1
|
Blauenfeldt RA, Waller J, Drasbek KR, Bech JN, Hvas AM, Larsen JB, Andersen MN, Nielsen MC, Kjølhede M, Kjeldsen M, Gude MF, Khan MB, Baban B, Andersen G, Hess DC. Effect of Remote Ischemic Conditioning on the Form and Function of Red Blood Cells in Patients With Acute Ischemic Stroke. Stroke 2025; 56:603-612. [PMID: 39882626 PMCID: PMC11850200 DOI: 10.1161/strokeaha.124.048976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 10/11/2024] [Accepted: 10/25/2024] [Indexed: 01/31/2025]
Abstract
BACKGROUND Remote ischemic conditioning (RIC) is a simple and low-cost intervention that is thought to increase collateral blood flow through the vasodilatory effects of nitric oxide (NO) produced by the endothelium and red blood cells (RBCs). This study aims to investigate whether RIC affects RBC deformability and levels of NO and nitrite in patients with ischemic stroke. METHODS This is a predefined substudy to the RESIST (Remote Ischemic Conditioning in Patients With Acute Stroke Trial) randomized clinical trial conducted in Denmark. RIC was started in the ambulance and continued at the hospital for seven days. Blood samples were collected at different time points: prehospital in the ambulance, in-hospital upon arrival, 2 hours postadmission, and 24 hours postadmission. RBC deformability and erythrocyte aggregation rate were assessed using ektacytometry, NO using flowcytometry, and nitrite content using ozone chemiluminescence. RESULTS Of 1500 prehospital randomized patients, 486 patients were included in this study between July 28, 2020, and November 11, 2023, and had blood samples taken. Of these, 249 (51%) had AIS, and here RIC treatment was not associated with increased RBC maximal deformability (RIC, 0.549; sham, 0.548; P=0.31), RBC NO (RIC, 35 301 median fluorescence intensity; sham, 34979 median fluorescence intensity; P=0.89), or nitrite (RIC, 0.036 µmol/L; sham, 0.034 µmol/L; P=0.38), but RIC treatment was associated with a significantly reduced aggregation pressure and a slower erythrocyte aggregation rate (RIC, 323.76 millipascal; sham, 352.74 millipascal; P=0.0113). CONCLUSIONS Prehospital and in-hospital RIC significantly reduced erythrocyte aggregation rate in patients with acute ischemic stroke, while there was no change in RBC deformability, NO content, or whole blood nitrite levels. REGISTRATION URL: https://www.clinicaltrials.gov; Unique identifier: NCT03481777.
Collapse
Affiliation(s)
- Rolf Ankerlund Blauenfeldt
- Department of Neurology, Aarhus University Hospital, Aarhus, Denmark
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Jennifer Waller
- Department of Family and Community Medicine, Medical College of Georgia, Augusta University, Augusta, Augusta University, Augusta, USA
| | - Kim Ryun Drasbek
- Center for Functionally Integrative Neuroscience, Aarhus University, Aarhus, Denmark
| | - Jesper Nørgaard Bech
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
- University Clinic in Nephrology and Hypertension, Gødstrup Regional Hospital, Herning, Denmark
| | - Anne-Mette Hvas
- Center for Thrombosis and Hemostasis, Department of Clinical Biochemistry, Aarhus University Hospital, Aarhus, Denmark
| | - Julie Brogaard Larsen
- Center for Thrombosis and Hemostasis, Department of Clinical Biochemistry, Aarhus University Hospital, Aarhus, Denmark
| | - Morten Nørgaard Andersen
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
- Department of Hematology, Aarhus University Hospital, Aarhus, Denmark
| | - Marlene Christina Nielsen
- Center for Thrombosis and Hemostasis, Department of Clinical Biochemistry, Aarhus University Hospital, Aarhus, Denmark
| | - Maria Kjølhede
- Department of Neurology, Aarhus University Hospital, Aarhus, Denmark
| | - Mathilde Kjeldsen
- University Clinic in Nephrology and Hypertension, Gødstrup Regional Hospital, Herning, Denmark
| | - Martin Faurholdt Gude
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
- Pre-hospital Emergency Medical Services, Central Denmark Region, Aarhus, Denmark
| | - Mohammad Badruzzaman Khan
- Department of Neurology, Medical College of Georgia, Augusta University, Augusta, Augusta University, Augusta, USA
| | - Babak Baban
- Department of Neurology, Medical College of Georgia, Augusta University, Augusta, Augusta University, Augusta, USA
| | - Grethe Andersen
- Department of Neurology, Aarhus University Hospital, Aarhus, Denmark
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - David Charles Hess
- Department of Neurology, Medical College of Georgia, Augusta University, Augusta, Augusta University, Augusta, USA
| |
Collapse
|
2
|
Liu QY, Cui Y, Li W, Qiu J, Nguyen TN, Chen HS. Effect of remote ischemic preconditioning on cerebral circulation time in severe carotid artery stenosis: Results from the RIC-CCT trial. Cell Rep Med 2024; 5:101796. [PMID: 39471820 PMCID: PMC11604480 DOI: 10.1016/j.xcrm.2024.101796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 08/21/2024] [Accepted: 09/27/2024] [Indexed: 11/01/2024]
Abstract
In patients with severe internal carotid artery stenosis (sICAS), cerebral circulation time (CCT) is associated with cerebral hyperperfusion syndrome. This study aims to investigate the effect of remote ischemic preconditioning (RIC) on CCT in patients with sICAS. Patients are randomly assigned to the RIC group (RIC twice daily, for 2-4 days before carotid artery stenting [CAS] as an adjunct to standard medical therapy) and the control group. The results show that RIC produces a significant decrease in CCT of the stenosis side (sCCT) from baseline to pre-CAS, and the occurrence of contrast staining on brain computed tomography (CT) is lower in RIC versus control group after CAS. In addition, significant changes in some serum biomarkers suggest that anti-neuroinflammation, anti-oxidative stress, protecting endothelial injury, and improving cerebral autoregulation may be associated with the effect of RIC. These findings provide supporting evidence that RIC can modulate cerebral circulation in patients with sICAS. This study was registered at ClinicalTrials.gov (NCT05451030).
Collapse
Affiliation(s)
- Quan-Ying Liu
- Department of Neurology, General Hospital of Northern Theater Command, Shenyang 110016, China
| | - Yu Cui
- Department of Neurology, General Hospital of Northern Theater Command, Shenyang 110016, China
| | - Wei Li
- Department of Neurology, General Hospital of Northern Theater Command, Shenyang 110016, China
| | - Jing Qiu
- Department of Neurology, General Hospital of Northern Theater Command, Shenyang 110016, China
| | - Thanh N Nguyen
- Department of Neurology, Radiology, Boston Medical Center, Boston, MA, USA
| | - Hui-Sheng Chen
- Department of Neurology, General Hospital of Northern Theater Command, Shenyang 110016, China.
| |
Collapse
|
3
|
Liu G, Lv Y, Wang Y, Xu Z, Chen L, Chen S, Xie W, Feng Y, Liu J, Bai Y, He Y, Li X, Wu Q. Remote ischemic preconditioning reduces mitochondrial apoptosis mediated by calpain 1 activation in myocardial ischemia-reperfusion injury through calcium channel subunit Cacna2d3. Free Radic Biol Med 2024; 212:80-93. [PMID: 38151212 DOI: 10.1016/j.freeradbiomed.2023.12.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 12/18/2023] [Accepted: 12/19/2023] [Indexed: 12/29/2023]
Abstract
Remote Ischemic Preconditioning (RIPC) can reduce myocardial ischemia-reperfusion injury, but its mechanism is not clear. In order to explore the mechanism of RIPC in myocardial protection, we collected myocardial specimens during cardiac surgery in children with tetralogy of Fallot for sequencing. Our study found RIPC reduces the expression of the calcium channel subunit cacna2d3, thereby impacting the function of calcium channels. As a result, calcium overload during ischemia-reperfusion is reduced, and the activation of calpain 1 is inhibited. This ultimately leads to a decrease in calpain 1 cleavage of Bax, consequently inhibiting increased mitochondrial permeability-mediated apoptosis. Notably, in both murine and human models of myocardial ischemia-reperfusion injury, RIPC inhibiting the expression of the calcium channel subunit cacna2d3 and the activation of calpain 1, improving cardiac function and histological outcomes. Overall, our findings put forth a proposed mechanism that elucidates how RIPC reduces myocardial ischemia-reperfusion injury, ultimately providing a solid theoretical foundation for the widespread clinic application of RIPC.
Collapse
Affiliation(s)
- Guoyang Liu
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China; Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China; Key Laboratory of Anesthesiology and Resuscitation (Huazhong University of Science and Technology), Ministry of Education, Wuhan, China
| | - Yong Lv
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China; Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China; Key Laboratory of Anesthesiology and Resuscitation (Huazhong University of Science and Technology), Ministry of Education, Wuhan, China
| | - Yanting Wang
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China; Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China; Key Laboratory of Anesthesiology and Resuscitation (Huazhong University of Science and Technology), Ministry of Education, Wuhan, China
| | - Zhenzhen Xu
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China; Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China; Key Laboratory of Anesthesiology and Resuscitation (Huazhong University of Science and Technology), Ministry of Education, Wuhan, China
| | - Lu Chen
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China; Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China; Key Laboratory of Anesthesiology and Resuscitation (Huazhong University of Science and Technology), Ministry of Education, Wuhan, China
| | - Shiqiang Chen
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China; Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China; Key Laboratory of Anesthesiology and Resuscitation (Huazhong University of Science and Technology), Ministry of Education, Wuhan, China
| | - Wanli Xie
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China; Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China; Key Laboratory of Anesthesiology and Resuscitation (Huazhong University of Science and Technology), Ministry of Education, Wuhan, China
| | - Yiqi Feng
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China; Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China; Key Laboratory of Anesthesiology and Resuscitation (Huazhong University of Science and Technology), Ministry of Education, Wuhan, China
| | - Jie Liu
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China; Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China; Key Laboratory of Anesthesiology and Resuscitation (Huazhong University of Science and Technology), Ministry of Education, Wuhan, China
| | - Yunxiao Bai
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China; Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China; Key Laboratory of Anesthesiology and Resuscitation (Huazhong University of Science and Technology), Ministry of Education, Wuhan, China
| | - Yuyao He
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China; Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China; Key Laboratory of Anesthesiology and Resuscitation (Huazhong University of Science and Technology), Ministry of Education, Wuhan, China
| | - Xia Li
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China; Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China; Key Laboratory of Anesthesiology and Resuscitation (Huazhong University of Science and Technology), Ministry of Education, Wuhan, China
| | - Qingping Wu
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China; Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China; Key Laboratory of Anesthesiology and Resuscitation (Huazhong University of Science and Technology), Ministry of Education, Wuhan, China.
| |
Collapse
|
4
|
Parray A, Ma Y, Alam M, Akhtar N, Salam A, Mir F, Qadri S, Pananchikkal SV, Priyanka R, Kamran S, Winship IR, Shuaib A. An increase in AMPK/e-NOS signaling and attenuation of MMP-9 may contribute to remote ischemic perconditioning associated neuroprotection in rat model of focal ischemia. Brain Res 2020; 1740:146860. [PMID: 32353433 DOI: 10.1016/j.brainres.2020.146860] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Revised: 04/13/2020] [Accepted: 04/25/2020] [Indexed: 12/20/2022]
Abstract
Remote ischemic perconditioning (RIPerC) results in collateral enhancement and a reduction in middle cerebral artery occlusion (MCAO) induced ischemia. RIPerC likely activates multiple metabolic protective mechanisms, including effects on matrix metalloproteinases (MMPs) and protein kinases. Here we explore if RIPerC improves neuroprotection and collateral flow by modifying the activities of MMP-9 and AMPK/e-NOS. Age matched adult male Sprague Dawley rats were subjected to MCAO followed one hour later by RIPerC (3 cycles of 15 min ischemia). Animals were euthanized 24 h post-MCAO. Haematoxylin and Eosin (H&E) staining 24 h post-MCAO revealed a significant (p < 0.02) reduction in the infarction volume in RIPerC treated animals (24.9 ± 5.4%) relative to MCAO controls (42.5 ± 4.2, %). TUNEL staining showed a 42.6% reduction in the apoptotic cells with RIPerC treatment (p < 0.01). Immunoblotting in congruence with RT-PCR and Zymography showed that RIPerC significantly reduced MMP-9 expression and activity in RIPerC + MCAO group compared to MCAO group (218.3 ± 19.1% vs. 148.9 ± 12.05% (p < 0.01). Immunoblotting revealed that RIPerC was associated with a significant 2.5-fold increase in activation of p-AMPK compared to the MCAO group (p < 0.01) which was also associated with a significant increase in the e-NOS activity (p < 0.01). RIPerC resulted in reduction of infarction volume, decreased apoptotic cell death and attenuated MMP-9 activity. This together with the increased activity of p-AMPK and increase in p-eNOS may, in part explain the neuroprotection and sustained increase in blood flow observed with RIPerC following acute stroke.
Collapse
Affiliation(s)
- Aijaz Parray
- The Stroke Program, The Neuroscience Institute, Hamad Medical Corporation, P.O. Box 3050, Doha, Qatar
| | - Yongli Ma
- Department of Psychiatry, University of Alberta, Edmonton, Alberta T6G 2R3, Canada
| | - Mustafa Alam
- Department of Medicine, University of Alberta, Edmonton, Alberta T6G 2R3, Canada
| | - Naveed Akhtar
- The Stroke Program, The Neuroscience Institute, Hamad Medical Corporation, P.O. Box 3050, Doha, Qatar
| | - Abdul Salam
- The Stroke Program, The Neuroscience Institute, Hamad Medical Corporation, P.O. Box 3050, Doha, Qatar
| | - Fayaz Mir
- Qatar Metabolic Institute, Academic Health System, Hamad Medical Corporation, P.O. Box 3050, Doha, Qatar
| | - Shahnaz Qadri
- Department of Sustainability, College of Science and Engineering, Hamad Bin Khalifa University, Education City, Doha, Qatar
| | - Sajitha V Pananchikkal
- The Stroke Program, The Neuroscience Institute, Hamad Medical Corporation, P.O. Box 3050, Doha, Qatar
| | - Ruth Priyanka
- The Stroke Program, The Neuroscience Institute, Hamad Medical Corporation, P.O. Box 3050, Doha, Qatar
| | - Saadat Kamran
- The Stroke Program, The Neuroscience Institute, Hamad Medical Corporation, P.O. Box 3050, Doha, Qatar
| | - Ian R Winship
- Department of Psychiatry, University of Alberta, Edmonton, Alberta T6G 2R3, Canada; Neuroscience and Mental Health Institute, University of Alberta, Edmonton, Alberta T6G 2R3, Canada
| | - Ashfaq Shuaib
- The Stroke Program, The Neuroscience Institute, Hamad Medical Corporation, P.O. Box 3050, Doha, Qatar; Department of Psychiatry, University of Alberta, Edmonton, Alberta T6G 2R3, Canada; Department of Medicine, University of Alberta, Edmonton, Alberta T6G 2R3, Canada; Neuroscience and Mental Health Institute, University of Alberta, Edmonton, Alberta T6G 2R3, Canada.
| |
Collapse
|
5
|
Zhou D, Ding J, Ya J, Pan L, Wang Y, Ji X, Meng R. Remote ischemic conditioning: a promising therapeutic intervention for multi-organ protection. Aging (Albany NY) 2019; 10:1825-1855. [PMID: 30115811 PMCID: PMC6128414 DOI: 10.18632/aging.101527] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2018] [Accepted: 08/10/2018] [Indexed: 12/21/2022]
Abstract
Despite decades of formidable exploration, multi-organ ischemia-reperfusion injury (IRI) encountered, particularly amongst elderly patients with clinical scenarios, such as age-related arteriosclerotic vascular disease, heart surgery and organ transplantation, is still an unsettled conundrum that besets clinicians. Remote ischemic conditioning (RIC), delivered via transient, repetitive noninvasive IR interventions to distant organs or tissues, is regarded as an innovative approach against IRI. Based on the available evidence, RIC holds the potential of affording protection to multiple organs or tissues, which include not only the heart and brain, but also others that are likely susceptible to IRI, such as the kidney, lung, liver and skin. Neuronal and humoral signaling pathways appear to play requisite roles in the mechanisms of RIC-related beneficial effects, and these pathways also display inseparable interactions with each other. So far, several hurdles lying ahead of clinical translation that remain to be settled, such as establishment of biomarkers, modification of RIC regimen, and deep understanding of underlying minutiae through which RIC exerts its powerful function. As this approach has garnered an increasing interest, herein, we aim to encapsulate an overview of the basic concept and postulated protective mechanisms of RIC, highlight the main findings from proof-of-concept clinical studies in various clinical scenarios, and also to discuss potential obstacles that remain to be conquered. More well designed and comprehensive experimental work or clinical trials are warranted in future research to confirm whether RIC could be utilized as a non-invasive, inexpensive and efficient adjunct therapeutic intervention method for multi-organ protection.
Collapse
Affiliation(s)
- Da Zhou
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China.,Center of Stroke, Beijing Institute for Brain Disorders, Beijing, China.,Department of China-America Institute of Neuroscience, Xuanwu Hospital, Capital Medical University, Beijing, China.,National Clinical Research Center for Geriatric Disorders, Beijing, China
| | - Jiayue Ding
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China.,Center of Stroke, Beijing Institute for Brain Disorders, Beijing, China.,Department of China-America Institute of Neuroscience, Xuanwu Hospital, Capital Medical University, Beijing, China.,National Clinical Research Center for Geriatric Disorders, Beijing, China
| | - Jingyuan Ya
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China.,Center of Stroke, Beijing Institute for Brain Disorders, Beijing, China.,Department of China-America Institute of Neuroscience, Xuanwu Hospital, Capital Medical University, Beijing, China.,National Clinical Research Center for Geriatric Disorders, Beijing, China
| | - Liqun Pan
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China.,Center of Stroke, Beijing Institute for Brain Disorders, Beijing, China.,Department of China-America Institute of Neuroscience, Xuanwu Hospital, Capital Medical University, Beijing, China.,National Clinical Research Center for Geriatric Disorders, Beijing, China
| | - Yuan Wang
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China.,Center of Stroke, Beijing Institute for Brain Disorders, Beijing, China.,Department of China-America Institute of Neuroscience, Xuanwu Hospital, Capital Medical University, Beijing, China.,National Clinical Research Center for Geriatric Disorders, Beijing, China
| | - Xunming Ji
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, China.,Center of Stroke, Beijing Institute for Brain Disorders, Beijing, China.,Department of China-America Institute of Neuroscience, Xuanwu Hospital, Capital Medical University, Beijing, China.,National Clinical Research Center for Geriatric Disorders, Beijing, China
| | - Ran Meng
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China.,Center of Stroke, Beijing Institute for Brain Disorders, Beijing, China.,Department of China-America Institute of Neuroscience, Xuanwu Hospital, Capital Medical University, Beijing, China.,National Clinical Research Center for Geriatric Disorders, Beijing, China
| |
Collapse
|
6
|
Limb Ischemic Conditioning Induces Oxidative Stress Followed by a Correlated Increase of HIF-1α in Healthy Volunteers. Ann Vasc Surg 2019; 62:412-419. [PMID: 31449936 DOI: 10.1016/j.avsg.2019.06.033] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Revised: 06/13/2019] [Accepted: 06/20/2019] [Indexed: 12/17/2022]
Abstract
BACKGROUND Local and remote ischemic preconditioning has been used as a protective intervention against ischemia/reperfusion (I/R) damage in several preclinical and clinical studies. However, its physiological mechanisms are not completely known. I/R increases the production of reactive oxygen species, which also serve as messengers for a variety of functions. Hypoxia-inducible factor 1 alpha (HIF-1α) is probably the most important transcription factor mediator of hypoxic signaling. OBJECTIVE We hypothesized that limb ischemic conditioning (LIC) induces a local oxidative/nitrosative stress and a correlated increase of HIF-1α plasma levels. METHODS An observational, prospective, and single-center study has been conducted in 27 healthy volunteers. LIC was applied: three cycles (5 min of ischemia followed by 5 min of reperfusion) using an ischemia cuff placed on the upper left arm. Time course of 8-isoprostane, nitrite, and HIF-1α levels was measured in blood plasma. Venous blood was sampled from the left arm before tourniquet inflation (basal) and after LIC: 1 min and 2 hr for 8-isoprostane and nitrite; and 1 min, 2 hr, 8 hr, 24 hr, and 48 hr for HIF-1α. RESULTS After LIC, we have found an early increase of 8-isoprostane and nitrite. HIF-1α increased at 2 and 8 hr after LIC. We found a direct correlation between HIF-1α and 8-isoprostane and nitrite plasma levels. CONCLUSIONS We concluded that LIC induces an early oxidative/nitrosative stress in the arm followed by an increase of HIF-1α plasma levels correlated with 8-isoprostane and nitrite levels, possibly as a local response.
Collapse
|
7
|
Benstoem C, Stoppe C, Liakopoulos OJ, Ney J, Hasenclever D, Meybohm P, Goetzenich A. Remote ischaemic preconditioning for coronary artery bypass grafting (with or without valve surgery). Cochrane Database Syst Rev 2017; 5:CD011719. [PMID: 28475274 PMCID: PMC6481544 DOI: 10.1002/14651858.cd011719.pub3] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
BACKGROUND Despite substantial improvements in myocardial preservation strategies, coronary artery bypass grafting (CABG) is still associated with severe complications. It has been reported that remote ischaemic preconditioning (RIPC) reduces reperfusion injury in people undergoing cardiac surgery and improves clinical outcome. However, there is a lack of synthesised information and a need to review the current evidence from randomised controlled trials (RCTs). OBJECTIVES To assess the benefits and harms of remote ischaemic preconditioning in people undergoing coronary artery bypass grafting, with or without valve surgery. SEARCH METHODS In May 2016 we searched CENTRAL, MEDLINE, Embase and Web of Science. We also conducted a search of ClinicalTrials.gov and the International Clinical Trials Registry Platform (ICTRP). We also checked reference lists of included studies. We did not apply any language restrictions. SELECTION CRITERIA We included RCTs in which people scheduled for CABG (with or without valve surgery) were randomly assigned to receive RIPC or sham intervention before surgery. DATA COLLECTION AND ANALYSIS Two review authors independently assessed trials for inclusion, extracted data and checked them for accuracy. We calculated mean differences (MDs), standardised mean differences (SMDs) and risk ratios (RR) using a random-effects model. We assessed quality of the trial evidence for all primary outcomes using the GRADE methodology. We completed a 'Risk of bias' assessment for all studies and performed sensitivity analysis by excluding studies judged at high or unclear risk of bias for sequence generation, allocation concealment and incomplete outcome data. We contacted authors for missing data. Our primary endpoints were 1) composite endpoint (including all-cause mortality, non-fatal myocardial infarction or any new stroke, or both) assessed at 30 days after surgery, 2) cardiac troponin T (cTnT, ng/L) at 48 hours and 72 hours, and as area under the curve (AUC) 72 hours (µg/L) after surgery, and 3) cardiac troponin I (cTnI, ng/L) at 48 hours, 72 hours, and as area under the curve (AUC) 72 hours (µg/L) after surgery. MAIN RESULTS We included 29 studies involving 5392 participants (mean age = 64 years, age range 23 to 86 years, 82% male). However, few studies contributed data to meta-analyses due to inconsistency in outcome definition and reporting. In general, risk of bias varied from low to high risk of bias across included studies, and insufficient detail was provided to inform judgement in several cases. The quality of the evidence of key outcomes ranged from moderate to low quality due to the presence of moderate or high statistical heterogeneity, imprecision of results or due to limitations in the design of individual studies.Compared with no RIPC, we found that RIPC has no treatment effect on the rate of the composite endpoint with RR 0.99 (95% confidence interval (CI) 0.78 to 1.25); 2 studies; 2463 participants; moderate-quality evidence. Participants randomised to RIPC showed an equivalent or better effect regarding the amount of cTnT release measured at 72 hours after surgery with SMD -0.32 (95% CI -0.65 to 0.00); 3 studies; 1120 participants; moderate-quality evidence; and expressed as AUC 72 hours with SMD -0.49 (95% CI -0.96 to -0.02); 3 studies; 830 participants; moderate-quality evidence. We found the same result in favour of RIPC for the cTnI release measured at 48 hours with SMD -0.21 (95% CI -0.40 to -0.02); 5 studies; 745 participants; moderate-quality evidence; and measured at 72 hours after surgery with SMD -0.37 (95% CI -0.59 to -0.15); 2 studies; 459 participants; moderate-quality evidence. All other primary outcomes showed no differences between groups (cTnT release measured at 48 hours with SMD -0.14, 95% CI -0.33 to 0.06; 4 studies; 1792 participants; low-quality evidence and cTnI release measured as AUC 72 hours with SMD -0.17, 95% CI -0.48 to 0.14; 2 studies; 159 participants; moderate-quality evidence).We also found no differences between groups for all-cause mortality after 30 days, non-fatal myocardial infarction after 30 days, any new stroke after 30 days, acute renal failure after 30 days, length of stay on the intensive care unit (days), any complications and adverse effects related to ischaemic preconditioning. We did not assess many patient-centred/salutogenic-focused outcomes. AUTHORS' CONCLUSIONS We found no evidence that RIPC has a treatment effect on clinical outcomes (measured as a composite endpoint including all-cause mortality, non-fatal myocardial infarction or any new stroke, or both, assessed at 30 days after surgery). There is moderate-quality evidence that RIPC has no treatment effect on the rate of the composite endpoint including all-cause mortality, non-fatal myocardial infarction or any new stroke assessed at 30 days after surgery, or both. We found moderate-quality evidence that RIPC reduces the cTnT release measured at 72 hours after surgery and expressed as AUC (72 hours). There is moderate-quality evidence that RIPC reduces the amount of cTnI release measured at 48 hours, and measured 72 hours after surgery. Adequately-designed studies, especially focusing on influencing factors, e.g. with regard to anaesthetic management, are encouraged and should systematically analyse the commonly used medications of people with cardiovascular diseases.
Collapse
Affiliation(s)
- Carina Benstoem
- University Hospital AachenDepartment of Cardiothoracic SurgeryPauwelsstrasse 30AachenNorth Rhine WestphaliaGermany52074
| | - Christian Stoppe
- RWTH Aachen UniversityDepartment of Intensive Care MedicinePauwelsstrasse 30AachenNorth Rhine WestphaliaGermany52074
| | - Oliver J Liakopoulos
- Heart Center, University of CologneDepartment of Cardiothoracic SurgeryKerpener Str. 62CologneGermany50937
| | - Julia Ney
- University Hospital RWTH AachenDepartment of AnaesthesiologyPauwelsstrasse 30AachenGermany
| | - Dirk Hasenclever
- University of LeipzigInstitute for Medical Informatics, Statistics & Epidemiology (IMISE)Haertelstrasse 16‐18LeipzigGermany
| | - Patrick Meybohm
- University Hospital FrankfurtDepartment of Anaesthesiology, Intensive Care and Pain TherapyTheodor‐Stern‐Kai 7Frankfurt am MainGermany60590
| | - Andreas Goetzenich
- University Hospital AachenDepartment of Cardiothoracic SurgeryPauwelsstrasse 30AachenNorth Rhine WestphaliaGermany52074
| | | |
Collapse
|
8
|
Ormerod JOM, Evans JDW, Contractor H, Beretta M, Arif S, Fernandez BO, Feelisch M, Mayer B, Kharbanda RK, Frenneaux MP, Ashrafian H. Human Second Window Pre-Conditioning and Post-Conditioning by Nitrite Is Influenced by a Common Polymorphism in Mitochondrial Aldehyde Dehydrogenase. JACC Basic Transl Sci 2017; 2:13-21. [PMID: 28280793 PMCID: PMC5329169 DOI: 10.1016/j.jacbts.2016.11.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2016] [Revised: 10/03/2016] [Accepted: 11/04/2016] [Indexed: 01/13/2023]
Abstract
Pre-conditioning is an exciting physiological phenomenon that, despite great efforts, has so far resisted translation to mainstream clinical medicine. Many potential triggers (e.g., ischemia of the organ in question or a remote organ, many different drugs) have been investigated, but recent work has implicated activation of mitochondrial aldehyde dehydrogenase (ALDH2) as central to the process. A genetic polymorphism, known as ALDH2*2, is common worldwide (present in up to 40% of Han Chinese people) and produces a functionally different enzyme. The authors used a variety of protocols in the human ischemic forearm model, in participants with both enzyme types, to assess cytoprotection with low-dose sodium nitrite and attempt to further elucidate the role of ALDH2.
Collapse
Affiliation(s)
- Julian O M Ormerod
- Oxford Heart Centre, Oxford University Hospitals, Oxford, United Kingdom
| | - Jonathan D W Evans
- Department of Medicine, University of Cambridge School of Clinical Medicine, Cambridge, United Kingdom
| | - Hussain Contractor
- Department of Cardiovascular Medicine, West Wing, John Radcliffe Hospital, University of Oxford, Oxford, United Kingdom
| | - Matteo Beretta
- Department of Pharmacology and Toxicology, Karl-Franzens-Universität, Graz, Austria
| | - Sayqa Arif
- Department of Cardiovascular Medicine, Medical School, University of Birmingham, Birmingham, United Kingdom
| | - Bernadette O Fernandez
- Faculty of Medicine, Clinical and Experimental Sciences, University of Southampton, Southampton, United Kingdom
| | - Martin Feelisch
- Faculty of Medicine, Clinical and Experimental Sciences, University of Southampton, Southampton, United Kingdom
| | - Bernd Mayer
- Department of Pharmacology and Toxicology, Karl-Franzens-Universität, Graz, Austria
| | - Rajesh K Kharbanda
- Oxford Heart Centre, Oxford University Hospitals, Oxford, United Kingdom
| | | | - Houman Ashrafian
- Department of Cardiovascular Medicine, West Wing, John Radcliffe Hospital, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
9
|
Yuan S, Kevil CG. Nitric Oxide and Hydrogen Sulfide Regulation of Ischemic Vascular Remodeling. Microcirculation 2016; 23:134-45. [PMID: 26381654 DOI: 10.1111/micc.12248] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2015] [Accepted: 09/13/2015] [Indexed: 12/22/2022]
Abstract
Blockage or restriction of blood flow through conduit arteries results in tissue ischemia downstream of the disturbed area. Local tissues can adapt to this challenge by stimulating vascular remodeling through angiogenesis and arteriogenesis thereby restoring blood perfusion and removal of wastes. Multiple molecular mechanisms of vascular remodeling during ischemia have been identified and extensively studied. However, therapeutic benefits from these findings and insights are limited due to the complexity of various signaling networks and a lack of understanding central metabolic regulators governing these responses. The gasotransmitters NO and H2 S have emerged as master regulators that influence multiple molecular targets necessary for ischemic vascular remodeling. In this review, we discuss how NO and H2 S are individually regulated under ischemia, what their roles are in angiogenesis and arteriogenesis, and how their interaction controls ischemic vascular remodeling.
Collapse
Affiliation(s)
- Shuai Yuan
- Departments of Pathology, Molecular and Cellular Physiology, and Cell Biology and Anatomy, LSU Health Shreveport, Shreveport, Louisiana, USA
| | - Christopher G Kevil
- Departments of Pathology, Molecular and Cellular Physiology, and Cell Biology and Anatomy, LSU Health Shreveport, Shreveport, Louisiana, USA
| |
Collapse
|
10
|
Mohamed MSA. NO2- Mediates the Heart Protection of Remote Ischemic Preconditioning. Int J Organ Transplant Med 2016; 7:46-9. [PMID: 26889373 PMCID: PMC4756264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
11
|
Benstoem C, Stoppe C, Liakopoulos OJ, Meybohm P, Clayton TC, Yellon DM, Hausenloy DJ, Goetzenich A. Remote ischaemic preconditioning for coronary artery bypass grafting. Cochrane Database Syst Rev 2015. [PMCID: PMC4676907 DOI: 10.1002/14651858.cd011719.pub2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
This is the protocol for a review and there is no abstract. The objectives are as follows: To assess the benefits and harms of remote ischaemic preconditioning in patients undergoing coronary artery bypass grafting, with or without valve surgery.
Collapse
Affiliation(s)
- Carina Benstoem
- Department of Cardiothoracic Surgery, University Hospital AachenAachen, Germany
- Contact address: Carina Benstoem, Department of Cardiothoracic Surgery, University Hospital Aachen, Pauwelsstrasse 30, Aachen, 52074, Germany.
| | - Christian Stoppe
- Department of Anesthesiology, University Hospital AachenAachen, Germany
| | - Oliver J Liakopoulos
- Department of Cardiothoracic Surgery, Heart Center, University of CologneCologne, Germany
| | - Patrick Meybohm
- Department of Anesthesiology, Intensive Care and Pain Medicine, University Hospital FrankfurtFrankfurt am Main, Germany
| | - Tim C Clayton
- Department of Medical Statistics, London School of Hygiene & Tropical MedicineLondon, UK
| | - Derek M Yellon
- Department of Medicine, University College London Hospital and Medical SchoolLondon, UK
| | - Derek J Hausenloy
- The Hatter Cardiovascular Institute, University College LondonLondon, UK
| | - Andreas Goetzenich
- Department of Cardiothoracic Surgery, University Hospital AachenAachen, Germany
- Contact address: Carina Benstoem, Department of Cardiothoracic Surgery, University Hospital Aachen, Pauwelsstrasse 30, Aachen, 52074, Germany.
| |
Collapse
|
12
|
Remote ischemic preconditioning for myocardial protection: update on mechanisms and clinical relevance. Mol Cell Biochem 2015; 402:41-9. [PMID: 25552250 DOI: 10.1007/s11010-014-2312-z] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2014] [Accepted: 12/20/2014] [Indexed: 02/07/2023]
Abstract
Ischemic heart disease is the leading cause of death for both men and women worldwide, accruing 7.4 million deaths in 2012. There has been a continued search for better cardioprotective modalities that would reduce myocardial ischemia-reperfusion injury. Among these attempts, a more convenient model of ischemic preconditioning, known as remote ischemic preconditioning (RIPC) was first introduced in 1993 by Przyklenk and colleagues who reported that brief regional occlusion-reperfusion episodes in one vascular bed of the heart render protection to remote myocardial tissue. Subsequently, major advances in myocardial RIPC came with the use of skeletal muscle as the ischemic stimulus. To date, numerous studies have revealed that RIPC applied to the kidney, liver, mesentery, and skeletal muscle, have all exhibited cardioprotective effects. The main purpose of this review article is to summarize the new advances in understanding the molecular mechanisms of RIPC during the past 5 years, including those related to capsaicin-activated C sensory fibers, hypoxia-inducible factor 1α, connexin 43, extracellular vesicles, microRNA-144, microRNA-1, and nitrite. In addition, we have discussed results from several recent human clinical trials with RIPC. Taken together, the emerging clinical evidence supports the concept that the effectiveness of RIPC paired with its low-cost and non-invasive features makes it an ideal treatment before reperfusion after sustained ischemia. More carefully designed studies are warranted to fully exploit the clinical benefits of RIPC and its potential implications in patients with cardiovascular disease.
Collapse
|
13
|
Chai Q, Liu J, Hu Y. Comparison of femoral and aortic remote ischaemia preconditioning for cardioprotection against myocardial ischaemia/reperfusion injury in a rat model. Interact Cardiovasc Thorac Surg 2014; 19:1013-8. [PMID: 25205781 DOI: 10.1093/icvts/ivu303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
OBJECTIVES Remote ischaemia preconditioning (RIPC) induces some protection against heart ischaemia/reperfusion (IR) injury. However, many different methods were tried in the past, and no consensus exists. The aim of this study was to compare femoral and aortic ischaemia preconditioning on cardiac markers and on heart injury after IR. METHODS Sixty male Sprague-Dawley rats were randomly allocated into four groups: the sham group, control group, femoral group (F, bilateral femoral artery ischaemia) and aorta group (A, abdominal aorta ischaemia). They were submitted to 30 min occlusion of the left coronary artery and to 180 min reperfusion (except the sham group) after different preconditioning protocols (femoral versus aortic). Cardiac markers, infarct area and cardiomyocyte apoptosis index were compared between groups using analysis of variance. RESULTS Creatine kinase-MB, lactate dehydrogenase and cardiac troponin I levels were lower in Group F compared with the control group, while there was no difference between Group A and the control group for these three parameters. There were significant differences between the control and experimental groups in myocardial infarct size (control: 48.34 ± 6.79% vs F: 29.64 ± 4.51% and A: 31.81 ± 9.62%, P <0.001). Group F had a lower cardiomyocyte apoptosis index than controls (18.32 ± 9.30 vs 31.75 ± 10.65%, P = 0.016), but there was no difference between Group A and controls (23.25 ± 4.77%, P = 0.107). CONCLUSIONS These results confirmed the cardioprotection of RIPC against myocardial IR injury. However, they did not provide sufficient supporting evidence for the enhancement of cardioprotection with an increased area of remote ischaemia preconditioning in rat, or with different ischaemia sites.
Collapse
Affiliation(s)
- Qing Chai
- Department of Critical Medicine and Anesthesiology, West China Hospital, Sichuan University, Chengdu, China
| | - Jin Liu
- Department of Critical Medicine and Anesthesiology, West China Hospital, Sichuan University, Chengdu, China
| | - Yang Hu
- Department of Thoracic and Cardiovascular Surgery, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|