1
|
Yifan D, Jiaheng Z, Yili X, Junxia D, Chao T. CircRNA: A new target for ischemic stroke. Gene 2025; 933:148941. [PMID: 39270759 DOI: 10.1016/j.gene.2024.148941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 05/22/2024] [Accepted: 09/10/2024] [Indexed: 09/15/2024]
Abstract
Ischemic stroke, a clinical emergency and disease with a poor prognosis, has a negative impact on the survival index of patients. It is frequently precipitated by a multitude of risk factors, including trauma. Currently, there is a paucity of predictive indicators for early intervention. As stable and abundant RNA in the body, circRNAs play a regulatory role in miRNAs and proteins, which affect the occurrence and development of diseases. Moreover, circRNAs can serve as predictors of clinical diseases. Several studies have demonstrated that circRNAs play pivotal roles in numerous aspects of ischemic stroke. Consequently, circRNAs have emerged as key areas of investigation in the field of ischemic stroke.
Collapse
Affiliation(s)
- Dong Yifan
- Hunan University of Traditional Chinese Medicine, Changsha, Hunan 410208, China
| | - Zhang Jiaheng
- Hunan University of Traditional Chinese Medicine, Changsha, Hunan 410208, China
| | - Xiao Yili
- Hunan University of Traditional Chinese Medicine, Changsha, Hunan 410208, China
| | - Duan Junxia
- The first affiliated hospital of hunan university of Chinese medicine, Changsha 410007, China
| | - Tan Chao
- Hunan University of Traditional Chinese Medicine, Changsha, Hunan 410208, China; The first affiliated hospital of hunan university of Chinese medicine, Changsha 410007, China.
| |
Collapse
|
2
|
Mei S, Ma X, Zhou L, Wuyun Q, Cai Z, Yan J, Ding H. CircSMAD3 represses VSMC phenotype switching and neointima formation via promoting hnRNPA1 ubiquitination degradation. Cell Prolif 2025; 58:e13742. [PMID: 39219022 PMCID: PMC11693546 DOI: 10.1111/cpr.13742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 07/30/2024] [Accepted: 08/19/2024] [Indexed: 09/04/2024] Open
Abstract
Circular RNAs (circRNAs) are novel regulatory RNAs with high evolutionary conservation and stability, which makes them effective therapeutic agents for various vascular diseases. The SMAD family is a downstream mediator of the canonical transforming growth factor beta (TGF-β) signalling pathway and has been considered as a critical regulator in vascular injury. However, the role of circRNAs derived from the SMAD family members in vascular physiology remains unclear. In this study, we initially identified potential functional circRNAs originating from the SMAD family using integrated transcriptome screening. circSMAD3, derived from the SMAD3 gene, was identified to be significantly downregulated in vascular injury and atherosclerosis. Transcriptome analysis was conducted to comprehensively illustrate the pathways modulated by circRNAs. Functionally, circSMAD3 repressed vascular smooth muscle cell (VSMC) proliferation and phenotype switching in vitro evidenced by morphological assays, and ameliorated arterial injury-induced neointima formation in vivo. Mechanistically, circSMAD3 interacted with heterogeneous nuclear ribonucleoprotein A1 (hnRNPA1) within the nucleus, enhanced its interaction with E3 ligase WD repeat domain 76 to promote hnRNPA1 ubiquitination degradation, facilitated p53 pre-RNA splicing, activated the p53γ signalling pathway, and finally suppressed VSMC proliferation and phenotype switching. Our study identifies circSMAD3 as a novel epigenetic regulator that suppresses VSMC proliferation and phenotype switching, thereby attenuating vascular remodelling and providing a new circRNA-based therapeutic strategy for cardiovascular diseases.
Collapse
Affiliation(s)
- Shuai Mei
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
- Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological DisordersWuhanChina
| | - Xiaozhu Ma
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
- Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological DisordersWuhanChina
| | - Li Zhou
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
- Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological DisordersWuhanChina
| | - Qidamugai Wuyun
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
- Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological DisordersWuhanChina
| | - Ziyang Cai
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
- Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological DisordersWuhanChina
| | - Jiangtao Yan
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
- Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological DisordersWuhanChina
| | - Hu Ding
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
- Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological DisordersWuhanChina
| |
Collapse
|
3
|
Brown SD, Klimi E, Bakker WAM, Beqqali A, Baker AH. Non-coding RNAs to treat vascular smooth muscle cell dysfunction. Br J Pharmacol 2025; 182:246-280. [PMID: 38773733 DOI: 10.1111/bph.16409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 02/19/2024] [Accepted: 03/14/2024] [Indexed: 05/24/2024] Open
Abstract
Vascular smooth muscle cell (vSMC) dysfunction is a critical contributor to cardiovascular diseases, including atherosclerosis, restenosis and vein graft failure. Recent advances have unveiled a fascinating range of non-coding RNAs (ncRNAs) that play a pivotal role in regulating vSMC function. This review aims to provide an in-depth analysis of the mechanisms underlying vSMC dysfunction and the therapeutic potential of various ncRNAs in mitigating this dysfunction, either preventing or reversing it. We explore the intricate interplay of microRNAs, long-non-coding RNAs and circular RNAs, shedding light on their roles in regulating key signalling pathways associated with vSMC dysfunction. We also discuss the prospects and challenges associated with developing ncRNA-based therapies for this prevalent type of cardiovascular pathology. LINKED ARTICLES: This article is part of a themed issue Non-coding RNA Therapeutics. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v182.2/issuetoc.
Collapse
MESH Headings
- Animals
- Humans
- Cardiovascular Diseases/drug therapy
- Cardiovascular Diseases/genetics
- Cardiovascular Diseases/metabolism
- Cardiovascular Diseases/pathology
- Muscle, Smooth, Vascular/cytology
- Muscle, Smooth, Vascular/drug effects
- Muscle, Smooth, Vascular/metabolism
- Myocytes, Smooth Muscle/drug effects
- Myocytes, Smooth Muscle/metabolism
- Myocytes, Smooth Muscle/pathology
- RNA, Circular/genetics
- RNA, Circular/metabolism
- RNA, Long Noncoding/genetics
- RNA, Long Noncoding/metabolism
- RNA, Untranslated/genetics
- RNA, Untranslated/metabolism
- RNA, Untranslated/pharmacology
- RNA, Untranslated/therapeutic use
Collapse
Affiliation(s)
- Simon D Brown
- BHF Centre for Cardiovascular Science, Queens Medical Research Institute, University of Edinburgh, Edinburgh, UK
| | - Eftychia Klimi
- BHF Centre for Cardiovascular Science, Queens Medical Research Institute, University of Edinburgh, Edinburgh, UK
| | | | - Abdelaziz Beqqali
- BHF Centre for Cardiovascular Science, Queens Medical Research Institute, University of Edinburgh, Edinburgh, UK
| | - Andrew H Baker
- BHF Centre for Cardiovascular Science, Queens Medical Research Institute, University of Edinburgh, Edinburgh, UK
- Cardiovascular Research Institute Maastricht (CARIM), Maastricht University Medical Centre, Maastricht, The Netherlands
| |
Collapse
|
4
|
Sopić M, Vladimirov S, Munjas J, Mitić T, Hall IF, Jusic A, Ruzic D, Devaux Y. Targeting noncoding RNAs to treat atherosclerosis. Br J Pharmacol 2025; 182:220-245. [PMID: 38720437 DOI: 10.1111/bph.16412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 03/06/2024] [Accepted: 04/05/2024] [Indexed: 12/13/2024] Open
Abstract
Noncoding RNAs (ncRNAs) are pivotal for various pathological processes, impacting disease progression. The potential for leveraging ncRNAs to prevent or treat atherosclerosis and associated cardiovascular diseases is of great significance, especially given the increasing prevalence of atherosclerosis in an ageing and sedentary population. Together, these diseases impose a substantial socio-economic burden, demanding innovative therapeutic solutions. This review explores the potential of ncRNAs in atherosclerosis treatment. We commence by examining approaches for identifying and characterizing atherosclerosis-associated ncRNAs. We then delve into the functional aspects of ncRNAs in atherosclerosis development and progression. Additionally, we review current RNA and RNA-targeting molecules in development or under approval for clinical use, offering insights into their pharmacological potential. The importance of improved ncRNA delivery strategies is highlighted. Finally, we suggest avenues for advanced research to accelerate the use of ncRNAs in treating atherosclerosis and mitigating its societal impact. LINKED ARTICLES: This article is part of a themed issue Non-coding RNA Therapeutics. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v182.2/issuetoc.
Collapse
Affiliation(s)
- Miron Sopić
- Cardiovascular Research Unit, Department of Precision Health, Luxembourg Institute of Health, Luxembourg, Luxembourg
- Department of Medical Biochemistry, Faculty of Pharmacy, University of Belgrade, Belgrade, Serbia
| | - Sandra Vladimirov
- Department of Medical Biochemistry, Faculty of Pharmacy, University of Belgrade, Belgrade, Serbia
| | - Jelena Munjas
- Department of Medical Biochemistry, Faculty of Pharmacy, University of Belgrade, Belgrade, Serbia
| | - Tijana Mitić
- BHF/University Centre for Cardiovascular Science, Queens Medical Research Institute, University of Edinburgh, Edinburgh, UK
| | - Ignacio Fernando Hall
- BHF/University Centre for Cardiovascular Science, Queens Medical Research Institute, University of Edinburgh, Edinburgh, UK
| | - Amela Jusic
- HAYA Therapeutics SA, SuperLab Suisse - Bâtiment Serine, Lausanne, Vaud, Switzerland
| | - Dusan Ruzic
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Belgrade, Belgrade, Serbia
| | - Yvan Devaux
- Cardiovascular Research Unit, Department of Precision Health, Luxembourg Institute of Health, Luxembourg, Luxembourg
| |
Collapse
|
5
|
Jia K, Luo X, Yi J, Zhang C. Hormonal influence: unraveling the impact of sex hormones on vascular smooth muscle cells. Biol Res 2024; 57:61. [PMID: 39227995 PMCID: PMC11373308 DOI: 10.1186/s40659-024-00542-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 08/26/2024] [Indexed: 09/05/2024] Open
Abstract
Sex hormones play a pivotal role as endocrine hormones that exert profound effects on the biological characteristics and vascular function of vascular smooth muscle cells (VSMCs). By modulating intracellular signaling pathways, activating nuclear receptors, and regulating gene expression, sex hormones intricately influence the morphology, function, and physiological state of VSMCs, thereby impacting the biological properties of vascular contraction, relaxation, and growth. Increasing evidence suggests that abnormal phenotypic changes in VSMCs contribute to the initiation of vascular diseases, including atherosclerosis. Therefore, understanding the factors governing phenotypic alterations in VSMCs and elucidating the underlying mechanisms can provide crucial insights for refining interventions targeted at vascular diseases. Additionally, the varying levels of different types of sex hormones in the human body, influenced by sex and age, may also affect the phenotypic conversion of VSMCs. This review aims to explore the influence of sex hormones on the phenotypic switching of VSMCs and the development of associated vascular diseases in the human body.
Collapse
Affiliation(s)
- Keran Jia
- Department of Medical Cell Biology and Genetics, School of Basic Medical Sciences, Basic Medicine Research Innovation Center for Cardiometabolic Diseases, Ministry of Education, Southwest Medical University, Luzhou, Sichuan, 646000, China
| | - Xin Luo
- Department of Medical Cell Biology and Genetics, School of Basic Medical Sciences, Basic Medicine Research Innovation Center for Cardiometabolic Diseases, Ministry of Education, Southwest Medical University, Luzhou, Sichuan, 646000, China
- Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, 646000, China
| | - Jingyan Yi
- Department of Medical Cell Biology and Genetics, School of Basic Medical Sciences, Basic Medicine Research Innovation Center for Cardiometabolic Diseases, Ministry of Education, Southwest Medical University, Luzhou, Sichuan, 646000, China.
| | - Chunxiang Zhang
- Department of Cardiology, The Affiliated Hospital, Basic Medicine Research Innovation Center for Cardiometabolic Diseases, Ministry of Education, Southwest Medical University, Luzhou, Sichuan, 646000, China.
| |
Collapse
|
6
|
Hao S, Zuo F, Zhang H, Wang Y, Huang L, Ma F, Song T, Zhang T, Ren X, Wang N. LncRNA RP11-301G19.1 is required for the maintenance of vascular smooth muscle cell contractile phenotype via sponging miR-17-5P/ATOH8 axis. IUBMB Life 2024; 76:731-744. [PMID: 38651683 DOI: 10.1002/iub.2824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 03/22/2024] [Indexed: 04/25/2024]
Abstract
Long noncoding RNAs (LncRNAs) play essential roles in regulating gene expression in various biological processes. However, the function of lncRNAs in vascular smooth muscle cell (VSMC) transformation remains to be explained. In this work, we discover that a new bone marrow protein (BMP) signaling target, lncRNA RP11-301G19.1, is significantly induced in BMP7-treated VSMCs through lncRNA microarray analysis. Addition of BMP signaling inhibitor LDN-193189 attenuates the expression of ACTA2 and SM-22α, as well as the mRNA level of RP11-301G19.1. Furthermore, lncRNA RP11-301G19.1 is critical to the VSMC differentiation and is directly activated by SMAD1/9. Mechanistically, knocking down of RP11-301G19.1 leads to the decrease of ATOH8, another BMP target, while the forced expression of RP11-301G19.1 reactivates ATOH8. In addition, miR-17-5p, a miRNA negatively regulated by BMP-7, contains predicted binding sites for lncRNA RP11-301G19.1 and ATOH8 3'UTR. Accordingly, overexpression of miR-17-5p decreases the levels of them. Together, our results revealed the role of lncRNA RP11-301G19.1 as a miRNA sponge to upregulate ATOH8 in VSMC phenotype transformation.
Collapse
Affiliation(s)
- Shuning Hao
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin, China
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education and Tianjin, Tianjin, China
| | - Feifei Zuo
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin, China
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education and Tianjin, Tianjin, China
| | - Hongmin Zhang
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin, China
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education and Tianjin, Tianjin, China
| | - Ying Wang
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin, China
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education and Tianjin, Tianjin, China
| | - Liwen Huang
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin, China
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education and Tianjin, Tianjin, China
| | - Fenghui Ma
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin, China
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education and Tianjin, Tianjin, China
| | - Tiefeng Song
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin, China
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education and Tianjin, Tianjin, China
| | - Tongcun Zhang
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin, China
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education and Tianjin, Tianjin, China
| | - Xuejun Ren
- Department of Cardiology, Beijing Anzhen Hospital Affiliated to Capital Medical University, Beijing, China
| | - Nan Wang
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin, China
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education and Tianjin, Tianjin, China
| |
Collapse
|
7
|
Mei S, Ma X, Zhou L, Wuyun Q, Cai Z, Yan J, Ding H. Circular RNA in Cardiovascular Diseases: Biogenesis, Function and Application. Biomolecules 2024; 14:952. [PMID: 39199340 PMCID: PMC11352787 DOI: 10.3390/biom14080952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 07/31/2024] [Accepted: 08/05/2024] [Indexed: 09/01/2024] Open
Abstract
Cardiovascular diseases pose a significant public health challenge globally, necessitating the development of effective treatments to mitigate the risk of cardiovascular diseases. Recently, circular RNAs (circRNAs), a novel class of non-coding RNAs, have been recognized for their role in cardiovascular disease. Aberrant expression of circRNAs is closely linked with changes in various cellular and pathophysiological processes within the cardiovascular system, including metabolism, proliferation, stress response, and cell death. Functionally, circRNAs serve multiple roles, such as acting as a microRNA sponge, providing scaffolds for proteins, and participating in protein translation. Owing to their unique properties, circRNAs may represent a promising biomarker for predicting disease progression and a potential target for cardiovascular drug development. This review comprehensively examines the properties, biogenesis, and potential mechanisms of circRNAs, enhancing understanding of their role in the pathophysiological processes impacting cardiovascular disease. Furthermore, the prospective clinical applications of circRNAs in the diagnosis, prognosis, and treatment of cardiovascular disease are addressed.
Collapse
Affiliation(s)
- Shuai Mei
- Division of Cardiology, Departments of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095# Jiefang Ave., Wuhan 430030, China; (S.M.); (X.M.); (L.Z.); (Q.W.); (Z.C.)
- Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan 430030, China
| | - Xiaozhu Ma
- Division of Cardiology, Departments of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095# Jiefang Ave., Wuhan 430030, China; (S.M.); (X.M.); (L.Z.); (Q.W.); (Z.C.)
- Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan 430030, China
| | - Li Zhou
- Division of Cardiology, Departments of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095# Jiefang Ave., Wuhan 430030, China; (S.M.); (X.M.); (L.Z.); (Q.W.); (Z.C.)
- Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan 430030, China
| | - Qidamugai Wuyun
- Division of Cardiology, Departments of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095# Jiefang Ave., Wuhan 430030, China; (S.M.); (X.M.); (L.Z.); (Q.W.); (Z.C.)
- Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan 430030, China
| | - Ziyang Cai
- Division of Cardiology, Departments of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095# Jiefang Ave., Wuhan 430030, China; (S.M.); (X.M.); (L.Z.); (Q.W.); (Z.C.)
- Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan 430030, China
| | - Jiangtao Yan
- Division of Cardiology, Departments of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095# Jiefang Ave., Wuhan 430030, China; (S.M.); (X.M.); (L.Z.); (Q.W.); (Z.C.)
- Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan 430030, China
| | - Hu Ding
- Division of Cardiology, Departments of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095# Jiefang Ave., Wuhan 430030, China; (S.M.); (X.M.); (L.Z.); (Q.W.); (Z.C.)
- Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan 430030, China
- Key Laboratory of Vascular Aging, Ministry of Education, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095# Jiefang Ave., Wuhan 430030, China
| |
Collapse
|
8
|
Fu M, Gao Q, Xiao M, Li RF, Sun XY, Li SL, Peng X, Ge XY. Extracellular Vesicles Containing circMYBL1 Induce CD44 in Adenoid Cystic Carcinoma Cells and Pulmonary Endothelial Cells to Promote Lung Metastasis. Cancer Res 2024; 84:2484-2500. [PMID: 38657100 DOI: 10.1158/0008-5472.can-23-3508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 02/13/2024] [Accepted: 04/19/2024] [Indexed: 04/26/2024]
Abstract
Adenoid cystic carcinoma (ACC) is a rare malignant epithelial neoplasm that arises in secretory glands and commonly metastasizes to the lungs. MYBL1 is frequently overexpressed in ACC and has been suggested to be a driver of the disease. In this study, we identified a circular RNA (circRNA) derived from MYBL1 pre-mRNA that was accompanied by the overexpression of MYBL1 in ACC. Overexpression of circMYBL1 was correlated with increased lung metastasis and poor overall survival in patients with ACC. Ectopic circMYBL1 overexpression promoted malignant phenotypes and lung metastasis of ACC cells. Mechanistically, circMYBL1 formed a circRNA-protein complex with CCAAT enhancer-binding protein β (CEBPB), which inhibited ubiquitin-mediated degradation and promoted nuclear translocation of CEBPB. In the nucleus, circMYBL1 increased the binding of CEBPB to the CD44 promoter region and enhanced its transcription. In addition, circMYBL1 was enriched in small extracellular vesicles (sEV) isolated from the plasma of patients with ACC. Treatment with sEVs containing circMYBL1 in sEVs enhanced prometastatic phenotypes of ACC cells, elevated the expression of CD44 in human pulmonary microvascular endothelial cells (HPMEC), and enhanced the adhesion between HPMECs and ACC cells. Moreover, circMYBL1 encapsulated in sEVs increased the arrest of circulating ACC cells in the lung and enhanced lung metastatic burden. These data suggest that circMYBL1 is a tumor-promoting circRNA that could serve as a potential biomarker and therapeutic target for ACC. Significance: circMYBL1 stabilizes CEBPB and upregulates CD44 to promote adhesion between cancer cells and endothelial cells and enables lung metastasis of adenoid cystic carcinoma, suggesting that inhibition of this axis could improve patient outcomes.
Collapse
MESH Headings
- Humans
- Lung Neoplasms/secondary
- Lung Neoplasms/metabolism
- Lung Neoplasms/pathology
- Lung Neoplasms/genetics
- Hyaluronan Receptors/metabolism
- Hyaluronan Receptors/genetics
- Carcinoma, Adenoid Cystic/pathology
- Carcinoma, Adenoid Cystic/metabolism
- Carcinoma, Adenoid Cystic/genetics
- Carcinoma, Adenoid Cystic/secondary
- Mice
- Animals
- Extracellular Vesicles/metabolism
- Endothelial Cells/metabolism
- Endothelial Cells/pathology
- RNA, Circular/genetics
- RNA, Circular/metabolism
- CCAAT-Enhancer-Binding Protein-beta/metabolism
- CCAAT-Enhancer-Binding Protein-beta/genetics
- Cell Line, Tumor
- Female
- Mice, Nude
- Male
- Gene Expression Regulation, Neoplastic
- Proto-Oncogene Proteins/metabolism
- Proto-Oncogene Proteins/genetics
- Mice, Inbred BALB C
Collapse
Affiliation(s)
- Min Fu
- Department of Oral and Maxillofacial Surgery, Peking University School and Hospital of Stomatology, Beijing, PR China
- Central Laboratory, Peking University School and Hospital of Stomatology, Beijing, PR China
- National Center for Stomatology, Beijing, PR China
- National Clinical Research Center for Oral Diseases, Beijing, PR China
- National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing, PR China
| | - Qian Gao
- Department of Oral and Maxillofacial Surgery, Peking University School and Hospital of Stomatology, Beijing, PR China
| | - Mian Xiao
- Department of Oral and Maxillofacial Surgery, Peking University School and Hospital of Stomatology, Beijing, PR China
| | - Rui-Feng Li
- Department of Oral and Maxillofacial Surgery, Peking University School and Hospital of Stomatology, Beijing, PR China
| | - Xin-Yi Sun
- Department of Oral and Maxillofacial Surgery, Peking University School and Hospital of Stomatology, Beijing, PR China
| | - Sheng-Lin Li
- Central Laboratory, Peking University School and Hospital of Stomatology, Beijing, PR China
| | - Xin Peng
- Department of Oral and Maxillofacial Surgery, Peking University School and Hospital of Stomatology, Beijing, PR China
| | - Xi-Yuan Ge
- Department of Oral and Maxillofacial Surgery, Peking University School and Hospital of Stomatology, Beijing, PR China
- Central Laboratory, Peking University School and Hospital of Stomatology, Beijing, PR China
- National Center for Stomatology, Beijing, PR China
- National Clinical Research Center for Oral Diseases, Beijing, PR China
- National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing, PR China
| |
Collapse
|
9
|
Lu P, Fan J, Li B, Wang X, Song M. A novel protein encoded by circLARP1B promotes the proliferation and migration of vascular smooth muscle cells by suppressing cAMP signaling. Atherosclerosis 2024; 395:117575. [PMID: 38851155 DOI: 10.1016/j.atherosclerosis.2024.117575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 05/01/2024] [Accepted: 05/02/2024] [Indexed: 06/10/2024]
Abstract
BACKGROUND AND AIMS Circular RNA (circRNA) is closely related to atherosclerosis (AS) incidence and progression, but its regulatory mechanism in AS needs further elucidation. AS development is significantly influenced by abnormal vascular smooth muscle cells (VSMCs) growth and migration. This study explored the potential protein role of circLARP1B in VSMC proliferation and migration. METHODS We performed whole-transcriptome sequencing in human normal arterial intima and advanced atherosclerotic plaques to screen for differentially expressed circRNAs. The sequencing results were combined with database analysis to screen for circRNAs with coding ability. Real-time quantitative polymerase chain reaction was utilized to assess circLARP1B expression levels in atherosclerotic plaque tissues and cells. circLARP1B-243aa function and pathway in VSMCs growth and migration were studied by scratch, transwell, 5-ethynyl-2'-deoxyuridine, cell counting kit-8, and Western blot experiments. RESULTS We found that circLARP1B was downregulated in atherosclerotic plaque tissue and promoted the proliferation and migration of VSMCs. circLARP1B encodes a novel protein with a length of 243 amino acids. Through functional experiments, we confirmed the role of circLARP1B-243aa in enhancing VSMCs migration and proliferation. Mechanistically, circLARP1B-243aa promotes VSMCs migration and growth by upregulating phosphodiesterase 4C to inhibit the cyclic adenosine monophosphate signaling pathway. CONCLUSIONS Our results suggested that circLARP1B could promote VSMCs growth and migration through the encoded protein circLARP1B-243aa. Therefore, it could be a treatment target and biomarker for AS.
Collapse
MESH Headings
- Muscle, Smooth, Vascular/metabolism
- Muscle, Smooth, Vascular/pathology
- Cell Proliferation
- Cell Movement
- Humans
- RNA, Circular/metabolism
- RNA, Circular/genetics
- Myocytes, Smooth Muscle/metabolism
- Myocytes, Smooth Muscle/pathology
- Signal Transduction
- Cyclic AMP/metabolism
- SS-B Antigen
- Cells, Cultured
- Atherosclerosis/metabolism
- Atherosclerosis/pathology
- Atherosclerosis/genetics
- Plaque, Atherosclerotic
- Male
Collapse
Affiliation(s)
- Peng Lu
- Department of Cardiovascular Surgery, The Affiliated Taizhou People's Hospital of Nanjing Medical University, Taizhou, Jiangsu, 225300, PR China; Department of Cardiovascular Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210000, PR China
| | - Jidan Fan
- Department of Cardiovascular Surgery, The Affiliated Taizhou People's Hospital of Nanjing Medical University, Taizhou, Jiangsu, 225300, PR China
| | - Ben Li
- Department of Cardiovascular Surgery, The Affiliated Taizhou People's Hospital of Nanjing Medical University, Taizhou, Jiangsu, 225300, PR China; Department of Cardiovascular Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210000, PR China.
| | - Xiaowei Wang
- Department of Cardiovascular Surgery, The Affiliated Taizhou People's Hospital of Nanjing Medical University, Taizhou, Jiangsu, 225300, PR China.
| | - Meijuan Song
- Department of Geriatrics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210000, PR China.
| |
Collapse
|
10
|
Mei S, Ma X, Zhou L, Wuyun Q, Wang J, Xiao Q, Wang M, Zhang K, Chen C, Yan J, Ding H. CircSMAD3 represses SMAD3 phosphorylation and ameliorates cardiac remodeling by recruiting YBX1. iScience 2024; 27:110200. [PMID: 38993677 PMCID: PMC11237917 DOI: 10.1016/j.isci.2024.110200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 04/18/2024] [Accepted: 06/03/2024] [Indexed: 07/13/2024] Open
Abstract
Circular RNA (circRNA) has emerged as potential therapeutic targets for cardiovascular diseases. Given the central role of the TGFβ signaling pathway in cardiac remodeling and its potential as a therapeutic target, we hypothesized that a circRNA from this pathway could modulate cardiac remodeling and serve as a heart failure treatment. Therefore, we identified a circRNA, named circSMAD3, that was significantly reduced in murine heart failure models. Functionally, circSMAD3 mitigated cardiomyocyte hypertrophy and inhibited cardiac fibroblast activation in vitro. Mechanistically, circSMAD3 interacts with YBX1, stabilizing it and facilitating its binding to SMAD3 in the nucleus, disrupting the TGFβ/SMAD3 signaling pathway, and ultimately restoring cardiac remodeling. This study highlights circSMAD3 as a promising therapeutic target for heart failure treatment.
Collapse
Affiliation(s)
- Shuai Mei
- Division of Cardiology, Departments of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, People’s Republic of China
- Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan 430030, China
| | - Xiaozhu Ma
- Division of Cardiology, Departments of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, People’s Republic of China
- Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan 430030, China
| | - Li Zhou
- Division of Cardiology, Departments of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, People’s Republic of China
- Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan 430030, China
| | - Qidamugai Wuyun
- Division of Cardiology, Departments of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, People’s Republic of China
- Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan 430030, China
| | - Jing Wang
- Division of Cardiology, Departments of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, People’s Republic of China
- Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan 430030, China
| | - Qianqian Xiao
- Division of Cardiology, Departments of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, People’s Republic of China
- Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan 430030, China
| | - Man Wang
- Division of Cardiology, Departments of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, People’s Republic of China
- Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan 430030, China
| | - Kaiyue Zhang
- Division of Cardiology, Departments of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, People’s Republic of China
- Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan 430030, China
| | - Chen Chen
- Division of Cardiology, Departments of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, People’s Republic of China
- Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan 430030, China
| | - Jiangtao Yan
- Division of Cardiology, Departments of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, People’s Republic of China
- Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan 430030, China
| | - Hu Ding
- Division of Cardiology, Departments of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, People’s Republic of China
- Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan 430030, China
| |
Collapse
|
11
|
Gao Y, Xu SM, Cheng Y, Takenaka K, Lindner G, Janitz M. Investigation of the Circular Transcriptome in Alzheimer's Disease Brain. J Mol Neurosci 2024; 74:64. [PMID: 38981928 PMCID: PMC11233389 DOI: 10.1007/s12031-024-02236-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 06/10/2024] [Indexed: 07/11/2024]
Abstract
Circular RNAs (circRNAs) are a subclass of non-coding RNAs which have demonstrated potential as biomarkers for Alzheimer's disease (AD). In this study, we conducted a comprehensive exploration of the circRNA transcriptome within AD brain tissues. Specifically, we assessed circRNA expression patterns in the dorsolateral prefrontal cortex collected from nine AD-afflicted individuals and eight healthy controls. Utilising two circRNA detection tools, CIRI2 and CIRCexplorer2, we detected thousands of circRNAs and performed a differential expression analysis. CircRNAs which exhibited statistically significantly differential expression were identified as AD-specific differentially expressed circRNAs. Notably, our investigation revealed 120 circRNAs with significant upregulation and 1325 circRNAs displaying significant downregulation in AD brains when compared to healthy brain tissue. Additionally, we explored the expression profiles of the linear RNA counterparts corresponding to differentially expressed circRNAs in AD-afflicted brains and discovered that the linear RNA counterparts exhibited no significant changes in the levels of expression. We used CRAFT tool to predict that circUBE4B had potential to target miRNA named as hsa-miR-325-5p, ultimately regulated CD44 gene. This study provides a comprehensive overview of differentially expressed circRNAs in the context of AD brains, underscoring their potential as molecular biomarkers for AD. These findings significantly enhance our comprehension of AD's underlying pathophysiological mechanisms, offering promising avenues for future diagnostic and therapeutic developments.
Collapse
Affiliation(s)
- Yulan Gao
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, Australia
| | - Si-Mei Xu
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, Australia
| | - Yuning Cheng
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, Australia
| | - Konii Takenaka
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, Australia
| | - Grace Lindner
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, Australia
| | - Michael Janitz
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, Australia.
| |
Collapse
|
12
|
Ying Z, Lyu L, Xu X, Wen Z, Xue J, Chen M, Li Z, Jiang L, Chen T. Resident vascular Sca1 + progenitors differentiate into endothelial cells in vascular remodeling via miR-145-5p/ERG signaling pathway. iScience 2024; 27:110080. [PMID: 38883819 PMCID: PMC11176791 DOI: 10.1016/j.isci.2024.110080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 03/17/2024] [Accepted: 05/20/2024] [Indexed: 06/18/2024] Open
Abstract
Endothelial cell (EC) damage or dysfunction serves as the initial event in the pathogenesis of various cardiovascular diseases. Progenitor cells have been postulated to be able to differentiate into ECs, facilitate endothelial regeneration, and alleviate vascular pathological remodeling. However, the precise cellular origins and underlying mechanisms remain elusive. Through single-cell RNA sequencing (scRNA-seq), we identified an increasing population of progenitors expressing stem cell antigen 1 (Sca1) during vascular remodeling in mice. Using both mouse femoral artery injury and vein graft models, we determined that Sca1+ cells differentiate into ECs, restored endothelium in arterial and venous remodeling processes. Notably, we have observed that the differentiation of Sca1+ cells into ECs is negatively regulated by the microRNA-145-5p (miR-145-5p)-Erythroblast transformation-specific-related gene (ERG) pathway. Inhibiting miR-145-5p promoted Sca1+ cell differentiation and reduced neointimal formation after vascular injury. Finally, a similar downregulation of miR-145-5p in human arteriovenous fistula was observed comparing to healthy veins.
Collapse
Affiliation(s)
- Zhangquan Ying
- Department of Cardiology, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Lingxia Lyu
- Department of Cardiology, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Xiaodong Xu
- Department of Cardiology, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Zuoshi Wen
- Department of Cardiology, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Jianing Xue
- Department of Cardiology, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Mengjia Chen
- Department of Cardiology, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Zhoubin Li
- Department of Lung Transplantation and General Thoracic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Liujun Jiang
- Department of Cardiology, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Ting Chen
- Department of Cardiology, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
- Key Laboratory of Precision Medicine for Atherosclerotic Diseases of Zhejiang Province, Affiliated First Hospital of Ningbo University, Ningbo 315010, China
| |
Collapse
|
13
|
Wang X, Zhang X, Wang Z, Xia Y, Shi Z, Hu K, Zhu X, Xu W, Zhu R, Cao Z, Zhang Y. CircHIRA sponges miR-196b-5p to promote porcine early embryonic development. Int J Biol Macromol 2024; 271:132451. [PMID: 38777006 DOI: 10.1016/j.ijbiomac.2024.132451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 04/25/2024] [Accepted: 05/13/2024] [Indexed: 05/25/2024]
Abstract
Circular RNA (circRNA) is abundantly expressed in preimplantation embryos and embryonic stem cells in mice and humans. However, its function and mechanism in early development of mammalian embryos remain unclear. Here, we showed that circHIRA mediated miR-196b-5p to regulate porcine early embryonic development. We verified the circular feature of circHIRA by sanger sequencing, and proved the authenticity of circHIRA by enzyme digestion test. HIRA and circHIRA were expressed in porcine early embryos, and its expression levels significantly increased from 8-cell stage onwards and reached the maximum at the blastocyst stage. Functional studies revealed that circHIRA knockdown not only significantly reduced the developmental efficiency of embryos from 8-cell stage to blastocyst stage, but also impaired the blastocyst quality. Mechanistically, integrated analysis of miRNA prediction and gene expression showed that circHIRA knockdown significantly increased the expression of miR-196b-5p in porcine early embryos. Furthermore, miR-196b-5p inhibitor injection could rescue the early development of circHIRA knockdown embryos. Taken together, the findings reveal that circHIRA regulates porcine early embryonic development via inhibiting the expression of miR-196b-5p.
Collapse
Affiliation(s)
- Xin Wang
- Anhui Province Key Laboratory of Local Livestock and Poultry, Genetical Resource Conservation and Breeding, College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China
| | - Xiangdong Zhang
- Anhui Province Key Laboratory of Local Livestock and Poultry, Genetical Resource Conservation and Breeding, College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China
| | - Zhichao Wang
- Anhui Province Key Laboratory of Local Livestock and Poultry, Genetical Resource Conservation and Breeding, College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China
| | - Yi Xia
- Anhui Province Key Laboratory of Local Livestock and Poultry, Genetical Resource Conservation and Breeding, College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China
| | - Zhenhu Shi
- Anhui Province Key Laboratory of Local Livestock and Poultry, Genetical Resource Conservation and Breeding, College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China
| | - Kunlong Hu
- Anhui Province Key Laboratory of Local Livestock and Poultry, Genetical Resource Conservation and Breeding, College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China
| | - Xinyue Zhu
- Anhui Province Key Laboratory of Local Livestock and Poultry, Genetical Resource Conservation and Breeding, College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China
| | - Wenhuan Xu
- Anhui Province Key Laboratory of Local Livestock and Poultry, Genetical Resource Conservation and Breeding, College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China
| | - Ruiqing Zhu
- Anhui Province Key Laboratory of Local Livestock and Poultry, Genetical Resource Conservation and Breeding, College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China
| | - Zubing Cao
- Anhui Province Key Laboratory of Local Livestock and Poultry, Genetical Resource Conservation and Breeding, College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China.
| | - Yunhai Zhang
- Anhui Province Key Laboratory of Local Livestock and Poultry, Genetical Resource Conservation and Breeding, College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China.
| |
Collapse
|
14
|
Lin JJ, Chen R, Yang LY, Gong M, Du MY, Mu SQ, Jiang ZA, Li HH, Yang Y, Wang XH, Wang SF, Liu KX, Cao SH, Wang ZY, Zhao AQ, Yang SY, Li C, Sun SG. Hsa_circ_0001402 alleviates vascular neointimal hyperplasia through a miR-183-5p-dependent regulation of vascular smooth muscle cell proliferation, migration, and autophagy. J Adv Res 2024; 60:93-110. [PMID: 37499939 PMCID: PMC11156604 DOI: 10.1016/j.jare.2023.07.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 07/14/2023] [Accepted: 07/24/2023] [Indexed: 07/29/2023] Open
Abstract
INTRODUCTION Vascular neointimal hyperplasia, a pathological process observed in cardiovascular diseases such as atherosclerosis and pulmonary hypertension, involves the abundant presence of vascular smooth muscle cells (VSMCs). The proliferation, migration, and autophagy of VSMCs are associated with the development of neointimal lesions. Circular RNAs (circRNAs) play critical roles in regulating VSMC proliferation and migration, thereby participating in neointimal hyperplasia. However, the regulatory roles of circRNAs in VSMC autophagy remain unclear. OBJECTIVES We aimed to identify circRNAs that are involved in VSMC autophagy-mediated neointimal hyperplasia, as well as elucidate the underlying mechanisms. METHODS Dual-luciferase reporter gene assay was performed to validate two competing endogenous RNA axes, hsa_circ_0001402/miR-183-5p/FKBP prolyl isomerase like (FKBPL) and hsa_circ_0001402/miR-183-5p/beclin 1 (BECN1). Cell proliferation and migration analyses were employed to investigate the effects of hsa_circ_0001402, miR-183-5p, or FKBPL on VSMC proliferation and migration. Cell autophagy analysis was conducted to reveal the role of hsa_circ_0001402 or miR-183-5p on VSMC autophagy. The role of hsa_circ_0001402 or miR-183-5p on neointimal hyperplasia was evaluated using a mouse model of common carotid artery ligation. RESULTS Hsa_circ_0001402 acted as a sponge for miR-183-5p, leading to the suppression of miR-183-5p expression. Through direct interaction with the coding sequence (CDS) of FKBPL, miR-183-5p promoted VSMC proliferation and migration by decreasing FKBPL levels. Besides, miR-183-5p reduced BECN1 levels by targeting the 3'-untranslated region (UTR) of BECN1, thus inhibiting VSMC autophagy. By acting as a miR-183-5p sponge, overexpression of hsa_circ_0001402 increased FKBPL levels to inhibit VSMC proliferation and migration, while simultaneously elevating BECN1 levels to activate VSMC autophagy, thereby alleviating neointimal hyperplasia. CONCLUSION Hsa_circ_0001402, acting as a miR-183-5p sponge, increases FKBPL levels to inhibit VSMC proliferation and migration, while enhancing BECN1 levels to activate VSMC autophagy, thus alleviating neointimal hyperplasia. The hsa_circ_0001402/miR-183-5p/FKBPL axis and hsa_circ_0001402/miR-183-5p/BECN1 axis may offer potential therapeutic targets for neointimal hyperplasia.
Collapse
Affiliation(s)
- Jia-Jie Lin
- Department of Biochemistry and Molecular Biology, Key Laboratory of Medical Biotechnology of Hebei Province, Cardiovascular Medical Science Center, Hebei Medical University, Shijiazhuang 050017, China
| | - Rui Chen
- Guangdong Traditional Medical and Sports Injury Rehabilitation Research Institute, Guangdong Second Provincial General Hospital, Guangzhou 510317, China
| | - Li-Yun Yang
- Department of Biochemistry and Molecular Biology, Key Laboratory of Medical Biotechnology of Hebei Province, Cardiovascular Medical Science Center, Hebei Medical University, Shijiazhuang 050017, China
| | - Miao Gong
- Department of Biochemistry and Molecular Biology, Key Laboratory of Medical Biotechnology of Hebei Province, Cardiovascular Medical Science Center, Hebei Medical University, Shijiazhuang 050017, China
| | - Mei-Yang Du
- Department of Biochemistry and Molecular Biology, Key Laboratory of Medical Biotechnology of Hebei Province, Cardiovascular Medical Science Center, Hebei Medical University, Shijiazhuang 050017, China
| | - Shi-Qing Mu
- Department of Biochemistry and Molecular Biology, Key Laboratory of Medical Biotechnology of Hebei Province, Cardiovascular Medical Science Center, Hebei Medical University, Shijiazhuang 050017, China
| | - Ze-An Jiang
- Department of Biochemistry and Molecular Biology, Key Laboratory of Medical Biotechnology of Hebei Province, Cardiovascular Medical Science Center, Hebei Medical University, Shijiazhuang 050017, China
| | - Huan-Huan Li
- Department of Biochemistry and Molecular Biology, Key Laboratory of Medical Biotechnology of Hebei Province, Cardiovascular Medical Science Center, Hebei Medical University, Shijiazhuang 050017, China
| | - Yang Yang
- Department of Biochemistry and Molecular Biology, Key Laboratory of Medical Biotechnology of Hebei Province, Cardiovascular Medical Science Center, Hebei Medical University, Shijiazhuang 050017, China
| | - Xing-Hui Wang
- Department of Biochemistry and Molecular Biology, Key Laboratory of Medical Biotechnology of Hebei Province, Cardiovascular Medical Science Center, Hebei Medical University, Shijiazhuang 050017, China
| | - Si-Fan Wang
- Department of Biochemistry and Molecular Biology, Key Laboratory of Medical Biotechnology of Hebei Province, Cardiovascular Medical Science Center, Hebei Medical University, Shijiazhuang 050017, China
| | - Ke-Xin Liu
- Department of Biochemistry and Molecular Biology, Key Laboratory of Medical Biotechnology of Hebei Province, Cardiovascular Medical Science Center, Hebei Medical University, Shijiazhuang 050017, China
| | - Shan-Hu Cao
- Department of Biochemistry and Molecular Biology, Key Laboratory of Medical Biotechnology of Hebei Province, Cardiovascular Medical Science Center, Hebei Medical University, Shijiazhuang 050017, China
| | - Zhao-Yi Wang
- Department of Biochemistry and Molecular Biology, Key Laboratory of Medical Biotechnology of Hebei Province, Cardiovascular Medical Science Center, Hebei Medical University, Shijiazhuang 050017, China
| | - An-Qi Zhao
- Department of Biochemistry and Molecular Biology, Key Laboratory of Medical Biotechnology of Hebei Province, Cardiovascular Medical Science Center, Hebei Medical University, Shijiazhuang 050017, China
| | - Shu-Yan Yang
- Beijing Municipal Key Laboratory of Child Development and Nutriomics, Capital Institute of Pediatrics, Beijing 100020, China.
| | - Cheng Li
- Guangdong Traditional Medical and Sports Injury Rehabilitation Research Institute, Guangdong Second Provincial General Hospital, Guangzhou 510317, China.
| | - Shao-Guang Sun
- Department of Biochemistry and Molecular Biology, Key Laboratory of Medical Biotechnology of Hebei Province, Cardiovascular Medical Science Center, Hebei Medical University, Shijiazhuang 050017, China.
| |
Collapse
|
15
|
Climent M, García-Giménez JL. Special Issue "The Role of Non-Coding RNAs Involved in Cardiovascular Diseases and Cellular Communication". Int J Mol Sci 2024; 25:6034. [PMID: 38892220 PMCID: PMC11172417 DOI: 10.3390/ijms25116034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 05/23/2024] [Indexed: 06/21/2024] Open
Abstract
Despite the great progress in diagnosis, prevention, and treatment, cardiovascular diseases (CVDs) are still the most prominent cause of death worldwide [...].
Collapse
Affiliation(s)
- Montserrat Climent
- Department of Biomedical Sciences, Humanitas University, 20072 Pieve Emanuele, Italy
- IRCCS Humanitas Research Hospital, 20089 Rozzano, Italy
| | - José Luis García-Giménez
- Department of Physiology, Faculty of Medicine and Dentistry, University of Valencia, 46010 Valencia, Spain;
- Health Research Institute INCLIVA, 46010 Valencia, Spain
- Center for Biomedical Research Network on Rare Diseases (CIBERER), Carlos III Health Institute, 46010 Valencia, Spain
| |
Collapse
|
16
|
Tierno D, Grassi G, Zanconati F, Dapas B, Scaggiante B. Plasma Circular RNAs as Biomarkers for Breast Cancer. Biomedicines 2024; 12:875. [PMID: 38672229 PMCID: PMC11048241 DOI: 10.3390/biomedicines12040875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 04/07/2024] [Accepted: 04/11/2024] [Indexed: 04/28/2024] Open
Abstract
Breast cancer (BC) is currently the most common neoplasm, the second leading cause of cancer death in women worldwide, and is a major health problem. The discovery of new biomarkers is crucial to improve our knowledge of breast cancer and strengthen our clinical approaches to diagnosis, prognosis, and follow-up. In recent decades, there has been increasing interest in circulating RNA (circRNA) as modulators of gene expression involved in tumor development and progression. The study of circulating circRNAs (ccircRNAs) in plasma may provide new non-invasive diagnostic, prognostic, and predictive biomarkers for BC. This review describes the latest findings on BC-associated ccircRNAs in plasma and their clinical utility. Several ccircRNAs in plasma have shown great potential as BC biomarkers, especially from a diagnostic point of view. Mechanistically, most of the reported BC-associated ccircRNAs are involved in the regulation of cell survival, proliferation, and invasion, mainly via MAPK/AKT signaling pathways. However, the study of circRNAs is a relatively new area of research, and a larger number of studies will be crucial to confirm their potential as plasma biomarkers and to understand their involvement in BC.
Collapse
Affiliation(s)
- Domenico Tierno
- Department of Medicine, Surgery and Health Sciences, University of Trieste, Strada di Fiume 447, I-34149 Trieste, Italy; (D.T.); (G.G.); (F.Z.)
| | - Gabriele Grassi
- Department of Medicine, Surgery and Health Sciences, University of Trieste, Strada di Fiume 447, I-34149 Trieste, Italy; (D.T.); (G.G.); (F.Z.)
| | - Fabrizio Zanconati
- Department of Medicine, Surgery and Health Sciences, University of Trieste, Strada di Fiume 447, I-34149 Trieste, Italy; (D.T.); (G.G.); (F.Z.)
| | - Barbara Dapas
- Department of Chemical and Pharmaceutical Sciences, University of Trieste, Via L. Giorgieri 1, I-34127 Trieste, Italy;
| | - Bruna Scaggiante
- Department of Life Sciences, University of Trieste, Via Valerio 28, I-34127 Trieste, Italy
| |
Collapse
|
17
|
Zhang F, Xiang X, Wen C, Guo X, Nie L, Chen J, Xia Y, Hu B, Mao L. CircTLK1: A novel regulator involved in VSMC phenotypic switching and the developmental process of atherosclerosis. FASEB J 2024; 38:e23557. [PMID: 38498343 DOI: 10.1096/fj.202301873rr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 02/21/2024] [Accepted: 02/29/2024] [Indexed: 03/20/2024]
Abstract
Phenotypic switching of vascular smooth muscle cells (VSMCs) is essential for atherosclerosis development. Circular RNA (circRNA) is a specific non-coding RNA that is produced as a closed-loop structure in mammals, and its specific expression pattern is closely related to its cell type and tissue. To clarify the roles of circTLK1 in VSMC phenotypic switching, we performed qRT-PCR, immunoblotting, and immunostaining. qRT-PCR revealed that circTLK1 was upregulated in both mouse models of atherosclerosis in vivo and PDGF (platelet-derived growth factor)-BB-induced VSMCs in vitro. Furthermore, the overexpression of circTLK1 promoted PDGF-BB-induced VSMC phenotypic switching. Conversely, experiments performed in vivo demonstrate that the knockdown of SMC-specific circTLK1 led to a reduction in the development of atherosclerosis. The relationship between circTLK1 and miR-513a-3p and Krüppel-like factor 4 (KLF4) was detected by RNA immunoprecipitation (RIP), luciferase reporter assay, RNA pull-down, and RNA fluorescence in situ hybridization (RNA FISH). Mechanistically, circTLK1 acted as a sponge for miR-513a-3p, leading to the upregulation of KLF4, a key transcription factor for phenotypic switching. Targeting the circTLK1/miR-513a-3p/KLF4 axis may provide a potential therapeutic strategy for atherosclerosis.
Collapse
Affiliation(s)
- Feng Zhang
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xuying Xiang
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Cheng Wen
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaoqing Guo
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Lei Nie
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jiaojiao Chen
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yuanpeng Xia
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Bo Hu
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ling Mao
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
18
|
Ding W, Ding L, Lu Y, Sun W, Wang Y, Wang J, Gao Y, Li M. Circular RNA-circLRP6 protects cardiomyocyte from hypoxia-induced apoptosis by facilitating hnRNPM-mediated expression of FGF-9. FEBS J 2024; 291:1246-1263. [PMID: 38105623 DOI: 10.1111/febs.17038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 09/30/2023] [Accepted: 12/15/2023] [Indexed: 12/19/2023]
Abstract
Coronary atherosclerosis-induced myocardial ischemia leads to cardiomyocyte apoptosis. The regulatory mechanisms for cardiomyocyte apoptosis have not been fully understood. Circular RNAs are non-coding RNAs which play important roles in heart function maintenance and progression of heart diseases by regulating gene transcription and protein translation. Here, we reported a conserved cardiac circular RNA, which is generated from the second exon of LRP6 and named circLRP62-2 . CircLRP62-2 can protect cardiomyocyte from hypoxia-induced apoptosis. The expression of circLRP62-2 in cardiomyocytes was down-regulated under hypoxia, while forced expression of circLRP62-2 inhibited cell apoptosis. Normally, circLRP62-2 was mainly localized in the nucleus. Under hypoxia, circLRP62-2 is associated with heterogeneous nuclear ribonucleoprotein M (hnRNPM) to be translocated into the cytoplasm. It recruited hnRNPM to fibroblast growth factor 9 (FGF9) mRNA to enhance the expression of FGF9 protein, promoting hypoxia-adaption and viability of cardiomyocytes. In summary, this study uncovers a new inhibitor of apoptosis and reveals a novel anti-apoptotic pathway composed of circLRP62-2 , hnRNPM, and FGF9, which may provide therapeutic targets for coronary heart disease and ischemic myocardial injury.
Collapse
Affiliation(s)
- Wei Ding
- The Affiliated Hospital of Qingdao University, Qingdao Medical College, Qingdao University, China
| | - Lin Ding
- School of Basic Medical Sciences, Qingdao University, China
| | - Yijian Lu
- School of Basic Medical Sciences, Qingdao University, China
| | - Weihan Sun
- School of Basic Medical Sciences, Qingdao University, China
| | - Yu Wang
- School of Basic Medical Sciences, Qingdao University, China
| | - Jianxun Wang
- School of Basic Medical Sciences, Qingdao University, China
| | - Yufang Gao
- The Affiliated Hospital of Qingdao University, Qingdao Medical College, Qingdao University, China
| | - Mengyang Li
- School of Basic Medical Sciences, Qingdao University, China
| |
Collapse
|
19
|
Xie Q, Ma Y, Ren Z, Gu T, Jiang Z. Circular RNA: A new expectation for cardiovascular diseases. J Cell Biochem 2024; 125:e30512. [PMID: 38098251 DOI: 10.1002/jcb.30512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 11/14/2023] [Accepted: 11/30/2023] [Indexed: 01/30/2024]
Abstract
Circular RNA (circRNA) is a class of RNA with the 5' and 3' ends connected covalently to form a closed loop structure and characterized by high stability, conserved sequences and tissue specificity, which is caused by special reverse splicing methods. Currently, it has become a hot spot for research. With the discovery of its powerful regulatory functions and roles, the molecular mechanisms and future value of circRNA in participating in and regulating biological and pathological processes are becoming increasingly apparent. Among them is the increasing prevalence of cardiovascular diseases (CVDs). Many studies have elucidated that circRNA plays a crucial role in the development and progression of CVDs. Therefore, circRNA shows its advantages and brilliant expectations in the field of CVDs. In this review, we describe the biogenesis, bioinformatics detection and function of circRNA and discuss the role of circRNA and its effects on CVDs, including atherosclerosis, myocardial infarction, cardiac hypertrophy and heart failure, myocardial fibrosis, cardiac senescence, pulmonary hypertension, and diabetic cardiomyopathy by different mechanisms. That shows circRNA advantages and brilliant expectations in the field of CVDs.
Collapse
Affiliation(s)
- Qiao Xie
- Institute of Biochemistry and Molecular Biology, Hengyang Medical College, University of South China, Hengyang, Hunan, China
| | - Yun Ma
- Institute of Biochemistry and Molecular Biology, Hengyang Medical College, University of South China, Hengyang, Hunan, China
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang Medical School, University of South China, Hengyang, Hunan, China
- Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Zhong Ren
- Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Tianhe Gu
- Institute of Biochemistry and Molecular Biology, Hengyang Medical College, University of South China, Hengyang, Hunan, China
| | - Zhisheng Jiang
- Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| |
Collapse
|
20
|
Bao H, Li J, Dong Q, Liang Z, Yang C, Xu Y. Circular RNAs in pancreatic cancer progression. Clin Chim Acta 2024; 552:117633. [PMID: 37949391 DOI: 10.1016/j.cca.2023.117633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Revised: 11/03/2023] [Accepted: 11/05/2023] [Indexed: 11/12/2023]
Abstract
Pancreatic cancer (PC), typically diagnosed at relatively advanced stages with poor prognosis, is a dominant cause of cancer-related deaths worldwide. Accumulating evidence demonstrates that circular RNAs (circRNAs) are abnormally expressed in diverse tumors and affect tumorigenesis and progression. In this article, we examine the roles of circRNAs in regulation of PC progression. Additionally, circRNAs enriched in exosomes could be transferred among PC cells to modulate malignancy. Characterization of regulatory mechanisms involving circRNAs in general and PC specifically will enable earlier detection and potential development of therapeutic strategies.
Collapse
Affiliation(s)
- Haolin Bao
- Department of Hepatopancreatobiliary Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150086, China
| | - Jiehan Li
- Department of Hepatopancreatobiliary Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150086, China
| | - Qingfu Dong
- Department of Hepatopancreatobiliary Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150086, China
| | - Zixin Liang
- Department of Hepatopancreatobiliary Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150086, China
| | - Chengru Yang
- Department of Hepatopancreatobiliary Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150086, China
| | - Yi Xu
- Department of Hepatopancreatobiliary Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150086, China; Department of Pathology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong 999077, China; Key Laboratory of Basic Pharmacology of Ministry of Education, Zunyi Medical University, Zunyi, Guizhou 563006, China; Key Laboratory of Functional and Clinical Translational Medicine, Fujian Province University, Xiamen Medical College, Xiamen, Fujian 361000, China; Anhui Province Key Laboratory of Translational Cancer Research, Bengbu Medical College, Bengbu, Anhui 233030, China; Jiangsu Province Engineering Research Center of Tumor Targeted Nano Diagnostic and Therapeutic Materials, Yancheng Teachers University, Yancheng, Jiangsu 224007, China; Key Laboratory of Biomarkers and In Vitro Diagnosis Translation of Zhejiang Province, Hangzhou, Zhejiang 310000, China; Key Laboratory of Gastrointestinal Cancer (Fujian Medical University), Ministry of Education, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, Fujian 350122, China; State Key Laboratory of Chemical Oncogenomics, Key Laboratory of Chemical Genomics, Peking University Shenzhen Graduate School, Shenzhen, Guangdong 518055, China; Key Laboratory of Intelligent Pharmacy and Individualized Therapy of Huzhou and Department of Pharmacy, Changxing People's Hospital, Changxing, Zhejiang 313000, China.
| |
Collapse
|
21
|
Hoque P, Romero B, Akins RE, Batish M. Exploring the Multifaceted Biologically Relevant Roles of circRNAs: From Regulation, Translation to Biomarkers. Cells 2023; 12:2813. [PMID: 38132133 PMCID: PMC10741722 DOI: 10.3390/cells12242813] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 12/02/2023] [Accepted: 12/05/2023] [Indexed: 12/23/2023] Open
Abstract
CircRNAs are a category of regulatory RNAs that have garnered significant attention in the field of regulatory RNA research due to their structural stability and tissue-specific expression. Their circular configuration, formed via back-splicing, results in a covalently closed structure that exhibits greater resistance to exonucleases compared to linear RNAs. The distinctive regulation of circRNAs is closely associated with several physiological processes, as well as the advancement of pathophysiological processes in several human diseases. Despite a good understanding of the biogenesis of circular RNA, details of their biological roles are still being explored. With the steady rise in the number of investigations being carried out regarding the involvement of circRNAs in various regulatory pathways, understanding the biological and clinical relevance of circRNA-mediated regulation has become challenging. Given the vast landscape of circRNA research in the development of the heart and vasculature, we evaluated cardiovascular system research as a model to critically review the state-of-the-art understanding of the biologically relevant functions of circRNAs. We conclude the review with a discussion of the limitations of current functional studies and provide potential solutions by which these limitations can be addressed to identify and validate the meaningful and impactful functions of circRNAs in different physiological processes and diseases.
Collapse
Affiliation(s)
- Parsa Hoque
- Department of Biological Sciences, University of Delaware, Newark, DE 19716, USA;
| | - Brigette Romero
- Department of Medical and Molecular Sciences, University of Delaware, Newark, DE 19716, USA;
| | - Robert E Akins
- Nemours Children’s Research, Nemours Children’s Health System, Wilmington, DE 19803, USA;
| | - Mona Batish
- Department of Biological Sciences, University of Delaware, Newark, DE 19716, USA;
- Department of Medical and Molecular Sciences, University of Delaware, Newark, DE 19716, USA;
| |
Collapse
|
22
|
Liu C, Li N, Li F, Deng W, Dai G, Tang Y, Zhang Y, Jiang J, Fang H. CircHIPK2 facilitates phenotypic switching of vascular smooth muscle cells in hypertension. J Hum Hypertens 2023; 37:1021-1027. [PMID: 37100987 DOI: 10.1038/s41371-023-00834-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 04/06/2023] [Accepted: 04/18/2023] [Indexed: 04/28/2023]
Abstract
Hypertension is a clinical syndrome characterized by increased systemic arterial blood pressure, affecting about 1.4 billion people currently worldwide with only one in seven cases adequately controlled. It is the main contributing factor of cardiovascular diseases (CVDs), often co-existing with other CVDs risk factors to impair the structure and function of important organs such as heart, brain, and kidney, and ultimately lead to multi-organ failure. Vascular remodeling is a critical process in the development of essential hypertension, and phenotype switching of vascular smooth muscle cells (VSMCs) was reported contributing substantially to vascular remodeling. circHIPK2 is a circular RNA (circRNA) derived from the second exon of homeodomain-interacting protein kinase 2 (HIPK2). Several studies revealed that circHIPK2 functions in various diseases by serving as a microRNA (miRNA) sponge. However, the functional roles and molecular mechanisms of circHIPK2 in VSMC phenotype switching and hypertension are not clear. In the present study, we showed that the expression of circHIPK2 was significantly upregulated in the VSMCs of hypertensive patients. Functional studies showed that circHIPK2 promoted the Angiotensin II (AngII)-induced VSMC phenotype switching by acting as the sponge of miR-145-5p, thereby upregulating the expression of a disintegrin and metalloprotease (ADAM) 17. Collectively, our study provides a new therapeutic target for hypertension.
Collapse
Affiliation(s)
- Chi Liu
- Emergency Department & National Clinical Research Center for Aging and Medicine, Jing'an District Central Hospital of Shanghai, Fudan University, Shanghai, 200040, China
- Department of Cardiology, Tongji Hospital, School of Medicine, Tongji University, Shanghai, 200065, China
| | - Nan Li
- Department of Geriatrics Center & National Clinical Research Center for Aging and Medicine, Jing'an District Central Hospital of Shanghai, Fudan University, Shanghai, 200040, China
| | - Fangcun Li
- Department of Rehabilitation Medicine, Guilin Municipal Hospital of Traditional Chinese Medicine, Guilin, 541001, China
| | - Wenjuan Deng
- Department of Geriatrics Center & National Clinical Research Center for Aging and Medicine, Jing'an District Central Hospital of Shanghai, Fudan University, Shanghai, 200040, China
| | - Guifeng Dai
- Department of Geriatrics Center & National Clinical Research Center for Aging and Medicine, Jing'an District Central Hospital of Shanghai, Fudan University, Shanghai, 200040, China
| | - Yun Tang
- Emergency Department & National Clinical Research Center for Aging and Medicine, Jing'an District Central Hospital of Shanghai, Fudan University, Shanghai, 200040, China
| | - Yong Zhang
- Pharmacy Department, Jing'an District Central Hospital of Shanghai, Fudan University, Shanghai, 200040, China
| | - Jun Jiang
- Emergency Department & National Clinical Research Center for Aging and Medicine, Jing'an District Central Hospital of Shanghai, Fudan University, Shanghai, 200040, China
| | - Hong Fang
- Department of Cardiology, Tongji Hospital, School of Medicine, Tongji University, Shanghai, 200065, China.
| |
Collapse
|
23
|
Yu Z, Yin J, Tang Z, Hu T, Wang Z, Chen Y, Liu T, Zhang W. Non-coding RNAs are key players and promising therapeutic targets in atherosclerosis. Front Cell Dev Biol 2023; 11:1237941. [PMID: 37719883 PMCID: PMC10502512 DOI: 10.3389/fcell.2023.1237941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Accepted: 08/22/2023] [Indexed: 09/19/2023] Open
Abstract
Cardiovascular disease (CVD) is the primary cause of death in humans. Atherosclerosis (AS) is the most common CVD and a major cause of many CVD-related fatalities. AS has numerous risk factors and complex pathogenesis, and while it has long been a research focus, most mechanisms underlying its progression remain unknown. Noncoding RNAs (ncRNAs) represent an important focus in epigenetics studies and are critical biological regulators that form a complex network of gene regulation. Abnormal ncRNA expression disrupts the normal function of tissues or cells, leading to disease development. A large body of evidence suggests that ncRNAs are involved in all stages of atherosclerosis, from initiation to progression, and that some are significantly differentially expressed during AS development, suggesting that they may be powerful markers for screening AS or potential treatment targets. Here, we review the role of ncRNAs in AS development and recent developments in the use of ncRNAs for AS-targeted therapy, providing evidence for ncRNAs as diagnostic markers and therapeutic targets.
Collapse
Affiliation(s)
- Zhun Yu
- School of Clinical Medical, Changchun University of Chinese Medicine, Jilin, China
| | - JinZhu Yin
- Cardiology Department, Affiliated Hospital of Changchun University of Chinese Medicine, Jilin, China
| | - ZhiTong Tang
- Department of Massage, Affiliated Hospital of Changchun University of Chinese Medicine, Jilin, China
| | - Ting Hu
- Internal Medicine of Chinese Medicine, Affiliated Hospital of Changchun University of Chinese Medicine, Jilin, China
| | - ZhuoEr Wang
- School of Clinical Medical, Changchun University of Chinese Medicine, Jilin, China
| | - Ying Chen
- Cardiology Department, Affiliated Hospital of Changchun University of Chinese Medicine, Jilin, China
| | - Tianjia Liu
- School of Pharmacy, Changchun University of Chinese Medicine, Jilin, China
| | - Wei Zhang
- Orthopedics Department, The Third Affiliated Hospital of Changchun University of Chinese Medicine, Jilin, China
| |
Collapse
|
24
|
Gao D, Wang X, Yan YL, Li C, Tan YP, Liu QC, Zhang MY, Zhang JV, Sun QY, Cao ZB, Zhang YH. CircKDM5B sponges miR-128 to regulate porcine blastocyst development by modulating trophectoderm barrier function. Mol Hum Reprod 2023; 29:gaad027. [PMID: 37471586 DOI: 10.1093/molehr/gaad027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 07/05/2023] [Indexed: 07/22/2023] Open
Abstract
Circular RNAs (circRNAs), which exert critical functions in the regulation of transcriptional and post-transcriptional gene expression, are found in mammalian cells but their functions in mammalian preimplantation embryo development remain poorly understood. Here, we showed that circKDM5B mediated miRNA-128 (miR-128) to regulate porcine early embryo development. We screened circRNAs potentially expressed in porcine embryos through an integrated analysis of sequencing data from mouse and human embryos, as well as porcine oocytes. An authentic circRNA originating from histone demethylase KDM5B (referred to as circKDM5B) was abundantly expressed in porcine embryos. Functional studies revealed that circKDM5B knockdown not only significantly reduced blastocyst formation but also decreased the number of total cells and trophectoderm (TE) cells. Moreover, the knockdown of circKDM5B resulted in the disturbance of tight junction assembly and impaired paracellular sealing within the TE epithelium. Mechanistically, miR-128 inhibitor injection could rescue the early development of circKDM5B knockdown embryos. Taken together, the findings revealed that circKDM5B functions as a miR-128 sponge, thereby facilitating early embryonic development in pigs through the modulation of gene expression linked to tight junction assembly.
Collapse
Affiliation(s)
- Di Gao
- Shenzhen Key Laboratory of Fertility Regulation, Center of Assisted Reproduction and Embryology, The University of Hong Kong Shenzhen Hospital, Shenzhen, China
- Research Center for Reproduction and Health Development, Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advance Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Xin Wang
- Anhui Province Key Laboratory of Local Livestock and Poultry, Genetical Resource Conservation and Breeding, College of Animal Science and Technology, Anhui Agricultural University, Hefei, China
| | - Ye-Lian Yan
- Anhui Province Key Laboratory of Local Livestock and Poultry, Genetical Resource Conservation and Breeding, College of Animal Science and Technology, Anhui Agricultural University, Hefei, China
| | - Chao Li
- Fertility Preservation Lab, Guangdong-Hong Kong Metabolism & Reproduction Joint Laboratory, Reproductive Medicine Center, Guangdong Second Provincial General Hospital, Guangzhou, China
| | - Yong-Peng Tan
- Fertility Preservation Lab, Guangdong-Hong Kong Metabolism & Reproduction Joint Laboratory, Reproductive Medicine Center, Guangdong Second Provincial General Hospital, Guangzhou, China
| | - Qiu-Chen Liu
- Anhui Province Key Laboratory of Local Livestock and Poultry, Genetical Resource Conservation and Breeding, College of Animal Science and Technology, Anhui Agricultural University, Hefei, China
| | - Meng-Ya Zhang
- Anhui Province Key Laboratory of Local Livestock and Poultry, Genetical Resource Conservation and Breeding, College of Animal Science and Technology, Anhui Agricultural University, Hefei, China
| | - Jian V Zhang
- Research Center for Reproduction and Health Development, Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advance Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Qing-Yuan Sun
- Fertility Preservation Lab, Guangdong-Hong Kong Metabolism & Reproduction Joint Laboratory, Reproductive Medicine Center, Guangdong Second Provincial General Hospital, Guangzhou, China
| | - Zu-Bing Cao
- Anhui Province Key Laboratory of Local Livestock and Poultry, Genetical Resource Conservation and Breeding, College of Animal Science and Technology, Anhui Agricultural University, Hefei, China
| | - Yun-Hai Zhang
- Anhui Province Key Laboratory of Local Livestock and Poultry, Genetical Resource Conservation and Breeding, College of Animal Science and Technology, Anhui Agricultural University, Hefei, China
| |
Collapse
|
25
|
Zhang Z, Li L, Shi H, Chen B, Li X, Zhang Y, Liu F, Wei W, Zhou Y, Liu K, Xia W, Gu X, Huang J, Tu S, Yin C, Shao A, Jiang L. Role of Circular RNAs in Atherosclerosis through Regulation of Inflammation, Cell Proliferation, Migration, and Apoptosis: Focus on Atherosclerotic Cerebrovascular Disease. MEDICINA (KAUNAS, LITHUANIA) 2023; 59:1461. [PMID: 37629751 PMCID: PMC10456328 DOI: 10.3390/medicina59081461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 07/29/2023] [Accepted: 08/09/2023] [Indexed: 08/27/2023]
Abstract
Atherosclerosis (AS) is a disease dangerous to human health and the main pathological cause of ischemic cardiovascular diseases. Although its pathogenesis is not fully understood, numerous basic and clinical studies have shown that AS is a chronic inflammatory disease existing in all stages of atherogenesis. It may be a common link or pathway in the pathogenesis of multiple atherogenic factors. Inflammation is associated with AS complications, such as plaque rupture and ischemic cerebral infarction. In addition to inflammation, apoptosis plays an important role in AS. Apoptosis is a type of programmed cell death, and different apoptotic cells have different or even opposite roles in the process of AS. Unlike linear RNA, circular RNA (circRNA) a covalently closed circular non-coding RNA, is stable and can sponge miRNA, which can affect the stages of AS by regulating downstream pathways. Ultimately, circRNAs play very important roles in AS by regulating inflammation, apoptosis, and some other mechanisms. The study of circular RNAs can provide new ideas for the prediction, prevention, and treatment of AS.
Collapse
Affiliation(s)
- Zheng Zhang
- The Fourth School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou 310053, China; (Z.Z.); (H.S.); (B.C.); (X.L.); (Y.Z.); (X.G.)
| | - Lingfei Li
- Department of Neurology, Affiliated Hangzhou First People’s Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China; (L.L.); (F.L.); (W.W.); (Y.Z.); (K.L.); (W.X.)
| | - Huanqing Shi
- The Fourth School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou 310053, China; (Z.Z.); (H.S.); (B.C.); (X.L.); (Y.Z.); (X.G.)
| | - Biao Chen
- The Fourth School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou 310053, China; (Z.Z.); (H.S.); (B.C.); (X.L.); (Y.Z.); (X.G.)
| | - Xiaoqin Li
- The Fourth School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou 310053, China; (Z.Z.); (H.S.); (B.C.); (X.L.); (Y.Z.); (X.G.)
| | - Yuyao Zhang
- The Fourth School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou 310053, China; (Z.Z.); (H.S.); (B.C.); (X.L.); (Y.Z.); (X.G.)
| | - Fei Liu
- Department of Neurology, Affiliated Hangzhou First People’s Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China; (L.L.); (F.L.); (W.W.); (Y.Z.); (K.L.); (W.X.)
| | - Wan Wei
- Department of Neurology, Affiliated Hangzhou First People’s Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China; (L.L.); (F.L.); (W.W.); (Y.Z.); (K.L.); (W.X.)
| | - Yongji Zhou
- Department of Neurology, Affiliated Hangzhou First People’s Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China; (L.L.); (F.L.); (W.W.); (Y.Z.); (K.L.); (W.X.)
| | - Keqin Liu
- Department of Neurology, Affiliated Hangzhou First People’s Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China; (L.L.); (F.L.); (W.W.); (Y.Z.); (K.L.); (W.X.)
| | - Wenqing Xia
- Department of Neurology, Affiliated Hangzhou First People’s Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China; (L.L.); (F.L.); (W.W.); (Y.Z.); (K.L.); (W.X.)
| | - Xin Gu
- The Fourth School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou 310053, China; (Z.Z.); (H.S.); (B.C.); (X.L.); (Y.Z.); (X.G.)
| | - Jinyu Huang
- Department of Cardiology, Affiliated Hangzhou First People’s Hospital, Zhejiang University School of Medicine, Hangzhou 310006, China;
| | - Sheng Tu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310006, China;
| | - Congguo Yin
- The Fourth School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou 310053, China; (Z.Z.); (H.S.); (B.C.); (X.L.); (Y.Z.); (X.G.)
- Department of Neurology, Affiliated Hangzhou First People’s Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China; (L.L.); (F.L.); (W.W.); (Y.Z.); (K.L.); (W.X.)
| | - Anwen Shao
- Department of Neurosurgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310009, China
- Key Laboratory of Precise Treatment and Clinical Translational Research of Neurological Disease, Hangzhou 310009, China
| | - Lin Jiang
- The Fourth School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou 310053, China; (Z.Z.); (H.S.); (B.C.); (X.L.); (Y.Z.); (X.G.)
- Department of Neurology, Affiliated Hangzhou First People’s Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China; (L.L.); (F.L.); (W.W.); (Y.Z.); (K.L.); (W.X.)
| |
Collapse
|
26
|
Triska J, Mathew C, Zhao Y, Chen YE, Birnbaum Y. Circular RNA as Therapeutic Targets in Atherosclerosis: Are We Running in Circles? J Clin Med 2023; 12:4446. [PMID: 37445481 DOI: 10.3390/jcm12134446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Revised: 06/26/2023] [Accepted: 06/29/2023] [Indexed: 07/15/2023] Open
Abstract
Much attention has been paid lately to harnessing the diagnostic and therapeutic potential of non-coding circular ribonucleic acids (circRNAs) and micro-RNAs (miRNAs) for the prevention and treatment of cardiovascular diseases. The genetic environment that contributes to atherosclerosis pathophysiology is immensely complex. Any potential therapeutic application of circRNAs must be assessed for risks, benefits, and off-target effects in both the short and long term. A search of the online PubMed database for publications related to circRNA and atherosclerosis from 2016 to 2022 was conducted. These studies were reviewed for their design, including methods for developing atherosclerosis and the effects of the corresponding atherosclerotic environment on circRNA expression. Investigated mechanisms were recorded, including associated miRNA, genes, and ultimate effects on cell mechanics, and inflammatory markers. The most investigated circRNAs were then further analyzed for redundant, disparate, and/or contradictory findings. Many disparate, opposing, and contradictory effects were observed across experiments. These include levels of the expression of a particular circRNA in atherosclerotic environments, attempted ascertainment of the in toto effects of circRNA or miRNA silencing on atherosclerosis progression, and off-target, cell-specific, and disease-specific effects. The high potential for detrimental and unpredictable off-target effects downstream of circRNA manipulation will likely render the practice of therapeutic targeting of circRNA or miRNA molecules not only complicated but perilous.
Collapse
Affiliation(s)
- Jeffrey Triska
- Department of Medicine, Baylor College of Medicine, Houston, TX 77030, USA
| | - Christo Mathew
- Department of Medicine, Baylor College of Medicine, Houston, TX 77030, USA
| | - Yang Zhao
- Cardiovascular Center, Department of Internal Medicine, University of Michigan Medical Center, Ann Arbor, MI 48109, USA
| | - Yuqing E Chen
- Cardiovascular Center, Department of Internal Medicine, University of Michigan Medical Center, Ann Arbor, MI 48109, USA
| | - Yochai Birnbaum
- Section of Cardiology, Department of Medicine, Baylor College of Medicine, Houston, TX 77030, USA
| |
Collapse
|
27
|
Farina FM, Weber C, Santovito D. The emerging landscape of non-conventional RNA functions in atherosclerosis. Atherosclerosis 2023; 374:74-86. [PMID: 36725418 DOI: 10.1016/j.atherosclerosis.2023.01.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 12/15/2022] [Accepted: 01/12/2023] [Indexed: 01/22/2023]
Abstract
Most of the human genome is transcribed into non-coding RNAs (ncRNAs), which encompass a heterogeneous family of transcripts including microRNAs (miRNAs), long ncRNAs (lncRNAs), circular RNAs (circRNAs), and others. Although the detailed modes of action of some classes are not fully elucidated, the common notion is that ncRNAs contribute to sculpting gene expression of eukaryotic cells at multiple levels. These range from the regulation of chromatin remodeling and transcriptional activity to post-transcriptional regulation of messenger RNA splicing, stability, and decay. Many of these functions ultimately govern the expression of coding and non-coding genes to affect diverse physiological and pathological mechanisms in vascular biology and beyond. As such, different classes of ncRNAs emerged as crucial regulators of vascular integrity as well as active players in the pathophysiology of atherosclerosis from the early stages of endothelial dysfunction to the clinically relevant complications. However, research in recent years revealed unexpected findings such as small ncRNAs being able to biophysically regulate protein function, the glycosylation of ncRNAs to be exposed on the cell surface, the release of ncRNAs in the extracellular space to act as ligands of receptors, and even the ability of non-coding portion of messenger RNAs to mediate structural functions. This evidence expanded the functional repertoire of ncRNAs far beyond gene regulation and highlighted an additional layer of biological control of cell function. In this Review, we will discuss these emerging aspects of ncRNA biology, highlight the implications for the mechanisms of vascular biology and atherosclerosis, and discuss possible translational implications.
Collapse
Affiliation(s)
- Floriana Maria Farina
- Institute for Cardiovascular Prevention (IPEK), Ludwig-Maximillians-Universität (LMU), Munich, Germany; German Center for Cardiovascular Research (DZHK), Partner Site Munich Heart Alliance, Munich, Germany
| | - Christian Weber
- Institute for Cardiovascular Prevention (IPEK), Ludwig-Maximillians-Universität (LMU), Munich, Germany; German Center for Cardiovascular Research (DZHK), Partner Site Munich Heart Alliance, Munich, Germany; Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, the Netherlands; Munich Cluster for Systems Neurology (SyNergy), Munich, Germany.
| | - Donato Santovito
- Institute for Cardiovascular Prevention (IPEK), Ludwig-Maximillians-Universität (LMU), Munich, Germany; German Center for Cardiovascular Research (DZHK), Partner Site Munich Heart Alliance, Munich, Germany; Institute for Genetic and Biomedical Research (IRGB), Unit of Milan, National Research Council, Milan, Italy.
| |
Collapse
|
28
|
Schiano C, Balbi C, de Nigris F, Napoli C. Basic Pathogenic Mechanisms and Epigenetic Players Promoted by Extracellular Vesicles in Vascular Damage. Int J Mol Sci 2023; 24:ijms24087509. [PMID: 37108672 PMCID: PMC10138986 DOI: 10.3390/ijms24087509] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 04/14/2023] [Accepted: 04/16/2023] [Indexed: 04/29/2023] Open
Abstract
Both progression from the early pathogenic events to clinically manifest cardiovascular diseases (CVD) and cancer impact the integrity of the vascular system. Pathological vascular modifications are affected by interplay between endothelial cells and their microenvironment. Soluble factors, extracellular matrix molecules and extracellular vesicles (EVs) are emerging determinants of this network that trigger specific signals in target cells. EVs have gained attention as package of molecules with epigenetic reversible activity causing functional vascular changes, but their mechanisms are not well understood. Valuable insights have been provided by recent clinical studies, including the investigation of EVs as potential biomarkers of these diseases. In this paper, we review the role and the mechanism of exosomal epigenetic molecules during the vascular remodeling in coronary heart disease as well as in cancer-associated neoangiogenesis.
Collapse
Affiliation(s)
- Concetta Schiano
- Department of Advanced Medical and Surgical Sciences (DAMSS), University of Campania Luigi Vanvitelli, 80138 Naples, Italy
- Laboratory of Cellular and Molecular Cardiology, Cardiocentro Ticino Institute, 6807 Taverne-Torricella, Switzerland
| | - Carolina Balbi
- Laboratory of Cellular and Molecular Cardiology, Cardiocentro Ticino Institute, 6807 Taverne-Torricella, Switzerland
| | - Filomena de Nigris
- Department of Precision Medicine, University of Campania Luigi Vanvitelli, 80138 Naples, Italy
| | - Claudio Napoli
- Department of Advanced Medical and Surgical Sciences (DAMSS), University of Campania Luigi Vanvitelli, 80138 Naples, Italy
- Clinical Department of Internal Medicine and Specialistic Units, Division of Clinical Immunology and Immunohematology, Transfusion Medicine and Transplant Immunology (SIMT), Azienda Universitaria Policlinico (AOU), 80138 Naples, Italy
| |
Collapse
|
29
|
Rong Z, Li F, Zhang R, Niu S, Di X, Ni L, Liu C. Inhibition of tiRNA-Gly-GCC ameliorates neointimal formation via CBX3-mediated VSMCs phenotypic switching. Front Cardiovasc Med 2023; 10:1030635. [PMID: 36818350 PMCID: PMC9937027 DOI: 10.3389/fcvm.2023.1030635] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Accepted: 01/09/2023] [Indexed: 02/05/2023] Open
Abstract
Background and aim tRNA-derived fragments (tRFs) are a new class of non-coding RNAs involved in a variety of pathological processes, but their biological functions and mechanisms in human aortic smooth muscle cells (HASMCs) phenotype transition and vascular intimal hyperplasia are unclear. Methods/results tiRNA-Gly-GCC is upregulated in synthetic HASMCs, atherosclerotic arteries, plasma, and the balloon injured carotid artery of rats. Functionally, the inhibition of tiRNA-Gly-GCC represses HASMCs proliferation, migration, and reversed dedifferentiation, whereas the overexpression of tiRNA- Gly-GCC have contrary effects. Mechanistically, tiRNA-Gly-GCC performs these functions on HASMCs via downregulating chromobox protein homolog 3 (CBX3). Finally, the inhibition of tiRNA-Gly-GCC could ameliorate neointimal formation after vascular injury in vivo. Conclusions tiRNA-Gly-GCC is a mediator of HASMCs phenotypic switching by targeting CBX3 and inhibition of tiRNA-Gly-GCC suppresses neointimal formation.
Collapse
|
30
|
Laura Francés J, Musolino E, Papait R, Pagiatakis C. Non-Coding RNAs in Cell-to-Cell Communication: Exploiting Physiological Mechanisms as Therapeutic Targets in Cardiovascular Pathologies. Int J Mol Sci 2023; 24:ijms24032205. [PMID: 36768528 PMCID: PMC9916956 DOI: 10.3390/ijms24032205] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 01/10/2023] [Accepted: 01/14/2023] [Indexed: 01/24/2023] Open
Abstract
Cardiovascular disease, the leading cause of death worldwide, has been characterized at the molecular level by alterations in gene expression that contribute to the etiology of the disease. Such alterations have been shown to play a critical role in the development of atherosclerosis, cardiac remodeling, and age-related heart failure. Although much is now known about the cellular and molecular mechanisms in this context, the role of epigenetics in the onset of cardiovascular disease remains unclear. Epigenetics, a complex network of mechanisms that regulate gene expression independently of changes to the DNA sequence, has been highly implicated in the loss of homeostasis and the aberrant activation of a myriad of cellular pathways. More specifically, non-coding RNAs have been gaining much attention as epigenetic regulators of various pathologies. In this review, we will provide an overview of the ncRNAs involved in cell-to-cell communication in cardiovascular disease, namely atherosclerosis, cardiac remodeling, and cardiac ageing, and the potential use of epigenetic drugs as novel therapeutic targets.
Collapse
Affiliation(s)
| | - Elettra Musolino
- Department of Biotechnology and Life Sciences, University of Insubria, 21100 Varese, Italy
| | - Roberto Papait
- IRCCS Humanitas Research Hospital, 20089 Rozzano, Italy
- Department of Biotechnology and Life Sciences, University of Insubria, 21100 Varese, Italy
| | | |
Collapse
|
31
|
Aherrahrou R, Lue D, Civelek M. Genetic regulation of circular RNA expression in human aortic smooth muscle cells and vascular traits. HGG ADVANCES 2023; 4:100164. [PMID: 36578771 PMCID: PMC9791433 DOI: 10.1016/j.xhgg.2022.100164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Accepted: 11/23/2022] [Indexed: 12/02/2022] Open
Abstract
Circular RNAs (circRNAs) are a class of non-coding RNAs that have cell-type-specific expression and are relevant in cardiovascular disease. Aortic smooth muscle cells (SMCs) play a crucial role in cardiovascular disease. In this study, we employed a systems genetics approach to identify SMC circRNA transcripts and their relevance in cardiovascular traits across the genome. We quantified circRNA expression across 151 quiescent and proliferative human aortic SMCs from donors of various genetic ancestries. We identified 1,589 expressed circRNAs. Between quiescent and proliferative SMCs, we identified 173 differentially expressed circRNAs. To characterize the genetic regulation of circRNA expression, we associated the genotypes of 6.3 million single nucleotide polymorphisms (SNPs) with circRNA abundance and found 96 circRNAs that were associated with genetic loci. Three SNPs were associated with circRNA expression in proliferative SMCs but not quiescent SMCs. We identified six SNPs that had distinct association directions with circRNA isoforms from the same gene. Lastly, to identify the relevance of circRNAs in cardiovascular disease, we overlapped genetic loci associated with circRNA expression with vascular disease-related genome-wide association studies loci. We identified 14 blood pressure, one myocardial infarction, and three coronary artery disease loci, which were associated with a circRNA transcript but not an mRNA transcript. Overall, our results provide insight into the genetic basis of vascular disease traits mediated by circRNA expression.
Collapse
Affiliation(s)
- Redouane Aherrahrou
- Center for Public Health Genomics, University of Virginia, Old Med School 3836, PO Box 800717, Charlottesville, VA 22908-0717, USA
| | - Dillon Lue
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA, USA
| | - Mete Civelek
- Center for Public Health Genomics, University of Virginia, Old Med School 3836, PO Box 800717, Charlottesville, VA 22908-0717, USA
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA, USA
| |
Collapse
|
32
|
Wang Z, Wang H, Guo C, Yu F, Zhang Y, Qiao L, Zhang H, Zhang C. Role of hsa_circ_0000280 in regulating vascular smooth muscle cell function and attenuating neointimal hyperplasia via ELAVL1. Cell Mol Life Sci 2023; 80:3. [PMID: 36477660 PMCID: PMC9729135 DOI: 10.1007/s00018-022-04602-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Revised: 09/25/2022] [Accepted: 10/07/2022] [Indexed: 12/12/2022]
Abstract
The pathological proliferation of cells in vascular smooth muscle underlies neointimal hyperplasia (NIH) development during atherosclerosis. Circular RNAs (circRNAs), which represent novel functional biomarkers and RNA-binding proteins, contribute to multiple cardiovascular diseases; however, their roles in regulating the vascular smooth muscle cell cycle remain unknown. Thus, we aimed to identify the roles of circRNAs in vascular smooth muscle during coronary heart disease (CHD). Through circRNA sequencing of CHD samples and human antigen R (ELAVL1) immunoprecipitation, we identified circRNAs that are associated with CHD and interact with ELAVL1. Our results suggested that the hsa_circ_0000280 associated with CHD inhibits cell proliferation and induces ELAVL1-dependent cell cycle arrest. Gain/loss-of-function experiments and assays in vivo indicated that hsa_circ_0000280 facilitates interactions between ELAVL1 and cyclin-dependent kinase suppressor 1 (CDKN1A) mRNA and stabilization of this complex and leads to cell cycle arrest at the G1/S checkpoint, inhibiting cell proliferation of vascular smooth muscle cells in vitro and NIH in vivo. Importantly, hsa_circ_0000280 reduced neointimal thickness and smooth muscle cell proliferation in vivo. Taken together, these findings reveal a novel pathway in which hsa_circ_0000280 facilitates the regulation of ELAVL1 on CDKN1A mRNA to inhibit NIH. Therefore, measuring and modulating their expression might represent a potential diagnostic or therapeutic strategy for CHD.
Collapse
Affiliation(s)
- Zunzhe Wang
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, 107 Wenhuaxi Road, Jinan City, 250012, Shandong, China
- Department of Geriatric Cardiology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, Shandong, China
| | - Huating Wang
- Department of Cardiology, Jinan Central Hospital Affiliated to Shandong First Medical University, Jinan, 250013, Shandong, China
| | - Chenghu Guo
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, 107 Wenhuaxi Road, Jinan City, 250012, Shandong, China
| | - Fangpu Yu
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, 107 Wenhuaxi Road, Jinan City, 250012, Shandong, China
| | - Ya Zhang
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, 107 Wenhuaxi Road, Jinan City, 250012, Shandong, China
| | - Lei Qiao
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, 107 Wenhuaxi Road, Jinan City, 250012, Shandong, China
| | - Haijun Zhang
- Institute of Vascular Intervention, Medical College of Tongji University, Shanghai, 200072, China
| | - Cheng Zhang
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, 107 Wenhuaxi Road, Jinan City, 250012, Shandong, China.
| |
Collapse
|
33
|
Efovi D, Xiao Q. Noncoding RNAs in Vascular Cell Biology and Restenosis. BIOLOGY 2022; 12:24. [PMID: 36671717 PMCID: PMC9855655 DOI: 10.3390/biology12010024] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 12/17/2022] [Accepted: 12/20/2022] [Indexed: 12/25/2022]
Abstract
In-stent restenosis (ISR), characterised by ≥50% re-narrowing of the target vessel, is a common complication following stent implantation and remains a significant challenge to the long-term success of angioplasty procedures. Considering the global burden of cardiovascular diseases, improving angioplasty patient outcomes remains a key priority. Noncoding RNAs (ncRNAs) including microRNA (miRNA), long noncoding RNA (lncRNA) and circular RNA (circRNA) have been extensively implicated in vascular cell biology and ISR through multiple, both distinct and overlapping, mechanisms. Vascular smooth muscle cells, endothelial cells and macrophages constitute the main cell types involved in the multifactorial pathophysiology of ISR. The identification of critical regulators exemplified by ncRNAs in all these cell types and processes makes them an exciting therapeutic target in the field of restenosis. In this review, we will comprehensively explore the potential functions and underlying molecular mechanisms of ncRNAs in vascular cell biology in the context of restenosis, with an in-depth focus on vascular cell dysfunction during restenosis development and progression. We will also discuss the diagnostic biomarker and therapeutic target potential of ncRNAs in ISR. Finally, we will discuss the current shortcomings, challenges, and perspectives toward the clinical application of ncRNAs.
Collapse
Affiliation(s)
- Denis Efovi
- William Harvey Research Institute, Faculty of Medicine and Dentistry, Queen Mary University of London, London EC1M 6BQ, UK
| | - Qingzhong Xiao
- William Harvey Research Institute, Faculty of Medicine and Dentistry, Queen Mary University of London, London EC1M 6BQ, UK
- Key Laboratory of Cardiovascular Diseases, School of Basic Medical Sciences, Guangzhou Institute of Cardiovascular Disease, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436, China
| |
Collapse
|
34
|
van Wijk N, Zohar K, Linial M. Challenging Cellular Homeostasis: Spatial and Temporal Regulation of miRNAs. Int J Mol Sci 2022; 23:16152. [PMID: 36555797 PMCID: PMC9787707 DOI: 10.3390/ijms232416152] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 12/11/2022] [Accepted: 12/15/2022] [Indexed: 12/23/2022] Open
Abstract
Mature microRNAs (miRNAs) are single-stranded non-coding RNA (ncRNA) molecules that act in post-transcriptional regulation in animals and plants. A mature miRNA is the end product of consecutive, highly regulated processing steps of the primary miRNA transcript. Following base-paring of the mature miRNA with its mRNA target, translation is inhibited, and the targeted mRNA is degraded. There are hundreds of miRNAs in each cell that work together to regulate cellular key processes, including development, differentiation, cell cycle, apoptosis, inflammation, viral infection, and more. In this review, we present an overlooked layer of cellular regulation that addresses cell dynamics affecting miRNA accessibility. We discuss the regulation of miRNA local storage and translocation among cell compartments. The local amounts of the miRNAs and their targets dictate their actual availability, which determines the ability to fine-tune cell responses to abrupt or chronic changes. We emphasize that changes in miRNA storage and compactization occur under induced stress and changing conditions. Furthermore, we demonstrate shared principles on cell physiology, governed by miRNA under oxidative stress, tumorigenesis, viral infection, or synaptic plasticity. The evidence presented in this review article highlights the importance of spatial and temporal miRNA regulation for cell physiology. We argue that limiting the research to mature miRNAs within the cytosol undermines our understanding of the efficacy of miRNAs to regulate cell fate under stress conditions.
Collapse
Affiliation(s)
| | | | - Michal Linial
- Department of Biological Chemistry, The Alexander Silberman Institute of Life Sciences, Faculty of Sciences, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| |
Collapse
|
35
|
Tang HY, Chen AQ, Zhang H, Gao XF, Kong XQ, Zhang JJ. Vascular Smooth Muscle Cells Phenotypic Switching in Cardiovascular Diseases. Cells 2022; 11:cells11244060. [PMID: 36552822 PMCID: PMC9777337 DOI: 10.3390/cells11244060] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 12/02/2022] [Accepted: 12/13/2022] [Indexed: 12/16/2022] Open
Abstract
Vascular smooth muscle cells (VSMCs), the major cell type in the arterial vessel wall, have a contractile phenotype that maintains the normal vessel structure and function under physiological conditions. In response to stress or vascular injury, contractile VSMCs can switch to a less differentiated state (synthetic phenotype) to acquire the proliferative, migratory, and synthetic capabilities for tissue reparation. Imbalances in VSMCs phenotypic switching can result in a variety of cardiovascular diseases, including atherosclerosis, in-stent restenosis, aortic aneurysms, and vascular calcification. It is very important to identify the molecular mechanisms regulating VSMCs phenotypic switching to prevent and treat cardiovascular diseases with high morbidity and mortality. However, the key molecular mechanisms and signaling pathways participating in VSMCs phenotypic switching have still not been fully elucidated despite long-term efforts by cardiovascular researchers. In this review, we provide an updated summary of the recent studies and systematic knowledge of VSMCs phenotypic switching in atherosclerosis, in-stent restenosis, aortic aneurysms, and vascular calcification, which may help guide future research and provide novel insights into the prevention and treatment of related diseases.
Collapse
Affiliation(s)
- Hao-Yue Tang
- Department of Cardiology, Nanjing First Hospital, Nanjing Medical University, No. 68 Changle Road, Nanjing 210006, China
| | - Ai-Qun Chen
- Department of Cardiology, Nanjing First Hospital, Nanjing Medical University, No. 68 Changle Road, Nanjing 210006, China
| | - Huan Zhang
- Department of Cardiology, Nanjing First Hospital, Nanjing Medical University, No. 68 Changle Road, Nanjing 210006, China
| | - Xiao-Fei Gao
- Department of Cardiology, Nanjing First Hospital, Nanjing Medical University, No. 68 Changle Road, Nanjing 210006, China
- Department of Cardiology, Nanjing Heart Centre, No. 68 Changle Road, Nanjing 210006, China
| | - Xiang-Quan Kong
- Department of Cardiology, Nanjing First Hospital, Nanjing Medical University, No. 68 Changle Road, Nanjing 210006, China
| | - Jun-Jie Zhang
- Department of Cardiology, Nanjing First Hospital, Nanjing Medical University, No. 68 Changle Road, Nanjing 210006, China
- Department of Cardiology, Nanjing Heart Centre, No. 68 Changle Road, Nanjing 210006, China
- Correspondence: or ; Tel./Fax: +86-25-52208048
| |
Collapse
|
36
|
Liu Z, Zhou Y, Xia J. CircRNAs: Key molecules in the prevention and treatment of ischemic stroke. Biomed Pharmacother 2022; 156:113845. [DOI: 10.1016/j.biopha.2022.113845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 09/30/2022] [Accepted: 10/06/2022] [Indexed: 11/25/2022] Open
|
37
|
Liu L, Qiang X. Hsa_circ_0044907 promotes acute myeloid leukemia progression through upregulating oncogene KIT via sequestering miR-186-5p. HEMATOLOGY (AMSTERDAM, NETHERLANDS) 2022; 27:960-970. [PMID: 36004511 DOI: 10.1080/16078454.2022.2113574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
BACKGROUND It has been reported that circular RNA hsa_circ_0044907 (circ_0044907) expression is overtly elevated in acute myeloid leukemia (AML) patient-derived BMMCs. However, the effect of circ_0044907 on AML progression remains un-clarified. METHODS Expression of circ_0044907 in BM and AML cells were detected with real-time quantitative reverse transcription-polymerase chain reaction (RT-qPCR). Cell viability, proliferation, apoptosis, and cycle progression were determined by 3-(4,5-Dimethylthiazol-2-yl)-2,5-Diphenyltetrazolium Bromide (MTT), 5-ethynyl-2'-deoxyuridine (EDU), and flow cytometry assays. The regulatory mechanism of circ_0044907 was predicted by bioinformatics analysis and validated by dual-luciferase reporter, RNA pull-down, and RNA immunoprecipitation (RIP) assays. In vivo experiments were carried out to verify the function of circ_0044907. RESULTS Circ_0044907 was overexpressed in AML patient-derived BM and AML cells. Furthermore, circ_0044907 could distinguish AML patients from healthy controls, and high circ_0044907 expression in BM had a poor prognosis for AML patients, implying that circ_0044907 served as a diagnostic and prognostic indicator for AML. Functionally, circ_0044907 silencing reduced cell viability, restrained cell proliferation, arrested cell cycle progression, and induced cell apoptosis in AML cells in vitro. Furthermore, circ_0044907 knockdown decreased AML cell growth in xenograft mouse models. Mechanically, circ_0044907 sponged miR-186-5p to block the inhibiting effect of miR-186-5p on KIT. Silenced miR-186-5p expression weakened circ_0044907 knockdown mediated suppression on AML cell viability, proliferation, and cycle progression. Also, forced KIT expression weakened miR-186-5p upregulation mediated inhibition on AML cell viability, proliferation, and cycle progression. CONCLUSION Circ_0044907 absorbed miR-186-5p to block the inhibiting impact of miR-186-5p on KIT, thus promoting AML progression.
Collapse
Affiliation(s)
- Ling Liu
- Department of Laboratory, Liangjiang New Area First People's Hospital, Chongqing, People's Republic of China
| | - Xing Qiang
- Medical Center of Hematology, Xinqiao Hospital, Army Medical University, Chongqing, People's Republic of China
| |
Collapse
|
38
|
Involvement of circRNAs in the Development of Heart Failure. Int J Mol Sci 2022; 23:ijms232214129. [PMID: 36430607 PMCID: PMC9697219 DOI: 10.3390/ijms232214129] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Revised: 11/05/2022] [Accepted: 11/14/2022] [Indexed: 11/18/2022] Open
Abstract
In recent years, interest in non-coding RNAs as important physiological regulators has grown significantly. Their participation in the pathophysiology of cardiovascular diseases is extremely important. Circular RNA (circRNA) has been shown to be important in the development of heart failure. CircRNA is a closed circular structure of non-coding RNA fragments. They are formed in the nucleus, from where they are transported to the cytoplasm in a still unclear mechanism. They are mainly located in the cytoplasm or contained in exosomes. CircRNA expression varies according to the type of tissue. In the brain, almost 12% of genes produce circRNA, while in the heart it is only 9%. Recent studies indicate a key role of circRNA in cardiomyocyte hypertrophy, fibrosis, autophagy and apoptosis. CircRNAs act mainly by interacting with miRNAs through a "sponge effect" mechanism. The involvement of circRNA in the development of heart failure leads to the suggestion that they may be promising biomarkers and useful targets in the treatment of cardiovascular diseases. In this review, we will provide a brief introduction to circRNA and up-to-date understanding of their role in the mechanisms leading to the development of heart failure.
Collapse
|
39
|
Farina FM, Serio S, Hall IF, Zani S, Cassanmagnago GA, Climent M, Civilini E, Condorelli G, Quintavalle M, Elia L. The epigenetic enzyme DOT1L orchestrates vascular smooth muscle cell-monocyte crosstalk and protects against atherosclerosis via the NF-κB pathway. Eur Heart J 2022; 43:4562-4576. [PMID: 35292818 DOI: 10.1093/eurheartj/ehac097] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 01/21/2022] [Accepted: 02/17/2022] [Indexed: 12/14/2022] Open
Abstract
AIMS Histone H3 dimethylation at lysine 79 is a key epigenetic mark uniquely induced by methyltransferase disruptor of telomeric silencing 1-like (DOT1L). We aimed to determine whether DOT1L modulates vascular smooth muscle cell (VSMC) phenotype and how it might affect atherosclerosis in vitro and in vivo, unravelling the related mechanism. METHODS AND RESULTS Gene expression screening of VSMCs stimulated with the BB isoform of platelet-derived growth factor led us to identify Dot1l as an early up-regulated epigenetic factor. Mouse and human atherosclerotic lesions were assessed for Dot1l expression, which resulted specifically localized in the VSMC compartment. The relevance of Dot1l to atherosclerosis pathogenesis was assessed through deletion of its gene in the VSMCs via an inducible, tissue-specific knock-out mouse model crossed with the ApoE-/- high-fat diet model of atherosclerosis. We found that the inactivation of Dot1l significantly reduced the progression of the disease. By combining RNA- and H3K79me2-chromatin immunoprecipitation-sequencing, we found that DOT1L and its induced H3K79me2 mark directly regulate the transcription of Nf-κB-1 and -2, master modulators of inflammation, which in turn induce the expression of CCL5 and CXCL10, cytokines fundamentally involved in atherosclerosis development. Finally, a correlation between coronary artery disease and genetic variations in the DOT1L gene was found because specific polymorphisms are associated with increased mRNA expression. CONCLUSION DOT1L plays a key role in the epigenetic control of VSMC gene expression, leading to atherosclerosis development. Results identify DOT1L as a potential therapeutic target for vascular diseases.
Collapse
Affiliation(s)
- Floriana Maria Farina
- IRCCS Humanitas Research Hospital, Via Manzoni 113, 20089 Rozzano (MI), Italy.,Institute for Cardiovascular Prevention (IPEK), Ludwig-Maximillians-Universität (LMU) München, D-80336 Munich, Germany.,German Center for Cardiovascular Research (DZHK), Partner Site Munich Heart Alliance, D-80336 Munich, Germany
| | - Simone Serio
- IRCCS Humanitas Research Hospital, Via Manzoni 113, 20089 Rozzano (MI), Italy.,Humanitas University, Pieve Emanuele (MI), Italy
| | | | - Stefania Zani
- IRCCS Humanitas Research Hospital, Via Manzoni 113, 20089 Rozzano (MI), Italy.,Humanitas University, Pieve Emanuele (MI), Italy
| | - Giada Andrea Cassanmagnago
- IRCCS Humanitas Research Hospital, Via Manzoni 113, 20089 Rozzano (MI), Italy.,Humanitas University, Pieve Emanuele (MI), Italy
| | - Montserrat Climent
- IRCCS Humanitas Research Hospital, Via Manzoni 113, 20089 Rozzano (MI), Italy
| | - Efrem Civilini
- IRCCS Humanitas Research Hospital, Via Manzoni 113, 20089 Rozzano (MI), Italy.,Humanitas University, Pieve Emanuele (MI), Italy
| | - Gianluigi Condorelli
- IRCCS Humanitas Research Hospital, Via Manzoni 113, 20089 Rozzano (MI), Italy.,Humanitas University, Pieve Emanuele (MI), Italy
| | - Manuela Quintavalle
- IRCCS Humanitas Research Hospital, Via Manzoni 113, 20089 Rozzano (MI), Italy.,Astrazeneca, V.le Decumano, 39, 20157 Milano (MI), Italy
| | - Leonardo Elia
- IRCCS Humanitas Research Hospital, Via Manzoni 113, 20089 Rozzano (MI), Italy.,Department of Molecular and Translational Medicine, University of Brescia, Viale Europa 11, 25123 Brescia, Italy
| |
Collapse
|
40
|
Singh D, Rai V, Agrawal DK. Non-Coding RNAs in Regulating Plaque Progression and Remodeling of Extracellular Matrix in Atherosclerosis. Int J Mol Sci 2022; 23:13731. [PMID: 36430208 PMCID: PMC9692922 DOI: 10.3390/ijms232213731] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Revised: 10/31/2022] [Accepted: 11/05/2022] [Indexed: 11/09/2022] Open
Abstract
Non-coding RNAs (ncRNAs) regulate cell proliferation, migration, differentiation, inflammation, metabolism of clinically important biomolecules, and other cellular processes. They do not encode proteins but are involved in the regulatory network of various proteins that are directly related to the pathogenesis of diseases. Little is known about the ncRNA-associated mechanisms of atherosclerosis and related cardiovascular disorders. Remodeling of the extracellular matrix (ECM) is critical in the pathogenesis of atherosclerosis and related disorders; however, its regulatory proteins are the potential subjects to explore with special emphasis on epigenetic regulatory components. The activity of regulatory proteins involved in ECM remodeling is regulated by various ncRNA molecules, as evident from recent research. Thus, it is important to critically evaluate the existing literature to enhance the understanding of nc-RNAs-regulated molecular mechanisms regulating ECM components, remodeling, and progression of atherosclerosis. This is crucial since deregulated ECM remodeling contributes to atherosclerosis. Thus, an in-depth understanding of ncRNA-associated ECM remodeling may identify novel targets for the treatment of atherosclerosis and other cardiovascular diseases.
Collapse
Affiliation(s)
| | | | - Devendra K. Agrawal
- Department of Translational Research, College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, CA 91766, USA
| |
Collapse
|
41
|
Xu SL, Liu J, Xu SY, Fan ZQ, Deng YS, Wei L, Xing XQ, Yang J. Circular RNAs Regulate Vascular Remodelling in Pulmonary Hypertension. DISEASE MARKERS 2022; 2022:4433627. [PMID: 36393967 PMCID: PMC9649318 DOI: 10.1155/2022/4433627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 10/18/2022] [Accepted: 10/21/2022] [Indexed: 11/06/2022]
Abstract
Circular RNAs (circRNAs) are a newly identified type of noncoding RNA molecule with a unique closed-loop structure. circRNAs are widely expressed in different tissues and developmental stages of many species, participating in many important pathophysiological processes and playing an important role in the occurrence and development of diseases. This article reviews the discovery, characteristics, formation, and biological function of circRNAs. The relationship between circRNAs and vascular remodelling, as well as the current status of research and potential application value in pulmonary hypertension (PH), is discussed to promote a better understanding of the role of circRNAs in PH. circRNAs are closely related to the remodelling of vascular endothelial cells and vascular smooth muscle cells. circRNAs have potential application prospects for in-depth research on the possible pathogenesis and mechanism of PH. Future research on the role of circRNAs in the pathogenesis and mechanism of PH will provide new insights and promote screening, diagnosis, prevention, and treatment of this disease.
Collapse
Affiliation(s)
- Shuang-Lan Xu
- Department of Respiratory Medicine, The Affiliated Hospital of Yunnan University, The Second People's Hospital of Yunnan Province, Kunming, 650021 Yunnan, China
| | - Jie Liu
- Department of Dermatology and Venereology, The Second Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Shuang-Yan Xu
- Department of Dermatology, The People's Hospital of Yuxi City, The Sixth Affiliated Hospital of Kunming Medical University, Yuxi 653100, Yunnan, China
| | - Ze-Qin Fan
- Department of Respiratory Medicine, The Affiliated Hospital of Yunnan University, The Second People's Hospital of Yunnan Province, Kunming, 650021 Yunnan, China
| | - Yi-Shu Deng
- Department of Respiratory Medicine, The Affiliated Hospital of Yunnan University, The Second People's Hospital of Yunnan Province, Kunming, 650021 Yunnan, China
| | - Li Wei
- Department of Respiratory Medicine, The Affiliated Hospital of Yunnan University, The Second People's Hospital of Yunnan Province, Kunming, 650021 Yunnan, China
| | - Xi-Qian Xing
- Department of Respiratory Medicine, The Affiliated Hospital of Yunnan University, The Second People's Hospital of Yunnan Province, Kunming, 650021 Yunnan, China
| | - Jiao Yang
- First Department of Respiratory Medicine, The First Affiliated Hospital of Kunming Medical University, Kunming, 650032 Yunnan, China
| |
Collapse
|
42
|
Lin J, Liu C, Xu J, Li S, Dai D, Zhang L, Yonghui P. Circ_0021155 can participate in the phenotypic transformation of human vascular smooth muscle cells via the miR-4459/TRPM7 axis. Biochem Biophys Res Commun 2022; 630:133-142. [PMID: 36155059 DOI: 10.1016/j.bbrc.2022.08.065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 08/22/2022] [Accepted: 08/22/2022] [Indexed: 11/27/2022]
Abstract
The phenotypic transformation of vascular smooth muscle cells (VSMCs) plays a key role in the pathological process of atherosclerosis (AS), and TRPM7 is involved in this process. In this study, we verified whether circRNAs participate in the phenotypic transformation of VSMCs by regulating TRPM7 in AS. The RNA-sequencing data of atherosclerosis were downloaded and analysed from the GEO database. Only hsa_circ_0021155 related to TRPM7 was differentially expressed in AS. circRNA distribution and expression were observed via FISH and PCR. CCK8, scratch test and Transwell assay were used to observe the proliferation and migration of cells. Western blot was performed to examine changes in α-actin, calponin, SMMHC and TRPM7 proteins. The expression of hsa_circ_0021155 against has-miR-4459/miR-3689c was verified via PCR. The ceRNA relationship of TPRM7-miR4459-circ0021155 was verified via dual luciferase assay, and the effects of miR4459 mimic/inhibitor on the proliferation of cells were further observed. The expression of hsa_circ_0021155 and OX-LDL was increased in VSMCs. hsa_circ_0021155 promoted the expression of TRPM7 and inhibited the protein expression of α-actin, calponin and SMMHC. In addition, it promoted the proliferation and migration of cells and inhibited the expression of miR-3689c and miR-4459 but did not affect miR-4756-5p. The dual luciferase assay showed that circ0021155-miR4459-TRPM7 mRNA was highly compatible and could be mutually regulated by a ceRNA network. In conclusion, hsa_circ_0021155 regulates the proliferation, migration and phenotype transformation of VSMCs induced by OX-LDL via the miR-4459/TRPM7 axis. hsa_circ_0021155 and TRPM7 may offer novel therapeutic targets for atherosclerosis.
Collapse
Affiliation(s)
- Jinghan Lin
- Department of Neurology, First Affiliated Hospital of Harbin Medical University, No.23 Postal Street, Nangang District, Harbin, China.
| | - Chang Liu
- Department of Neurology, First Affiliated Hospital of Harbin Medical University, No.23 Postal Street, Nangang District, Harbin, China.
| | - Jing Xu
- Department of Neurology, First Affiliated Hospital of Harbin Medical University, No.23 Postal Street, Nangang District, Harbin, China.
| | - Shuang Li
- Department of Neurology, First Affiliated Hospital of Harbin Medical University, No.23 Postal Street, Nangang District, Harbin, China.
| | - Dawei Dai
- Department of Neurology, First Affiliated Hospital of Harbin Medical University, No.23 Postal Street, Nangang District, Harbin, China.
| | - Liming Zhang
- Department of Neurology, First Affiliated Hospital of Harbin Medical University, No.23 Postal Street, Nangang District, Harbin, China.
| | - Pan Yonghui
- Department of Neurology, First Affiliated Hospital of Harbin Medical University, No.23 Postal Street, Nangang District, Harbin, China.
| |
Collapse
|
43
|
An Overview of the Advances in Research on the Molecular Function and Specific Role of Circular RNA in Cardiovascular Diseases. BIOMED RESEARCH INTERNATIONAL 2022; 2022:5154122. [PMID: 36033554 PMCID: PMC9410782 DOI: 10.1155/2022/5154122] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 07/30/2022] [Accepted: 08/08/2022] [Indexed: 11/18/2022]
Abstract
In recent years, the rate of residents suffering from cardiovascular disease (CVD), disability, and death has risen significantly. The latest report on CVD in China shows that it still has the highest mortality rate of all diseases in that country. Different from linear RNA, circular RNA (circRNA) is a covalently closed transcript, mainly through reverse splicing so that the 3′end and the 5′end are covalently connected to form a closed loop structure. It is structurally stable and abundant and has distinct tissue or cell specificity, and it is widely distributed in eukaryotes. Although circRNAs were discovered many years ago, researchers have only recently begun to slowly discover their extensive expression and regulatory functions in various biological processes. Studies have found that some circRNAs perform multiple functions in cells more used as RNA binding protein or microRNA sponge. In addition, accumulating evidence shows that the first change that occurs in patients with various metabolic diseases such as hypertension and cardiovascular disease is dysregulated circRNA expression. For cardiovascular and other related blood vessels, circRNA is one of the important causes of various complications. These findings contribute to a more comprehensive understanding and grasp of CVD, and the related molecular mechanisms of CVD should be further analyzed. Here, we review the new understanding of circRNAs in CVD and explain the role of these innovative biomarkers in the analysis and determination of other related cardiovascular events such as coronary heart disease. Thus, this study is aimed at providing new ideas and proposing more feasible medical research strategies based on circRNA.
Collapse
|
44
|
Gao X, Tian X, Huang Y, Fang R, Wang G, Li D, Zhang J, Li T, Yuan R. Role of circular RNA in myocardial ischemia and ageing-related diseases. Cytokine Growth Factor Rev 2022; 65:1-11. [PMID: 35561533 DOI: 10.1016/j.cytogfr.2022.04.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 04/25/2022] [Accepted: 04/26/2022] [Indexed: 01/10/2023]
Abstract
Circular RNA (circRNA) is a new endogenous transcription product, which has attracted significant attention in RNA biology research.CircRNA comprise exons or introns involved in regulation of various mechanisms.These molecules are stable and species-specific, as well as cell and tissue-specific.Cardiovascular diseases particularly myocardial ischemia and ageing-related diseases, pose a major health care burden and novel treatments and biomarkers should be explored.Recent findings indicate that circRNAs are implicated in biological processes, such as glucose metabolism, fatty acid oxidation, mitochondrial biosynthesis, implying that they are potential targets for myocardial ischemia treatment.In the present review, the functions of circRNAs in the heart are described, with emphasis given on in the relationship with myocardial ischemia and cardiac aging-related diseases.Directions for future research are also summarized.
Collapse
Affiliation(s)
- Xiaolong Gao
- School of Graduate, Shaanxi University of Chinese Medicine, No. 1 Middle section of Shiji Avenue, Xianyang 712046, China; Department of Cardiology, Shaanxi Provincial Hospital of Chinese Medicine, No.4 Xihuamen Street, Xi'an 710003, China
| | - Xin Tian
- Department of Cardiology, Shaanxi Provincial Hospital of Chinese Medicine, No.4 Xihuamen Street, Xi'an 710003, China
| | - Ye Huang
- Department of Emergency, Xiyuan Hospital, China Academy of Chinese Medical Sciences, No.1 Xiyuan Playground Street, Beijing 100091, China
| | - Rong Fang
- School of Graduate, Shaanxi University of Chinese Medicine, No. 1 Middle section of Shiji Avenue, Xianyang 712046, China
| | - Gendi Wang
- School of Graduate, Shaanxi University of Chinese Medicine, No. 1 Middle section of Shiji Avenue, Xianyang 712046, China; Department of Cardiology, Shaanxi Provincial Hospital of Chinese Medicine, No.4 Xihuamen Street, Xi'an 710003, China
| | - Dan Li
- School of Graduate, Shaanxi University of Chinese Medicine, No. 1 Middle section of Shiji Avenue, Xianyang 712046, China; Department of Cardiology, Shaanxi Provincial Hospital of Chinese Medicine, No.4 Xihuamen Street, Xi'an 710003, China
| | - Junru Zhang
- Department of Cardiology, Shaanxi Provincial Hospital of Chinese Medicine, No.4 Xihuamen Street, Xi'an 710003, China.
| | - Tian Li
- School of Basic Medicine, Fourth Military Medical University, No. 169 Changle West Rd, Xi'an 710032, China.
| | - Ruihua Yuan
- School of Graduate, Shaanxi University of Chinese Medicine, No. 1 Middle section of Shiji Avenue, Xianyang 712046, China; Real World Clinical Research Institute, Shaanxi University of Chinese Medicine, No. 1 Middle section of Shiji Avenue, Xianyang 712046, China.
| |
Collapse
|
45
|
Circ_0001955 Acts as a miR-646 Sponge to Promote the Proliferation, Metastasis and Angiogenesis of Hepatocellular Carcinoma. Dig Dis Sci 2022; 67:2257-2268. [PMID: 34021822 DOI: 10.1007/s10620-021-07053-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Accepted: 05/11/2021] [Indexed: 01/10/2023]
Abstract
BACKGROUND Circular RNA (circRNA) exerts a crucial role in the progression of many cancers, including hepatocellular carcinoma (HCC). However, the function of circ_0001955 in HCC progression has been poorly studied. AIMS Elucidating the role and molecular mechanism of circ_0001955 in HCC progression. METHODS Quantitative real-time PCR was employed to detect the expression of circ_0001955 and miR-646. Cell counting kit 8 assay, Ethynyl-2-deoxyuridine assay, flow cytometry, transwell assay, and tube formation assay were conducted to measure cell proliferation, metastasis, angiogenesis and apoptosis. Dual-luciferase reporter assay and biotin-labeled RNA pull-down assay were performed to analyze the interactions among circ_0001955, miR-646 and frizzled class receptor 4 (FZD4). Moreover, animal experiments were performed to examine the influence of circ_0001955 on HCC tumor growth in vivo. RESULTS Circ_0001955 was a highly expressed circRNA in HCC tissues and cells. Circ_0001955 knockdown inhibited the proliferation, metastasis, angiogenesis, and enhanced the apoptosis of HCC cells. Meanwhile, miR-646 could be sponged by circ_0001955, and its inhibitor could reverse the negative regulation of circ_0001955 knockdown on HCC progression. Further, FZD4 was a target of miR-646, and its overexpression could invert the inhibition effect of miR-646 mimic on HCC progression. Besides, our results also indicated that circ_0001955 promoted FZD4 expression by sponging miR-646. Animal experiment results showed that circ_0001955 silencing restrained HCC tumor growth in vivo. CONCLUSION Our findings suggested that circ_0001955 might play a positive role in HCC progression via regulating the miR-646/FZD4 axis, indicating that circ_0001955 might be a potential therapeutic target for HCC.
Collapse
|
46
|
Abstract
Circular RNAs (circRNAs) are a recently rediscovered class of functional noncoding RNAs that are involved in gene regulation and cancer development. Next-generation sequencing approaches identified circRNA fragments and sequences underlying circularization events in virus-induced cancers. In the present study, we performed viral circRNA expression analysis and full-length sequencing in infections with Marek’s disease virus (MDV), which serves as a model for herpesvirus-induced tumorigenesis. We established inverse PCRs to identify and characterize circRNA expression from the repeat regions of the MDV genome during viral replication, latency, and reactivation. We identified a large variety of viral circRNAs through precise mapping of full-length circular transcripts and detected matching sequences with several viral genes. Hot spots of circRNA expression included the transcriptional unit of the major viral oncogene encoding the Meq protein and the latency-associated transcripts (LATs). Moreover, we performed genome-wide bioinformatic analyses to extract back-splice junctions from lymphoma-derived samples. Using this strategy, we found that circRNAs were abundantly expressed in vivo from the same key virulence genes. Strikingly, the observed back-splice junctions do not follow a unique canonical pattern, compatible with the U2-dependent splicing machinery. Numerous noncanonical junctions were observed in viral circRNA sequences characterized from in vitro and in vivo infections. Given the importance of the genes involved in the transcription of these circRNAs, our study contributes to our understanding and complexity of this deadly pathogen. IMPORTANCE Circular RNAs (circRNAs) were rediscovered in recent years both in physiological and pathological contexts, such as in cancer. Viral circRNAs are encoded by at least two human herpesviruses, the Epstein Barr virus and the Kaposi’s Sarcoma-associated herpesvirus, both associated with the development of lymphoma. Marek’s disease virus (MDV) is a well-established animal model to study virus-induced lymphoma but circRNA expression has not been reported for MDV yet. Our study provided the first evidence of viral circRNAs that were expressed at key steps of the MDV lifecycle using genome-wide analyses of circRNAs. These circRNAs were primarily found in transcriptional units that corresponded to the major MDV virulence factors. In addition, we established a bioinformatics pipeline that offers a new tool to identify circular RNAs in other herpesviruses. This study on the circRNAs provided important insights into major MDV virulence genes and herpesviruses-mediated gene dysregulation.
Collapse
|
47
|
Weidle UH, Sela T, Brinkmann U, Niewoehner J. Circular RNAs With Efficacy in Preclinical In Vitro and In Vivo Models of Esophageal Squamous Cell Carcinoma. Cancer Genomics Proteomics 2022; 19:283-298. [PMID: 35430563 DOI: 10.21873/cgp.20320] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 03/02/2022] [Accepted: 03/03/2022] [Indexed: 02/06/2023] Open
Abstract
Esophageal cancer is associated with a dismal prognosis. The armamentarium of approved drugs is focused on chemotherapy with modest therapeutic benefit. Recently, checkpoint inhibitory monoclonal antibody Pembrolizumab was approved. In order to identify new targets and modalities for the treatment of esophagus squamous cell carcinoma (ESCC) we searched the literature for circRNAs involved in the pathogenesis of ESCC. We identified two down-regulated and 17 up-regulated circRNAs as well as a synthetic circRNA with efficacy in preclinical in vivo systems. Down-regulated circRNAs sponge microRNAs directed against tumor suppressor genes. Up-regulated circRNAs sponge microRNAs directed against mRNAs, which encode proteins with pro-tumoral functions. We discuss issues such as reconstitution of down-regulated circRNAs and inhibition of up-regulated circRNAs with short interfering RNA (siRNA)- related entities. Also, we address druggability issues of the identified targets.
Collapse
Affiliation(s)
- Ulrich H Weidle
- Roche Pharma Research and Early Development (pRED), Large Molecule Research, Roche Innovation Center Munich, Penzberg, Germany
| | - Tatjana Sela
- Roche Pharma Research and Early Development (pRED), Large Molecule Research, Roche Innovation Center Munich, Penzberg, Germany
| | - Ulrich Brinkmann
- Roche Pharma Research and Early Development (pRED), Large Molecule Research, Roche Innovation Center Munich, Penzberg, Germany
| | - Jens Niewoehner
- Roche Pharma Research and Early Development (pRED), Large Molecule Research, Roche Innovation Center Munich, Penzberg, Germany
| |
Collapse
|
48
|
Tang Y, Li H, Chen C. Non-coding RNA-Associated Therapeutic Strategies in Atherosclerosis. Front Cardiovasc Med 2022; 9:889743. [PMID: 35548442 PMCID: PMC9081650 DOI: 10.3389/fcvm.2022.889743] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Accepted: 03/21/2022] [Indexed: 12/14/2022] Open
Abstract
Atherosclerosis has been the main cause of disability and mortality in the world, resulting in a heavy medical burden for all countries. It is widely known to be a kind of chronic inflammatory disease in the blood walls, of which the key pathogenesis is the accumulation of immunologic cells in the lesion, foam cells formation, and eventually plaque rupture causing ischemia of various organs. Non-coding RNAs (ncRNAs) play a vital role in regulating the physiologic and pathophysiologic processes in cells. More and more studies have revealed that ncRNAs also participated in the development of atherosclerosis and regulated cellular phenotypes such as endothelial dysfunction, leukocyte recruitment, foam cells formation, and vascular smooth muscle cells phenotype-switching and apoptosis. Given the broad functions of ncRNAs in atherogenesis, they have become potential therapeutic targets. Apart from that, ncRNAs have become powerful blueprints to design new drugs. For example, RNA interference drugs were inspired by small interfering RNAs that exist in normal cellular physiologic processes and behave as negative regulators of specific proteins. For instance, inclisiran is a kind of RNAi drug targeting PCKS9 mRNA, which can lower the level of LDL-C and treat atherosclerosis. We introduce some recent research progresses on ncRNAs related to atherosclerotic pathophysiologic process and the current clinical trials of RNA drugs pointed at atherosclerosis.
Collapse
Affiliation(s)
- Yuyan Tang
- Division of Cardiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan, China
| | - Huaping Li
- Division of Cardiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan, China
- *Correspondence: Huaping Li
| | - Chen Chen
- Division of Cardiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan, China
- Chen Chen
| |
Collapse
|
49
|
Wang X, Liu D, Cui G, Shen H. Circ_0088036 mediated progression and inflammation in fibroblast-like synoviocytes of rheumatoid arthritis by miR-1263/REL-activated NF-κB pathway. Transpl Immunol 2022; 73:101604. [PMID: 35460876 DOI: 10.1016/j.trim.2022.101604] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 04/14/2022] [Accepted: 04/14/2022] [Indexed: 11/30/2022]
Abstract
BACKGROUND Rheumatoid arthritis (RA) is a common joint disease with abnormal development of human fibroblast-like synoviocytes (HFLS). Circular RNAs (circRNAs) have essential regulation in the disease progression, and this study was to explore the regulatory mechanism of circ_0088036 in RA. METHODS RNA expression analysis was performed through reverse transcription-quantitative polymerase chain reaction assay. Cell experiments were conducted by Cell Counting Kit-8 assay for cell viability, EdU (5-ethynyl-2'-deoxyuridine) assay for proliferation and flow cytometry for cell cycle or apoptosis. The protein detection was conducted using western blot. Enzyme-linked immunosorbent assay (ELISA) was used to examine the inflammatory cytokines. The binding identification was carried out through dual-luciferase reporter assay, RNA immunoprecipitation assay and pull-down assay. RESULTS The level of circ_0088036 RNA was significantly upregulated in sera and in HFLS cells of RA patients. Targeted silencing of circ_0088036 restrained proliferation, cell cycle progression and inflammatory reaction through promoted the apoptosis of HFLS-RA cells via inhibiting the NF-κB pathway. The miR-1263 was identified as a target of circ_0088036. MiR-1263 was found to be down-regulated in sera and in HFLS cells of RA patients. The regulatory effects of circ_0088036 on HFLS-RA cells were attributed to inhibit the miR-1263 level. REL is a susceptibility locus for certain autoimmune diseases. MiR-1263 directly targeted REL, which was discovered to be elevated in sera and HFLS cells of RA patients, and circ_0088036 interacted with miR-1263 to affect REL expression. Functionally, overexpression of miR-1263 suppressed the development of HFLS-RA by blocking the NF-κB pathway, and this phenomenon was reversed by the upregulation of REL. CONCLUSION These findings suggested that circ_0088036/miR-1263/REL/NF-κB pathway was involved in the functional development of HFLS-RA cells, indicating a novel molecular network in RA progression in vitro.
Collapse
Affiliation(s)
- Xiaoyuan Wang
- Department of Rheumatology and Immunology, Second Hospital of Lanzhou University, Lanzhou, Gansu, China
| | - Dan Liu
- Departement of Rheumatology and Immunology, The First Affiliated Hospital of Xi'an Medical University, Xi'an, Shaanxi, China
| | - Guofeng Cui
- Department of Orthopedics, Luoyang Central Hospital Affiliated to Zhengzhou University, Luoyang, Henan, China
| | - Haili Shen
- Department of Rheumatology and Immunology, Second Hospital of Lanzhou University, Lanzhou,Gansu 730030,China.
| |
Collapse
|
50
|
Mei X, Chen SY. Circular RNAs in cardiovascular diseases. Pharmacol Ther 2022; 232:107991. [PMID: 34592203 PMCID: PMC8930437 DOI: 10.1016/j.pharmthera.2021.107991] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 08/08/2021] [Accepted: 09/01/2021] [Indexed: 10/20/2022]
Abstract
In eukaryotes, precursor mRNAs (pre-mRNAs) produce a unique class of biologically active molecules namely circular RNAs (circRNAs) with a covalently closed-loop structure via back-splicing. Because of this unconventional circular form, circRNAs exhibit much higher stability than linear RNAs due to the resistance to exonuclease degradation and thereby play exclusive cellular regulatory roles. Recent studies have shown that circRNAs are widely expressed in eukaryotes and display tissue- and disease-specific expression patterns, including in the cardiovascular system. Although numerous circRNAs are discovered by in silico methods, a limited number of circRNAs have been studied. This review intends to summarize the current understanding of the characteristics, biogenesis, and functions of circRNAs and delineate the practical approaches for circRNAs investigation. Moreover, we discuss the emerging roles of circRNAs in cardiovascular diseases.
Collapse
Affiliation(s)
- Xiaohan Mei
- Departments of Surgery, University of Missouri School of Medicine, Columbia, MO, United States of America
| | - Shi-You Chen
- Departments of Surgery, University of Missouri School of Medicine, Columbia, MO, United States of America; Department of Medical Pharmacology & Physiology, University of Missouri School of Medicine, Columbia, MO, United States of America.
| |
Collapse
|