1
|
Williamson AE, Liyanage S, Hassanshahi M, Dona MSI, Toledo-Flores D, Tran DXA, Dimasi C, Schwarz N, Fernando S, Salagaras T, Long A, Kazenwadel J, Harvey NL, Drummond GR, Vinh A, Chandrakanthan V, Misra A, Neufeld Z, Tan JTM, Martelotto L, Polo JM, Bonder CS, Pinto AR, Sharma S, Nicholls SJ, Bursill CA, Psaltis PJ. Discovery of an embryonically derived bipotent population of endothelial-macrophage progenitor cells in postnatal aorta. Nat Commun 2024; 15:7097. [PMID: 39154007 PMCID: PMC11330468 DOI: 10.1038/s41467-024-51637-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 08/13/2024] [Indexed: 08/19/2024] Open
Abstract
Converging evidence indicates that extra-embryonic yolk sac is the source of both macrophages and endothelial cells in adult mouse tissues. Prevailing views are that these embryonically derived cells are maintained after birth by proliferative self-renewal in their differentiated states. Here we identify clonogenic endothelial-macrophage (EndoMac) progenitor cells in the adventitia of embryonic and postnatal mouse aorta, that are independent of Flt3-mediated bone marrow hematopoiesis and derive from an early embryonic CX3CR1+ and CSF1R+ source. These bipotent progenitors are proliferative and vasculogenic, contributing to adventitial neovascularization and formation of perfused blood vessels after transfer into ischemic tissue. We establish a regulatory role for angiotensin II, which enhances their clonogenic and differentiation properties and rapidly stimulates their proliferative expansion in vivo. Our findings demonstrate that embryonically derived EndoMac progenitors participate in local vasculogenic responses in the aortic wall by contributing to the expansion of endothelial cells and macrophages postnatally.
Collapse
Affiliation(s)
- Anna E Williamson
- Vascular Research Centre, Heart and Vascular Program, Lifelong Health Theme, South Australian Health and Medical Research Institute, Adelaide, SA, Australia
- Adelaide Medical School, Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide, SA, Australia
| | - Sanuri Liyanage
- Vascular Research Centre, Heart and Vascular Program, Lifelong Health Theme, South Australian Health and Medical Research Institute, Adelaide, SA, Australia
- Adelaide Medical School, Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide, SA, Australia
| | - Mohammadhossein Hassanshahi
- Vascular Research Centre, Heart and Vascular Program, Lifelong Health Theme, South Australian Health and Medical Research Institute, Adelaide, SA, Australia
- Adelaide Medical School, Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide, SA, Australia
| | - Malathi S I Dona
- Cardiac Cellular Systems Laboratory, Baker Heart and Diabetes Institute, Melbourne, VIC, Australia
| | - Deborah Toledo-Flores
- Vascular Research Centre, Heart and Vascular Program, Lifelong Health Theme, South Australian Health and Medical Research Institute, Adelaide, SA, Australia
| | - Dang X A Tran
- Vascular Research Centre, Heart and Vascular Program, Lifelong Health Theme, South Australian Health and Medical Research Institute, Adelaide, SA, Australia
| | - Catherine Dimasi
- Vascular Research Centre, Heart and Vascular Program, Lifelong Health Theme, South Australian Health and Medical Research Institute, Adelaide, SA, Australia
| | - Nisha Schwarz
- Vascular Research Centre, Heart and Vascular Program, Lifelong Health Theme, South Australian Health and Medical Research Institute, Adelaide, SA, Australia
| | - Sanuja Fernando
- Vascular Research Centre, Heart and Vascular Program, Lifelong Health Theme, South Australian Health and Medical Research Institute, Adelaide, SA, Australia
- Adelaide Medical School, Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide, SA, Australia
| | - Thalia Salagaras
- Vascular Research Centre, Heart and Vascular Program, Lifelong Health Theme, South Australian Health and Medical Research Institute, Adelaide, SA, Australia
| | - Aaron Long
- Vascular Research Centre, Heart and Vascular Program, Lifelong Health Theme, South Australian Health and Medical Research Institute, Adelaide, SA, Australia
- Department of Cardiology, Royal Adelaide Hospital, Central Adelaide Local Health Network, Adelaide, SA, Australia
| | - Jan Kazenwadel
- Centre for Cancer Biology, University of South Australia and SA Pathology, Adelaide, SA, Australia
| | - Natasha L Harvey
- Adelaide Medical School, Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide, SA, Australia
- Centre for Cancer Biology, University of South Australia and SA Pathology, Adelaide, SA, Australia
| | - Grant R Drummond
- Department of Microbiology, Anatomy, Physiology and Pharmacology and Centre for Cardiovascular Biology and Disease Research, School of Agriculture, Biomedicine and Environment, La Trobe University, Bundoora, VIC, Australia
| | - Antony Vinh
- Department of Microbiology, Anatomy, Physiology and Pharmacology and Centre for Cardiovascular Biology and Disease Research, School of Agriculture, Biomedicine and Environment, La Trobe University, Bundoora, VIC, Australia
| | - Vashe Chandrakanthan
- Adelaide Medical School, Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide, SA, Australia
- School of Medical Sciences, University of New South Wales, Sydney, NSW, Australia
- Precision Medicine, South Australian Health and Medical Research Institute, Adelaide, SA, Australia
| | - Ashish Misra
- Faculty of Medicine and Health, University of Sydney and Heart Research Institute, Newtown, NSW, Australia
| | - Zoltan Neufeld
- School of Mathematics and Physics, The University of Queensland, Brisbane, QLD, Australia
| | - Joanne T M Tan
- Vascular Research Centre, Heart and Vascular Program, Lifelong Health Theme, South Australian Health and Medical Research Institute, Adelaide, SA, Australia
- Adelaide Medical School, Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide, SA, Australia
| | - Luciano Martelotto
- Adelaide Centre for Epigenetics and the South Australian Immunogenomics Cancer Institute, Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide, SA, Australia
| | - Jose M Polo
- Adelaide Centre for Epigenetics and the South Australian Immunogenomics Cancer Institute, Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide, SA, Australia
| | - Claudine S Bonder
- Centre for Cancer Biology, University of South Australia and SA Pathology, Adelaide, SA, Australia
| | - Alexander R Pinto
- Cardiac Cellular Systems Laboratory, Baker Heart and Diabetes Institute, Melbourne, VIC, Australia
- Department of Microbiology, Anatomy, Physiology and Pharmacology and Centre for Cardiovascular Biology and Disease Research, School of Agriculture, Biomedicine and Environment, La Trobe University, Bundoora, VIC, Australia
| | - Shiwani Sharma
- Vascular Research Centre, Heart and Vascular Program, Lifelong Health Theme, South Australian Health and Medical Research Institute, Adelaide, SA, Australia
- Flinders Medical Research Institute, College of Medicine and Public Health, Flinders University, Bedford Park, SA, Australia
| | - Stephen J Nicholls
- Monash Cardiovascular Research Centre, Monash University, Melbourne, VIC, Australia
| | - Christina A Bursill
- Vascular Research Centre, Heart and Vascular Program, Lifelong Health Theme, South Australian Health and Medical Research Institute, Adelaide, SA, Australia
- Adelaide Medical School, Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide, SA, Australia
| | - Peter J Psaltis
- Vascular Research Centre, Heart and Vascular Program, Lifelong Health Theme, South Australian Health and Medical Research Institute, Adelaide, SA, Australia.
- Adelaide Medical School, Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide, SA, Australia.
- Department of Cardiology, Royal Adelaide Hospital, Central Adelaide Local Health Network, Adelaide, SA, Australia.
| |
Collapse
|
2
|
Nankivell V, Vidanapathirana AK, Hoogendoorn A, Tan JTM, Verjans J, Psaltis PJ, Hutchinson MR, Gibson BC, Lu Y, Goldys E, Zheng G, Bursill CA. Targeting macrophages with multifunctional nanoparticles to detect and prevent atherosclerotic cardiovascular disease. Cardiovasc Res 2024; 120:819-838. [PMID: 38696700 PMCID: PMC11218693 DOI: 10.1093/cvr/cvae099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 02/29/2024] [Accepted: 04/02/2024] [Indexed: 05/04/2024] Open
Abstract
Despite the emergence of novel diagnostic, pharmacological, interventional, and prevention strategies, atherosclerotic cardiovascular disease remains a significant cause of morbidity and mortality. Nanoparticle (NP)-based platforms encompass diverse imaging, delivery, and pharmacological properties that provide novel opportunities for refining diagnostic and therapeutic interventions for atherosclerosis at the cellular and molecular levels. Macrophages play a critical role in atherosclerosis and therefore represent an important disease-related diagnostic and therapeutic target, especially given their inherent ability for passive and active NP uptake. In this review, we discuss an array of inorganic, carbon-based, and lipid-based NPs that provide magnetic, radiographic, and fluorescent imaging capabilities for a range of highly promising research and clinical applications in atherosclerosis. We discuss the design of NPs that target a range of macrophage-related functions such as lipoprotein oxidation, cholesterol efflux, vascular inflammation, and defective efferocytosis. We also provide examples of NP systems that were developed for other pathologies such as cancer and highlight their potential for repurposing in cardiovascular disease. Finally, we discuss the current state of play and the future of theranostic NPs. Whilst this is not without its challenges, the array of multifunctional capabilities that are possible in NP design ensures they will be part of the next frontier of exciting new therapies that simultaneously improve the accuracy of plaque diagnosis and more effectively reduce atherosclerosis with limited side effects.
Collapse
Affiliation(s)
- Victoria Nankivell
- Australian Research Council (ARC) Centre of Excellence for Nanoscale BioPhotonics (CNBP)
- Vascular Research Centre, Lifelong Health, South Australian Health and Medical Research Institute (SAHMRI), North Terrace, Adelaide, 5000, Australia
- Faculty of Health and Medical Science, The University of Adelaide, North Terrace, Adelaide, 5000, Australia
| | - Achini K Vidanapathirana
- Australian Research Council (ARC) Centre of Excellence for Nanoscale BioPhotonics (CNBP)
- Vascular Research Centre, Lifelong Health, South Australian Health and Medical Research Institute (SAHMRI), North Terrace, Adelaide, 5000, Australia
- Faculty of Health and Medical Science, The University of Adelaide, North Terrace, Adelaide, 5000, Australia
| | - Ayla Hoogendoorn
- Australian Research Council (ARC) Centre of Excellence for Nanoscale BioPhotonics (CNBP)
- Vascular Research Centre, Lifelong Health, South Australian Health and Medical Research Institute (SAHMRI), North Terrace, Adelaide, 5000, Australia
| | - Joanne T M Tan
- Vascular Research Centre, Lifelong Health, South Australian Health and Medical Research Institute (SAHMRI), North Terrace, Adelaide, 5000, Australia
- Faculty of Health and Medical Science, The University of Adelaide, North Terrace, Adelaide, 5000, Australia
| | - Johan Verjans
- Australian Research Council (ARC) Centre of Excellence for Nanoscale BioPhotonics (CNBP)
- Vascular Research Centre, Lifelong Health, South Australian Health and Medical Research Institute (SAHMRI), North Terrace, Adelaide, 5000, Australia
- Faculty of Health and Medical Science, The University of Adelaide, North Terrace, Adelaide, 5000, Australia
| | - Peter J Psaltis
- Australian Research Council (ARC) Centre of Excellence for Nanoscale BioPhotonics (CNBP)
- Vascular Research Centre, Lifelong Health, South Australian Health and Medical Research Institute (SAHMRI), North Terrace, Adelaide, 5000, Australia
- Faculty of Health and Medical Science, The University of Adelaide, North Terrace, Adelaide, 5000, Australia
| | - Mark R Hutchinson
- Australian Research Council (ARC) Centre of Excellence for Nanoscale BioPhotonics (CNBP)
- Faculty of Health and Medical Science, The University of Adelaide, North Terrace, Adelaide, 5000, Australia
| | - Brant C Gibson
- Australian Research Council (ARC) Centre of Excellence for Nanoscale BioPhotonics (CNBP)
- School of Science, RMIT University, Melbourne, Victoria, Australia
| | - Yiqing Lu
- Australian Research Council (ARC) Centre of Excellence for Nanoscale BioPhotonics (CNBP)
- School of Engineering, Macquarie University, Sydney, NSW, Australia
| | - Ewa Goldys
- Australian Research Council (ARC) Centre of Excellence for Nanoscale BioPhotonics (CNBP)
- Graduate School of Biomedical Engineering, University of New South Wales, High Street, NSW, 2052, Australia
| | - Gang Zheng
- Australian Research Council (ARC) Centre of Excellence for Nanoscale BioPhotonics (CNBP)
- Department of Medical Biophysics, University of Toronto, 101 College Street, Toronto, M5G 1L7, Canada
| | - Christina A Bursill
- Australian Research Council (ARC) Centre of Excellence for Nanoscale BioPhotonics (CNBP)
- Vascular Research Centre, Lifelong Health, South Australian Health and Medical Research Institute (SAHMRI), North Terrace, Adelaide, 5000, Australia
- Faculty of Health and Medical Science, The University of Adelaide, North Terrace, Adelaide, 5000, Australia
| |
Collapse
|
3
|
Getz GS, Reardon CA. Insights from Murine Studies on the Site Specificity of Atherosclerosis. Int J Mol Sci 2024; 25:6375. [PMID: 38928086 PMCID: PMC11204064 DOI: 10.3390/ijms25126375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 06/03/2024] [Accepted: 06/06/2024] [Indexed: 06/28/2024] Open
Abstract
Atherosclerosis is an inflammatory reaction that develops at specific regions within the artery wall and at specific sites of the arterial tree over a varying time frame in response to a variety of risk factors. The mechanisms that account for the interaction of systemic factors and atherosclerosis-susceptible regions of the arterial tree to mediate this site-specific development of atherosclerosis are not clear. The dynamics of blood flow has a major influence on where in the arterial tree atherosclerosis develops, priming the site for interactions with atherosclerotic risk factors and inducing cellular and molecular participants in atherogenesis. But how this accounts for lesion development at various locations along the vascular tree across differing time frames still requires additional study. Currently, murine models are favored for the experimental study of atherogenesis and provide the most insight into the mechanisms that may contribute to the development of atherosclerosis. Based largely on these studies, in this review, we discuss the role of hemodynamic shear stress, SR-B1, and other factors that may contribute to the site-specific development of atherosclerosis.
Collapse
Affiliation(s)
- Godfrey S. Getz
- Department of Pathology, University of Chicago, Chicago, IL 60637, USA;
| | | |
Collapse
|
4
|
Schelemei P, Wagner E, Picard FSR, Winkels H. Macrophage mediators and mechanisms in cardiovascular disease. FASEB J 2024; 38:e23424. [PMID: 38275140 DOI: 10.1096/fj.202302001r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 12/21/2023] [Accepted: 12/29/2023] [Indexed: 01/27/2024]
Abstract
Macrophages are major players in myocardial infarction (MI) and atherosclerosis, two major cardiovascular diseases (CVD). Atherosclerosis is caused by the buildup of cholesterol-rich lipoproteins in blood vessels, causing inflammation, vascular injury, and plaque formation. Plaque rupture or erosion can cause thrombus formation resulting in inadequate blood flow to the heart muscle and MI. Inflammation, particularly driven by macrophages, plays a central role in both atherosclerosis and MI. Recent integrative approaches of single-cell analysis-based classifications in both murine and human atherosclerosis as well as experimental MI showed overlap in origin, diversity, and function of macrophages in the aorta and the heart. We here discuss differences and communalities between macrophages in the heart and aorta at steady state and in atherosclerosis or upon MI. We focus on markers, mediators, and functional states of macrophage subpopulations. Recent trials testing anti-inflammatory agents show a major benefit in reducing the inflammatory burden of CVD patients, but highlight a necessity for a broader understanding of immune cell ontogeny and heterogeneity in CVD. The novel insights into macrophage biology in CVD represent exciting opportunities for the development of novel treatment strategies against CVD.
Collapse
Affiliation(s)
- Patrik Schelemei
- University of Cologne, Faculty of Medicine and University Hospital Cologne, Clinic III for Internal Medicine, Cologne, Germany
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany
| | - Elena Wagner
- University of Cologne, Faculty of Medicine and University Hospital Cologne, Clinic III for Internal Medicine, Cologne, Germany
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany
| | - Felix Simon Ruben Picard
- University of Cologne, Faculty of Medicine and University Hospital Cologne, Clinic III for Internal Medicine, Cologne, Germany
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany
| | - Holger Winkels
- University of Cologne, Faculty of Medicine and University Hospital Cologne, Clinic III for Internal Medicine, Cologne, Germany
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany
| |
Collapse
|
5
|
Wieland EB, Kempen LJ, Donners MM, Biessen EA, Goossens P. Macrophage heterogeneity in atherosclerosis: A matter of context. Eur J Immunol 2024; 54:e2350464. [PMID: 37943053 DOI: 10.1002/eji.202350464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 10/19/2023] [Accepted: 10/24/2023] [Indexed: 11/10/2023]
Abstract
During atherogenesis, plaque macrophages take up and process deposited lipids, trigger inflammation, and form necrotic cores. The traditional inflammatory/anti-inflammatory paradigm has proven insufficient in explaining their complex disease-driving mechanisms. Instead, we now appreciate that macrophages exhibit remarkable heterogeneity and functional specialization in various pathological contexts, including atherosclerosis. Technical advances for studying individual cells, especially single-cell RNA sequencing, indeed allowed to identify novel macrophage subsets in both murine and human atherosclerosis, highlighting the existence of diverse macrophage activation states throughout pathogenesis. In addition, recent studies highlighted the role of the local microenvironment in shaping the macrophages' phenotype and function. However, this remains largely undescribed in the context of atherosclerosis. In this review we explore the origins of macrophages and their functional specialization, shedding light on the diverse sources of macrophage accumulation in the atherosclerotic plaque. Next, we discuss the phenotypic diversity observed in both murine and human atherosclerosis, elucidating their distinct functions and spatial distribution within plaques. Finally, we highlight the importance of the local microenvironment in both phenotypic and functional specialization of macrophages in atherosclerosis and elaborate on the need for spatial multiomics approaches to provide a better understanding of the different macrophage subsets' roles in the pathogenesis of atherosclerosis.
Collapse
Affiliation(s)
- Elias B Wieland
- Cardiovascular Research Institute Maastricht, Experimental Vascular Pathology, Department of Pathology, Maastricht University Medical Centre+, Maastricht, the Netherlands
| | - Laura Jap Kempen
- Cardiovascular Research Institute Maastricht, Experimental Vascular Pathology, Department of Pathology, Maastricht University Medical Centre+, Maastricht, the Netherlands
- Laboratory of Immunology and Vaccinology, Faculty of Veterinary Medicine, FARAH, ULiège, Liège, Belgium
- Laboratory of Immunophysiology, GIGA Institute, Liege University, Liège, Belgium
| | - Marjo Mpc Donners
- Cardiovascular Research Institute Maastricht, Experimental Vascular Pathology, Department of Pathology, Maastricht University Medical Centre+, Maastricht, the Netherlands
| | - Erik Al Biessen
- Cardiovascular Research Institute Maastricht, Experimental Vascular Pathology, Department of Pathology, Maastricht University Medical Centre+, Maastricht, the Netherlands
- Institute for Molecular Cardiovascular Research, RWTH Aachen University, Aachen, Germany
| | - Pieter Goossens
- Cardiovascular Research Institute Maastricht, Experimental Vascular Pathology, Department of Pathology, Maastricht University Medical Centre+, Maastricht, the Netherlands
| |
Collapse
|
6
|
Burke-Kleinman J, Gotlieb AI. Progression of Arterial Vasa Vasorum from Regulator of Arterial Homeostasis to Promoter of Atherogenesis. THE AMERICAN JOURNAL OF PATHOLOGY 2023; 193:1468-1484. [PMID: 37356574 DOI: 10.1016/j.ajpath.2023.06.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 05/30/2023] [Accepted: 06/08/2023] [Indexed: 06/27/2023]
Abstract
The vasa vasorum (vessels of vessels) are a dynamic microvascular system uniquely distributed to maintain physiological homeostasis of the artery wall by supplying nutrients and oxygen to the outer layers of the artery wall, adventitia, and perivascular adipose tissue, and in large arteries, to the outer portion of the medial layer. Vasa vasorum endothelium and contractile mural cells regulate direct access of bioactive cells and factors present in both the systemic circulation and the arterial perivascular adipose tissue and adventitia to the artery wall. Experimental and human data show that proatherogenic factors and cells gain direct access to the artery wall via the vasa vasorum and may initiate, promote, and destabilize the plaque. Activation and growth of vasa vasorum occur in all blood vessel layers primarily by angiogenesis, producing fragile and permeable new microvessels that may cause plaque hemorrhage and fibrous cap rupture. Ironically, invasive therapies, such as angioplasty and coronary artery bypass grafting, injure the vasa vasorum, leading to treatment failures. The vasa vasorum function both as a master integrator of arterial homeostasis and, once perturbed or injured, as a promotor of atherogenesis. Future studies need to be directed at establishing reliable in vivo and in vitro models to investigate the cellular and molecular regulation of the function and dysfunction of the arterial vasa vasorum.
Collapse
Affiliation(s)
- Jonah Burke-Kleinman
- Department of Laboratory Medicine and Pathobiology, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada.
| | - Avrum I Gotlieb
- Department of Laboratory Medicine and Pathobiology, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
7
|
The adventitia in arterial development, remodeling, and hypertension. Biochem Pharmacol 2022; 205:115259. [PMID: 36150432 DOI: 10.1016/j.bcp.2022.115259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 09/13/2022] [Accepted: 09/14/2022] [Indexed: 11/20/2022]
Abstract
The adventitia receives input signals from the vessel wall, the immune system, perivascular nerves and from surrounding tissues to generate effector responses that regulate structural and mechanical properties of blood vessels. It is a complex and dynamic tissue that orchestrates multiple functions for vascular development, homeostasis, repair, and disease. The purpose of this review is to highlight recent advances in our understanding of the origins, phenotypes, and functions of adventitial and perivascular cells with particular emphasis on hypertensive vascular remodeling.
Collapse
|
8
|
The origins of resident macrophages in mammary gland influence the tumorigenesis of breast cancer. Int Immunopharmacol 2022; 110:109047. [DOI: 10.1016/j.intimp.2022.109047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Revised: 07/06/2022] [Accepted: 07/08/2022] [Indexed: 11/05/2022]
|
9
|
Phillippi JA. On vasa vasorum: A history of advances in understanding the vessels of vessels. SCIENCE ADVANCES 2022; 8:eabl6364. [PMID: 35442731 PMCID: PMC9020663 DOI: 10.1126/sciadv.abl6364] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Accepted: 03/01/2022] [Indexed: 05/09/2023]
Abstract
The vasa vasorum are a vital microvascular network supporting the outer wall of larger blood vessels. Although these dynamic microvessels have been studied for centuries, the importance and impact of their functions in vascular health and disease are not yet fully realized. There is now rich knowledge regarding what local progenitor cell populations comprise and cohabitate with the vasa vasorum and how they might contribute to physiological and pathological changes in the network or its expansion via angiogenesis or vasculogenesis. Evidence of whether vasa vasorum remodeling incites or governs disease progression or is a consequence of cardiovascular pathologies remains limited. Recent advances in vasa vasorum imaging for understanding cardiovascular disease severity and pathophysiology open the door for theranostic opportunities. Approaches that strive to control angiogenesis and vasculogenesis potentiate mitigation of vasa vasorum-mediated contributions to cardiovascular diseases and emerging diseases involving the microcirculation.
Collapse
Affiliation(s)
- Julie A. Phillippi
- Department of Cardiothoracic Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Department of Bioengineering, University of Pittsburgh Swanson School of Engineering, Pittsburgh, PA, USA
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| |
Collapse
|
10
|
Bone marrow-independent adventitial macrophage progenitor cells contribute to angiogenesis. Cell Death Dis 2022; 13:220. [PMID: 35264563 PMCID: PMC8907187 DOI: 10.1038/s41419-022-04605-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 01/11/2022] [Accepted: 02/01/2022] [Indexed: 12/21/2022]
Abstract
Pathological angiogenesis promotes tumor growth, metastasis, and atherosclerotic plaque rupture. Macrophages are key players in these processes. However, whether these macrophages differentiate from bone marrow-derived monocytes or from local vascular wall-resident stem and progenitor cells (VW-SCs) is an unresolved issue of angiogenesis. To answer this question, we analyzed vascular sprouting and alterations in aortic cell populations in mouse aortic ring assays (ARA). ARA culture leads to the generation of large numbers of macrophages, especially within the aortic adventitia. Using immunohistochemical fate-mapping and genetic in vivo-labeling approaches we show that 60% of these macrophages differentiate from bone marrow-independent Ly6c+/Sca-1+ adventitial progenitor cells. Analysis of the NCX−/− mouse model that genetically lacks embryonic circulation and yolk sac perfusion indicates that at least some of those progenitor cells arise yolk sac-independent. Macrophages represent the main source of VEGF in ARA that vice versa promotes the generation of additional macrophages thereby creating a pro-angiogenetic feedforward loop. Additionally, macrophage-derived VEGF activates CD34+ progenitor cells within the adventitial vasculogenic zone to differentiate into CD31+ endothelial cells. Consequently, depletion of macrophages and VEGFR2 antagonism drastically reduce vascular sprouting activity in ARA. In summary, we show that angiogenic activation induces differentiation of macrophages from bone marrow-derived as well as from bone marrow-independent VW-SCs. The latter ones are at least partially yolk sac-independent, too. Those VW-SC-derived macrophages critically contribute to angiogenesis, making them an attractive target to interfere with pathological angiogenesis in cancer and atherosclerosis as well as with regenerative angiogenesis in ischemic cardiovascular disorders.
Collapse
|
11
|
Reinhardt JW, Breuer CK. Fibrocytes: A Critical Review and Practical Guide. Front Immunol 2021; 12:784401. [PMID: 34975874 PMCID: PMC8718395 DOI: 10.3389/fimmu.2021.784401] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 11/30/2021] [Indexed: 01/18/2023] Open
Abstract
Fibrocytes are hematopoietic-derived cells that directly contribute to tissue fibrosis by producing collagen following injury, during disease, and with aging. The lack of a fibrocyte-specific marker has led to the use of multiple strategies for identifying these cells in vivo. This review will detail how past studies were performed, report their findings, and discuss their strengths and limitations. The motivation is to identify opportunities for further investigation and promote the adoption of best practices during future study design.
Collapse
Affiliation(s)
- James W. Reinhardt
- Center for Regenerative Medicine, Abigail Wexner Research Institute, Nationwide Children’s Hospital, Columbus, OH, United States
| | - Christopher K. Breuer
- Center for Regenerative Medicine, Abigail Wexner Research Institute, Nationwide Children’s Hospital, Columbus, OH, United States
- Department of Surgery, The Ohio State University Wexner Medical Center, Columbus, OH, United States
- Department of Surgery, Nationwide Children’s Hospital, Columbus, OH, United States
| |
Collapse
|
12
|
Tomas L, Prica F, Schulz C. Trafficking of Mononuclear Phagocytes in Healthy Arteries and Atherosclerosis. Front Immunol 2021; 12:718432. [PMID: 34759917 PMCID: PMC8573388 DOI: 10.3389/fimmu.2021.718432] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 09/30/2021] [Indexed: 12/15/2022] Open
Abstract
Monocytes and macrophages play essential roles in all stages of atherosclerosis – from early precursor lesions to advanced stages of the disease. Intima-resident macrophages are among the first cells to be confronted with the influx and retention of apolipoprotein B-containing lipoproteins at the onset of hypercholesterolemia and atherosclerosis development. In this review, we outline the trafficking of monocytes and macrophages in and out of the healthy aorta, as well as the adaptation of their migratory behaviour during hypercholesterolemia. Furthermore, we discuss the functional and ontogenetic composition of the aortic pool of mononuclear phagocytes and its link to the atherosclerotic disease process. The development of mouse models of atherosclerosis regression in recent years, has enabled scientists to investigate the behaviour of monocytes and macrophages during the resolution of atherosclerosis. Herein, we describe the dynamics of these mononuclear phagocytes upon cessation of hypercholesterolemia and how they contribute to the restoration of tissue homeostasis. The aim of this review is to provide an insight into the trafficking, fate and disease-relevant dynamics of monocytes and macrophages during atherosclerosis, and to highlight remaining questions. We focus on the results of rodent studies, as analysis of cellular fates requires experimental manipulations that cannot be performed in humans but point out findings that could be replicated in human tissues. Understanding of the biology of macrophages in atherosclerosis provides an important basis for the development of therapeutic strategies to limit lesion formation and promote plaque regression.
Collapse
Affiliation(s)
- Lukas Tomas
- Department of Medicine I, University Hospital, Ludwig Maximilian University, Munich, Germany.,DZHK (German Centre for Cardiovascular Research), Partner Site Munich Heart Alliance, Munich, Germany
| | - Filip Prica
- Department of Medicine I, University Hospital, Ludwig Maximilian University, Munich, Germany.,DZHK (German Centre for Cardiovascular Research), Partner Site Munich Heart Alliance, Munich, Germany
| | - Christian Schulz
- Department of Medicine I, University Hospital, Ludwig Maximilian University, Munich, Germany.,DZHK (German Centre for Cardiovascular Research), Partner Site Munich Heart Alliance, Munich, Germany
| |
Collapse
|
13
|
Jiang L, Sun X, Deng J, Hu Y, Xu Q. Different Roles of Stem/Progenitor Cells in Vascular Remodeling. Antioxid Redox Signal 2021; 35:192-203. [PMID: 33107320 DOI: 10.1089/ars.2020.8199] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Significance: Since the discovery of vascular stem cells, there has been considerable advancement in comprehending the nature and functions of these cells. Due to their differentiation potential to repair endothelial cells and to participate in lesion formation during vascular remodeling, it is crucial to elucidate vascular stem cell behaviors and the mechanisms underlying this process, which could provide new chances for the design of clinical therapeutic application of stem cells. Recent Advances: Over the past decades, major progress has been made on progenitor/vascular stem cells in the field of cardiovascular research. Vascular stem cells are mostly latent in their niches and can be bioactivated in response to damage and get involved in endothelial repair and smooth muscle cell aggregation to generate neointima. Accumulating evidence has been shown recently, using genetic lineage tracing mouse models, to particularly provide solutions to the nature of vascular stem cells and to monitor both cell migration and the process of differentiation during physiological angiogenesis and in vascular diseases. Critical Issues: This article reviews and summarizes the current research progress of vascular stem cells in this field and highlights future prospects for stem cell research in regenerative medicine. Future Directions: Despite recent advances and achievements of stem cells in cardiovascular research, the nature and cell fate of vascular stem cells remain elusive. Further comprehensive studies using new techniques including genetic cell lineage tracing and single-cell RNA sequencing are essential to fully illuminate the role of stem cells in vascular development and diseases. Antioxid. Redox Signal. 35, 192-203.
Collapse
Affiliation(s)
- Liujun Jiang
- Department of Cardiology, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Xiaolei Sun
- Vascular Surgery Department, Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Jiacheng Deng
- Department of Cardiology, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Yanhua Hu
- Department of Cardiology, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Qingbo Xu
- Department of Cardiology, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
14
|
Upcin B, Henke E, Kleefeldt F, Hoffmann H, Rosenwald A, Irmak-Sav S, Aktas HB, Rückschloß U, Ergün S. Contribution of Adventitia-Derived Stem and Progenitor Cells to New Vessel Formation in Tumors. Cells 2021; 10:cells10071719. [PMID: 34359889 PMCID: PMC8304670 DOI: 10.3390/cells10071719] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 07/01/2021] [Accepted: 07/03/2021] [Indexed: 11/22/2022] Open
Abstract
Blocking tumor vascularization has not yet come to fruition to the extent it was hoped for, as angiogenesis inhibitors have shown only partial success in the clinic. We hypothesized that under-appreciated vascular wall-resident stem and progenitor cells (VW-SPCs) might be involved in tumor vascularization and influence effectiveness of anti-angiogenic therapy. Indeed, in patient samples, we observed that vascular adventitia-resident CD34+ VW-SPCs are recruited to tumors in situ from co-opted vessels. To elucidate this in detail, we established an ex vivo model using concomitant embedding of multi-cellular tumor spheroids (MCTS) and mouse aortic rings (ARs) into collagen gels, similar to the so-called aortic ring assay (ARA). Moreover, ARA was modified by removing the ARs’ adventitia that harbors VW-SPCs. Thus, this model enabled distinguishing the contribution of VW-SPCs from that of mature endothelial cells (ECs) to new vessel formation. Our results show that the formation of capillary-like sprouts is considerably delayed, and their number and network formation were significantly reduced by removing the adventitia. Substituting iPSC-derived neural spheroids for MCTS resulted in distinct sprouting patterns that were also strongly influenced by the presence or absence of VW-SPCs, also underlying the involvement of these cells in non-pathological vascularization. Our data suggest that more comprehensive approaches are needed in order to block all of the mechanisms contributing to tumor vascularization.
Collapse
Affiliation(s)
- Berin Upcin
- Institute of Anatomy and Cell Biology, Julius-Maximilians-University, 97070 Würzburg, Germany; (B.U.); (E.H.); (F.K.); (H.H.); (U.R.)
| | - Erik Henke
- Institute of Anatomy and Cell Biology, Julius-Maximilians-University, 97070 Würzburg, Germany; (B.U.); (E.H.); (F.K.); (H.H.); (U.R.)
| | - Florian Kleefeldt
- Institute of Anatomy and Cell Biology, Julius-Maximilians-University, 97070 Würzburg, Germany; (B.U.); (E.H.); (F.K.); (H.H.); (U.R.)
| | - Helene Hoffmann
- Institute of Anatomy and Cell Biology, Julius-Maximilians-University, 97070 Würzburg, Germany; (B.U.); (E.H.); (F.K.); (H.H.); (U.R.)
| | - Andreas Rosenwald
- Institute of Pathology, Julius-Maximilians-University, 97070 Würzburg, Germany;
| | - Ster Irmak-Sav
- Faculty of Health Sciences, İstanbul Bilgi University, 34060 Istanbul, Turkey;
| | - Huseyin Bertal Aktas
- Department of Medicine, Hematology, Brigham and Women’s Hospital, Boston, MA 02115, USA;
| | - Uwe Rückschloß
- Institute of Anatomy and Cell Biology, Julius-Maximilians-University, 97070 Würzburg, Germany; (B.U.); (E.H.); (F.K.); (H.H.); (U.R.)
| | - Süleyman Ergün
- Institute of Anatomy and Cell Biology, Julius-Maximilians-University, 97070 Würzburg, Germany; (B.U.); (E.H.); (F.K.); (H.H.); (U.R.)
- Correspondence: ; Tel.: +49-931-31-82701
| |
Collapse
|
15
|
Wu Y, Li YJ, Shi LL, Liu Y, Wang Y, Bao X, Xu W, Yao LY, Mbadhi MN, Chen L, Li S, Li XY, Zhang ZF, Zhao S, Zhang RN, Chen SY, Zhang JX, Jun-mingTang. Spatio-temporal model of Meox1 expression control involvement of Sca-1-positive stem cells in neointima formation through the synergistic effect of Rho/CDC42 and SDF-1α/CXCR4. Stem Cell Res Ther 2021; 12:387. [PMID: 34233723 PMCID: PMC8262022 DOI: 10.1186/s13287-021-02466-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Accepted: 06/19/2021] [Indexed: 08/30/2023] Open
Abstract
AIMS Neointimal hyperplasia remains a major obstacle in vascular regeneration. Sca-1-positive progenitor cells residing within the vascular adventitia play a crucial role in the assemblage of vascular smooth muscle cell (VSMC) and the formation of the intimal lesion. However, the underlying mechanisms during vascular injury are still unknown. METHODS AND RESULTS Aneointimal formation rat model was prepared by carotid artery injury using 2F-Forgaty. After vascular injury, Meox1 expressions time-dependently increased during the neointima formation, with its levels concurrently increasing in the adventitia, media, and neointima. Meox1 was highly expressed in the adventitia on the first day after vascular injury compared to the expression levels in the media. Conversely, by the 14th day post-injury, Meox1 was extensively expressed more in the media and neointima than the adventitia. Analogous to the change of Meox1 in injured artery, Sca-1+ progenitor cells increased in the adventitia wall in a time-dependent manner and reached peak levels on the 7th day after injury. More importantly, this effect was abolished by Meox1 knockdown with shRNA. The enhanced expression of SDF-1α after vascular injury was associated with the markedly enhanced expression levels of Sca1+ progenitor cell, and these levels were relatively synchronously increased within neointima by the 7th day after vascular injury. These special effects were abolished by the knockdown of Meox1 with shRNA and inhibition of CXCR4 by its inhibitor, AMD3100. Finally, Meox1 concurrently regulated SDF-1α expressions in VSMC via activating CDC42, and CDC42 inhibition abolished these effects by its inhibitor, ZCL278. Also, Meox1 was involved in activation of the CXCR4 expression of Sca-1+ progenitor cells by CDC42. CONCLUSIONS Spatio-temporal model of Meox1 expression regulates theSca-1+progenitor cell migration during the formation of the neointima through the synergistic effect of Rho/CDC42 and SDF-1α/CXCR4.
Collapse
Affiliation(s)
- Yan Wu
- Department of Physiology, Hubei Key Laboratory of Embryonic Stem Cell Research, Faculty of Basic Medical Sciences, Hubei University of Medicine, Shiyan, 442000, Hubei, People's Republic of China.
| | - Yuan-Jin Li
- Hebei Medical University, Shijiazhuang, 050017, Hebei, People's Republic of China.
| | - Liu-Liu Shi
- Department of Physiology, Hubei Key Laboratory of Embryonic Stem Cell Research, Faculty of Basic Medical Sciences, Hubei University of Medicine, Shiyan, 442000, Hubei, People's Republic of China.
| | - Yun Liu
- Department of Physiology, Hubei Key Laboratory of Embryonic Stem Cell Research, Faculty of Basic Medical Sciences, Hubei University of Medicine, Shiyan, 442000, Hubei, People's Republic of China
| | - Yan Wang
- Department of Physiology, Hubei Key Laboratory of Embryonic Stem Cell Research, Faculty of Basic Medical Sciences, Hubei University of Medicine, Shiyan, 442000, Hubei, People's Republic of China
| | - Xin Bao
- Department of Physiology, Hubei Key Laboratory of Embryonic Stem Cell Research, Faculty of Basic Medical Sciences, Hubei University of Medicine, Shiyan, 442000, Hubei, People's Republic of China
| | - Wei Xu
- Department of Physiology, Hubei Key Laboratory of Embryonic Stem Cell Research, Faculty of Basic Medical Sciences, Hubei University of Medicine, Shiyan, 442000, Hubei, People's Republic of China
| | - Lu-Yuan Yao
- Department of Physiology, Hubei Key Laboratory of Embryonic Stem Cell Research, Faculty of Basic Medical Sciences, Hubei University of Medicine, Shiyan, 442000, Hubei, People's Republic of China
| | - Magdaleena Naemi Mbadhi
- Department of Physiology, Hubei Key Laboratory of Embryonic Stem Cell Research, Faculty of Basic Medical Sciences, Hubei University of Medicine, Shiyan, 442000, Hubei, People's Republic of China
| | - Long Chen
- Cental Lab, Guoyao-Dongfeng Hospital, Hubei University of Medicine, Shiyan, 442000, Hubei, People's Republic of China
| | - Shan Li
- Department of Biochemistry, Faculty of Basic Medical Sciences, Hubei University of Medicine, Shiyan, 442000, Hubei, People's Republic of China
| | - Xing-Yuan Li
- Department of Physiology, Hubei Key Laboratory of Embryonic Stem Cell Research, Faculty of Basic Medical Sciences, Hubei University of Medicine, Shiyan, 442000, Hubei, People's Republic of China
| | - Zhi-Feng Zhang
- Department of Physiology, Hubei Key Laboratory of Embryonic Stem Cell Research, Faculty of Basic Medical Sciences, Hubei University of Medicine, Shiyan, 442000, Hubei, People's Republic of China.,Faculty of Basic Medical Sciences, Institute of Biomedicine, Hubei University of Medicine, Shiyan, 442000, Hubei, People's Republic of China
| | - Sen Zhao
- Department of Physiology, Hubei Key Laboratory of Embryonic Stem Cell Research, Faculty of Basic Medical Sciences, Hubei University of Medicine, Shiyan, 442000, Hubei, People's Republic of China
| | - Ruo-Nan Zhang
- Department of Physiology, Hubei Key Laboratory of Embryonic Stem Cell Research, Faculty of Basic Medical Sciences, Hubei University of Medicine, Shiyan, 442000, Hubei, People's Republic of China
| | - Shi-You Chen
- The Department of Surgery, University of Missouri, Columbia, USA
| | - Jing-Xuan Zhang
- Department of Physiology, Hubei Key Laboratory of Embryonic Stem Cell Research, Faculty of Basic Medical Sciences, Hubei University of Medicine, Shiyan, 442000, Hubei, People's Republic of China. .,Faculty of Basic Medical Sciences, Institute of Biomedicine, Hubei University of Medicine, Shiyan, 442000, Hubei, People's Republic of China.
| | - Jun-mingTang
- Department of Physiology, Hubei Key Laboratory of Embryonic Stem Cell Research, Faculty of Basic Medical Sciences, Hubei University of Medicine, Shiyan, 442000, Hubei, People's Republic of China. .,Faculty of Basic Medical Sciences, Institute of Biomedicine, Hubei University of Medicine, Shiyan, 442000, Hubei, People's Republic of China.
| |
Collapse
|
16
|
Vasuri F, Valente S, Motta I, Degiovanni A, Ciavarella C, Pasquinelli G. ETS-Related Gene Expression in Healthy Femoral Arteries With Focal Calcifications. Front Cell Dev Biol 2021; 9:623782. [PMID: 34222223 PMCID: PMC8242207 DOI: 10.3389/fcell.2021.623782] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 05/18/2021] [Indexed: 11/13/2022] Open
Abstract
Bone development-related genes are enriched in healthy femoral arteries, which are more prone to calcification, as documented by the predominance of fibrocalcific plaques at the femoral location. We undertook a prospective histological study on the presence of calcifications in normal femoral arteries collected from donors. Since endothelial-to-mesenchymal transition (EndMT) participates in vascular remodeling, immunohistochemical (IHC) and molecular markers of EndMT and chondro-osteogenic differentiation were assessed. Transmission electron microscopy (TEM) was used to describe calcification at its inception. Two hundred and fourteen femoral arteries were enrolled. The mean age of the donors was 39.9 ± 12.9 years; male gender prevailed (M: 128). Histology showed a normal architecture; calcifications were found in 52 (24.3%) cases, without correlations with cardiovascular risk factors. Calcifications were seen on or just beneath the inner elastic lamina (IEL). At IHC, SLUG was increasingly expressed in the wall of focally calcified femoral arteries (FCFA). ETS-related gene (ERG), SLUG, CD44, and SOX-9 were positive in calcifications. RT-PCR showed increased levels of BPM-2, RUNX-2, alkaline phosphatase, and osteocalcin osteogenic transcripts and increased expression of the chondrogenic marker, SOX-9, in FCFA. TEM documented osteoblast-like cells adjacent to the IEL, releasing calcifying vesicles from the cell membrane. The vesicles were embedded in a proteoglycan-rich matrix and were entrapped in IEL fenestrations. In this study, ERG- and CD44-positive cell populations were found in the context of increased SLUG expression, thus supporting the participation of EndMT in FCFA; the increased transcript expression of osteochondrogenic markers, particularly SOX-9, reinforced the view that EndMT, osteochondrogenesis, and neoangiogenesis interact in the process of arterial calcification. Given its role as a transcription factor in the regulation of endothelial homeostasis, arterial ERG expression can be a clue of endothelial dysregulation and changes in IEL organization which can ultimately hinder calcifying vesicle diffusion through the IEL fenestrae. These results may have a broader implication for understanding arterial calcification within a disease context.
Collapse
Affiliation(s)
- Francesco Vasuri
- Pathology Unit, IRCCS, Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Sabrina Valente
- Experimental, Diagnostic and Specialty Medicine Department (DIMES), University of Bologna, Bologna, Italy
| | - Ilenia Motta
- Experimental, Diagnostic and Specialty Medicine Department (DIMES), University of Bologna, Bologna, Italy
| | - Alessio Degiovanni
- Pathology Unit, IRCCS, Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Carmen Ciavarella
- Experimental, Diagnostic and Specialty Medicine Department (DIMES), University of Bologna, Bologna, Italy
| | - Gianandrea Pasquinelli
- Experimental, Diagnostic and Specialty Medicine Department (DIMES), University of Bologna, Bologna, Italy
| |
Collapse
|
17
|
Jolly AJ, Lu S, Strand KA, Dubner AM, Mutryn MF, Nemenoff RA, Majesky MW, Moulton KS, Weiser-Evans MCM. Heterogeneous subpopulations of adventitial progenitor cells regulate vascular homeostasis and pathological vascular remodeling. Cardiovasc Res 2021; 118:1452-1465. [PMID: 33989378 DOI: 10.1093/cvr/cvab174] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Accepted: 05/12/2021] [Indexed: 12/12/2022] Open
Abstract
Cardiovascular diseases are characterized by chronic vascular dysfunction and provoke pathological remodeling events such as neointima formation, atherosclerotic lesion development, and adventitial fibrosis. While lineage-tracing studies have shown that phenotypically modulated smooth muscle cells (SMCs) are the major cellular component of neointimal lesions, the cellular origins and microenvironmental signaling mechanisms that underlie remodeling along the adventitial vascular layer are not fully understood. However, a growing body of evidence supports a unique population of adventitial lineage-restricted progenitor cells expressing the stem cell marker, stem cell antigen-1 (Sca1; AdvSca1 cells) as important effectors of adventitial remodeling and suggests that they are at least partially responsible for subsequent pathological changes that occur in the media and intima. AdvSca1 cells are being studied in murine models of atherosclerosis, perivascular fibrosis, and neointima formation in response to acute vascular injury. Depending on the experimental conditions, AdvSca1 cells exhibit the capacity to differentiate into SMCs, endothelial cells, chondrocytes, adipocytes, and pro-remodeling cells such as myofibroblasts and macrophages. These data indicate that AdvSca1 cells may be a targetable cell population to influence the outcomes of pathologic vascular remodeling. Important questions remain regarding the origins of AdvSca1 cells and the essential signaling mechanisms and microenvironmental factors that regulate both maintenance of their stem-like, progenitor phenotype and their differentiation into lineage-specified cell types. Adding complexity to the story, recent data indicate that the collective population of adventitial progenitor cells is likely composed of several smaller, lineage-restricted subpopulations which are not fully defined by their transcriptomic profile and differentiation capabilities. The aim of this review is to outline the heterogeneity of Sca1+ adventitial progenitor cells, summarize their role in vascular homeostasis and remodeling, and comment on their translational relevance in humans.
Collapse
Affiliation(s)
- Austin J Jolly
- Department of Medicine, Division of Renal Diseases and Hypertension
| | - Sizhao Lu
- Department of Medicine, Division of Renal Diseases and Hypertension
| | - Keith A Strand
- Department of Medicine, Division of Renal Diseases and Hypertension
| | - Allison M Dubner
- Department of Medicine, Division of Renal Diseases and Hypertension
| | - Marie F Mutryn
- Department of Medicine, Division of Renal Diseases and Hypertension
| | - Raphael A Nemenoff
- Department of Medicine, Division of Renal Diseases and Hypertension.,School of Medicine,Consortium for Fibrosis Research and Translation
| | - Mark W Majesky
- Center for Developmental Biology & Regenerative Medicine, Seattle Children's Research Institute, Seattle, WA 98101.,Departments of Pediatrics and Pathology, University of Washington, Seattle, WA, 98195
| | | | - Mary C M Weiser-Evans
- Department of Medicine, Division of Renal Diseases and Hypertension.,School of Medicine,Consortium for Fibrosis Research and Translation.,Cardiovascular Pulmonary Research Program, University of Colorado Anschutz Medical Campus, Aurora, CO 80045 USA
| |
Collapse
|
18
|
Assessment of medullary and extramedullary myelopoiesis in cardiovascular diseases. Pharmacol Res 2021; 169:105663. [PMID: 33979688 DOI: 10.1016/j.phrs.2021.105663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 04/15/2021] [Accepted: 05/04/2021] [Indexed: 11/23/2022]
Abstract
Recruitment of innate immune cells and their accumulation in the arterial wall and infarcted myocardium has been recognized as a central feature of atherosclerosis and cardiac ischemic injury, respectively. In both, steady state and under pathological conditions, majority of these cells have a finite life span and are continuously replenished from haematopoietic stem/progenitor cell pool residing in the bone marrow and extramedullary sites. While having a crucial role in the cardiovascular disease development, proliferation and differentiation of innate immune cells within haematopoietic compartments is greatly affected by the ongoing cardiovascular pathology. In the current review, we summarize key cells, processes and tissue compartments that are involved in myelopoiesis under the steady state, during atherosclerosis development and in myocardial infarction.
Collapse
|
19
|
Lin P, Ji HH, Li YJ, Guo SD. Macrophage Plasticity and Atherosclerosis Therapy. Front Mol Biosci 2021; 8:679797. [PMID: 34026849 PMCID: PMC8138136 DOI: 10.3389/fmolb.2021.679797] [Citation(s) in RCA: 90] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Accepted: 04/12/2021] [Indexed: 12/15/2022] Open
Abstract
Atherosclerosis is a chronic disease starting with the entry of monocytes into the subendothelium and the subsequent differentiation into macrophages. Macrophages are the major immune cells in atherosclerotic plaques and are involved in the dynamic progression of atherosclerotic plaques. The biological properties of atherosclerotic plaque macrophages determine lesion size, composition, and stability. The heterogenicity and plasticity of atherosclerotic macrophages have been a hotspot in recent years. Studies demonstrated that lipids, cytokines, chemokines, and other molecules in the atherosclerotic plaque microenvironment regulate macrophage phenotype, contributing to the switch of macrophages toward a pro- or anti-atherosclerosis state. Of note, M1/M2 classification is oversimplified and only represent two extreme states of macrophages. Moreover, M2 macrophages in atherosclerosis are not always protective. Understanding the phenotypic diversity and functions of macrophages can disclose their roles in atherosclerotic plaques. Given that lipid-lowering therapy cannot completely retard the progression of atherosclerosis, macrophages with high heterogeneity and plasticity raise the hope for atherosclerosis regression. This review will focus on the macrophage phenotypic diversity, its role in the progression of the dynamic atherosclerotic plaque, and finally discuss the possibility of treating atherosclerosis by targeting macrophage microenvironment.
Collapse
Affiliation(s)
- Ping Lin
- Institute of Lipid Metabolism and Atherosclerosis, Innovative Drug Research Centre, School of Pharmacy, Weifang Medical University, Weifang, China
| | - Hong-Hai Ji
- Institute of Lipid Metabolism and Atherosclerosis, Innovative Drug Research Centre, School of Pharmacy, Weifang Medical University, Weifang, China
| | - Yan-Jie Li
- Institute of Lipid Metabolism and Atherosclerosis, Innovative Drug Research Centre, School of Pharmacy, Weifang Medical University, Weifang, China
| | - Shou-Dong Guo
- Institute of Lipid Metabolism and Atherosclerosis, Innovative Drug Research Centre, School of Pharmacy, Weifang Medical University, Weifang, China
| |
Collapse
|
20
|
Karnati S, Seimetz M, Kleefeldt F, Sonawane A, Madhusudhan T, Bachhuka A, Kosanovic D, Weissmann N, Krüger K, Ergün S. Chronic Obstructive Pulmonary Disease and the Cardiovascular System: Vascular Repair and Regeneration as a Therapeutic Target. Front Cardiovasc Med 2021; 8:649512. [PMID: 33912600 PMCID: PMC8072123 DOI: 10.3389/fcvm.2021.649512] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Accepted: 03/08/2021] [Indexed: 12/12/2022] Open
Abstract
Chronic obstructive pulmonary disease (COPD) is a major cause of morbidity and mortality worldwide and encompasses chronic bronchitis and emphysema. It has been shown that vascular wall remodeling and pulmonary hypertension (PH) can occur not only in patients with COPD but also in smokers with normal lung function, suggesting a causal role for vascular alterations in the development of emphysema. Mechanistically, abnormalities in the vasculature, such as inflammation, endothelial dysfunction, imbalances in cellular apoptosis/proliferation, and increased oxidative/nitrosative stress promote development of PH, cor pulmonale, and most probably pulmonary emphysema. Hypoxemia in the pulmonary chamber modulates the activation of key transcription factors and signaling cascades, which propagates inflammation and infiltration of neutrophils, resulting in vascular remodeling. Endothelial progenitor cells have angiogenesis capabilities, resulting in transdifferentiation of the smooth muscle cells via aberrant activation of several cytokines, growth factors, and chemokines. The vascular endothelium influences the balance between vaso-constriction and -dilation in the heart. Targeting key players affecting the vasculature might help in the development of new treatment strategies for both PH and COPD. The present review aims to summarize current knowledge about vascular alterations and production of reactive oxygen species in COPD. The present review emphasizes on the importance of the vasculature for the usually parenchyma-focused view of the pathobiology of COPD.
Collapse
Affiliation(s)
- Srikanth Karnati
- Institute of Anatomy and Cell Biology, Julius-Maximilians-University Würzburg, Würzburg, Germany
| | - Michael Seimetz
- Excellence Cluster Cardio-Pulmonary System (ECCPS), Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Giessen, Germany
| | - Florian Kleefeldt
- Institute of Anatomy and Cell Biology, Julius-Maximilians-University Würzburg, Würzburg, Germany
| | - Avinash Sonawane
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Indore, India
| | - Thati Madhusudhan
- Center for Thrombosis and Hemostasis, University Medical Center Mainz, Mainz, Germany
| | - Akash Bachhuka
- UniSA Science, Technology, Engineering and Mathematics, University of South Australia, Mawson Lakes Campus, Adelaide, SA, Australia
| | - Djuro Kosanovic
- Excellence Cluster Cardio-Pulmonary System (ECCPS), Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Giessen, Germany.,Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
| | - Norbert Weissmann
- Excellence Cluster Cardio-Pulmonary System (ECCPS), Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Giessen, Germany
| | - Karsten Krüger
- Department of Exercise Physiology and Sports Therapy, University of Giessen, Giessen, Germany
| | - Süleyman Ergün
- Institute of Anatomy and Cell Biology, Julius-Maximilians-University Würzburg, Würzburg, Germany
| |
Collapse
|
21
|
Wu H, Zhou X, Gong H, Ni Z, Xu Q. Perivascular tissue stem cells are crucial players in vascular disease. Free Radic Biol Med 2021; 165:324-333. [PMID: 33556462 DOI: 10.1016/j.freeradbiomed.2021.02.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 01/31/2021] [Accepted: 02/01/2021] [Indexed: 12/21/2022]
Abstract
Perivascular tissue including adipose layer and adventitia have been considered to play pivotal roles in vascular development and disease progression. Recent studies showed that abundant stem/progenitorcells (SPCs) are present in perivascular tissues. These SPCs exhibit capability to proliferate and differentiate into specific terminal cells. Adult perivascular SPCs are quiescent in normal condition, once activated by specific molecules (e.g., cytokines), they migrate toward the lumen side where they differentiate into both smooth muscle cells (SMCs) and endothelial cells (ECs), thus promoting intima hyperplasia or endothelial regeneration. In addition, perivascular SPCs can also regulate vascular diseases via other ways including but not limited to paracrine effects, matrix protein modulation and microvessel formation. Perivascular SPCs have also been shown to possess therapeutic potentials due to the capability to differentiate into vascular cells and regenerate vascular structures. This review summarizes current knowledge on resident SPCs features and discusses the potential benefits of SPCs therapy in vascular diseases.
Collapse
Affiliation(s)
- Hong Wu
- Department of Cardiology, The First Affiliated Hospital, Zhejiang University School of Medicine, China
| | - Xuhao Zhou
- Department of Cardiology, The First Affiliated Hospital, Zhejiang University School of Medicine, China
| | - Hui Gong
- Department of Cardiology, The First Affiliated Hospital, Zhejiang University School of Medicine, China
| | - Zhichao Ni
- Department of Cardiology, The First Affiliated Hospital, Zhejiang University School of Medicine, China.
| | - Qingbo Xu
- Department of Cardiology, The First Affiliated Hospital, Zhejiang University School of Medicine, China.
| |
Collapse
|
22
|
Di Luca M, Fitzpatrick E, Burtenshaw D, Liu W, Helt JC, Hakimjavadi R, Corcoran E, Gusti Y, Sheridan D, Harman S, Lally C, Redmond EM, Cahill PA. The calcium binding protein S100β marks hedgehog-responsive resident vascular stem cells within vascular lesions. NPJ Regen Med 2021; 6:10. [PMID: 33649337 PMCID: PMC7921434 DOI: 10.1038/s41536-021-00120-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Accepted: 01/14/2021] [Indexed: 01/09/2023] Open
Abstract
A hallmark of subclinical atherosclerosis is the accumulation of vascular smooth muscle cell (SMC)-like cells leading to intimal thickening. While medial SMCs contribute, the participation of hedgehog-responsive resident vascular stem cells (vSCs) to lesion formation remains unclear. Using transgenic eGFP mice and genetic lineage tracing of S100β vSCs in vivo, we identified S100β/Sca1 cells derived from a S100β non-SMC parent population within lesions that co-localise with smooth muscle α-actin (SMA) cells following iatrogenic flow restriction, an effect attenuated following hedgehog inhibition with the smoothened inhibitor, cyclopamine. In vitro, S100β/Sca1 cells isolated from atheroprone regions of the mouse aorta expressed hedgehog signalling components, acquired the di-methylation of histone 3 lysine 4 (H3K4me2) stable SMC epigenetic mark at the Myh11 locus and underwent myogenic differentiation in response to recombinant sonic hedgehog (SHh). Both S100β and PTCH1 cells were present in human vessels while S100β cells were enriched in arteriosclerotic lesions. Recombinant SHh promoted myogenic differentiation of human induced pluripotent stem cell-derived S100β neuroectoderm progenitors in vitro. We conclude that hedgehog-responsive S100β vSCs contribute to lesion formation and support targeting hedgehog signalling to treat subclinical arteriosclerosis.
Collapse
Affiliation(s)
- Mariana Di Luca
- Dublin City University, Vascular Biology & Therapeutics Group, School of Biotechnology, Dublin, Ireland
| | - Emma Fitzpatrick
- Dublin City University, Vascular Biology & Therapeutics Group, School of Biotechnology, Dublin, Ireland
| | - Denise Burtenshaw
- Dublin City University, Vascular Biology & Therapeutics Group, School of Biotechnology, Dublin, Ireland
| | - Weimin Liu
- University of Rochester, Department of Surgery, Rochester, NY, USA
| | | | - Roya Hakimjavadi
- Dublin City University, Vascular Biology & Therapeutics Group, School of Biotechnology, Dublin, Ireland
| | - Eoin Corcoran
- Dublin City University, Vascular Biology & Therapeutics Group, School of Biotechnology, Dublin, Ireland
| | - Yusof Gusti
- Dublin City University, Vascular Biology & Therapeutics Group, School of Biotechnology, Dublin, Ireland
| | - Daniel Sheridan
- Dublin City University, Vascular Biology & Therapeutics Group, School of Biotechnology, Dublin, Ireland
| | - Susan Harman
- Dublin City University, Vascular Biology & Therapeutics Group, School of Biotechnology, Dublin, Ireland
| | - Catriona Lally
- Trinity College Dublin, Trinity Centre for Bioengineering, Trinity Biomedical Sciences Institute, Dublin, Ireland
| | - Eileen M Redmond
- University of Rochester, Department of Surgery, Rochester, NY, USA
| | - Paul A Cahill
- Dublin City University, Vascular Biology & Therapeutics Group, School of Biotechnology, Dublin, Ireland.
| |
Collapse
|
23
|
Lu S, Jolly AJ, Strand KA, Dubner AM, Mutryn MF, Moulton KS, Nemenoff RA, Majesky MW, Weiser-Evans MC. Smooth muscle-derived progenitor cell myofibroblast differentiation through KLF4 downregulation promotes arterial remodeling and fibrosis. JCI Insight 2020; 5:139445. [PMID: 33119549 PMCID: PMC7714399 DOI: 10.1172/jci.insight.139445] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Accepted: 10/22/2020] [Indexed: 12/12/2022] Open
Abstract
Resident vascular adventitial SCA1+ progenitor (AdvSca1) cells are essential in vascular development and injury. However, the heterogeneity of AdvSca1 cells presents a unique challenge in understanding signaling pathways orchestrating their behavior in homeostasis and injury responses. Using smooth muscle cell (SMC) lineage-tracing models, we identified a subpopulation of AdvSca1 cells (AdvSca1-SM) originating from mature SMCs that undergo reprogramming in situ and exhibit a multipotent phenotype. Here we employed lineage tracing and RNA-sequencing to define the signaling pathways regulating SMC-to-AdvSca1-SM cell reprogramming and AdvSca1-SM progenitor cell phenotype. Unbiased hierarchical clustering revealed that genes related to hedgehog/WNT/beta-catenin signaling were significantly enriched in AdvSca1-SM cells, emphasizing the importance of this signaling axis in the reprogramming event. Leveraging AdvSca1-SM–specific expression of GLI-Kruppel family member GLI1 (Gli1), we generated Gli1-CreERT2-ROSA26-YFP reporter mice to selectively track AdvSca1-SM cells. We demonstrated that physiologically relevant vascular injury or AdvSca1-SM cell–specific Kruppel-like factor 4 (Klf4) depletion facilitated the proliferation and differentiation of AdvSca1-SM cells to a profibrotic myofibroblast phenotype rather than macrophages. Surprisingly, AdvSca1-SM cells selectively contributed to adventitial remodeling and fibrosis but little to neointima formation. Together, these findings strongly support therapeutics aimed at preserving the AdvSca1-SM cell phenotype as a viable antifibrotic approach. Smooth muscle cell–derived resident vascular adventitial progenitor cells adopt a myofibroblast phenotype in response to vascular injury and play a dominant role in vascular fibrosis.
Collapse
Affiliation(s)
- Sizhao Lu
- Division of Renal Diseases and Hypertension, Department of Medicine, and
| | - Austin J Jolly
- Division of Renal Diseases and Hypertension, Department of Medicine, and
| | - Keith A Strand
- Division of Renal Diseases and Hypertension, Department of Medicine, and
| | - Allison M Dubner
- Division of Renal Diseases and Hypertension, Department of Medicine, and
| | - Marie F Mutryn
- Division of Renal Diseases and Hypertension, Department of Medicine, and
| | | | - Raphael A Nemenoff
- Division of Renal Diseases and Hypertension, Department of Medicine, and.,Consortium for Fibrosis Research and Translation, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Mark W Majesky
- Center for Developmental Biology and Regenerative Medicine, Seattle Children's Research Institute, Seattle, Washington, USA.,Department of Pediatrics and Department of Laboratory Medicine and Pathology, University of Washington, Seattle, Washington, USA
| | - Mary Cm Weiser-Evans
- Division of Renal Diseases and Hypertension, Department of Medicine, and.,Consortium for Fibrosis Research and Translation, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA.,Cardio Vascular Pulmonary Research Lab, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| |
Collapse
|
24
|
Deng J, Ni Z, Gu W, Chen Q, Nowak WN, Chen T, Issa Bhaloo S, Zhang Z, Hu Y, Zhou B, Zhang L, Xu Q. Single-cell gene profiling and lineage tracing analyses revealed novel mechanisms of endothelial repair by progenitors. Cell Mol Life Sci 2020; 77:5299-5320. [PMID: 32166394 PMCID: PMC11104897 DOI: 10.1007/s00018-020-03480-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Revised: 01/18/2020] [Accepted: 02/07/2020] [Indexed: 12/20/2022]
Abstract
Stem/progenitor cells (SPCs) have been implicated to participate in vascular repair. However, the exact role of SPCs in endothelial repair of large vessels still remains controversial. This study aimed to delineate the cellular heterogeneity and possible functional role of endogenous vascular SPCs in large vessels. Using single-cell RNA-sequencing (scRNA-seq) and genetic lineage tracing mouse models, we uncovered the cellular heterogeneity of SPCs, i.e., c-Kit+ cells in the mouse aorta, and found that endogenous c-Kit+ cells acquire endothelial cell fate in the aorta under both physiological and pathological conditions. While c-Kit+ cells contribute to aortic endothelial turnover in the atheroprone regions during homeostasis, recipient c-Kit+ cells of nonbone marrow source replace both luminal and microvessel endothelial cells in transplant arteriosclerosis. Single-cell pseudotime analysis of scRNA-seq data and in vitro cell experiments suggest that vascular SPCs display endothelial differentiation potential and undergo metabolic reprogramming during cell differentiation, in which AKT/mTOR-dependent glycolysis is critical for endothelial gene expression. These findings demonstrate a critical role for c-Kit lineage cells in aortic endothelial turnover and replacement, and may provide insights into therapeutic strategies for vascular diseases.
Collapse
Affiliation(s)
- Jiacheng Deng
- Department of Cardiology, The First Affiliated Hospital, School of Medicine, Zhejiang University, 79 Qingchun Road, Hangzhou, 310003, Zhejiang, China
- School of Cardiovascular Medicine and Science, BHF Centre, King's College London, 125 Coldharbour Lane, London, SE5 9NU, UK
| | - Zhichao Ni
- School of Cardiovascular Medicine and Science, BHF Centre, King's College London, 125 Coldharbour Lane, London, SE5 9NU, UK
| | - Wenduo Gu
- School of Cardiovascular Medicine and Science, BHF Centre, King's College London, 125 Coldharbour Lane, London, SE5 9NU, UK
| | - Qishan Chen
- Department of Cardiology, The First Affiliated Hospital, School of Medicine, Zhejiang University, 79 Qingchun Road, Hangzhou, 310003, Zhejiang, China
| | - Witold Norbert Nowak
- School of Cardiovascular Medicine and Science, BHF Centre, King's College London, 125 Coldharbour Lane, London, SE5 9NU, UK
| | - Ting Chen
- Department of Cardiology, The First Affiliated Hospital, School of Medicine, Zhejiang University, 79 Qingchun Road, Hangzhou, 310003, Zhejiang, China
| | - Shirin Issa Bhaloo
- School of Cardiovascular Medicine and Science, BHF Centre, King's College London, 125 Coldharbour Lane, London, SE5 9NU, UK
| | - Zhongyi Zhang
- School of Cardiovascular Medicine and Science, BHF Centre, King's College London, 125 Coldharbour Lane, London, SE5 9NU, UK
| | - Yanhua Hu
- School of Cardiovascular Medicine and Science, BHF Centre, King's College London, 125 Coldharbour Lane, London, SE5 9NU, UK
| | - Bin Zhou
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academic of Sciences, Shanghai, 200031, China
| | - Li Zhang
- Department of Cardiology, The First Affiliated Hospital, School of Medicine, Zhejiang University, 79 Qingchun Road, Hangzhou, 310003, Zhejiang, China.
| | - Qingbo Xu
- Department of Cardiology, The First Affiliated Hospital, School of Medicine, Zhejiang University, 79 Qingchun Road, Hangzhou, 310003, Zhejiang, China.
- School of Cardiovascular Medicine and Science, BHF Centre, King's College London, 125 Coldharbour Lane, London, SE5 9NU, UK.
| |
Collapse
|
25
|
Coronary vessel formation in development and disease: mechanisms and insights for therapy. Nat Rev Cardiol 2020; 17:790-806. [PMID: 32587347 DOI: 10.1038/s41569-020-0400-1] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/19/2020] [Indexed: 12/20/2022]
Abstract
The formation of new blood vessels after myocardial infarction (MI) is essential for the survival of existing and regenerated cardiac tissue. However, the extent of endogenous revascularization after MI is insufficient, and MI can often result in ventricular remodelling, progression to heart failure and premature death. The neutral results of numerous clinical trials that have evaluated the efficacy of angiogenic therapy to revascularize the infarcted heart reflect our poor understanding of the processes required to form a functional coronary vasculature. In this Review, we describe the latest advances in our understanding of the processes involved in coronary vessel formation, with mechanistic insights taken from developmental studies. Coronary vessels originate from multiple cellular sources during development and form through a number of distinct and carefully orchestrated processes. The ectopic reactivation of developmental programmes has been proposed as a new paradigm for regenerative medicine, therefore, a complete understanding of these processes is crucial. Furthermore, knowledge of how these processes differ between the embryonic and adult heart, and how they might be more closely recapitulated after injury are critical for our understanding of regenerative biology, and might facilitate the identification of tractable molecular targets to therapeutically promote neovascularization and regeneration of the infarcted heart.
Collapse
|
26
|
Willemsen L, de Winther MPJ. Macrophage subsets in atherosclerosis as defined by single-cell technologies. J Pathol 2020; 250:705-714. [PMID: 32003464 PMCID: PMC7217201 DOI: 10.1002/path.5392] [Citation(s) in RCA: 128] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2019] [Revised: 01/17/2020] [Accepted: 01/29/2020] [Indexed: 12/26/2022]
Abstract
Macrophages play a major role in the pathogenesis of atherosclerosis. Many studies have shone light on the different phenotypes and functions that macrophages can acquire upon exposure to local cues. The microenvironment of the atherosclerotic plaque contains a plethora of macrophage-controlling factors, such as cytokines, oxidised low-density lipoproteins and cell debris. Previous research has determined macrophage function within the plaque mainly by using immunohistochemistry and bulk analysis. The recent development and rapid progress of single-cell technologies, such as cytometry by time of flight and single-cell RNA sequencing, now enable comprehensive mapping of the wide range of cell types and their phenotypes present in atherosclerotic plaques. In this review we discuss recent advances applying these technologies in defining macrophage subsets residing in the atherosclerotic arterial wall of mice and men. Resulting from these studies, we describe three main macrophage subsets: resident-like, pro-inflammatory and anti-inflammatory foamy TREM2hi macrophages, which are found in both mouse and human atherosclerotic plaques. Furthermore, we discuss macrophage subset-specific markers and functions. More insights into the characteristics and phenotype of immune cells within the atherosclerotic plaque may guide future clinical approaches to treat disease. © 2020 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of Pathological Society of Great Britain and Ireland.
Collapse
Affiliation(s)
- Lisa Willemsen
- Experimental Vascular Biology, Department of Medical Biochemistry, Amsterdam Cardiovascular Sciences, Amsterdam UMCUniversity of AmsterdamAmsterdamThe Netherlands
| | - Menno PJ de Winther
- Experimental Vascular Biology, Department of Medical Biochemistry, Amsterdam Cardiovascular Sciences, Amsterdam UMCUniversity of AmsterdamAmsterdamThe Netherlands
- Institute for Cardiovascular Prevention (IPEK)Ludwig Maximilians UniversityMunichGermany
| |
Collapse
|
27
|
Visualization of cardiovascular development, physiology and disease at the single-cell level: Opportunities and future challenges. J Mol Cell Cardiol 2020; 142:80-92. [PMID: 32205182 DOI: 10.1016/j.yjmcc.2020.03.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 03/13/2020] [Accepted: 03/17/2020] [Indexed: 12/18/2022]
Abstract
Single-cell RNA sequencing (scRNA-seq), a method of transcriptome sequencing at the single-cell level, has recently emerged as a revolutionary technology in the field of biomedical research. Compared to conventional gene expression profiling in bulk, scRNA-seq resolves biological differences among individual cells and enables the identification of rare cell populations that are easily overlooked. This review introduces the method of scRNA-seq, summarizes its applications in the field of cardiovascular disease research, and discusses existing limitations and prospects for future applications.
Collapse
|
28
|
Tinajero MG, Gotlieb AI. Recent Developments in Vascular Adventitial Pathobiology: The Dynamic Adventitia as a Complex Regulator of Vascular Disease. THE AMERICAN JOURNAL OF PATHOLOGY 2019; 190:520-534. [PMID: 31866347 DOI: 10.1016/j.ajpath.2019.10.021] [Citation(s) in RCA: 86] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Revised: 10/24/2019] [Accepted: 10/29/2019] [Indexed: 12/20/2022]
Abstract
The adventitia, the outer layer of the blood vessel wall, may be the most complex layer of the wall and may be the master regulator of wall physiology and pathobiology. This review proposes a major shift in thinking to apply a functional lens to the adventitia rather than only a structural lens. Human and experimental in vivo and in vitro studies show that the adventitia is a dynamic microenvironment in which adventitial and perivascular adipose tissue cells initiate and regulate important vascular functions in disease, especially intimal hyperplasia and atherosclerosis. Although well away from the blood-wall interface, where much pathology has been identified, the adventitia has a profound influence on the population of intimal and medial endothelial, macrophage, and smooth muscle cell function. Vascular injury and dysfunction of the perivascular adipose tissue promote expansion of the vasa vasorum, activation of fibroblasts, and differentiation of myofibroblasts. This regulates further biologic processes, including fibroblast and myofibroblast migration and proliferation, inflammation, immunity, stem cell activation and regulation, extracellular matrix remodeling, and angiogenesis. A debate exists as to whether the adventitia initiates disease or is just an important participant. We describe a mechanistic model of adventitial function that brings together current knowledge and guides the design of future investigations to test specific hypotheses on adventitial pathobiology.
Collapse
Affiliation(s)
- Maria G Tinajero
- Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Avrum I Gotlieb
- Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada.
| |
Collapse
|
29
|
Xu W, Yu C, Piao L, Inoue A, Wang H, Meng X, Li X, Cui L, Umegaki H, Shi GP, Murohara T, Kuzuya M, Cheng XW. Cathepsin S-Mediated Negative Regulation of Wnt5a/SC35 Activation Contributes to Ischemia-Induced Neovascularization in Aged Mice. Circ J 2019; 83:2537-2546. [DOI: 10.1253/circj.cj-19-0325] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 08/30/2023]
Affiliation(s)
- Wenhu Xu
- Department of Cardiology and Hypertension, Yanbian University Hospital
| | - Chenglin Yu
- Department of Cardiology and Hypertension, Yanbian University Hospital
| | - Limei Piao
- Department of Cardiology and Hypertension, Yanbian University Hospital
- Department of Geriatrics, Nagoya University Graduate School of Medicine
| | - Aiko Inoue
- Department of Geriatrics, Nagoya University Graduate School of Medicine
- Institute of Innovation for Future Society, Nagoya University Graduate School of Medicine
| | - Hailong Wang
- Department of Cardiology and Hypertension, Yanbian University Hospital
- Institute of Innovation for Future Society, Nagoya University Graduate School of Medicine
| | - Xiangkun Meng
- Department of Cardiology and Hypertension, Yanbian University Hospital
- Department of Geriatrics, Nagoya University Graduate School of Medicine
| | - Xiang Li
- Department of Cardiology and Hypertension, Yanbian University Hospital
| | - Lan Cui
- Department of Cardiology and Hypertension, Yanbian University Hospital
| | - Hiroyuki Umegaki
- Department of Geriatrics, Nagoya University Graduate School of Medicine
| | - Guo-Ping Shi
- Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School
| | - Toyoaki Murohara
- Department of Cardiology, Nagoya University Graduate School of Medicine
| | - Masafumi Kuzuya
- Department of Geriatrics, Nagoya University Graduate School of Medicine
- Institute of Innovation for Future Society, Nagoya University Graduate School of Medicine
| | - Xian Wu Cheng
- Department of Cardiology and Hypertension, Yanbian University Hospital
- Department of Geriatrics, Nagoya University Graduate School of Medicine
- Institute of Innovation for Future Society, Nagoya University Graduate School of Medicine
| |
Collapse
|
30
|
Mekala SR, Wörsdörfer P, Bauer J, Stoll O, Wagner N, Reeh L, Loew K, Eckner G, Kwok CK, Wischmeyer E, Dickinson ME, Schulze H, Stegner D, Benndorf RA, Edenhofer F, Pfeiffer V, Kuerten S, Frantz S, Ergün S. Generation of Cardiomyocytes From Vascular Adventitia-Resident Stem Cells. Circ Res 2019; 123:686-699. [PMID: 30355234 DOI: 10.1161/circresaha.117.312526] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
RATIONALE Regeneration of lost cardiomyocytes is a fundamental unresolved problem leading to heart failure. Despite several strategies developed from intensive studies performed in the past decades, endogenous regeneration of heart tissue is still limited and presents a big challenge that needs to be overcome to serve as a successful therapeutic option for myocardial infarction. OBJECTIVE One of the essential prerequisites for cardiac regeneration is the identification of endogenous cardiomyocyte progenitors and their niche that can be targeted by new therapeutic approaches. In this context, we hypothesized that the vascular wall, which was shown to harbor different types of stem and progenitor cells, might serve as a source for cardiac progenitors. METHODS AND RESULTS We describe generation of spontaneously beating mouse aortic wall-derived cardiomyocytes without any genetic manipulation. Using aortic wall-derived cells (AoCs) of WT (wild type), αMHC (α-myosin heavy chain), and Flk1 (fetal liver kinase 1)-reporter mice and magnetic bead-associated cell sorting sorting of Flk1+ AoCs from GFP (green fluorescent protein) mice, we identified Flk1+CD (cluster of differentiation) 34+Sca-1 (stem cell antigen-1)-CD44- AoCs as the population that gives rise to aortic wall-derived cardiomyocytes. This AoC subpopulation delivered also endothelial cells and macrophages with a particular accumulation within the aortic wall-derived cardiomyocyte containing colonies. In vivo, cardiomyocyte differentiation capacity was studied by implantation of fluorescently labeled AoCs into chick embryonic heart. These cells acquired cardiomyocyte-like phenotype as shown by αSRA (α-sarcomeric actinin) expression. Furthermore, coronary adventitial Flk1+ and CD34+ cells proliferated, migrated into the myocardium after mouse myocardial infarction, and expressed Isl-1+ (insulin gene enhancer protein-1) indicative of cardiovascular progenitor potential. CONCLUSIONS Our data suggest Flk1+CD34+ vascular adventitia-resident stem cells, including those of coronary adventitia, as a novel endogenous source for generating cardiomyocytes. This process is essentially supported by endothelial cells and macrophages. In summary, the therapeutic manipulation of coronary adventitia-resident cardiac stem and their supportive cells may open new avenues for promoting cardiac regeneration and repair after myocardial infarction and for preventing heart failure.
Collapse
Affiliation(s)
- Subba Rao Mekala
- From the Institute of Anatomy and Cell Biology II (S.R.M., P.W., J.B., O.S., N.W., L.R., K.L., G.E., C.K.K., F.E., V.P., S.K., S.E.)
| | - Philipp Wörsdörfer
- From the Institute of Anatomy and Cell Biology II (S.R.M., P.W., J.B., O.S., N.W., L.R., K.L., G.E., C.K.K., F.E., V.P., S.K., S.E.)
| | - Jochen Bauer
- From the Institute of Anatomy and Cell Biology II (S.R.M., P.W., J.B., O.S., N.W., L.R., K.L., G.E., C.K.K., F.E., V.P., S.K., S.E.)
| | - Olga Stoll
- From the Institute of Anatomy and Cell Biology II (S.R.M., P.W., J.B., O.S., N.W., L.R., K.L., G.E., C.K.K., F.E., V.P., S.K., S.E.)
| | - Nicole Wagner
- From the Institute of Anatomy and Cell Biology II (S.R.M., P.W., J.B., O.S., N.W., L.R., K.L., G.E., C.K.K., F.E., V.P., S.K., S.E.)
| | - Laurens Reeh
- From the Institute of Anatomy and Cell Biology II (S.R.M., P.W., J.B., O.S., N.W., L.R., K.L., G.E., C.K.K., F.E., V.P., S.K., S.E.)
| | - Kornelia Loew
- From the Institute of Anatomy and Cell Biology II (S.R.M., P.W., J.B., O.S., N.W., L.R., K.L., G.E., C.K.K., F.E., V.P., S.K., S.E.)
| | - Georg Eckner
- From the Institute of Anatomy and Cell Biology II (S.R.M., P.W., J.B., O.S., N.W., L.R., K.L., G.E., C.K.K., F.E., V.P., S.K., S.E.)
| | - Chee Keong Kwok
- From the Institute of Anatomy and Cell Biology II (S.R.M., P.W., J.B., O.S., N.W., L.R., K.L., G.E., C.K.K., F.E., V.P., S.K., S.E.)
| | - Erhard Wischmeyer
- Institute of Physiology (E.W.).,University of Würzburg, Germany; Department of Psychiatry, Psychosomatics, and Psychotherapy, Center of Mental Health (E.W.)
| | - Mary Eleanor Dickinson
- University Hospital of Wuerzburg, Germany; Baylor College of Medicine, Houston, TX (M.E.D.)
| | | | | | - Ralf A Benndorf
- Department of Clinical Pharmacy and Pharmacotherapy, University of Halle-Wittenberg, Germany (R.A.B.)
| | - Frank Edenhofer
- From the Institute of Anatomy and Cell Biology II (S.R.M., P.W., J.B., O.S., N.W., L.R., K.L., G.E., C.K.K., F.E., V.P., S.K., S.E.)
| | - Verena Pfeiffer
- From the Institute of Anatomy and Cell Biology II (S.R.M., P.W., J.B., O.S., N.W., L.R., K.L., G.E., C.K.K., F.E., V.P., S.K., S.E.)
| | - Stefanie Kuerten
- From the Institute of Anatomy and Cell Biology II (S.R.M., P.W., J.B., O.S., N.W., L.R., K.L., G.E., C.K.K., F.E., V.P., S.K., S.E.)
| | - Stefan Frantz
- From the Institute of Anatomy and Cell Biology II (S.R.M., P.W., J.B., O.S., N.W., L.R., K.L., G.E., C.K.K., F.E., V.P., S.K., S.E.).,Department of Internal Medicine I, ZIM (Zentrum für Innere Medizin) (S.F.)
| | - Süleyman Ergün
- From the Institute of Anatomy and Cell Biology II (S.R.M., P.W., J.B., O.S., N.W., L.R., K.L., G.E., C.K.K., F.E., V.P., S.K., S.E.)
| |
Collapse
|
31
|
Wu Y, Liu X, Guo LY, Zhang L, Zheng F, Li S, Li XY, Yuan Y, Liu Y, Yan YW, Chen SY, Wang JN, Zhang JX, Tang JM. S100B is required for maintaining an intermediate state with double-positive Sca-1+ progenitor and vascular smooth muscle cells during neointimal formation. Stem Cell Res Ther 2019; 10:294. [PMID: 31547879 PMCID: PMC6757428 DOI: 10.1186/s13287-019-1400-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Revised: 08/27/2019] [Accepted: 08/28/2019] [Indexed: 12/12/2022] Open
Abstract
Introduction Accumulation of vascular smooth muscle cells (VSMCs) within the neointimal region is a hallmark of atherosclerosis and vessel injury. Evidence has shown that Sca-1-positive (Sca-1+) progenitor cells residing in the vascular adventitia play a crucial role in VSMC assemblages and intimal lesions. However, the underlying mechanisms, especially in the circumstances of vascular injury, remain unknown. Methods and results The neointimal formation model in rats was established by carotid artery balloon injury using a 2F-Forgaty catheter. Most Sca-1+ cells first appeared at the adventitia of the vascular wall. S100B expressions were highest within the adventitia on the first day after vessel injury. Along with the sequentially increasing trend of S100B expression in the intima, media, and adventitia, respectively, the numbers of Sca-1+ cells were prominently increased at the media or neointima during the time course of neointimal formation. Furthermore, the Sca-1+ cells were markedly increased in the tunica media on the third day of vessel injury, SDF-1α expressions were obviously increased, and SDF-1α levels and Sca-1+ cells were almost synchronously increased within the neointima on the seventh day of vessel injury. These effects could effectually be reversed by knockdown of S100B by shRNA, RAGE inhibitor (SPF-ZM1), or CXCR4 blocker (AMD3100), indicating that migration of Sca-1+ cells from the adventitia into the neointima was associated with S100B/RAGE and SDF-1α/CXCR4. More importantly, the intermediate state of double-positive Sca-1+ and α-SMA cells was first found in the neointima of injured arteries, which could be substantially abrogated by using shRNA for S100B or blockade of CXCR4. S100B dose-dependently regulated SDF-1α expressions in VSMCs by activating PI3K/AKT and NF-κB, which were markedly abolished by PI3K/AKT inhibitor wortmannin and enhanced by p65 blocker PDTC. Furthermore, S100B was involved in human umbilical cord-derived Sca-1+ progenitor cells’ differentiation into VSMCs, especially in maintaining the intermediate state of double-positive Sca-1+ and α-SMA. Conclusions S100B triggered neointimal formation in rat injured arteries by maintaining the intermediate state of double-positive Sca-1+ progenitor and VSMCs, which were associated with direct activation of RAGE by S100B and indirect induction of SDF-1α by activating PI3K/AKT and NF-κB. Electronic supplementary material The online version of this article (10.1186/s13287-019-1400-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Yan Wu
- Department of Physiology, School of Basic Medicine Science, Hubei University of Medicine, Shiyan, 442000, Hubei, China.,Institute of Clinical Medicine and Department of Cardiology, Renmin Hospital, Hubei University of Medicine, Shiyan, 442000, Hubei, China
| | - Xin Liu
- Laboratory Animal Center, Hubei University of Medicine, Shiyan, 442000, Hubei, China
| | - Ling-Yun Guo
- Institute of Clinical Medicine and Department of Cardiology, Renmin Hospital, Hubei University of Medicine, Shiyan, 442000, Hubei, China.,Institute of Biomedicine and Key Lab of Human Embryonic Stem Cell of Hubei Province, Hubei University of Medicine, Shiyan, 442000, Hubei, China
| | - Lei Zhang
- Institute of Clinical Medicine and Department of Cardiology, Renmin Hospital, Hubei University of Medicine, Shiyan, 442000, Hubei, China.,Institute of Biomedicine and Key Lab of Human Embryonic Stem Cell of Hubei Province, Hubei University of Medicine, Shiyan, 442000, Hubei, China
| | - Fei Zheng
- Institute of Clinical Medicine and Department of Cardiology, Renmin Hospital, Hubei University of Medicine, Shiyan, 442000, Hubei, China.,Institute of Biomedicine and Key Lab of Human Embryonic Stem Cell of Hubei Province, Hubei University of Medicine, Shiyan, 442000, Hubei, China
| | - Shan Li
- Department of Biochemistry, School of Basic Medicine Science, Hubei University of Medicine, Shiyan, 442000, Hubei, China
| | - Xing-Yuan Li
- Department of Physiology, School of Basic Medicine Science, Hubei University of Medicine, Shiyan, 442000, Hubei, China
| | - Ye Yuan
- Institute of Clinical Medicine and Department of Cardiology, Renmin Hospital, Hubei University of Medicine, Shiyan, 442000, Hubei, China.,Institute of Biomedicine and Key Lab of Human Embryonic Stem Cell of Hubei Province, Hubei University of Medicine, Shiyan, 442000, Hubei, China
| | - Yu Liu
- Institute of Clinical Medicine and Department of Cardiology, Renmin Hospital, Hubei University of Medicine, Shiyan, 442000, Hubei, China.,Institute of Biomedicine and Key Lab of Human Embryonic Stem Cell of Hubei Province, Hubei University of Medicine, Shiyan, 442000, Hubei, China
| | - Yu-Wen Yan
- Department of Physiology, School of Basic Medicine Science, Hubei University of Medicine, Shiyan, 442000, Hubei, China.,Institute of Clinical Medicine and Department of Cardiology, Renmin Hospital, Hubei University of Medicine, Shiyan, 442000, Hubei, China
| | - Shi-You Chen
- Department of Physiology & Pharmacology, The University of Georgia, Athens, GA, 30602, USA
| | - Jia-Ning Wang
- Institute of Clinical Medicine and Department of Cardiology, Renmin Hospital, Hubei University of Medicine, Shiyan, 442000, Hubei, China.,Institute of Biomedicine and Key Lab of Human Embryonic Stem Cell of Hubei Province, Hubei University of Medicine, Shiyan, 442000, Hubei, China
| | - Jin-Xuan Zhang
- Department of Physiology, School of Basic Medicine Science, Hubei University of Medicine, Shiyan, 442000, Hubei, China. .,Institute of Biomedicine and Key Lab of Human Embryonic Stem Cell of Hubei Province, Hubei University of Medicine, Shiyan, 442000, Hubei, China.
| | - Jun-Ming Tang
- Department of Physiology, School of Basic Medicine Science, Hubei University of Medicine, Shiyan, 442000, Hubei, China. .,Institute of Clinical Medicine and Department of Cardiology, Renmin Hospital, Hubei University of Medicine, Shiyan, 442000, Hubei, China. .,Institute of Biomedicine and Key Lab of Human Embryonic Stem Cell of Hubei Province, Hubei University of Medicine, Shiyan, 442000, Hubei, China.
| |
Collapse
|
32
|
Pan X, Ruan C, Liu X, Kong L, Ma Y, Wu Q, Li H, Sun Y, Chen A, Zhao Q, Wu F, Wang X, Wang J, Zhu D, Gao P. Perivascular adipose tissue-derived stromal cells contribute to vascular remodeling during aging. Aging Cell 2019; 18:e12969. [PMID: 31087498 PMCID: PMC6612678 DOI: 10.1111/acel.12969] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Revised: 03/25/2019] [Accepted: 04/30/2019] [Indexed: 12/12/2022] Open
Abstract
Aging is an independent risk factor for vascular diseases. Perivascular adipose tissue (PVAT), an active component of the vasculature, contributes to vascular dysfunction during aging. Identification of underlying cell types and their changes during aging may provide meaningful insights regarding the clinical relevance of aging‐related vascular diseases. Here, we take advantage of single‐cell RNA sequence to characterize the resident stromal cells in the PVAT (PVASCs) and identified different clusters between young and aged PVASCs. Bioinformatics analysis revealed decreased endothelial and brown adipogenic differentiation capacities of PVASCs during aging, which contributed to neointimal hyperplasia after perivascular delivery to ligated carotid arteries. Mechanistically, in vitro and in vivo studies both suggested that aging‐induced loss of peroxisome proliferator‐activated receptor‐γ coactivator‐1 α (PGC1α) was a key regulator of decreased brown adipogenic differentiation in senescent PVASCs. We further demonstrated the existence of human PVASCs (hPVASCs) and overexpression of PGC1α improved hPVASC delivery‐induced vascular remodeling. Our finding emphasizes that differentiation capacities of PVASCs alter during aging and loss of PGC1α in aged PVASCs contributes to vascular remodeling via decreased brown adipogenic differentiation.
Collapse
Affiliation(s)
- Xiao‐Xi Pan
- Department of Hypertension, State Key Laboratory of Medical Genomics, Shanghai Key Laboratory of Hypertension Shanghai Institute of Hypertension, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine Shanghai China
| | - Cheng‐Chao Ruan
- Department of Hypertension, State Key Laboratory of Medical Genomics, Shanghai Key Laboratory of Hypertension Shanghai Institute of Hypertension, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine Shanghai China
| | - Xiu‐Ying Liu
- Key Laboratory of Genetic Network Biology, Institute of Genetics and Developmental Biology Chinese Academy of Sciences Beijing China
| | - Ling‐Ran Kong
- Department of Hypertension, State Key Laboratory of Medical Genomics, Shanghai Key Laboratory of Hypertension Shanghai Institute of Hypertension, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine Shanghai China
| | - Yu Ma
- Department of Hypertension, State Key Laboratory of Medical Genomics, Shanghai Key Laboratory of Hypertension Shanghai Institute of Hypertension, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine Shanghai China
| | - Qi‐Hong Wu
- Department of Hypertension, State Key Laboratory of Medical Genomics, Shanghai Key Laboratory of Hypertension Shanghai Institute of Hypertension, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine Shanghai China
| | - Hai‐Qing Li
- Department of Cardiac Surgery Ruijin Hospital, Shanghai Jiao Tong University School of Medicine Shanghai China
| | - Yan‐Jun Sun
- Department of Cardiac Surgery Ruijin Hospital, Shanghai Jiao Tong University School of Medicine Shanghai China
| | - An‐Qing Chen
- Department of Cardiac Surgery Ruijin Hospital, Shanghai Jiao Tong University School of Medicine Shanghai China
| | - Qiang Zhao
- Department of Cardiac Surgery Ruijin Hospital, Shanghai Jiao Tong University School of Medicine Shanghai China
| | - Fang Wu
- Department of Geriatrics Ruijin Hospital, Shanghai Jiao Tong University School of Medicine Shanghai China
| | - Xiu‐Jie Wang
- Key Laboratory of Genetic Network Biology, Institute of Genetics and Developmental Biology Chinese Academy of Sciences Beijing China
| | - Ji‐Guang Wang
- Department of Hypertension, State Key Laboratory of Medical Genomics, Shanghai Key Laboratory of Hypertension Shanghai Institute of Hypertension, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine Shanghai China
| | - Ding‐Liang Zhu
- Department of Hypertension, State Key Laboratory of Medical Genomics, Shanghai Key Laboratory of Hypertension Shanghai Institute of Hypertension, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine Shanghai China
| | - Ping‐Jin Gao
- Department of Hypertension, State Key Laboratory of Medical Genomics, Shanghai Key Laboratory of Hypertension Shanghai Institute of Hypertension, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine Shanghai China
| |
Collapse
|
33
|
Flynn MC, Pernes G, Lee MKS, Nagareddy PR, Murphy AJ. Monocytes, Macrophages, and Metabolic Disease in Atherosclerosis. Front Pharmacol 2019; 10:666. [PMID: 31249530 PMCID: PMC6584106 DOI: 10.3389/fphar.2019.00666] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2019] [Accepted: 05/23/2019] [Indexed: 12/20/2022] Open
Abstract
Atherosclerotic cardiovascular disease (CVD) is a lipid-driven chronic inflammatory disease, in which macrophages are responsible for taking up these lipids and driving disease progression. Over the years, we and others have uncovered key pathways that regulate macrophage number/function and identified how metabolic disorders such as diabetes and obesity, which are common risk factors for CVD, exacerbate these pathways. This ultimately accelerates the progression of atherosclerosis and hinders atherosclerotic regression. In this review, we discuss the different types of macrophages, from monocyte-derived macrophages, local macrophage proliferation, to macrophage-like vascular smooth muscle cells, that contribute to atherosclerosis as well as myeloid-derived suppressor cells that may have anti-atherogenic effects. We will also discuss how diabetes and obesity influence plaque macrophage accumulation and monocyte production (myelopoiesis) to promote atherogenesis as well as an exciting therapeutic target, S100A8/A9, which mediates myelopoiesis in response to both diabetes and obesity, shown to be effective in reducing atherosclerosis in pre-clinical models of diabetes.
Collapse
Affiliation(s)
- Michelle C Flynn
- Haematopoiesis and Leukocyte Biology, Baker Heart and Diabetes Institute, Melbourne, VIC, Australia
| | - Gerard Pernes
- Haematopoiesis and Leukocyte Biology, Baker Heart and Diabetes Institute, Melbourne, VIC, Australia
| | - Man Kit Sam Lee
- Haematopoiesis and Leukocyte Biology, Baker Heart and Diabetes Institute, Melbourne, VIC, Australia
| | - Prabhakara R Nagareddy
- Department of Nutrition Sciences, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Andrew J Murphy
- Haematopoiesis and Leukocyte Biology, Baker Heart and Diabetes Institute, Melbourne, VIC, Australia
| |
Collapse
|
34
|
Ni Z, Deng J, Potter CMF, Nowak WN, Gu W, Zhang Z, Chen T, Chen Q, Hu Y, Zhou B, Xu Q, Zhang L. Recipient c-Kit Lineage Cells Repopulate Smooth Muscle Cells of Transplant Arteriosclerosis in Mouse Models. Circ Res 2019; 125:223-241. [PMID: 31079549 PMCID: PMC6615935 DOI: 10.1161/circresaha.119.314855] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Supplemental Digital Content is available in the text. Rationale: Transplantation-accelerated arteriosclerosis is one of the major challenges for long-term survival of patients with solid organ transplantation. Although stem/progenitor cells have been implicated to participate in this process, the cells of origin and underlying mechanisms have not been fully defined. Objective: The objective of our study was to investigate the role of c-Kit lineage cells in allograft-induced neointima formation and to explore the mechanisms underlying this process. Methods and Results: Using an inducible lineage tracing Kit-CreER;Rosa26-tdTomato mouse model, we observed that c-Kit is expressed in multiple cell types in the blood vessels, rather than a specific stem/progenitor cell marker. We performed allograft transplantation between different donor and recipient mice, as well as bone marrow transplantation experiments, demonstrating that recipient c-Kit+ cells repopulate neointimal smooth muscle cells (SMCs) and leukocytes, and contribute to neointima formation in an allograft transplantation model. c-Kit–derived SMCs originate from nonbone marrow tissues, whereas bone marrow-derived c-Kit+ cells mainly generate CD45+ leukocytes. However, the exact identity of c-Kit lineage cells contributing to neointimal SMCs remains unclear. ACK2 (anti-c-Kit antibody), which specifically binds and blocks c-Kit function, ameliorates allograft-induced arteriosclerosis. Stem cell factor and TGF (transforming growth factor)-β1 levels were significantly increased in blood and neointimal lesions after allograft transplantation, by which stem cell factor facilitated c-Kit+ cell migration through the stem cell factor/c-Kit axis and downstream activation of small GTPases, MEK (mitogen-activated protein kinase kinase)/ERK (extracellular signal–regulated kinase)/MLC (myosin light chain), and JNK (c-Jun N-terminal kinase)/c-Jun signaling pathways, whereas TGF-β1 induces c-Kit+ cell differentiation into SMCs via HK (hexokinase)-1–dependent metabolic reprogramming and a possible downstream O-GlcNAcylation of myocardin and serum response factor. Conclusions: Our findings provide evidence that recipient c-Kit lineage cells contribute to vascular remodeling in an allograft transplantation model, in which the stem cell factor/c-Kit axis is responsible for cell migration and HK-1–dependent metabolic reprogramming for SMC differentiation.
Collapse
Affiliation(s)
- Zhichao Ni
- From the School of Cardiovascular Medicine and Sciences, King's College London, BHF Centre, United Kingdom (Z.N., J.D., C.M.F.P., W.N.N., W.G., Z.Z., Y.H., Q.X.)
| | - Jiacheng Deng
- From the School of Cardiovascular Medicine and Sciences, King's College London, BHF Centre, United Kingdom (Z.N., J.D., C.M.F.P., W.N.N., W.G., Z.Z., Y.H., Q.X.)
| | - Claire M F Potter
- From the School of Cardiovascular Medicine and Sciences, King's College London, BHF Centre, United Kingdom (Z.N., J.D., C.M.F.P., W.N.N., W.G., Z.Z., Y.H., Q.X.)
| | - Witold N Nowak
- From the School of Cardiovascular Medicine and Sciences, King's College London, BHF Centre, United Kingdom (Z.N., J.D., C.M.F.P., W.N.N., W.G., Z.Z., Y.H., Q.X.)
| | - Wenduo Gu
- From the School of Cardiovascular Medicine and Sciences, King's College London, BHF Centre, United Kingdom (Z.N., J.D., C.M.F.P., W.N.N., W.G., Z.Z., Y.H., Q.X.)
| | - Zhongyi Zhang
- From the School of Cardiovascular Medicine and Sciences, King's College London, BHF Centre, United Kingdom (Z.N., J.D., C.M.F.P., W.N.N., W.G., Z.Z., Y.H., Q.X.)
| | - Ting Chen
- Department of Cardiology, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China (T.C., Q.C., Q.X., L.Z.)
| | - Qishan Chen
- Department of Cardiology, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China (T.C., Q.C., Q.X., L.Z.)
| | - Yanhua Hu
- From the School of Cardiovascular Medicine and Sciences, King's College London, BHF Centre, United Kingdom (Z.N., J.D., C.M.F.P., W.N.N., W.G., Z.Z., Y.H., Q.X.)
| | - Bin Zhou
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, China (B.Z.)
| | - Qingbo Xu
- From the School of Cardiovascular Medicine and Sciences, King's College London, BHF Centre, United Kingdom (Z.N., J.D., C.M.F.P., W.N.N., W.G., Z.Z., Y.H., Q.X.).,Department of Cardiology, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China (T.C., Q.C., Q.X., L.Z.)
| | - Li Zhang
- Department of Cardiology, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China (T.C., Q.C., Q.X., L.Z.)
| |
Collapse
|
35
|
Vasculogenic properties of adventitial Sca-1 +CD45 + progenitor cells in mice: a potential source of vasa vasorum in atherosclerosis. Sci Rep 2019; 9:7286. [PMID: 31086203 PMCID: PMC6513996 DOI: 10.1038/s41598-019-43765-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Accepted: 04/30/2019] [Indexed: 02/02/2023] Open
Abstract
The cellular origins of vasa vasorum are ill-defined and may involve circulating or local progenitor cells. We previously discovered that murine aortic adventitia contains Sca-1+CD45+ progenitors that produce macrophages. Here we investigated whether they are also vasculogenic. In aortas of C57BL/6 mice, Sca-1+CD45+ cells were localised to adventitia and lacked surface expression of endothelial markers (<1% for CD31, CD144, TIE-2). In contrast, they did show expression of CD31, CD144, TIE-2 and VEGFR2 in atherosclerotic ApoE-/- aortas. Although Sca-1+CD45+ cells from C57BL/6 aorta did not express CD31, they formed CD31+ colonies in endothelial differentiation media and produced interconnecting vascular-like cords in Matrigel that contained both endothelial cells and a small population of macrophages, which were located at branch points. Transfer of aortic Sca-1+CD45+ cells generated endothelial cells and neovessels de novo in a hindlimb model of ischaemia and resulted in a 50% increase in perfusion compared to cell-free control. Similarly, their injection into the carotid adventitia of ApoE-/- mice produced donor-derived adventitial and peri-adventitial microvessels after atherogenic diet, suggestive of newly formed vasa vasorum. These findings show that beyond its content of macrophage progenitors, adventitial Sca-1+CD45+ cells are also vasculogenic and may be a source of vasa vasorum during atherogenesis.
Collapse
|
36
|
Relevance of Oxygen Concentration in Stem Cell Culture for Regenerative Medicine. Int J Mol Sci 2019; 20:ijms20051195. [PMID: 30857245 PMCID: PMC6429522 DOI: 10.3390/ijms20051195] [Citation(s) in RCA: 117] [Impact Index Per Article: 23.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Revised: 02/28/2019] [Accepted: 03/04/2019] [Indexed: 01/10/2023] Open
Abstract
The key hallmark of stem cells is their ability to self-renew while keeping a differentiation potential. Intrinsic and extrinsic cell factors may contribute to a decline in these stem cell properties, and this is of the most importance when culturing them. One of these factors is oxygen concentration, which has been closely linked to the maintenance of stemness. The widely used environmental 21% O2 concentration represents a hyperoxic non-physiological condition, which can impair stem cell behaviour by many mechanisms. The goal of this review is to understand these mechanisms underlying the oxygen signalling pathways and their negatively-associated consequences. This may provide a rationale for culturing stem cells under physiological oxygen concentration for stem cell therapy success, in the field of tissue engineering and regenerative medicine.
Collapse
|
37
|
Lee JG, Ha CH, Yoon B, Cheong SA, Kim G, Lee DJ, Woo DC, Kim YH, Nam SY, Lee SW, Sung YH, Baek IJ. Knockout rat models mimicking human atherosclerosis created by Cpf1-mediated gene targeting. Sci Rep 2019; 9:2628. [PMID: 30796231 PMCID: PMC6385241 DOI: 10.1038/s41598-019-38732-2] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2018] [Accepted: 01/08/2019] [Indexed: 12/19/2022] Open
Abstract
The rat is a time-honored traditional experimental model animal, but its use is limited due to the difficulty of genetic modification. Although engineered endonucleases enable us to manipulate the rat genome, it is not known whether the newly identified endonuclease Cpf1 system is applicable to rats. Here we report the first application of CRISPR-Cpf1 in rats and investigate whether Apoe knockout rat can be used as an atherosclerosis model. We generated Apoe- and/or Ldlr-deficient rats via CRISPR-Cpf1 system, characterized by high efficiency, successful germline transmission, multiple gene targeting capacity, and minimal off-target effect. The resulting Apoe knockout rats displayed hyperlipidemia and aortic lesions. In partially ligated carotid arteries of rats and mice fed with high-fat diet, in contrast to Apoe knockout mice showing atherosclerotic lesions, Apoe knockout rats showed only adventitial immune infiltrates comprising T lymphocytes and mainly macrophages with no plaque. In addition, adventitial macrophage progenitor cells (AMPCs) were more abundant in Apoe knockout rats than in mice. Our data suggest that the Cpf1 system can target single or multiple genes efficiently and specifically in rats with genetic heritability and that Apoe knockout rats may help understand initial-stage atherosclerosis.
Collapse
Affiliation(s)
- Jong Geol Lee
- ConveRgence mEDIcine research cenTer (CREDIT), Asan Institute for Life Sciences, Asan Medical Center, Seoul, Republic of Korea
- Biomedical Research Center, Asan Institute for Life Sciences, Asan Medical Center, Seoul, Republic of Korea
- College of Veterinary Medicine, Chungbuk National University, Cheongju, Republic of Korea
| | - Chang Hoon Ha
- Biomedical Research Center, Asan Institute for Life Sciences, Asan Medical Center, Seoul, Republic of Korea
- Department of Convergence Medicine, University of Ulsan College of Medicine, Asan Medical Center, Seoul, Republic of Korea
| | - Bohyun Yoon
- Biomedical Research Center, Asan Institute for Life Sciences, Asan Medical Center, Seoul, Republic of Korea
| | - Seung-A Cheong
- ConveRgence mEDIcine research cenTer (CREDIT), Asan Institute for Life Sciences, Asan Medical Center, Seoul, Republic of Korea
| | - Globinna Kim
- ConveRgence mEDIcine research cenTer (CREDIT), Asan Institute for Life Sciences, Asan Medical Center, Seoul, Republic of Korea
- Biomedical Research Center, Asan Institute for Life Sciences, Asan Medical Center, Seoul, Republic of Korea
- Department of Convergence Medicine, University of Ulsan College of Medicine, Asan Medical Center, Seoul, Republic of Korea
| | - Doo Jae Lee
- Biomedical Research Center, Asan Institute for Life Sciences, Asan Medical Center, Seoul, Republic of Korea
| | - Dong-Cheol Woo
- ConveRgence mEDIcine research cenTer (CREDIT), Asan Institute for Life Sciences, Asan Medical Center, Seoul, Republic of Korea
- Biomedical Research Center, Asan Institute for Life Sciences, Asan Medical Center, Seoul, Republic of Korea
- Department of Convergence Medicine, University of Ulsan College of Medicine, Asan Medical Center, Seoul, Republic of Korea
| | - Young-Hak Kim
- Department of Cardiology, University of Ulsan College of Medicine, Asan Medical Center, Seoul, Republic of Korea
| | - Sang-Yoon Nam
- College of Veterinary Medicine, Chungbuk National University, Cheongju, Republic of Korea
| | - Sang-Wook Lee
- ConveRgence mEDIcine research cenTer (CREDIT), Asan Institute for Life Sciences, Asan Medical Center, Seoul, Republic of Korea.
- Department of Radiation Oncology, University of Ulsan College of Medicine, Asan Medical Center, Seoul, Republic of Korea.
| | - Young Hoon Sung
- ConveRgence mEDIcine research cenTer (CREDIT), Asan Institute for Life Sciences, Asan Medical Center, Seoul, Republic of Korea.
- Biomedical Research Center, Asan Institute for Life Sciences, Asan Medical Center, Seoul, Republic of Korea.
- Department of Convergence Medicine, University of Ulsan College of Medicine, Asan Medical Center, Seoul, Republic of Korea.
| | - In-Jeoung Baek
- ConveRgence mEDIcine research cenTer (CREDIT), Asan Institute for Life Sciences, Asan Medical Center, Seoul, Republic of Korea.
- Biomedical Research Center, Asan Institute for Life Sciences, Asan Medical Center, Seoul, Republic of Korea.
- Department of Convergence Medicine, University of Ulsan College of Medicine, Asan Medical Center, Seoul, Republic of Korea.
| |
Collapse
|
38
|
Zhang X, Liu F, Bai P, Dong N, Chu C. Identification of key genes and pathways contributing to artery tertiary lymphoid organ development in advanced mouse atherosclerosis. Mol Med Rep 2019; 19:3071-3086. [PMID: 30816519 PMCID: PMC6423582 DOI: 10.3892/mmr.2019.9961] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Accepted: 02/12/2019] [Indexed: 01/13/2023] Open
Abstract
Atherosclerosis is a leading cause of mortality worldwide. Artery tertiary lymphoid organ (ATLO) neogenesis is affected by abdominal aorta atherosclerosis, which may lead to an immune response. The present study obtained microarray data to investigate the gene expression differences underlying the potential pathogenesis of atherosclerosis and to elucidate the mechanisms underlying ATLO development. Microarray studies of the aorta, plaques, adventitia, blood, spleen, renal lymph nodes and ATLO were downloaded from the Gene Expression Omnibus database. Differentially expressed genes (DEGs) were identified in aorta clusters and ATLO clusters. Kyoto Encyclopedia of Genes and Genomes enrichment and Gene Ontology (GO) analyses were conducted to predict the biological functions of DEGs. The results demonstrated that interleukin 7 receptor (Il7r), C‑X‑C motif chemokine ligand (Cxcl)16, Cxcl13, Cxcl12, C‑C motif chemokine receptor 2, C‑C motif chemokine ligand (Ccl)8, Ccl5 and Ccl12 may function through pathways associated with 'cytokine‑cytokine receptor interaction' and 'chemokine signaling pathway' in ATLO. Gene expression alterations were validated by reverse transcription‑quantitative polymerase chain reaction. Il7r appeared to be the central gene involved in these events, and chemokines and/or chemokine receptors were visualized by GO enrichment. A protein‑protein interaction network was constructed, which suggested that Il7r had a core function in all clusters. Taken together, the results indicated that Il7r upregulation may serve an important role in ATLO development via 'cytokine‑cytokine receptor interaction' and 'chemokine signaling pathway'. This may provide novel perspectives for understanding ATLO development and the regulation of the immune response in atherosclerosis.
Collapse
Affiliation(s)
- Xi Zhang
- Institute for Cardiovascular Prevention, Ludwig‑Maximilians University Munich, D‑80336 Munich, Germany
| | - Fayuan Liu
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| | - Peng Bai
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| | - Nianguo Dong
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| | - Chong Chu
- Institute for Cardiovascular Prevention, Ludwig‑Maximilians University Munich, D‑80336 Munich, Germany
| |
Collapse
|
39
|
Majesky MW. Vascular Development. Arterioscler Thromb Vasc Biol 2019; 38:e17-e24. [PMID: 29467221 DOI: 10.1161/atvbaha.118.310223] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Accepted: 01/22/2018] [Indexed: 12/13/2022]
Abstract
The vascular system forms as a branching network of endothelial cells that acquire identity as arterial, venous, hemogenic, or lymphatic. Endothelial specification depends on gene targets transcribed by Ets domain-containing factors, including Ets variant gene 2 (Etv2), together with the activity of chromatin-remodeling complexes containing Brahma-related gene-1 (Brg1). Once specified and assembled into vessels, mechanisms regulating lumen diameter and axial growth ensure that the structure of the branching vascular network matches the need for perfusion of target tissues. In addition, blood vessels provide important morphogenic cues that guide or direct the development of organs forming around them. As the embryo grows and lumen diameters increase, smooth muscle cells wrap around the nascent vessel walls to provide mechanical strength and vasomotor control of the circulation. Increasing mechanical stretch and wall strain promote smooth muscle cell differentiation via coupling of actin cytoskeletal remodeling to myocardin and serum response factor-dependent transcription. Remodeling of artery walls by developmental signaling pathways reappears in postnatal blood vessels during physiological and pathological adaptation to vessel wall injury, inflammation, or chronic hypoxia. Recent reports providing insights into major steps in vascular development are reviewed here with a particular emphasis on studies that have been recently published in Arteriosclerosis, Thrombosis, and Vascular Biology.
Collapse
Affiliation(s)
- Mark W Majesky
- From the Center for Developmental Biology and Regenerative Medicine, Seattle Children's Research Institute, WA; and Departments of Pediatrics and Pathology, University of Washington, Seattle.
| |
Collapse
|
40
|
James BD, Allen JB. Vascular Endothelial Cell Behavior in Complex Mechanical Microenvironments. ACS Biomater Sci Eng 2018; 4:3818-3842. [PMID: 33429612 DOI: 10.1021/acsbiomaterials.8b00628] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The vascular mechanical microenvironment consists of a mixture of spatially and temporally changing mechanical forces. This exposes vascular endothelial cells to both hemodynamic forces (fluid flow, cyclic stretching, lateral pressure) and vessel forces (basement membrane mechanical and topographical properties). The vascular mechanical microenvironment is "complex" because these forces are dynamic and interrelated. Endothelial cells sense these forces through mechanosensory structures and transduce them into functional responses via mechanotransduction pathways, culminating in behavior directly affecting vascular health. Recent in vitro studies have shown that endothelial cells respond in nuanced and unique ways to combinations of hemodynamic and vessel forces as compared to any single mechanical force. Understanding the interactive effects of the complex mechanical microenvironment on vascular endothelial behavior offers the opportunity to design future biomaterials and biomedical devices from the bottom-up by engineering for the cellular response. This review describes and defines (1) the blood vessel structure, (2) the complex mechanical microenvironment of the vascular endothelium, (3) the process in which vascular endothelial cells sense mechanical forces, and (4) the effect of mechanical forces on vascular endothelial cells with specific attention to recent works investigating the influence of combinations of mechanical forces. We conclude this review by providing our perspective on how the field can move forward to elucidate the effects of the complex mechanical microenvironment on vascular endothelial cell behavior.
Collapse
Affiliation(s)
- Bryan D James
- Department of Materials Science & Engineering, University of Florida, 100 Rhines Hall, PO Box 116400, Gainesville, Florida 32611, United States.,Institute for Computational Engineering, University of Florida, 300 Weil Hall, PO Box 116550, Gainesville, Florida 32611, United States
| | - Josephine B Allen
- Department of Materials Science & Engineering, University of Florida, 100 Rhines Hall, PO Box 116400, Gainesville, Florida 32611, United States.,Institute for Cell and Tissue Science and Engineering, 300 Weil Hall, PO Box 116550, Gainesville, Florida 32611, United States
| |
Collapse
|
41
|
Chen T, Wu Y, Gu W, Xu Q. Response of vascular mesenchymal stem/progenitor cells to hyperlipidemia. Cell Mol Life Sci 2018; 75:4079-4091. [PMID: 29946805 PMCID: PMC11105685 DOI: 10.1007/s00018-018-2859-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2018] [Revised: 06/14/2018] [Accepted: 06/20/2018] [Indexed: 12/29/2022]
Abstract
Hyperlipidemia is a risk factor for atherosclerosis that is characterized by lipid accumulation, inflammatory cell infiltration, and smooth muscle cell proliferation. It is well known that hyperlipidemia is a stimulator for endothelial dysfunction and smooth muscle cell migration during vascular disease development. Recently, it was found that vessel wall contains a variable number of mesenchymal stem cells (MSCs) that are quiescent in physiological conditions, but can be activated by a variety of stimuli, e.g., increased lipid level or hyperlipidemia. Vascular MSCs displayed characteristics of stem cells which can differentiate into several types of cells, e.g., smooth muscle cells, adipocytic, chondrocytic, and osteocytic lineages. In vitro, lipid loading can induce MSC migration and chemokines secretion. After MSC migration into the intima, they play an essential role in inflammatory response and cell accumulation during the initiation and progression of atherosclerosis. In addition, MSC transplantation has been explored as a therapeutic approach to treat atherosclerosis in animal models. In this review, we aim to summarize current progress in characterizing the identity of vascular MSCs and to discuss the mechanisms involved in the response of vascular stem/progenitor cells to lipid loading, as well as to explore therapeutic strategies for vascular diseases and shed new light on regenerative medicine.
Collapse
Affiliation(s)
- Ting Chen
- Department of Cardiology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Zhejiang, China
| | - Yutao Wu
- Department of Cardiology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Zhejiang, China
| | - Wenduo Gu
- School of Cardiovascular Medicine and Sciences, King's BHF Centre, 125 Coldharbour Lane, London, SE5 9NU, UK
| | - Qingbo Xu
- Department of Cardiology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Zhejiang, China.
- School of Cardiovascular Medicine and Sciences, King's BHF Centre, 125 Coldharbour Lane, London, SE5 9NU, UK.
| |
Collapse
|
42
|
Novikova OA, Laktionov PP, Karpenko AA. The roles of mechanotransduction, vascular wall cells, and blood cells in atheroma induction. Vascular 2018; 27:98-109. [PMID: 30157718 DOI: 10.1177/1708538118796063] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
BACKGROUND This paper describes and analyzes the cellular and molecular mechanisms underlying atherosclerosis development. In particular, the roles of monocytes/macrophages, smooth muscle cells, and vascular endothelium in the formation of stable/unstable atheromatous plaques, and the contributions of some processes to atheroma formation. METHODS AND RESULTS In this study we analyzed endothelium: function, dysfunction, and involvement into atherogenesis; cell proteins mediating mechanotransduction; proatherogenic role of monocytes; the role of macrophages in the development of unstable atheromatous plaques and smooth muscle cell origin in atherosclerosis. Smooth muscle cell phenotypic switching; their functioning; the ability to retain cholesterol and lipoproteins as well as secretion of pro- and anti-inflammatory molecules and extracellular matrix proteins, their response to extracellular stimuli secreted by other cells, and the effect of smooth muscle cells on the cells surrounding atheromatous plaques are fundamentally important for the insight into atherosclerosis molecular basis. CONCLUSION Atheromatous plaque transcriptome studies will be helpful in the identification of the key genes involved in atheroma transformation and development as well as discovery of the new targets for diagnosis and therapy.
Collapse
Affiliation(s)
- Olga A Novikova
- 1 Department of Vascular and Hybrid Surgery, National Medical Research Institute Academician E.N. Meshalkin National Medical Research Center, Ministry of Health of Russian Federation, Novosibirsk, Russian Federation
| | - Pavel P Laktionov
- 2 Laboratory of Molecular Medicine, SB RAS Institute of Chemical Biology and Fundamental Medicine; E.N. Meshalkin National Medical Research Center, Ministry of Health of Russian Federation, Novosibirsk, Russian Federation.,3 E.N. Meshalkin National Medical Research Center, Ministry of Health of Russian Federation, Novosibirsk, Russian Federation
| | - Andrey A Karpenko
- 1 Department of Vascular and Hybrid Surgery, National Medical Research Institute Academician E.N. Meshalkin National Medical Research Center, Ministry of Health of Russian Federation, Novosibirsk, Russian Federation
| |
Collapse
|
43
|
Novikova OA, Laktionov PP, Karpenko AA. Mechanisms Underlying Atheroma Induction: The Roles of Mechanotransduction, Vascular Wall Cells, and Blood Cells. Ann Vasc Surg 2018; 53:224-233. [PMID: 30012457 DOI: 10.1016/j.avsg.2018.04.030] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2018] [Revised: 04/13/2018] [Accepted: 04/19/2018] [Indexed: 02/06/2023]
Abstract
BACKGROUND The objective of this article is to review cellular mechanism of atherosclerosis (AS) development. The pathogenesis of AS comprises a sequence of biological events leading to build up of a dense or loose atheromatous plaque (AP). METHODS In this review, we tried to attempt to analyze the cellular mechanisms underlying AS development, including the roles of monocytes/macrophages and smooth muscle cells in the formation of stable/unstable APs. RESULTS As a rule, APs are formed in the regions with irregular blood flow; both mechanical perturbations of the vascular wall and several biological events contribute to plaque formation. Blood lipid/lipoprotein deposition, recruitment of monocytes/macrophages, foam cell formation, migration and proliferation of smooth muscle cells, secretion of extracellular matrix, and formation of the connective tissue in plaques are among the latter events. CONCLUSIONS The review briefs the contributions of different processes to atheroma formation and describes the molecular mechanisms involved in AS development. AP transcriptome studies will be helpful in the identification of the key genes involved in atheroma transformation and development as well as discovery of the new targets for diagnosis and therapy.
Collapse
Affiliation(s)
- Olga A Novikova
- E.N. Meshalkin National Medical Research Center, Ministry of Health of Russian Federation, Novosibirsk, Russian Federation.
| | - Pavel P Laktionov
- Laboratory of Molecular Medicine, SB RAS Institute of Chemical Biology and Fundamental Medicine, E.N. Meshalkin National Medical Research Center, Ministry of Health of Russian Federation, Novosibirsk, Russian Federation
| | - Andrey A Karpenko
- E.N. Meshalkin National Medical Research Center, Ministry of Health of Russian Federation, Novosibirsk, Russian Federation
| |
Collapse
|
44
|
Maguire EM, Pearce SWA, Xiao Q. Foam cell formation: A new target for fighting atherosclerosis and cardiovascular disease. Vascul Pharmacol 2018; 112:54-71. [PMID: 30115528 DOI: 10.1016/j.vph.2018.08.002] [Citation(s) in RCA: 187] [Impact Index Per Article: 31.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Revised: 07/17/2018] [Accepted: 08/03/2018] [Indexed: 12/23/2022]
Abstract
During atherosclerosis, the gradual accumulation of lipids into the subendothelial space of damaged arteries results in several lipid modification processes followed by macrophage uptake in the arterial wall. The way in which these modified lipoproteins are dealt with determines the likelihood of cholesterol accumulation within the monocyte-derived macrophage and thus its transformation into the foam cell that makes up the characteristic fatty streak observed in the early stages of atherosclerosis. The unique expression of chemokine receptors and cellular adhesion molecules expressed on the cell surface of monocytes points to a particular extravasation route that they can take to gain entry into atherosclerotic site, in order to undergo differentiation into the phagocytic macrophage. Indeed several GWAS and animal studies have identified key genes and proteins required for monocyte recruitment as well cholesterol handling involving lipid uptake, cholesterol esterification and cholesterol efflux. A re-examination of the previously accepted paradigm of macrophage foam cell origin has been called into question by recent studies demonstrating shared expression of scavenger receptors, cholesterol transporters and pro-inflammatory cytokine release by alternative cell types present in the neointima, namely; endothelial cells, vascular smooth muscle cells and stem/progenitor cells. Thus, therapeutic targets aimed at a more heterogeneous foam cell population with shared functions, such as enhanced protease activity, and signalling pathways, mediated by non-coding RNA molecules, may provide greater therapeutic outcome in patients. Finally, studies targeting each aspect of foam cell formation and death using both genetic knock down and pharmacological inhibition have provided researchers with a clearer understanding of the cellular processes at play, as well as helped researchers to identify key molecular targets, which may hold significant therapeutic potential in the future.
Collapse
Affiliation(s)
- Eithne M Maguire
- Centre for Clinical Pharmacology, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, EC1M 6BQ, UK
| | - Stuart W A Pearce
- Centre for Clinical Pharmacology, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, EC1M 6BQ, UK
| | - Qingzhong Xiao
- Centre for Clinical Pharmacology, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, EC1M 6BQ, UK.
| |
Collapse
|
45
|
Yu B, Chen Q, Le Bras A, Zhang L, Xu Q. Vascular Stem/Progenitor Cell Migration and Differentiation in Atherosclerosis. Antioxid Redox Signal 2018; 29:219-235. [PMID: 28537424 DOI: 10.1089/ars.2017.7171] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
SIGNIFICANCE Atherosclerosis is a major cause for the death of human beings, and it takes place in large- and middle-sized arteries. The pathogenesis of the disease has been widely investigated, and new findings on vascular stem/progenitor cells could have an impact on vascular regeneration. Recent Advances: Recent studies have shown that abundant stem/progenitor cells present in the vessel wall are mainly responsible for cell accumulation in the intima during vascular remodeling. It has been demonstrated that the mobilization and recruitment of tissue-resident stem/progenitor cells give rise to endothelial and smooth muscle cells (SMCs) that participate in vascular repair and remodeling such as neointimal hyperplasia and arteriosclerosis. Interestingly, cell lineage tracing studies indicate that a large proportion of SMCs in neointimal lesions is derived from adventitial stem/progenitor cells. CRITICAL ISSUES The influence of stem/progenitor cell behavior on the development of atherosclerosis is crucial. An understanding of the regulatory mechanisms that control stem/progenitor cell migration and differentiation is essential for stem/progenitor cell therapy for vascular diseases and regenerative medicine. FUTURE DIRECTIONS Identification of the detailed process driving the migration and differentiation of vascular stem/progenitor cells during the development of atherosclerosis, discovery of the environmental cues, and signaling pathways that control cell fate within the vasculature will facilitate the development of new preventive and therapeutic strategies to combat atherosclerosis. Antioxid. Redox Signal. 00, 000-000.
Collapse
Affiliation(s)
- Baoqi Yu
- 1 Department of Emergency, Guangdong General Hospital , Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Qishan Chen
- 2 Department of Cardiology, The First Affiliated Hospital, School of Medicine, Zhejiang University , Hangzhou, China
| | - Alexandra Le Bras
- 3 Cardiovascular Division, King's College London BHF Centre , London, United Kingdom
| | - Li Zhang
- 2 Department of Cardiology, The First Affiliated Hospital, School of Medicine, Zhejiang University , Hangzhou, China
| | - Qingbo Xu
- 3 Cardiovascular Division, King's College London BHF Centre , London, United Kingdom
| |
Collapse
|
46
|
Affiliation(s)
- Yao Xie
- From the Cardiovascular Division, King's College London BHF Centre, London, UK (Y.X., Q.X.); and Institute of Respiratory, Xinqiao Hospital, Third Military Medical University, Chongqing, China (Y.F.)
| | - Ye Fan
- From the Cardiovascular Division, King's College London BHF Centre, London, UK (Y.X., Q.X.); and Institute of Respiratory, Xinqiao Hospital, Third Military Medical University, Chongqing, China (Y.F.)
| | - Qingbo Xu
- From the Cardiovascular Division, King's College London BHF Centre, London, UK (Y.X., Q.X.); and Institute of Respiratory, Xinqiao Hospital, Third Military Medical University, Chongqing, China (Y.F.).
| |
Collapse
|
47
|
Steinbach SK, Wang T, Carruthers MH, Li A, Besla R, Johnston AP, Robbins CS, Husain M. Aortic Sca-1 + Progenitor Cells Arise from the Somitic Mesoderm Lineage in Mice. Stem Cells Dev 2018; 27:888-897. [PMID: 29717623 DOI: 10.1089/scd.2018.0038] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Sca-1+ progenitor cells in the adult mouse aorta are known to generate vascular smooth muscle cells (VSMCs), but their embryological origins and temporal abundance are not known. Using tamoxifen-inducible Myf5-CreER mice, we demonstrate that Sca-1+ adult aortic cells arise from the somitic mesoderm beginning at E8.5 and continue throughout somitogenesis. Myf5 lineage-derived Sca-1+ cells greatly expand in situ, starting at 4 weeks of age, and become a major source of aortic Sca-1+ cells by 6 weeks of age. Myf5-derived adult aortic cells are capable of forming multicellular sphere-like structures in vitro and express the pluripotency marker Sox2. Exposure to transforming growth factor-β3 induces these spheres to differentiate into calponin-expressing VSMCs. Pulse-chase experiments using tamoxifen-inducible Sox2-CreERT2 mice at 8 weeks of age demonstrate that ∼35% of all adult aortic Sca-1+ cells are derived from Sox2+ cells. The present study demonstrates that aortic Sca-1+ progenitor cells are derived from the somitic mesoderm formed at the earliest stages of somitogenesis and from Sox2-expressing progenitors in adult mice.
Collapse
Affiliation(s)
- Sarah K Steinbach
- 1 Division of Experimental Therapeutics, Toronto General Hospital Research Institute, University Health Network , Toronto, Canada .,2 McEwen Centre for Regenerative Medicine, University Health Network , Toronto, Canada
| | - Tao Wang
- 1 Division of Experimental Therapeutics, Toronto General Hospital Research Institute, University Health Network , Toronto, Canada .,3 Department of Physiology, University of Toronto , Toronto, Canada .,4 Cardiovascular Sciences Collaborative Program, University of Toronto , Toronto, Canada
| | - Martha H Carruthers
- 1 Division of Experimental Therapeutics, Toronto General Hospital Research Institute, University Health Network , Toronto, Canada
| | - Angela Li
- 5 Division of Advanced Diagnostics, Toronto General Hospital Research Institute, University Health Network , Toronto, Canada .,6 Ted Rogers Centre for Heart Research, University Health Network , Toronto, Canada .,7 Peter Munk Cardiac Centre, University Health Network , Toronto, Canada .,8 Department of Immunology, University of Toronto , Toronto, Canada
| | - Rickvinder Besla
- 5 Division of Advanced Diagnostics, Toronto General Hospital Research Institute, University Health Network , Toronto, Canada .,6 Ted Rogers Centre for Heart Research, University Health Network , Toronto, Canada .,7 Peter Munk Cardiac Centre, University Health Network , Toronto, Canada .,9 Department of Laboratory Medicine and Pathobiology, University of Toronto , Toronto, Canada
| | | | - Clinton S Robbins
- 5 Division of Advanced Diagnostics, Toronto General Hospital Research Institute, University Health Network , Toronto, Canada .,6 Ted Rogers Centre for Heart Research, University Health Network , Toronto, Canada .,7 Peter Munk Cardiac Centre, University Health Network , Toronto, Canada .,8 Department of Immunology, University of Toronto , Toronto, Canada .,9 Department of Laboratory Medicine and Pathobiology, University of Toronto , Toronto, Canada
| | - Mansoor Husain
- 1 Division of Experimental Therapeutics, Toronto General Hospital Research Institute, University Health Network , Toronto, Canada .,2 McEwen Centre for Regenerative Medicine, University Health Network , Toronto, Canada .,3 Department of Physiology, University of Toronto , Toronto, Canada .,4 Cardiovascular Sciences Collaborative Program, University of Toronto , Toronto, Canada .,6 Ted Rogers Centre for Heart Research, University Health Network , Toronto, Canada .,7 Peter Munk Cardiac Centre, University Health Network , Toronto, Canada .,9 Department of Laboratory Medicine and Pathobiology, University of Toronto , Toronto, Canada .,11 Department of Medicine, University of Toronto , Toronto, Canada
| |
Collapse
|
48
|
Pseudolaric acid B attenuates atherosclerosis progression and inflammation by suppressing PPARγ-mediated NF-κB activation. Int Immunopharmacol 2018; 59:76-85. [DOI: 10.1016/j.intimp.2018.03.041] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2017] [Revised: 03/20/2018] [Accepted: 03/31/2018] [Indexed: 12/12/2022]
|
49
|
Abstract
Vascular, resident stem cells are present in all 3 layers of the vessel wall; they play a role in vascular formation under physiological conditions and in remodeling in pathological situations. Throughout development and adult early life, resident stem cells participate in vessel formation through vasculogenesis and angiogenesis. In adults, the vascular stem cells are mostly quiescent in their niches but can be activated in response to injury and participate in endothelial repair and smooth muscle cell accumulation to form neointima. However, delineation of the characteristics and of the migration and differentiation behaviors of these stem cells is an area of ongoing investigation. A set of genetic mouse models for cell lineage tracing has been developed to specifically address the nature of these cells and both migration and differentiation processes during physiological angiogenesis and in vascular diseases. This review summarizes the current knowledge on resident stem cells, which has become more defined and refined in vascular biology research, thus contributing to the development of new potential therapeutic strategies to promote endothelial regeneration and ameliorate vascular disease development.
Collapse
Affiliation(s)
- Li Zhang
- From the Department of Cardiology, the First Affiliated Hospital, School of Medicine, Zhejiang University, China (L.Z., T.C., Q.X.)
| | - Shirin Issa Bhaloo
- School of Cardiovascular Medicine and Sciences, King’s College London, BHF Centre, United Kingdom (S.I.B., Q.X.)
| | - Ting Chen
- From the Department of Cardiology, the First Affiliated Hospital, School of Medicine, Zhejiang University, China (L.Z., T.C., Q.X.)
| | - Bin Zhou
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academic of Sciences (B.Z.)
| | - Qingbo Xu
- From the Department of Cardiology, the First Affiliated Hospital, School of Medicine, Zhejiang University, China (L.Z., T.C., Q.X.)
- School of Cardiovascular Medicine and Sciences, King’s College London, BHF Centre, United Kingdom (S.I.B., Q.X.)
| |
Collapse
|
50
|
Wagenseil JE. Bio-chemo-mechanics of thoracic aortic aneurysms. CURRENT OPINION IN BIOMEDICAL ENGINEERING 2018; 5:50-57. [PMID: 29911202 DOI: 10.1016/j.cobme.2018.01.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Most thoracic aortic aneurysms (TAAs) occur in the ascending aorta. This review focuses on the unique bio-chemo-mechanical environment that makes the ascending aorta susceptible to TAA. The environment includes solid mechanics, fluid mechanics, cell phenotype, and extracellular matrix composition. Advances in solid mechanics include quantification of biaxial deformation and complex failure behavior of the TAA wall. Advances in fluid mechanics include imaging and modeling of hemodynamics that may lead to TAA formation. For cell phenotype, studies demonstrate changes in cell contractility that may serve to sense mechanical changes and transduce chemical signals. Studies on matrix defects highlight the multi-factorial nature of the disease. We conclude that future work should integrate the effects of bio-chemo-mechanical factors for improved TAA treatment.
Collapse
Affiliation(s)
- Jessica E Wagenseil
- Dept. of Mechanical Engineering and Materials Science, Washington University, St. Louis, MO
| |
Collapse
|