1
|
Zhou X, Wang ZJ, Camps J, Tomek J, Santiago A, Quintanas A, Vazquez M, Vaseghi M, Rodriguez B. Clinical phenotypes in acute and chronic infarction explained through human ventricular electromechanical modelling and simulations. eLife 2024; 13:RP93002. [PMID: 39711335 DOI: 10.7554/elife.93002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2024] Open
Abstract
Sudden death after myocardial infarction (MI) is associated with electrophysiological heterogeneities and ionic current remodelling. Low ejection fraction (EF) is used in risk stratification, but its mechanistic links with pro-arrhythmic heterogeneities are unknown. We aim to provide mechanistic explanations of clinical phenotypes in acute and chronic MI, from ionic current remodelling to ECG and EF, using human electromechanical modelling and simulation to augment experimental and clinical investigations. A human ventricular electromechanical modelling and simulation framework is constructed and validated with rich experimental and clinical datasets, incorporating varying degrees of ionic current remodelling as reported in literature. In acute MI, T-wave inversion and Brugada phenocopy were explained by conduction abnormality and local action potential prolongation in the border zone. In chronic MI, upright tall T-waves highlight large repolarisation dispersion between the border and remote zones, which promoted ectopic propagation at fast pacing. Post-MI EF at resting heart rate was not sensitive to the extent of repolarisation heterogeneity and the risk of repolarisation abnormalities at fast pacing. T-wave and QT abnormalities are better indicators of repolarisation heterogeneities than EF in post-MI.
Collapse
Affiliation(s)
- Xin Zhou
- Department of Computer Science, University of Oxford, Oxford, United Kingdom
| | - Zhinuo Jenny Wang
- Department of Computer Science, University of Oxford, Oxford, United Kingdom
| | - Julia Camps
- Department of Computer Science, University of Oxford, Oxford, United Kingdom
| | - Jakub Tomek
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom
| | - Alfonso Santiago
- Department of Computer Applications in Science and Engineering, Barcelona Supercomputing Centre (BSC), Barcelona, Spain
- ELEM Biotech, Barcelona, Spain
| | - Adria Quintanas
- Department of Computer Applications in Science and Engineering, Barcelona Supercomputing Centre (BSC), Barcelona, Spain
| | - Mariano Vazquez
- Department of Computer Applications in Science and Engineering, Barcelona Supercomputing Centre (BSC), Barcelona, Spain
- ELEM Biotech, Barcelona, Spain
| | - Marmar Vaseghi
- UCLA Cardiac Arrhythmia Center, University of California, Los Angeles, Los Angeles, United States
- Neurocardiology Research Center of Excellence, University of California, Los Angeles, Los Angeles, United States
| | - Blanca Rodriguez
- Department of Computer Science, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
2
|
Zhou X, Levesque P, Chaudhary K, Davis M, Rodriguez B. Lower diastolic tension may be indicative of higher proarrhythmic propensity in failing human cardiomyocytes. Sci Rep 2024; 14:17351. [PMID: 39075069 PMCID: PMC11286957 DOI: 10.1038/s41598-024-65249-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 06/18/2024] [Indexed: 07/31/2024] Open
Abstract
Chronic heart failure is one of the most common reasons for hospitalization. Current risk stratification is based on ejection fraction, whereas many arrhythmic events occur in patients with relatively preserved ejection fraction. We aim to investigate the mechanistic link between proarrhythmic abnormalities, reduced contractility and diastolic dysfunction in heart failure, using electromechanical modelling and simulations of human failing cardiomyocytes. We constructed, calibrated and validated populations of human electromechanical models of failing cardiomyocytes, that were able to reproduce the prolonged action potential, reduced contractility and diastolic dysfunction as observed in human data, as well as increased propensity to proarrhythmic incidents such as early afterdepolarization and beat-to-beat alternans. Our simulation data reveal that proarrhythmic incidents tend to occur in failing myocytes with lower diastolic tension, rather than with lower contractility, due to the relative preserved SERCA and sodium calcium exchanger current. These results support the inclusion of end-diastolic volume to be potentially beneficial in the risk stratifications of heart failure patients.
Collapse
Affiliation(s)
- Xin Zhou
- Department of Computer Science, University of Oxford, Wolfson Building, Parks Road, Oxford, OX1 3QD, UK.
| | - Paul Levesque
- Discovery Toxicology, Bristol Myers Squibb, Lawrenceville, NJ, USA
| | - Khuram Chaudhary
- Discovery Toxicology, Bristol Myers Squibb, Lawrenceville, NJ, USA
| | - Myrtle Davis
- Discovery Toxicology, Bristol Myers Squibb, Lawrenceville, NJ, USA
| | - Blanca Rodriguez
- Department of Computer Science, University of Oxford, Wolfson Building, Parks Road, Oxford, OX1 3QD, UK
| |
Collapse
|
3
|
Trayanova NA, Lyon A, Shade J, Heijman J. Computational modeling of cardiac electrophysiology and arrhythmogenesis: toward clinical translation. Physiol Rev 2024; 104:1265-1333. [PMID: 38153307 PMCID: PMC11381036 DOI: 10.1152/physrev.00017.2023] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 12/19/2023] [Accepted: 12/21/2023] [Indexed: 12/29/2023] Open
Abstract
The complexity of cardiac electrophysiology, involving dynamic changes in numerous components across multiple spatial (from ion channel to organ) and temporal (from milliseconds to days) scales, makes an intuitive or empirical analysis of cardiac arrhythmogenesis challenging. Multiscale mechanistic computational models of cardiac electrophysiology provide precise control over individual parameters, and their reproducibility enables a thorough assessment of arrhythmia mechanisms. This review provides a comprehensive analysis of models of cardiac electrophysiology and arrhythmias, from the single cell to the organ level, and how they can be leveraged to better understand rhythm disorders in cardiac disease and to improve heart patient care. Key issues related to model development based on experimental data are discussed, and major families of human cardiomyocyte models and their applications are highlighted. An overview of organ-level computational modeling of cardiac electrophysiology and its clinical applications in personalized arrhythmia risk assessment and patient-specific therapy of atrial and ventricular arrhythmias is provided. The advancements presented here highlight how patient-specific computational models of the heart reconstructed from patient data have achieved success in predicting risk of sudden cardiac death and guiding optimal treatments of heart rhythm disorders. Finally, an outlook toward potential future advances, including the combination of mechanistic modeling and machine learning/artificial intelligence, is provided. As the field of cardiology is embarking on a journey toward precision medicine, personalized modeling of the heart is expected to become a key technology to guide pharmaceutical therapy, deployment of devices, and surgical interventions.
Collapse
Affiliation(s)
- Natalia A Trayanova
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, Maryland, United States
- Alliance for Cardiovascular Diagnostic and Treatment Innovation, Johns Hopkins University, Baltimore, Maryland, United States
| | - Aurore Lyon
- Department of Biomedical Engineering, CARIM School for Cardiovascular Diseases, Maastricht University, Maastricht, The Netherlands
- Division of Heart and Lungs, Department of Medical Physiology, University Medical Centre Utrecht, Utrecht, The Netherlands
| | - Julie Shade
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, Maryland, United States
- Alliance for Cardiovascular Diagnostic and Treatment Innovation, Johns Hopkins University, Baltimore, Maryland, United States
| | - Jordi Heijman
- Department of Cardiology, CARIM School for Cardiovascular Diseases, Maastricht University, Maastricht, The Netherlands
| |
Collapse
|
4
|
Haq KT, Roberts A, Berk F, Allen S, Swift LM, Posnack NG. KairoSight-3.0: A validated optical mapping software to characterize cardiac electrophysiology, excitation-contraction coupling, and alternans. JOURNAL OF MOLECULAR AND CELLULAR CARDIOLOGY PLUS 2023; 5:100043. [PMID: 37786807 PMCID: PMC10544851 DOI: 10.1016/j.jmccpl.2023.100043] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 10/04/2023]
Abstract
Background Cardiac optical mapping is an imaging technique that measures fluorescent signals across a cardiac preparation. Dual optical imaging of voltage-sensitive and calcium-sensitive probes allows for simultaneous recordings of cardiac action potentials and intracellular calcium transients with high spatiotemporal resolution. The analysis of these complex optical datasets is both time intensive and technically challenging; as such, we have developed a software package for semi-automated image processing and analysis. Herein, we report an updated version of our software package (KairoSight-3.0) with features to enhance the characterization of cardiac parameters using optical signals. Methods To test software validity and applicability, we used Langendorff-perfused heart preparations to record transmembrane voltage and intracellular calcium signals from the epicardial surface. Isolated hearts from guinea pigs and rats were loaded with a potentiometric dye (RH237) and/or calcium indicator dye (Rhod-2AM) and fluorescent signals were acquired. We used Python 3.8.5 programming language to develop the KairoSight-3.0 software. Cardiac maps were validated with a user-specified manual mapping approach. Results Manual maps of action potential duration (30 or 80 % repolarization), calcium transient duration (30 or 80 % reuptake), action potential and calcium transient alternans were constituted to validate the accuracy of software-generated maps. Manual and software maps had high accuracy, with >97 % of manual and software values falling within 10 ms of each other and >75 % within 5 ms for action potential duration and calcium transient duration measurements (n = 1000-2000 pixels). Further, our software package includes additional measurement tools to analyze signal-to-noise ratio, conduction velocity, action potential and calcium transient alternans, and action potential-calcium transient coupling time to produce physiologically meaningful optical maps. Conclusions KairoSight-3.0 has enhanced capabilities to perform measurements of cardiac electrophysiology, calcium handling, alternans, and the excitation-contraction coupling with satisfactory accuracy.
Collapse
Affiliation(s)
- Kazi T. Haq
- Sheikh Zayed Institute for Pediatric Surgical Innovation, Children’s National Health System, Washington, DC 20010, USA
- Children’s National Heart Institute, Children’s National Hospital, Washington, DC 20010, USA
| | - Anysja Roberts
- Sheikh Zayed Institute for Pediatric Surgical Innovation, Children’s National Health System, Washington, DC 20010, USA
- Children’s National Heart Institute, Children’s National Hospital, Washington, DC 20010, USA
| | - Fiona Berk
- Sheikh Zayed Institute for Pediatric Surgical Innovation, Children’s National Health System, Washington, DC 20010, USA
- Department of Biomedical Engineering, School of Engineering and Applied Sciences: George Washington University, Washington, DC 20037, USA
| | - Samuel Allen
- Sheikh Zayed Institute for Pediatric Surgical Innovation, Children’s National Health System, Washington, DC 20010, USA
| | - Luther M. Swift
- Sheikh Zayed Institute for Pediatric Surgical Innovation, Children’s National Health System, Washington, DC 20010, USA
- Children’s National Heart Institute, Children’s National Hospital, Washington, DC 20010, USA
| | - Nikki Gillum Posnack
- Sheikh Zayed Institute for Pediatric Surgical Innovation, Children’s National Health System, Washington, DC 20010, USA
- Children’s National Heart Institute, Children’s National Hospital, Washington, DC 20010, USA
- Department of Pediatrics, Department of Pharmacology & Physiology, School of Medicine and Health Sciences: George Washington University, Washington, DC 20037, USA
| |
Collapse
|
5
|
Meng Z, Capel RA, Bose SJ, Bosch E, de Jong S, Planque R, Galione A, Burton RAB, Bueno-Orovio A. Lysosomal calcium loading promotes spontaneous calcium release by potentiating ryanodine receptors. Biophys J 2023; 122:3044-3059. [PMID: 37329137 PMCID: PMC10432190 DOI: 10.1016/j.bpj.2023.06.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 05/03/2023] [Accepted: 06/12/2023] [Indexed: 06/18/2023] Open
Abstract
Spontaneous calcium release by ryanodine receptors (RyRs) due to intracellular calcium overload results in delayed afterdepolarizations, closely associated with life-threatening arrhythmias. In this regard, inhibiting lysosomal calcium release by two-pore channel 2 (TPC2) knockout has been shown to reduce the incidence of ventricular arrhythmias under β-adrenergic stimulation. However, mechanistic investigations into the role of lysosomal function on RyR spontaneous release remain missing. We investigate the calcium handling mechanisms by which lysosome function modulates RyR spontaneous release, and determine how lysosomes are able to mediate arrhythmias by its influence on calcium loading. Mechanistic studies were conducted using a population of biophysically detailed mouse ventricular models including for the first time modeling of lysosomal function, and calibrated by experimental calcium transients modulated by TPC2. We demonstrate that lysosomal calcium uptake and release can synergistically provide a pathway for fast calcium transport, by which lysosomal calcium release primarily modulates sarcoplasmic reticulum calcium reuptake and RyR release. Enhancement of this lysosomal transport pathway promoted RyR spontaneous release by elevating RyR open probability. In contrast, blocking either lysosomal calcium uptake or release revealed an antiarrhythmic impact. Under conditions of calcium overload, our results indicate that these responses are strongly modulated by intercellular variability in L-type calcium current, RyR release, and sarcoplasmic reticulum calcium-ATPase reuptake. Altogether, our investigations identify that lysosomal calcium handling directly influences RyR spontaneous release by regulating RyR open probability, suggesting antiarrhythmic strategies and identifying key modulators of lysosomal proarrhythmic action.
Collapse
Affiliation(s)
- Zhaozheng Meng
- Department of Pharmacology, University of Oxford, Oxford, United Kingdom
| | - Rebecca A Capel
- Department of Pharmacology, University of Oxford, Oxford, United Kingdom
| | - Samuel J Bose
- Department of Pharmacology, University of Oxford, Oxford, United Kingdom
| | - Erik Bosch
- Department of Mathematics, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
| | - Sophia de Jong
- Department of Mathematics, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
| | - Robert Planque
- Department of Mathematics, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
| | - Antony Galione
- Department of Pharmacology, University of Oxford, Oxford, United Kingdom
| | - Rebecca A B Burton
- Department of Pharmacology, University of Oxford, Oxford, United Kingdom.
| | | |
Collapse
|
6
|
Haq KT, Roberts A, Berk F, Allen S, Swift LM, Posnack NG. KairoSight-3.0 : A Validated Optical Mapping Software to Characterize Cardiac Electrophysiology, Excitation-Contraction Coupling, and Alternans. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.01.538926. [PMID: 37205349 PMCID: PMC10187248 DOI: 10.1101/2023.05.01.538926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Background Cardiac optical mapping is an imaging technique that measures fluorescent signals across a cardiac preparation. Dual optical mapping of voltage-sensitive and calcium-sensitive probes allow for simultaneous recordings of cardiac action potentials and intracellular calcium transients with high spatiotemporal resolution. The analysis of these complex optical datasets is both time intensive and technically challenging; as such, we have developed a software package for semi-automated image processing and analysis. Herein, we report an updated version of our software package ( KairoSight-3 . 0 ) with features to enhance characterization of cardiac parameters using optical signals. Methods To test software validity and applicability, we used Langendorff-perfused heart preparations to record transmembrane voltage and intracellular calcium signals from the epicardial surface. Isolated hearts from guinea pigs and rats were loaded with a potentiometric dye (RH237) and/or calcium indicator dye (Rhod-2AM) and fluorescent signals were acquired. We used Python 3.8.5 programming language to develop the KairoSight-3 . 0 software. Cardiac maps were validated with a user-specified manual mapping approach. Results Manual maps of action potential duration (30 or 80% repolarization), calcium transient duration (30 or 80% reuptake), action potential and calcium transient alternans were constituted to validate the accuracy of software-generated maps. Manual and software maps had high accuracy, with >97% of manual and software values falling within 10 ms of each other and >75% within 5 ms for action potential duration and calcium transient duration measurements (n=1000-2000 pixels). Further, our software package includes additional cardiac metric measurement tools to analyze signal-to-noise ratio, conduction velocity, action potential and calcium transient alternans, and action potential-calcium transient coupling time to produce physiologically meaningful optical maps. Conclusions KairoSight-3 . 0 has enhanced capabilities to perform measurements of cardiac electrophysiology, calcium handling, and the excitation-contraction coupling with satisfactory accuracy. Graphical Abstract Demonstrating Experimental and Data Analysis Workflow Created with Biorender.com.
Collapse
|
7
|
Abstract
Cardiac alternans arises from dynamical instabilities in the electrical and calcium cycling systems of the heart, and often precedes ventricular arrhythmias and sudden cardiac death. In this review, we integrate clinical observations with theory and experiment to paint a holistic portrait of cardiac alternans: the underlying mechanisms, arrhythmic manifestations and electrocardiographic signatures. We first summarize the cellular and tissue mechanisms of alternans that have been demonstrated both theoretically and experimentally, including 3 voltage-driven and 2 calcium-driven alternans mechanisms. Based on experimental and simulation results, we describe their relevance to mechanisms of arrhythmogenesis under different disease conditions, and their link to electrocardiographic characteristics of alternans observed in patients. Our major conclusion is that alternans is not only a predictor, but also a causal mechanism of potentially lethal ventricular and atrial arrhythmias across the full spectrum of arrhythmia mechanisms that culminate in functional reentry, although less important for anatomic reentry and focal arrhythmias.
Collapse
Affiliation(s)
- Zhilin Qu
- Departments of Medicine (Cardiology), Physiology, and Computational Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA
| | - James N. Weiss
- Departments of Medicine (Cardiology), Physiology, and Computational Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA
| |
Collapse
|
8
|
Lachaud Q, Aziz MHN, Burton FL, Macquaide N, Myles RC, Simitev RD, Smith GL. Electrophysiological heterogeneity in large populations of rabbit ventricular cardiomyocytes. Cardiovasc Res 2022; 118:3112-3125. [PMID: 35020837 PMCID: PMC9732512 DOI: 10.1093/cvr/cvab375] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Accepted: 01/07/2022] [Indexed: 01/01/2023] Open
Abstract
AIMS Cardiac electrophysiological heterogeneity includes: (i) regional differences in action potential (AP) waveform, (ii) AP waveform differences in cells isolated from a single region, (iii) variability of the contribution of individual ion currents in cells with similar AP durations (APDs). The aim of this study is to assess intra-regional AP waveform differences, to quantify the contribution of specific ion channels to the APD via drug responses and to generate a population of mathematical models to investigate the mechanisms underlying heterogeneity in rabbit ventricular cells. METHODS AND RESULTS APD in ∼50 isolated cells from subregions of the LV free wall of rabbit hearts were measured using a voltage-sensitive dye. When stimulated at 2 Hz, average APD90 value in cells from the basal epicardial region was 254 ± 25 ms (mean ± standard deviation) in 17 hearts with a mean interquartile range (IQR) of 53 ± 17 ms. Endo-epicardial and apical-basal APD90 differences accounted for ∼10% of the IQR value. Highly variable changes in APD occurred after IK(r) or ICa(L) block that included a sub-population of cells (HR) with an exaggerated (hyper) response to IK(r) inhibition. A set of 4471 AP models matching the experimental APD90 distribution was generated from a larger population of models created by random variation of the maximum conductances (Gmax) of 8 key ion channels/exchangers/pumps. This set reproduced the pattern of cell-specific responses to ICa(L) and IK(r) block, including the HR sub-population. The models exhibited a wide range of Gmax values with constrained relationships linking ICa(L) with IK(r), ICl, INCX, and INaK. CONCLUSION Modelling the measured range of inter-cell APDs required a larger range of key Gmax values indicating that ventricular tissue has considerable inter-cell variation in channel/pump/exchanger activity. AP morphology is retained by relationships linking specific ionic conductances. These interrelationships are necessary for stable repolarization despite large inter-cell variation of individual conductances and this explains the variable sensitivity to ion channel block.
Collapse
Affiliation(s)
- Quentin Lachaud
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, UK
| | - Muhamad Hifzhudin Noor Aziz
- School of Mathematics and Statistics, University of Glasgow, Glasgow, UK
- Institute of Mathematical Sciences, Faculty of Science, University of Malaya, Kuala Lumpur, Malaysia
| | - Francis L Burton
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, UK
| | - Niall Macquaide
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, UK
- School of Health and Life Sciences, Glasgow Caledonian University, Glasgow, UK
| | - Rachel C Myles
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, UK
| | - Radostin D Simitev
- School of Mathematics and Statistics, University of Glasgow, Glasgow, UK
| | - Godfrey L Smith
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, UK
| |
Collapse
|
9
|
Huang C, Song Z, Qu Z. Synchronization of spatially discordant voltage and calcium alternans in cardiac tissue. Phys Rev E 2022; 106:024406. [PMID: 36109882 PMCID: PMC11316446 DOI: 10.1103/physreve.106.024406] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Accepted: 07/18/2022] [Indexed: 06/01/2023]
Abstract
The heart is an excitable medium which is excited by membrane potential depolarization and propagation. Membrane potential depolarization brings in calcium (Ca) through the Ca channels to trigger intracellular Ca release for contraction of the heart. Ca also affects voltage via Ca-dependent ionic currents, and thus, voltage and Ca are bidirectionally coupled. It has been shown that the voltage subsystem or the Ca subsystem can generate its own dynamical instabilities which are affected by their bidirectional couplings, leading to complex dynamics of action potential and Ca cycling. Moreover, the dynamics become spatiotemporal in tissue in which cells are diffusively coupled through voltage. A widely investigated spatiotemporal dynamics is spatially discordant alternans (SDA) in which action potential duration (APD) or Ca amplitude exhibits temporally period-2 and spatially out-of-phase patterns, i.e., APD-SDA and Ca-SDA patterns, respectively. However, the mechanisms of formation, stability, and synchronization of APD-SDA and Ca-SDA patterns remain incompletely understood. In this paper, we use cardiac tissue models described by an amplitude equation, coupled iterated maps, and reaction-diffusion equations with detailed physiology (the ionic model) to perform analytical and computational investigations. We show that, when the Ca subsystem is stable, the Ca-SDA pattern always follows the APD-SDA pattern, and thus, they are always synchronized. When the Ca subsystem is unstable, synchronization of APD-SDA and Ca-SDA patterns depends on the stabilities of both subsystems, their coupling strengths, and the spatial scales of the initial Ca-SDA patterns. Spontaneous (initial condition-independent) synchronization is promoted by enhancing APD instability and reducing Ca instability as well as stronger Ca-to-APD and APD-to-Ca coupling, a pattern formation caused by dynamical instabilities. When Ca is more unstable and APD is less unstable or APD-to-Ca coupling is weak, synchronization of APD-SDA and Ca-SDA patterns is promoted by larger initially synchronized Ca-SDA clusters, i.e., initial condition-dependent synchronization. The synchronized APD-SDA and Ca-SDA patterns can be locked in-phase, antiphase, or quasiperiodic depending on the coupling relationship between APD and Ca. These theoretical and simulation results provide mechanistic insights into the APD-SDA and Ca-SDA dynamics observed in experimental studies.
Collapse
Affiliation(s)
- Chunli Huang
- School of Mathematics and Statistics, Guangdong University of Foreign Studies, Guangzhou 510420, China
- Department of Medicine, University of California, Los Angeles, California 90095, USA
| | - Zhen Song
- Peng Cheng Laboratory, Shenzhen, Guangdong, China
| | - Zhilin Qu
- Department of Medicine, University of California, Los Angeles, California 90095, USA
- Department of Computational Medicine, University of California, Los Angeles, California 90095, USA
| |
Collapse
|
10
|
Vogt R, Guzman A, Charron C, Muñoz L. Controllability and state feedback control of a cardiac ionic cell model. Comput Biol Med 2021; 139:104909. [PMID: 34818582 DOI: 10.1016/j.compbiomed.2021.104909] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 09/23/2021] [Accepted: 09/26/2021] [Indexed: 10/20/2022]
Abstract
A phenomenon called alternans, which is a beat-to-beat alternation in action potential (AP) duration, sometimes precedes fatal cardiac arrhythmias. Alternans-suppressing electrical stimulus protocols are often represented as perturbations to the dynamics of membrane potential or AP duration variables in nonlinear models of cardiac tissue. Controllability analysis has occasionally been applied to cardiac AP models to determine whether different control or perturbation strategies are capable of suppressing alternans or other unwanted behavior. Since almost all previous cardiac controllability studies have focused on low-dimensional models, we conducted the present study to assess controllability of a higher-dimensional model, specifically the Luo Rudy dynamic (LRd) model of a cardiac ventricular myocyte. Higher-dimensional models are of interest because they provide information on the influence of a wider range of measurable quantities, including ionic concentrations, on controllability. After computing modal controllability measures, we found that larger eigenvalues of a linearized LRd model were on average more strongly controllable through perturbations to calcium-ion concentrations compared with perturbations to other variables. When only membrane potential was adjusted, the best time to apply perturbations (in the sense of maximizing controllability of the largest alternans eigenvalue) was near the AP peak time for shorter cycle lengths. Controllability results were found to be similar for both the default model parameters and for an alternans-promoting parameter set. Additionally, we developed several alternans-suppressing state feedback controllers that were tested in simulations. For the scenarios examined, our controllability measures correctly predicted which strategies and perturbation timings would lead to better feedback controller performance.
Collapse
Affiliation(s)
- Ryan Vogt
- School of Mathematics, School of Physics and Astronomy, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Anthony Guzman
- Department of Mathematics and Statistics, Boston University, Boston, MA, 02215, USA
| | - Clar Charron
- School of Mathematical Sciences, Rochester Institute of Technology, Rochester, NY, 14623, USA
| | - Laura Muñoz
- School of Mathematical Sciences, Rochester Institute of Technology, Rochester, NY, 14623, USA.
| |
Collapse
|
11
|
Parikh J, Rumbell T, Butova X, Myachina T, Acero JC, Khamzin S, Solovyova O, Kozloski J, Khokhlova A, Gurev V. Generative adversarial networks for construction of virtual populations of mechanistic models: simulations to study Omecamtiv Mecarbil action. J Pharmacokinet Pharmacodyn 2021; 49:51-64. [PMID: 34716531 PMCID: PMC8837558 DOI: 10.1007/s10928-021-09787-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Accepted: 09/23/2021] [Indexed: 11/30/2022]
Abstract
Biophysical models are increasingly used to gain mechanistic insights by fitting and reproducing experimental and clinical data. The inherent variability in the recorded datasets, however, presents a key challenge. In this study, we present a novel approach, which integrates mechanistic modeling and machine learning to analyze in vitro cardiac mechanics data and solve the inverse problem of model parameter inference. We designed a novel generative adversarial network (GAN) and employed it to construct virtual populations of cardiac ventricular myocyte models in order to study the action of Omecamtiv Mecarbil (OM), a positive cardiac inotrope. Populations of models were calibrated from mechanically unloaded myocyte shortening recordings obtained in experiments on rat myocytes in the presence and absence of OM. The GAN was able to infer model parameters while incorporating prior information about which model parameters OM targets. The generated populations of models reproduced variations in myocyte contraction recorded during in vitro experiments and provided improved understanding of OM’s mechanism of action. Inverse mapping of the experimental data using our approach suggests a novel action of OM, whereby it modifies interactions between myosin and tropomyosin proteins. To validate our approach, the inferred model parameters were used to replicate other in vitro experimental protocols, such as skinned preparations demonstrating an increase in calcium sensitivity and a decrease in the Hill coefficient of the force–calcium (F–Ca) curve under OM action. Our approach thereby facilitated the identification of the mechanistic underpinnings of experimental observations and the exploration of different hypotheses regarding variability in this complex biological system.
Collapse
Affiliation(s)
| | | | - Xenia Butova
- Institute of Immunology and Physiology, Ural Branch of the Russian Academy of Sciences (UB RAS), Yekaterinburg, Russia
| | - Tatiana Myachina
- Institute of Immunology and Physiology, Ural Branch of the Russian Academy of Sciences (UB RAS), Yekaterinburg, Russia
| | - Jorge Corral Acero
- Department of Engineering Science, Institute of Biomedical Engineering, University of Oxford, Oxford, UK
| | - Svyatoslav Khamzin
- Institute of Immunology and Physiology, Ural Branch of the Russian Academy of Sciences (UB RAS), Yekaterinburg, Russia
| | - Olga Solovyova
- Ural Federal University, Yekaterinburg, Russia.,Institute of Immunology and Physiology, Ural Branch of the Russian Academy of Sciences (UB RAS), Yekaterinburg, Russia
| | | | - Anastasia Khokhlova
- Ural Federal University, Yekaterinburg, Russia.,Institute of Immunology and Physiology, Ural Branch of the Russian Academy of Sciences (UB RAS), Yekaterinburg, Russia
| | | |
Collapse
|
12
|
Inhibition of Ca 2+-dependent protein kinase C rescues high calcium-induced pro-arrhythmogenic cardiac alternans in rabbit hearts. Pflugers Arch 2021; 473:1315-1327. [PMID: 34145500 DOI: 10.1007/s00424-021-02574-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 04/22/2021] [Accepted: 05/03/2021] [Indexed: 10/21/2022]
Abstract
Cardiac alternans closely linked to calcium dysregulation is a crucial risk factor for fatal arrhythmia causing especially sudden death. Calcium overload is well-known to activate Ca2+-dependent protein kinase C (PKC); however, the effects of PKC on arrhythmogenic cardiac alternans have not yet been investigated. This study aimed to determine the contributions of PKC activities in cardiac alternans associated with calcium cycling disturbances. In the present study, action potential duration alternans (APD-ALT) induced by high free intracellular calcium ([Ca2+]i) exerted not only in a calcium concentration-dependent manner but also in a frequency-dependent manner. High [Ca2+]i-induced APD-ALT was suppressed by not only BAPTA-AM but also nifedipine. On the other hand, PKC inhibitors BIM and Gö 6976 eliminated high [Ca2+]i-induced APD-ALT, and PKC activator PMA was found to induce APD-ALT at normal [Ca2+]i condition. Furthermore, BIM effectively prevented calcium transient alternans (CaT-ALT) and even CaT disorders caused by calcium overload. Moreover, BIM not only eliminated electrocardiographic T-wave alternans (TWA) caused by calcium dysregulation, but also lowered the incidence of ventricular arrhythmias in isolated hearts. What's more, BIM prevented the expression of PKC α upregulated by calcium overload in high calcium-perfused hearts. We firstly found that pharmacologically inhibiting Ca2+-dependent PKC over-activation suppressed high [Ca2+]i-induced cardiac alternans. This recognition indicates that inhibition of PKC activities may become a therapeutic target for the prevention of pro-arrhythmogenic cardiac alternans associated with calcium dysregulation.
Collapse
|
13
|
Wang L, Myles RC, Lee IJ, Bers DM, Ripplinger CM. Role of Reduced Sarco-Endoplasmic Reticulum Ca 2+-ATPase Function on Sarcoplasmic Reticulum Ca 2+ Alternans in the Intact Rabbit Heart. Front Physiol 2021; 12:656516. [PMID: 34045974 PMCID: PMC8144333 DOI: 10.3389/fphys.2021.656516] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Accepted: 03/29/2021] [Indexed: 01/16/2023] Open
Abstract
Sarcoplasmic reticulum (SR) Ca2+ cycling is tightly regulated by ryanodine receptor (RyR) Ca2+ release and sarco-endoplasmic reticulum Ca2+-ATPase (SERCA) Ca2+ uptake during each excitation–contraction coupling cycle. We previously showed that RyR refractoriness plays a key role in the onset of SR Ca2+ alternans in the intact rabbit heart, which contributes to arrhythmogenic action potential duration (APD) alternans. Recent studies have also implicated impaired SERCA function, a key feature of heart failure, in cardiac alternans and arrhythmias. However, the relationship between reduced SERCA function and SR Ca2+ alternans is not well understood. Simultaneous optical mapping of transmembrane potential (Vm) and SR Ca2+ was performed in isolated rabbit hearts (n = 10) using the voltage-sensitive dye RH237 and the low-affinity Ca2+ indicator Fluo-5N-AM. Alternans was induced by rapid ventricular pacing. SERCA was inhibited with cyclopiazonic acid (CPA; 1–10 μM). SERCA inhibition (1, 5, and 10 μM of CPA) resulted in dose-dependent slowing of SR Ca2+ reuptake, with the time constant (tau) increasing from 70.8 ± 3.5 ms at baseline to 85.5 ± 6.6, 129.9 ± 20.7, and 271.3 ± 37.6 ms, respectively (p < 0.05 vs. baseline for all doses). At fast pacing frequencies, CPA significantly increased the magnitude of SR Ca2+ and APD alternans, most strongly at 10 μM (pacing cycle length = 220 ms: SR Ca2+ alternans magnitude: 57.1 ± 4.7 vs. 13.4 ± 8.9 AU; APD alternans magnitude 3.8 ± 1.9 vs. 0.2 ± 0.19 AU; p < 0.05 10 μM of CPA vs. baseline for both). SERCA inhibition also promoted the emergence of spatially discordant alternans. Notably, at all CPA doses, alternation of SR Ca2+ release occurred prior to alternation of diastolic SR Ca2+ load as pacing frequency increased. Simultaneous optical mapping of SR Ca2+ and Vm in the intact rabbit heart revealed that SERCA inhibition exacerbates pacing-induced SR Ca2+ and APD alternans magnitude, particularly at fast pacing frequencies. Importantly, SR Ca2+ release alternans always occurred before the onset of SR Ca2+ load alternans. These findings suggest that even in settings of diminished SERCA function, relative refractoriness of RyR Ca2+ release governs the onset of intracellular Ca2+ alternans.
Collapse
Affiliation(s)
- Lianguo Wang
- Department of Pharmacology, School of Medicine, University of California, Davis, Davis, CA, United States
| | - Rachel C Myles
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, United Kingdom
| | - I-Ju Lee
- Department of Pharmacology, School of Medicine, University of California, Davis, Davis, CA, United States
| | - Donald M Bers
- Department of Pharmacology, School of Medicine, University of California, Davis, Davis, CA, United States
| | - Crystal M Ripplinger
- Department of Pharmacology, School of Medicine, University of California, Davis, Davis, CA, United States
| |
Collapse
|
14
|
Varró A, Tomek J, Nagy N, Virág L, Passini E, Rodriguez B, Baczkó I. Cardiac transmembrane ion channels and action potentials: cellular physiology and arrhythmogenic behavior. Physiol Rev 2020; 101:1083-1176. [PMID: 33118864 DOI: 10.1152/physrev.00024.2019] [Citation(s) in RCA: 93] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Cardiac arrhythmias are among the leading causes of mortality. They often arise from alterations in the electrophysiological properties of cardiac cells and their underlying ionic mechanisms. It is therefore critical to further unravel the pathophysiology of the ionic basis of human cardiac electrophysiology in health and disease. In the first part of this review, current knowledge on the differences in ion channel expression and properties of the ionic processes that determine the morphology and properties of cardiac action potentials and calcium dynamics from cardiomyocytes in different regions of the heart are described. Then the cellular mechanisms promoting arrhythmias in congenital or acquired conditions of ion channel function (electrical remodeling) are discussed. The focus is on human-relevant findings obtained with clinical, experimental, and computational studies, given that interspecies differences make the extrapolation from animal experiments to human clinical settings difficult. Deepening the understanding of the diverse pathophysiology of human cellular electrophysiology will help in developing novel and effective antiarrhythmic strategies for specific subpopulations and disease conditions.
Collapse
Affiliation(s)
- András Varró
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, University of Szeged, Szeged, Hungary.,MTA-SZTE Cardiovascular Pharmacology Research Group, Hungarian Academy of Sciences, Szeged, Hungary
| | - Jakub Tomek
- Department of Computer Science, British Heart Foundation Centre of Research Excellence, University of Oxford, Oxford, United Kingdom
| | - Norbert Nagy
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, University of Szeged, Szeged, Hungary.,MTA-SZTE Cardiovascular Pharmacology Research Group, Hungarian Academy of Sciences, Szeged, Hungary
| | - László Virág
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, University of Szeged, Szeged, Hungary
| | - Elisa Passini
- Department of Computer Science, British Heart Foundation Centre of Research Excellence, University of Oxford, Oxford, United Kingdom
| | - Blanca Rodriguez
- Department of Computer Science, British Heart Foundation Centre of Research Excellence, University of Oxford, Oxford, United Kingdom
| | - István Baczkó
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, University of Szeged, Szeged, Hungary
| |
Collapse
|
15
|
Thakare S, Mathew J, Zlochiver S, Zhao X, Tolkacheva EG. Global vs local control of cardiac alternans in a 1D numerical model of human ventricular tissue. CHAOS (WOODBURY, N.Y.) 2020; 30:083123. [PMID: 32872833 DOI: 10.1063/5.0005432] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Accepted: 07/17/2020] [Indexed: 06/11/2023]
Abstract
Cardiac alternans is a proarrhythmic state in which the action potential duration (APD) of cardiac myocytes alternate between long and short values and often occurs under conditions of rapid pacing of cardiac tissue. In the ventricles, alternans is especially dangerous due to the life-threatening risk of developing arrhythmias, such as ventricular fibrillation. Alternans can be formed in periodically paced tissue as a result of pacing itself. Recently, it has been demonstrated that this pacing-induced alternans can be prevented by performing constant diastolic interval (DI) pacing, in which DI is independent of APD. However, constant DI pacing is difficult to implement in experimental settings since it requires the real-time measurement of APD. A more practical way was proposed based on electrocardiograms (ECGs), which give an indirect measure of the global DI relaxation period through the TR interval assessment. Previously, we demonstrated that constant TR pacing prevented alternans formation in isolated Langendorff-perfused rabbit hearts. However, the efficacy of "local" constant DI pacing vs "global" constant TR pacing in preventing alternans formation has never been investigated. Thus, the purpose of this study was to implement an ECG-based constant TR pacing in a 1D numerical model of human ventricular tissue and to compare the dynamical behavior of cardiac tissue with that resulted from a constant DI pacing. The results showed that both constant TR and constant DI pacing prevented the onset of alternans until lower basic cycle length when compared to periodic pacing. For longer cable lengths, constant TR pacing was shown to exhibit greater control on alternans than constant DI pacing.
Collapse
Affiliation(s)
- Sanket Thakare
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, Minnesota 55455, USA
| | - Joseph Mathew
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, Minnesota 55455, USA
| | - Sharon Zlochiver
- Department of Biomedical Engineering, Tel-Aviv University, Tel-Aviv 69379, Israel
| | - Xiaopeng Zhao
- Department of Mechanical, Aerospace and Biomedical Engineering, University of Tennessee, Knoxville, Tennessee 37996, USA
| | - Elena G Tolkacheva
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, Minnesota 55455, USA
| |
Collapse
|
16
|
Zhao N, Li Q, Zhang K, Wang K, He R, Yuan Y, Zhang H. Heart failure-induced atrial remodelling promotes electrical and conduction alternans. PLoS Comput Biol 2020; 16:e1008048. [PMID: 32658888 PMCID: PMC7402519 DOI: 10.1371/journal.pcbi.1008048] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Revised: 08/04/2020] [Accepted: 06/12/2020] [Indexed: 11/19/2022] Open
Abstract
Heart failure (HF) is associated with an increased propensity for atrial fibrillation (AF), causing higher mortality than AF or HF alone. It is hypothesized that HF-induced remodelling of atrial cellular and tissue properties promotes the genesis of atrial action potential (AP) alternans and conduction alternans that perpetuate AF. However, the mechanism underlying the increased susceptibility to atrial alternans in HF remains incompletely elucidated. In this study, we investigated the effects of how HF-induced atrial cellular electrophysiological (with prolonged AP duration) and tissue structural (reduced cell-to-cell coupling caused by atrial fibrosis) remodelling can have an effect on the generation of atrial AP alternans and their conduction at the cellular and one-dimensional (1D) tissue levels. Simulation results showed that HF-induced atrial electrical remodelling prolonged AP duration, which was accompanied by an increased sarcoplasmic reticulum (SR) Ca2+ content and Ca2+ transient amplitude. Further analysis demonstrated that HF-induced atrial electrical remodelling increased susceptibility to atrial alternans mainly due to the increased sarcoplasmic reticulum Ca2+-ATPase (SERCA) Ca2+ reuptake, modulated by increased phospholamban (PLB) phosphorylation, and the decreased transient outward K+ current (Ito). The underlying mechanism has been suggested that the increased SR Ca2+ content and prolonged AP did not fully recover to their previous levels at the end of diastole, resulting in a smaller SR Ca2+ release and AP in the next beat. These produced Ca2+ transient alternans and AP alternans, and further caused AP alternans and Ca2+ transient alternans through Ca2+→AP coupling and AP→Ca2+ coupling, respectively. Simulation of a 1D tissue model showed that the combined action of HF-induced ion channel remodelling and a decrease in cell-to-cell coupling due to fibrosis increased the heart tissue’s susceptibility to the formation of spatially discordant alternans, resulting in an increased functional AP propagation dispersion, which is pro-arrhythmic. These findings provide insights into how HF promotes atrial arrhythmia in association with atrial alternans. Atrial Fibrillation (AF) is the most common arrhythmia in adults, especially in the elderly, with the increased incidence of stroke being a major complication that increases morbidity and mortality. The occurrence of AF is often accompanied by heart failure (HF). AF and HF are also known to have the bidirectional relationship that AF worsens HF and HF promotes AF. HF can induce atrial remodelling, including electrical remodelling, atrial fibrosis, stretch and dilatation, and oxidative stress, in which many factors are associated with arrhythmogenic atrial alternans. HF-induced atrial remodelling varies during various stages and complications of HF, but possible mechanisms underlying their pro-susceptibility to alternans have not been completely elucidated. In this study, we investigated the effects of HF-induced atrial remodelling with prolonged action potential duration (APD) and decreased cell-to-cell coupling on susceptibility to atrial alternans. Simulation results showed that HF-induced an increase in sarcoplasmic reticulum Ca2+-ATPase (SERCA) Ca2+ reuptake caused by increased phospholamban phosphorylation and a decrease in transient outward K+ current played significant roles in the genesis of Ca2+ transient alternans and action potential alternans at the single-cell level. The HF-induced decline of cell-to-cell coupling and APD prolongation promoted the genesis of spatially discordant alternans in atrial tissue. This provides insights into how HF facilitates atrial arrhythmia in relation to atrial alternans.
Collapse
Affiliation(s)
- Na Zhao
- School of Computer Science and Technology, Harbin Institute of Technology, Harbin, China
| | - Qince Li
- School of Computer Science and Technology, Harbin Institute of Technology, Harbin, China
- Peng Cheng Laboratory, Shenzhen, China
| | - Kevin Zhang
- School of Medicine, Imperial College of London, United Kingdom
| | - Kuanquan Wang
- School of Computer Science and Technology, Harbin Institute of Technology, Harbin, China
| | - Runnan He
- School of Computer Science and Technology, Harbin Institute of Technology, Harbin, China
| | - Yongfeng Yuan
- School of Computer Science and Technology, Harbin Institute of Technology, Harbin, China
| | - Henggui Zhang
- School of Computer Science and Technology, Harbin Institute of Technology, Harbin, China
- Peng Cheng Laboratory, Shenzhen, China
- School of Physics & Astronomy, The University of Manchester, Manchester, United Kingdom
- Key Laboratory of Medical Electrophysiology of Ministry of Education and Medical Electrophysiological Key Laboratory of Sichuan Province, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, China
- * E-mail:
| |
Collapse
|
17
|
Huang C, Song Z, Landaw J, Qu Z. Spatially Discordant Repolarization Alternans in the Absence of Conduction Velocity Restitution. Biophys J 2020; 118:2574-2587. [PMID: 32101718 DOI: 10.1016/j.bpj.2020.02.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Revised: 01/21/2020] [Accepted: 02/06/2020] [Indexed: 01/20/2023] Open
Abstract
Spatially discordant alternans (SDA) of action potential duration (APD) has been widely observed in cardiac tissue and is linked to cardiac arrhythmogenesis. Theoretical studies have shown that conduction velocity restitution (CVR) is required for the formation of SDA. However, this theory is not completely supported by experiments, indicating that other mechanisms may exist. In this study, we carried out computer simulations using mathematical models of action potentials to investigate the mechanisms of SDA in cardiac tissue. We show that when CVR is present and engaged, such as fast pacing from one side of the tissue, the spatial pattern of APD in the tissue undergoes either spatially concordant alternans or SDA, independent of initial conditions or tissue heterogeneities. When CVR is not engaged, such as simultaneous pacing of the whole tissue or under normal/slow heart rates, the spatial pattern of APD in the tissue can have multiple solutions, including spatially concordant alternans and different SDA patterns, depending on heterogeneous initial conditions or pre-existing repolarization heterogeneities. In homogeneous tissue, curved nodal lines are not stable, which either evolve into straight lines or disappear. However, in heterogeneous itssue, curved nodal lines can be stable, depending on their initial locations and shapes relative to the structure of the heterogeneity. Therefore, CVR-induced SDA and non-CVR-induced SDA exhibit different dynamical properties, which may be responsible for the different SDA properties observed in experimental studies and arrhythmogenesis in different clinical settings.
Collapse
Affiliation(s)
- Chunli Huang
- Department of Medicine, University of California, Los Angeles, Los Angeles, California; Department of Systems Science, Beijing Normal University, Beijing, China
| | - Zhen Song
- Department of Medicine, University of California, Los Angeles, Los Angeles, California
| | - Julian Landaw
- Department of Medicine, University of California, Los Angeles, Los Angeles, California
| | - Zhilin Qu
- Department of Medicine, University of California, Los Angeles, Los Angeles, California; Department of Computational Medicine, University of California, Los Angeles, Los Angeles, California.
| |
Collapse
|
18
|
Kappler B, Ledezma CA, van Tuijl S, Meijborg V, Boukens BJ, Ergin B, Tan PJ, Stijnen M, Ince C, Díaz-Zuccarini V, de Mol BAJM. Investigating the physiology of normothermic ex vivo heart perfusion in an isolated slaughterhouse porcine model used for device testing and training. BMC Cardiovasc Disord 2019; 19:254. [PMID: 31711426 PMCID: PMC6849278 DOI: 10.1186/s12872-019-1242-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Accepted: 10/31/2019] [Indexed: 11/10/2022] Open
Abstract
Background The PhysioHeart™ is a mature acute platform, based isolated slaughterhouse hearts and able to validate cardiac devices and techniques in working mode. Despite perfusion, myocardial edema and time-dependent function degradation are reported. Therefore, monitoring several variables is necessary to identify which of these should be controlled to preserve the heart function. This study presents biochemical, electrophysiological and hemodynamic changes in the PhysioHeart™ to understand the pitfalls of ex vivo slaughterhouse heart hemoperfusion. Methods Seven porcine hearts were harvested, arrested and revived using the PhysioHeart™. Cardiac output, SaO2, glucose and pH were maintained at physiological levels. Blood analyses were performed hourly and unipolar epicardial electrograms (UEG), pressures and flows were recorded to assess the physiological performance. Results Normal cardiac performance was attained in terms of mean cardiac output (5.1 ± 1.7 l/min) and pressures but deteriorated over time. Across the experiments, homeostasis was maintained for 171.4 ± 54 min, osmolarity and blood electrolytes increased significantly between 10 and 80%, heart weight increased by 144 ± 41 g, free fatty acids (− 60%), glucose and lactate diminished, ammonia increased by 273 ± 76% and myocardial necrosis and UEG alterations appeared and aggravated. Progressively deteriorating electrophysiological and hemodynamic functions can be explained by reperfusion injury, waste product intoxication (i.e. hyperammonemia), lack of essential nutrients, ion imbalances and cardiac necrosis as a consequence of hepatological and nephrological plasma clearance absence. Conclusions The PhysioHeart™ is an acute model, suitable for cardiac device and therapy assessment, which can precede conventional animal studies. However, observations indicate that ex vivo slaughterhouse hearts resemble cardiac physiology of deteriorating hearts in a multi-organ failure situation and signalize the need for plasma clearance during perfusion to attenuate time-dependent function degradation. The presented study therefore provides an in-dept understanding of the sources and reasons causing the cardiac function loss, as a first step for future effort to prolong cardiac perfusion in the PhysioHeart™. These findings could be also of potential interest for other cardiac platforms.
Collapse
Affiliation(s)
- Benjamin Kappler
- Department Cardiothoracic Surgery, Amsterdam University Medical Center, Meibergdreef 9, Amsterdam, The Netherlands. .,LifeTec Group B.V, Eindhoven, The Netherlands.
| | - Carlos A Ledezma
- Department of Mechanical Engineering, University College London, Torrington Place, London, UK
| | | | - Veronique Meijborg
- Department of Medical Biology, Amsterdam University Medical Center, Meibergdreef 9, Amsterdam, The Netherlands
| | - Bastiaan J Boukens
- Department of Medical Biology, Amsterdam University Medical Center, Meibergdreef 9, Amsterdam, The Netherlands
| | - Bülent Ergin
- Department of Translational Physiology, Amsterdam University Medical Center, Meibergdreef 9, Amsterdam, The Netherlands
| | - P J Tan
- Department of Mechanical Engineering, University College London, Torrington Place, London, UK
| | | | - Can Ince
- Department of Translational Physiology, Amsterdam University Medical Center, Meibergdreef 9, Amsterdam, The Netherlands
| | - Vanessa Díaz-Zuccarini
- Department of Mechanical Engineering, University College London, Torrington Place, London, UK. .,WEISS Centre for Surgical and Interventional Sciences, UCL, Gower Street 10, London, UK.
| | - Bas A J M de Mol
- Department Cardiothoracic Surgery, Amsterdam University Medical Center, Meibergdreef 9, Amsterdam, The Netherlands.,LifeTec Group B.V, Eindhoven, The Netherlands
| |
Collapse
|
19
|
Varshneya M, Devenyi RA, Sobie EA. Slow Delayed Rectifier Current Protects Ventricular Myocytes From Arrhythmic Dynamics Across Multiple Species: A Computational Study. Circ Arrhythm Electrophysiol 2019; 11:e006558. [PMID: 30354408 DOI: 10.1161/circep.118.006558] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
BACKGROUND The slow and rapid delayed rectifier K+ currents (IKs and IKr, respectively) are responsible for repolarizing the ventricular action potential (AP) and preventing abnormally long APs that may lead to arrhythmias. Although differences in biophysical properties of the 2 currents have been carefully documented, the respective physiological roles of IKr and IKs are less established. In this study, we sought to understand the individual roles of these currents and quantify how effectively each stabilizes the AP and protects cells against arrhythmias across multiple species. METHODS We compared 10 mathematical models describing ventricular myocytes from human, rabbit, dog, and guinea pig. We examined variability within heterogeneous cell populations, tested the susceptibility of cells to proarrhythmic behavior, and studied how IKs and IKr responded to changes in the AP. RESULTS We found that (1) models with higher baseline IKs exhibited less cell-to-cell variability in AP duration; (2) models with higher baseline IKs were less susceptible to early afterdepolarizations induced by depolarizing perturbations; (3) as AP duration is lengthened, IKs increases more profoundly than IKr, thereby providing negative feedback that resists excessive AP prolongation; and (4) the increase in IKs that occurs during β-adrenergic stimulation is critical for protecting cardiac myocytes from early afterdepolarizations under these conditions. CONCLUSIONS Slow delayed rectifier current is uniformly protective across a variety of cell types. These results suggest that IKs enhancement could potentially be an effective antiarrhythmic strategy.
Collapse
Affiliation(s)
- Meera Varshneya
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY (M.V., R.A.D., E.A.S.)
| | - Ryan A Devenyi
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY (M.V., R.A.D., E.A.S.)
| | - Eric A Sobie
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY (M.V., R.A.D., E.A.S.)
| |
Collapse
|
20
|
Ledezma CA, Zhou X, Rodríguez B, Tan PJ, Díaz-Zuccarini V. A modeling and machine learning approach to ECG feature engineering for the detection of ischemia using pseudo-ECG. PLoS One 2019; 14:e0220294. [PMID: 31404081 PMCID: PMC6690680 DOI: 10.1371/journal.pone.0220294] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2018] [Accepted: 07/12/2019] [Indexed: 11/19/2022] Open
Abstract
Early detection of coronary heart disease (CHD) has the potential to prevent the millions of deaths that this disease causes worldwide every year. However, there exist few automatic methods to detect CHD at an early stage. A challenge in the development of these methods is the absence of relevant datasets for their training and validation. Here, the ten Tusscher-Panfilov 2006 model and the O’Hara-Rudy model for human myocytes were used to create two populations of models that were in concordance with data obtained from healthy individuals (control populations) and included inter-subject variability. The effects of ischemia were subsequently included in the control populations to simulate the effects of mild and severe ischemic events on single cells, full ischemic cables of cells and cables of cells with various sizes of ischemic regions. Action potential and pseudo-ECG biomarkers were measured to assess how the evolution of ischemia could be quantified. Finally, two neural network classifiers were trained to identify the different degrees of ischemia using the pseudo-ECG biomarkers. The control populations showed action potential and pseudo-ECG biomarkers within the physiological ranges and the trends in the biomarkers commonly identified in ischemic patients were observed in the ischemic populations. On the one hand, inter-subject variability in the ischemic pseudo-ECGs precluded the detection and classification of early ischemic events using any single biomarker. On the other hand, the neural networks showed sensitivity and positive predictive value above 95%. Additionally, the neural networks revealed that the biomarkers that were relevant for the detection of ischemia were different from those relevant for its classification. This work showed that a computational approach could be used, when data is scarce, to validate proof-of-concept machine learning methods to detect ischemic events.
Collapse
Affiliation(s)
- Carlos A. Ledezma
- Department of Mechanical Engineering, University College London, London, United Kingdom
| | - Xin Zhou
- Department of Computer Science, University of Oxford, Oxford, United Kingdom
| | - Blanca Rodríguez
- Department of Computer Science, University of Oxford, Oxford, United Kingdom
| | - P. J. Tan
- Department of Mechanical Engineering, University College London, London, United Kingdom
| | - Vanessa Díaz-Zuccarini
- Department of Mechanical Engineering, University College London, London, United Kingdom
- Wellcome/EPSRC Centre for Interventional and Surgical Sciences (WEISS), Department of Medical Physics and Biomedical Engineering, University College London, W1W 7TS, UK
- * E-mail:
| |
Collapse
|
21
|
Mora MT, Gomez JF, Morley G, Ferrero JM, Trenor B. Mechanistic investigation of Ca2+ alternans in human heart failure and its modulation by fibroblasts. PLoS One 2019; 14:e0217993. [PMID: 31211790 PMCID: PMC6581251 DOI: 10.1371/journal.pone.0217993] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Accepted: 05/22/2019] [Indexed: 11/18/2022] Open
Abstract
Background Heart failure (HF) is characterized, among other factors, by a progressive loss of contractile function and by the formation of an arrhythmogenic substrate, both aspects partially related to intracellular Ca2+ cycling disorders. In failing hearts both electrophysiological and structural remodeling, including fibroblast proliferation, contribute to changes in Ca2+ handling which promote the appearance of Ca2+ alternans (Ca-alt). Ca-alt in turn give rise to repolarization alternans, which promote dispersion of repolarization and contribute to reentrant activity. The computational analysis of the incidence of Ca2+ and/or repolarization alternans under HF conditions in the presence of fibroblasts could provide a better understanding of the mechanisms leading to HF arrhythmias and contractile function disorders. Methods and findings The goal of the present study was to investigate in silico the mechanisms leading to the formation of Ca-alt in failing human ventricular myocytes and tissues with disperse fibroblast distributions. The contribution of ionic currents variability to alternans formation at the cellular level was analyzed and the results show that in normal ventricular tissue, altered Ca2+ dynamics lead to Ca-alt, which precede APD alternans and can be aggravated by the presence of fibroblasts. Electrophysiological remodeling of failing tissue alone is sufficient to develop alternans. The incidence of alternans is reduced when fibroblasts are present in failing tissue due to significantly depressed Ca2+ transients. The analysis of the underlying ionic mechanisms suggests that Ca-alt are driven by Ca2+-handling protein and Ca2+ cycling dysfunctions in the junctional sarcoplasmic reticulum and that their contribution to alternans occurrence depends on the cardiac remodeling conditions and on myocyte-fibroblast interactions. Conclusion It can thus be concluded that fibroblasts modulate the formation of Ca-alt in human ventricular tissue subjected to heart failure-related electrophysiological remodeling. Pharmacological therapies should thus consider the extent of both the electrophysiological and structural remodeling present in the failing heart.
Collapse
Affiliation(s)
- Maria T. Mora
- Centro de Insvestigación e Innovación en Bioingeniería, Universitat Politècnica de València, Valencia, Spain
| | - Juan F. Gomez
- Centro de Insvestigación e Innovación en Bioingeniería, Universitat Politècnica de València, Valencia, Spain
| | - Gregory Morley
- Leon H. Charney Division of Cardiology, New York University School of Medicine, New York, New York, United States of America
| | - Jose M. Ferrero
- Centro de Insvestigación e Innovación en Bioingeniería, Universitat Politècnica de València, Valencia, Spain
| | - Beatriz Trenor
- Centro de Insvestigación e Innovación en Bioingeniería, Universitat Politècnica de València, Valencia, Spain
- * E-mail:
| |
Collapse
|
22
|
Hernández-Romero I, Guillem MS, Figuera C, Atienza F, Fernández-Avilés F, M. Climent A. Optical imaging of voltage and calcium in isolated hearts: Linking spatiotemporal heterogeneities and ventricular fibrillation initiation. PLoS One 2019; 14:e0215951. [PMID: 31086382 PMCID: PMC6516663 DOI: 10.1371/journal.pone.0215951] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Accepted: 04/11/2019] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Alternans have been associated with the development of ventricular fibrillation and its control has been proposed as antiarrhythmic strategy. However, cardiac arrhythmias are a spatiotemporal phenomenon in which multiple factors are involved (e.g. calcium and voltage spatial alternans or heterogeneous conduction velocity) and how an antiarrhythmic drug modifies these factors is poorly understood. OBJECTIVE The objective of the present study is to evaluate the relation between spatial electrophysiological properties (i.e. spatial discordant alternans and conduction velocity) and the induction of ventricular fibrillation (VF) when a calcium blocker is applied. METHODS The mechanisms of initiation of VF were studied by simultaneous epicardial voltage and calcium optical mapping in isolated rabbit hearts using an incremental fast pacing protocol. The additional value of analyzing spatial phenomena in the generation of unidirectional blocks and reentries as precursors of VF was depicted. Specifically, the role of action potential duration (APD), calcium transients (CaT), spatial alternans and conduction velocity in the initiation of VF was evaluated during basal conditions and after the administration of verapamil. RESULTS Our results enhance the relation between (1) calcium spatial alternans and (2) slow conduction velocities with the dynamic creation of unidirectional blocks that allowed the induction of VF. In fact, the administration of verapamil demonstrated that calcium and not voltage spatial alternans were the main responsible for VF induction. CONCLUSIONS VF induction at high activation rates was linked with the concurrence of a low conduction velocity and high magnitude of calcium alternans, but not necessarily related with increases of APD. Verapamil can postpone the development of cardiac alternans and the apparition of ventricular arrhythmias.
Collapse
Affiliation(s)
- Ismael Hernández-Romero
- Department of Signal Theory and Communications, Universidad Rey Juan Carlos, Madrid, Spain
- Hospital General Universitario Gregorio Marañón, Instituto de Investigación Sanitaria Gregorio Marañón (IISGM), Madrid, Spain
| | | | - Carlos Figuera
- Department of Signal Theory and Communications, Universidad Rey Juan Carlos, Madrid, Spain
| | - Felipe Atienza
- Hospital General Universitario Gregorio Marañón, Instituto de Investigación Sanitaria Gregorio Marañón (IISGM), Madrid, Spain
- CIBERCV, Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares, Madrid, Spain
- Facultad de Medicina, Universidad Complutense, Madrid, Spain
| | - Francisco Fernández-Avilés
- Hospital General Universitario Gregorio Marañón, Instituto de Investigación Sanitaria Gregorio Marañón (IISGM), Madrid, Spain
- CIBERCV, Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares, Madrid, Spain
- Facultad de Medicina, Universidad Complutense, Madrid, Spain
| | - Andreu M. Climent
- Hospital General Universitario Gregorio Marañón, Instituto de Investigación Sanitaria Gregorio Marañón (IISGM), Madrid, Spain
- CIBERCV, Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares, Madrid, Spain
- * E-mail:
| |
Collapse
|
23
|
van Duijvenboden S, Hanson B, Child N, Lambiase PD, Rinaldi CA, Jaswinder G, Taggart P, Orini M. Pulse Arrival Time and Pulse Interval as Accurate Markers to Detect Mechanical Alternans. Ann Biomed Eng 2019; 47:1291-1299. [PMID: 30756263 PMCID: PMC6453876 DOI: 10.1007/s10439-019-02221-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Accepted: 01/28/2019] [Indexed: 11/10/2022]
Abstract
Mechanical alternans (MA) is a powerful predictor of adverse prognosis in patients with heart failure and cardiomyopathy, but its use remains limited due to the need of invasive continuous arterial pressure recordings. This study aims to assess novel cardiovascular correlates of MA in the intact human heart to facilitate affordable and non-invasive detection of MA and advance our understanding of the underlying pathophysiology. Arterial pressure, respiration, and ECG were recorded in 12 subjects with healthy ventricles during voluntarily controlled breathing at different respiratory rate, before and after administration of beta-blockers. MA was induced by ventricular pacing. A total of 67 recordings lasting approximately 90 s each were analyzed. Mechanical alternans (MA) was measured in the systolic blood pressure. We studied cardiovascular correlates of MA, including maximum pressure rise during systole (dPdtmax), pulse arrival time (PAT), pulse wave interval (PI), RR interval (RRI), ECG QRS complexes and T-waves. MA was detected in 30% of the analyzed recordings. Beta-blockade significantly reduced MA prevalence (from 50 to 11%, p < 0.05). Binary classification showed that MA was detected by alternans in dPdtmax (100% sens, 96% spec), PAT (100% sens, 81% spec) and PI (80% sens, 81% spec). Alternans in PAT and in PI also showed high degree of temporal synchronization with MA (80 ± 33 and 73 ± 40%, respectively). These data suggest that cardiac contractility is a primary factor in the establishment of MA. Our findings show that MA was highly correlated with invasive measurements of PAT and PI. Since PAT and PI can be estimated using non-invasive technologies, these markers could potentially enable affordable MA detection for risk-prediction.
Collapse
Affiliation(s)
- Stefan van Duijvenboden
- Institute of Cardiovascular Science, University College London, London, UK.
- Clinical Pharmacology, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK.
| | - Ben Hanson
- Department of Mechanical Engineering, University College London, London, UK
| | - Nick Child
- Department of Cardiology, Guy's and St. Thomas's Hospital, London, UK
| | - Pier D Lambiase
- Institute of Cardiovascular Science, University College London, London, UK
- Barts Heart Centre, St Bartholomews Hospital, London, UK
| | | | - Gill Jaswinder
- Department of Cardiology, Guy's and St. Thomas's Hospital, London, UK
| | - Peter Taggart
- Institute of Cardiovascular Science, University College London, London, UK
| | - Michele Orini
- Department of Mechanical Engineering, University College London, London, UK
- Barts Heart Centre, St Bartholomews Hospital, London, UK
| |
Collapse
|
24
|
Zhou X, Bueno-Orovio A, Schilling RJ, Kirkby C, Denning C, Rajamohan D, Burrage K, Tinker A, Rodriguez B, Harmer SC. Investigating the Complex Arrhythmic Phenotype Caused by the Gain-of-Function Mutation KCNQ1-G229D. Front Physiol 2019; 10:259. [PMID: 30967788 PMCID: PMC6430739 DOI: 10.3389/fphys.2019.00259] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Accepted: 02/28/2019] [Indexed: 12/18/2022] Open
Abstract
The congenital long QT syndrome (LQTS) is a cardiac electrophysiological disorder that can cause sudden cardiac death. LQT1 is a subtype of LQTS caused by mutations in KCNQ1, affecting the slow delayed-rectifier potassium current (I Ks), which is essential for cardiac repolarization. Paradoxically, gain-of-function mutations in KCNQ1 have been reported to cause borderline QT prolongation, atrial fibrillation (AF), sinus bradycardia, and sudden death, however, the mechanisms are not well understood. The goal of the study is to investigate the ionic, cellular and tissue mechanisms underlying the complex phenotype of a gain-of-function mutation in KCNQ1, c.686G > A (p.G229D) using computer modeling and simulations informed by in vitro measurements. Previous studies have shown this mutation to cause AF and borderline QT prolongation. We report a clinical description of a family that carry this mutation and that a member of the family died suddenly during sleep at 21 years old. Using patch-clamp experiments, we confirm that KCNQ1-G229D causes a significant gain in channel function. We introduce the effect of the mutation in populations of atrial, ventricular and sinus node (SN) cell models to investigate mechanisms underlying phenotypic variability. In a population of human atrial and ventricular cell models and tissue, the presence of KCNQ1-G229D predominantly shortens atrial action potential duration (APD). However, in a subset of models, KCNQ1-G229D can act to prolong ventricular APD by up to 7% (19 ms) and underlie depolarization abnormalities, which could promote QT prolongation and conduction delays. Interestingly, APD prolongations were predominantly seen at slow pacing cycle lengths (CL > 1,000 ms), which suggests a greater arrhythmic risk during bradycardia, and is consistent with the observed sudden death during sleep. In a population of human SN cell models, the KCNQ1-G229D mutation results in slow/abnormal sinus rhythm, and we identify that a stronger L-type calcium current enables the SN to be more robust to the mutation. In conclusion, our computational modeling experiments provide novel mechanistic explanations for the observed borderline QT prolongation, and predict that KCNQ1-G229D could underlie SN dysfunction and conduction delays. The mechanisms revealed in the study can potentially inform management and treatment of KCNQ1 gain-of-function mutation carriers.
Collapse
Affiliation(s)
- Xin Zhou
- Department of Computer Science, British Heart Foundation Centre of Research Excellence, University of Oxford, Oxford, United Kingdom
| | - Alfonso Bueno-Orovio
- Department of Computer Science, British Heart Foundation Centre of Research Excellence, University of Oxford, Oxford, United Kingdom
| | | | | | - Chris Denning
- Department of Stem Cell Biology, Centre for Biomolecular Sciences, University of Nottingham, Nottingham, United Kingdom
| | - Divya Rajamohan
- Department of Stem Cell Biology, Centre for Biomolecular Sciences, University of Nottingham, Nottingham, United Kingdom
| | - Kevin Burrage
- Department of Computer Science, British Heart Foundation Centre of Research Excellence, University of Oxford, Oxford, United Kingdom
- Australian Research Council Centre of Excellence for Mathematical and Statistical Frontiers, Queensland University of Technology, Brisbane, QLD, Australia
- School of Mathematical Sciences, Queensland University of Technology, Brisbane, QLD, Australia
| | - Andrew Tinker
- The William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| | - Blanca Rodriguez
- Department of Computer Science, British Heart Foundation Centre of Research Excellence, University of Oxford, Oxford, United Kingdom
| | - Stephen C. Harmer
- The William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| |
Collapse
|
25
|
Ni H, Zhang H, Grandi E, Narayan SM, Giles WR. Transient outward K + current can strongly modulate action potential duration and initiate alternans in the human atrium. Am J Physiol Heart Circ Physiol 2019; 316:H527-H542. [PMID: 30576220 PMCID: PMC6415821 DOI: 10.1152/ajpheart.00251.2018] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Revised: 07/27/2018] [Accepted: 08/15/2018] [Indexed: 01/14/2023]
Abstract
Efforts to identify the mechanisms for the initiation and maintenance of human atrial fibrillation (AF) often focus on changes in specific elements of the atrial "substrate," i.e., its electrophysiological properties and/or structural components. We used experimentally validated mathematical models of the human atrial myocyte action potential (AP), both at baseline in sinus rhythm (SR) and in the setting of chronic AF, to identify significant contributions of the Ca2+-independent transient outward K+ current ( Ito) to electrophysiological instability and arrhythmia initiation. First, we explored whether changes in the recovery or restitution of the AP duration (APD) and/or its dynamic stability (alternans) can be modulated by Ito. Recent reports have identified disease-dependent spatial differences in expression levels of the specific K+ channel α-subunits that underlie Ito in the left atrium. Therefore, we studied the functional consequences of this by deletion of 50% of native Ito (Kv4.3) and its replacement with Kv1.4. Interestingly, significant changes in the short-term stability of the human atrial AP waveform were revealed. Specifically, this K+ channel isoform switch produced discontinuities in the initial slope of the APD restitution curve and appearance of APD alternans. This pattern of in silico results resembles some of the changes observed in high-resolution clinical electrophysiological recordings. Important insights into mechanisms for these changes emerged from known biophysical properties (reactivation kinetics) of Kv1.4 versus those of Kv4.3. These results suggest new approaches for pharmacological management of AF, based on molecular properties of specific K+ isoforms and their changed expression during progressive disease. NEW & NOTEWORTHY Clinical studies identify oscillations (alternans) in action potential (AP) duration as a predictor for atrial fibrillation (AF). The abbreviated AP in AF also involves changes in K+ currents and early repolarization of the AP. Our simulations illustrate how substitution of Kv1.4 for the native current, Kv4.3, alters the AP waveform and enhances alternans. Knowledge of this "isoform switch" and related dynamics in the AF substrate may guide new approaches for detection and management of AF.
Collapse
Affiliation(s)
- Haibo Ni
- Biological Physics Group, School of Physics and Astronomy, University of Manchester , Manchester , United Kingdom
- Department of Pharmacology, University of California , Davis, California
| | - Henggui Zhang
- Biological Physics Group, School of Physics and Astronomy, University of Manchester , Manchester , United Kingdom
| | - Eleonora Grandi
- Department of Pharmacology, University of California , Davis, California
| | - Sanjiv M Narayan
- Division of Cardiology, Cardiovascular Institute, Stanford University , Stanford, California
| | - Wayne R Giles
- Faculties of Kinesiology and Medicine, University of Calgary , Calgary, Alberta , Canada
| |
Collapse
|
26
|
Tomek J, Tomková M, Zhou X, Bub G, Rodriguez B. Modulation of Cardiac Alternans by Altered Sarcoplasmic Reticulum Calcium Release: A Simulation Study. Front Physiol 2018; 9:1306. [PMID: 30283355 PMCID: PMC6156530 DOI: 10.3389/fphys.2018.01306] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Accepted: 08/29/2018] [Indexed: 11/29/2022] Open
Abstract
Background: Cardiac alternans is an important precursor to arrhythmia, facilitating formation of conduction block, and re-entry. Diseased hearts were observed to be particularly vulnerable to alternans, mainly in heart failure or after myocardial infarction. Alternans is typically linked to oscillation of calcium cycling, particularly in the sarcoplasmic reticulum (SR). While the role of SR calcium reuptake in alternans is well established, the role of altered calcium release by ryanodine receptors has not yet been studied extensively. At the same time, there is strong evidence that calcium release is abnormal in heart failure and other heart diseases, suggesting that these changes might play a pro-alternans role. Aims: To demonstrate how changes to intracellular calcium release dynamics and magnitude affect alternans vulnerability. Methods: We used the state-of-the-art Heijman–Rudy and O’Hara–Rudy computer models of ventricular myocyte, given their detailed representation of calcium handling and their previous utility in alternans research. We modified the models to obtain precise control over SR release dynamics and magnitude, allowing for the evaluation of these properties in alternans formation and suppression. Results: Shorter time to peak SR release and shorter release duration decrease alternans vulnerability by improved refilling of releasable calcium within junctional SR; conversely, slow release promotes alternans. Modulating the total amount of calcium released, we show that sufficiently increased calcium release may surprisingly prevent alternans via a mechanism linked to the functional depletion of junctional SR during release. We show that this mechanism underlies differences between “eye-type” and “fork-type” alternans, which were observed in human in vivo and in silico. We also provide a detailed explanation of alternans formation in the given computer models, termed “sarcoplasmic reticulum calcium cycling refractoriness.” The mechanism relies on the steep SR load–release relationship, combined with relatively limited rate of junctional SR refilling. Conclusion: Both altered dynamics and magnitude of SR calcium release modulate alternans vulnerability. In particular, slow dynamics of SR release, such as those observed in heart failure, promote alternans. Therefore, acceleration of intracellular calcium release, e.g., via synchronization of calcium sparks, may inhibit alternans in failing hearts and reduce arrhythmia occurrence.
Collapse
Affiliation(s)
- Jakub Tomek
- Department of Computer Science, British Heart Foundation Centre of Research Excellence, University of Oxford, Oxford, United Kingdom
| | - Markéta Tomková
- Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Xin Zhou
- Department of Computer Science, British Heart Foundation Centre of Research Excellence, University of Oxford, Oxford, United Kingdom
| | - Gil Bub
- Department of Physiology, McGill University, Montreal, QC, Canada
| | - Blanca Rodriguez
- Department of Computer Science, British Heart Foundation Centre of Research Excellence, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
27
|
Lawson BA, Burrage K, Burrage P, Drovandi CC, Bueno-Orovio A. Slow Recovery of Excitability Increases Ventricular Fibrillation Risk as Identified by Emulation. Front Physiol 2018; 9:1114. [PMID: 30210355 PMCID: PMC6121112 DOI: 10.3389/fphys.2018.01114] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2018] [Accepted: 07/25/2018] [Indexed: 12/28/2022] Open
Abstract
Purpose: Rotor stability and meandering are key mechanisms determining and sustaining cardiac fibrillation, with important implications for anti-arrhythmic drug development. However, little is yet known on how rotor dynamics are modulated by variability in cellular electrophysiology, particularly on kinetic properties of ion channel recovery. Methods: We propose a novel emulation approach, based on Gaussian process regression augmented with machine learning, for data enrichment, automatic detection, classification, and analysis of re-entrant biomarkers in cardiac tissue. More than 5,000 monodomain simulations of long-lasting arrhythmic episodes with Fenton-Karma ionic dynamics, further enriched by emulation to 80 million electrophysiological scenarios, were conducted to investigate the role of variability in ion channel densities and kinetics in modulating rotor-driven arrhythmic behavior. Results: Our methods predicted the class of excitation behavior with classification accuracy up to 96%, and emulation effectively predicted frequency, stability, and spatial biomarkers of functional re-entry. We demonstrate that the excitation wavelength interpretation of re-entrant behavior hides critical information about rotor persistence and devolution into fibrillation. In particular, whereas action potential duration directly modulates rotor frequency and meandering, critical windows of excitability are identified as the main determinants of breakup. Further novel electrophysiological insights of particular relevance for ventricular arrhythmias arise from our multivariate analysis, including the role of incomplete activation of slow inward currents in mediating tissue rate-dependence and dispersion of repolarization, and the emergence of slow recovery of excitability as a significant promoter of this mechanism of dispersion and increased arrhythmic risk. Conclusions: Our results mechanistically explain pro-arrhythmic effects of class Ic anti-arrhythmics in the ventricles despite their established role in the pharmacological management of atrial fibrillation. This is mediated by their slow recovery of excitability mode of action, promoting incomplete activation of slow inward currents and therefore increased dispersion of repolarization, given the larger influence of these currents in modulating the action potential in the ventricles compared to the atria. These results exemplify the potential of emulation techniques in elucidating novel mechanisms of arrhythmia and further application to cardiac electrophysiology.
Collapse
Affiliation(s)
- Brodie A Lawson
- ARC Centre of Excellence for Mathematical and Statistical Frontiers, School of Mathematical Sciences, Queensland University of Technology, Brisbane, QLD, Australia
| | - Kevin Burrage
- ARC Centre of Excellence for Mathematical and Statistical Frontiers, School of Mathematical Sciences, Queensland University of Technology, Brisbane, QLD, Australia.,Department of Computer Science, University of Oxford, Oxford, United Kingdom
| | - Pamela Burrage
- ARC Centre of Excellence for Mathematical and Statistical Frontiers, School of Mathematical Sciences, Queensland University of Technology, Brisbane, QLD, Australia
| | - Christopher C Drovandi
- ARC Centre of Excellence for Mathematical and Statistical Frontiers, School of Mathematical Sciences, Queensland University of Technology, Brisbane, QLD, Australia
| | | |
Collapse
|
28
|
Mora MT, Ferrero JM, Gomez JF, Sobie EA, Trenor B. Ca 2+ Cycling Impairment in Heart Failure Is Exacerbated by Fibrosis: Insights Gained From Mechanistic Simulations. Front Physiol 2018; 9:1194. [PMID: 30190684 PMCID: PMC6116328 DOI: 10.3389/fphys.2018.01194] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Accepted: 08/08/2018] [Indexed: 12/28/2022] Open
Abstract
Heart failure (HF) is characterized by altered Ca2+ cycling, resulting in cardiac contractile dysfunction. Failing myocytes undergo electrophysiological remodeling, which is known to be the main cause of abnormal Ca2+ homeostasis. However, structural remodeling, specifically proliferating fibroblasts coupled to myocytes in the failing heart, could also contribute to Ca2+ cycling impairment. The goal of the present study was to systematically analyze the mechanisms by which myocyte–fibroblast coupling could affect Ca2+ dynamics in normal conditions and in HF. Simulations of healthy and failing human myocytes were performed using established mathematical models, and cells were either isolated or coupled to fibroblasts. Univariate and multivariate sensitivity analyses were performed to quantify effects of ion transport pathways on biomarkers computed from intracellular [Ca2+] waveforms. Variability in ion channels and pumps was imposed and populations of models were analyzed to determine effects on Ca2+ dynamics. Our results suggest that both univariate and multivariate sensitivity analyses are valuable methodologies to shed light into the ionic mechanisms underlying Ca2+ impairment in HF, although differences between the two methodologies are observed at high parameter variability. These can result from either the fact that multivariate analyses take into account ion channels or non-linear effects of ion transport pathways on Ca2+ dynamics. Coupling either healthy or failing myocytes to fibroblasts decreased Ca2+ transients due to an indirect sink effect on action potential (AP) and thus on Ca2+ related currents. Simulations that investigated restoration of normal physiology in failing myocytes showed that Ca2+ cycling can be normalized by increasing SERCA and L-type Ca2+ current activity while decreasing Na+–Ca2+ exchange and SR Ca2+ leak. Changes required to normalize APs in failing myocytes depended on whether myocytes were coupled to fibroblasts. In conclusion, univariate and multivariate sensitivity analyses are helpful tools to understand how Ca2+ cycling is impaired in HF and how this can be exacerbated by coupling of myocytes to fibroblasts. The design of pharmacological actions to restore normal activity should take into account the degree of fibrosis in the failing heart.
Collapse
Affiliation(s)
- Maria T Mora
- Centro de Investigación e Innovación en Bioingeniería, Universitat Politècnica de València, Valencia, Spain
| | - Jose M Ferrero
- Centro de Investigación e Innovación en Bioingeniería, Universitat Politècnica de València, Valencia, Spain
| | - Juan F Gomez
- Centro de Investigación e Innovación en Bioingeniería, Universitat Politècnica de València, Valencia, Spain
| | - Eric A Sobie
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Beatriz Trenor
- Centro de Investigación e Innovación en Bioingeniería, Universitat Politècnica de València, Valencia, Spain
| |
Collapse
|
29
|
Ni H, Morotti S, Grandi E. A Heart for Diversity: Simulating Variability in Cardiac Arrhythmia Research. Front Physiol 2018; 9:958. [PMID: 30079031 PMCID: PMC6062641 DOI: 10.3389/fphys.2018.00958] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Accepted: 06/29/2018] [Indexed: 12/31/2022] Open
Abstract
In cardiac electrophysiology, there exist many sources of inter- and intra-personal variability. These include variability in conditions and environment, and genotypic and molecular diversity, including differences in expression and behavior of ion channels and transporters, which lead to phenotypic diversity (e.g., variable integrated responses at the cell, tissue, and organ levels). These variabilities play an important role in progression of heart disease and arrhythmia syndromes and outcomes of therapeutic interventions. Yet, the traditional in silico framework for investigating cardiac arrhythmias is built upon a parameter/property-averaging approach that typically overlooks the physiological diversity. Inspired by work done in genetics and neuroscience, new modeling frameworks of cardiac electrophysiology have been recently developed that take advantage of modern computational capabilities and approaches, and account for the variance in the biological data they are intended to illuminate. In this review, we outline the recent advances in statistical and computational techniques that take into account physiological variability, and move beyond the traditional cardiac model-building scheme that involves averaging over samples from many individuals in the construction of a highly tuned composite model. We discuss how these advanced methods have harnessed the power of big (simulated) data to study the mechanisms of cardiac arrhythmias, with a special emphasis on atrial fibrillation, and improve the assessment of proarrhythmic risk and drug response. The challenges of using in silico approaches with variability are also addressed and future directions are proposed.
Collapse
Affiliation(s)
| | | | - Eleonora Grandi
- Department of Pharmacology, University of California, Davis, Davis, CA, United States
| |
Collapse
|
30
|
Orini M, Taggart P, Lambiase PD. In vivo human sock-mapping validation of a simple model that explains unipolar electrogram morphology in relation to conduction-repolarization dynamics. J Cardiovasc Electrophysiol 2018; 29:990-997. [PMID: 29660191 PMCID: PMC6055721 DOI: 10.1111/jce.13606] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/11/2018] [Revised: 03/29/2018] [Accepted: 04/09/2018] [Indexed: 12/16/2022]
Abstract
INTRODUCTION The unipolar electrogram (UEG) provides local measures of cardiac activation and repolarization and is an important translational link between patient and laboratory. A simple theoretical model of the UEG was previously proposed and tested in silico. METHOD AND RESULTS The aim of this study was to use epicardial sock-mapping data to validate the simple model's predictions of unipolar electrogram morphology in the in vivo human heart. The simple model conceptualizes the UEG as the difference between a local cardiac action potential and a position-independent component representing remote activity, which is defined as the average of all action potentials. UEGs were recorded in 18 patients using a multielectrode sock containing 240 electrodes and activation (AT) and repolarization time (RT) were measured using standard definitions. For each cardiac site, a simulated local action potential was generated by adjusting a stylized action potential to fit AT and RT measured in vivo. The correlation coefficient (cc) measuring the morphological similarity between 13,637 recorded and simulated UEGs was cc = 0.89 (0.72-0.95), median (Q1 -Q3 ), for the entire UEG, cc = 0.90 (0.76-0.95) for QRS complexes, and cc = 0.83 (0.58-0.92) for T-waves. QRS and T-wave areas from recorded and simulated UEGs showed cc> 0.89 and cc> 0.84, respectively, indicating good agreement between voltage isochrones maps. Simulated UEGs accurately reproduced the interaction between AT and QRS morphology and between RT and T-wave morphology observed in vivo. CONCLUSIONS Human in vivo whole heart data support the validity of the simple model, which provides a framework for improving the understanding of the UEG and its clinical utility.
Collapse
Affiliation(s)
- Michele Orini
- Department of Mechanical Engineering, University College London, London, United Kingdom.,Department of Cardiac Electrophysiology, The Barts Heart Center, St Bartholomew's Hospital, London, United Kingdom
| | - Peter Taggart
- Department of Cardiac Electrophysiology, The Barts Heart Center, St Bartholomew's Hospital, London, United Kingdom.,Institute of Cardiovascular Science, University College London, London, United Kingdom
| | - Pier D Lambiase
- Department of Cardiac Electrophysiology, The Barts Heart Center, St Bartholomew's Hospital, London, United Kingdom.,Institute of Cardiovascular Science, University College London, London, United Kingdom
| |
Collapse
|
31
|
Tixier E, Lombardi D, Rodriguez B, Gerbeau JF. Modelling variability in cardiac electrophysiology: a moment-matching approach. J R Soc Interface 2018; 14:rsif.2017.0238. [PMID: 28835541 PMCID: PMC5582121 DOI: 10.1098/rsif.2017.0238] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Accepted: 08/02/2017] [Indexed: 11/16/2022] Open
Abstract
The variability observed in action potential (AP) cardiomyocyte measurements is the consequence of many different sources of randomness. Often ignored, this variability may be studied to gain insight into the cell ionic properties. In this paper, we focus on the study of ionic channel conductances and describe a methodology to estimate their probability density function (PDF) from AP recordings. The method relies on the matching of observable statistical moments and on the maximum entropy principle. We present four case studies using synthetic and sets of experimental AP measurements from human and canine cardiomyocytes. In each case, the proposed methodology is applied to infer the PDF of key conductances from the exhibited variability. The estimated PDFs are discussed and, when possible, compared to the true distributions. We conclude that it is possible to extract relevant information from the variability in AP measurements and discuss the limitations and possible implications of the proposed approach.
Collapse
Affiliation(s)
- Eliott Tixier
- Sorbonne Universités, UPMC Université Paris 6, UMR 7598 LJLL, 75005 Paris, France.,Inria Paris, 75012 Paris, France
| | - Damiano Lombardi
- Sorbonne Universités, UPMC Université Paris 6, UMR 7598 LJLL, 75005 Paris, France.,Inria Paris, 75012 Paris, France
| | - Blanca Rodriguez
- Department of Computer Science, BHF Centre of Research Excellence, University of Oxford, Oxford, UK
| | - Jean-Frédéric Gerbeau
- Sorbonne Universités, UPMC Université Paris 6, UMR 7598 LJLL, 75005 Paris, France .,Inria Paris, 75012 Paris, France
| |
Collapse
|
32
|
Liu W, Kim TY, Huang X, Liu MB, Koren G, Choi BR, Qu Z. Mechanisms linking T-wave alternans to spontaneous initiation of ventricular arrhythmias in rabbit models of long QT syndrome. J Physiol 2018; 596:1341-1355. [PMID: 29377142 DOI: 10.1113/jp275492] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Accepted: 01/23/2018] [Indexed: 01/23/2023] Open
Abstract
KEY POINTS T-wave alternans (TWA) and T-wave lability (TWL) are precursors of ventricular arrhythmias in long QT syndrome; however, the mechanistic link remains to be clarified. Computer simulations show that action potential duration (APD) prolongation and slowed heart rates promote APD alternans and chaos, manifesting as TWA and TWL, respectively. Regional APD alternans and chaos can exacerbate pre-existing or induce de novo APD dispersion, which combines with enhanced ICa,L to result in premature ventricular complexes (PVCs) originating from the APD gradient region. These PVCs can directly degenerate into re-entrant arrhythmias without the need for an additional tissue substrate or further exacerbate the APD dispersion to cause spontaneous initiation of ventricular arrhythmias. Experiments conducted in transgenic long QT rabbits show that PVC alternans occurs at slow heart rates, preceding spontaneous intuition of ventricular arrhythmias. ABSTRACT T-wave alternans (TWA) and irregular beat-to-beat T-wave variability or T-wave lability (TWL), the ECG manifestations of action potential duration (APD) alternans and variability, are precursors of ventricular arrhythmias in long QT syndromes. TWA and TWL in patients tend to occur at normal heart rates and are usually potentiated by bradycardia. Whether or how TWA and TWL at normal or slow heart rates are causally linked to arrhythmogenesis remains unknown. In the present study, we used computer simulations and experiments of a transgenic rabbit model of long QT syndrome to investigate the underlying mechanisms. Computer simulations showed that APD prolongation and slowed heart rates caused early afterdepolarization-mediated APD alternans and chaos, manifesting as TWA and TWL, respectively. Regional APD alternans and chaos exacerbated pre-existing APD dispersion and, in addition, APD chaos could also induce APD dispersion de novo via chaos desynchronization. Increased APD dispersion, combined with substantially enhanced ICa,L , resulted in a tissue-scale dynamical instability that gave rise to the spontaneous occurrence of unidirectionally propagating premature ventricular complexes (PVCs) originating from the APD gradient region. These PVCs could directly degenerate into re-entrant arrhythmias without the need for an additional tissue substrate or could block the following sinus beat to result in a longer RR interval, which further exacerbated the APD dispersion giving rise to the spontaneous occurrence of ventricular arrhythmias. Slow heart rate-induced PVC alternans was observed in experiments of transgenic LQT2 rabbits under isoproterenol, which was associated with increased APD dispersion and spontaneous occurrence of ventricular arrhythmias, in agreement with the theoretical predictions.
Collapse
Affiliation(s)
- Weiqing Liu
- Department of Medicine, University of California, Los Angeles, California, USA.,School of Science, Jiangxi University of Science and Technology, Ganzhou, China
| | - Tae Yun Kim
- Cardiovascular Research Center, Division of Cardiology, Rhode Island Hospital, Warren Alpert Medical School of Brown University, Providence, Rhode Island, USA
| | - Xiaodong Huang
- Department of Medicine, University of California, Los Angeles, California, USA.,Department of Physics, South China University of Technology, Guangzhou, China
| | - Michael B Liu
- Department of Medicine, University of California, Los Angeles, California, USA
| | - Gideon Koren
- Cardiovascular Research Center, Division of Cardiology, Rhode Island Hospital, Warren Alpert Medical School of Brown University, Providence, Rhode Island, USA
| | - Bum-Rak Choi
- Cardiovascular Research Center, Division of Cardiology, Rhode Island Hospital, Warren Alpert Medical School of Brown University, Providence, Rhode Island, USA
| | - Zhilin Qu
- Department of Medicine, University of California, Los Angeles, California, USA.,Department of Biomathematics, University of California, Los Angeles, California, USA
| |
Collapse
|
33
|
Trayanova NA, Boyle PM, Nikolov PP. Personalized Imaging and Modeling Strategies for Arrhythmia Prevention and Therapy. CURRENT OPINION IN BIOMEDICAL ENGINEERING 2018; 5:21-28. [PMID: 29546250 PMCID: PMC5847279 DOI: 10.1016/j.cobme.2017.11.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The goal of this article is to review advances in computational modeling of the heart, with a focus on recent non-invasive clinical imaging- and simulation-based strategies aimed at improving the diagnosis and treatment of patients with arrhythmias and structural heart disease. Following a brief overview of the field of computational cardiology, we present recent applications of the personalized virtual-heart approach in predicting the optimal targets for infarct-related ventricular tachycardia and atrial fibrillation ablation, and in determining risk of sudden cardiac death in myocardial infarction patients. The hope is that with such models at the patient bedside, therapies could be improved, invasiveness of diagnostic procedures minimized, and health-care costs reduced.
Collapse
Affiliation(s)
- Natalia A Trayanova
- Institute for Computational Medicine and Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD
| | - Patrick M Boyle
- Institute for Computational Medicine and Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD
| | - Plamen P Nikolov
- Institute for Computational Medicine and Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD
| |
Collapse
|
34
|
Mayourian J, Ceholski DK, Gorski PA, Mathiyalagan P, Murphy JF, Salazar SI, Stillitano F, Hare JM, Sahoo S, Hajjar RJ, Costa KD. Exosomal microRNA-21-5p Mediates Mesenchymal Stem Cell Paracrine Effects on Human Cardiac Tissue Contractility. Circ Res 2018; 122:933-944. [PMID: 29449318 DOI: 10.1161/circresaha.118.312420] [Citation(s) in RCA: 131] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Revised: 02/09/2018] [Accepted: 02/13/2018] [Indexed: 01/08/2023]
Abstract
RATIONALE The promising clinical benefits of delivering human mesenchymal stem cells (hMSCs) for treating heart disease warrant a better understanding of underlying mechanisms of action. hMSC exosomes increase myocardial contractility; however, the exosomal cargo responsible for these effects remains unresolved. OBJECTIVE This study aims to identify lead cardioactive hMSC exosomal microRNAs to provide a mechanistic basis for optimizing future stem cell-based cardiotherapies. METHODS AND RESULTS Integrating systems biology and human engineered cardiac tissue (hECT) technologies, partial least squares regression analysis of exosomal microRNA profiling data predicted microRNA-21-5p (miR-21-5p) levels positively correlate with contractile force and calcium handling gene expression responses in hECTs treated with conditioned media from multiple cell types. Furthermore, miR-21-5p levels were significantly elevated in hECTs treated with the exosome-enriched fraction of the hMSC secretome (hMSC-exo) versus untreated controls. This motivated experimentally testing the human-specific role of miR-21-5p in hMSC-exo-mediated increases of cardiac tissue contractility. Treating hECTs with miR-21-5p alone was sufficient to recapitulate effects observed with hMSC-exo on hECT developed force and expression of associated calcium handling genes (eg, SERCA2a and L-type calcium channel). Conversely, knockdown of miR-21-5p in hMSCs significantly diminished exosomal procontractile and associated calcium handling gene expression effects on hECTs. Western blots supported miR-21-5p effects on calcium handling gene expression at the protein level, corresponding to significantly increased calcium transient amplitude and decreased decay time constant in comparison to miR-scramble control. Mechanistically, cotreating with miR-21-5p and LY294002, a PI3K inhibitor, suppressed these effects. Finally, mathematical simulations predicted the translational capacity for miR-21-5p treatment to restore calcium handling in mature ischemic adult human cardiomyocytes. CONCLUSIONS miR-21-5p plays a key role in hMSC-exo-mediated effects on cardiac contractility and calcium handling, likely via PI3K signaling. These findings may open new avenues of research to harness the role of miR-21-5p in optimizing future stem cell-based cardiotherapies.
Collapse
Affiliation(s)
- Joshua Mayourian
- From the Cardiovascular Research Center, Department of Cardiology, Icahn School of Medicine at Mount Sinai, New York, NY (J.M., D.K.C., P.A.G., P.M., J.F.M., S.I.S., F.S., S.S., R.J.H., K.D.C.); and Interdisciplinary Stem Cell Institute, Department of Cardiology, University of Miami Miller School of Medicine, Miami, FL (J.M.H.)
| | - Delaine K Ceholski
- From the Cardiovascular Research Center, Department of Cardiology, Icahn School of Medicine at Mount Sinai, New York, NY (J.M., D.K.C., P.A.G., P.M., J.F.M., S.I.S., F.S., S.S., R.J.H., K.D.C.); and Interdisciplinary Stem Cell Institute, Department of Cardiology, University of Miami Miller School of Medicine, Miami, FL (J.M.H.)
| | - Przemek A Gorski
- From the Cardiovascular Research Center, Department of Cardiology, Icahn School of Medicine at Mount Sinai, New York, NY (J.M., D.K.C., P.A.G., P.M., J.F.M., S.I.S., F.S., S.S., R.J.H., K.D.C.); and Interdisciplinary Stem Cell Institute, Department of Cardiology, University of Miami Miller School of Medicine, Miami, FL (J.M.H.)
| | - Prabhu Mathiyalagan
- From the Cardiovascular Research Center, Department of Cardiology, Icahn School of Medicine at Mount Sinai, New York, NY (J.M., D.K.C., P.A.G., P.M., J.F.M., S.I.S., F.S., S.S., R.J.H., K.D.C.); and Interdisciplinary Stem Cell Institute, Department of Cardiology, University of Miami Miller School of Medicine, Miami, FL (J.M.H.)
| | - Jack F Murphy
- From the Cardiovascular Research Center, Department of Cardiology, Icahn School of Medicine at Mount Sinai, New York, NY (J.M., D.K.C., P.A.G., P.M., J.F.M., S.I.S., F.S., S.S., R.J.H., K.D.C.); and Interdisciplinary Stem Cell Institute, Department of Cardiology, University of Miami Miller School of Medicine, Miami, FL (J.M.H.)
| | - Sophia I Salazar
- From the Cardiovascular Research Center, Department of Cardiology, Icahn School of Medicine at Mount Sinai, New York, NY (J.M., D.K.C., P.A.G., P.M., J.F.M., S.I.S., F.S., S.S., R.J.H., K.D.C.); and Interdisciplinary Stem Cell Institute, Department of Cardiology, University of Miami Miller School of Medicine, Miami, FL (J.M.H.)
| | - Francesca Stillitano
- From the Cardiovascular Research Center, Department of Cardiology, Icahn School of Medicine at Mount Sinai, New York, NY (J.M., D.K.C., P.A.G., P.M., J.F.M., S.I.S., F.S., S.S., R.J.H., K.D.C.); and Interdisciplinary Stem Cell Institute, Department of Cardiology, University of Miami Miller School of Medicine, Miami, FL (J.M.H.)
| | - Joshua M Hare
- From the Cardiovascular Research Center, Department of Cardiology, Icahn School of Medicine at Mount Sinai, New York, NY (J.M., D.K.C., P.A.G., P.M., J.F.M., S.I.S., F.S., S.S., R.J.H., K.D.C.); and Interdisciplinary Stem Cell Institute, Department of Cardiology, University of Miami Miller School of Medicine, Miami, FL (J.M.H.)
| | - Susmita Sahoo
- From the Cardiovascular Research Center, Department of Cardiology, Icahn School of Medicine at Mount Sinai, New York, NY (J.M., D.K.C., P.A.G., P.M., J.F.M., S.I.S., F.S., S.S., R.J.H., K.D.C.); and Interdisciplinary Stem Cell Institute, Department of Cardiology, University of Miami Miller School of Medicine, Miami, FL (J.M.H.)
| | - Roger J Hajjar
- From the Cardiovascular Research Center, Department of Cardiology, Icahn School of Medicine at Mount Sinai, New York, NY (J.M., D.K.C., P.A.G., P.M., J.F.M., S.I.S., F.S., S.S., R.J.H., K.D.C.); and Interdisciplinary Stem Cell Institute, Department of Cardiology, University of Miami Miller School of Medicine, Miami, FL (J.M.H.)
| | - Kevin D Costa
- From the Cardiovascular Research Center, Department of Cardiology, Icahn School of Medicine at Mount Sinai, New York, NY (J.M., D.K.C., P.A.G., P.M., J.F.M., S.I.S., F.S., S.S., R.J.H., K.D.C.); and Interdisciplinary Stem Cell Institute, Department of Cardiology, University of Miami Miller School of Medicine, Miami, FL (J.M.H.).
| |
Collapse
|
35
|
Mistry HB. Complex versus simple models: ion-channel cardiac toxicity prediction. PeerJ 2018; 6:e4352. [PMID: 29423349 PMCID: PMC5804316 DOI: 10.7717/peerj.4352] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Accepted: 01/19/2018] [Indexed: 01/08/2023] Open
Abstract
There is growing interest in applying detailed mathematical models of the heart for ion-channel related cardiac toxicity prediction. However, a debate as to whether such complex models are required exists. Here an assessment in the predictive performance between two established large-scale biophysical cardiac models and a simple linear model Bnet was conducted. Three ion-channel data-sets were extracted from literature. Each compound was designated a cardiac risk category using two different classification schemes based on information within CredibleMeds. The predictive performance of each model within each data-set for each classification scheme was assessed via a leave-one-out cross validation. Overall the Bnet model performed equally as well as the leading cardiac models in two of the data-sets and outperformed both cardiac models on the latest. These results highlight the importance of benchmarking complex versus simple models but also encourage the development of simple models.
Collapse
Affiliation(s)
- Hitesh B. Mistry
- Division of Pharmacy, University of Manchester, Manchester, United Kingdom
| |
Collapse
|
36
|
|
37
|
Lawson BAJ, Drovandi CC, Cusimano N, Burrage P, Rodriguez B, Burrage K. Unlocking data sets by calibrating populations of models to data density: A study in atrial electrophysiology. SCIENCE ADVANCES 2018; 4:e1701676. [PMID: 29349296 PMCID: PMC5770172 DOI: 10.1126/sciadv.1701676] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Accepted: 12/08/2017] [Indexed: 05/08/2023]
Abstract
The understanding of complex physical or biological systems nearly always requires a characterization of the variability that underpins these processes. In addition, the data used to calibrate these models may also often exhibit considerable variability. A recent approach to deal with these issues has been to calibrate populations of models (POMs), multiple copies of a single mathematical model but with different parameter values, in response to experimental data. To date, this calibration has been largely limited to selecting models that produce outputs that fall within the ranges of the data set, ignoring any trends that might be present in the data. We present here a novel and general methodology for calibrating POMs to the distributions of a set of measured values in a data set. We demonstrate our technique using a data set from a cardiac electrophysiology study based on the differences in atrial action potential readings between patients exhibiting sinus rhythm (SR) or chronic atrial fibrillation (cAF) and the Courtemanche-Ramirez-Nattel model for human atrial action potentials. Not only does our approach accurately capture the variability inherent in the experimental population, but we also demonstrate how the POMs that it produces may be used to extract additional information from the data used for calibration, including improved identification of the differences underlying stratified data. We also show how our approach allows different hypotheses regarding the variability in complex systems to be quantitatively compared.
Collapse
Affiliation(s)
- Brodie A. J. Lawson
- Australian Research Council Centre of Excellence for Mathematical and Statistical Frontiers, School of Mathematical Sciences, Queensland University of Technology, Brisbane, Queensland, Australia
- Corresponding author.
| | - Christopher C. Drovandi
- Australian Research Council Centre of Excellence for Mathematical and Statistical Frontiers, School of Mathematical Sciences, Queensland University of Technology, Brisbane, Queensland, Australia
| | | | - Pamela Burrage
- Australian Research Council Centre of Excellence for Mathematical and Statistical Frontiers, School of Mathematical Sciences, Queensland University of Technology, Brisbane, Queensland, Australia
| | - Blanca Rodriguez
- Department of Computer Science, University of Oxford, Oxford, UK
| | - Kevin Burrage
- Australian Research Council Centre of Excellence for Mathematical and Statistical Frontiers, School of Mathematical Sciences, Queensland University of Technology, Brisbane, Queensland, Australia
- Department of Computer Science, University of Oxford, Oxford, UK
| |
Collapse
|
38
|
Mechano-electrical feedback in the clinical setting: Current perspectives. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2017; 130:365-375. [DOI: 10.1016/j.pbiomolbio.2017.06.001] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2017] [Revised: 06/01/2017] [Accepted: 06/02/2017] [Indexed: 12/13/2022]
|
39
|
Wiśniowska B, Tylutki Z, Polak S. Humans Vary, So Cardiac Models Should Account for That Too! Front Physiol 2017; 8:700. [PMID: 28983251 PMCID: PMC5613127 DOI: 10.3389/fphys.2017.00700] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Accepted: 08/30/2017] [Indexed: 12/25/2022] Open
Abstract
The utilization of mathematical modeling and simulation in drug development encompasses multiple mathematical techniques and the location of a drug candidate in the development pipeline. Historically speaking they have been used to analyze experimental data (i.e., Hill equation) and clarify the involved physical and chemical processes (i.e., Fick laws and drug molecule diffusion). In recent years the advanced utilization of mathematical modeling has been an important part of the regulatory review process. Physiologically based pharmacokinetic (PBPK) models identify the need to conduct specific clinical studies, suggest specific study designs and propose appropriate labeling language. Their application allows the evaluation of the influence of intrinsic (e.g., age, gender, genetics, disease) and extrinsic [e.g., dosing schedule, drug-drug interactions (DDIs)] factors, alone or in combinations, on drug exposure and therefore provides accurate population assessment. A similar pathway has been taken for the assessment of drug safety with cardiac safety being one the most advanced examples. Mechanistic mathematical model-informed safety evaluation, with a focus on drug potential for causing arrhythmias, is now discussed as an element of the Comprehensive in vitro Proarrhythmia Assay. One of the pillars of this paradigm is the use of an in silico model of the adult human ventricular cardiomyocyte to integrate in vitro measured data. Existing examples (in vitro—in vivo extrapolation with the use of PBPK models) suggest that deterministic, epidemiological and clinical data based variability models can be merged with the mechanistic models describing human physiology. There are other methods available, based on the stochastic approach and on population of models generated by randomly assigning specific parameter values (ionic current conductance and kinetic) and further pruning. Both approaches are briefly characterized in this manuscript, in parallel with the drug-specific variability.
Collapse
Affiliation(s)
- Barbara Wiśniowska
- Pharmacoepidemiology and Pharmacoeconomics Unit, Faculty of Pharmacy, Jagiellonian University Medical CollegeKrakow, Poland
| | - Zofia Tylutki
- Pharmacoepidemiology and Pharmacoeconomics Unit, Faculty of Pharmacy, Jagiellonian University Medical CollegeKrakow, Poland
| | - Sebastian Polak
- Pharmacoepidemiology and Pharmacoeconomics Unit, Faculty of Pharmacy, Jagiellonian University Medical CollegeKrakow, Poland.,SimcypCertara, Sheffield, United Kingdom
| |
Collapse
|
40
|
Orini M, Pueyo E, Laguna P, Bailon R. A Time-Varying Nonparametric Methodology for Assessing Changes in QT Variability Unrelated to Heart Rate Variability. IEEE Trans Biomed Eng 2017; 65:1443-1451. [PMID: 28991727 DOI: 10.1109/tbme.2017.2758925] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
OBJECTIVE To propose and test a novel methodology to measure changes in QT interval variability (QTV) unrelated to RR interval variability (RRV) in nonstationary conditions. METHODS Time-frequency coherent and residual spectra representing QTV related (QTVrRRV) and unrelated (QTVuRRV) to RRV, respectively, are estimated using time-frequency Cohen's class distributions. The proposed approach decomposes the nonstationary output spectrum of any two-input one-output model with uncorrelated inputs into two spectra representing the information related and unrelated to one of the two inputs, respectively. An algorithm to correct for the bias of the time-frequency coherence function between QTV and RRV is proposed to provide accurate estimates of both QTVuRRV and QTVrRRV. Two simulation studies were conducted to assess the methodology in challenging nonstationary conditions and data recorded during head-up tilt in 16 healthy volunteers were analyzed. RESULTS In the simulation studies, QTVuRRV changes were tracked with only a minor delay due to the filtering necessary to estimate the nonstationary spectra. The correlation coefficient between theoretical and estimated patterns was even for extremely noisy recordings (signal to noise ratio (SNR) in QTV dB). During head-up tilt, QTVrRRV explained the largest proportion of QTV, whereas QTVuRRV showed higher relative increase than QTV or QTVrRRV in all spectral bands ( for most pairwise comparisons). CONCLUSION The proposed approach accurately tracks changes in QTVuRRV. Head-up tilt induced a slightly greater increase in QTVuRRV than in QTVrRRV. SIGNIFICANCE The proposed index QTVuRRV may represent an indirect measure of intrinsic ventricular repolarization variability, a marker of cardiac instability associated with sympathetic ventricular modulation and sudden cardiac death.
Collapse
|
41
|
Zlochiver S, Johnson C, Tolkacheva EG. Constant DI pacing suppresses cardiac alternans formation in numerical cable models. CHAOS (WOODBURY, N.Y.) 2017; 27:093903. [PMID: 28964144 DOI: 10.1063/1.4999355] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Cardiac repolarization alternans describe the sequential alternation of the action potential duration (APD) and can develop during rapid pacing. In the ventricles, such alternans may rapidly turn into life risking arrhythmias under conditions of spatial heterogeneity. Thus, suppression of alternans by artificial pacing protocols, or alternans control, has been the subject of numerous theoretical, numerical, and experimental studies. Yet, previous attempts that were inspired by chaos control theories were successful only for a short spatial extent (<2 cm) from the pacing electrode. Previously, we demonstrated in a single cell model that pacing with a constant diastolic interval (DI) can suppress the formation of alternans at high rates of activation. We attributed this effect to the elimination of feedback between the pacing cycle length and the last APD, effectively preventing restitution-dependent alternans from developing. Here, we extend this idea into cable models to study the extent by which constant DI pacing can control alternans during wave propagation conditions. Constant DI pacing was applied to ventricular cable models of up to 5 cm, using human kinetics. Our results show that constant DI pacing significantly shifts the onset of both cardiac alternans and conduction blocks to higher pacing rates in comparison to pacing with constant cycle length. We also demonstrate that constant DI pacing reduces the propensity of spatially discordant alternans, a precursor of wavebreaks. We finally found that the protective effect of constant DI pacing is stronger for increased electrotonic coupling along the fiber in the sense that the onset of alternans is further shifted to higher activation rates. Overall, these results support the potential clinical applicability of such type of pacing in improving protocols of implanted pacemakers, in order to reduce the risk of life-threatening arrhythmias. Future research should be conducted in order to experimentally validate these promising results.
Collapse
Affiliation(s)
- S Zlochiver
- Department of Biomedical Engineering, Tel-Aviv University, Tel-Aviv 69379, Israel
| | - C Johnson
- Department of Biomedical Engineering, University of Minnesota, Minneapolis 55455, USA
| | - E G Tolkacheva
- Department of Biomedical Engineering, University of Minnesota, Minneapolis 55455, USA
| |
Collapse
|
42
|
Mayourian J, Cashman TJ, Ceholski DK, Johnson BV, Sachs D, Kaji DA, Sahoo S, Hare JM, Hajjar RJ, Sobie EA, Costa KD. Experimental and Computational Insight Into Human Mesenchymal Stem Cell Paracrine Signaling and Heterocellular Coupling Effects on Cardiac Contractility and Arrhythmogenicity. Circ Res 2017. [PMID: 28642329 DOI: 10.1161/circresaha.117.310796] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
RATIONALE Myocardial delivery of human mesenchymal stem cells (hMSCs) is an emerging therapy for treating the failing heart. However, the relative effects of hMSC-mediated heterocellular coupling (HC) and paracrine signaling (PS) on human cardiac contractility and arrhythmogenicity remain unresolved. OBJECTIVE The objective is to better understand hMSC PS and HC effects on human cardiac contractility and arrhythmogenicity by integrating experimental and computational approaches. METHODS AND RESULTS Extending our previous hMSC-cardiomyocyte HC computational model, we incorporated experimentally calibrated hMSC PS effects on cardiomyocyte L-type calcium channel/sarcoendoplasmic reticulum calcium-ATPase activity and cardiac tissue fibrosis. Excitation-contraction simulations of hMSC PS-only and combined HC+PS effects on human cardiomyocytes were representative of human engineered cardiac tissue (hECT) contractile function measurements under matched experimental treatments. Model simulations and hECTs both demonstrated that hMSC-mediated effects were most pronounced under PS-only conditions, where developed force increased ≈4-fold compared with non-hMSC-supplemented controls during physiological 1-Hz pacing. Simulations predicted contractility of isolated healthy and ischemic adult human cardiomyocytes would be minimally sensitive to hMSC HC, driven primarily by PS. Dominance of hMSC PS was also revealed in simulations of fibrotic cardiac tissue, where hMSC PS protected from potential proarrhythmic effects of HC at various levels of engraftment. Finally, to study the nature of the hMSC paracrine effects on contractility, proteomic analysis of hECT/hMSC conditioned media predicted activation of PI3K/Akt signaling, a recognized target of both soluble and exosomal fractions of the hMSC secretome. Treating hECTs with exosome-enriched, but not exosome-depleted, fractions of the hMSC secretome recapitulated the effects observed with hMSC conditioned media on hECT-developed force and expression of calcium-handling genes (eg, SERCA2a, L-type calcium channel). CONCLUSIONS Collectively, this integrated experimental and computational study helps unravel relative hMSC PS and HC effects on human cardiac contractility and arrhythmogenicity, and provides novel insight into the role of exosomes in hMSC paracrine-mediated effects on contractility.
Collapse
Affiliation(s)
- Joshua Mayourian
- From the Cardiovascular Research Center (J.M., T.J.C., D.K.C., D.S., S.S., R.J.H., K.D.C.), Department of Developmental and Regenerative Biology (D.A.K.), and Department of Pharmacology and Systems Therapeutics (E.A.S.), Icahn School of Medicine at Mount Sinai, New York; Department of Medicine, University of Washington Seattle (B.V.J.); and The Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, FL (J.M.H.)
| | - Timothy J Cashman
- From the Cardiovascular Research Center (J.M., T.J.C., D.K.C., D.S., S.S., R.J.H., K.D.C.), Department of Developmental and Regenerative Biology (D.A.K.), and Department of Pharmacology and Systems Therapeutics (E.A.S.), Icahn School of Medicine at Mount Sinai, New York; Department of Medicine, University of Washington Seattle (B.V.J.); and The Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, FL (J.M.H.)
| | - Delaine K Ceholski
- From the Cardiovascular Research Center (J.M., T.J.C., D.K.C., D.S., S.S., R.J.H., K.D.C.), Department of Developmental and Regenerative Biology (D.A.K.), and Department of Pharmacology and Systems Therapeutics (E.A.S.), Icahn School of Medicine at Mount Sinai, New York; Department of Medicine, University of Washington Seattle (B.V.J.); and The Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, FL (J.M.H.)
| | - Bryce V Johnson
- From the Cardiovascular Research Center (J.M., T.J.C., D.K.C., D.S., S.S., R.J.H., K.D.C.), Department of Developmental and Regenerative Biology (D.A.K.), and Department of Pharmacology and Systems Therapeutics (E.A.S.), Icahn School of Medicine at Mount Sinai, New York; Department of Medicine, University of Washington Seattle (B.V.J.); and The Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, FL (J.M.H.)
| | - David Sachs
- From the Cardiovascular Research Center (J.M., T.J.C., D.K.C., D.S., S.S., R.J.H., K.D.C.), Department of Developmental and Regenerative Biology (D.A.K.), and Department of Pharmacology and Systems Therapeutics (E.A.S.), Icahn School of Medicine at Mount Sinai, New York; Department of Medicine, University of Washington Seattle (B.V.J.); and The Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, FL (J.M.H.)
| | - Deepak A Kaji
- From the Cardiovascular Research Center (J.M., T.J.C., D.K.C., D.S., S.S., R.J.H., K.D.C.), Department of Developmental and Regenerative Biology (D.A.K.), and Department of Pharmacology and Systems Therapeutics (E.A.S.), Icahn School of Medicine at Mount Sinai, New York; Department of Medicine, University of Washington Seattle (B.V.J.); and The Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, FL (J.M.H.)
| | - Susmita Sahoo
- From the Cardiovascular Research Center (J.M., T.J.C., D.K.C., D.S., S.S., R.J.H., K.D.C.), Department of Developmental and Regenerative Biology (D.A.K.), and Department of Pharmacology and Systems Therapeutics (E.A.S.), Icahn School of Medicine at Mount Sinai, New York; Department of Medicine, University of Washington Seattle (B.V.J.); and The Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, FL (J.M.H.)
| | - Joshua M Hare
- From the Cardiovascular Research Center (J.M., T.J.C., D.K.C., D.S., S.S., R.J.H., K.D.C.), Department of Developmental and Regenerative Biology (D.A.K.), and Department of Pharmacology and Systems Therapeutics (E.A.S.), Icahn School of Medicine at Mount Sinai, New York; Department of Medicine, University of Washington Seattle (B.V.J.); and The Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, FL (J.M.H.)
| | - Roger J Hajjar
- From the Cardiovascular Research Center (J.M., T.J.C., D.K.C., D.S., S.S., R.J.H., K.D.C.), Department of Developmental and Regenerative Biology (D.A.K.), and Department of Pharmacology and Systems Therapeutics (E.A.S.), Icahn School of Medicine at Mount Sinai, New York; Department of Medicine, University of Washington Seattle (B.V.J.); and The Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, FL (J.M.H.)
| | - Eric A Sobie
- From the Cardiovascular Research Center (J.M., T.J.C., D.K.C., D.S., S.S., R.J.H., K.D.C.), Department of Developmental and Regenerative Biology (D.A.K.), and Department of Pharmacology and Systems Therapeutics (E.A.S.), Icahn School of Medicine at Mount Sinai, New York; Department of Medicine, University of Washington Seattle (B.V.J.); and The Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, FL (J.M.H.)
| | - Kevin D Costa
- From the Cardiovascular Research Center (J.M., T.J.C., D.K.C., D.S., S.S., R.J.H., K.D.C.), Department of Developmental and Regenerative Biology (D.A.K.), and Department of Pharmacology and Systems Therapeutics (E.A.S.), Icahn School of Medicine at Mount Sinai, New York; Department of Medicine, University of Washington Seattle (B.V.J.); and The Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, FL (J.M.H.).
| |
Collapse
|
43
|
Tomek J, Rodriguez B, Bub G, Heijman J. β-Adrenergic receptor stimulation inhibits proarrhythmic alternans in postinfarction border zone cardiomyocytes: a computational analysis. Am J Physiol Heart Circ Physiol 2017; 313:H338-H353. [PMID: 28550171 PMCID: PMC5582914 DOI: 10.1152/ajpheart.00094.2017] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Revised: 05/12/2017] [Accepted: 05/23/2017] [Indexed: 01/09/2023]
Abstract
We integrated, for the first time, postmyocardial infarction electrical and autonomic remodeling in a detailed, validated computer model of β-adrenergic stimulation in ventricular cardiomyocytes. Here, we show that β-adrenergic stimulation inhibits alternans and provide novel insights into underlying mechanisms, adding to a recent controversy about pro-/antiarrhythmic effects of postmyocardial infarction hyperinnervation. The border zone (BZ) of the viable myocardium adjacent to an infarct undergoes extensive autonomic and electrical remodeling and is prone to repolarization alternans-induced cardiac arrhythmias. BZ remodeling processes may promote or inhibit Ca2+ and/or repolarization alternans and may differentially affect ventricular arrhythmogenesis. Here, we used a detailed computational model of the canine ventricular cardiomyocyte to study the determinants of alternans in the BZ and their regulation by β-adrenergic receptor (β-AR) stimulation. The BZ model developed Ca2+ transient alternans at slower pacing cycle lengths than the control model, suggesting that the BZ may promote spatially heterogeneous alternans formation in an infarcted heart. β-AR stimulation abolished alternans. By evaluating all combinations of downstream β-AR stimulation targets, we identified both direct (via ryanodine receptor channels) and indirect [via sarcoplasmic reticulum (SR) Ca2+ load] modulation of SR Ca2+ release as critical determinants of Ca2+ transient alternans. These findings were confirmed in a human ventricular cardiomyocyte model. Cell-to-cell coupling indirectly modulated the likelihood of alternans by affecting the action potential upstroke, reducing the trigger for SR Ca2+ release in one-dimensional strand simulations. However, β-AR stimulation inhibited alternans in both single and multicellular simulations. Taken together, these data highlight a potential antiarrhythmic role of sympathetic hyperinnervation in the BZ by reducing the likelihood of alternans and provide new insights into the underlying mechanisms controlling Ca2+ transient and repolarization alternans. NEW & NOTEWORTHY We integrated, for the first time, postmyocardial infarction electrical and autonomic remodeling in a detailed, validated computer model of β-adrenergic stimulation in ventricular cardiomyocytes. Here, we show that β-adrenergic stimulation inhibits alternans and provide novel insights into underlying mechanisms, adding to a recent controversy about pro-/antiarrhythmic effects of postmyocardial infarction hyperinnervation. Listen to this article’s corresponding podcast at http://ajpheart.podbean.com/e/%CE%B2-ar-stimulation-and-alternans-in-border-zone-cardiomyocytes/.
Collapse
Affiliation(s)
- Jakub Tomek
- Life Sciences Interface Doctoral Training Centre, University of Oxford, Oxford, United Kingdom; .,Department of Physiology, Anatomy and Genetics, British Heart Foundation Centre of Research Excellence, University of Oxford, Oxford, United Kingdom
| | - Blanca Rodriguez
- Department of Computer Science, British Heart Foundation Centre of Research Excellence, University of Oxford, Oxford, United Kingdom
| | - Gil Bub
- Department of Physiology, McGill University, Montreal, Quebec, Canada; and
| | - Jordi Heijman
- Department of Cardiology, CARIM School for Cardiovascular Diseases, Maastricht University, Maastricht, The Netherlands
| |
Collapse
|
44
|
Daily NJ, Du ZW, Wakatsuki T. High-Throughput Phenotyping of Human Induced Pluripotent Stem Cell-Derived Cardiomyocytes and Neurons Using Electric Field Stimulation and High-Speed Fluorescence Imaging. Assay Drug Dev Technol 2017; 15:178-188. [PMID: 28525289 DOI: 10.1089/adt.2017.781] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Electrophysiology of excitable cells, including muscle cells and neurons, has been measured by making direct contact with a single cell using a micropipette electrode. To increase the assay throughput, optical devices such as microscopes and microplate readers have been used to analyze electrophysiology of multiple cells. We have established a high-throughput (HTP) analysis of action potentials (APs) in highly enriched motor neurons and cardiomyocytes (CMs) that are differentiated from human induced pluripotent stem cells (iPSCs). A multichannel electric field stimulation (EFS) device enabled the ability to electrically stimulate cells and measure dynamic changes in APs of excitable cells ultra-rapidly (>100 data points per second) by imaging entire 96-well plates. We found that the activities of both neurons and CMs and their response to EFS and chemicals are readily discerned by our fluorescence imaging-based HTP phenotyping assay. The latest generation of calcium (Ca2+) indicator dyes, FLIPR Calcium 6 and Cal-520, with the HTP device enables physiological analysis of human iPSC-derived samples highlighting its potential application for understanding disease mechanisms and discovering new therapeutic treatments.
Collapse
|
45
|
Britton OJ, Bueno-Orovio A, Virág L, Varró A, Rodriguez B. The Electrogenic Na +/K + Pump Is a Key Determinant of Repolarization Abnormality Susceptibility in Human Ventricular Cardiomyocytes: A Population-Based Simulation Study. Front Physiol 2017; 8:278. [PMID: 28529489 PMCID: PMC5418229 DOI: 10.3389/fphys.2017.00278] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2017] [Accepted: 04/18/2017] [Indexed: 11/23/2022] Open
Abstract
Background: Cellular repolarization abnormalities occur unpredictably due to disease and drug effects, and can occur even in cardiomyocytes that exhibit normal action potentials (AP) under control conditions. Variability in ion channel densities may explain differences in this susceptibility to repolarization abnormalities. Here, we quantify the importance of key ionic mechanisms determining repolarization abnormalities following ionic block in human cardiomyocytes yielding normal APs under control conditions. Methods and Results: Sixty two AP recordings from non-diseased human heart preparations were used to construct a population of human ventricular models with normal APs and a wide range of ion channel densities. Multichannel ionic block was applied to investigate susceptibility to repolarization abnormalities. IKr block was necessary for the development of repolarization abnormalities. Models that developed repolarization abnormalities over the widest range of blocks possessed low Na+/K+ pump conductance below 50% of baseline, and ICaL conductance above 70% of baseline. Furthermore, INaK made the second largest contribution to repolarizing current in control simulations and the largest contribution under 75% IKr block. Reversing intracellular Na+ overload caused by reduced INaK was not sufficient to prevent abnormalities in models with low Na+/K+ pump conductance, while returning Na+/K+ pump conductance to normal substantially reduced abnormality occurrence, indicating INaK is an important repolarization current. Conclusions: INaK is an important determinant of repolarization abnormality susceptibility in human ventricular cardiomyocytes, through its contribution to repolarization current rather than homeostasis. While we found IKr block to be necessary for repolarization abnormalities to occur, INaK decrease, as in disease, may amplify the pro-arrhythmic risk of drug-induced IKr block in humans.
Collapse
Affiliation(s)
| | | | - László Virág
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, University of SzegedSzeged, Hungary
| | - András Varró
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, University of SzegedSzeged, Hungary
| | | |
Collapse
|
46
|
Kanaporis G, Blatter LA. Membrane potential determines calcium alternans through modulation of SR Ca 2+ load and L-type Ca 2+ current. J Mol Cell Cardiol 2017; 105:49-58. [PMID: 28257761 DOI: 10.1016/j.yjmcc.2017.02.004] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2016] [Revised: 02/02/2017] [Accepted: 02/26/2017] [Indexed: 02/06/2023]
Abstract
Alternans is a risk factor for cardiac arrhythmia, including atrial fibrillation. At the cellular level alternans is observed as beat-to-beat alternations in contraction, action potential (AP) morphology and magnitude of the Ca2+ transient (CaT). It is widely accepted that the bi-directional interplay between membrane voltage and Ca2+ is crucial for the development of alternans, however recently the attention has shifted to instabilities in cellular Ca2+ handling, while the role of AP alternation remains poorly understood. This study provides new insights how beat- to-beat alternation in AP morphology affects occurrence of CaT alternans in atrial myocytes. Pacing-induced AP and CaT alternans were studied in rabbit atrial myocytes using combined Ca2+ imaging and electrophysiological measurements. To determine the role of AP morphology for the generation of CaT alternans, trains of two voltage commands in form of APs recorded during large and small alternans CaTs were applied to voltage-clamped cells. APs of longer duration (as observed during small amplitude alternans CaT) and especially beat-to-beat alternations in AP morphology (AP alternans) reduced the pacing frequency threshold and increased the degree of CaT alternans. AP morphology contributes to the development of CaT alternans by two mechanisms. First, the AP waveform observed during small alternans CaTs coincided with higher end-diastolic sarcoplasmic reticulum Ca2+ levels ([Ca2+]SR), and AP alternans resulted in beat-to-beat alternations in end-diastolic [Ca2+]SR. Second, L-type Ca2+ current was significantly affected by AP morphology, where the AP waveform observed during large CaT elicited L-type Ca2+ currents of higher magnitude and faster kinetics, resulting in more efficient triggering of SR Ca2+ release. In conclusion, alternation in AP morphology plays a significant role in the development and stabilization of atrial alternans. The demonstration that CaT alternans can be controlled or even prevented by modulating AP morphology has important ramifications for arrhythmia prevention and therapy strategies.
Collapse
Affiliation(s)
- Giedrius Kanaporis
- Department of Physiology and Biophysics, Rush University Medical Center, Chicago, IL 60612, USA.
| | - Lothar A Blatter
- Department of Physiology and Biophysics, Rush University Medical Center, Chicago, IL 60612, USA.
| |
Collapse
|
47
|
Dutta S, Mincholé A, Quinn TA, Rodriguez B. Electrophysiological properties of computational human ventricular cell action potential models under acute ischemic conditions. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2017; 129:40-52. [PMID: 28223156 DOI: 10.1016/j.pbiomolbio.2017.02.007] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Revised: 12/30/2016] [Accepted: 02/15/2017] [Indexed: 11/18/2022]
Abstract
Acute myocardial ischemia is one of the main causes of sudden cardiac death. The mechanisms have been investigated primarily in experimental and computational studies using different animal species, but human studies remain scarce. In this study, we assess the ability of four human ventricular action potential models (ten Tusscher and Panfilov, 2006; Grandi et al., 2010; Carro et al., 2011; O'Hara et al., 2011) to simulate key electrophysiological consequences of acute myocardial ischemia in single cell and tissue simulations. We specifically focus on evaluating the effect of extracellular potassium concentration and activation of the ATP-sensitive inward-rectifying potassium current on action potential duration, post-repolarization refractoriness, and conduction velocity, as the most critical factors in determining reentry vulnerability during ischemia. Our results show that the Grandi and O'Hara models required modifications to reproduce expected ischemic changes, specifically modifying the intracellular potassium concentration in the Grandi model and the sodium current in the O'Hara model. With these modifications, the four human ventricular cell AP models analyzed in this study reproduce the electrophysiological alterations in repolarization, refractoriness, and conduction velocity caused by acute myocardial ischemia. However, quantitative differences are observed between the models and overall, the ten Tusscher and modified O'Hara models show closest agreement to experimental data.
Collapse
Affiliation(s)
- Sara Dutta
- Department of Computer Science, University of Oxford, Oxford, UK.
| | - Ana Mincholé
- Department of Computer Science, University of Oxford, Oxford, UK
| | - T Alexander Quinn
- Department of Physiology and Biophysics, Dalhousie University, Halifax, Canada
| | - Blanca Rodriguez
- Department of Computer Science, University of Oxford, Oxford, UK
| |
Collapse
|
48
|
Edwards AG, Louch WE. Species-Dependent Mechanisms of Cardiac Arrhythmia: A Cellular Focus. CLINICAL MEDICINE INSIGHTS-CARDIOLOGY 2017; 11:1179546816686061. [PMID: 28469490 PMCID: PMC5392019 DOI: 10.1177/1179546816686061] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2016] [Accepted: 11/20/2016] [Indexed: 12/17/2022]
Abstract
Although ventricular arrhythmia remains a leading cause of morbidity and mortality, available antiarrhythmic drugs have limited efficacy. Disappointing progress in the development of novel, clinically relevant antiarrhythmic agents may partly be attributed to discrepancies between humans and animal models used in preclinical testing. However, such differences are at present difficult to predict, requiring improved understanding of arrhythmia mechanisms across species. To this end, we presently review interspecies similarities and differences in fundamental cardiomyocyte electrophysiology and current understanding of the mechanisms underlying the generation of afterdepolarizations and reentry. We specifically highlight patent shortcomings in small rodents to reproduce cellular and tissue-level arrhythmia substrate believed to be critical in human ventricle. Despite greater ease of translation from larger animal models, discrepancies remain and interpretation can be complicated by incomplete knowledge of human ventricular physiology due to low availability of explanted tissue. We therefore point to the benefits of mathematical modeling as a translational bridge to understanding and treating human arrhythmia.
Collapse
Affiliation(s)
- Andrew G Edwards
- Center for Biomedical Computing, Simula Research Laboratory, Lysaker, Norway.,Center for Cardiological Innovation, Simula Research Laboratory, Lysaker, Norway.,Department of Biosciences, University of Oslo, Oslo, Norway
| | - William E Louch
- Institute for Experimental Medical Research, Oslo University Hospital and University of Oslo, Oslo, Norway.,K.G. Jebsen Cardiac Research Centre and Center for Heart Failure Research, University of Oslo, Oslo, Norway
| |
Collapse
|
49
|
Devenyi RA, Ortega FA, Groenendaal W, Krogh-Madsen T, Christini DJ, Sobie EA. Differential roles of two delayed rectifier potassium currents in regulation of ventricular action potential duration and arrhythmia susceptibility. J Physiol 2016; 595:2301-2317. [PMID: 27779762 DOI: 10.1113/jp273191] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Accepted: 10/18/2016] [Indexed: 11/08/2022] Open
Abstract
KEY POINTS Arrhythmias result from disruptions to cardiac electrical activity, although the factors that control cellular action potentials are incompletely understood. We combined mathematical modelling with experiments in heart cells from guinea pigs to determine how cellular electrical activity is regulated. A mismatch between modelling predictions and the experimental results allowed us to construct an improved, more predictive mathematical model. The balance between two particular potassium currents dictates how heart cells respond to perturbations and their susceptibility to arrhythmias. ABSTRACT Imbalances of ionic currents can destabilize the cardiac action potential and potentially trigger lethal cardiac arrhythmias. In the present study, we combined mathematical modelling with information-rich dynamic clamp experiments to determine the regulation of action potential morphology in guinea pig ventricular myocytes. Parameter sensitivity analysis was used to predict how changes in ionic currents alter action potential duration, and these were tested experimentally using dynamic clamp, a technique that allows for multiple perturbations to be tested in each cell. Surprisingly, we found that a leading mathematical model, developed with traditional approaches, systematically underestimated experimental responses to dynamic clamp perturbations. We then re-parameterized the model using a genetic algorithm, which allowed us to estimate ionic current levels in each of the cells studied. This unbiased model adjustment consistently predicted an increase in the rapid delayed rectifier K+ current and a drastic decrease in the slow delayed rectifier K+ current, and this prediction was validated experimentally. Subsequent simulations with the adjusted model generated the clinically relevant prediction that the slow delayed rectifier is better able to stabilize the action potential and suppress pro-arrhythmic events than the rapid delayed rectifier. In summary, iterative coupling of simulations and experiments enabled novel insight into how the balance between cardiac K+ currents influences ventricular arrhythmia susceptibility.
Collapse
Affiliation(s)
- Ryan A Devenyi
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Francis A Ortega
- Physiology, Biophysics, and Systems Biology Graduate Program, Weill Cornell Graduate School, New York, NY, USA
| | - Willemijn Groenendaal
- Greenberg Division of Cardiology, Weill Cornell Medical College, New York, NY, USA.,IMEC, Holst Centre, Eindhoven, The Netherlands
| | - Trine Krogh-Madsen
- Greenberg Division of Cardiology, Weill Cornell Medical College, New York, NY, USA
| | - David J Christini
- Physiology, Biophysics, and Systems Biology Graduate Program, Weill Cornell Graduate School, New York, NY, USA.,Greenberg Division of Cardiology, Weill Cornell Medical College, New York, NY, USA
| | - Eric A Sobie
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| |
Collapse
|
50
|
In Silico Investigation into Cellular Mechanisms of Cardiac Alternans in Myocardial Ischemia. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2016; 2016:4310634. [PMID: 28070211 PMCID: PMC5187597 DOI: 10.1155/2016/4310634] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/15/2016] [Accepted: 11/09/2016] [Indexed: 01/31/2023]
Abstract
Myocardial ischemia is associated with pathophysiological conditions such as hyperkalemia, acidosis, and hypoxia. These physiological disorders may lead to changes on the functions of ionic channels, which in turn form the basis for cardiac alternans. In this paper, we investigated the roles of hyperkalemia and calcium handling components played in the genesis of alternans in ischemia at the cellular level by using computational simulations. The results show that hyperkalemic reduced cell excitability and delayed recovery from inactivation of depolarization currents. The inactivation time constant τf of L-type calcium current (ICaL) increased obviously in hyperkalemia. One cycle length was not enough for ICaL to recover completely. Alternans developed as a result of ICaL responding to stimulation every other beat. Sarcoplasmic reticulum calcium-ATPase (SERCA2a) function decreased in ischemia. This change resulted in intracellular Ca (Cai) alternans of small magnitude. A strong Na+-Ca2+ exchange current (INCX) increased the magnitude of Cai alternans, leading to APD alternans through excitation-contraction coupling. Some alternated repolarization currents contributed to this repolarization alternans.
Collapse
|