1
|
Borén J, Packard CJ, Binder CJ. Apolipoprotein B-containing lipoproteins in atherogenesis. Nat Rev Cardiol 2025:10.1038/s41569-024-01111-0. [PMID: 39743565 DOI: 10.1038/s41569-024-01111-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/25/2024] [Indexed: 01/04/2025]
Abstract
Apolipoprotein B (apoB) is the main structural protein of LDLs, triglyceride-rich lipoproteins and lipoprotein(a), and is crucial for their formation, metabolism and atherogenic properties. In this Review, we present insights into the role of apoB-containing lipoproteins in atherogenesis, with an emphasis on the mechanisms leading to plaque initiation and growth. LDL, the most abundant cholesterol-rich lipoprotein in plasma, is causally linked to atherosclerosis. LDL enters the artery wall by transcytosis and, in vulnerable regions, is retained in the subendothelial space by binding to proteoglycans via specific sites on apoB. A maladaptive response ensues. This response involves modification of LDL particles, which promotes LDL retention and the release of bioactive lipid products that trigger inflammatory responses in vascular cells, as well as adaptive immune responses. Resident and recruited macrophages take up modified LDL, leading to foam cell formation and ultimately cell death due to inadequate cellular lipid handling. Accumulation of dead cells and cholesterol crystallization are hallmarks of the necrotic core of atherosclerotic plaques. Other apoB-containing lipoproteins, although less abundant, have substantially greater atherogenicity per particle than LDL. These lipoproteins probably contribute to atherogenesis in a similar way to LDL but might also induce additional pathogenic mechanisms. Several targets for intervention to reduce the rate of atherosclerotic lesion initiation and progression have now been identified, including lowering plasma lipoprotein levels and modulating the maladaptive responses in the artery wall.
Collapse
Affiliation(s)
- Jan Borén
- Department of Molecular and Clinical Medicine, University of Gothenburg, Gothenburg, Sweden.
| | - Chris J Packard
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, UK
| | - Christoph J Binder
- Department of Laboratory Medicine, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
2
|
Ghasemzadeh Rahbardar M, Fazeli Kakhki H, Hosseinzadeh H. Ziziphus jujuba (Jujube) in Metabolic Syndrome: From Traditional Medicine to Scientific Validation. Curr Nutr Rep 2024; 13:845-866. [PMID: 39354208 DOI: 10.1007/s13668-024-00581-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/13/2024] [Indexed: 10/03/2024]
Abstract
PURPOSE OF REVIEW This review evaluates the therapeutic potential of Ziziphus jujuba and its main components in managing complications of metabolic syndrome, including diabetes, dyslipidemia, obesity, and hypertension. RECENT FINDINGS The reviewed studies provide evidence supporting the use of Z. jujuba and its main components (lupeol and betulinic acid) as natural treatments for complications of metabolic syndrome. These substances enhance glucose uptake through the activation of signaling pathways such as phosphoinositide 3-kinase (PI3K)/protein kinase B (Akt), reduce hepatic glucose synthesis, and increase glucose uptake by adipocytes and skeletal muscle cells. They also improve insulin sensitivity by modulating AMP-activated protein kinase (AMPK) activity and regulating insulin signaling proteins and glucose transporters. In the field of dyslipidemia, they inhibit triglyceride synthesis, lipid accumulation, and adipogenic enzymes, while influencing key signaling pathways involved in adipogenesis. Z. jujuba and its constituents demonstrate anti-adipogenic effects, inhibiting lipid accumulation and modulating adipogenic enzymes and transcription factors. They also exhibit positive effects on endothelial function and vascular health by enhancing endothelial nitric oxide synthase (eNOS) expression, NO production, and antioxidant enzyme activity. Z. jujuba, lupeol, and betulinic acid hold promise as natural treatments for complications of metabolic syndrome. They improve glucose metabolism, insulin sensitivity, and lipid profiles while exerting anti-adipogenic effects and enhancing endothelial function. However, further research is needed to elucidate the mechanisms and confirm their efficacy in clinical trials. These natural compounds offer potential as alternative therapies for metabolic disorders and contribute to the growing body of evidence supporting the use of natural medicines in their management.
Collapse
Affiliation(s)
| | - Homa Fazeli Kakhki
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hossein Hosseinzadeh
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
3
|
Song J, Cao C, Wang Z, Li H, Yang L, Kang J, Meng H, Li L, Liu J. Mechanistic insights into the regression of atherosclerotic plaques. Front Physiol 2024; 15:1473709. [PMID: 39628943 PMCID: PMC11611857 DOI: 10.3389/fphys.2024.1473709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Accepted: 11/04/2024] [Indexed: 12/06/2024] Open
Abstract
Atherosclerosis is a major contributor to cardiovascular diseases and mortality globally. The progression of atherosclerotic disease results in the expansion of plaques and the development of necrotic cores. Subsequent plaque rupture can lead to thrombosis, occluding blood vessels, and end-organ ischemia with consequential ischemic injury. Atherosclerotic plaques are formed by the accumulation of lipid particles overloaded in the subendothelial layer of blood vessels. Abnormally elevated blood lipid levels and impaired endothelial function are the initial factors leading to atherosclerosis. The atherosclerosis research has never been interrupted, and the previous view was that the pathogenesis of atherosclerosis is an irreversible and chronic process. However, recent studies have found that the progression of atherosclerosis can be halted when patients' blood lipid levels are reversed to normal or lower. A large number of studies indicates that it can inhibit the progression of atherosclerosis lesions and promote the regression of atherosclerotic plaques and necrotic cores by lowering blood lipid levels, improving the repair ability of vascular endothelial cells, promoting the reverse cholesterol transport in plaque foam cells and enhancing the ability of macrophages to phagocytize and clear the necrotic core of plaque. This article reviews the progress of research on the mechanism of atherosclerotic plaque regression. Our goal is to provide guidance for developing better therapeutic approaches to atherosclerosis by reviewing and analyzing the latest scientific findings.
Collapse
Affiliation(s)
- Jianshu Song
- National Research Center for Clinical Medicine of Cardiovascular Diseases of Traditional Chinese Medicine, Beijing Key Laboratory of Traditional Chinese Medicine Pharmacology, Xiyuan Hospital, Chinese Academy of Traditional Chinese Medicine, Beijing, China
- Research Institute of Traditional Chinese Medicine of Guangdong Pharmaceutical University, Guangzhou, China
| | - Ce Cao
- National Research Center for Clinical Medicine of Cardiovascular Diseases of Traditional Chinese Medicine, Beijing Key Laboratory of Traditional Chinese Medicine Pharmacology, Xiyuan Hospital, Chinese Academy of Traditional Chinese Medicine, Beijing, China
| | - Ziyan Wang
- National Research Center for Clinical Medicine of Cardiovascular Diseases of Traditional Chinese Medicine, Beijing Key Laboratory of Traditional Chinese Medicine Pharmacology, Xiyuan Hospital, Chinese Academy of Traditional Chinese Medicine, Beijing, China
| | - Haoran Li
- National Research Center for Clinical Medicine of Cardiovascular Diseases of Traditional Chinese Medicine, Beijing Key Laboratory of Traditional Chinese Medicine Pharmacology, Xiyuan Hospital, Chinese Academy of Traditional Chinese Medicine, Beijing, China
- Research Institute of Traditional Chinese Medicine of Guangdong Pharmaceutical University, Guangzhou, China
| | - Lili Yang
- National Research Center for Clinical Medicine of Cardiovascular Diseases of Traditional Chinese Medicine, Beijing Key Laboratory of Traditional Chinese Medicine Pharmacology, Xiyuan Hospital, Chinese Academy of Traditional Chinese Medicine, Beijing, China
| | - Jing Kang
- National Research Center for Clinical Medicine of Cardiovascular Diseases of Traditional Chinese Medicine, Beijing Key Laboratory of Traditional Chinese Medicine Pharmacology, Xiyuan Hospital, Chinese Academy of Traditional Chinese Medicine, Beijing, China
| | - Hongxu Meng
- National Research Center for Clinical Medicine of Cardiovascular Diseases of Traditional Chinese Medicine, Beijing Key Laboratory of Traditional Chinese Medicine Pharmacology, Xiyuan Hospital, Chinese Academy of Traditional Chinese Medicine, Beijing, China
| | - Lei Li
- National Research Center for Clinical Medicine of Cardiovascular Diseases of Traditional Chinese Medicine, Beijing Key Laboratory of Traditional Chinese Medicine Pharmacology, Xiyuan Hospital, Chinese Academy of Traditional Chinese Medicine, Beijing, China
| | - Jianxun Liu
- National Research Center for Clinical Medicine of Cardiovascular Diseases of Traditional Chinese Medicine, Beijing Key Laboratory of Traditional Chinese Medicine Pharmacology, Xiyuan Hospital, Chinese Academy of Traditional Chinese Medicine, Beijing, China
| |
Collapse
|
4
|
Xu ZC, Pang LM, Chen M, Hu GQ. Establishment and validation of a nomogram model containing a triglyceride-glucose index and neutrophil-to-high-density lipoprotein ratio for predicting major adverse cardiac events in patients with ST-segment elevation myocardial infarction. J Int Med Res 2024; 52:3000605241258181. [PMID: 39291425 PMCID: PMC11418434 DOI: 10.1177/03000605241258181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Accepted: 05/07/2024] [Indexed: 09/19/2024] Open
Abstract
OBJECTIVE To analyze the predictive value of the triglyceride-glucose (TyG) index and neutrophil-to-high-density lipoprotein ratio (NHR) for in-hospital major adverse cardiac events (MACE) after percutaneous coronary intervention (PCI) in patients with acute ST-segment elevation myocardial infarction (STEMI), and to establish an associated nomogram model. METHODS In this retrospective study, we collected data from consecutive STEMI patients who underwent PCI from October 2019 to June 2023 at the Second People's Hospital of Hefei and the Second Affiliated Hospital of Anhui Medical University, as training and validation sets. Stepwise regression and multivariate logistic regression analysis were performed to screen independent risk factors, and a nomogram model was constructed and evaluated for its predictive efficacy. RESULTS The TyG index, NHR, urea, diastolic blood pressure, hypertension, and left ventricular ejection fraction were independent risk factors for in-hospital MACE after PCI, and were used to construct the nomogram model. The C-index of the training and validation sets were 0.799 and 0.753, respectively, suggesting that the model discriminated well. Calibration and clinical decision curves also demonstrated that the nomogram model had good predictive power. CONCLUSION In STEMI patients, increased TyG index and NHR were closely related to the occurrence of in-hospital MACE after PCI. Our constructed nomogram model has some value for predicting the occurrence of in-hospital MACE in STEMI patients.
Collapse
Affiliation(s)
- Zhi-Chao Xu
- Department of Cardiology, The Second People’s Hospital of Hefei, Hefei Hospital Affiliated to Anhui Medical University, Hefei, China
| | - La-Mei Pang
- Department of Drug Research Center, Jing-dong Fang Hospital Hefei, Hefei, China
| | - Min Chen
- Department of Cardiology, The Second People’s Hospital of Hefei, Hefei Hospital Affiliated to Anhui Medical University, Hefei, China
| | - Guang-Quan Hu
- Department of Cardiology, The Second Affiliated Hospital of Anhui Medical University, Hefei, China
| |
Collapse
|
5
|
Carramolino L, Albarrán-Juárez J, Markov A, Hernández-SanMiguel E, Sharysh D, Cumbicus V, Morales-Cano D, Labrador-Cantarero V, Møller PL, Nogales P, Benguria A, Dopazo A, Sanchez-Cabo F, Torroja C, Bentzon JF. Cholesterol lowering depletes atherosclerotic lesions of smooth muscle cell-derived fibromyocytes and chondromyocytes. NATURE CARDIOVASCULAR RESEARCH 2024; 3:203-220. [PMID: 39196190 DOI: 10.1038/s44161-023-00412-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 12/14/2023] [Indexed: 08/29/2024]
Abstract
Drugs that lower plasma apolipoprotein B (ApoB)-containing lipoproteins are central to treating advanced atherosclerosis and provide partial protection against clinical events. Previous research showed that lowering ApoB-containing lipoproteins stops plaque inflammation, but how these drugs affect the heterogeneous population of plaque cells derived from smooth muscle cells (SMCs) is unknown. SMC-derived cells are the main cellular component of atherosclerotic lesions and the source of structural components that determine the size of plaques and their propensity to rupture and trigger thrombosis, the proximate cause of heart attack and stroke. Using lineage tracing and single-cell techniques to investigate the full SMC-derived cellular compartment in progressing and regressing plaques in mice, here we show that lowering ApoB-containing lipoproteins reduces nuclear factor kappa-light-chain-enhancer of activated B cells signaling in SMC-derived fibromyocytes and chondromyocytes and leads to depletion of these abundant cell types from plaques. These results uncover an important mechanism through which cholesterol-lowering drugs can achieve plaque regression.
Collapse
MESH Headings
- Animals
- Plaque, Atherosclerotic/pathology
- Plaque, Atherosclerotic/metabolism
- Myocytes, Smooth Muscle/drug effects
- Myocytes, Smooth Muscle/pathology
- Myocytes, Smooth Muscle/metabolism
- Atherosclerosis/pathology
- Atherosclerosis/drug therapy
- Atherosclerosis/metabolism
- Disease Models, Animal
- Chondrocytes/drug effects
- Chondrocytes/pathology
- Chondrocytes/metabolism
- Signal Transduction/drug effects
- Mice, Inbred C57BL
- Anticholesteremic Agents/pharmacology
- Anticholesteremic Agents/therapeutic use
- Male
- Cholesterol/metabolism
- Cholesterol/blood
- Mice
- Aortic Diseases/pathology
- Aortic Diseases/metabolism
- Single-Cell Analysis
- Muscle, Smooth, Vascular/drug effects
- Muscle, Smooth, Vascular/pathology
- Muscle, Smooth, Vascular/metabolism
- NF-kappa B/metabolism
Collapse
Affiliation(s)
| | - Julián Albarrán-Juárez
- Atherosclerosis Research Unit, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Anton Markov
- Atherosclerosis Research Unit, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | | | - Diana Sharysh
- Atherosclerosis Research Unit, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Vanessa Cumbicus
- Centro Nacional de Investigaciones Cardiovasculares, Madrid, Spain
| | - Daniel Morales-Cano
- Centro Nacional de Investigaciones Cardiovasculares, Madrid, Spain
- Atherosclerosis Research Unit, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | | | | | - Paula Nogales
- Centro Nacional de Investigaciones Cardiovasculares, Madrid, Spain
| | - Alberto Benguria
- Centro Nacional de Investigaciones Cardiovasculares, Madrid, Spain
| | - Ana Dopazo
- Centro Nacional de Investigaciones Cardiovasculares, Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares, Madrid, Spain
| | | | - Carlos Torroja
- Centro Nacional de Investigaciones Cardiovasculares, Madrid, Spain
| | - Jacob F Bentzon
- Centro Nacional de Investigaciones Cardiovasculares, Madrid, Spain.
- Atherosclerosis Research Unit, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark.
- Steno Diabetes Center Aarhus, Aarhus University Hospital, Aarhus, Denmark.
- Department of Cardiology, Aarhus University Hospital, Aarhus, Denmark.
| |
Collapse
|
6
|
Li X, Zheng T, Zhang Y, Zhao Y, Liu F, Dai S, Liu X, Zhang M. Dickkopf-1 promotes vascular smooth muscle cell foam cell formation and atherosclerosis development through CYP4A11/SREBP2/ABCA1. FASEB J 2023; 37:e23048. [PMID: 37389895 DOI: 10.1096/fj.202300295r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Revised: 05/20/2023] [Accepted: 06/08/2023] [Indexed: 07/01/2023]
Abstract
Vascular smooth muscle cells (VSMCs) are considered to be a crucial source of foam cells in atherosclerosis due to their low expression level of cholesterol exporter ATP-binding cassette transporter A1 (ABCA1) intrinsically. While the definite regulatory mechanisms are complicated and have not yet been fully elucidated, we previously reported that Dickkopf-1 (DKK1) mediates endothelial cell (EC) dysfunction, thereby aggravating atherosclerosis. However, the role of smooth muscle cell (SMC) DKK1 in atherosclerosis and foam cell formation remains unknown. In this study, we established SMC-specific DKK1-knockout (DKK1SMKO ) mice by crossbreeding DKK1flox/flox mice with TAGLN-Cre mice. Then, DKK1SMKO mice were crossed with APOE-/- mice to generate DKK1SMKO /APOE-/- mice, which exhibited milder atherosclerotic burden and fewer SMC foam cells. In vitro loss- and gain-of-function studies of DKK1 in primary human aortic smooth muscle cells (HASMCs) have proven that DKK1 prevented oxidized lipid-induced ABCA1 upregulation and cholesterol efflux and promoted SMC foam cell formation. Mechanistically, RNA-sequencing (RNA-seq) analysis of HASMCs as well as chromatin immunoprecipitation (ChIP) experiments showed that DKK1 mediates the binding of transcription factor CCAAT/enhancer-binding protein delta (C/EBPδ) to the promoter of cytochrome P450 epoxygenase 4A11 (CYP4A11) to regulate its expression. In addition, CYP4A11 as well as its metabolite 20-HETE-promoted activation of transcription factor sterol regulatory element-binding protein 2 (SREBP2) mediated the DKK1 regulation of ABCA1 in SMC. Furthermore, HET0016, the antagonist of CYP4A11, has also shown an alleviating effect on atherosclerosis. In conclusion, our results demonstrate that DKK1 promotes SMC foam cell formation during atherosclerosis via a reduction in CYP4A11-20-HETE/SREBP2-mediated ABCA1 expression.
Collapse
Affiliation(s)
- Xiao Li
- National Key Laboratory for Innovation and Transformation of Luobing Theory, The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, Department of Cardiology, Qilu Hospital of Shandong University, Jinan, China
| | - Tengfei Zheng
- National Key Laboratory for Innovation and Transformation of Luobing Theory, The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, Department of Cardiology, Qilu Hospital of Shandong University, Jinan, China
| | - Yu Zhang
- National Key Laboratory for Innovation and Transformation of Luobing Theory, The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, Department of Cardiology, Qilu Hospital of Shandong University, Jinan, China
| | - Yachao Zhao
- National Key Laboratory for Innovation and Transformation of Luobing Theory, The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, Department of Cardiology, Qilu Hospital of Shandong University, Jinan, China
| | - Fengming Liu
- Department of Immunology, School of Basic Medical Sciences, Shandong University, Jinan, China
| | - Shen Dai
- Department of Physiology & Pathophysiology, School of Basic Medical Sciences, Shandong University, Jinan, China
| | - Xiaolin Liu
- National Key Laboratory for Innovation and Transformation of Luobing Theory, The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, Department of Cardiology, Qilu Hospital of Shandong University, Jinan, China
| | - Mei Zhang
- National Key Laboratory for Innovation and Transformation of Luobing Theory, The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, Department of Cardiology, Qilu Hospital of Shandong University, Jinan, China
| |
Collapse
|
7
|
Guo X, Li B, Wen C, Zhang F, Xiang X, Nie L, Chen J, Mao L. TREM2 promotes cholesterol uptake and foam cell formation in atherosclerosis. Cell Mol Life Sci 2023; 80:137. [PMID: 37133566 PMCID: PMC11071710 DOI: 10.1007/s00018-023-04786-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 04/09/2023] [Accepted: 04/24/2023] [Indexed: 05/04/2023]
Abstract
Disordered lipid accumulation in the arterial wall is a hallmark of atherosclerosis. Previous studies found that the expression of triggering receptor expressed on myeloid cells 2 (TREM2), a transmembrane receptor of the immunoglobulin family, is increased in mouse atherosclerotic aortic plaques. However, it remains unknown whether TREM2 plays a role in atherosclerosis. Here we investigated the role of TREM2 in atherosclerosis using ApoE knockout (ApoE-/-) mouse models, primary vascular smooth muscle cells (SMCs), and bone marrow-derived macrophages (BMDMs). In ApoE-/- mice, the density of TREM2-positive foam cells in aortic plaques increased in a time-dependent manner after the mice were fed a high-fat diet (HFD). Compared with ApoE-/- mice, the Trem2-/-/ApoE-/- double-knockout mice showed significantly reduced atherosclerotic lesion size, foam cell number, and lipid burden degree in plaques after HFD feeding. Overexpression of TREM2 in cultured vascular SMCs and macrophages exacerbates lipid influx and foam cell formation by upregulating the expression of the scavenger receptor CD36. Mechanistically, TREM2 inhibits the phosphorylation of p38 mitogen-activated protein kinase and peroxisome proliferator activated-receptor gamma (PPARγ), thereby increasing PPARγ nuclear transcriptional activity and subsequently promoting the transcription of CD36. Our results indicate that TREM2 exacerbates atherosclerosis development by promoting SMC- and macrophage-derived foam cell formation by regulating scavenger receptor CD36 expression. Thus, TREM2 may act as a novel therapeutic target for the treatment of atherosclerosis.
Collapse
Affiliation(s)
- Xiaoqing Guo
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Bowei Li
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Cheng Wen
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Feng Zhang
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Xuying Xiang
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Lei Nie
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Jiaojiao Chen
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Ling Mao
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| |
Collapse
|
8
|
Lee S, Schleer H, Park H, Jang E, Boyer M, Tao B, Gamez-Mendez A, Singh A, Folta-Stogniew E, Zhang X, Qin L, Xiao X, Xu L, Zhang J, Hu X, Pashos E, Tellides G, Shaul PW, Lee WL, Fernandez-Hernando C, Eichmann A, Sessa WC. Genetic or therapeutic neutralization of ALK1 reduces LDL transcytosis and atherosclerosis in mice. NATURE CARDIOVASCULAR RESEARCH 2023; 2:438-448. [PMID: 39196046 PMCID: PMC11358031 DOI: 10.1038/s44161-023-00266-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Accepted: 03/29/2023] [Indexed: 08/29/2024]
Abstract
Low-density lipoprotein (LDL) accumulation in the arterial wall contributes to atherosclerosis initiation and progression1. Activin A receptor-like type 1 (ACVRL1, called activin-like kinase receptor (ALK1)) is a recently identified receptor that mediates LDL entry and transcytosis in endothelial cells (ECs)2,3. However, the role of this pathway in vivo is not yet known. In the present study, we show that genetic deletion of ALK1 in arterial ECs of mice substantially limits LDL accumulation, macrophage infiltration and atherosclerosis without affecting cholesterol or triglyceride levels. Moreover, a selective monoclonal antibody binding ALK1 efficiently blocked LDL transcytosis, but not bone morphogenetic protein-9 (BMP9) signaling, dramatically reducing plaque formation in LDL receptor knockout mice fed a high-fat diet. Thus, our results demonstrate that blocking LDL transcytosis into the endothelium may be a promising therapeutic strategy that targets the initiating event of atherosclerotic cardiovascular disease.
Collapse
MESH Headings
- Animals
- Atherosclerosis/metabolism
- Atherosclerosis/genetics
- Atherosclerosis/pathology
- Transcytosis/drug effects
- Activin Receptors, Type II/metabolism
- Activin Receptors, Type II/genetics
- Receptors, LDL/genetics
- Receptors, LDL/metabolism
- Lipoproteins, LDL/metabolism
- Endothelial Cells/metabolism
- Endothelial Cells/drug effects
- Mice, Inbred C57BL
- Disease Models, Animal
- Mice
- Mice, Knockout
- Plaque, Atherosclerotic/metabolism
- Plaque, Atherosclerotic/pathology
- Plaque, Atherosclerotic/drug therapy
- Plaque, Atherosclerotic/genetics
- Signal Transduction
- Male
- Humans
- Growth Differentiation Factor 2/metabolism
- Growth Differentiation Factor 2/genetics
- Macrophages/metabolism
- Macrophages/drug effects
- Diet, High-Fat/adverse effects
- Cells, Cultured
Collapse
Affiliation(s)
- Sungwoon Lee
- Department of Pharmacology, Yale University School of Medicine, New Haven, CT, USA
- Vascular Biology and Therapeutics Program, Yale University School of Medicine, New Haven, CT, USA
| | | | - Hyojin Park
- Department of Internal Medicine, Cardiovascular Research Center, Yale University School of Medicine, New Haven, CT, USA
- Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, CT, USA
| | - Erika Jang
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
- Keenan Research Centre for Biomedical Science, St. Michael's Hospital, Toronto, Ontario, Canada
| | - Michael Boyer
- Department of Pharmacology, Yale University School of Medicine, New Haven, CT, USA
- Vascular Biology and Therapeutics Program, Yale University School of Medicine, New Haven, CT, USA
| | - Bo Tao
- Department of Pharmacology, Yale University School of Medicine, New Haven, CT, USA
- Vascular Biology and Therapeutics Program, Yale University School of Medicine, New Haven, CT, USA
| | - Ana Gamez-Mendez
- Department of Pharmacology, Yale University School of Medicine, New Haven, CT, USA
- Vascular Biology and Therapeutics Program, Yale University School of Medicine, New Haven, CT, USA
| | - Abhishek Singh
- Department of Pharmacology, Yale University School of Medicine, New Haven, CT, USA
- Vascular Biology and Therapeutics Program, Yale University School of Medicine, New Haven, CT, USA
| | - Ewa Folta-Stogniew
- W.M. Keck Biotechnology Resource Laboratory, Yale University School of Medicine, New Haven, CT, USA
| | - Xinbo Zhang
- Vascular Biology and Therapeutics Program, Yale University School of Medicine, New Haven, CT, USA
- Department of Comparative Medicine, Yale University School of Medicine, New Haven, CT, USA
| | - Lingfeng Qin
- Vascular Biology and Therapeutics Program, Yale University School of Medicine, New Haven, CT, USA
| | - Xue Xiao
- Quantitative Biomedical Research Center, Department of Population & Data Sciences, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Lin Xu
- Quantitative Biomedical Research Center, Department of Population & Data Sciences, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Junhui Zhang
- Department of Genetics, Yale University School of Medicine, New Haven, CT, USA
| | - Xiaoyue Hu
- Yale Cardiovascular Research Center, Department of Internal Medicine, Yale University, School of Medicine, New Haven, CT, USA
| | - Evanthia Pashos
- Internal Medicine Research, Unit Pfizer Inc., Cambridge, MA, USA
| | - George Tellides
- Department of Surgery, Yale University School of Medicine, New Haven, CT, USA
| | - Philip W Shaul
- Center for Pulmonary and Vascular Biology, Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Warren L Lee
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
- Keenan Research Centre for Biomedical Science, St. Michael's Hospital, Toronto, Ontario, Canada
| | - Carlos Fernandez-Hernando
- Vascular Biology and Therapeutics Program, Yale University School of Medicine, New Haven, CT, USA
- Department of Comparative Medicine, Yale University School of Medicine, New Haven, CT, USA
| | - Anne Eichmann
- Department of Internal Medicine, Cardiovascular Research Center, Yale University School of Medicine, New Haven, CT, USA
- Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, CT, USA
| | - William C Sessa
- Department of Pharmacology, Yale University School of Medicine, New Haven, CT, USA.
- Vascular Biology and Therapeutics Program, Yale University School of Medicine, New Haven, CT, USA.
- Internal Medicine Research, Unit Pfizer Inc., Cambridge, MA, USA.
| |
Collapse
|
9
|
Gao J, Lu J, Sha W, Xu B, Zhang C, Wang H, Xia J, Zhang H, Tang W, Lei T. Relationship between the neutrophil to high-density lipoprotein cholesterol ratio and severity of coronary artery disease in patients with stable coronary artery disease. Front Cardiovasc Med 2022; 9:1015398. [PMID: 36505389 PMCID: PMC9729241 DOI: 10.3389/fcvm.2022.1015398] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 11/04/2022] [Indexed: 11/25/2022] Open
Abstract
Objective To evaluate the link between the neutrophil to HDL-C ratio (NHR) and the degree of coronary stenosis in patients with stable coronary artery disease (CAD). Materials and methods Totally 766 individuals who attended our clinic for coronary angiography between January 2019 and January 2021 were included in this study. The participants were divided into two groups, including the CAD group and control group. Spearman correlation analysis was used to investigate the association between NHR and Gensini score and logistic regression analysis was performed to determine the influence of NHR on CAD and severe CAD. Receiver operating characteristic (ROC) curve was constructed to analyze the predictive value of NHR for severe CAD. Results The CAD group had a substantially higher median NHR than the control group (3.7 vs. 3.2, P < 0.01). There was a positive correlation between NHR and Gensini score, as well as the frequency of coronary artery plaques. Logistic regression demonstrated that NHR was an independent contributor for CAD and severe CAD. In ROC analysis, the area under the ROC curve (AUC) for NHR was larger than that for neutrophil, HDL-C or LDL-C/HDL-C, and the differences were statistically significant (all P < 0.05). The NHR limit that offered the most accurate prediction of severe CAD according to the greatest possible value of the Youden index, was 3.88, with a sensitivity of 62.6% and a specificity of 66.2%. Conclusion NHR was not only associated with the occurrence and seriousness of CAD, but also a better predictor of severe CAD than neutrophil, HDL-C or LDL-C/HDL-C.
Collapse
Affiliation(s)
- Jie Gao
- Department of Endocrinology, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jun Lu
- Department of Endocrinology, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Wenjun Sha
- Department of Endocrinology, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Bilin Xu
- Department of Endocrinology, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Cuiping Zhang
- Department of Endocrinology, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Hongping Wang
- Department of Endocrinology, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Juan Xia
- Department of Endocrinology, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Hong Zhang
- Department of Cardiology, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Wenjun Tang
- Heart Function Examination Room, Tongji Hospital, Tongji University, Shanghai, China
| | - Tao Lei
- Department of Endocrinology, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
10
|
Neutrophils to high-density lipoprotein cholesterol ratio as a new prognostic marker in patients with ST-segment elevation myocardial infarction undergoing primary percutaneous coronary intervention: a retrospective study. BMC Cardiovasc Disord 2022; 22:434. [PMID: 36199038 PMCID: PMC9533505 DOI: 10.1186/s12872-022-02870-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 09/22/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Neutrophils and high-density lipoprotein cholesterol (HDL-c) play critical roles in the pathogenesis of acute myocardial infarction. We aimed to investigate the value of neutrophils count to high-density lipoprotein cholesterol ratio (NHR) in predicting occurrence of in-hospital adverse events in ST-segment elevation myocardial infarction (STEMI) patients treated with primary percutaneous coronary intervention (PPCI). METHODS We retrospectively analyzed 532 patients who had been diagnosed with acute STEMI and treated with PPCI. Demographic and clinical data, admission laboratory parameters and NHR values were recorded. Major adverse cardiac events (MACE) were defined as stent thrombosis, cardiac rupture, cardiac arrest, ventricular aneurysm, malignant arrhythmia and cardiac death. Based on the receiver operating characteristic (ROC) analysis, all patients were divided into 2 groups based on the cut-off NHR value (NHR ≤ 11.28, NHR > 11.28). Cox regression analyses and the Kaplan-Meier survival curve were used to assess the prognostic ability of NHR in in-hospital MACE. RESULTS MACE was observed in 72 patients (13.5%) during in-hospital follow-up. NHR was significantly higher in MACE group compared to MACE-free group (10.93 [6.26-13.97] vs. 8.13 [5.89-11.16]; P = 0.001). The incidence of in-hospital MACE was significantly higher in the NHR > 11.28 group than in NHR ≤ 11.28 group (24.8% vs. 9.6%; P < 0.001). In multivariable Cox regression analyses, ALT, Killip III-IV and increased NHR (hazard ratio, 2.211; 95% confidence interval,1.092-4.479; P = 0.027) were identified as independent predictive factors of occurrence of in-hospital MACE. Higher NHR group had worse cumulative survival compared with the lower group. CONCLUSIONS NHR value on admission, which is an easily calculated and universally available maker, may be useful in in-hospital risk classification of STEMI patients undergoing PPCI.
Collapse
|
11
|
Zhang F, Wang R, Liu B, Zhang L. A bibliometric analysis of autophagy in atherosclerosis from 2012 to 2021. Front Pharmacol 2022; 13:977870. [PMID: 36188570 PMCID: PMC9520361 DOI: 10.3389/fphar.2022.977870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Accepted: 08/08/2022] [Indexed: 11/28/2022] Open
Abstract
Background: Regulation of autophagy affects the progression of atherosclerosis. In recent years, research on autophagy in atherosclerosis has been widely concerned. However, there is no bibliometric analysis in this field. Objective: The purpose of this study was to explore the general situation, hot spots, and trends of the research in this field through bibliometric analysis. Methods: Articles related to autophagy in atherosclerosis from 2012 to 2021 were retrieved from the Web of Science Core Collection. VOSviewer and CiteSpace were used for data analysis and visualization of countries, institutions, authors, keywords, journals, and citations. Results: A total of 988 articles were obtained in the last 10 years. The number of publications and citations increased rapidly from 2012 to 2021, especially after 2019. The most productive countries, institutions, journals, and authors were the People’s Republic of China, Shandong University, Arteriosclerosis Thrombosis and Vascular Biology, and Wim Martinet, respectively. The primary keywords were “oxidative stress,” “apoptosis,” “activated protein kinase,” and “inflammation.” The burst detection analysis of keywords found that “SIRT1” and “long non-coding RNA” might be regarded as the focus of future research. Conclusion: This is the first bibliometric analysis of autophagy in atherosclerosis, which reports the hot spots and emerging trends. The interaction between oxidative stress and autophagy, programmed cell death, and activated protein kinases are considered to be the current research priorities. Molecular mechanisms and therapeutic target for the intervention of atherosclerosis by regulating autophagy will become an emerging research direction.
Collapse
Affiliation(s)
| | | | | | - Lei Zhang
- *Correspondence: Baocheng Liu, ; Lei Zhang,
| |
Collapse
|
12
|
Bolshakov IN, Gornostaev LM, Fominykh OI, Svetlakov AV. Synthesis, Chemical and Biomedical Aspects of the Use of Sulfated Chitosan. Polymers (Basel) 2022; 14:polym14163431. [PMID: 36015688 PMCID: PMC9412326 DOI: 10.3390/polym14163431] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 08/07/2022] [Accepted: 08/10/2022] [Indexed: 11/16/2022] Open
Abstract
This work is devoted to the chemical synthesis of sulfated chitosan and its experimental verification in an animal model of early atherosclerosis. The method of chitosan quaternization with sulfate-containing ingredients resulted in a product with a high content of sulfate groups. Implantation of this product into the fascial-muscular sheath of the main limb artery along the leg and thigh in rabbits led to the extraction of cholesterol from the subintimal region. Simplified methods for the chemical synthesis of quaternized sulfated chitosan and the use of these products in a model of experimental atherosclerosis made it possible to perform a comparative morphological analysis of the vascular walls of the experimental and control limbs under conditions of a long-term high-cholesterol diet. The sulfated chitosan samples after implantation were shown to change the morphological pattern of the intimal and middle membranes of the experimental limb artery. The implantation led to the degradation of soft plaques within 30 days after surgical intervention, which significantly increased collateral blood flow. The implantation of sulfated chitosan into the local area of the atherosclerotic lesions in the artery can regulate the cholesterol content in the vascular wall and destroy soft plaques in the subintimal region.
Collapse
Affiliation(s)
- I. N. Bolshakov
- Department of Operative Surgery and Topographic Anatomy, FSBE Higher Education Prof. V.F. Voyno-Yasenetsky Krasnoyarsk State Medical University, Krasnoyarsk 660022, Russia
- Correspondence: ; Tel.: +7-8-913-511-0933
| | - L. M. Gornostaev
- Department of Operative Surgery and Topographic Anatomy, FSBE Higher Education Prof. V.F. Voyno-Yasenetsky Krasnoyarsk State Medical University, Krasnoyarsk 660022, Russia
- Department of Biology, Chemistry and Ecology, Krasnoyarsk State Pedagogical University Named after V.P. Astafiev, Krasnoyarsk 660049, Russia
| | - O. I. Fominykh
- Department of Biology, Chemistry and Ecology, Krasnoyarsk State Pedagogical University Named after V.P. Astafiev, Krasnoyarsk 660049, Russia
| | - A. V. Svetlakov
- AlfaChem Limited Liability Company, Krasnoyarsk 660135, Russia
| |
Collapse
|
13
|
Plasma ApoB/AI: An effective indicator for intracranial vascular positive remodeling. J Neurol Sci 2022; 436:120226. [DOI: 10.1016/j.jns.2022.120226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 02/08/2022] [Accepted: 03/07/2022] [Indexed: 11/22/2022]
|
14
|
Violi F, Nocella C, Loffredo L, Carnevale R, Pignatelli P. Interventional study with vitamin E in cardiovascular disease and meta-analysis. Free Radic Biol Med 2022; 178:26-41. [PMID: 34838937 DOI: 10.1016/j.freeradbiomed.2021.11.027] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 09/27/2021] [Accepted: 11/12/2021] [Indexed: 12/15/2022]
Abstract
Cardiovascular disease (CVD) is one of the major causes of morbidity and mortality and atherosclerosis is the common root to most of the CVD. Oxidative stress is one of the most important factors driving atherosclerosis and its complications. Thus, strategies for the prevention and treatment of cardiovascular events had oxidative changes as a potential target. Natural vitamin E consists of a family of eight different compounds, four tocopherols and four tocotrienols. All tocopherols and tocotrienols are potent antioxidants with lipoperoxyl radical-scavenging activities. In addition, α-tocopherol possesses also anti-inflammatory as well as anti-atherothrombotic effects by modulating platelet and clotting system. Experimental and in vitro studies described molecular and cellular signalling pathways regulated by vitamin E antithrombotic and antioxidant properties. While observational studies demonstrated an inverse association between vitamin E serum levels and CVD, interventional trials with vitamin supplements provided negative results. This review focus on the impact of vitamin E in the atherothrombotic process and describes the results of experimental and clinical studies with the caveats related to the interventional trials with vitamin E to prevent CVD.
Collapse
Affiliation(s)
- Francesco Violi
- Mediterranea Cardiocentro, Napoli, Italy; Department of Clinical Internal, Anesthesiological and Cardiovascular Sciences, Sapienza University of Rome, Italy.
| | - Cristina Nocella
- Department of Clinical Internal, Anesthesiological and Cardiovascular Sciences, Sapienza University of Rome, Italy
| | - Lorenzo Loffredo
- Department of Clinical Internal, Anesthesiological and Cardiovascular Sciences, Sapienza University of Rome, Italy
| | - Roberto Carnevale
- Mediterranea Cardiocentro, Napoli, Italy; Department of Medical-Surgical Sciences and Biotechnologies, Sapienza University of Rome, 04100, Latina, Italy
| | - Pasquale Pignatelli
- Mediterranea Cardiocentro, Napoli, Italy; Department of Clinical Internal, Anesthesiological and Cardiovascular Sciences, Sapienza University of Rome, Italy
| |
Collapse
|
15
|
Lin X, Ma P, Yang C, Wang J, He K, Chen G, Huang W, Fan J, Xian X, Wang Y, Liu G. Dietary-Induced Elevations of Triglyceride-Rich Lipoproteins Promote Atherosclerosis in the Low-Density Lipoprotein Receptor Knockout Syrian Golden Hamster. Front Cardiovasc Med 2021; 8:738060. [PMID: 34796210 PMCID: PMC8593475 DOI: 10.3389/fcvm.2021.738060] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Accepted: 09/28/2021] [Indexed: 12/14/2022] Open
Abstract
Elevated triglycerides are associated with an increased risk of cardiovascular disease (CVD). Therefore, it is very important to understand the metabolism of triglyceride-rich lipoproteins (TRLs) and their atherogenic role in animal models. Using low-density lipoprotein receptor knockout (LDLR-/-) Syrian golden hamsters, this study showed that unlike LDLR-/- mice, when LDLR-/- hamsters were fed a high cholesterol high-fat diet (HFD), they had very high plasma levels of triglycerides and cholesterol. We found that LDLR-/- hamsters exhibited increased serum TRLs and the ApoB100 and 48 in these particles after being fed with HFD. Treatment with ezetimibe for 2 weeks decreased these large particles but not the LDL. In addition, ezetimibe simultaneously reduced ApoB48 and ApoE in plasma and TRLs. The expression of LRP1 did not change in the liver. These findings suggested that the significantly reduced large particles were mainly chylomicron remnants, and further, the remnants were mainly cleared by the LDL receptor in hamsters. After 40 days on an HFD, LDLR-/- hamsters had accelerated aortic atherosclerosis, accompanied by severe fatty liver, and ezetimibe treatment reduced the consequences of hyperlipidemia. Compared with the serum from LDLR-/- hamsters, that from ezetimibe-treated LDLR-/- hamsters decreased the expression of vascular adhesion factors in vascular endothelial cells and lipid uptake by macrophages. Our results suggested that in the LDLR-/- hamster model, intestinally-derived lipoprotein remnants are highly atherogenic and the inflammatory response of the endothelium and foam cells from macrophages triggered atherosclerosis. The LDL receptor might be very important for chylomicrons remnant clearance in the Syrian golden hamster, and this may not be compensated by another pathway. We suggest that the LDLR-/- hamster is a good model for the study of TRLs-related diseases as it mimics more complex hyperlipidemia.
Collapse
Affiliation(s)
- Xiao Lin
- Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Institute of Cardiovascular Sciences, School of Basic Medical Sciences, Health Science Center, Peking University, Beijing, China
| | - Ping Ma
- Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Institute of Cardiovascular Sciences, School of Basic Medical Sciences, Health Science Center, Peking University, Beijing, China
| | - Chun Yang
- Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Institute of Cardiovascular Sciences, School of Basic Medical Sciences, Health Science Center, Peking University, Beijing, China
| | - Jinjie Wang
- Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Institute of Cardiovascular Sciences, School of Basic Medical Sciences, Health Science Center, Peking University, Beijing, China
| | - Kunxiang He
- Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Institute of Cardiovascular Sciences, School of Basic Medical Sciences, Health Science Center, Peking University, Beijing, China
| | - Gonglie Chen
- Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Institute of Cardiovascular Sciences, School of Basic Medical Sciences, Health Science Center, Peking University, Beijing, China
| | - Wei Huang
- Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Institute of Cardiovascular Sciences, School of Basic Medical Sciences, Health Science Center, Peking University, Beijing, China
| | - Jianglin Fan
- Department of Molecular Pathology, Graduate School of Medicine, University of Yamanashi, Chuo, Japan
| | - Xunde Xian
- Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Institute of Cardiovascular Sciences, School of Basic Medical Sciences, Health Science Center, Peking University, Beijing, China
| | - Yuhui Wang
- Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Institute of Cardiovascular Sciences, School of Basic Medical Sciences, Health Science Center, Peking University, Beijing, China
| | - George Liu
- Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Institute of Cardiovascular Sciences, School of Basic Medical Sciences, Health Science Center, Peking University, Beijing, China
| |
Collapse
|
16
|
Borén J, Chapman MJ, Krauss RM, Packard CJ, Bentzon JF, Binder CJ, Daemen MJ, Demer LL, Hegele RA, Nicholls SJ, Nordestgaard BG, Watts GF, Bruckert E, Fazio S, Ference BA, Graham I, Horton JD, Landmesser U, Laufs U, Masana L, Pasterkamp G, Raal FJ, Ray KK, Schunkert H, Taskinen MR, van de Sluis B, Wiklund O, Tokgozoglu L, Catapano AL, Ginsberg HN. Low-density lipoproteins cause atherosclerotic cardiovascular disease: pathophysiological, genetic, and therapeutic insights: a consensus statement from the European Atherosclerosis Society Consensus Panel. Eur Heart J 2021; 41:2313-2330. [PMID: 32052833 PMCID: PMC7308544 DOI: 10.1093/eurheartj/ehz962] [Citation(s) in RCA: 780] [Impact Index Per Article: 195.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Revised: 11/10/2019] [Accepted: 01/08/2020] [Indexed: 12/12/2022] Open
Abstract
Abstract
Collapse
Affiliation(s)
- Jan Borén
- Department of Molecular and Clinical Medicine, Institute of Medicine, University of Gothenburg and Sahlgrenska University Hospital, Gothenburg, Sweden
| | - M John Chapman
- Endocrinology-Metabolism Division, Pitié-Salpêtrière University Hospital, Sorbonne University, Paris, France.,National Institute for Health and Medical Research (INSERM), Paris, France
| | - Ronald M Krauss
- Department of Atherosclerosis Research, Children's Hospital Oakland Research Institute and UCSF, Oakland, CA 94609, USA
| | - Chris J Packard
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, UK
| | - Jacob F Bentzon
- Department of Clinical Medicine, Heart Diseases, Aarhus University, Aarhus, Denmark.,Centro Nacional de Investigaciones Cardiovasculares Carlos III, Madrid, Spain
| | - Christoph J Binder
- Department of Laboratory Medicine, Medical University of Vienna, Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Mat J Daemen
- Department of Pathology, Amsterdam UMC, University of Amsterdam, Amsterdam Cardiovascular Sciences, Amsterdam, The Netherlands
| | - Linda L Demer
- Department of Medicine, University of California, Los Angeles, Los Angeles, CA, USA.,Department of Physiology, University of California, Los Angeles, Los Angeles, CA, USA.,Department of Bioengineering, University of California, Los Angeles, Los Angeles, CA, USA
| | - Robert A Hegele
- Department of Medicine, Robarts Research Institute, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada
| | - Stephen J Nicholls
- Monash Cardiovascular Research Centre, Monash University, Melbourne, Australia
| | - Børge G Nordestgaard
- Department of Clinical Biochemistry, The Copenhagen General Population Study, Herlev and Gentofte Hospital, Copenhagen University Hospital, University of Copenhagen, Denmark
| | - Gerald F Watts
- School of Medicine, Faculty of Health and Medical Sciences, University of Western Australia, Perth, Australia.,Department of Cardiology, Lipid Disorders Clinic, Royal Perth Hospital, Perth, Australia
| | - Eric Bruckert
- INSERM UMRS1166, Department of Endocrinology-Metabolism, ICAN - Institute of CardioMetabolism and Nutrition, AP-HP, Hopital de la Pitie, Paris, France
| | - Sergio Fazio
- Departments of Medicine, Physiology and Pharmacology, Knight Cardiovascular Institute, Center of Preventive Cardiology, Oregon Health & Science University, Portland, OR, USA
| | - Brian A Ference
- Centre for Naturally Randomized Trials, University of Cambridge, Cambridge, UK.,Institute for Advanced Studies, University of Bristol, Bristol, UK.,MRC/BHF Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
| | | | - Jay D Horton
- Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, TX, USA.,Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Ulf Landmesser
- Department of Cardiology, Charité - University Medicine Berlin, Campus Benjamin Franklin, Hindenburgdamm 30, Berlin, Germany.,Berlin Institute of Health (BIH), Berlin, Germany
| | - Ulrich Laufs
- Klinik und Poliklinik für Kardiologie, Universitätsklinikum Leipzig, Liebigstraße 20, Leipzig, Germany
| | - Luis Masana
- Research Unit of Lipids and Atherosclerosis, IISPV, CIBERDEM, University Rovira i Virgili, C. Sant Llorenç 21, Reus 43201, Spain
| | - Gerard Pasterkamp
- Laboratory of Clinical Chemistry, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Frederick J Raal
- Carbohydrate and Lipid Metabolism Research Unit, Faculty of Health Sciences, University of Witwatersrand, Johannesburg, South Africa
| | - Kausik K Ray
- Department of Primary Care and Public Health, Imperial Centre for Cardiovascular Disease Prevention, Imperial College London, London, UK
| | - Heribert Schunkert
- Deutsches Herzzentrum München, Klinik für Herz- und Kreislauferkrankungen, Faculty of Medicine, Technische Universität München, Lazarettstr, Munich, Germany.,DZHK (German Centre for Cardiovascular Research), Partner Site Munich Heart Alliance, Munich, Germany
| | - Marja-Riitta Taskinen
- Research Program for Clinical and Molecular Metabolism, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Bart van de Sluis
- Department of Pediatrics, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Olov Wiklund
- Department of Molecular and Clinical Medicine, Institute of Medicine, University of Gothenburg and Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Lale Tokgozoglu
- Department of Cardiology, Hacettepe University Faculty of Medicine, Ankara, Turkey
| | - Alberico L Catapano
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, and IRCCS MultiMedica, Milan, Italy
| | - Henry N Ginsberg
- Department of Medicine, Irving Institute for Clinical and Translational Research, Columbia University, New York, NY, USA
| |
Collapse
|
17
|
Abstract
PURPOSE OF REVIEW Atherosclerosis is a complicated cardiovascular disease characterized by unbalanced lipid metabolism and unresolved inflammation that occurred inside of arteries. The transcytosis of LDL across the endothelium and its accumulation in the arterial wall is the initial step of atherosclerosis. Here, we summarize recent research into the understanding of the regulatory mechanisms of endothelial LDL transcytosis and its relevance in the development of atherosclerosis. RECENT FINDINGS A number of recent studies have revealed the contribution of caveolae, activin-like kinase 1 (ALK1) or scavenger receptor B1 (SR-B1) in endothelial LDL transcytosis and the progression of atherosclerosis. Caveolin-1 (Cav-1), the major protein component in caveolae, is required for the formation of caveolae and caveolae-mediated LDL uptake and transcytosis across the endothelium. SR-B1 and ALK1 directly bind LDL and facilitate the transport of LDL through the endothelial cells. The change in expression of caveolae-associated proteins and SR-B1 regulates endothelial LDL transcytosis and the pathogenesis of atherosclerosis. SUMMARY Caveolae, ALK1 and SR-B1 are identified as key regulators in the LDL transcytosis across the endothelium. Endothelial LDL transcytosis might be a potential therapeutic approach to limit the initiation of early atherosclerosis and treat the atherosclerotic vascular diseases.
Collapse
Affiliation(s)
- Xinbo Zhang
- Vascular Biology and Therapeutics Program, Yale University School of Medicine, 10 Amistad St., New Haven, CT 06510. USA
- Integrative Cell Signaling and Neurobiology of Metabolism Program, Department of Comparative Medicine and Department of Pathology, Yale University School of Medicine, 10 Amistad St., New Haven, CT 06510. USA
- Corresponding authors: Carlos Fernández-Hernando, PhD. 10 Amistad Street, Amistad Research Building, Room 337C, New Haven, CT 06510. Yale University School of Medicine. Tel: (203) 737-4615. Fax: (203) 737-2290. , Xinbo Zhang, MD, PhD. 10 Amistad Street, Amistad Research Building, Room 320, New Haven, CT 06510. Yale University School of Medicine. Tel: (203) 737-3300. Fax: (203) 737-2290.
| | - Carlos Fernández-Hernando
- Vascular Biology and Therapeutics Program, Yale University School of Medicine, 10 Amistad St., New Haven, CT 06510. USA
- Integrative Cell Signaling and Neurobiology of Metabolism Program, Department of Comparative Medicine and Department of Pathology, Yale University School of Medicine, 10 Amistad St., New Haven, CT 06510. USA
- Department of Pathology, Yale University School of Medicine, 10 Amistad St., New Haven, CT 06510. USA
- Corresponding authors: Carlos Fernández-Hernando, PhD. 10 Amistad Street, Amistad Research Building, Room 337C, New Haven, CT 06510. Yale University School of Medicine. Tel: (203) 737-4615. Fax: (203) 737-2290. , Xinbo Zhang, MD, PhD. 10 Amistad Street, Amistad Research Building, Room 320, New Haven, CT 06510. Yale University School of Medicine. Tel: (203) 737-3300. Fax: (203) 737-2290.
| |
Collapse
|
18
|
Jang E, Robert J, Rohrer L, von Eckardstein A, Lee WL. Transendothelial transport of lipoproteins. Atherosclerosis 2020; 315:111-125. [PMID: 33032832 DOI: 10.1016/j.atherosclerosis.2020.09.020] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 09/15/2020] [Accepted: 09/18/2020] [Indexed: 02/06/2023]
Abstract
The accumulation of low-density lipoproteins (LDL) in the arterial wall plays a pivotal role in the initiation and pathogenesis of atherosclerosis. Conversely, the removal of cholesterol from the intima by cholesterol efflux to high density lipoproteins (HDL) and subsequent reverse cholesterol transport shall confer protection against atherosclerosis. To reach the subendothelial space, both LDL and HDL must cross the intact endothelium. Traditionally, this transit is explained by passive filtration. This dogma has been challenged by the identification of several rate-limiting factors namely scavenger receptor SR-BI, activin like kinase 1, and caveolin-1 for LDL as well as SR-BI, ATP binding cassette transporter G1, and endothelial lipase for HDL. In addition, estradiol, vascular endothelial growth factor, interleukins 6 and 17, purinergic signals, and sphingosine-1-phosphate were found to regulate transendothelial transport of either LDL or HDL. Thorough understanding of transendothelial lipoprotein transport is expected to elucidate new therapeutic targets for the treatment or prevention of atherosclerotic cardiovascular disease and the development of strategies for the local delivery of drugs or diagnostic tracers into diseased tissues including atherosclerotic lesions.
Collapse
Affiliation(s)
- Erika Jang
- Keenan Centre for Biomedical Research, St. Michael's Hospital, Toronto, Canada; Department of Laboratory Medicine and Pathobiology, University of Toronto, Canada
| | - Jerome Robert
- Institute of Clinical Chemistry, University of Zurich and University Hospital of Zurich, Switzerland
| | - Lucia Rohrer
- Institute of Clinical Chemistry, University of Zurich and University Hospital of Zurich, Switzerland
| | - Arnold von Eckardstein
- Institute of Clinical Chemistry, University of Zurich and University Hospital of Zurich, Switzerland.
| | - Warren L Lee
- Keenan Centre for Biomedical Research, St. Michael's Hospital, Toronto, Canada; Department of Laboratory Medicine and Pathobiology, University of Toronto, Canada; Interdepartmental Division of Critical Care, Department of Medicine, University of Toronto, Canada; Department of Biochemistry, University of Toronto, Canada; Institute of Medical Science, University of Toronto, Canada.
| |
Collapse
|
19
|
Protective Activities of Dendrobium huoshanense C. Z. Tang et S. J. Cheng Polysaccharide against High-Cholesterol Diet-Induced Atherosclerosis in Zebrafish. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:8365056. [PMID: 32724495 PMCID: PMC7366212 DOI: 10.1155/2020/8365056] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/23/2020] [Accepted: 04/20/2020] [Indexed: 11/17/2022]
Abstract
Cardiovascular disease is the highest cause of death, and atherosclerosis (AS) is the primary pathogenesis of many cardiovascular diseases. In this study, we aim to investigate the possible pharmaceutical effects of Dendrobium huoshanense C. Z. Tang et S. J. Cheng polysaccharide (DHP) in AS. We fed zebrafish with high-cholesterol diet (HCD) to establish a zebrafish AS model and treated with DHP and observed plaque formation and neutrophil counts under a fluorescence microscope. Next, a parallel flow chamber was utilized to establish low shear stress- (LSS-) induced endothelial cell (EC) dysfunction model. We observed that DHP significantly improved HCD-induced lipid deposition, oxidative stress, and inflammatory response, mainly showing that DHP significantly increased superoxide dismutase (SOD) activity, decreased plaque formation, and decreased neutrophil recruitment and the levels of total cholesterol (TC), triglyceride (TG), malondialdehyde (MDA), and reactive oxygen species (ROS). Furthermore, DHP significantly improved LSS-induced oxidative stress and EC dysfunction. Our results indicated that DHP can exert treatment effects on AS, which may attribute to its hypolipidemic, antioxidant, anti-inflammatory activities and improving LSS-induced EC dysfunction. DHP has promising potential for further development as a functional natural medicine source targeted at AS prevention.
Collapse
|
20
|
Wang R, Tian H, Guo D, Tian Q, Yao T, Kong X. Impacts of exercise intervention on various diseases in rats. JOURNAL OF SPORT AND HEALTH SCIENCE 2020; 9:211-227. [PMID: 32444146 PMCID: PMC7242221 DOI: 10.1016/j.jshs.2019.09.008] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Revised: 06/06/2019] [Accepted: 09/06/2019] [Indexed: 05/07/2023]
Abstract
BACKGROUND Exercise is considered as an important intervention for treatment and prevention of several diseases, such as osteoarthritis, obesity, hypertension, and Alzheimer's disease. This review summarizes decadal exercise intervention studies with various rat models across 6 major systems to provide a better understanding of the mechanisms behind the effects that exercise brought. METHODS PubMed was utilized as the data source. To collect research articles, we used the following terms to create the search: (exercise [Title] OR physical activity [Title] OR training [Title]) AND (rats [Title/Abstract] OR rat [Title/Abstract] OR rattus [Title/Abstract]). To best cover targeted studies, publication dates were limited to "within 11 years." The exercise intervention methods used for different diseases were sorted according to the mode, frequency, and intensity of exercise. RESULTS The collected articles were categorized into studies related to 6 systems or disease types: motor system (17 articles), metabolic system (110 articles), cardiocerebral vascular system (171 articles), nervous system (71 articles), urinary system (2 articles), and cancer (21 articles). Our review found that, for different diseases, exercise intervention mostly had a positive effect. However, the most powerful effect was achieved by using a specific mode of exercise that addressed the characteristics of the disease. CONCLUSION As a model animal, rats not only provide a convenient resource for studying human diseases but also provide the possibility for exploring the molecular mechanisms of exercise intervention on diseases. This review also aims to provide exercise intervention frameworks and optimal exercise dose recommendations for further human exercise intervention research.
Collapse
Affiliation(s)
- Ruwen Wang
- School of Kinesiology, Shanghai University of Sport, Shanghai 200438, China
| | - Haili Tian
- School of Kinesiology, Shanghai University of Sport, Shanghai 200438, China
| | - Dandan Guo
- School of Kinesiology, Shanghai University of Sport, Shanghai 200438, China
| | - Qianqian Tian
- School of Kinesiology, Shanghai University of Sport, Shanghai 200438, China
| | - Ting Yao
- Division of Pediatric Endocrinology, Department of Pediatrics, UCLA Children's Discovery and Innovation Institute, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA.
| | - Xingxing Kong
- Division of Pediatric Endocrinology, Department of Pediatrics, UCLA Children's Discovery and Innovation Institute, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA.
| |
Collapse
|
21
|
Huang JB, Chen YS, Ji HY, Xie WM, Jiang J, Ran LS, Zhang CT, Quan XQ. Neutrophil to high-density lipoprotein ratio has a superior prognostic value in elderly patients with acute myocardial infarction: a comparison study. Lipids Health Dis 2020; 19:59. [PMID: 32247314 PMCID: PMC7126405 DOI: 10.1186/s12944-020-01238-2] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Accepted: 03/13/2020] [Indexed: 01/31/2023] Open
Abstract
Background The importance of the lipid-related biomarkers has been implicated in the pathological process and prognosis of acute myocardial infarction (AMI). Our work was conducted to discuss and compare the predictive ability of the neutrophil to high-density lipoprotein cholesterol (HDL-C) ratio (NHR) with other existing prognostic indices, for instance, the monocyte to HDL-C ratio (MHR) and the low-density lipoprotein cholesterol (LDL-C) to HDL-C ratio (LDL-C/HDL-C) in elderly patients with AMI. Methods Our population was 528 consecutive elderly AMI patients (65–85 years) who were enrolled from Tongji Hospital and grouped according to the cutoff points which were depicted by the receiver operating characteristic (ROC). The Kaplan-Meier curves were plotted with the survival data from the follow-up to investigate the difference between cutoff point-determined groups. Moreover, we assessed the impact of NHR, MHR, LDL-C/HDL-C on the long-term mortality and recurrent myocardial infarction (RMI) with Cox proportional hazard models. Results Mean duration of follow-up was 673.85 ± 14.32 days (median 679.50 days). According to ROC curve analysis, NHR ≥ 5.74, MHR ≥ 0.67, LDL-C/HDL-C ≥ 3.57 were regarded as high-risk groups. Kaplan-Meier analysis resulted that the high-NHR, high-MHR and high-LDL-C/HDL-C groups presented higher mortality and RMI rate than the corresponding low-risk groups in predicting the long-term clinical outcomes (log-rank test: all P < 0.050). In multivariate analysis, compared with MHR and LDL-C/HDL-C, only NHR was still recognized as a latent predictor for long-term mortality (harzard ratio [HR]: 1.96, 95% confidence interval [CI]: 1.02 to 3.75, P = 0.044) and long-term RMI (HR: 2.23, 95% CI: 1.04 to 4.79, P = 0.040). Furthermore, the positive correlation between NHR and Gensini score (r = 0.15, P < 0.001) indicated that NHR was relevant to the severity of coronary artery to some extent. Conclusions NHR, a novel laboratory marker, might be a predictor of the long-term clinical outcomes of elderly patients with AMI, which was superior to MHR and LDL-C/HDL-C.
Collapse
Affiliation(s)
- Jia-Bao Huang
- Department of Geriatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yu-Si Chen
- Second Clinical School, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hong-Yan Ji
- Second Clinical School, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wei-Ming Xie
- Second Clinical School, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jie Jiang
- Second Clinical School, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Lu-Sen Ran
- Second Clinical School, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Cun-Tai Zhang
- Department of Geriatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Xiao-Qing Quan
- Department of General Practice, Shenzhen Longhua District Central Hospital, Shenzhen, China.
| |
Collapse
|
22
|
Pi S, Mao L, Chen J, Shi H, Liu Y, Guo X, Li Y, Zhou L, He H, Yu C, Liu J, Dang Y, Xia Y, He Q, Jin H, Li Y, Hu Y, Miao Y, Yue Z, Hu B. The P2RY12 receptor promotes VSMC-derived foam cell formation by inhibiting autophagy in advanced atherosclerosis. Autophagy 2020; 17:980-1000. [PMID: 32160082 DOI: 10.1080/15548627.2020.1741202] [Citation(s) in RCA: 105] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022] Open
Abstract
Vascular smooth muscle cells (VSMCs) are an important source of foam cells in atherosclerosis. The mechanism for VSMC-derived foam cell formation is, however, poorly understood. Here, we demonstrate that the P2RY12/P2Y12 receptor is important in regulating macroautophagy/autophagy and VSMC-derived foam cell formation in advanced atherosclerosis. Inhibition of the P2RY12 receptor ameliorated lipid accumulation and VSMC-derived foam cell formation in high-fat diet-fed apoe-/- mice (atherosclerosis model) independent of LDL-c levels. Activation of the P2RY12 receptor blocked cholesterol efflux via PI3K-AKT, while genetic knockdown or pharmacological inhibition of the P2RY12 receptor inhibited this effect in VSMCs. Phosphoproteomic analysis showed that the P2RY12 receptor regulated the autophagy pathway in VSMCs. Additionally, activation of the P2RY12 receptor inhibited MAP1LC3/LC3 maturation, SQSTM1 degradation, and autophagosome formation in VSMCs. Genetic knockdown of the essential autophagy gene Atg5 significantly attenuated P2RY12 receptor inhibitor-induced cholesterol efflux in VSMCs. Furthermore, activation of the P2RY12 receptor led to the activation of MTOR through PI3K-AKT in VSMCs, whereas blocking MTOR activity (rapamycin) or reducing MTOR expression reversed the inhibition of cholesterol efflux mediated by the P2RY12 receptor in VSMCs. In vivo, inhibition of the P2RY12 receptor promoted autophagy of VSMCs through PI3K-AKT-MTOR in advanced atherosclerosis in apoe-/- mice, which could be impeded by an autophagy inhibitor (chloroquine). Therefore, we conclude that activation of the P2RY12 receptor decreases cholesterol efflux and promotes VSMC-derived foam cell formation by blocking autophagy in advanced atherosclerosis. Our study thus suggests that the P2RY12 receptor is a therapeutic target for treating atherosclerosis.Abbreviations: 2-MeSAMP: 2-methylthioadenosine 5'-monophosphate; 8-CPT-cAMP: 8-(4-chlorophenylthio)-adenosine-3',5'-cyclic-monophosphate; ABCA1: ATP binding cassette subfamily A member 1; ABCG1: ATP binding cassette subfamily G member 1; ACTB: actin beta; ADPβs: adenosine 5'-(alpha, beta-methylene) diphosphate; ALs: autolysosomes; AMPK: AMP-activated protein kinase; APOA1: apolipoprotein A1; APs: autophagosomes; ATG5: autophagy related 5; ATV: atorvastatin; AVs: autophagic vacuoles; CD: chow diet; CDL: clopidogrel; CQ: chloroquine; DAPI: 4',6-diamidino-2-phenylindole; dbcAMP: dibutyryl-cAMP; DIL-oxLDL: dioctadecyl-3,3,3,3-tetramethylin docarbocyanine-oxLDL; EIF4EBP1/4E-BP1: eukaryotic translation initiation factor 4E binding protein 1; EVG: elastic van gieson; HE: hematoxylin-eosin; HDL: high-density lipoprotein; HFD: high-fat diet; KEGG: Kyoto Encyclopedia of Genes and Genomes; LDL-c: low-density lipoprotein cholesterol; LDs: lipid droplets; MAP1LC3/LC3: microtubule associated protein 1 light chain 3; Masson: masson trichrome; MCPT: maximal carotid plaque thickness; MK2206: MK-2206 2HCL; NBD-cholesterol: 22-(N-[7-nitrobenz-2-oxa-1,3-diazol-4-yl] amino)-23,24-bisnor-5-cholen-3β-ol; OLR1/LOX-1: oxidized low density lipoprotein receptor 1; ORO: oil Red O; ox-LDL: oxidized low-density lipoprotein; SQSTM1/p62: sequestosome 1; TEM: transmission electron microscopy; TIC: ticagrelor; ULK1: unc-51 like autophagy activating kinase 1; VSMCs: vascular smooth muscle cells.
Collapse
Affiliation(s)
- Shulan Pi
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ling Mao
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jiefang Chen
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hanqing Shi
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yuxiao Liu
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaoqing Guo
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yuanyuan Li
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Lian Zhou
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hui He
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Cheng Yu
- Department of Ultrasound, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jianyong Liu
- Department of Vascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yiping Dang
- Department of Vascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yuanpeng Xia
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Quanwei He
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Huijuan Jin
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yanan Li
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yu Hu
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yiliang Miao
- Institute of Stem Cell and Regenerative Biology, College of Animal Science and Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Zhenyu Yue
- Department of Neurology, The Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Bo Hu
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
23
|
Abstract
PURPOSE OF REVIEW Atherosclerosis is characterized by accumulation of lipids and chronic inflammation in medium size to large arteries. Recently, RNA-based antisense oligonucleotides (ASOs) and small interfering RNAs (siRNAs) are being developed, along with small molecule-based drugs and monoclonal antibodies, for the treatment of risk factors associated with atherosclerosis.. The purpose of this review is to describe nucleic acid-based therapeutics and introduce novel RNAs that might become future tools for treatment of atherosclerosis. RECENT FINDINGS RNA-based inhibitors for PCSK9, Lp(a), ApoCIII, and ANGPTL3 have been successfully tested in phase II-III clinical trials. Moreover, multiple microRNA and long non-coding RNAs have been found to reduce atherogenesis in preclinical animal models. Clinical trials especially with ASOs and siRNAs directed to liver, targeting cholesterol and lipoprotein metabolism, have shown promising results. Additional research in larger patient cohorts is needed to fully evaluate the therapeutic potential of these new drugs.
Collapse
Affiliation(s)
- Petri Mäkinen
- A.I. Virtanen Institute, University of Eastern Finland, Neulaniementie 2, P.O. Box 1627, 70211, Kuopio, Finland
| | - Anna-Kaisa Ruotsalainen
- A.I. Virtanen Institute, University of Eastern Finland, Neulaniementie 2, P.O. Box 1627, 70211, Kuopio, Finland
| | - Seppo Ylä-Herttuala
- A.I. Virtanen Institute, University of Eastern Finland, Neulaniementie 2, P.O. Box 1627, 70211, Kuopio, Finland.
- Heart Center and Gene Therapy Unit, Kuopio University Hospital, Kuopio, Finland.
| |
Collapse
|
24
|
Abstract
Macrophages play a central role in the development of atherosclerotic cardiovascular disease (ASCVD), which encompasses coronary artery disease, peripheral artery disease, cerebrovascular disease, and aortic atherosclerosis. In each vascular bed, macrophages contribute to the maintenance of the local inflammatory response, propagate plaque development, and promote thrombosis. These central roles, coupled with their plasticity, makes macrophages attractive therapeutic targets in stemming the development of and stabilizing existing atherosclerosis. In the context of ASCVD, classically activated M1 macrophages initiate and sustain inflammation, and alternatively activated M2 macrophages resolve inflammation. However, this classification is now considered an oversimplification, and a greater understanding of plaque macrophage physiology in ASCVD is required to aid in the development of therapeutics to promote ASCVD regression. Reviewed herein are the macrophage phenotypes and molecular regulators characteristic of ASCVD regression, and the current murine models of ASCVD regression.
Collapse
Affiliation(s)
- Tessa J. Barrett
- From the Division of Cardiology, Department of Medicine, New York University
| |
Collapse
|
25
|
Rao AD, Vaz CL, Williams KJ. Accelerated atherosclerotic cardiovascular risk in type 1 diabetes mellitus: Time for a new idea? Atherosclerosis 2019; 286:150-153. [DOI: 10.1016/j.atherosclerosis.2019.04.207] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Accepted: 04/04/2019] [Indexed: 01/26/2023]
|
26
|
Huang MZ, Lu XR, Yang YJ, Liu XW, Qin Z, Li JY. Cellular Metabolomics Reveal the Mechanism Underlying the Anti-Atherosclerotic Effects of Aspirin Eugenol Ester on Vascular Endothelial Dysfunction. Int J Mol Sci 2019; 20:E3165. [PMID: 31261711 PMCID: PMC6651823 DOI: 10.3390/ijms20133165] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Accepted: 06/26/2019] [Indexed: 01/29/2023] Open
Abstract
Aspirin eugenol ester (AEE) possesses anti-thrombotic, anti-atherosclerotic and anti-oxidative effects. The study aims to clarify the mechanism underlying the anti-atherosclerotic effects of AEE on vascular endothelial dysfunction. Both the high-fat diet (HFD)-induced atherosclerotic rat model and the H2O2-induced human umbilical vein endothelial cells (HUVECs) model were used to investigate the effects of AEE on vascular endothelial dysfunction. UPLC/QTOF-MS coupled with a multivariate data analysis method were used to profile the variations in the metabolites of HUVECs in response to different treatments. Pretreatment of HUVECs with AEE significantly ameliorated H2O2-induced apoptosis, the overexpression of E-selectin and VCAM-1, and the adhesion of THP-1 cells. Putative endogenous biomarkers associated with the inhibition of endothelial dysfunction were identified in HUVECs pretreated with AEE in the absence or presence of H2O2, and these biomarkers were involved in important metabolic pathways, including amino acid metabolism, carbohydrate metabolism, and glutathione metabolism. Moreover, in vivo, AEE also significantly reduced vascular endothelial dysfunction and decreased the overexpression of VCAM-1 and E-selectin. Based on our findings, the mechanism underlying the anti-atherosclerotic effects of AEE might be related to a reduction in vascular endothelial dysfunction mediated by ameliorating alterations in metabolism, inhibiting oxidative stress, and decreasing the expression of adhesion molecules.
Collapse
Affiliation(s)
- Mei-Zhou Huang
- Key Lab of New Animal Drug Project of Gansu Province, Key Lab of Veterinary Pharmaceutical Development of Ministry of Agriculture, Lanzhou Institute of Husbandry and Pharmaceutical Sciences of CAAS, Lanzhou 730050, China
| | - Xiao-Rong Lu
- Key Lab of New Animal Drug Project of Gansu Province, Key Lab of Veterinary Pharmaceutical Development of Ministry of Agriculture, Lanzhou Institute of Husbandry and Pharmaceutical Sciences of CAAS, Lanzhou 730050, China
| | - Ya-Jun Yang
- Key Lab of New Animal Drug Project of Gansu Province, Key Lab of Veterinary Pharmaceutical Development of Ministry of Agriculture, Lanzhou Institute of Husbandry and Pharmaceutical Sciences of CAAS, Lanzhou 730050, China
| | - Xi-Wang Liu
- Key Lab of New Animal Drug Project of Gansu Province, Key Lab of Veterinary Pharmaceutical Development of Ministry of Agriculture, Lanzhou Institute of Husbandry and Pharmaceutical Sciences of CAAS, Lanzhou 730050, China
| | - Zhe Qin
- Key Lab of New Animal Drug Project of Gansu Province, Key Lab of Veterinary Pharmaceutical Development of Ministry of Agriculture, Lanzhou Institute of Husbandry and Pharmaceutical Sciences of CAAS, Lanzhou 730050, China
| | - Jian-Yong Li
- Key Lab of New Animal Drug Project of Gansu Province, Key Lab of Veterinary Pharmaceutical Development of Ministry of Agriculture, Lanzhou Institute of Husbandry and Pharmaceutical Sciences of CAAS, Lanzhou 730050, China.
| |
Collapse
|
27
|
Lin JD, Nishi H, Poles J, Niu X, Mccauley C, Rahman K, Brown EJ, Yeung ST, Vozhilla N, Weinstock A, Ramsey SA, Fisher EA, Loke P. Single-cell analysis of fate-mapped macrophages reveals heterogeneity, including stem-like properties, during atherosclerosis progression and regression. JCI Insight 2019; 4:124574. [PMID: 30830865 PMCID: PMC6478411 DOI: 10.1172/jci.insight.124574] [Citation(s) in RCA: 220] [Impact Index Per Article: 36.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Accepted: 01/17/2019] [Indexed: 12/21/2022] Open
Abstract
Atherosclerosis is a leading cause of death worldwide in industrialized countries. Disease progression and regression are associated with different activation states of macrophages derived from inflammatory monocytes entering the plaques. The features of monocyte-to-macrophage transition and the full spectrum of macrophage activation states during either plaque progression or regression, however, are incompletely established. Here, we use a combination of single-cell RNA sequencing and genetic fate mapping to profile, for the first time to our knowledge, plaque cells derived from CX3CR1+ precursors in mice during both progression and regression of atherosclerosis. The analyses revealed a spectrum of macrophage activation states with greater complexity than the traditional M1 and M2 polarization states, with progression associated with differentiation of CXC3R1+ monocytes into more distinct states than during regression. We also identified an unexpected cluster of proliferating monocytes with a stem cell-like signature, suggesting that monocytes may persist in a proliferating self-renewal state in inflamed tissue, rather than differentiating immediately into macrophages after entering the tissue.
Collapse
Affiliation(s)
| | - Hitoo Nishi
- Department of Medicine, New York University School of Medicine, New York, New York, USA
| | | | - Xiang Niu
- Tri-Institutional Program in Computational Biology and Medicine, Weill Cornell Medical College, New York, New York, USA
| | | | - Karishma Rahman
- Department of Medicine, New York University School of Medicine, New York, New York, USA
| | - Emily J. Brown
- Department of Medicine, New York University School of Medicine, New York, New York, USA
| | | | | | - Ada Weinstock
- Department of Medicine, New York University School of Medicine, New York, New York, USA
| | - Stephen A. Ramsey
- Department of Biomedical Sciences, School of Electrical Engineering and Computer Science, Oregon State University, Corvallis, Oregon, USA
| | - Edward A. Fisher
- Department of Microbiology and
- Department of Medicine, New York University School of Medicine, New York, New York, USA
| | | |
Collapse
|
28
|
Mitchell CC, Korcarz CE, Gepner AD, Nye R, Young RL, Matsuzaki M, Post WS, Kaufman JD, McClelland RL, Stein JH. Carotid Artery Echolucency, Texture Features, and Incident Cardiovascular Disease Events: The MESA Study. J Am Heart Assoc 2019; 8:e010875. [PMID: 30681393 PMCID: PMC6405595 DOI: 10.1161/jaha.118.010875] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Accepted: 11/27/2018] [Indexed: 02/07/2023]
Abstract
Background We hypothesized that measures of common carotid artery echolucency and grayscale texture features were associated with cardiovascular disease ( CVD ) risk factors and could predict CVD events. Methods and Results Using a case-cohort design, we measured common carotid artery ultrasound images from 1788 participants in Exam 1 of the MESA study (Multi-Ethnic Study of Atherosclerosis) to derive 4 grayscale features: grayscale median, entropy, gray level difference statistic-contrast, and spatial gray level dependence matrices-angular second moment. CVD risk factor associations were determined by linear regression. Cox proportional hazard models with inverse selection probability weighting and adjustments for age, sex, race/ethnicity, CVD risk factors, and C-reactive protein were used to determine if standardized values for grayscale median, entropy, gray level difference statistic-contrast, and spatial gray level dependence matrices-angular second moment could predict incident coronary heart disease, stroke, and total CVD events over a median 13 years follow-up. Participants were mean ( SD ) 63.1 (10.3) years of age, 52.6% female, 32.1% white, 27.8% black, 23.3% Hispanic, and 16.8% Chinese. There were 283 coronary heart disease, 120 stroke, and 416 CVD events. Several associations of grayscale features with CVD risk factors were identified. In fully adjusted models, higher gray level difference statistic-contrast was associated with a lower risk of incident coronary heart disease (hazard ratio 0.82, 95% CI 0.71-0.94, padj=0.005) and CVD events (hazard ratio 0.87, 95% CI 0.77-0.98, padj=0.018); higher spatial gray level dependence matrices-angular second moment was associated with a higher risk of CVD events (hazard ratio 1.09, 95% CI 1.00-1.19, padj=0.044). Conclusions Gray level difference statistic-contrast and spatial gray level dependence matrices-angular second moment predicted CVD events independent of risk factors, indicating their potential use as biomarkers to assess future CVD risk.
Collapse
Affiliation(s)
- Carol C. Mitchell
- Division of Cardiovascular MedicineDepartment of MedicineSchool of Medicine and Public HealthUniversity of WisconsinMadisonWI
| | - Claudia E. Korcarz
- Division of Cardiovascular MedicineDepartment of MedicineSchool of Medicine and Public HealthUniversity of WisconsinMadisonWI
| | - Adam D. Gepner
- Division of Cardiovascular MedicineDepartment of MedicineSchool of Medicine and Public HealthUniversity of WisconsinMadisonWI
- Department of MedicineDivision of Cardiovascular MedicineWilliam S. Middleton Memorial Veterans HospitalMadisonWI
| | - Rebecca Nye
- Division of Cardiovascular MedicineDepartment of MedicineSchool of Medicine and Public HealthUniversity of WisconsinMadisonWI
| | | | - Mika Matsuzaki
- Department of BiostatisticsUniversity of WashingtonSeattleWA
| | - Wendy S. Post
- Division of CardiologyDepartment of MedicineJohns Hopkins UniversityBaltimoreMD
| | - Joel D. Kaufman
- Departments of Environmental & Occupational Health Sciences, Medicine, and EpidemiologyUniversity of WashingtonSeattleWA
| | | | - James H. Stein
- Division of Cardiovascular MedicineDepartment of MedicineSchool of Medicine and Public HealthUniversity of WisconsinMadisonWI
| |
Collapse
|
29
|
CTRP5 promotes transcytosis and oxidative modification of low-density lipoprotein and the development of atherosclerosis. Atherosclerosis 2018; 278:197-209. [PMID: 30300788 DOI: 10.1016/j.atherosclerosis.2018.09.037] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Revised: 09/05/2018] [Accepted: 09/26/2018] [Indexed: 12/19/2022]
Abstract
BACKGROUND AND AIMS Increased transcytosis of low-density lipoprotein (LDL) across the endothelium and oxidation of LDL deposited within the subendothelial space are crucial early events in atherogenesis. C1q/TNF-related protein (CTRP) 5 is a novel secreted glycoprotein and its biological functions are largely undefined. METHODS Expression of CTRP5 was analyzed in sera and atherosclerotic plaques of patients with coronary artery disease (CAD). The role of CTRP5 in atherogenesis was investigated in vitro and in vivo. RESULTS We found CTRP5 serum levels were higher in patients with than without CAD (247.26 ± 61.71 vs. 167.81 ± 68.08 ng/mL, p < 0.001), and were positively correlated with the number of diseased vessels (Spearman's r = 0.611, p < 0.001). Increased expression of CTRP5 was detected in human coronary endarterectomy specimens as compared to non-atherosclerotic arteries. Immunofluorescence further showed that CTRP5 was predominantly localized in the endothelium, infiltrated macrophages and smooth muscle cells in the neointima. In vivo and in vitro experiments demonstrated that CTRP5 promoted transcytosis of LDL across endothelial monolayers, as well as the oxidative modification of LDL in endothelial cells. Mechanistically, we found that CTRP5 up-regulated 12/15-lipoxygenase (LOX), a key enzyme in mediating LDL trafficking and oxidation, through STAT6 signaling. Genetic or pharmacological inhibition of 12/15-LOX dramatically attenuated the deposition of oxidized LDL in the subendothelial space and the development of atherosclerosis. CONCLUSIONS These data indicate that CTRP5 is a novel pro-atherogenic cytokine and promotes transcytosis and oxidation of LDL in endothelial cells via up-regulation of 12/15-LOX.
Collapse
|
30
|
Rahman K, Fisher EA. Insights From Pre-Clinical and Clinical Studies on the Role of Innate Inflammation in Atherosclerosis Regression. Front Cardiovasc Med 2018; 5:32. [PMID: 29868610 PMCID: PMC5958627 DOI: 10.3389/fcvm.2018.00032] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2017] [Accepted: 03/20/2018] [Indexed: 12/11/2022] Open
Abstract
Atherosclerosis, the underlying cause of coronary artery (CAD) and other cardiovascular diseases, is initiated by macrophage-mediated immune responses to lipoprotein and cholesterol accumulation in artery walls, which result in the formation of plaques. Unlike at other sites of inflammation, the immune response becomes maladaptive and inflammation fails to resolve. The most common treatment for reducing the risk from atherosclerosis is low density lipoprotein cholesterol (LDL-C) lowering. Studies have shown, however, that while significant lowering of LDL-C reduces the risk of heart attacks to some degree, there is still residual risk for the majority of the population. We and others have observed “residual inflammatory risk” of atherosclerosis after plasma cholesterol lowering in pre-clinical studies, and that this phenomenon is clinically relevant has been dramatically reinforced by the recent Canakinumab Anti-inflammatory Thrombosis Outcomes Study (CANTOS) trial. This review will summarize the role of the innate immune system, specifically macrophages, in atherosclerosis progression and regression, as well as the pre-clinical and clinical models that have provided significant insights into molecular pathways involved in the resolution of plaque inflammation and plaque regression. Partnered with clinical studies that can be envisioned in the post-CANTOS period, including progress in developing targeted plaque therapies, we expect that pre-clinical studies advancing on the path summarized in this review, already revealing key mechanisms, will continue to be essential contributors to achieve the goals of dampening plaque inflammation and inducing its resolution in order to maximize the therapeutic benefits of conventional risk factor modifications, such as LDL-C lowering.
Collapse
Affiliation(s)
- Karishma Rahman
- Department of Medicine, Division of Cardiology, New York University School of Medicine, New York, NY, United States
| | - Edward A Fisher
- Department of Medicine, Division of Cardiology, New York University School of Medicine, New York, NY, United States
| |
Collapse
|
31
|
Basu D, Hu Y, Huggins LA, Mullick AE, Graham MJ, Wietecha T, Barnhart S, Mogul A, Pfeiffer K, Zirlik A, Fisher EA, Bornfeldt KE, Willecke F, Goldberg IJ. Novel Reversible Model of Atherosclerosis and Regression Using Oligonucleotide Regulation of the LDL Receptor. Circ Res 2018; 122:560-567. [PMID: 29321129 DOI: 10.1161/circresaha.117.311361] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2017] [Revised: 01/04/2018] [Accepted: 01/09/2018] [Indexed: 11/16/2022]
Abstract
RATIONALE Animal models have been used to explore factors that regulate atherosclerosis. More recently, they have been used to study the factors that promote loss of macrophages and reduction in lesion size after lowering of plasma cholesterol levels. However, current animal models of atherosclerosis regression require challenging surgeries, time-consuming breeding strategies, and methods that block liver lipoprotein secretion. OBJECTIVE We sought to develop a more direct or time-effective method to create and then reverse hypercholesterolemia and atherosclerosis via transient knockdown of the hepatic LDLR (low-density lipoprotein receptor) followed by its rapid restoration. METHODS AND RESULTS We used antisense oligonucleotides directed to LDLR mRNA to create hypercholesterolemia in wild-type C57BL/6 mice fed an atherogenic diet. This led to the development of lesions in the aortic root, aortic arch, and brachiocephalic artery. Use of a sense oligonucleotide replicating the targeted sequence region of the LDLR mRNA rapidly reduced circulating cholesterol levels because of recovery of hepatic LDLR expression. This led to a decrease in macrophages within the aortic root plaques and brachiocephalic artery, that is, regression of inflammatory cell content, after a period of 2 to 3 weeks. CONCLUSIONS We have developed an inducible and reversible hepatic LDLR knockdown mouse model of atherosclerosis regression. Although cholesterol reduction decreased early en face lesions in the aortic arches, macrophage area was reduced in both early and late lesions within the aortic sinus after reversal of hypercholesterolemia. Our model circumvents many of the challenges associated with current mouse models of regression. The use of this technology will potentially expedite studies of atherosclerosis and regression without use of mice with genetic defects in lipid metabolism.
Collapse
Affiliation(s)
- Debapriya Basu
- From the Department of Medicine, New York University Langone Health, New York (D.B., Y.H., L.-A.H., A.M., E.A.F., I.J.G.); Ionis Pharmaceuticals, Carlsbad, CA (A.E.M., M.J.G.); Division of Cardiology, Department of Medicine (T.W.), Division of Metabolism, Endocrinology and Nutrition, Department of Medicine, UW Diabetes Institute (S.B., K.E.B.), and Department of Pathology (K.E.B.), University of Washington, Seattle; and Department of Cardiology and Angiology I, Heart Center, Freiburg University, Germany (K.P., A.Z., F.W.)
| | - Yunying Hu
- From the Department of Medicine, New York University Langone Health, New York (D.B., Y.H., L.-A.H., A.M., E.A.F., I.J.G.); Ionis Pharmaceuticals, Carlsbad, CA (A.E.M., M.J.G.); Division of Cardiology, Department of Medicine (T.W.), Division of Metabolism, Endocrinology and Nutrition, Department of Medicine, UW Diabetes Institute (S.B., K.E.B.), and Department of Pathology (K.E.B.), University of Washington, Seattle; and Department of Cardiology and Angiology I, Heart Center, Freiburg University, Germany (K.P., A.Z., F.W.)
| | - Lesley-Ann Huggins
- From the Department of Medicine, New York University Langone Health, New York (D.B., Y.H., L.-A.H., A.M., E.A.F., I.J.G.); Ionis Pharmaceuticals, Carlsbad, CA (A.E.M., M.J.G.); Division of Cardiology, Department of Medicine (T.W.), Division of Metabolism, Endocrinology and Nutrition, Department of Medicine, UW Diabetes Institute (S.B., K.E.B.), and Department of Pathology (K.E.B.), University of Washington, Seattle; and Department of Cardiology and Angiology I, Heart Center, Freiburg University, Germany (K.P., A.Z., F.W.)
| | - Adam E Mullick
- From the Department of Medicine, New York University Langone Health, New York (D.B., Y.H., L.-A.H., A.M., E.A.F., I.J.G.); Ionis Pharmaceuticals, Carlsbad, CA (A.E.M., M.J.G.); Division of Cardiology, Department of Medicine (T.W.), Division of Metabolism, Endocrinology and Nutrition, Department of Medicine, UW Diabetes Institute (S.B., K.E.B.), and Department of Pathology (K.E.B.), University of Washington, Seattle; and Department of Cardiology and Angiology I, Heart Center, Freiburg University, Germany (K.P., A.Z., F.W.)
| | - Mark J Graham
- From the Department of Medicine, New York University Langone Health, New York (D.B., Y.H., L.-A.H., A.M., E.A.F., I.J.G.); Ionis Pharmaceuticals, Carlsbad, CA (A.E.M., M.J.G.); Division of Cardiology, Department of Medicine (T.W.), Division of Metabolism, Endocrinology and Nutrition, Department of Medicine, UW Diabetes Institute (S.B., K.E.B.), and Department of Pathology (K.E.B.), University of Washington, Seattle; and Department of Cardiology and Angiology I, Heart Center, Freiburg University, Germany (K.P., A.Z., F.W.)
| | - Tomasz Wietecha
- From the Department of Medicine, New York University Langone Health, New York (D.B., Y.H., L.-A.H., A.M., E.A.F., I.J.G.); Ionis Pharmaceuticals, Carlsbad, CA (A.E.M., M.J.G.); Division of Cardiology, Department of Medicine (T.W.), Division of Metabolism, Endocrinology and Nutrition, Department of Medicine, UW Diabetes Institute (S.B., K.E.B.), and Department of Pathology (K.E.B.), University of Washington, Seattle; and Department of Cardiology and Angiology I, Heart Center, Freiburg University, Germany (K.P., A.Z., F.W.)
| | - Shelley Barnhart
- From the Department of Medicine, New York University Langone Health, New York (D.B., Y.H., L.-A.H., A.M., E.A.F., I.J.G.); Ionis Pharmaceuticals, Carlsbad, CA (A.E.M., M.J.G.); Division of Cardiology, Department of Medicine (T.W.), Division of Metabolism, Endocrinology and Nutrition, Department of Medicine, UW Diabetes Institute (S.B., K.E.B.), and Department of Pathology (K.E.B.), University of Washington, Seattle; and Department of Cardiology and Angiology I, Heart Center, Freiburg University, Germany (K.P., A.Z., F.W.)
| | - Allison Mogul
- From the Department of Medicine, New York University Langone Health, New York (D.B., Y.H., L.-A.H., A.M., E.A.F., I.J.G.); Ionis Pharmaceuticals, Carlsbad, CA (A.E.M., M.J.G.); Division of Cardiology, Department of Medicine (T.W.), Division of Metabolism, Endocrinology and Nutrition, Department of Medicine, UW Diabetes Institute (S.B., K.E.B.), and Department of Pathology (K.E.B.), University of Washington, Seattle; and Department of Cardiology and Angiology I, Heart Center, Freiburg University, Germany (K.P., A.Z., F.W.)
| | - Katharina Pfeiffer
- From the Department of Medicine, New York University Langone Health, New York (D.B., Y.H., L.-A.H., A.M., E.A.F., I.J.G.); Ionis Pharmaceuticals, Carlsbad, CA (A.E.M., M.J.G.); Division of Cardiology, Department of Medicine (T.W.), Division of Metabolism, Endocrinology and Nutrition, Department of Medicine, UW Diabetes Institute (S.B., K.E.B.), and Department of Pathology (K.E.B.), University of Washington, Seattle; and Department of Cardiology and Angiology I, Heart Center, Freiburg University, Germany (K.P., A.Z., F.W.)
| | - Andreas Zirlik
- From the Department of Medicine, New York University Langone Health, New York (D.B., Y.H., L.-A.H., A.M., E.A.F., I.J.G.); Ionis Pharmaceuticals, Carlsbad, CA (A.E.M., M.J.G.); Division of Cardiology, Department of Medicine (T.W.), Division of Metabolism, Endocrinology and Nutrition, Department of Medicine, UW Diabetes Institute (S.B., K.E.B.), and Department of Pathology (K.E.B.), University of Washington, Seattle; and Department of Cardiology and Angiology I, Heart Center, Freiburg University, Germany (K.P., A.Z., F.W.)
| | - Edward A Fisher
- From the Department of Medicine, New York University Langone Health, New York (D.B., Y.H., L.-A.H., A.M., E.A.F., I.J.G.); Ionis Pharmaceuticals, Carlsbad, CA (A.E.M., M.J.G.); Division of Cardiology, Department of Medicine (T.W.), Division of Metabolism, Endocrinology and Nutrition, Department of Medicine, UW Diabetes Institute (S.B., K.E.B.), and Department of Pathology (K.E.B.), University of Washington, Seattle; and Department of Cardiology and Angiology I, Heart Center, Freiburg University, Germany (K.P., A.Z., F.W.)
| | - Karin E Bornfeldt
- From the Department of Medicine, New York University Langone Health, New York (D.B., Y.H., L.-A.H., A.M., E.A.F., I.J.G.); Ionis Pharmaceuticals, Carlsbad, CA (A.E.M., M.J.G.); Division of Cardiology, Department of Medicine (T.W.), Division of Metabolism, Endocrinology and Nutrition, Department of Medicine, UW Diabetes Institute (S.B., K.E.B.), and Department of Pathology (K.E.B.), University of Washington, Seattle; and Department of Cardiology and Angiology I, Heart Center, Freiburg University, Germany (K.P., A.Z., F.W.)
| | - Florian Willecke
- From the Department of Medicine, New York University Langone Health, New York (D.B., Y.H., L.-A.H., A.M., E.A.F., I.J.G.); Ionis Pharmaceuticals, Carlsbad, CA (A.E.M., M.J.G.); Division of Cardiology, Department of Medicine (T.W.), Division of Metabolism, Endocrinology and Nutrition, Department of Medicine, UW Diabetes Institute (S.B., K.E.B.), and Department of Pathology (K.E.B.), University of Washington, Seattle; and Department of Cardiology and Angiology I, Heart Center, Freiburg University, Germany (K.P., A.Z., F.W.)
| | - Ira J Goldberg
- From the Department of Medicine, New York University Langone Health, New York (D.B., Y.H., L.-A.H., A.M., E.A.F., I.J.G.); Ionis Pharmaceuticals, Carlsbad, CA (A.E.M., M.J.G.); Division of Cardiology, Department of Medicine (T.W.), Division of Metabolism, Endocrinology and Nutrition, Department of Medicine, UW Diabetes Institute (S.B., K.E.B.), and Department of Pathology (K.E.B.), University of Washington, Seattle; and Department of Cardiology and Angiology I, Heart Center, Freiburg University, Germany (K.P., A.Z., F.W.).
| |
Collapse
|
32
|
Violi F, Loffredo L, Carnevale R, Pignatelli P, Pastori D. Atherothrombosis and Oxidative Stress: Mechanisms and Management in Elderly. Antioxid Redox Signal 2017; 27:1083-1124. [PMID: 28816059 DOI: 10.1089/ars.2016.6963] [Citation(s) in RCA: 84] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
SIGNIFICANCE The incidence of cardiovascular events (CVEs) increases with age, representing the main cause of death in an elderly population. Aging is associated with overproduction of reactive oxygen species (ROS), which may affect clotting and platelet activation, and impair endothelial function, thus predisposing elderly patients to thrombotic complications. Recent Advances: There is increasing evidence to suggest that aging is associated with an imbalance between oxidative stress and antioxidant status. Thus, upregulation of ROS-producing enzymes such as nicotinamide adenine dinucleotide phosphate (NADPH) oxidase and myeloperoxidase, along with downregulation of antioxidant enzymes, such as superoxide dismutase and glutathione peroxidase, occurs during aging. This imbalance may predispose to thrombosis by enhancing platelet and clotting activation and eliciting endothelial dysfunction. Recently, gut-derived products, such as trimethylamine N-oxide (TMAO) and lipopolysaccharide, are emerging as novel atherosclerotic risk factors, and gut microbiota composition has been shown to change by aging, and may concur with the increased cardiovascular risk in the elderly. CRITICAL ISSUES Antioxidant treatment is ineffective in patients at risk or with cardiovascular disease. Further, anti-thrombotic treatment seems to work less in the elderly population. FUTURE DIRECTIONS Interventional trials with antioxidants targeting enzymes implicated in aging-related atherothrombosis are warranted to explore whether modulation of redox status is effective in lowering CVEs in the elderly. Antioxid. Redox Signal. 27, 1083-1124.
Collapse
Affiliation(s)
- Francesco Violi
- 1 I Clinica Medica, Department of Internal Medicine and Medical Specialties, Sapienza University of Rome , Roma, Italy
| | - Lorenzo Loffredo
- 1 I Clinica Medica, Department of Internal Medicine and Medical Specialties, Sapienza University of Rome , Roma, Italy
| | - Roberto Carnevale
- 1 I Clinica Medica, Department of Internal Medicine and Medical Specialties, Sapienza University of Rome , Roma, Italy .,2 Department of Medical-Surgical Sciences and Biotechnologies, Sapienza University of Rome , Latina, Italy
| | - Pasquale Pignatelli
- 1 I Clinica Medica, Department of Internal Medicine and Medical Specialties, Sapienza University of Rome , Roma, Italy
| | - Daniele Pastori
- 1 I Clinica Medica, Department of Internal Medicine and Medical Specialties, Sapienza University of Rome , Roma, Italy
| |
Collapse
|
33
|
Abstract
It is now evident that elevated circulating levels of triglycerides in the non-fasting state, a marker for triglyceride (TG)-rich remnant particles, are associated with increased risk of premature cardiovascular disease (CVD). Recent findings from basic and clinical studies have begun to elucidate the mechanisms that contribute to the atherogenicity of these apoB-containing particles. Here, we review current knowledge of the formation, intravascular remodelling and catabolism of TG-rich lipoproteins and highlight (i) the pivotal players involved in this process, including lipoprotein lipase, glycosylphosphatidylinositol HDL binding protein 1 (GPIHBP1), apolipoprotein (apo) C-II, apoC-III, angiopoietin-like protein (ANGPTL) 3, 4 and 8, apoA-V and cholesteryl ester transfer protein; (ii) key determinants of triglyceride (TG) levels and notably rates of production of very-low-density lipoprotein 1 (VLDL1) particles; and (iii) the mechanisms which underlie the atherogenicity of remnant particles. Finally, we emphasise the polygenic nature of moderate hypertriglyceridemia and briefly discuss modalities for its clinical management. Several new therapeutic strategies to attenuate hypertriglyceridemia have appeared recently, among which those targeted to apoC-III appear to hold considerable promise.
Collapse
Affiliation(s)
- Geesje M Dallinga-Thie
- Department of Vascular Medicine, Academic Medical Center, Amsterdam, The Netherlands. .,Department of Experimental Vascular Medicine, Academic Medical Center, Amsterdam, The Netherlands.
| | - Jeffrey Kroon
- Department of Vascular Medicine, Academic Medical Center, Amsterdam, The Netherlands.,Department of Experimental Vascular Medicine, Academic Medical Center, Amsterdam, The Netherlands
| | - Jan Borén
- Department of Molecular and Clinical Medicine, University of Gothenburg and Sahlgrenska University Hospital, Gothenburg, Sweden
| | - M John Chapman
- INSERM and University of Pierre and Marie Curie, Pitie-Salpetriere University Hospital, 75651, Paris Cedex 13, France
| |
Collapse
|
34
|
Daugherty A, Tall AR, Daemen MJ, Falk E, Fisher EA, García-Cardeña G, Lusis AJ, Owens AP, Rosenfeld ME, Virmani R. Recommendation on Design, Execution, and Reporting of Animal Atherosclerosis Studies: A Scientific Statement From the American Heart Association. Circ Res 2017; 121:e53-e79. [DOI: 10.1161/res.0000000000000169] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Animal studies are a foundation for defining mechanisms of atherosclerosis and potential targets of drugs to prevent lesion development or reverse the disease. In the current literature, it is common to see contradictions of outcomes in animal studies from different research groups, leading to the paucity of extrapolations of experimental findings into understanding the human disease. The purpose of this statement is to provide guidelines for development and execution of experimental design and interpretation in animal studies. Recommendations include the following: (1) animal model selection, with commentary on the fidelity of mimicking facets of the human disease; (2) experimental design and its impact on the interpretation of data; and (3) standard methods to enhance accuracy of measurements and characterization of atherosclerotic lesions.
Collapse
|
35
|
Daugherty A, Tall AR, Daemen MJAP, Falk E, Fisher EA, García-Cardeña G, Lusis AJ, Owens AP, Rosenfeld ME, Virmani R. Recommendation on Design, Execution, and Reporting of Animal Atherosclerosis Studies: A Scientific Statement From the American Heart Association. Arterioscler Thromb Vasc Biol 2017; 37:e131-e157. [PMID: 28729366 DOI: 10.1161/atv.0000000000000062] [Citation(s) in RCA: 250] [Impact Index Per Article: 31.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Animal studies are a foundation for defining mechanisms of atherosclerosis and potential targets of drugs to prevent lesion development or reverse the disease. In the current literature, it is common to see contradictions of outcomes in animal studies from different research groups, leading to the paucity of extrapolations of experimental findings into understanding the human disease. The purpose of this statement is to provide guidelines for development and execution of experimental design and interpretation in animal studies. Recommendations include the following: (1) animal model selection, with commentary on the fidelity of mimicking facets of the human disease; (2) experimental design and its impact on the interpretation of data; and (3) standard methods to enhance accuracy of measurements and characterization of atherosclerotic lesions.
Collapse
|
36
|
Sacks FM, Lichtenstein AH, Wu JHY, Appel LJ, Creager MA, Kris-Etherton PM, Miller M, Rimm EB, Rudel LL, Robinson JG, Stone NJ, Van Horn LV. Dietary Fats and Cardiovascular Disease: A Presidential Advisory From the American Heart Association. Circulation 2017; 136:e1-e23. [PMID: 28620111 DOI: 10.1161/cir.0000000000000510] [Citation(s) in RCA: 804] [Impact Index Per Article: 100.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Cardiovascular disease (CVD) is the leading global cause of death, accounting for 17.3 million deaths per year. Preventive treatment that reduces CVD by even a small percentage can substantially reduce, nationally and globally, the number of people who develop CVD and the costs of caring for them. This American Heart Association presidential advisory on dietary fats and CVD reviews and discusses the scientific evidence, including the most recent studies, on the effects of dietary saturated fat intake and its replacement by other types of fats and carbohydrates on CVD. In summary, randomized controlled trials that lowered intake of dietary saturated fat and replaced it with polyunsaturated vegetable oil reduced CVD by ≈30%, similar to the reduction achieved by statin treatment. Prospective observational studies in many populations showed that lower intake of saturated fat coupled with higher intake of polyunsaturated and monounsaturated fat is associated with lower rates of CVD and of other major causes of death and all-cause mortality. In contrast, replacement of saturated fat with mostly refined carbohydrates and sugars is not associated with lower rates of CVD and did not reduce CVD in clinical trials. Replacement of saturated with unsaturated fats lowers low-density lipoprotein cholesterol, a cause of atherosclerosis, linking biological evidence with incidence of CVD in populations and in clinical trials. Taking into consideration the totality of the scientific evidence, satisfying rigorous criteria for causality, we conclude strongly that lowering intake of saturated fat and replacing it with unsaturated fats, especially polyunsaturated fats, will lower the incidence of CVD. This recommended shift from saturated to unsaturated fats should occur simultaneously in an overall healthful dietary pattern such as DASH (Dietary Approaches to Stop Hypertension) or the Mediterranean diet as emphasized by the 2013 American Heart Association/American College of Cardiology lifestyle guidelines and the 2015 to 2020 Dietary Guidelines for Americans.
Collapse
|
37
|
Velagapudi S, Yalcinkaya M, Piemontese A, Meier R, Nørrelykke SF, Perisa D, Rzepiela A, Stebler M, Stoma S, Zanoni P, Rohrer L, von Eckardstein A. VEGF-A Regulates Cellular Localization of SR-BI as Well as Transendothelial Transport of HDL but Not LDL. Arterioscler Thromb Vasc Biol 2017; 37:794-803. [DOI: 10.1161/atvbaha.117.309284] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Accepted: 03/20/2017] [Indexed: 11/16/2022]
Abstract
Objective—
Low- and high-density lipoproteins (LDL and HDL) must pass the endothelial layer to exert pro- and antiatherogenic activities, respectively, within the vascular wall. However, the rate-limiting factors that mediate transendothelial transport of lipoproteins are yet little known. Therefore, we performed a high-throughput screen with kinase drug inhibitors to identify modulators of transendothelial LDL and HDL transport.
Approach and Results—
Microscopy-based high-content screening was performed by incubating human aortic endothelial cells with 141 kinase-inhibiting drugs and fluorescent-labeled LDL or HDL. Inhibitors of vascular endothelial growth factor (VEGF) receptors (VEGFR) significantly decreased the uptake of HDL but not LDL. Silencing of VEGF receptor 2 significantly decreased cellular binding, association, and transendothelial transport of
125
I-HDL but not
125
I-LDL. RNA interference with VEGF receptor 1 or VEGF receptor 3 had no effect. Binding, uptake, and transport of HDL but not LDL were strongly reduced in the absence of VEGF-A from the cell culture medium and were restored by the addition of VEGF-A. The restoring effect of VEGF-A on endothelial binding, uptake, and transport of HDL was abrogated by pharmacological inhibition of phosphatidyl-inositol 3 kinase/protein kinase B or p38 mitogen-activated protein kinase, as well as silencing of scavenger receptor BI. Moreover, the presence of VEGF-A was found to be a prerequisite for the localization of scavenger receptor BI in the plasma membrane of endothelial cells.
Conclusions—
The identification of VEGF as a regulatory factor of transendothelial transport of HDL but not LDL supports the concept that the endothelium is a specific and, hence, druggable barrier for the entry of lipoproteins into the vascular wall.
Collapse
Affiliation(s)
- Srividya Velagapudi
- From the Institute of Clinical Chemistry, University and University Hospital of Zurich, Schlieren, Switzerland (S.V., M.Y., A.P., D.P., P.Z., L.R., A.v.E.); Competence Center for Integrated Human Physiology, University of Zurich, Switzerland (S.V., M.Y., D.P., P.Z., L.R., A.v.E.); Department of Pharmacy, University of Parma, Italy (A.P.); and Scientific Center for Optical and Electron Microscopy, ETH Zurich, Switzerland (R.M., S.F.N., A.R., M.S., S.S.)
| | - Mustafa Yalcinkaya
- From the Institute of Clinical Chemistry, University and University Hospital of Zurich, Schlieren, Switzerland (S.V., M.Y., A.P., D.P., P.Z., L.R., A.v.E.); Competence Center for Integrated Human Physiology, University of Zurich, Switzerland (S.V., M.Y., D.P., P.Z., L.R., A.v.E.); Department of Pharmacy, University of Parma, Italy (A.P.); and Scientific Center for Optical and Electron Microscopy, ETH Zurich, Switzerland (R.M., S.F.N., A.R., M.S., S.S.)
| | - Antonio Piemontese
- From the Institute of Clinical Chemistry, University and University Hospital of Zurich, Schlieren, Switzerland (S.V., M.Y., A.P., D.P., P.Z., L.R., A.v.E.); Competence Center for Integrated Human Physiology, University of Zurich, Switzerland (S.V., M.Y., D.P., P.Z., L.R., A.v.E.); Department of Pharmacy, University of Parma, Italy (A.P.); and Scientific Center for Optical and Electron Microscopy, ETH Zurich, Switzerland (R.M., S.F.N., A.R., M.S., S.S.)
| | - Roger Meier
- From the Institute of Clinical Chemistry, University and University Hospital of Zurich, Schlieren, Switzerland (S.V., M.Y., A.P., D.P., P.Z., L.R., A.v.E.); Competence Center for Integrated Human Physiology, University of Zurich, Switzerland (S.V., M.Y., D.P., P.Z., L.R., A.v.E.); Department of Pharmacy, University of Parma, Italy (A.P.); and Scientific Center for Optical and Electron Microscopy, ETH Zurich, Switzerland (R.M., S.F.N., A.R., M.S., S.S.)
| | - Simon Flyvbjerg Nørrelykke
- From the Institute of Clinical Chemistry, University and University Hospital of Zurich, Schlieren, Switzerland (S.V., M.Y., A.P., D.P., P.Z., L.R., A.v.E.); Competence Center for Integrated Human Physiology, University of Zurich, Switzerland (S.V., M.Y., D.P., P.Z., L.R., A.v.E.); Department of Pharmacy, University of Parma, Italy (A.P.); and Scientific Center for Optical and Electron Microscopy, ETH Zurich, Switzerland (R.M., S.F.N., A.R., M.S., S.S.)
| | - Damir Perisa
- From the Institute of Clinical Chemistry, University and University Hospital of Zurich, Schlieren, Switzerland (S.V., M.Y., A.P., D.P., P.Z., L.R., A.v.E.); Competence Center for Integrated Human Physiology, University of Zurich, Switzerland (S.V., M.Y., D.P., P.Z., L.R., A.v.E.); Department of Pharmacy, University of Parma, Italy (A.P.); and Scientific Center for Optical and Electron Microscopy, ETH Zurich, Switzerland (R.M., S.F.N., A.R., M.S., S.S.)
| | - Andrzej Rzepiela
- From the Institute of Clinical Chemistry, University and University Hospital of Zurich, Schlieren, Switzerland (S.V., M.Y., A.P., D.P., P.Z., L.R., A.v.E.); Competence Center for Integrated Human Physiology, University of Zurich, Switzerland (S.V., M.Y., D.P., P.Z., L.R., A.v.E.); Department of Pharmacy, University of Parma, Italy (A.P.); and Scientific Center for Optical and Electron Microscopy, ETH Zurich, Switzerland (R.M., S.F.N., A.R., M.S., S.S.)
| | - Michael Stebler
- From the Institute of Clinical Chemistry, University and University Hospital of Zurich, Schlieren, Switzerland (S.V., M.Y., A.P., D.P., P.Z., L.R., A.v.E.); Competence Center for Integrated Human Physiology, University of Zurich, Switzerland (S.V., M.Y., D.P., P.Z., L.R., A.v.E.); Department of Pharmacy, University of Parma, Italy (A.P.); and Scientific Center for Optical and Electron Microscopy, ETH Zurich, Switzerland (R.M., S.F.N., A.R., M.S., S.S.)
| | - Szymon Stoma
- From the Institute of Clinical Chemistry, University and University Hospital of Zurich, Schlieren, Switzerland (S.V., M.Y., A.P., D.P., P.Z., L.R., A.v.E.); Competence Center for Integrated Human Physiology, University of Zurich, Switzerland (S.V., M.Y., D.P., P.Z., L.R., A.v.E.); Department of Pharmacy, University of Parma, Italy (A.P.); and Scientific Center for Optical and Electron Microscopy, ETH Zurich, Switzerland (R.M., S.F.N., A.R., M.S., S.S.)
| | - Paolo Zanoni
- From the Institute of Clinical Chemistry, University and University Hospital of Zurich, Schlieren, Switzerland (S.V., M.Y., A.P., D.P., P.Z., L.R., A.v.E.); Competence Center for Integrated Human Physiology, University of Zurich, Switzerland (S.V., M.Y., D.P., P.Z., L.R., A.v.E.); Department of Pharmacy, University of Parma, Italy (A.P.); and Scientific Center for Optical and Electron Microscopy, ETH Zurich, Switzerland (R.M., S.F.N., A.R., M.S., S.S.)
| | - Lucia Rohrer
- From the Institute of Clinical Chemistry, University and University Hospital of Zurich, Schlieren, Switzerland (S.V., M.Y., A.P., D.P., P.Z., L.R., A.v.E.); Competence Center for Integrated Human Physiology, University of Zurich, Switzerland (S.V., M.Y., D.P., P.Z., L.R., A.v.E.); Department of Pharmacy, University of Parma, Italy (A.P.); and Scientific Center for Optical and Electron Microscopy, ETH Zurich, Switzerland (R.M., S.F.N., A.R., M.S., S.S.)
| | - Arnold von Eckardstein
- From the Institute of Clinical Chemistry, University and University Hospital of Zurich, Schlieren, Switzerland (S.V., M.Y., A.P., D.P., P.Z., L.R., A.v.E.); Competence Center for Integrated Human Physiology, University of Zurich, Switzerland (S.V., M.Y., D.P., P.Z., L.R., A.v.E.); Department of Pharmacy, University of Parma, Italy (A.P.); and Scientific Center for Optical and Electron Microscopy, ETH Zurich, Switzerland (R.M., S.F.N., A.R., M.S., S.S.)
| |
Collapse
|
38
|
Kini AS, Vengrenyuk Y, Shameer K, Maehara A, Purushothaman M, Yoshimura T, Matsumura M, Aquino M, Haider N, Johnson KW, Readhead B, Kidd BA, Feig JE, Krishnan P, Sweeny J, Milind M, Moreno P, Mehran R, Kovacic JC, Baber U, Dudley JT, Narula J, Sharma S. Intracoronary Imaging, Cholesterol Efflux, and Transcriptomes After Intensive Statin Treatment. J Am Coll Cardiol 2017; 69:628-640. [DOI: 10.1016/j.jacc.2016.10.029] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2016] [Revised: 10/24/2016] [Accepted: 10/24/2016] [Indexed: 12/31/2022]
|
39
|
Bentzon JF. Targeting Inflammation in Atherosclerosis ∗. J Am Coll Cardiol 2016; 68:2794-2796. [DOI: 10.1016/j.jacc.2016.11.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2016] [Revised: 10/18/2016] [Accepted: 11/01/2016] [Indexed: 12/25/2022]
|
40
|
Kraehling JR, Chidlow JH, Rajagopal C, Sugiyama MG, Fowler JW, Lee MY, Zhang X, Ramírez CM, Park EJ, Tao B, Chen K, Kuruvilla L, Larriveé B, Folta-Stogniew E, Ola R, Rotllan N, Zhou W, Nagle MW, Herz J, Williams KJ, Eichmann A, Lee WL, Fernández-Hernando C, Sessa WC. Genome-wide RNAi screen reveals ALK1 mediates LDL uptake and transcytosis in endothelial cells. Nat Commun 2016; 7:13516. [PMID: 27869117 PMCID: PMC5121336 DOI: 10.1038/ncomms13516] [Citation(s) in RCA: 115] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2016] [Accepted: 10/11/2016] [Indexed: 12/31/2022] Open
Abstract
In humans and animals lacking functional LDL receptor (LDLR), LDL from plasma still readily traverses the endothelium. To identify the pathways of LDL uptake, a genome-wide RNAi screen was performed in endothelial cells and cross-referenced with GWAS-data sets. Here we show that the activin-like kinase 1 (ALK1) mediates LDL uptake into endothelial cells. ALK1 binds LDL with lower affinity than LDLR and saturates only at hypercholesterolemic concentrations. ALK1 mediates uptake of LDL into endothelial cells via an unusual endocytic pathway that diverts the ligand from lysosomal degradation and promotes LDL transcytosis. The endothelium-specific genetic ablation of Alk1 in Ldlr-KO animals leads to less LDL uptake into the aortic endothelium, showing its physiological role in endothelial lipoprotein metabolism. In summary, identification of pathways mediating LDLR-independent uptake of LDL may provide unique opportunities to block the initiation of LDL accumulation in the vessel wall or augment hepatic LDLR-dependent clearance of LDL. Atherosclerosis is caused by low-density lipoprotein (LDL) buildup in the vessel wall, a process thought to be mediated by LDL receptor alone. Here, the authors show that the endothelium can uptake LDL via ALK1, a TGFβ signalling receptor, suggesting new therapies for blocking LDL accumulation in the vessel wall.
Collapse
Affiliation(s)
- Jan R Kraehling
- Department of Pharmacology, Yale University School of Medicine, New Haven, Connecticut 06520, USA.,Vascular Biology and Therapeutics Program (VBT), Yale University School of Medicine, New Haven, Connecticut 06520, USA
| | - John H Chidlow
- Department of Pharmacology, Yale University School of Medicine, New Haven, Connecticut 06520, USA.,Vascular Biology and Therapeutics Program (VBT), Yale University School of Medicine, New Haven, Connecticut 06520, USA
| | - Chitra Rajagopal
- Department of Pharmacology, Yale University School of Medicine, New Haven, Connecticut 06520, USA.,Vascular Biology and Therapeutics Program (VBT), Yale University School of Medicine, New Haven, Connecticut 06520, USA
| | - Michael G Sugiyama
- Keenan Research Centre for Biomedical Science, St. Michael's Hospital, Toronto, Ontario, Canada M5B 1W8.,Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada M5S 1A8
| | - Joseph W Fowler
- Department of Pharmacology, Yale University School of Medicine, New Haven, Connecticut 06520, USA.,Vascular Biology and Therapeutics Program (VBT), Yale University School of Medicine, New Haven, Connecticut 06520, USA
| | - Monica Y Lee
- Department of Pharmacology, Yale University School of Medicine, New Haven, Connecticut 06520, USA.,Vascular Biology and Therapeutics Program (VBT), Yale University School of Medicine, New Haven, Connecticut 06520, USA
| | - Xinbo Zhang
- Vascular Biology and Therapeutics Program (VBT), Yale University School of Medicine, New Haven, Connecticut 06520, USA.,Department of Comparative Medicine, Yale University School of Medicine, New Haven, Connecticut 06520, USA
| | - Cristina M Ramírez
- Vascular Biology and Therapeutics Program (VBT), Yale University School of Medicine, New Haven, Connecticut 06520, USA.,Department of Comparative Medicine, Yale University School of Medicine, New Haven, Connecticut 06520, USA
| | - Eon Joo Park
- Department of Pharmacology, Yale University School of Medicine, New Haven, Connecticut 06520, USA.,Vascular Biology and Therapeutics Program (VBT), Yale University School of Medicine, New Haven, Connecticut 06520, USA
| | - Bo Tao
- Department of Pharmacology, Yale University School of Medicine, New Haven, Connecticut 06520, USA.,Vascular Biology and Therapeutics Program (VBT), Yale University School of Medicine, New Haven, Connecticut 06520, USA
| | - Keyang Chen
- Division of Endocrinology, Department of Medicine, Temple University School of Medicine, Philadelphia, Pennsylvania 19140, USA
| | - Leena Kuruvilla
- Department of Pharmacology, Yale University School of Medicine, New Haven, Connecticut 06520, USA
| | - Bruno Larriveé
- Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut 06511, USA
| | - Ewa Folta-Stogniew
- W.M. Keck Biotechnology Resource Laboratory, Yale University School of Medicine, New Haven, Connecticut 06511, USA
| | - Roxana Ola
- Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut 06511, USA
| | - Noemi Rotllan
- Vascular Biology and Therapeutics Program (VBT), Yale University School of Medicine, New Haven, Connecticut 06520, USA.,Department of Comparative Medicine, Yale University School of Medicine, New Haven, Connecticut 06520, USA
| | - Wenping Zhou
- Department of Pharmacology, Yale University School of Medicine, New Haven, Connecticut 06520, USA.,Vascular Biology and Therapeutics Program (VBT), Yale University School of Medicine, New Haven, Connecticut 06520, USA
| | - Michael W Nagle
- Human Genetics &Computational Biomedicine, Pfizer Worldwide Research and Development, Cambridge, Massachusetts 02139, USA
| | - Joachim Herz
- Departments of Molecular Genetics, Neuroscience, Neurology and Neurotherapeutics, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| | - Kevin Jon Williams
- Division of Endocrinology, Department of Medicine, Temple University School of Medicine, Philadelphia, Pennsylvania 19140, USA.,Department of Molecular and Clinical Medicine, Sahlgrenska Academy of the University of Gothenburg, Göteborg 41345, Sweden
| | - Anne Eichmann
- Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut 06511, USA
| | - Warren L Lee
- Keenan Research Centre for Biomedical Science, St. Michael's Hospital, Toronto, Ontario, Canada M5B 1W8.,Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada M5S 1A8.,Departments of Biochemistry and Medicine, University of Toronto, Toronto, Ontario, Canada M5S 1A8
| | - Carlos Fernández-Hernando
- Vascular Biology and Therapeutics Program (VBT), Yale University School of Medicine, New Haven, Connecticut 06520, USA.,Department of Comparative Medicine, Yale University School of Medicine, New Haven, Connecticut 06520, USA
| | - William C Sessa
- Department of Pharmacology, Yale University School of Medicine, New Haven, Connecticut 06520, USA.,Vascular Biology and Therapeutics Program (VBT), Yale University School of Medicine, New Haven, Connecticut 06520, USA
| |
Collapse
|
41
|
Han J, Weisbrod RM, Shao D, Watanabe Y, Yin X, Bachschmid MM, Seta F, Janssen-Heininger YMW, Matsui R, Zang M, Hamburg NM, Cohen RA. The redox mechanism for vascular barrier dysfunction associated with metabolic disorders: Glutathionylation of Rac1 in endothelial cells. Redox Biol 2016; 9:306-319. [PMID: 27693992 PMCID: PMC5045950 DOI: 10.1016/j.redox.2016.09.003] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2016] [Revised: 09/08/2016] [Accepted: 09/09/2016] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Oxidative stress is implicated in increased vascular permeability associated with metabolic disorders, but the underlying redox mechanism is poorly defined. S-glutathionylation, a stable adduct of glutathione with protein sulfhydryl, is a reversible oxidative modification of protein and is emerging as an important redox signaling paradigm in cardiovascular physiopathology. The present study determines the role of protein S-glutathionylation in metabolic stress-induced endothelial cell permeability. METHODS AND RESULTS In endothelial cells isolated from patients with type-2 diabetes mellitus, protein S-glutathionylation level was increased. This change was also observed in aortic endothelium in ApoE deficient (ApoE-/-) mice fed on Western diet. Metabolic stress-induced protein S-glutathionylation in human aortic endothelial cells (HAEC) was positively correlated with elevated endothelial cell permeability, as reflected by disassembly of cell-cell adherens junctions and cortical actin structures. These impairments were reversed by adenoviral overexpression of a specific de-glutathionylation enzyme, glutaredoxin-1 in cultured HAECs. Consistently, transgenic overexpression of human Glrx-1 in ApoE-/- mice fed the Western diet attenuated endothelial protein S-glutathionylation, actin cytoskeletal disorganization, and vascular permeability in the aorta. Mechanistically, glutathionylation and inactivation of Rac1, a small RhoGPase, were associated with endothelial hyperpermeability caused by metabolic stress. Glutathionylation of Rac1 on cysteine 81 and 157 located adjacent to guanine nucleotide binding site was required for the metabolic stress to inhibit Rac1 activity and promote endothelial hyperpermeability. CONCLUSIONS Glutathionylation and inactivation of Rac1 in endothelial cells represent a novel redox mechanism of vascular barrier dysfunction associated with metabolic disorders.
Collapse
Affiliation(s)
- Jingyan Han
- Vascular Biology Section, Evans Department of Medicine, Whitaker Cardiovascular Institute, Boston University School of Medicine, Boston, MA, USA.
| | - Robert M Weisbrod
- Evans Department of Medicine and the Whitaker Cardiovascular Institute, Boston University School of Medicine, Boston, MA, USA
| | - Di Shao
- Vascular Biology Section, Evans Department of Medicine, Whitaker Cardiovascular Institute, Boston University School of Medicine, Boston, MA, USA
| | - Yosuke Watanabe
- Vascular Biology Section, Evans Department of Medicine, Whitaker Cardiovascular Institute, Boston University School of Medicine, Boston, MA, USA
| | - Xiaoyan Yin
- Framingham Heart Study, Boston University School of Medicine, Boston, MA, USA
| | - Markus M Bachschmid
- Vascular Biology Section, Evans Department of Medicine, Whitaker Cardiovascular Institute, Boston University School of Medicine, Boston, MA, USA
| | - Francesca Seta
- Vascular Biology Section, Evans Department of Medicine, Whitaker Cardiovascular Institute, Boston University School of Medicine, Boston, MA, USA
| | | | - Reiko Matsui
- Vascular Biology Section, Evans Department of Medicine, Whitaker Cardiovascular Institute, Boston University School of Medicine, Boston, MA, USA
| | - Mengwei Zang
- Department of Molecular Medicine, Barshop Institute for Longevity and Aging Studies, University of Texas Health Science Center, South Texas Veterans Health Care System, San Antonio, TX, USA
| | - Naomi M Hamburg
- Evans Department of Medicine and the Whitaker Cardiovascular Institute, Boston University School of Medicine, Boston, MA, USA
| | - Richard A Cohen
- Vascular Biology Section, Evans Department of Medicine, Whitaker Cardiovascular Institute, Boston University School of Medicine, Boston, MA, USA
| |
Collapse
|
42
|
Borén J, Williams KJ. The central role of arterial retention of cholesterol-rich apolipoprotein-B-containing lipoproteins in the pathogenesis of atherosclerosis: a triumph of simplicity. Curr Opin Lipidol 2016; 27:473-83. [PMID: 27472409 DOI: 10.1097/mol.0000000000000330] [Citation(s) in RCA: 331] [Impact Index Per Article: 36.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
PURPOSE OF REVIEW Today, it is no longer a hypothesis, but an established fact, that increased plasma concentrations of cholesterol-rich apolipoprotein-B (apoB)-containing lipoproteins are causatively linked to atherosclerotic cardiovascular disease (ASCVD) and that lowering plasma LDL concentrations reduces cardiovascular events in humans. Here, we review evidence behind this assertion, with an emphasis on recent studies supporting the 'response-to-retention' model - namely, that the key initiating event in atherogenesis is the retention, or trapping, of cholesterol-rich apoB-containing lipoproteins within the arterial wall. RECENT FINDINGS New clinical trials have shown that ezetimibe and anti-PCSK9 antibodies - both nonstatins - lower ASCVD events, and they do so to the same extent as would be expected from comparable plasma LDL lowering by a statin. These studies demonstrate beyond any doubt the causal role of apoB-containing lipoproteins in atherogenesis. In addition, recent laboratory experimentation and human Mendelian randomization studies have revealed novel information about the critical role of apoB-containing lipoproteins in atherogenesis. New information has also emerged on mechanisms for the accumulation in plasma of harmful cholesterol-rich and triglyceride-rich apoB-containing remnant lipoproteins in states of overnutrition. Like LDL, these harmful cholesterol-rich and triglyceride-rich apoB-containing remnant lipoprotein remnants become retained and modified within the arterial wall, causing atherosclerosis. SUMMARY LDL and other cholesterol-rich, apoB-containing lipoproteins, once they become retained and modified within the arterial wall, cause atherosclerosis. This simple, robust pathophysiologic understanding may finally allow us to eradicate ASCVD, the leading killer in the world.
Collapse
Affiliation(s)
- Jan Borén
- aDepartment of Molecular and Clinical Medicine, University of Gothenburg bSahlgrenska University Hospital, Gothenburg, Sweden cSection of Endocrinology, Diabetes, & Metabolism, Department of Medicine, Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania, USA
| | | |
Collapse
|
43
|
Williams R. Circulation Research “In This Issue” Anthology. Circ Res 2016. [DOI: 10.1161/res.0000000000000108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
44
|
Affiliation(s)
- Kevin Jon Williams
- From the Section of Endocrinology, Diabetes, & Metabolism, Temple University School of Medicine, Philadelphia, PA (K.J.W.); Department of Molecular and Clinical Medicine, Sahlgrenska Academy of the University of Gothenburg, Göteborg, Sweden (K.J.W.); Departments of Medicine, Pathology & Cell Biology, and Physiology, Columbia University Medical Center, New York, NY (I.T.); and Department of Medicine (Cardiology), the Marc and Ruti Bell Program in Vascular Biology and The Center for the Prevention of Cardiovascular Disease, NYU School of Medicine, New York, NY (E.A.F.).
| | - Ira Tabas
- From the Section of Endocrinology, Diabetes, & Metabolism, Temple University School of Medicine, Philadelphia, PA (K.J.W.); Department of Molecular and Clinical Medicine, Sahlgrenska Academy of the University of Gothenburg, Göteborg, Sweden (K.J.W.); Departments of Medicine, Pathology & Cell Biology, and Physiology, Columbia University Medical Center, New York, NY (I.T.); and Department of Medicine (Cardiology), the Marc and Ruti Bell Program in Vascular Biology and The Center for the Prevention of Cardiovascular Disease, NYU School of Medicine, New York, NY (E.A.F.)
| | - Edward A Fisher
- From the Section of Endocrinology, Diabetes, & Metabolism, Temple University School of Medicine, Philadelphia, PA (K.J.W.); Department of Molecular and Clinical Medicine, Sahlgrenska Academy of the University of Gothenburg, Göteborg, Sweden (K.J.W.); Departments of Medicine, Pathology & Cell Biology, and Physiology, Columbia University Medical Center, New York, NY (I.T.); and Department of Medicine (Cardiology), the Marc and Ruti Bell Program in Vascular Biology and The Center for the Prevention of Cardiovascular Disease, NYU School of Medicine, New York, NY (E.A.F.)
| |
Collapse
|
45
|
Affiliation(s)
- Per Fogelstrand
- From the Department of Molecular and Clinical Medicine/Wallenberg Laboratory, University of Gothenburg and Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Jan Borén
- From the Department of Molecular and Clinical Medicine/Wallenberg Laboratory, University of Gothenburg and Sahlgrenska University Hospital, Gothenburg, Sweden
| |
Collapse
|