1
|
Liu X, Burke RM, Lighthouse JK, Baker CD, Dirkx RA, Kang B, Chakraborty Y, Mickelsen DM, Twardowski J, Mello SS, Ashton JM, Small EM. p53 Regulates the Extent of Fibroblast Proliferation and Fibrosis in Left Ventricle Pressure Overload. Circ Res 2023; 133:271-287. [PMID: 37409456 PMCID: PMC10361635 DOI: 10.1161/circresaha.121.320324] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 06/22/2023] [Indexed: 07/07/2023]
Abstract
BACKGROUND Cardiomyopathy is characterized by the pathological accumulation of resident cardiac fibroblasts that deposit ECM (extracellular matrix) and generate a fibrotic scar. However, the mechanisms that control the timing and extent of cardiac fibroblast proliferation and ECM production are not known, hampering the development of antifibrotic strategies to prevent heart failure. METHODS We used the Tcf21 (transcription factor 21)MerCreMer mouse line for fibroblast-specific lineage tracing and p53 (tumor protein p53) gene deletion. We characterized cardiac physiology and used single-cell RNA-sequencing and in vitro studies to investigate the p53-dependent mechanisms regulating cardiac fibroblast cell cycle and fibrosis in left ventricular pressure overload induced by transaortic constriction. RESULTS Cardiac fibroblast proliferation occurs primarily between days 7 and 14 following transaortic constriction in mice, correlating with alterations in p53-dependent gene expression. p53 deletion in fibroblasts led to a striking accumulation of Tcf21-lineage cardiac fibroblasts within the normal proliferative window and precipitated a robust fibrotic response to left ventricular pressure overload. However, excessive interstitial and perivascular fibrosis does not develop until after cardiac fibroblasts exit the cell cycle. Single-cell RNA sequencing revealed p53 null fibroblasts unexpectedly express lower levels of genes encoding important ECM proteins while they exhibit an inappropriately proliferative phenotype. in vitro studies establish a role for p53 in suppressing the proliferative fibroblast phenotype, which facilitates the expression and secretion of ECM proteins. Importantly, Cdkn2a (cyclin-dependent kinase inhibitor 2a) expression and the p16Ink4a-retinoblastoma cell cycle control pathway is induced in p53 null cardiac fibroblasts, which may eventually contribute to cell cycle exit and fulminant scar formation. CONCLUSIONS This study reveals a mechanism regulating cardiac fibroblast accumulation and ECM secretion, orchestrated in part by p53-dependent cell cycle control that governs the timing and extent of fibrosis in left ventricular pressure overload.
Collapse
Affiliation(s)
- Xiaoyi Liu
- Aab Cardiovascular Research Institute, Department of Medicine, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA
| | - Ryan M. Burke
- Aab Cardiovascular Research Institute, Department of Medicine, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA
| | - Janet K. Lighthouse
- Aab Cardiovascular Research Institute, Department of Medicine, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA
- Wegmans School of Pharmacy, Department of Pharmaceutical Sciences, St. John Fisher College, Rochester, NY, USA
| | - Cameron D. Baker
- Genomics Research Center, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA
| | - Ronald A. Dirkx
- Aab Cardiovascular Research Institute, Department of Medicine, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA
| | - Brian Kang
- Aab Cardiovascular Research Institute, Department of Medicine, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA
| | - Yashoswini Chakraborty
- Aab Cardiovascular Research Institute, Department of Medicine, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA
| | - Deanne M. Mickelsen
- Aab Cardiovascular Research Institute, Department of Medicine, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA
| | - Jennifer Twardowski
- Department of Biomedical Genetics, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA
| | - Stephano S. Mello
- Department of Biomedical Genetics, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA
| | - John M. Ashton
- Genomics Research Center, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA
| | - Eric M. Small
- Aab Cardiovascular Research Institute, Department of Medicine, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA
- Department of Medicine, School of Medicine and Dentistry, University of Rochester, Rochester, NY 14642
- Department of Pharmacology and Physiology, School of Medicine and Dentistry, University of Rochester, Rochester, NY 14642
- Department of Biomedical Engineering, University of Rochester, Rochester, NY 14642
| |
Collapse
|
2
|
Uscategui Calderon M, Gonzalez BA, Yutzey KE. Cardiomyocyte-fibroblast crosstalk in the postnatal heart. Front Cell Dev Biol 2023; 11:1163331. [PMID: 37077417 PMCID: PMC10106698 DOI: 10.3389/fcell.2023.1163331] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 03/22/2023] [Indexed: 04/05/2023] Open
Abstract
During the postnatal period in mammals, the heart undergoes significant remodeling in response to increased circulatory demands. In the days after birth, cardiac cells, including cardiomyocytes and fibroblasts, progressively lose embryonic characteristics concomitant with the loss of the heart’s ability to regenerate. Moreover, postnatal cardiomyocytes undergo binucleation and cell cycle arrest with induction of hypertrophic growth, while cardiac fibroblasts proliferate and produce extracellular matrix (ECM) that transitions from components that support cellular maturation to production of the mature fibrous skeleton of the heart. Recent studies have implicated interactions of cardiac fibroblasts and cardiomyocytes within the maturing ECM environment to promote heart maturation in the postnatal period. Here, we review the relationships of different cardiac cell types and the ECM as the heart undergoes both structural and functional changes during development. Recent advances in the field, particularly in several recently published transcriptomic datasets, have highlighted specific signaling mechanisms that underlie cellular maturation and demonstrated the biomechanical interdependence of cardiac fibroblast and cardiomyocyte maturation. There is increasing evidence that postnatal heart development in mammals is dependent on particular ECM components and that resulting changes in biomechanics influence cell maturation. These advances, in definition of cardiac fibroblast heterogeneity and function in relation to cardiomyocyte maturation and the extracellular environment provide, support for complex cell crosstalk in the postnatal heart with implications for heart regeneration and disease mechanisms.
Collapse
Affiliation(s)
- Maria Uscategui Calderon
- Division of Molecular Cardiovascular Biology, The Heart Institute, Cincinnati Children’s Medical Center, Cincinnati, OH, United States
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| | - Brittany A. Gonzalez
- Division of Molecular Cardiovascular Biology, The Heart Institute, Cincinnati Children’s Medical Center, Cincinnati, OH, United States
| | - Katherine E. Yutzey
- Division of Molecular Cardiovascular Biology, The Heart Institute, Cincinnati Children’s Medical Center, Cincinnati, OH, United States
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, United States
- *Correspondence: Katherine E. Yutzey,
| |
Collapse
|
3
|
Angelini A, Ortiz-Urbina J, Trial J, Reddy AK, Malovannaya A, Jain A, Entman ML, Taffet GE, Cieslik KA. Sex-specific phenotypes in the aging mouse heart and consequences for chronic fibrosis. Am J Physiol Heart Circ Physiol 2022; 323:H285-H300. [PMID: 35714177 PMCID: PMC9273262 DOI: 10.1152/ajpheart.00078.2022] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 05/24/2022] [Accepted: 06/09/2022] [Indexed: 01/18/2023]
Abstract
The incidence of diastolic dysfunction increases with age in both humans and mice. This is characterized by increased passive stiffness and slower relaxation of the left ventricle. The stiffness arises at least partially from progressively increased interstitial collagen deposition because of highly secretory fibroblasts. In the past, we demonstrated that AMPK activation via the drug 5-aminoimidazole-4-carboxamide riboside (AICAR) in middle-aged mice reduced adverse remodeling after myocardial infarction. Therefore, as an attempt to normalize the fibroblast phenotype, we used 21-mo-old male and female mice and treated them with AICAR (0.166 mg/g body wt) where each mouse was followed in a functional study over a 3-mo period. We found sex-related differences in extracellular matrix (ECM) composition as well as heart function indices at baseline, which were further accentuated by AICAR treatment. AICAR attenuated the age-related increase in left atrial volume (LAV, an indicator of diastolic dysfunction) in female but not in male hearts, which was associated with reduced collagen deposition in the old female heart, and reduced the transcription factor Gli1 expression in cardiac fibroblasts. We further demonstrated that collagen synthesis was dependent on Gli1, which is a target of AMPK-mediated degradation. By contrast, AICAR had a minor impact on cardiac fibroblasts in the old male heart because of blunted AMPK phosphorylation. Hence, it did not significantly improve old male heart function indices. In conclusion, we demonstrated that male and female hearts are phenotypically different, and sex-specific differences need to be considered when analyzing the response to pharmacological intervention.NEW & NOTEWORTHY The aging heart develops diastolic dysfunction because of increased collagen deposition. We attempted to reduce collagen expression in the old heart by activating AMPK using AICAR. An improvement of diastolic function and reduction of cardiac fibrosis was found only in the female heart and correlated with decreased procollagen expression and increased degradation of the transcription factor Gli1. Male hearts display blunted AICAR-dependent AMPK activation and therefore this treatment had no benefits for the male mice.
Collapse
Affiliation(s)
- Aude Angelini
- Section of Cardiovascular Research, Department of Medicine, Baylor College of Medicine, Houston, Texas
| | - Jesus Ortiz-Urbina
- Section of Cardiovascular Research, Department of Medicine, Baylor College of Medicine, Houston, Texas
- Tecnologico de Monterrey, School of Medicine and Health Sciences, Monterrey, Mexico
- Section of Geriatrics, Department of Medicine, and Huffington Center on Aging, Baylor College of Medicine, Houston, Texas
| | - JoAnn Trial
- Section of Cardiovascular Research, Department of Medicine, Baylor College of Medicine, Houston, Texas
| | - Anilkumar K Reddy
- Section of Cardiovascular Research, Department of Medicine, Baylor College of Medicine, Houston, Texas
| | - Anna Malovannaya
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, Texas
- Mass Spectrometry Proteomics Core, Baylor College of Medicine, Houston, Texas
| | - Antrix Jain
- Mass Spectrometry Proteomics Core, Baylor College of Medicine, Houston, Texas
| | - Mark L Entman
- Section of Cardiovascular Research, Department of Medicine, Baylor College of Medicine, Houston, Texas
- DeBakey Heart Center, Houston Methodist Hospital, Houston, Texas
| | - George E Taffet
- Section of Cardiovascular Research, Department of Medicine, Baylor College of Medicine, Houston, Texas
- DeBakey Heart Center, Houston Methodist Hospital, Houston, Texas
- Section of Geriatrics, Department of Medicine, and Huffington Center on Aging, Baylor College of Medicine, Houston, Texas
| | - Katarzyna A Cieslik
- Section of Cardiovascular Research, Department of Medicine, Baylor College of Medicine, Houston, Texas
| |
Collapse
|
4
|
Ma H, Liu Z, Yang Y, Feng D, Dong Y, Garbutt TA, Hu Z, Wang L, Luan C, Cooper CD, Li Y, Welch JD, Qian L, Liu J. Functional coordination of non-myocytes plays a key role in adult zebrafish heart regeneration. EMBO Rep 2021; 22:e52901. [PMID: 34523214 DOI: 10.15252/embr.202152901] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 07/07/2021] [Accepted: 08/13/2021] [Indexed: 12/24/2022] Open
Abstract
Cardiac regeneration occurs primarily through proliferation of existing cardiomyocytes, but also involves complex interactions between distinct cardiac cell types including non-cardiomyocytes (non-CMs). However, the subpopulations, distinguishing molecular features, cellular functions, and intercellular interactions of non-CMs in heart regeneration remain largely unexplored. Using the LIGER algorithm, we assemble an atlas of cell states from 61,977 individual non-CM scRNA-seq profiles isolated at multiple time points during regeneration. This analysis reveals extensive non-CM cell diversity, including multiple macrophage (MC), fibroblast (FB), and endothelial cell (EC) subpopulations with unique spatiotemporal distributions, and suggests an important role for MC in inducing the activated FB and EC subpopulations. Indeed, pharmacological perturbation of MC function compromises the induction of the unique FB and EC subpopulations. Furthermore, we developed computational algorithm Topologizer to map the topological relationships and dynamic transitions between functional states. We uncover dynamic transitions between MC functional states and identify factors involved in mRNA processing and transcriptional regulation associated with the transition. Together, our single-cell transcriptomic analysis of non-CMs during cardiac regeneration provides a blueprint for interrogating the molecular and cellular basis of this process.
Collapse
Affiliation(s)
- Hong Ma
- McAllister Heart Institute, University of North Carolina, Chapel Hill, NC, USA.,Department of Pathology and Laboratory Medicine, University of North Carolina, Chapel Hill, NC, USA
| | - Ziqing Liu
- McAllister Heart Institute, University of North Carolina, Chapel Hill, NC, USA.,Department of Pathology and Laboratory Medicine, University of North Carolina, Chapel Hill, NC, USA
| | - Yuchen Yang
- McAllister Heart Institute, University of North Carolina, Chapel Hill, NC, USA.,Department of Pathology and Laboratory Medicine, University of North Carolina, Chapel Hill, NC, USA.,Department of Genetics, University of North Carolina, Chapel Hill, NC, USA
| | - Dong Feng
- McAllister Heart Institute, University of North Carolina, Chapel Hill, NC, USA.,Department of Pathology and Laboratory Medicine, University of North Carolina, Chapel Hill, NC, USA
| | - Yanhan Dong
- McAllister Heart Institute, University of North Carolina, Chapel Hill, NC, USA.,Department of Pathology and Laboratory Medicine, University of North Carolina, Chapel Hill, NC, USA
| | - Tiffany A Garbutt
- McAllister Heart Institute, University of North Carolina, Chapel Hill, NC, USA.,Department of Pathology and Laboratory Medicine, University of North Carolina, Chapel Hill, NC, USA
| | - Zhiyuan Hu
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC, USA
| | - Li Wang
- McAllister Heart Institute, University of North Carolina, Chapel Hill, NC, USA.,Department of Pathology and Laboratory Medicine, University of North Carolina, Chapel Hill, NC, USA
| | - Changfei Luan
- McAllister Heart Institute, University of North Carolina, Chapel Hill, NC, USA.,Department of Pathology and Laboratory Medicine, University of North Carolina, Chapel Hill, NC, USA
| | - Cynthia D Cooper
- School of Molecular Biosciences, Washington State University Vancouver, Vancouver, WA, USA
| | - Yun Li
- Department of Genetics, University of North Carolina, Chapel Hill, NC, USA.,Department of Biostatistics, University of North Carolina, Chapel Hill, NC, USA.,Department of Computer Science, University of North Carolina, Chapel Hill, NC, USA
| | - Joshua D Welch
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, USA
| | - Li Qian
- McAllister Heart Institute, University of North Carolina, Chapel Hill, NC, USA.,Department of Pathology and Laboratory Medicine, University of North Carolina, Chapel Hill, NC, USA
| | - Jiandong Liu
- McAllister Heart Institute, University of North Carolina, Chapel Hill, NC, USA.,Department of Pathology and Laboratory Medicine, University of North Carolina, Chapel Hill, NC, USA
| |
Collapse
|
5
|
Díaz-Coránguez M, Liu X, Antonetti DA. Tight Junctions in Cell Proliferation. Int J Mol Sci 2019; 20:E5972. [PMID: 31783547 PMCID: PMC6928848 DOI: 10.3390/ijms20235972] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Revised: 11/22/2019] [Accepted: 11/22/2019] [Indexed: 12/23/2022] Open
Abstract
Tight junction (TJ) proteins form a continuous intercellular network creating a barrier with selective regulation of water, ion, and solutes across endothelial, epithelial, and glial tissues. TJ proteins include the claudin family that confers barrier properties, members of the MARVEL family that contribute to barrier regulation, and JAM molecules, which regulate junction organization and diapedesis. In addition, the membrane-associated proteins such as MAGUK family members, i.e., zonula occludens, form the scaffold linking the transmembrane proteins to both cell signaling molecules and the cytoskeleton. Most studies of TJ have focused on the contribution to cell-cell adhesion and tissue barrier properties. However, recent studies reveal that, similar to adherens junction proteins, TJ proteins contribute to the control of cell proliferation. In this review, we will summarize and discuss the specific role of TJ proteins in the control of epithelial and endothelial cell proliferation. In some cases, the TJ proteins act as a reservoir of critical cell cycle modulators, by binding and regulating their nuclear access, while in other cases, junctional proteins are located at cellular organelles, regulating transcription and proliferation. Collectively, these studies reveal that TJ proteins contribute to the control of cell proliferation and differentiation required for forming and maintaining a tissue barrier.
Collapse
Affiliation(s)
| | | | - David A. Antonetti
- Department of Ophthalmology and Visual Sciences, University of Michigan, Kellogg Eye Center, Ann Arbor, MI 48105, USA; (M.D.-C.); (X.L.)
| |
Collapse
|
6
|
Forte E, Furtado MB, Rosenthal N. The interstitium in cardiac repair: role of the immune-stromal cell interplay. Nat Rev Cardiol 2019; 15:601-616. [PMID: 30181596 DOI: 10.1038/s41569-018-0077-x] [Citation(s) in RCA: 84] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Cardiac regeneration, that is, restoration of the original structure and function in a damaged heart, differs from tissue repair, in which collagen deposition and scar formation often lead to functional impairment. In both scenarios, the early-onset inflammatory response is essential to clear damaged cardiac cells and initiate organ repair, but the quality and extent of the immune response vary. Immune cells embedded in the damaged heart tissue sense and modulate inflammation through a dynamic interplay with stromal cells in the cardiac interstitium, which either leads to recapitulation of cardiac morphology by rebuilding functional scaffolds to support muscle regrowth in regenerative organisms or fails to resolve the inflammatory response and produces fibrotic scar tissue in adult mammals. Current investigation into the mechanistic basis of homeostasis and restoration of cardiac function has increasingly shifted focus away from stem cell-mediated cardiac repair towards a dynamic interplay of cells composing the less-studied interstitial compartment of the heart, offering unexpected insights into the immunoregulatory functions of cardiac interstitial components and the complex network of cell interactions that must be considered for clinical intervention in heart diseases.
Collapse
Affiliation(s)
| | | | - Nadia Rosenthal
- The Jackson Laboratory, Bar Harbor, ME, USA. .,National Heart and Lung Institute, Imperial College London, Faculty of Medicine, Imperial Centre for Translational and Experimental Medicine, London, UK.
| |
Collapse
|
7
|
de Boer RA, De Keulenaer G, Bauersachs J, Brutsaert D, Cleland JG, Diez J, Du XJ, Ford P, Heinzel FR, Lipson KE, McDonagh T, Lopez-Andres N, Lunde IG, Lyon AR, Pollesello P, Prasad SK, Tocchetti CG, Mayr M, Sluijter JPG, Thum T, Tschöpe C, Zannad F, Zimmermann WH, Ruschitzka F, Filippatos G, Lindsey ML, Maack C, Heymans S. Towards better definition, quantification and treatment of fibrosis in heart failure. A scientific roadmap by the Committee of Translational Research of the Heart Failure Association (HFA) of the European Society of Cardiology. Eur J Heart Fail 2019; 21:272-285. [PMID: 30714667 PMCID: PMC6607480 DOI: 10.1002/ejhf.1406] [Citation(s) in RCA: 185] [Impact Index Per Article: 30.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Revised: 11/28/2018] [Accepted: 12/03/2018] [Indexed: 12/19/2022] Open
Abstract
Fibrosis is a pivotal player in heart failure development and progression. Measurements of (markers of) fibrosis in tissue and blood may help to diagnose and risk stratify patients with heart failure, and its treatment may be effective in preventing heart failure and its progression. A lack of pathophysiological insights and uniform definitions has hampered the research in fibrosis and heart failure. The Translational Research Committee of the Heart Failure Association discussed several aspects of fibrosis in their workshop. Early insidious perturbations such as subclinical hypertension or inflammation may trigger first fibrotic events, while more dramatic triggers such as myocardial infarction and myocarditis give rise to full blown scar formation and ongoing fibrosis in diseased hearts. Aging itself is also associated with a cardiac phenotype that includes fibrosis. Fibrosis is an extremely heterogeneous phenomenon, as several stages of the fibrotic process exist, each with different fibrosis subtypes and a different composition of various cells and proteins — resulting in a very complex pathophysiology. As a result, detection of fibrosis, e.g. using current cardiac imaging modalities or plasma biomarkers, will detect only specific subforms of fibrosis, but cannot capture all aspects of the complex fibrotic process. Furthermore, several anti‐fibrotic therapies are under investigation, but such therapies generally target aspecific aspects of the fibrotic process and suffer from a lack of precision. This review discusses the mechanisms and the caveats and proposes a roadmap for future research.
Collapse
Affiliation(s)
- Rudolf A de Boer
- University Medical Center Groningen, University of Groningen, Department of Cardiology, Groningen, The Netherlands
| | | | - Johann Bauersachs
- Department of Cardiology and Angiology, Hannover Medical School, Hannover, Germany
| | - Dirk Brutsaert
- Laboratory of Physiopharmacology, University of Antwerp, Antwerp, Belgium
| | - John G Cleland
- Robertson Centre for Biostatistics & Clinical Trials, University of Glasgow, Glasgow, UK
| | - Javier Diez
- Program of Cardiovascular Diseases, Center for Applied Medical Research, Departments of Nephrology, and Cardiology and Cardiac Surgery, University Clinic, University of Navarra, Pamplona, Spain
| | - Xiao-Jun Du
- Baker Heart and Diabetes Institute, Melbourne, Australia
| | | | - Frank R Heinzel
- Department of Cardiology, Campus Virchow-Klinikum, Charite Universitaetsmedizin Berlin, Berlin, Germany
| | | | | | - Natalia Lopez-Andres
- Cardiovascular Translational Research, Navarrabiomed, Complejo Hospitalario de Navarra, Universidad Publica de Navarra, Idisna, Spain
| | - Ida G Lunde
- Institute for Experimental Medical Research, Oslo University Hospital and University of Oslo, Oslo, Norway
| | - Alexander R Lyon
- Royal Brompton Hospital, and Imperial College London, London, UK
| | | | | | - Carlo G Tocchetti
- Department of Translational Medical Sciences, Federico II University, Naples, Italy
| | - Manuel Mayr
- The James Black Centre, King's College, University of London, London, UK
| | - Joost P G Sluijter
- University Medical Centre Utrecht, Experimental Cardiology Laboratory, UMC Utrecht Regenerative Medicine Center, University Utrecht, Utrecht, The Netherlands
| | - Thomas Thum
- Institute of Molecular and Translational Therapeutic Strategies (IMTTS), Hannover Medical School, Hannover, Germany.,REBIRTH Excellence Cluster, Hannover Medical School, Hannover, Germany.,DZHK (German Center for Cardiovascular Research) partner site Berlin, Berlin, Germany
| | - Carsten Tschöpe
- Department of Cardiology, Campus Virchow-Klinikum, Charite Universitaetsmedizin Berlin, Berlin, Germany
| | - Faiez Zannad
- Centre d'Investigation Clinique, CHU de Nancy, Nancy, France
| | - Wolfram-Hubertus Zimmermann
- Institute of Pharmacology and Toxicology, University Medical Center Göttingen, Göttingen, Germany.,DZHK (German Center for Cardiovascular Research) partner site Göttingen, Göttingen, Germany
| | - Frank Ruschitzka
- Department of Cardiology, University Heart Center, University Hospital Zurich, Zurich, Switzerland
| | - Gerasimos Filippatos
- Heart Failure Unit, Department of Cardiology, School of Medicine, Athens University Hospital Attikon, National and Kapodistrian University of Athens, Athens, Greece
| | - Merry L Lindsey
- Department of Physiology and Biophysics, Mississippi Center for Heart Research, University of Mississippi Medical Center and Research Service, G.V. (Sonny) Montgomery Veterans Affairs Medical Center, Jackson, MS, USA
| | - Christoph Maack
- Comprehensive Heart Failure Centre, University and University Hospital Würzburg, Würzburg, Germany
| | - Stephane Heymans
- Department of Cardiology, CARIM School for Cardiovascular Diseases Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht, The Netherlands.,Department of Cardiovascular Sciences, Centre for Molecular and Vascular Biology, KU Leuven, Leuven, Belgium.,The Netherlands Heart Institute, Nl-HI, Utrecht, The Netherlands
| |
Collapse
|
8
|
Schwartz SM, Virmani R, Majesky MW. An update on clonality: what smooth muscle cell type makes up the atherosclerotic plaque? F1000Res 2018; 7:F1000 Faculty Rev-1969. [PMID: 30613386 PMCID: PMC6305222 DOI: 10.12688/f1000research.15994.1] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/06/2018] [Indexed: 12/13/2022] Open
Abstract
Almost 50 years ago, Earl Benditt and his son John described the clonality of the atherosclerotic plaque. This led Benditt to propose that the atherosclerotic lesion was a smooth muscle neoplasm, similar to the leiomyomata seen in the uterus of most women. Although the observation of clonality has been confirmed many times, interest in the idea that atherosclerosis might be a form of neoplasia waned because of the clinical success of treatments for hyperlipemia and because animal models have made great progress in understanding how lipid accumulates in the plaque and may lead to plaque rupture. Four advances have made it important to reconsider Benditt's observations. First, we now know that clonality is a property of normal tissue development. Second, this is even true in the vessel wall, where we now know that formation of clonal patches in that wall is part of the development of smooth muscle cells that make up the tunica media of arteries. Third, we know that the intima, the "soil" for development of the human atherosclerotic lesion, develops before the fatty lesions appear. Fourth, while the cells comprising this intima have been called "smooth muscle cells", we do not have a clear definition of cell type nor do we know if the initial accumulation is clonal. As a result, Benditt's hypothesis needs to be revisited in terms of changes in how we define smooth muscle cells and the quite distinct developmental origins of the cells that comprise the muscular coats of all arterial walls. Finally, since clonality of the lesions is real, the obvious questions are do these human tumors precede the development of atherosclerosis, how do the clones develop, what cell type gives rise to the clones, and in what ways do the clones provide the soil for development and natural history of atherosclerosis?
Collapse
Affiliation(s)
| | - Renu Virmani
- CV Path Institute, Gaithersberg, Maryland, 20878, USA
| | - Mark W. Majesky
- Center for Developmental Biology and Regenerative Medicine, Seattle Children's Hospital Research Institute, Seattle, WA, 98112, USA
| |
Collapse
|
9
|
The Functional Role of Zinc Finger E Box-Binding Homeobox 2 (Zeb2) in Promoting Cardiac Fibroblast Activation. Int J Mol Sci 2018; 19:ijms19103207. [PMID: 30336567 PMCID: PMC6214125 DOI: 10.3390/ijms19103207] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Revised: 09/28/2018] [Accepted: 10/05/2018] [Indexed: 01/19/2023] Open
Abstract
Following cardiac injury, fibroblasts are activated and are termed as myofibroblasts, and these cells are key players in extracellular matrix (ECM) remodeling and fibrosis, itself a primary contributor to heart failure. Nutraceuticals have been shown to blunt cardiac fibrosis in both in-vitro and in-vivo studies. However, nutraceuticals have had conflicting results in clinical trials, and there are no effective therapies currently available to specifically target cardiac fibrosis. We have previously shown that expression of the zinc finger E box-binding homeobox 2 (Zeb2) transcription factor increases as fibroblasts are activated. We now show that Zeb2 plays a critical role in fibroblast activation. Zeb2 overexpression in primary rat cardiac fibroblasts is associated with significantly increased expression of embryonic smooth muscle myosin heavy chain (SMemb), ED-A fibronectin and α-smooth muscle actin (α-SMA). We found that Zeb2 was highly expressed in activated myofibroblast nuclei but not in the nuclei of inactive fibroblasts. Moreover, ectopic Zeb2 expression in myofibroblasts resulted in a significantly less migratory phenotype with elevated contractility, which are characteristics of mature myofibroblasts. Knockdown of Zeb2 with siRNA in primary myofibroblasts did not alter the expression of myofibroblast markers, which may indicate that Zeb2 is functionally redundant with other profibrotic transcription factors. These findings add to our understanding of the contribution of Zeb2 to the mechanisms controlling cardiac fibroblast activation.
Collapse
|
10
|
Affiliation(s)
| | - Jeffery D. Molkentin
- Department of Pediatrics, University of Cincinnati, Cincinnati Children’s Hospital Medical Center and Howard Hughes Medical Institute, Cincinnati, Ohio
| |
Collapse
|
11
|
Lombardi R, Chen SN, Ruggiero A, Gurha P, Czernuszewicz GZ, Willerson JT, Marian AJ. Cardiac Fibro-Adipocyte Progenitors Express Desmosome Proteins and Preferentially Differentiate to Adipocytes Upon Deletion of the Desmoplakin Gene. Circ Res 2016; 119:41-54. [PMID: 27121621 DOI: 10.1161/circresaha.115.308136] [Citation(s) in RCA: 76] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2015] [Accepted: 04/27/2016] [Indexed: 12/21/2022]
Abstract
RATIONALE Mutations in desmosome proteins cause arrhythmogenic cardiomyopathy (AC), a disease characterized by excess myocardial fibroadipocytes. Cellular origin(s) of fibroadipocytes in AC is unknown. OBJECTIVE To identify the cellular origin of adipocytes in AC. METHODS AND RESULTS Human and mouse cardiac cells were depleted from myocytes and flow sorted to isolate cells expressing platelet-derived growth factor receptor-α and exclude those expressing other lineage and fibroblast markers (CD32, CD11B, CD45, Lys76, Ly(-6c) and Ly(6c), thymocyte differentiation antigen 1, and discoidin domain receptor 2). The PDGFRA(pos):Lin(neg):THY1(neg):DDR2(neg) cells were bipotential as the majority expressed collagen 1 α-1, a fibroblast marker, and a subset CCAAT/enhancer-binding protein α, a major adipogenic transcription factor, and therefore, they were referred to as fibroadipocyte progenitors (FAPs). FAPs expressed desmosome proteins, including desmoplakin, predominantly in the adipogenic but not fibrogenic subsets. Conditional heterozygous deletion of Dsp in mice using Pdgfra-Cre deleter led to increased fibroadipogenesis in the heart and mild cardiac dysfunction. Genetic fate mapping tagged 41.4±4.1% of the cardiac adipocytes in the Pdgfra-Cre:Eyfp:Dsp(W/F) mice, indicating an origin from FAPs. FAPs isolated from the Pdgfra-Cre:Eyfp:Dsp(W/F) mouse hearts showed enhanced differentiation to adipocytes. Mechanistically, deletion of Dsp was associated with suppressed canonical Wnt signaling and enhanced adipogenesis. In contrast, activation of the canonical Wnt signaling rescued adipogenesis in a dose-dependent manner. CONCLUSIONS A subset of cardiac FAPs, identified by the PDGFRA(pos):Lin(neg):THY1(neg):DDR2(neg) signature, expresses desmosome proteins and differentiates to adipocytes in AC through a Wnt-dependent mechanism. The findings expand the cellular spectrum of AC, commonly recognized as a disease of cardiac myocytes, to include nonmyocyte cells in the heart.
Collapse
Affiliation(s)
- Raffaella Lombardi
- From the Center for Cardiovascular Genetics, Institute of Molecular Medicine and Department of Medicine, University of Texas Health Science Center at Houston (R.L., S.N.C., A.R., P.G., G.Z.C., A.J.M.); and Department of Medicine, Texas Heart Institute, Houston (J.T.W.).
| | - Suet Nee Chen
- From the Center for Cardiovascular Genetics, Institute of Molecular Medicine and Department of Medicine, University of Texas Health Science Center at Houston (R.L., S.N.C., A.R., P.G., G.Z.C., A.J.M.); and Department of Medicine, Texas Heart Institute, Houston (J.T.W.)
| | - Alessandra Ruggiero
- From the Center for Cardiovascular Genetics, Institute of Molecular Medicine and Department of Medicine, University of Texas Health Science Center at Houston (R.L., S.N.C., A.R., P.G., G.Z.C., A.J.M.); and Department of Medicine, Texas Heart Institute, Houston (J.T.W.)
| | - Priyatansh Gurha
- From the Center for Cardiovascular Genetics, Institute of Molecular Medicine and Department of Medicine, University of Texas Health Science Center at Houston (R.L., S.N.C., A.R., P.G., G.Z.C., A.J.M.); and Department of Medicine, Texas Heart Institute, Houston (J.T.W.)
| | - Grazyna Z Czernuszewicz
- From the Center for Cardiovascular Genetics, Institute of Molecular Medicine and Department of Medicine, University of Texas Health Science Center at Houston (R.L., S.N.C., A.R., P.G., G.Z.C., A.J.M.); and Department of Medicine, Texas Heart Institute, Houston (J.T.W.)
| | - James T Willerson
- From the Center for Cardiovascular Genetics, Institute of Molecular Medicine and Department of Medicine, University of Texas Health Science Center at Houston (R.L., S.N.C., A.R., P.G., G.Z.C., A.J.M.); and Department of Medicine, Texas Heart Institute, Houston (J.T.W.)
| | - Ali J Marian
- From the Center for Cardiovascular Genetics, Institute of Molecular Medicine and Department of Medicine, University of Texas Health Science Center at Houston (R.L., S.N.C., A.R., P.G., G.Z.C., A.J.M.); and Department of Medicine, Texas Heart Institute, Houston (J.T.W.).
| |
Collapse
|
12
|
Nim HT, Furtado MB, Costa MW, Kitano H, Rosenthal NA, Boyd SE. CARFMAP: A Curated Pathway Map of Cardiac Fibroblasts. PLoS One 2015; 10:e0143274. [PMID: 26673252 PMCID: PMC4684407 DOI: 10.1371/journal.pone.0143274] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2015] [Accepted: 11/02/2015] [Indexed: 11/18/2022] Open
Abstract
The adult mammalian heart contains multiple cell types that work in unison under tightly regulated conditions to maintain homeostasis. Cardiac fibroblasts are a significant and unique population of non-muscle cells in the heart that have recently gained substantial interest in the cardiac biology community. To better understand this renaissance cell, it is essential to systematically survey what has been known in the literature about the cellular and molecular processes involved. We have built CARFMAP (http://visionet.erc.monash.edu.au/CARFMAP), an interactive cardiac fibroblast pathway map derived from the biomedical literature using a software-assisted manual data collection approach. CARFMAP is an information-rich interactive tool that enables cardiac biologists to explore the large body of literature in various creative ways. There is surprisingly little overlap between the cardiac fibroblast pathway map, a foreskin fibroblast pathway map, and a whole mouse organism signalling pathway map from the REACTOME database. Among the use cases of CARFMAP is a common task in our cardiac biology laboratory of identifying new genes that are (1) relevant to cardiac literature, and (2) differentially regulated in high-throughput assays. From the expression profiles of mouse cardiac and tail fibroblasts, we employed CARFMAP to characterise cardiac fibroblast pathways. Using CARFMAP in conjunction with transcriptomic data, we generated a stringent list of six genes that would not have been singled out using bioinformatics analyses alone. Experimental validation showed that five genes (Mmp3, Il6, Edn1, Pdgfc and Fgf10) are differentially regulated in the cardiac fibroblast. CARFMAP is a powerful tool for systems analyses of cardiac fibroblasts, facilitating systems-level cardiovascular research.
Collapse
Affiliation(s)
- Hieu T. Nim
- Australian Regenerative Medicine Institute, Monash University, Clayton, VIC, 3800, Australia
- Faculty of Information Technology, Monash University, Clayton, VIC, 3800, Australia
- * E-mail: (HTN); (SEB)
| | - Milena B. Furtado
- Australian Regenerative Medicine Institute, Monash University, Clayton, VIC, 3800, Australia
| | - Mauro W. Costa
- Australian Regenerative Medicine Institute, Monash University, Clayton, VIC, 3800, Australia
| | - Hiroaki Kitano
- Australian Regenerative Medicine Institute, Monash University, Clayton, VIC, 3800, Australia
- Laboratory for Disease Systems Modeling, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
- Okinawa Institute of Science and Technology, Onna, Onna-son, Kunigami, Okinawa, Japan
| | - Nadia A. Rosenthal
- Australian Regenerative Medicine Institute, Monash University, Clayton, VIC, 3800, Australia
- National Heart and Lung Institute, Imperial College London, White City, W12 0NN, United Kingdom
- The Jackson Laboratory, Bar Harbor, ME, 04609, United States of America
| | - Sarah E. Boyd
- Australian Regenerative Medicine Institute, Monash University, Clayton, VIC, 3800, Australia
- Faculty of Information Technology, Monash University, Clayton, VIC, 3800, Australia
- * E-mail: (HTN); (SEB)
| |
Collapse
|
13
|
Yong KW, Li Y, Huang G, Lu TJ, Safwani WKZW, Pingguan-Murphy B, Xu F. Mechanoregulation of cardiac myofibroblast differentiation: implications for cardiac fibrosis and therapy. Am J Physiol Heart Circ Physiol 2015; 309:H532-42. [PMID: 26092987 DOI: 10.1152/ajpheart.00299.2015] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2015] [Accepted: 06/19/2015] [Indexed: 12/16/2022]
Abstract
Cardiac myofibroblast differentiation, as one of the most important cellular responses to heart injury, plays a critical role in cardiac remodeling and failure. While biochemical cues for this have been extensively investigated, the role of mechanical cues, e.g., extracellular matrix stiffness and mechanical strain, has also been found to mediate cardiac myofibroblast differentiation. Cardiac fibroblasts in vivo are typically subjected to a specific spatiotemporally changed mechanical microenvironment. When exposed to abnormal mechanical conditions (e.g., increased extracellular matrix stiffness or strain), cardiac fibroblasts can undergo myofibroblast differentiation. To date, the impact of mechanical cues on cardiac myofibroblast differentiation has been studied both in vitro and in vivo. Most of the related in vitro research into this has been mainly undertaken in two-dimensional cell culture systems, although a few three-dimensional studies that exist revealed an important role of dimensionality. However, despite remarkable advances, the comprehensive mechanisms for mechanoregulation of cardiac myofibroblast differentiation remain elusive. In this review, we introduce important parameters for evaluating cardiac myofibroblast differentiation and then discuss the development of both in vitro (two and three dimensional) and in vivo studies on mechanoregulation of cardiac myofibroblast differentiation. An understanding of the development of cardiac myofibroblast differentiation in response to changing mechanical microenvironment will underlie potential targets for future therapy of cardiac fibrosis and failure.
Collapse
Affiliation(s)
- Kar Wey Yong
- Bioinspired Engineering and Biomechanics Center, Xi'an Jiaotong University, Xi'an, People's Republic of China; Department of Biomedical Engineering, Faculty of Engineering, University of Malaya, Kuala Lumpur, Malaysia; and
| | - YuHui Li
- Bioinspired Engineering and Biomechanics Center, Xi'an Jiaotong University, Xi'an, People's Republic of China; The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, People's Republic of China
| | - GuoYou Huang
- Bioinspired Engineering and Biomechanics Center, Xi'an Jiaotong University, Xi'an, People's Republic of China; The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, People's Republic of China
| | - Tian Jian Lu
- Bioinspired Engineering and Biomechanics Center, Xi'an Jiaotong University, Xi'an, People's Republic of China
| | | | - Belinda Pingguan-Murphy
- Department of Biomedical Engineering, Faculty of Engineering, University of Malaya, Kuala Lumpur, Malaysia; and
| | - Feng Xu
- Bioinspired Engineering and Biomechanics Center, Xi'an Jiaotong University, Xi'an, People's Republic of China; The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, People's Republic of China
| |
Collapse
|
14
|
Jalife J, Kaur K. Atrial remodeling, fibrosis, and atrial fibrillation. Trends Cardiovasc Med 2014; 25:475-84. [PMID: 25661032 DOI: 10.1016/j.tcm.2014.12.015] [Citation(s) in RCA: 209] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2014] [Revised: 12/25/2014] [Accepted: 12/26/2014] [Indexed: 01/08/2023]
Abstract
The fundamental mechanisms governing the perpetuation of atrial fibrillation (AF), the most common arrhythmia seen in clinical practice, are poorly understood, which explains in part why AF prevention and treatment remain suboptimal. Although some clinical parameters have been identified as predicting a transition from paroxysmal to persistent AF in some patients, the molecular, electrophysiological, and inflammation changes leading to such a progression have not been described in detail. Oxidative stress, atrial dilatation, calcium overload, inflammation, microRNAs, and myofibroblast activation are all thought to be involved in AF-induced atrial remodeling. However, it is unknown to what extent and at which time points such alterations influence the remodeling process that perpetuates AF. Here we postulate a working model that might open new pathways for future investigation into mechanisms of AF perpetuation. We start from the premise that the progression to AF perpetuation is the result of interplay among manifold signaling pathways with differing kinetics. Some such pathways have relatively fast kinetics (e.g., oxidative stress-mediated shortening of refractory period); others likely depend on molecular processes with slower kinetics (e.g., transcriptional changes in myocyte ion channel protein expression mediated through inflammation and fibroblast activation). We stress the need to fully understand the relationships among such pathways should one hope to identify novel, truly effective targets for AF therapy and prevention.
Collapse
Affiliation(s)
- José Jalife
- Center for Arrhythmia Research, University of Michigan, Ann Arbor, MI.
| | - Kuljeet Kaur
- Center for Arrhythmia Research, University of Michigan, Ann Arbor, MI
| |
Collapse
|