated by measuring proliferation and cytokine production by splenocytes. The effects of stress exposure on the numbers and functions of dendritic cells and regulatory T (Treg) cells in bronchial lymph nodes and spleens were evaluated. To investigate the role of endogenous glucocorticoid in inhibiting immune tolerance after stress exposure, we examined the effects of (i) a glucocorticoid-receptor antagonist administered prior to stress exposure, and (ii) exogenous gluco-corticoid (instead of stress exposure). RESULTS Asthmatic responses and Th2-biased sensitization, which were suppressed in tolerized mice, re-emerged in tolerized mice stressed during tolerance induction in association with decreased tolerogenic dendritic and Treg cell numbers. The effects of stress exposure on tolerized mice were abolished by administering a glucocorticoid-receptor antagonist and reproduced by administering exogenous glucocorticoid without stress. CONCLUSIONS Our findings suggested that psychological stress can potentially increase allergic asthma susceptibility by inhibiting immune tolerance.
Collapse
Affiliation(s)
- Tasuku Kawano
- Division of Pathophysiology, Department of Pharmaceutical Sciences, Faculty of Pharmaceutical Sciences, Tohoku Medical and Pharmaceutical University, Sendai, Japan
| | - Ryusuke Ouchi
- Division of Pathophysiology, Department of Pharmaceutical Sciences, Faculty of Pharmaceutical Sciences, Tohoku Medical and Pharmaceutical University, Sendai, Japan
| | - Takahiro Ishigaki
- Division of Pathophysiology, Department of Pharmaceutical Sciences, Faculty of Pharmaceutical Sciences, Tohoku Medical and Pharmaceutical University, Sendai, Japan
| | - Chiaki Masuda
- Division of Pathophysiology, Department of Pharmaceutical Sciences, Faculty of Pharmaceutical Sciences, Tohoku Medical and Pharmaceutical University, Sendai, Japan
| | - Tomomitsu Miyasaka
- Division of Pathophysiology, Department of Pharmaceutical Sciences, Faculty of Pharmaceutical Sciences, Tohoku Medical and Pharmaceutical University, Sendai, Japan
| | - Yuichi Ohkawara
- Division of Experimental Allergy and Immunology, Department of Pharmaceutical Sciences, Faculty of Pharmaceutical Sciences, Tohoku Medical Pharmaceutical University, Sendai, Japan
| | - Nobuo Ohta
- Division of Otorhinolaryngology, Faculty of Medicine, Tohoku Medical and Pharmaceutical University, Sendai, Japan
| | - Motoaki Takayanagi
- Division of Pathophysiology, Department of Pharmaceutical Sciences, Faculty of Pharmaceutical Sciences, Tohoku Medical and Pharmaceutical University, Sendai, Japan
| | - Tomoko Takahashi
- Division of Pathophysiology, Department of Pharmaceutical Sciences, Faculty of Pharmaceutical Sciences, Tohoku Medical and Pharmaceutical University, Sendai, Japan
| | - Isao Ohno
- Center for Medical Education, Faculty of Medicine, Tohoku Medical and Pharmaceutical University, Sendai, Japan
| |
Collapse
|
5
|
Bartelt A, John C, Schaltenberg N, Berbée JFP, Worthmann A, Cherradi ML, Schlein C, Piepenburg J, Boon MR, Rinninger F, Heine M, Toedter K, Niemeier A, Nilsson SK, Fischer M, Wijers SL, van Marken Lichtenbelt W, Scheja L, Rensen PCN, Heeren J. Thermogenic adipocytes promote HDL turnover and reverse cholesterol transport. Nat Commun 2017; 8:15010. [PMID: 28422089 PMCID: PMC5399294 DOI: 10.1038/ncomms15010] [Citation(s) in RCA: 110] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2016] [Accepted: 02/21/2017] [Indexed: 01/18/2023] Open
Abstract
Brown and beige adipocytes combust nutrients for thermogenesis and through their metabolic activity decrease pro-atherogenic remnant lipoproteins in hyperlipidemic mice. However, whether the activation of thermogenic adipocytes affects the metabolism and anti-atherogenic properties of high-density lipoproteins (HDL) is unknown. Here, we report a reduction in atherosclerosis in response to pharmacological stimulation of thermogenesis linked to increased HDL levels in APOE*3-Leiden.CETP mice. Both cold-induced and pharmacological thermogenic activation enhances HDL remodelling, which is associated with specific lipidomic changes in mouse and human HDL. Furthermore, thermogenic stimulation promotes HDL-cholesterol clearance and increases macrophage-to-faeces reverse cholesterol transport in mice. Mechanistically, we show that intravascular lipolysis by adipocyte lipoprotein lipase and hepatic uptake of HDL by scavenger receptor B-I are the driving forces of HDL-cholesterol disposal in liver. Our findings corroborate the notion that high metabolic activity of thermogenic adipocytes confers atheroprotective properties via increased systemic cholesterol flux through the HDL compartment. Activation of brown adipose tissue (BAT) reduces the development of atherosclerosis in animal models. Here the authors show that BAT activation also increases reverse cholesterol transport and turnover of high-density lipoprotein, which likely contributes to the anti-atherosclerotic effect of BAT activation.
Collapse
Affiliation(s)
- Alexander Bartelt
- Department of Biochemistry and Molecular Cell Biology, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246 Hamburg, Germany.,Department of Orthopaedics, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246 Hamburg, Germany.,Department of Genetics and Complex Diseases and Sabri Ülker Center, Harvard T.H. Chan School of Public Health, 665 Huntington Avenue, Boston, Massachusetts 02115, USA
| | - Clara John
- Department of Biochemistry and Molecular Cell Biology, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246 Hamburg, Germany
| | - Nicola Schaltenberg
- Department of Biochemistry and Molecular Cell Biology, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246 Hamburg, Germany
| | - Jimmy F P Berbée
- Division of Endocrinology and Einthoven Laboratory for Experimental Vascular Medicine, Department of Medicine, Leiden University Medical Center, P.O. Box 9600, 2300 RC Leiden, The Netherlands
| | - Anna Worthmann
- Department of Biochemistry and Molecular Cell Biology, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246 Hamburg, Germany
| | - M Lisa Cherradi
- Department of Biochemistry and Molecular Cell Biology, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246 Hamburg, Germany
| | - Christian Schlein
- Department of Biochemistry and Molecular Cell Biology, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246 Hamburg, Germany
| | - Julia Piepenburg
- Department of Biochemistry and Molecular Cell Biology, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246 Hamburg, Germany
| | - Mariëtte R Boon
- Division of Endocrinology and Einthoven Laboratory for Experimental Vascular Medicine, Department of Medicine, Leiden University Medical Center, P.O. Box 9600, 2300 RC Leiden, The Netherlands
| | - Franz Rinninger
- III. Department of Internal Medicine, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246 Hamburg, Germany
| | - Markus Heine
- Department of Biochemistry and Molecular Cell Biology, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246 Hamburg, Germany
| | - Klaus Toedter
- Department of Biochemistry and Molecular Cell Biology, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246 Hamburg, Germany
| | - Andreas Niemeier
- Department of Orthopaedics, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246 Hamburg, Germany
| | - Stefan K Nilsson
- Department of Biochemistry and Molecular Cell Biology, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246 Hamburg, Germany.,Department of Medical Biosciences and Physiological Chemistry, Umeå University, Umeå 90787, Sweden
| | - Markus Fischer
- Hamburg School of Food Science, Institute of Food Chemistry, University of Hamburg, Grindelallee 117, 20146 Hamburg, Germany
| | - Sander L Wijers
- Department of Human Biology, NUTRIM - School for Nutrition, Toxicology and Metabolism, Maastricht University Medical Center, Maastricht 6200 MD, The Netherlands
| | - Wouter van Marken Lichtenbelt
- Department of Human Biology, NUTRIM - School for Nutrition, Toxicology and Metabolism, Maastricht University Medical Center, Maastricht 6200 MD, The Netherlands
| | - Ludger Scheja
- Department of Biochemistry and Molecular Cell Biology, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246 Hamburg, Germany
| | - Patrick C N Rensen
- Division of Endocrinology and Einthoven Laboratory for Experimental Vascular Medicine, Department of Medicine, Leiden University Medical Center, P.O. Box 9600, 2300 RC Leiden, The Netherlands
| | - Joerg Heeren
- Department of Biochemistry and Molecular Cell Biology, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246 Hamburg, Germany
| |
Collapse
|
6
|
Khokhlova ON, Tukhovskaya EA, Kravchenko IN, Sadovnikova ES, Pakhomova IA, Kalabina EA, Lobanov AV, Shaykhutdinova ER, Ismailova AM, Murashev AN. Using Tiletamine-Zolazepam-Xylazine Anesthesia Compared to CO 2-inhalation for Terminal Clinical Chemistry, Hematology, and Coagulation Analysis in Mice. J Pharmacol Toxicol Methods 2016; 84:11-19. [PMID: 27773843 DOI: 10.1016/j.vascn.2016.10.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2016] [Revised: 09/13/2016] [Accepted: 10/18/2016] [Indexed: 01/04/2023]
Abstract
INTRODUCTION It is important that the method of anesthesia of mice does not considerably alter the animal's physiological and metabolic status before terminal blood sampling taken in order to analyze clinical pathology parameters. METHODS Hematology, hemostasis, and clinical chemistry parameters were compared in male and female BALB/c mice exposed to either tiletamine-zolazepam-xylazine (TZX) anesthesia or euthanasia in carbon dioxide (CO2) chamber to reveal an alternative method of anesthesia vs. the recommended CO2 inhalation. Blood samples were taken from the inferior vena cava. RESULTS Clinical blood parameters in mice exposed to CO2 inhalation or TZX anesthesia proved to be substantially different. The TZX group had lower activated partial thromboplastin time (APTT) and fibrinogen (statistically in males and tending in females) and lower platelets (PLT), red blood cells (RBC), hemoglobin (HGB), and white blood cells (WBC) in both sexes. TZX anesthesia resulted in lower blood serum concentrations of total protein, albumin and globulins, creatinine in males (higher in females); cholesterol, triglycerides, alanine aminotransferase (АLT) and alkaline phosphatase (AP) in both sexes, and bilirubin in males. The calcium level decreased in TZX-anesthetized males and females while the phosphates decreased only in females. The volume of serum obtained from females of TZX group was approximately two times higher than in the CO2-anesthetized group, with the degree of hemolysis tending to decrease. DISCUSSION The studied method of mouse anesthesia, followed by terminal blood sampling and analysis of clinical pathology parameters, suggests that TZX is a good alternative to CO2 inhalation in toxicological and other nonclinical studies. The differences in hemostasis, hematology, and clinical chemistry parameters between these groups are supposedly associated with alterations in physiological and metabolic status of mice under conditions of increasing hypoxia, respiratory standstill, and circulatory arrest after CO2 inhalation.
Collapse
Affiliation(s)
- Oksana N Khokhlova
- Biological Testing Laboratory, Branch of Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 6 Nauki Avenue, Pushchino 142290, Russia.
| | - Elena A Tukhovskaya
- Biological Testing Laboratory, Branch of Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 6 Nauki Avenue, Pushchino 142290, Russia.
| | - Irina N Kravchenko
- Biological Testing Laboratory, Branch of Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 6 Nauki Avenue, Pushchino 142290, Russia.
| | - Elena S Sadovnikova
- Biological Testing Laboratory, Branch of Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 6 Nauki Avenue, Pushchino 142290, Russia.
| | - Irina A Pakhomova
- Biological Testing Laboratory, Branch of Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 6 Nauki Avenue, Pushchino 142290, Russia.
| | - Elena A Kalabina
- Biological Testing Laboratory, Branch of Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 6 Nauki Avenue, Pushchino 142290, Russia.
| | - Alexander V Lobanov
- Biological Testing Laboratory, Branch of Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 6 Nauki Avenue, Pushchino 142290, Russia.
| | - Elvira R Shaykhutdinova
- Biological Testing Laboratory, Branch of Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 6 Nauki Avenue, Pushchino 142290, Russia.
| | - Alina M Ismailova
- Biological Testing Laboratory, Branch of Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 6 Nauki Avenue, Pushchino 142290, Russia.
| | - Arkady N Murashev
- Biological Testing Laboratory, Branch of Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 6 Nauki Avenue, Pushchino 142290, Russia.
| |
Collapse
|
7
|
Vijaya Abinaya R, Pichiah PBT, Sara Thomas S, Kim SG, Han DW, Song YS, Oh SH, Cha YS. γ-amino butyric acid-enriched barley bran lowers adrenocorticotropic hormone and corticosterone levels in immobilized stressed rats. J Food Biochem 2016. [DOI: 10.1111/jfbc.12324] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Ravichandran Vijaya Abinaya
- Department of Food Science and Human Nutrition; and Research Institute of Human Ecology, Chonbuk National University; Jeonbuk 561-756, 664-14 Duckjin-dong, Jeonju Republic of Korea
| | - Pichiah Balasubramanian Tirupathi Pichiah
- Department of Food Science and Human Nutrition; and Research Institute of Human Ecology, Chonbuk National University; Jeonbuk 561-756, 664-14 Duckjin-dong, Jeonju Republic of Korea
| | - Shalom Sara Thomas
- Department of Food Science and Human Nutrition; and Research Institute of Human Ecology, Chonbuk National University; Jeonbuk 561-756, 664-14 Duckjin-dong, Jeonju Republic of Korea
| | - Su-Gon Kim
- Department of Food and Biotechnology; Woosuk University; Jeonbuk 561-756 Republic of Korea
| | - Doo-Won Han
- Department of industrialization; Jeonbuk Institute for Food-Bioindustry, 111-18, Wonjangdong-gil, Deokjin-gu, Jeollabuk-do; Republic of Korea
| | - Yoon-Seok Song
- Department of industrialization; Jeonbuk Institute for Food-Bioindustry, 111-18, Wonjangdong-gil, Deokjin-gu, Jeollabuk-do; Republic of Korea
| | - Suk-Heung Oh
- Department of Food and Biotechnology; Woosuk University; Jeonbuk 561-756 Republic of Korea
| | - Youn-Soo Cha
- Department of Food Science and Human Nutrition; and Research Institute of Human Ecology, Chonbuk National University; Jeonbuk 561-756, 664-14 Duckjin-dong, Jeonju Republic of Korea
| |
Collapse
|
8
|
Lee-Rueckert M, Escola-Gil JC, Kovanen PT. HDL functionality in reverse cholesterol transport--Challenges in translating data emerging from mouse models to human disease. Biochim Biophys Acta Mol Cell Biol Lipids 2016; 1861:566-83. [PMID: 26968096 DOI: 10.1016/j.bbalip.2016.03.004] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2015] [Revised: 02/26/2016] [Accepted: 03/04/2016] [Indexed: 12/18/2022]
Abstract
Whereas LDL-derived cholesterol accumulates in atherosclerotic lesions, HDL particles are thought to facilitate removal of cholesterol from the lesions back to the liver thereby promoting its fecal excretion from the body. Because generation of cholesterol-loaded macrophages is inherent to atherogenesis, studies on the mechanisms stimulating the release of cholesterol from these cells and its ultimate excretion into feces are crucial to learn how to prevent lesion development or even induce lesion regression. Modulation of this key anti-atherogenic pathway, known as the macrophage-specific reverse cholesterol transport, has been extensively studied in several mouse models with the ultimate aim of applying the emerging knowledge to humans. The present review provides a detailed comparison and critical analysis of the various steps of reverse cholesterol transport in mouse and man. We attempt to translate this in vivo complex scenario into practical concepts, which could serve as valuable tools when developing novel HDL-targeted therapies.
Collapse
|
9
|
Lee-Rueckert M, Kovanen PT. The mast cell as a pluripotent HDL-modifying effector in atherogenesis: from in vitro to in vivo significance. Curr Opin Lipidol 2015; 26:362-8. [PMID: 26339766 DOI: 10.1097/mol.0000000000000224] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
PURPOSE OF REVIEW The purpose of this review is to summarize evidence about the effects that mast cell mediators can exert on the cholesterol efflux-inducing function of high density lipoproteins (HDL). RECENT FINDINGS Subendothelially located activated mast cells are present in inflamed tissue sites, in which macrophage foam cells are also present. Upon activation, mast cells degranulate and expel 2 major neutral proteases, chymase and tryptase, and the vasoactive compound histamine, all of which are bound to the heparin-proteoglycan matrix of the granules. In the extracellular fluid, the proteases remain heparin-bound and retain their activities, whereas histamine dissociates and diffuses away to reach the endothelium. The heparin-bound mast cell proteases avidly degrade lipid-poor HDL particles so preventing their ability to induce cholesterol efflux from macrophage foam cells. In contrast, histamine enhances the passage of circulating HDL through the vascular endothelium into interstitial fluids, so favoring HDL interaction with peripheral macrophage foam cells and accelerating initiation of macrophage-specific reverse cholesterol transport. SUMMARY Mast cells exert various modulatory effects on HDL function. In this novel tissue cholesterol-regulating function, the functional balance of histamine and proteases, and the relative quantities of HDL particles in the affected microenvironment ultimately dictate the outcome of the multiple mast cell effects on tissue cholesterol content.
Collapse
|
10
|
Silvennoinen R, Quesada H, Kareinen I, Julve J, Kaipiainen L, Gylling H, Blanco-Vaca F, Escola-Gil JC, Kovanen PT, Lee-Rueckert M. Chronic intermittent psychological stress promotes macrophage reverse cholesterol transport by impairing bile acid absorption in mice. Physiol Rep 2015; 3:3/5/e12402. [PMID: 25969465 PMCID: PMC4463831 DOI: 10.14814/phy2.12402] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Psychological stress is a risk factor for atherosclerosis, yet the pathophysiological mechanisms involved remain elusive. The transfer of cholesterol from macrophage foam cells to liver and feces (the macrophage-specific reverse cholesterol transport, m-RCT) is an important antiatherogenic pathway. Because exposure of mice to physical restraint, a model of psychological stress, increases serum levels of corticosterone, and as bile acid homeostasis is disrupted in glucocorticoid-treated animals, we investigated if chronic intermittent restraint stress would modify m-RCT by altering the enterohepatic circulation of bile acids. C57Bl/6J mice exposed to intermittent stress for 5 days exhibited increased transit through the large intestine and enhanced fecal bile acid excretion. Of the transcription factors and transporters that regulate bile acid homeostasis, the mRNA expression levels of the hepatic farnesoid X receptor (FXR), the bile salt export pump (BSEP), and the intestinal fibroblast growth factor 15 (FGF15) were reduced, whereas those of the ileal apical sodium-dependent bile acid transporter (ASBT), responsible for active bile acid absorption, remained unchanged. Neither did the hepatic expression of cholesterol 7α-hydroxylase (CYP7A1), the key enzyme regulating bile acid synthesis, change in the stressed mice. Evaluation of the functionality of the m-RCT pathway revealed increased fecal excretion of bile acids that had been synthesized from macrophage-derived cholesterol. Overall, our study reveals that chronic intermittent stress in mice accelerates m-RCT specifically by increasing fecal excretion of bile acids. This novel mechanism of m-RCT induction could have antiatherogenic potential under conditions of chronic stress.
Collapse
Affiliation(s)
| | - Helena Quesada
- IIB Sant Pau, Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona-CIBER de Diabetes y Enfermedades Metabolicas Asociadas, Barcelona, Spain
| | | | - Josep Julve
- IIB Sant Pau, Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona-CIBER de Diabetes y Enfermedades Metabolicas Asociadas, Barcelona, Spain
| | - Leena Kaipiainen
- Internal Medicine, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Helena Gylling
- Internal Medicine, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Francisco Blanco-Vaca
- IIB Sant Pau, Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona-CIBER de Diabetes y Enfermedades Metabolicas Asociadas, Barcelona, Spain
| | - Joan Carles Escola-Gil
- IIB Sant Pau, Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona-CIBER de Diabetes y Enfermedades Metabolicas Asociadas, Barcelona, Spain
| | | | | |
Collapse
|
11
|
Favari E, Chroni A, Tietge UJF, Zanotti I, Escolà-Gil JC, Bernini F. Cholesterol efflux and reverse cholesterol transport. Handb Exp Pharmacol 2015; 224:181-206. [PMID: 25522988 DOI: 10.1007/978-3-319-09665-0_4] [Citation(s) in RCA: 93] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Both alterations of lipid/lipoprotein metabolism and inflammatory events contribute to the formation of the atherosclerotic plaque, characterized by the accumulation of abnormal amounts of cholesterol and macrophages in the artery wall. Reverse cholesterol transport (RCT) may counteract the pathogenic events leading to the formation and development of atheroma, by promoting the high-density lipoprotein (HDL)-mediated removal of cholesterol from the artery wall. Recent in vivo studies established the inverse relationship between RCT efficiency and atherosclerotic cardiovascular diseases (CVD), thus suggesting that the promotion of this process may represent a novel strategy to reduce atherosclerotic plaque burden and subsequent cardiovascular events. HDL plays a primary role in all stages of RCT: (1) cholesterol efflux, where these lipoproteins remove excess cholesterol from cells; (2) lipoprotein remodeling, where HDL undergo structural modifications with possible impact on their function; and (3) hepatic lipid uptake, where HDL releases cholesterol to the liver, for the final excretion into bile and feces. Although the inverse association between HDL plasma levels and CVD risk has been postulated for years, recently this concept has been challenged by studies reporting that HDL antiatherogenic functions may be independent of their plasma levels. Therefore, assessment of HDL function, evaluated as the capacity to promote cell cholesterol efflux may offer a better prediction of CVD than HDL levels alone. Consistent with this idea, it has been recently demonstrated that the evaluation of serum cholesterol efflux capacity (CEC) is a predictor of atherosclerosis extent in humans.
Collapse
Affiliation(s)
- Elda Favari
- Department of Pharmacy, University of Parma, Parco Area delle Scienze 27/A, 43124, Parma, Italy
| | | | | | | | | | | |
Collapse
|
12
|
Kareinen I, Cedó L, Silvennoinen R, Laurila PP, Jauhiainen M, Julve J, Blanco-Vaca F, Escola-Gil JC, Kovanen PT, Lee-Rueckert M. Enhanced vascular permeability facilitates entry of plasma HDL and promotes macrophage-reverse cholesterol transport from skin in mice. J Lipid Res 2015; 56:241-53. [PMID: 25473102 PMCID: PMC4306679 DOI: 10.1194/jlr.m050948] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Reverse cholesterol transport (RCT) pathway from macrophage foam cells initiates when HDL particles cross the endothelium, enter the interstitial fluid, and induce cholesterol efflux from these cells. We injected [(3)H]cholesterol-loaded J774 macrophages into the dorsal skin of mice and measured the transfer of macrophage-derived [(3)H]cholesterol to feces [macrophage-RCT (m-RCT)]. Injection of histamine to the macrophage injection site increased locally vascular permeability, enhanced influx of intravenously administered HDL, and stimulated m-RCT from the histamine-treated site. The stimulatory effect of histamine on m-RCT was abolished by prior administration of histamine H1 receptor (H1R) antagonist pyrilamine, indicating that the histamine effect was H1R-dependent. Subcutaneous administration of two other vasoactive mediators, serotonin or bradykinin, and activation of skin mast cells to secrete histamine and other vasoactive compounds also stimulated m-RCT. None of the studied vasoactive mediators affected serum HDL levels or the cholesterol-releasing ability of J774 macrophages in culture, indicating that acceleration of m-RCT was solely due to increased availability of cholesterol acceptors in skin. We conclude that disruption of the endothelial barrier by vasoactive compounds enhances the passage of HDL into interstitial fluid and increases the rate of RCT from peripheral macrophage foam cells, which reveals a novel tissue cholesterol-regulating function of these compounds.
Collapse
Affiliation(s)
| | - Lídia Cedó
- IIB Sant Pau, Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona-CIBER de Diabetes y Enfermedades Metabolicas Asociadas, Barcelona, Spain
| | | | - Pirkka-Pekka Laurila
- Public Health Genomics Unit, National Institute for Health and Welfare, Helsinki, Finland
| | - Matti Jauhiainen
- Public Health Genomics Unit, National Institute for Health and Welfare, Helsinki, Finland
| | - Josep Julve
- IIB Sant Pau, Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona-CIBER de Diabetes y Enfermedades Metabolicas Asociadas, Barcelona, Spain
| | - Francisco Blanco-Vaca
- IIB Sant Pau, Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona-CIBER de Diabetes y Enfermedades Metabolicas Asociadas, Barcelona, Spain
| | - Joan Carles Escola-Gil
- IIB Sant Pau, Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona-CIBER de Diabetes y Enfermedades Metabolicas Asociadas, Barcelona, Spain
| | | | | |
Collapse
|
13
|
Escolà-Gil JC, Lee-Rueckert M, Santos D, Cedó L, Blanco-Vaca F, Julve J. Quantification of In Vitro Macrophage Cholesterol Efflux and In Vivo Macrophage-Specific Reverse Cholesterol Transport. Methods Mol Biol 2015; 1339:211-233. [PMID: 26445792 DOI: 10.1007/978-1-4939-2929-0_15] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Promotion of reverse cholesterol transport (RCT) is thought to be a major HDL-mediated mechanism for protecting against atherosclerosis. Preclinical studies support the concept that increasing cholesterol efflux from macrophages may confer atheroprotective benefits independently of the plasma HDL-cholesterol concentration. The application of the macrophage-to-feces RCT method in genetically engineered mice has provided evidence that this major HDL property correlates closely with changes in atherosclerosis susceptibility. This chapter provides details on the methodologies currently used to measure in vitro cholesterol efflux from macrophages or in vivo macrophage-specific RCT. The general principles and techniques described herein may be applied to measure the in vitro cholesterol efflux capacity of human serum in macrophage cultures and to evaluate the effect of different experimental pathophysiological conditions or the efficacy of different therapeutic strategies on the modulation of in vivo macrophage-RCT in mice.
Collapse
Affiliation(s)
- Joan Carles Escolà-Gil
- Institut de Recerca de l'Hospital de la Santa Creu i Sant Pau, Institut d'Investigacions Biomèdiques (IIB) Sant Pau, C/Antoni M. Claret 167, 08025, Barcelona, Spain
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas. CIBERDEM, Madrid, Spain
- Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, Barcelona, Spain
| | | | - David Santos
- Institut de Recerca de l'Hospital de la Santa Creu i Sant Pau, Institut d'Investigacions Biomèdiques (IIB) Sant Pau, C/Antoni M. Claret 167, 08025, Barcelona, Spain
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas. CIBERDEM, Madrid, Spain
| | - Lídia Cedó
- Institut de Recerca de l'Hospital de la Santa Creu i Sant Pau, Institut d'Investigacions Biomèdiques (IIB) Sant Pau, C/Antoni M. Claret 167, 08025, Barcelona, Spain
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas. CIBERDEM, Madrid, Spain
| | - Francisco Blanco-Vaca
- Institut de Recerca de l'Hospital de la Santa Creu i Sant Pau, Institut d'Investigacions Biomèdiques (IIB) Sant Pau, C/Antoni M. Claret 167, 08025, Barcelona, Spain.
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas. CIBERDEM, Madrid, Spain.
- Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, Barcelona, Spain.
| | - Josep Julve
- Institut de Recerca de l'Hospital de la Santa Creu i Sant Pau, Institut d'Investigacions Biomèdiques (IIB) Sant Pau, C/Antoni M. Claret 167, 08025, Barcelona, Spain.
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas. CIBERDEM, Madrid, Spain.
- Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, Barcelona, Spain.
| |
Collapse
|
14
|
Saruta J, To M, Hayashi T, Kawashima R, Shimizu T, Kamata Y, Kato M, Takeuchi M, Tsukinoki K. Relationship between brain-derived neurotrophic factor and stress in saliva and salivary glands. JOURNAL OF ORAL AND MAXILLOFACIAL SURGERY MEDICINE AND PATHOLOGY 2014. [DOI: 10.1016/j.ajoms.2013.12.013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
15
|
Abstract
High-density lipoprotein (HDL) is a complex mixture of lipoproteins that is associated with many minor proteins and lipids that influence the function of HDL. Although HDL is a promising marker and potential therapeutic target based on its epidemiological data and the effects of healthy HDL in vitro in endothelial cells and macrophages, as well as based on infusion studies of reconstituted HDL in patients with hypercholesterolemia, it remains still uncertain whether or not HDL cholesterol–raising drugs will improve outcomes. Recent studies suggest that HDL becomes modified in patients with coronary artery disease or acute coronary syndrome because of oxidative processes that result in alterations in its proteome composition (proteome remodelling) leading to HDL dysfunction.
Collapse
Affiliation(s)
- Thomas F. Lüscher
- From Department of Cardiology, University Heart Center (T.F.L., U.L.), and Department of Clinical Chemistry (A.v.E.), University Hospital Zurich, Zurich, Switzerland; Division of Cardiovascular Research, Institute of Physiology, University of Zurich, Zurich, Switzerland (T.F.L., U.L.); and Department of Medicine, University of California, Los Angeles, CA (A.M.F.)
| | - Ulf Landmesser
- From Department of Cardiology, University Heart Center (T.F.L., U.L.), and Department of Clinical Chemistry (A.v.E.), University Hospital Zurich, Zurich, Switzerland; Division of Cardiovascular Research, Institute of Physiology, University of Zurich, Zurich, Switzerland (T.F.L., U.L.); and Department of Medicine, University of California, Los Angeles, CA (A.M.F.)
| | - Arnold von Eckardstein
- From Department of Cardiology, University Heart Center (T.F.L., U.L.), and Department of Clinical Chemistry (A.v.E.), University Hospital Zurich, Zurich, Switzerland; Division of Cardiovascular Research, Institute of Physiology, University of Zurich, Zurich, Switzerland (T.F.L., U.L.); and Department of Medicine, University of California, Los Angeles, CA (A.M.F.)
| | - Alan M. Fogelman
- From Department of Cardiology, University Heart Center (T.F.L., U.L.), and Department of Clinical Chemistry (A.v.E.), University Hospital Zurich, Zurich, Switzerland; Division of Cardiovascular Research, Institute of Physiology, University of Zurich, Zurich, Switzerland (T.F.L., U.L.); and Department of Medicine, University of California, Los Angeles, CA (A.M.F.)
| |
Collapse
|
16
|
|
17
|
Hoekstra M, Frodermann V, van den Aardweg T, van der Sluis RJ, Kuiper J. Leukocytosis and enhanced susceptibility to endotoxemia but not atherosclerosis in adrenalectomized APOE knockout mice. PLoS One 2013; 8:e80441. [PMID: 24265824 PMCID: PMC3827228 DOI: 10.1371/journal.pone.0080441] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2013] [Accepted: 10/02/2013] [Indexed: 11/18/2022] Open
Abstract
Hyperlipidemic apolipoprotein E (APOE) knockout mice show an enhanced level of adrenal-derived anti-inflammatory glucocorticoids. Here we determined in APOE knockout mice the impact of total removal of adrenal function through adrenalectomy (ADX) on two inflammation-associated pathologies, endotoxemia and atherosclerosis. ADX mice exhibited 91% decreased corticosterone levels (P<0.001), leukocytosis (WBC count: 10.0 ± 0.4 x 10E9/L vs 6.5 ± 0.5 x 10E9/L; P<0.001) and an increased spleen weight (P<0.01). FACS analysis on blood leukocytes revealed increased B-lymphocyte numbers (55 ± 2% vs 46 ± 1%; P<0.01). T-cell populations in blood appeared to be more immature (CD62L+: 26 ± 2% vs 19 ± 1% for CD4+ T-cells, P<0.001 and 58 ± 7% vs 47 ± 4% for CD8+ T-cells, P<0.05), which coincided with immature CD4/CD8 double positive thymocyte enrichment. Exposure to lipopolysaccharide failed to increase corticosterone levels in ADX mice and was associated with a 3-fold higher (P<0.05) TNF-alpha response. In contrast, the development of initial fatty streak lesions and progression to advanced collagen-containing atherosclerotic lesions was unaffected. Plasma cholesterol levels were decreased by 35% (P<0.001) in ADX mice. This could be attributed to a decrease in pro-atherogenic very-low-density lipoproteins (VLDL) as a result of a diminished hepatic VLDL secretion rate (-24%; P<0.05). In conclusion, our studies show that adrenalectomy induces leukocytosis and enhances the susceptibility for endotoxemia in APOE knockout mice. The adrenalectomy-associated rise in white blood cells, however, does not alter atherosclerotic lesion development probably due to the parallel decrease in plasma levels of pro-atherogenic lipoproteins.
Collapse
Affiliation(s)
- Menno Hoekstra
- Division of Biopharmaceutics, Leiden Academic Centre for Drug Research, Leiden, The Netherlands
- * E-mail:
| | - Vanessa Frodermann
- Division of Biopharmaceutics, Leiden Academic Centre for Drug Research, Leiden, The Netherlands
| | - Tim van den Aardweg
- Division of Biopharmaceutics, Leiden Academic Centre for Drug Research, Leiden, The Netherlands
| | - Ronald J. van der Sluis
- Division of Biopharmaceutics, Leiden Academic Centre for Drug Research, Leiden, The Netherlands
| | - Johan Kuiper
- Division of Biopharmaceutics, Leiden Academic Centre for Drug Research, Leiden, The Netherlands
| |
Collapse
|
18
|
Circulation Research
Thematic Synopsis Diabetes and Obesity. Circ Res 2013; 113:e62-75. [DOI: 10.1161/circresaha.113.302431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
19
|
The role of the gut in reverse cholesterol transport--focus on the enterocyte. Prog Lipid Res 2013; 52:317-28. [PMID: 23608233 DOI: 10.1016/j.plipres.2013.04.003] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2013] [Revised: 03/01/2013] [Accepted: 04/10/2013] [Indexed: 11/20/2022]
Abstract
In the arterial intima, macrophages become cholesterol-enriched foam cells and atherosclerotic lesions are generated. This atherogenic process can be attenuated, prevented, or even reversed by HDL particles capable of initiating a multistep pathway known as the macrophage-specific reverse cholesterol transport. The macrophage-derived cholesterol released to HDL is taken up by the liver, secreted into the bile, and ultimately excreted in the feces. Importantly, the absorptive epithelial cells lining the lumen of the small intestine, the enterocytes, express several membrane-associated proteins which mediate the influx of luminal cholesterol and its subsequent efflux at their apical and basolateral sides. Moreover, generation of intestinal HDL and systemic effects of the gut microbiota recently revealed a direct link between the gut and the cholesterol cargo of peripheral macrophages. This review summarizes experimental evidence establishing that the reverse cholesterol transport pathway which initiates in macrophages is susceptible to modulation in the small intestine. We also describe four paths which govern cholesterol passage across the enterocyte and define a role for the gut in the regulation of reverse cholesterol transport. Understanding the concerted function of these paths may be useful when designing therapeutic strategies aimed at removing cholesterol from the foam cells which occupy atherosclerotic lesions.
Collapse
|
20
|
|