1
|
Wu X, Yang X, Dai Y, Zhao Z, Zhu J, Guo H, Yang R. Single-cell sequencing to multi-omics: technologies and applications. Biomark Res 2024; 12:110. [PMID: 39334490 PMCID: PMC11438019 DOI: 10.1186/s40364-024-00643-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 08/17/2024] [Indexed: 09/30/2024] Open
Abstract
Cells, as the fundamental units of life, contain multidimensional spatiotemporal information. Single-cell RNA sequencing (scRNA-seq) is revolutionizing biomedical science by analyzing cellular state and intercellular heterogeneity. Undoubtedly, single-cell transcriptomics has emerged as one of the most vibrant research fields today. With the optimization and innovation of single-cell sequencing technologies, the intricate multidimensional details concealed within cells are gradually unveiled. The combination of scRNA-seq and other multi-omics is at the forefront of the single-cell field. This involves simultaneously measuring various omics data within individual cells, expanding our understanding across a broader spectrum of dimensions. Single-cell multi-omics precisely captures the multidimensional aspects of single-cell transcriptomes, immune repertoire, spatial information, temporal information, epitopes, and other omics in diverse spatiotemporal contexts. In addition to depicting the cell atlas of normal or diseased tissues, it also provides a cornerstone for studying cell differentiation and development patterns, disease heterogeneity, drug resistance mechanisms, and treatment strategies. Herein, we review traditional single-cell sequencing technologies and outline the latest advancements in single-cell multi-omics. We summarize the current status and challenges of applying single-cell multi-omics technologies to biological research and clinical applications. Finally, we discuss the limitations and challenges of single-cell multi-omics and potential strategies to address them.
Collapse
Affiliation(s)
- Xiangyu Wu
- Department of Urology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, 321 Zhongshan Road, Nanjing, 210008, Jiangsu, China
| | - Xin Yang
- Department of Urology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, 321 Zhongshan Road, Nanjing, 210008, Jiangsu, China
| | - Yunhan Dai
- Medical School, Nanjing University, Nanjing, China
| | - Zihan Zhao
- Department of Urology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, 321 Zhongshan Road, Nanjing, 210008, Jiangsu, China
| | - Junmeng Zhu
- Department of Oncology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Hongqian Guo
- Department of Urology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, 321 Zhongshan Road, Nanjing, 210008, Jiangsu, China.
| | - Rong Yang
- Department of Urology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, 321 Zhongshan Road, Nanjing, 210008, Jiangsu, China.
| |
Collapse
|
2
|
Wang S, Gu J, Bian J, He Y, Xu X, Wang C, Li G, Zhang H, Ni B, Chen S, Shao Y, Jiang Y. Nesfatin-1 mitigates calcific aortic valve disease via suppressing ferroptosis mediated by GSH/GPX4 and ZIP8/SOD2 axes. Free Radic Biol Med 2024; 222:149-164. [PMID: 38851518 DOI: 10.1016/j.freeradbiomed.2024.06.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 05/28/2024] [Accepted: 06/06/2024] [Indexed: 06/10/2024]
Abstract
OBJECTIVE Calcific aortic valve disease (CAVD) predominantly affects the elderly and currently lacks effective medical treatments. Nesfatin-1, a peptide derived from the cleavage of Nucleobindin 2, has been implicated in various calcification processes, both physiological and pathological. This study explores the impact of Nesfatin-1 on the transformation of aortic valve interstitial cells (AVICs) in CAVD. METHODS AND RESULTS In vitro experiments showed that Nesfatin-1 treatment mitigated the osteogenic differentiation of AVICs. Corresponding in vivo studies demonstrated a deceleration in the progression of CAVD. RNA-sequencing of AVICs treated with and without Nesfatin-1 highlighted an enrichment of the Ferroptosis pathway among the top pathways identified by the Kyoto Encyclopedia of Genes and Genomes analysis. Further examination confirmed increased ferroptosis in both calcified valves and osteoblast-like AVICs, with a reduction in ferroptosis following Nesfatin-1 treatment. Within the Ferroptosis pathway, ZIP8 showed the most notable modulation by Nesfatin-1. Silencing ZIP8 in AVICs increased ferroptosis and osteogenic differentiation, decreased intracellular Mn2+ concentration, and reduced the expression and activity of superoxide dismutase (SOD2). Furthermore, the silencing of SOD2 exacerbated ferroptosis and osteogenic differentiation. Nesfatin-1 treatment was found to elevate the expression of glutathione peroxidase 4 (GPX4) and levels of glutathione (GSH), as confirmed by Western blotting and GSH concentration assays. CONCLUSION In summary, Nesfatin-1 effectively inhibits the osteogenic differentiation of AVICs by attenuating ferroptosis, primarily through the GSH/GPX4 and ZIP8/SOD2 pathways.
Collapse
Affiliation(s)
- Song Wang
- Department of Cardiovascular Surgery, The First Affiliated Hospital of Nanjing Medical University, China
| | - Jiaxi Gu
- Department of Cardiovascular Surgery, The First Affiliated Hospital of Nanjing Medical University, China
| | - Jinhui Bian
- Department of Cardiovascular Surgery, The First Affiliated Hospital of Nanjing Medical University, China
| | - Yuqiu He
- Department of Cardiovascular Surgery, The First Affiliated Hospital of Nanjing Medical University, China
| | - Xiufan Xu
- Department of Cardiovascular Surgery, The First Affiliated Hospital of Nanjing Medical University, China
| | - Chen Wang
- Department of Cardiovascular Surgery and Heart Transplantation, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, China
| | - Geng Li
- Department of Cardiovascular Surgery and Heart Transplantation, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, China
| | - Hui Zhang
- Department of Cardiovascular Surgery, The First Affiliated Hospital of Nanjing Medical University, China
| | - Buqing Ni
- Department of Cardiovascular Surgery, The First Affiliated Hospital of Nanjing Medical University, China
| | - Si Chen
- Department of Cardiovascular Surgery and Heart Transplantation, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, China.
| | - Yongfeng Shao
- Department of Cardiovascular Surgery, The First Affiliated Hospital of Nanjing Medical University, China.
| | - Yefan Jiang
- Department of Cardiovascular Surgery, The First Affiliated Hospital of Nanjing Medical University, China.
| |
Collapse
|
3
|
Fayyaz AU, Eltony M, Prokop LJ, Koepp KE, Borlaug BA, Dasari S, Bois MC, Margulies KB, Maleszewski JJ, Wang Y, Redfield MM. Pathophysiological insights into HFpEF from studies of human cardiac tissue. Nat Rev Cardiol 2024:10.1038/s41569-024-01067-1. [PMID: 39198624 DOI: 10.1038/s41569-024-01067-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/18/2024] [Indexed: 09/01/2024]
Abstract
Heart failure with preserved ejection fraction (HFpEF) is a major, worldwide health-care problem. Few therapies for HFpEF exist because the pathophysiology of this condition is poorly defined and, increasingly, postulated to be diverse. Although perturbations in other organs contribute to the clinical profile in HFpEF, altered cardiac structure, function or both are the primary causes of this heart failure syndrome. Therefore, studying myocardial tissue is fundamental to improve pathophysiological insights and therapeutic discovery in HFpEF. Most studies of myocardial changes in HFpEF have relied on cardiac tissue from animal models without (or with limited) confirmatory studies in human cardiac tissue. Animal models of HFpEF have evolved based on theoretical HFpEF aetiologies, but these models might not reflect the complex pathophysiology of human HFpEF. The focus of this Review is the pathophysiological insights gained from studies of human HFpEF myocardium. We outline the rationale for these studies, the challenges and opportunities in obtaining myocardial tissue from patients with HFpEF and relevant comparator groups, the analytical approaches, the pathophysiological insights gained to date and the remaining knowledge gaps. Our objective is to provide a roadmap for future studies of cardiac tissue from diverse cohorts of patients with HFpEF, coupling discovery biology with measures to account for pathophysiological diversity.
Collapse
Affiliation(s)
- Ahmed U Fayyaz
- Department of Cardiovascular Disease, Division of Circulatory Failure, Mayo Clinic, Rochester, MN, USA
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
| | - Muhammad Eltony
- Department of Cardiovascular Disease, Division of Circulatory Failure, Mayo Clinic, Rochester, MN, USA
| | - Larry J Prokop
- Mayo Clinic College of Medicine and Science, Library Reference Service, Rochester, MN, USA
| | - Katlyn E Koepp
- Department of Cardiovascular Disease, Division of Circulatory Failure, Mayo Clinic, Rochester, MN, USA
| | - Barry A Borlaug
- Department of Cardiovascular Disease, Division of Circulatory Failure, Mayo Clinic, Rochester, MN, USA
| | - Surendra Dasari
- Mayo Clinic College of Medicine and Science, Computational Biology, Rochester, MN, USA
| | - Melanie C Bois
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
| | - Kenneth B Margulies
- Cardiovascular Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Joesph J Maleszewski
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
| | - Ying Wang
- Department of Cardiovascular Disease, Division of Circulatory Failure, Mayo Clinic, Rochester, MN, USA
| | - Margaret M Redfield
- Department of Cardiovascular Disease, Division of Circulatory Failure, Mayo Clinic, Rochester, MN, USA.
| |
Collapse
|
4
|
Gorashi RM, Baddour T, Chittle SJ, Vélez NEF, Wenning MA, Anseth KS, Mestroni L, Peña B, Guo P, Aguado BA. Y chromosome linked UTY modulates sex differences in valvular fibroblast methylation in response to nanoscale extracellular matrix cues. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.13.593760. [PMID: 38798394 PMCID: PMC11118428 DOI: 10.1101/2024.05.13.593760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
Aortic valve stenosis (AVS) is a progressive disease wherein males more often develop valve calcification relative to females that develop valve fibrosis. Valvular interstitial cells (VICs) aberrantly activate to myofibroblasts during AVS, driving the fibrotic valve phenotype in females. Myofibroblasts further differentiate into osteoblast-like cells and produce calcium nanoparticles, driving valve calcification in males. We hypothesized the lysine demethylase UTY (ubiquitously transcribed tetratricopeptide repeat containing, Y-linked) decreases methylation uniquely in male VICs responding to nanoscale extracellular matrix cues to promote an osteoblast-like cell phenotype. Here, we describe a hydrogel biomaterial cell culture platform to interrogate how nanoscale cues modulate sex-specific methylation states in VICs activating to myofibroblasts and osteoblast-like cells. We found UTY modulates the osteoblast-like cell phenotype in response to nanoscale cues uniquely in male VICs. Overall, we reveal a novel role of UTY in the regulation of calcification processes in males during AVS progression.
Collapse
|
5
|
Small AM, Yutzey KE, Binstadt BA, Voigts Key K, Bouatia-Naji N, Milan D, Aikawa E, Otto CM, St Hilaire C. Unraveling the Mechanisms of Valvular Heart Disease to Identify Medical Therapy Targets: A Scientific Statement From the American Heart Association. Circulation 2024; 150:e109-e128. [PMID: 38881493 PMCID: PMC11542557 DOI: 10.1161/cir.0000000000001254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 06/18/2024]
Abstract
Valvular heart disease is a common cause of morbidity and mortality worldwide and has no effective medical therapy. Severe disease is managed with valve replacement procedures, which entail high health care-related costs and postprocedural morbidity and mortality. Robust ongoing research programs have elucidated many important molecular pathways contributing to primary valvular heart disease. However, there remain several key challenges inherent in translating research on valvular heart disease to viable molecular targets that can progress through the clinical trials pathway and effectively prevent or modify the course of these common conditions. In this scientific statement, we review the basic cellular structures of the human heart valves and discuss how these structures change in primary valvular heart disease. We focus on the most common primary valvular heart diseases, including calcific aortic stenosis, bicuspid aortic valves, mitral valve prolapse, and rheumatic heart disease, and outline the fundamental molecular discoveries contributing to each. We further outline potential therapeutic molecular targets for primary valvular heart disease and discuss key knowledge gaps that might serve as future research priorities.
Collapse
|
6
|
Zhuang W, Li J, Qu T, Shao R, Chen J, Li S, Chen M, Wang Y. A lipid activated color switchable probe for the imaging of diseased aortic valves. Talanta 2024; 275:126069. [PMID: 38692042 DOI: 10.1016/j.talanta.2024.126069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 03/26/2024] [Accepted: 04/06/2024] [Indexed: 05/03/2024]
Abstract
Lipid deposition has been considered one of the key factors in the occurrence of valvular heart disease (VHD) and a great potential target for the diagnosis of VHD. However, the development of lipid imaging technologies and efficient lipid specific probes is in urgent demand. In this work, we have prepared a lipid droplets (LDs) targeted fluorescence probe CPTM based on a push-pull electronic structure for the imaging of diseased aortic valves. CPTM showed obvious twisted intramolecular charge transfer (TICT) effect and its emission changed from 600 nm in water to 508 nm in oil. CPTM not only exhibited good biocompatibility and high photostability, but also impressive LDs specific imaging performance in human primary valvular interstitial cells and human diseased aortic valves. Moreover, the dynamic changes of intracellular LDs could be monitor in real-time after staining with CPTM. These results were expected to offer new ideals for the designing of novel LDs specific probes for further bioimaging applications.
Collapse
Affiliation(s)
- Weihua Zhuang
- Laboratory of Cardiac Structure and Function, Institute of Cardiovascular Diseases, West China Hospital, Sichuan University, 37 Guoxue Alley, Chengdu, 610041, PR China; National Engineering Research Center for Biomaterials, Sichuan University, 29 Wangjiang Road, Chengdu, 610065, PR China
| | - Junli Li
- Laboratory of Cardiac Structure and Function, Institute of Cardiovascular Diseases, West China Hospital, Sichuan University, 37 Guoxue Alley, Chengdu, 610041, PR China
| | - Tianyi Qu
- Laboratory of Cardiac Structure and Function, Institute of Cardiovascular Diseases, West China Hospital, Sichuan University, 37 Guoxue Alley, Chengdu, 610041, PR China
| | - Ruochen Shao
- Department of Cardiology, West China Hospital, Sichuan University, 37 Guoxue Alley, Chengdu, 610041, PR China
| | - Jingruo Chen
- Laboratory of Cardiac Structure and Function, Institute of Cardiovascular Diseases, West China Hospital, Sichuan University, 37 Guoxue Alley, Chengdu, 610041, PR China; Department of Cardiology, West China Hospital, Sichuan University, 37 Guoxue Alley, Chengdu, 610041, PR China
| | - Shufen Li
- Laboratory of Cardiac Structure and Function, Institute of Cardiovascular Diseases, West China Hospital, Sichuan University, 37 Guoxue Alley, Chengdu, 610041, PR China.
| | - Mao Chen
- Laboratory of Cardiac Structure and Function, Institute of Cardiovascular Diseases, West China Hospital, Sichuan University, 37 Guoxue Alley, Chengdu, 610041, PR China; Department of Cardiology, West China Hospital, Sichuan University, 37 Guoxue Alley, Chengdu, 610041, PR China.
| | - Yunbing Wang
- National Engineering Research Center for Biomaterials, Sichuan University, 29 Wangjiang Road, Chengdu, 610065, PR China.
| |
Collapse
|
7
|
Cui N, Xu X, Zhou F. Single-cell technologies in psoriasis. Clin Immunol 2024; 264:110242. [PMID: 38750947 DOI: 10.1016/j.clim.2024.110242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 03/30/2024] [Accepted: 05/01/2024] [Indexed: 05/24/2024]
Abstract
Psoriasis is a chronic and recurrent inflammatory skin disorder. The primary manifestation of psoriasis arises from disturbances in the cutaneous immune microenvironment, but the specific functions of the cellular components within this microenvironment remain unknown. Recent advancements in single-cell technologies have enabled the detection of multi-omics at the level of individual cells, including single-cell transcriptome, proteome, and metabolome, which have been successfully applied in studying autoimmune diseases, and other pathologies. These techniques allow the identification of heterogeneous cell clusters and their varying contributions to disease development. Considering the immunological traits of psoriasis, an in-depth exploration of immune cells and their interactions with cutaneous parenchymal cells can markedly advance our comprehension of the mechanisms underlying the onset and recurrence of psoriasis. In this comprehensive review, we present an overview of recent applications of single-cell technologies in psoriasis, aiming to improve our understanding of the underlying mechanisms of this disorder.
Collapse
Affiliation(s)
- Niannian Cui
- First School of Clinical Medicine, Anhui Medical University, Hefei 230032, China
| | - Xiaoqing Xu
- Department of Dermatology, the First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230031, China; Institute of Dermatology, Anhui Medical University, Hefei, Anhui 230022, China; The Key Laboratory of Dermatology, Ministry of Education, Anhui Medical University, Hefei, China; Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Hefei, Anhui 230022, China
| | - Fusheng Zhou
- Department of Dermatology, the First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230031, China; Institute of Dermatology, Anhui Medical University, Hefei, Anhui 230022, China; The Key Laboratory of Dermatology, Ministry of Education, Anhui Medical University, Hefei, China; Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Hefei, Anhui 230022, China.
| |
Collapse
|
8
|
Zhao Y, Huang Z, Gao L, Ma H, Chang R. Osteopontin/SPP1: a potential mediator between immune cells and vascular calcification. Front Immunol 2024; 15:1395596. [PMID: 38919629 PMCID: PMC11196619 DOI: 10.3389/fimmu.2024.1395596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 05/22/2024] [Indexed: 06/27/2024] Open
Abstract
Vascular calcification (VC) is considered a common pathological process in various vascular diseases. Accumulating studies have confirmed that VC is involved in the inflammatory response in heart disease, and SPP1+ macrophages play an important role in this process. In VC, studies have focused on the physiological and pathological functions of macrophages, such as pro-inflammatory or anti-inflammatory cytokines and pro-fibrotic vesicles. Additionally, macrophages and activated lymphocytes highly express SPP1 in atherosclerotic plaques, which promote the formation of fatty streaks and plaque development, and SPP1 is also involved in the calcification process of atherosclerotic plaques that results in heart failure, but the crosstalk between SPP1-mediated immune cells and VC has not been adequately addressed. In this review, we summarize the regulatory effect of SPP1 on VC in T cells, macrophages, and dendritic cells in different organs' VC, which could be a potential therapeutic target for VC.
Collapse
Affiliation(s)
- Yanli Zhao
- Department of Cardiovascular Medicine, Shenzhen Longhua District Central Hospital, Shenzhen, China
| | - Zujuan Huang
- Department of Cardiovascular Medicine, Shenzhen Longhua District Central Hospital, Shenzhen, China
| | - Limei Gao
- Department of Cardiovascular Medicine, Shenzhen Longhua District Central Hospital, Shenzhen, China
| | - Hongbo Ma
- School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Rong Chang
- Department of Cardiovascular Medicine, Shenzhen Longhua District Central Hospital, Shenzhen, China
| |
Collapse
|
9
|
Mutithu DW, Aremu OO, Mokaila D, Bana T, Familusi M, Taylor L, Martin LJ, Heathfield LJ, Kirwan JA, Wiesner L, Adeola HA, Lumngwena EN, Manganyi R, Skatulla S, Naidoo R, Ntusi NAB. A study protocol to characterise pathophysiological and molecular markers of rheumatic heart disease and degenerative aortic stenosis using multiparametric cardiovascular imaging and multiomics techniques. PLoS One 2024; 19:e0303496. [PMID: 38739622 PMCID: PMC11090351 DOI: 10.1371/journal.pone.0303496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 04/26/2024] [Indexed: 05/16/2024] Open
Abstract
INTRODUCTION Rheumatic heart disease (RHD), degenerative aortic stenosis (AS), and congenital valve diseases are prevalent in sub-Saharan Africa. Many knowledge gaps remain in understanding disease mechanisms, stratifying phenotypes, and prognostication. Therefore, we aimed to characterise patients through clinical profiling, imaging, histology, and molecular biomarkers to improve our understanding of the pathophysiology, diagnosis, and prognosis of RHD and AS. METHODS In this cross-sectional, case-controlled study, we plan to recruit RHD and AS patients and compare them to matched controls. Living participants will undergo clinical assessment, echocardiography, CMR and blood sampling for circulatory biomarker analyses. Tissue samples will be obtained from patients undergoing valve replacement, while healthy tissues will be obtained from cadavers. Immunohistology, proteomics, metabolomics, and transcriptome analyses will be used to analyse circulatory- and tissue-specific biomarkers. Univariate and multivariate statistical analyses will be used for hypothesis testing and identification of important biomarkers. In summary, this study aims to delineate the pathophysiology of RHD and degenerative AS using multiparametric CMR imaging. In addition to discover novel biomarkers and explore the pathomechanisms associated with RHD and AS through high-throughput profiling of the tissue and blood proteome and metabolome and provide a proof of concept of the suitability of using cadaveric tissues as controls for cardiovascular disease studies.
Collapse
Affiliation(s)
- Daniel W. Mutithu
- Department of Medicine, Cape Heart Institute, University of Cape Town, Cape Town, South Africa
- Division of Cardiology, Department of Medicine, University of Cape Town and Groote Schuur Hospital, Cape Town, South Africa
- Extramural Unit on Intersection of Noncommunicable Diseases and Infectious Diseases, South African Medical Research Council, Cape Town, South Africa
| | - Olukayode O. Aremu
- Department of Medicine, Cape Heart Institute, University of Cape Town, Cape Town, South Africa
- Division of Cardiology, Department of Medicine, University of Cape Town and Groote Schuur Hospital, Cape Town, South Africa
- Extramural Unit on Intersection of Noncommunicable Diseases and Infectious Diseases, South African Medical Research Council, Cape Town, South Africa
| | - Dipolelo Mokaila
- Department of Medicine, Cape Heart Institute, University of Cape Town, Cape Town, South Africa
- Division of Cardiology, Department of Medicine, University of Cape Town and Groote Schuur Hospital, Cape Town, South Africa
- Extramural Unit on Intersection of Noncommunicable Diseases and Infectious Diseases, South African Medical Research Council, Cape Town, South Africa
| | - Tasnim Bana
- Department of Medicine, Cape Heart Institute, University of Cape Town, Cape Town, South Africa
- Division of Cardiology, Department of Medicine, University of Cape Town and Groote Schuur Hospital, Cape Town, South Africa
- Extramural Unit on Intersection of Noncommunicable Diseases and Infectious Diseases, South African Medical Research Council, Cape Town, South Africa
| | - Mary Familusi
- Division of Cardiology, Department of Medicine, University of Cape Town and Groote Schuur Hospital, Cape Town, South Africa
- Department of Civil Engineering, University of Cape Town, Cape Town, South Africa
| | - Laura Taylor
- Division of Forensic Medicine and Toxicology, Department of Pathology, University of Cape Town, Cape Town, South Africa
| | - Lorna J. Martin
- Division of Forensic Medicine and Toxicology, Department of Pathology, University of Cape Town, Cape Town, South Africa
| | - Laura J. Heathfield
- Division of Forensic Medicine and Toxicology, Department of Pathology, University of Cape Town, Cape Town, South Africa
| | - Jennifer A. Kirwan
- Metabolomics Platform, Berlin Institute of Health at Charité – Universitätsmedizin Berlin, Berlin, Germany
- Max-Delbrück-Center (MDC) for Molecular Medicine, Helmholtz Association, Berlin, Germany
| | - Lubbe Wiesner
- Division of Clinical Pharmacology, Department of Medicine, University of Cape Town, Cape Town, South Africa
| | - Henry A. Adeola
- Division of Dermatology, Department of Medicine, University of Cape Town, Cape Town, South Africa
| | - Evelyn N. Lumngwena
- Department of Medicine, Cape Heart Institute, University of Cape Town, Cape Town, South Africa
- Division of Cardiology, Department of Medicine, University of Cape Town and Groote Schuur Hospital, Cape Town, South Africa
- Extramural Unit on Intersection of Noncommunicable Diseases and Infectious Diseases, South African Medical Research Council, Cape Town, South Africa
- School of Clinical Medicine, University of the Witwatersrand, Johannesburg, South Africa
| | - Rodgers Manganyi
- Chris Barnard Division of Cardiothoracic Surgery, University of Cape Town and Groote Schuur Hospital, Cape Town, South Africa
| | - Sebastian Skatulla
- Department of Civil Engineering, University of Cape Town, Cape Town, South Africa
| | - Richard Naidoo
- Division of Anatomical Pathology, Department of Pathology, University of Cape Town and National Health Laboratory Service, Cape Town, South Africa
| | - Ntobeko A. B. Ntusi
- Department of Medicine, Cape Heart Institute, University of Cape Town, Cape Town, South Africa
- Division of Cardiology, Department of Medicine, University of Cape Town and Groote Schuur Hospital, Cape Town, South Africa
- Extramural Unit on Intersection of Noncommunicable Diseases and Infectious Diseases, South African Medical Research Council, Cape Town, South Africa
- Cape Universities Body Imaging Centre, University of Cape Town, Cape Town, South Africa
- Wellcome Centre for Infectious Disease Research, University of Cape Town, Cape Town, South Africa
| |
Collapse
|
10
|
Lai QC, Zheng J, Mou J, Cui CY, Wu QC, M Musa Rizvi S, Zhang Y, Li TM, Ren YB, Liu Q, Li Q, Zhang C. Identification of hub genes in calcific aortic valve disease. Comput Biol Med 2024; 172:108214. [PMID: 38508057 DOI: 10.1016/j.compbiomed.2024.108214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 01/26/2024] [Accepted: 02/25/2024] [Indexed: 03/22/2024]
Abstract
Calcific aortic valve disease (CAVD) is a heart valve disorder characterized primarily by calcification of the aortic valve, resulting in stiffness and dysfunction of the valve. CAVD is prevalent among aging populations and is linked to factors such as hypertension, dyslipidemia, tobacco use, and genetic predisposition, and can result in becoming a growing economic and health burden. Once aortic valve calcification occurs, it will inevitably progress to aortic stenosis. At present, there are no medications available that have demonstrated effectiveness in managing or delaying the progression of the disease. In this study, we mined four publicly available microarray datasets (GSE12644 GSE51472, GSE77287, GSE233819) associated with CAVD from the GEO database with the aim of identifying hub genes associated with the occurrence of CAVD and searching for possible biological targets for the early prevention and diagnosis of CAVD. This study provides preliminary evidence for therapeutic and preventive targets for CAVD and may provide a solid foundation for subsequent biological studies.
Collapse
Affiliation(s)
- Qian-Cheng Lai
- Department of Cardiothoracic Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China; Sichuan Provincial People's Hospital, Chengdu, 610000, Sichuan, China
| | - Jie Zheng
- Department of Anesthesiology, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, 646000, Sichuan, China
| | - Jian Mou
- Department of Anesthesiology, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, 646000, Sichuan, China; Department of Pain, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, 646000, Sichuan, China
| | - Chun-Yan Cui
- Department of Anesthesiology, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, 646000, Sichuan, China; Department of Pain, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, 646000, Sichuan, China
| | - Qing-Chen Wu
- Department of Cardiothoracic Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Syed M Musa Rizvi
- Department of Cardiothoracic Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Ying Zhang
- Department of Anesthesiology, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, 646000, Sichuan, China
| | - Tian-Mei Li
- Department of Anesthesiology, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, 646000, Sichuan, China
| | - Ying-Bo Ren
- Department of Anesthesiology, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, 646000, Sichuan, China
| | - Qing Liu
- Department of Pain, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, 646000, Sichuan, China; Hejiang Traditional Chinese Medicine Hospital, Luzhou, 646000, Sichuan, China.
| | - Qun Li
- Department of Pain, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, 646000, Sichuan, China.
| | - Cheng Zhang
- Department of Cardiothoracic Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.
| |
Collapse
|
11
|
Perez KA, Deppe DW, Filas A, Singh SA, Aikawa E. Multimodal Analytical Tools to Enhance Mechanistic Understanding of Aortic Valve Calcification. THE AMERICAN JOURNAL OF PATHOLOGY 2024; 194:539-550. [PMID: 37517686 PMCID: PMC10988764 DOI: 10.1016/j.ajpath.2023.06.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 06/14/2023] [Accepted: 06/29/2023] [Indexed: 08/01/2023]
Abstract
This review focuses on technologies at the core of calcific aortic valve disease (CAVD) and drug target research advancement, including transcriptomics, proteomics, and molecular imaging. We examine how bulk RNA sequencing and single-cell RNA sequencing have engendered organismal genomes and transcriptomes, promoting the analysis of tissue gene expression profiles and cell subpopulations, respectively. We bring into focus how the field is also largely influenced by increasingly accessible proteome profiling techniques. In unison, global transcriptional and protein expression analyses allow for increased understanding of cellular behavior and pathogenic pathways under pathologic stimuli including stress, inflammation, low-density lipoprotein accumulation, increased calcium and phosphate levels, and vascular injury. We also look at how direct investigation of protein signatures paves the way for identification of targetable pathways for pharmacologic intervention. Here, we note that imaging techniques, once a clinical diagnostic tool for late-stage CAVD, have since been refined to address a clinical need to identify microcalcifications using positron emission tomography/computed tomography and even detect in vivo cellular events indicative of early stage CAVD and map the expression of identified proteins in animal models. Together, these techniques generate a holistic approach to CAVD investigation, with the potential to identify additional novel regulatory pathways.
Collapse
Affiliation(s)
- Katelyn A Perez
- Center for Interdisciplinary Cardiovascular Sciences, Division of Cardiovascular Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Daniel W Deppe
- Center for Interdisciplinary Cardiovascular Sciences, Division of Cardiovascular Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Aidan Filas
- Center for Interdisciplinary Cardiovascular Sciences, Division of Cardiovascular Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Sasha A Singh
- Center for Interdisciplinary Cardiovascular Sciences, Division of Cardiovascular Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Elena Aikawa
- Center for Interdisciplinary Cardiovascular Sciences, Division of Cardiovascular Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts; Center for Excellence in Vascular Biology, Division of Cardiovascular Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts.
| |
Collapse
|
12
|
Clift CL, Blaser MC, Gerrits W, Turner ME, Sonawane A, Pham T, Andresen JL, Fenton OS, Grolman JM, Campedelli A, Buffolo F, Schoen FJ, Hjortnaes J, Muehlschlegel JD, Mooney DJ, Aikawa M, Singh SA, Langer R, Aikawa E. Intracellular proteomics and extracellular vesiculomics as a metric of disease recapitulation in 3D-bioprinted aortic valve arrays. SCIENCE ADVANCES 2024; 10:eadj9793. [PMID: 38416823 PMCID: PMC10901368 DOI: 10.1126/sciadv.adj9793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 01/25/2024] [Indexed: 03/01/2024]
Abstract
In calcific aortic valve disease (CAVD), mechanosensitive valvular cells respond to fibrosis- and calcification-induced tissue stiffening, further driving pathophysiology. No pharmacotherapeutics are available to treat CAVD because of the paucity of (i) appropriate experimental models that recapitulate this complex environment and (ii) benchmarking novel engineered aortic valve (AV)-model performance. We established a biomaterial-based CAVD model mimicking the biomechanics of the human AV disease-prone fibrosa layer, three-dimensional (3D)-bioprinted into 96-well arrays. Liquid chromatography-tandem mass spectrometry analyses probed the cellular proteome and vesiculome to compare the 3D-bioprinted model versus traditional 2D monoculture, against human CAVD tissue. The 3D-bioprinted model highly recapitulated the CAVD cellular proteome (94% versus 70% of 2D proteins). Integration of cellular and vesicular datasets identified known and unknown proteins ubiquitous to AV calcification. This study explores how 2D versus 3D-bioengineered systems recapitulate unique aspects of human disease, positions multiomics as a technique for the evaluation of high throughput-based bioengineered model systems, and potentiates future drug discovery.
Collapse
Affiliation(s)
- Cassandra L Clift
- Division of Cardiovascular Medicine, Department of Medicine, Center for Interdisciplinary Cardiovascular Sciences, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Mark C Blaser
- Division of Cardiovascular Medicine, Department of Medicine, Center for Interdisciplinary Cardiovascular Sciences, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Willem Gerrits
- Division of Cardiovascular Medicine, Department of Medicine, Center for Interdisciplinary Cardiovascular Sciences, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
- Department of Cardiothoracic Surgery, University Medical Center Utrecht, Utrecht, Netherlands
| | - Mandy E Turner
- Division of Cardiovascular Medicine, Department of Medicine, Center for Interdisciplinary Cardiovascular Sciences, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Abhijeet Sonawane
- Division of Cardiovascular Medicine, Department of Medicine, Center for Interdisciplinary Cardiovascular Sciences, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Tan Pham
- Division of Cardiovascular Medicine, Department of Medicine, Center for Interdisciplinary Cardiovascular Sciences, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Jason L Andresen
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Owen S Fenton
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Division of Pharmacoengineering and Molecular Pharmaceutics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Joshua M Grolman
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02134, USA
- Wyss Institute for Biologically Inspired Engineering at Harvard University, Boston, MA 02115, USA
- Materials Science and Engineering, The Technion-Israel Institute of Technology, Haifa, Israel
| | - Alesandra Campedelli
- Division of Cardiovascular Medicine, Department of Medicine, Center for Interdisciplinary Cardiovascular Sciences, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Fabrizio Buffolo
- Division of Cardiovascular Medicine, Department of Medicine, Center for Interdisciplinary Cardiovascular Sciences, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
- Division of Internal Medicine and Hypertension Unite, Department of Medical Sciences, University of Torin, Turin, Italy
| | - Frederick J Schoen
- Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Jesper Hjortnaes
- Department of Cardiothoracic Surgery, Leiden University Medical Center (LUMC), Leiden, Netherlands
| | - Jochen D Muehlschlegel
- Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - David J Mooney
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02134, USA
- Wyss Institute for Biologically Inspired Engineering at Harvard University, Boston, MA 02115, USA
| | - Masanori Aikawa
- Division of Cardiovascular Medicine, Department of Medicine, Center for Interdisciplinary Cardiovascular Sciences, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
- Division of Cardiovascular Medicine, Department of Medicine, Center for Excellence in Vascular Biology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Sasha A Singh
- Division of Cardiovascular Medicine, Department of Medicine, Center for Interdisciplinary Cardiovascular Sciences, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Robert Langer
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02142, USA
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA 02142, USA
- Harvard and MIT Division of Health Science and Technology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Elena Aikawa
- Division of Cardiovascular Medicine, Department of Medicine, Center for Interdisciplinary Cardiovascular Sciences, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
- Division of Cardiovascular Medicine, Department of Medicine, Center for Excellence in Vascular Biology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
13
|
Antequera-González B, Martínez-Micaelo N, Sureda-Barbosa C, Galian-Gay L, Siliato-Robles MS, Ligero C, Evangelista A, Alegret JM. Specific Multiomic Profiling in Aortic Stenosis in Bicuspid Aortic Valve Disease. Biomedicines 2024; 12:380. [PMID: 38397982 PMCID: PMC10887224 DOI: 10.3390/biomedicines12020380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 02/01/2024] [Accepted: 02/01/2024] [Indexed: 02/25/2024] Open
Abstract
INTRODUCTION AND PURPOSE Bicuspid aortic valve (BAV) disease is associated with faster aortic valve degeneration and a high incidence of aortic stenosis (AS). In this study, we aimed to identify differences in the pathophysiology of AS between BAV and tricuspid aortic valve (TAV) patients in a multiomics study integrating metabolomics and transcriptomics as well as clinical data. METHODS Eighteen patients underwent aortic valve replacement due to severe aortic stenosis: 8 of them had a TAV, while 10 of them had a BAV. RNA sequencing (RNA-seq) and proton nuclear magnetic resonance spectroscopy (1H-NMR) were performed on these tissue samples to obtain the RNA profile and lipid and low-molecular-weight metabolites. These results combined with clinical data were posteriorly compared, and a multiomic profile specific to AS in BAV disease was obtained. RESULTS H-NMR results showed that BAV patients with AS had different metabolic profiles than TAV patients. RNA-seq also showed differential RNA expression between the groups. Functional analysis helped connect this RNA pattern to mitochondrial dysfunction. Integration of RNA-seq, 1H-NMR and clinical data helped create a multiomic profile that suggested that mitochondrial dysfunction and oxidative stress are key players in the pathophysiology of AS in BAV disease. CONCLUSIONS The pathophysiology of AS in BAV disease differs from patients with a TAV and has a specific RNA and metabolic profile. This profile was associated with mitochondrial dysfunction and increased oxidative stress.
Collapse
Affiliation(s)
- Borja Antequera-González
- Group of Cardiovascular Research, Pere Virgili Health Research Institute (IISPV), Universitat Rovira i Virgili, 43204 Reus, Spain; (B.A.-G.); (C.L.)
| | - Neus Martínez-Micaelo
- Group of Cardiovascular Research, Pere Virgili Health Research Institute (IISPV), Universitat Rovira i Virgili, 43204 Reus, Spain; (B.A.-G.); (C.L.)
| | - Carlos Sureda-Barbosa
- Cardiac Surgery Department, Hospital Vall d’Hebron (CIBERCV), Universitat Autonoma de Barcelona, 08035 Barcelona, Spain
| | - Laura Galian-Gay
- Cardiology Department, Hospital Vall d’Hebron (CIBERCV), Universitat Autonoma de Barcelona, 08035 Barcelona, Spain; (L.G.-G.)
| | - M. Sol Siliato-Robles
- Cardiac Surgery Department, Hospital Vall d’Hebron (CIBERCV), Universitat Autonoma de Barcelona, 08035 Barcelona, Spain
| | - Carmen Ligero
- Group of Cardiovascular Research, Pere Virgili Health Research Institute (IISPV), Universitat Rovira i Virgili, 43204 Reus, Spain; (B.A.-G.); (C.L.)
- Cardiology Department, Hospital Universitari Sant Joan de Reus, Universitat Rovira i Virgili, 43204 Reus, Spain
| | - Artur Evangelista
- Cardiology Department, Hospital Vall d’Hebron (CIBERCV), Universitat Autonoma de Barcelona, 08035 Barcelona, Spain; (L.G.-G.)
| | - Josep M. Alegret
- Group of Cardiovascular Research, Pere Virgili Health Research Institute (IISPV), Universitat Rovira i Virgili, 43204 Reus, Spain; (B.A.-G.); (C.L.)
- Cardiology Department, Hospital Universitari Sant Joan de Reus, Universitat Rovira i Virgili, 43204 Reus, Spain
| |
Collapse
|
14
|
Lindman BR. Innovative Methods to Tackle Longstanding Goals in Aortic Stenosis. J Am Coll Cardiol 2024; 83:592-594. [PMID: 38296403 DOI: 10.1016/j.jacc.2023.11.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 11/28/2023] [Indexed: 02/08/2024]
Affiliation(s)
- Brian R Lindman
- Structural Heart and Valve Center, Division of Cardiovascular Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA.
| |
Collapse
|
15
|
Doboszewska U, Maret W, Wlaź P. GPR39: An orphan receptor begging for ligands. Drug Discov Today 2024; 29:103861. [PMID: 38122967 DOI: 10.1016/j.drudis.2023.103861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 12/03/2023] [Accepted: 12/14/2023] [Indexed: 12/23/2023]
Abstract
Progress in the understanding of the receptor GPR39 is held up by inconsistent pharmacological data. First, the endogenous ligand(s) remain(s) contentious. Data pointing to zinc ions (Zn2+) and/or eicosanoids as endogenous ligands are a matter of debate. Second, there are uncertainties in the specificity of the widely used synthetic ligand (agonist) TC-G 1008. Third, activation of GPR39 has been often proposed as a novel treatment strategy, but new data also support that inhibition might be beneficial in certain disease contexts. Constitutive activity/promiscuous signaling suggests the need for antagonists/inverse agonists in addition to (biased) agonists. Here, we scrutinize data on the signaling and functions of GPR39 and critically assess factors that might have contributed to divergent outcomes and interpretations of investigations on this important receptor.
Collapse
Affiliation(s)
- Urszula Doboszewska
- Department of Pharmacobiology, Jagiellonian University Medical College, Medyczna 9, PL 30-688 Kraków, Poland
| | - Wolfgang Maret
- Department of Nutritional Sciences, School of Life Course and Population Sciences, Faculty of Life Sciences and Medicine, King's College London, London SE1 9NH, UK
| | - Piotr Wlaź
- Department of Animal Physiology and Pharmacology, Institute of Biological Sciences, Maria Curie-Skłodowska University, Akademicka 19, PL 20-033 Lublin, Poland.
| |
Collapse
|
16
|
Liu T, Li M, Long D, Yang J, Zhao X, Li C, Wang W, Jiang C, Tang R. Predictive value of valvular calcification for the recurrence of persistent atrial fibrillation after radiofrequency catheter ablation. Clin Cardiol 2024; 47:e24176. [PMID: 37934927 PMCID: PMC10826787 DOI: 10.1002/clc.24176] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 09/25/2023] [Accepted: 10/16/2023] [Indexed: 11/09/2023] Open
Abstract
BACKGROUND Valvular calcification (VC) is an independent risk factor for cardiovascular diseases. The relationship between VC and atrial fibrillation is not clear. HYPOTHESIS We treated the aortic valve, mitral valve, and tricuspid valve as a whole and considered the possible association between VC and recurrence of persistent atrial fibrillation (PsAF) after radiofrequency catheter ablation (RFCA). METHODS This study involved 2687 PsAF patients who underwent RFCA. Data were collected to explore the relationship between VC and outcome. VC was defined by echocardiography in aortic valve, mitral valve, or tricuspid valve. After 1 year follow-up, subgroup analysis, mixed model regression analysis, and score system analysis were performed. The external validation of 133 patients demonstrated the accuracy of this clinical prediction model. RESULTS Overall, 2687 inpatients were assigned to the recurrence group (n = 682) or the no recurrence group (n = 2005) with or without VC. Compared to patients with no recurrence, the incidence of VC was higher in recurrence patients. Recurrence was present in 18.5%, 34.9%, 39.3%, and 52.0% of the four groups, which met VC numbers of 0, 1, 2, and 3, respectively. After adjustment for potential confounding factors, VC was an independent risk factor for AF recurrence in several models. For multivariable logistic regression, a scoring system was established based on the regression coefficient. The receiver operating characteristic area of the scoring system was 0.787 in the external validation cohort. CONCLUSIONS VC was an independent risk factor for AF recurrence in PsAF after RFCA. The scoring system may be a useful clinical tool to assess AF recurrence.
Collapse
Affiliation(s)
- Tong Liu
- Department of Cardiology, Beijing Institute of Heart, Lung and Blood Vessel Diseases, Beijing Anzhen HospitalCapital Medical UniversityBeijingChina
| | - Meng‐Meng Li
- Department of Cardiology, Beijing Institute of Heart, Lung and Blood Vessel Diseases, Beijing Anzhen HospitalCapital Medical UniversityBeijingChina
| | - De‐Yong Long
- Department of Cardiology, Beijing Institute of Heart, Lung and Blood Vessel Diseases, Beijing Anzhen HospitalCapital Medical UniversityBeijingChina
| | - Jie Yang
- Department of Cardiology, Beijing Institute of Heart, Lung and Blood Vessel Diseases, Beijing Anzhen HospitalCapital Medical UniversityBeijingChina
| | - Xin Zhao
- Department of Cardiology, Beijing Institute of Heart, Lung and Blood Vessel Diseases, Beijing Anzhen HospitalCapital Medical UniversityBeijingChina
| | - Chang‐Yi Li
- Department of Cardiology, Beijing Institute of Heart, Lung and Blood Vessel Diseases, Beijing Anzhen HospitalCapital Medical UniversityBeijingChina
| | - Wei Wang
- Department of Cardiology, Beijing Institute of Heart, Lung and Blood Vessel Diseases, Beijing Anzhen HospitalCapital Medical UniversityBeijingChina
| | - Chen‐Xi Jiang
- Department of Cardiology, Beijing Institute of Heart, Lung and Blood Vessel Diseases, Beijing Anzhen HospitalCapital Medical UniversityBeijingChina
| | - Ri‐Bo Tang
- Department of Cardiology, Beijing Institute of Heart, Lung and Blood Vessel Diseases, Beijing Anzhen HospitalCapital Medical UniversityBeijingChina
| |
Collapse
|
17
|
Rogers MA, Bartoli-Leonard F, Zheng KH, Small AM, Chen HY, Clift CL, Asano T, Kuraoka S, Blaser MC, Perez KA, Natarajan P, Yeang C, Stroes ESG, Tsimikas S, Engert JC, Thanassoulis G, O’Donnell CJ, Aikawa M, Singh SA, Aikawa E. Major Facilitator Superfamily Domain Containing 5 Inhibition Reduces Lipoprotein(a) Uptake and Calcification in Valvular Heart Disease. Circulation 2024; 149:391-401. [PMID: 37937463 PMCID: PMC10842618 DOI: 10.1161/circulationaha.123.066822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Accepted: 10/20/2023] [Indexed: 11/09/2023]
Abstract
BACKGROUND High circulating levels of Lp(a) (lipoprotein[a]) increase the risk of atherosclerosis and calcific aortic valve disease, affecting millions of patients worldwide. Although atherosclerosis is commonly treated with low-density lipoprotein-targeting therapies, these do not reduce Lp(a) or risk of calcific aortic valve disease, which has no available drug therapies. Targeting Lp(a) production and catabolism may provide therapeutic benefit, but little is known about Lp(a) cellular uptake. METHODS Here, unbiased ligand-receptor capture mass spectrometry was used to identify MFSD5 (major facilitator superfamily domain containing 5) as a novel receptor/cofactor involved in Lp(a) uptake. RESULTS Reducing MFSD5 expression by a computationally identified small molecule or small interfering RNA suppressed Lp(a) uptake and calcification in primary human valvular endothelial and interstitial cells. MFSD5 variants were associated with aortic stenosis (P=0.027 after multiple hypothesis testing) with evidence suggestive of an interaction with plasma Lp(a) levels. CONCLUSIONS MFSD5 knockdown suppressing human valvular cell Lp(a) uptake and calcification, along with meta-analysis of MFSD5 variants associating with aortic stenosis, supports further preclinical assessment of MFSD5 in cardiovascular diseases, the leading cause of death worldwide.
Collapse
Affiliation(s)
- Maximillian A. Rogers
- Center for Interdisciplinary Cardiovascular Sciences, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Francesca Bartoli-Leonard
- Center for Interdisciplinary Cardiovascular Sciences, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Kang H. Zheng
- Center for Interdisciplinary Cardiovascular Sciences, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
- Department of Vascular Medicine, Academic Medical Center, Amsterdam UMC, Amsterdam, the Netherlands
| | - Aeron M. Small
- Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
- Boston VA Healthcare System, Boston, MA, USA
| | - Hao Yu Chen
- Department of Medicine, McGill University, Montreal, Quebec, Canada
| | - Cassandra L. Clift
- Center for Interdisciplinary Cardiovascular Sciences, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Takaharu Asano
- Center for Interdisciplinary Cardiovascular Sciences, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Shiori Kuraoka
- Center for Interdisciplinary Cardiovascular Sciences, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Mark C. Blaser
- Center for Interdisciplinary Cardiovascular Sciences, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Katelyn A. Perez
- Center for Interdisciplinary Cardiovascular Sciences, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Pradeep Natarajan
- Boston VA Healthcare System, Boston, MA, USA
- Cardiology Division, Department of Medicine, Cardiovascular Research Center, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Calvin Yeang
- Division of Cardiovascular Diseases, Sulpizio Cardiovascular Center, Department of Medicine, University of California, La Jolla, San Diego, CA, USA
| | - Erik S. G. Stroes
- Department of Vascular Medicine, Academic Medical Center, Amsterdam UMC, Amsterdam, the Netherlands
| | - Sotirios Tsimikas
- Division of Cardiovascular Diseases, Sulpizio Cardiovascular Center, Department of Medicine, University of California, La Jolla, San Diego, CA, USA
| | - James C. Engert
- Department of Medicine, McGill University, Montreal, Quebec, Canada
| | | | - Christopher J. O’Donnell
- Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
- Boston VA Healthcare System, Boston, MA, USA
| | - Masanori Aikawa
- Center for Interdisciplinary Cardiovascular Sciences, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
- Center for Excellence in Vascular Biology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Sasha A. Singh
- Center for Interdisciplinary Cardiovascular Sciences, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Elena Aikawa
- Center for Interdisciplinary Cardiovascular Sciences, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
- Center for Excellence in Vascular Biology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
18
|
Chen J, Ren T, Xie L, Hu H, Li X, Maitusong M, Zhou X, Hu W, Xu D, Qian Y, Cheng S, Yu K, Wang JA, Liu X. Enhancing aortic valve drug delivery with PAR2-targeting magnetic nano-cargoes for calcification alleviation. Nat Commun 2024; 15:557. [PMID: 38228638 PMCID: PMC10792006 DOI: 10.1038/s41467-024-44726-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Accepted: 01/03/2024] [Indexed: 01/18/2024] Open
Abstract
Calcific aortic valve disease is a prevalent cardiovascular disease with no available drugs capable of effectively preventing its progression. Hence, an efficient drug delivery system could serve as a valuable tool in drug screening and potentially enhance therapeutic efficacy. However, due to the rapid blood flow rate associated with aortic valve stenosis and the lack of specific markers, achieving targeted drug delivery for calcific aortic valve disease has proved to be challenging. Here we find that protease-activated-receptor 2 (PAR2) expression is up-regulated on the plasma membrane of osteogenically differentiated valvular interstitial cells. Accordingly, we develop a magnetic nanocarrier functionalized with PAR2-targeting hexapeptide for dual-active targeting drug delivery. We show that the nanocarriers effectively deliver XCT790-an anti-calcification drug-to the calcified aortic valve under extra magnetic field navigation. We demonstrate that the nano-cargoes consequently inhibit the osteogenic differentiation of valvular interstitial cells, and alleviate aortic valve calcification and stenosis in a high-fat diet-fed low-density lipoprotein receptor-deficient (Ldlr-/-) mouse model. This work combining PAR2- and magnetic-targeting presents an effective targeted drug delivery system for treating calcific aortic valve disease in a murine model, promising future clinical translation.
Collapse
Affiliation(s)
- Jinyong Chen
- Department of Cardiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, 310009, Hangzhou, P.R. China
- State Key Laboratory of Transvascular Implantation Devices, 310009, Hangzhou, P.R. China
- Cardiovascular Key Laboratory of Zhejiang Province, 310009, Hangzhou, P.R. China
| | - Tanchen Ren
- Department of Cardiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, 310009, Hangzhou, P.R. China.
- State Key Laboratory of Transvascular Implantation Devices, 310009, Hangzhou, P.R. China.
- Cardiovascular Key Laboratory of Zhejiang Province, 310009, Hangzhou, P.R. China.
| | - Lan Xie
- Department of Cardiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, 310009, Hangzhou, P.R. China
- State Key Laboratory of Transvascular Implantation Devices, 310009, Hangzhou, P.R. China
- Cardiovascular Key Laboratory of Zhejiang Province, 310009, Hangzhou, P.R. China
| | - Haochang Hu
- Department of Cardiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, 310009, Hangzhou, P.R. China
- State Key Laboratory of Transvascular Implantation Devices, 310009, Hangzhou, P.R. China
- Cardiovascular Key Laboratory of Zhejiang Province, 310009, Hangzhou, P.R. China
| | - Xu Li
- Department of Vascular Surgery, Zhongshan Hospital, Fudan University, 200030, Shanghai, P.R. China
| | - Miribani Maitusong
- Department of Cardiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, 310009, Hangzhou, P.R. China
- State Key Laboratory of Transvascular Implantation Devices, 310009, Hangzhou, P.R. China
- Cardiovascular Key Laboratory of Zhejiang Province, 310009, Hangzhou, P.R. China
| | - Xuhao Zhou
- Department of Cardiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, 310009, Hangzhou, P.R. China
- State Key Laboratory of Transvascular Implantation Devices, 310009, Hangzhou, P.R. China
- Cardiovascular Key Laboratory of Zhejiang Province, 310009, Hangzhou, P.R. China
| | - Wangxing Hu
- Department of Cardiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, 310009, Hangzhou, P.R. China
- State Key Laboratory of Transvascular Implantation Devices, 310009, Hangzhou, P.R. China
- Cardiovascular Key Laboratory of Zhejiang Province, 310009, Hangzhou, P.R. China
| | - Dilin Xu
- Department of Cardiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, 310009, Hangzhou, P.R. China
- State Key Laboratory of Transvascular Implantation Devices, 310009, Hangzhou, P.R. China
- Cardiovascular Key Laboratory of Zhejiang Province, 310009, Hangzhou, P.R. China
| | - Yi Qian
- Department of Cardiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, 310009, Hangzhou, P.R. China
- State Key Laboratory of Transvascular Implantation Devices, 310009, Hangzhou, P.R. China
- Cardiovascular Key Laboratory of Zhejiang Province, 310009, Hangzhou, P.R. China
| | - Si Cheng
- Department of Cardiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, 310009, Hangzhou, P.R. China
- State Key Laboratory of Transvascular Implantation Devices, 310009, Hangzhou, P.R. China
- Cardiovascular Key Laboratory of Zhejiang Province, 310009, Hangzhou, P.R. China
| | - Kaixiang Yu
- Department of Cardiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, 310009, Hangzhou, P.R. China
- State Key Laboratory of Transvascular Implantation Devices, 310009, Hangzhou, P.R. China
- Cardiovascular Key Laboratory of Zhejiang Province, 310009, Hangzhou, P.R. China
| | - Jian An Wang
- Department of Cardiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, 310009, Hangzhou, P.R. China.
- State Key Laboratory of Transvascular Implantation Devices, 310009, Hangzhou, P.R. China.
- Cardiovascular Key Laboratory of Zhejiang Province, 310009, Hangzhou, P.R. China.
- Research Center for Life Science and Human Health, Binjiang Institute of Zhejiang University, Hangzhou, 310053, P.R. China.
| | - Xianbao Liu
- Department of Cardiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, 310009, Hangzhou, P.R. China.
- State Key Laboratory of Transvascular Implantation Devices, 310009, Hangzhou, P.R. China.
- Cardiovascular Key Laboratory of Zhejiang Province, 310009, Hangzhou, P.R. China.
| |
Collapse
|
19
|
Dittfeld C, Winkelkotte M, Scheer A, Voigt E, Schmieder F, Behrens S, Jannasch A, Matschke K, Sonntag F, Tugtekin SM. Challenges of aortic valve tissue culture - maintenance of viability and extracellular matrix in the pulsatile dynamic microphysiological system. J Biol Eng 2023; 17:60. [PMID: 37770970 PMCID: PMC10538250 DOI: 10.1186/s13036-023-00377-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 09/14/2023] [Indexed: 09/30/2023] Open
Abstract
BACKGROUND Calcific aortic valve disease (CAVD) causes an increasing health burden in the 21st century due to aging population. The complex pathophysiology remains to be understood to develop novel prevention and treatment strategies. Microphysiological systems (MPSs), also known as organ-on-chip or lab-on-a-chip systems, proved promising in bridging in vitro and in vivo approaches by applying integer AV tissue and modelling biomechanical microenvironment. This study introduces a novel MPS comprising different micropumps in conjunction with a tissue-incubation-chamber (TIC) for long-term porcine and human AV incubation (pAV, hAV). RESULTS Tissue cultures in two different MPS setups were compared and validated by a bimodal viability analysis and extracellular matrix transformation assessment. The MPS-TIC conjunction proved applicable for incubation periods of 14-26 days. An increased metabolic rate was detected for pulsatile dynamic MPS culture compared to static condition indicated by increased LDH intensity. ECM changes such as an increase of collagen fibre content in line with tissue contraction and mass reduction, also observed in early CAVD, were detected in MPS-TIC culture, as well as an increase of collagen fibre content. Glycosaminoglycans remained stable, no significant alterations of α-SMA or CD31 epitopes and no accumulation of calciumhydroxyapatite were observed after 14 days of incubation. CONCLUSIONS The presented ex vivo MPS allows long-term AV tissue incubation and will be adopted for future investigation of CAVD pathophysiology, also implementing human tissues. The bimodal viability assessment and ECM analyses approve reliability of ex vivo CAVD investigation and comparability of parallel tissue segments with different treatment strategies regarding the AV (patho)physiology.
Collapse
Affiliation(s)
- Claudia Dittfeld
- Department of Cardiac Surgery, Carl Gustav Carus Faculty of Medicine, Technische Universität Dresden, Heart Centre Dresden, Fetscherstr. 76, 01307, Dresden, Germany.
| | - Maximilian Winkelkotte
- Department of Cardiac Surgery, Carl Gustav Carus Faculty of Medicine, Technische Universität Dresden, Heart Centre Dresden, Fetscherstr. 76, 01307, Dresden, Germany
| | - Anna Scheer
- Department of Cardiac Surgery, Carl Gustav Carus Faculty of Medicine, Technische Universität Dresden, Heart Centre Dresden, Fetscherstr. 76, 01307, Dresden, Germany
| | - Emmely Voigt
- Department of Cardiac Surgery, Carl Gustav Carus Faculty of Medicine, Technische Universität Dresden, Heart Centre Dresden, Fetscherstr. 76, 01307, Dresden, Germany
| | - Florian Schmieder
- Fraunhofer Institute for Material and Beam Technology IWS, Dresden, Germany
| | - Stephan Behrens
- Fraunhofer Institute for Material and Beam Technology IWS, Dresden, Germany
| | - Anett Jannasch
- Department of Cardiac Surgery, Carl Gustav Carus Faculty of Medicine, Technische Universität Dresden, Heart Centre Dresden, Fetscherstr. 76, 01307, Dresden, Germany
| | - Klaus Matschke
- Department of Cardiac Surgery, Carl Gustav Carus Faculty of Medicine, Technische Universität Dresden, Heart Centre Dresden, Fetscherstr. 76, 01307, Dresden, Germany
| | - Frank Sonntag
- Fraunhofer Institute for Material and Beam Technology IWS, Dresden, Germany
| | - Sems-Malte Tugtekin
- Department of Cardiac Surgery, Carl Gustav Carus Faculty of Medicine, Technische Universität Dresden, Heart Centre Dresden, Fetscherstr. 76, 01307, Dresden, Germany
| |
Collapse
|
20
|
Zhou Y, Yuan Z, Wang M, Zhang Z, Tan C, Yu J, Bi Y, Liao X, Zhou X, Ali Sheikh MS, Yang D. Liraglutide Attenuates Aortic Valve Calcification in a High-Cholesterol-Diet-Induced Experimental Calcific Aortic Valve Disease Model in Apolipoprotein E-Deficient Mice. J Cardiovasc Dev Dis 2023; 10:386. [PMID: 37754815 PMCID: PMC10531705 DOI: 10.3390/jcdd10090386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 09/02/2023] [Accepted: 09/04/2023] [Indexed: 09/28/2023] Open
Abstract
BACKGROUND Calcific aortic valve disease (CAVD) is a significant cause of morbidity and mortality among elderly people. However, no effective medications have been approved to slow or prevent the progression of CAVD. Here, we examined the effect of liraglutide on aortic valve stenosis. METHODS Male Apoe-/- mice were fed with a high-cholesterol diet for 24 weeks to generate an experimental CAVD model and randomly assigned to a liraglutide treatment group or control group. Echocardiography and immunohistological analyses were performed to examine the aortic valve function and morphology, fibrosis, and calcium deposition. Plasma Glucagon-like peptide-1 (GLP-1) levels and inflammatory contents were measured via ELISA, FACS, and immunofluorescence. RNA sequencing (RNA-seq) was used to identify liraglutide-affected pathways and processes. RESULTS Plasma GLP-1 levels were reduced in the CAVD model, and liraglutide treatment significantly improved aortic valve calcification and functions and attenuated inflammation. RNA-seq showed that liraglutide affects multiple myofibroblastic and osteogenic differentiations or inflammation-associated biological states or processes in the aortic valve. Those liraglutide-mediated beneficial effects were associated with increased GLP-1 receptor (GLP-1R) expression. CONCLUSIONS Liraglutide blocks aortic valve calcification and may serve as a potential therapeutic drug for CAVD treatment.
Collapse
Affiliation(s)
- Yangzhao Zhou
- Department of Cardiovascular Surgery, The Second Xiangya Hospital of Central South University, Changsha 410011, China; (Y.Z.); (Z.Y.); (M.W.); (Z.Z.); (C.T.); (J.Y.); (Y.B.); (X.L.); (X.Z.)
| | - Zhaoshun Yuan
- Department of Cardiovascular Surgery, The Second Xiangya Hospital of Central South University, Changsha 410011, China; (Y.Z.); (Z.Y.); (M.W.); (Z.Z.); (C.T.); (J.Y.); (Y.B.); (X.L.); (X.Z.)
| | - Min Wang
- Department of Cardiovascular Surgery, The Second Xiangya Hospital of Central South University, Changsha 410011, China; (Y.Z.); (Z.Y.); (M.W.); (Z.Z.); (C.T.); (J.Y.); (Y.B.); (X.L.); (X.Z.)
| | - Zhiyuan Zhang
- Department of Cardiovascular Surgery, The Second Xiangya Hospital of Central South University, Changsha 410011, China; (Y.Z.); (Z.Y.); (M.W.); (Z.Z.); (C.T.); (J.Y.); (Y.B.); (X.L.); (X.Z.)
| | - Changming Tan
- Department of Cardiovascular Surgery, The Second Xiangya Hospital of Central South University, Changsha 410011, China; (Y.Z.); (Z.Y.); (M.W.); (Z.Z.); (C.T.); (J.Y.); (Y.B.); (X.L.); (X.Z.)
| | - Jiaolian Yu
- Department of Cardiovascular Surgery, The Second Xiangya Hospital of Central South University, Changsha 410011, China; (Y.Z.); (Z.Y.); (M.W.); (Z.Z.); (C.T.); (J.Y.); (Y.B.); (X.L.); (X.Z.)
| | - Yanfeng Bi
- Department of Cardiovascular Surgery, The Second Xiangya Hospital of Central South University, Changsha 410011, China; (Y.Z.); (Z.Y.); (M.W.); (Z.Z.); (C.T.); (J.Y.); (Y.B.); (X.L.); (X.Z.)
| | - Xiaobo Liao
- Department of Cardiovascular Surgery, The Second Xiangya Hospital of Central South University, Changsha 410011, China; (Y.Z.); (Z.Y.); (M.W.); (Z.Z.); (C.T.); (J.Y.); (Y.B.); (X.L.); (X.Z.)
| | - Xinmin Zhou
- Department of Cardiovascular Surgery, The Second Xiangya Hospital of Central South University, Changsha 410011, China; (Y.Z.); (Z.Y.); (M.W.); (Z.Z.); (C.T.); (J.Y.); (Y.B.); (X.L.); (X.Z.)
| | - Md Sayed Ali Sheikh
- Department of Internal Medicine, Cardiology, College of Medicine, Jouf University, Sakaka 72388, Saudi Arabia;
| | - Dafeng Yang
- Department of Cardiovascular Surgery, The Second Xiangya Hospital of Central South University, Changsha 410011, China; (Y.Z.); (Z.Y.); (M.W.); (Z.Z.); (C.T.); (J.Y.); (Y.B.); (X.L.); (X.Z.)
| |
Collapse
|
21
|
Shu S, Yang Y, Sun B, Su Z, Fu M, Xiong C, Zhang X, Hu S, Song J. Alerting trends in epidemiology for calcific aortic valve disease, 1990-2019: An age-period-cohort analysis for the Global Burden of Disease Study 2019. EUROPEAN HEART JOURNAL. QUALITY OF CARE & CLINICAL OUTCOMES 2023; 9:459-473. [PMID: 36893802 PMCID: PMC10405136 DOI: 10.1093/ehjqcco/qcad018] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 02/20/2023] [Accepted: 03/07/2023] [Indexed: 03/11/2023]
Abstract
AIMS To assess the trends in calcific aortic valve disease (CAVD) epidemiology, with an emphasis on CAVD mortality, leading risk factors, and their associations with age, period, and birth cohort. METHODS AND RESULTS Prevalence, disability-adjusted life years, and mortality were derived from the Global Burden of Disease Study 2019. The age-period-cohort model was employed to study the detailed trends of CAVD mortality and its leading risk factors. Globally, CAVD showed unsatisfactory results from 1990 to 2019, with the CAVD deaths of 127 000 in 2019. CAVD mortality was substantially reduced in high socio-demographic index (SDI) countries [-1.45%, 95% confidence interval (CI) (-1.61 to -1.30)], mildly increased in high-middle SDI countries [0.22%, 95% CI (0.06-0.37)], and unchanged in other SDI quintiles. There was a noticeable transition in CAVD deaths from younger to older populations globally. The CAVD mortality increased exponentially with age, and the male had higher mortality than the female before 80 years old. Favourable period [0.69, 95% CI (0.66-0.72)] and birth effects [0.30, 95% CI (0.22-0.43)] were mainly observed in high SDI countries, while unfavourable effects were mostly noticed in high-middle SDI countries. High systolic blood pressure was the leading risk factor of CAVD deaths globally, and it showed favourable trends in high SDI regions. CONCLUSION Although CAVD mortality reduction was observed globally, unfavourable period, and cohort effects were found in many countries. Increase of mortality rate among the population ≥85 years was the common challenge across all SDI quintiles, stressing the necessity to further improve health care for CAVD patients worldwide.
Collapse
Affiliation(s)
| | | | | | - Zhanhao Su
- Department of Cardiovascular Surgery, Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Mengxia Fu
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- The Cardiomyopathy Research Group, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | | | | | | | | |
Collapse
|
22
|
Sakaue T, Koyama T, Nakamura Y, Okamoto K, Kawashima T, Umeno T, Nakayama Y, Miyamoto S, Shikata F, Hamaguchi M, Aono J, Kurata M, Namiguchi K, Uchita S, Masumoto J, Yamaguchi O, Higashiyama S, Izutani H. Bioprosthetic Valve Deterioration: Accumulation of Circulating Proteins and Macrophages in the Valve Interstitium. JACC Basic Transl Sci 2023; 8:862-880. [PMID: 37547071 PMCID: PMC10401294 DOI: 10.1016/j.jacbts.2023.01.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 01/03/2023] [Accepted: 01/03/2023] [Indexed: 08/08/2023]
Abstract
Histologic evaluations revealed excessive accumulations of macrophages and absence of fibroblastic interstitial cells in explanted bioprosthetic valves. Comprehensive gene and protein expression analysis and histology unveiled an accumulation of fibrinogen and plasminogen, an activator of infiltrated macrophages, from degenerated valve surfaces in the interstitial spaces. These pathologies were completely reproduced in a goat model replaced with an autologous pericardium-derived aortic valve. Further preclinical animal experiments using goats demonstrated that preventing infiltration of macrophages and circulating proteins by increasing collagen density and leaflet strength is an effective treatment option.
Collapse
Affiliation(s)
- Tomohisa Sakaue
- Department of Cardiovascular and Thoracic Surgery, Ehime University Graduate School of Medicine, Toon, Japan
- Department of Cell Growth and Tumor Regulation, Proteo-Science Center, Toon, Japan
| | - Tadaaki Koyama
- Department of Cardiovascular Surgery, Kobe City Medical Center General Hospital, Kobe, Japan
| | - Yoshitsugu Nakamura
- Department of Cardiovascular Surgery, Chiba-Nishi General Hospital, Matsudo, Japan
| | - Keitaro Okamoto
- Department of Cardiovascular Surgery, Oita University, Yufu, Japan
| | | | - Tadashi Umeno
- Department of Cardiovascular Surgery, Oita University, Yufu, Japan
| | - Yasuhide Nakayama
- Department of Cardiovascular Surgery, Oita University, Yufu, Japan
- Biotube, Tokyo, Japan
| | - Shinji Miyamoto
- Department of Cardiovascular Surgery, Oita University, Yufu, Japan
| | - Fumiaki Shikata
- Department of Cardiovascular and Thoracic Surgery, Ehime University Graduate School of Medicine, Toon, Japan
| | - Mika Hamaguchi
- Department of Cardiology, Pulmonology, Hypertension, and Nephrology, Ehime University Graduate School of Medicine, Toon, Japan
| | - Jun Aono
- Department of Cardiology, Pulmonology, Hypertension, and Nephrology, Ehime University Graduate School of Medicine, Toon, Japan
| | - Mie Kurata
- Department of Pathology, Division of Analytical Pathology, Ehime University Graduate School of Medicine, Toom, Japan
- Department of Pathology, Proteo-Science Center, Toon, Japan
| | - Kenji Namiguchi
- Department of Cardiovascular and Thoracic Surgery, Ehime University Graduate School of Medicine, Toon, Japan
| | - Shunji Uchita
- Department of Cardiovascular and Thoracic Surgery, Ehime University Graduate School of Medicine, Toon, Japan
| | - Junya Masumoto
- Department of Pathology, Division of Analytical Pathology, Ehime University Graduate School of Medicine, Toom, Japan
- Department of Pathology, Proteo-Science Center, Toon, Japan
| | - Osamu Yamaguchi
- Department of Cardiology, Pulmonology, Hypertension, and Nephrology, Ehime University Graduate School of Medicine, Toon, Japan
| | - Shigeki Higashiyama
- Department of Cell Growth and Tumor Regulation, Proteo-Science Center, Toon, Japan
- Department of Biochemistry and Molecular Genetics, Ehime University Graduate School of Medicine, Toon, Japan
- Department of Molecular and Cellular Biology, Research Center, Osaka International Cancer Institute, Osaka, Japan
| | - Hironori Izutani
- Department of Cardiovascular and Thoracic Surgery, Ehime University Graduate School of Medicine, Toon, Japan
| |
Collapse
|
23
|
Small AM, Peloso G, Linefsky J, Aragam J, Galloway A, Tanukonda V, Wang LC, Yu Z, Selvaraj MS, Farber-Eger EH, Baker MT, Setia-Verma S, Lee SSK, Preuss M, Ritchie M, Damrauer SM, Rader DJ, Wells QS, Loos RJF, Lubitz S, Thanassoulis G, Cho K, Wilson PWF, Natarajan P, O’Donnell CJ. Multiancestry Genome-Wide Association Study of Aortic Stenosis Identifies Multiple Novel Loci in the Million Veteran Program. Circulation 2023; 147:942-955. [PMID: 36802703 PMCID: PMC10806851 DOI: 10.1161/circulationaha.122.061451] [Citation(s) in RCA: 30] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 12/15/2022] [Indexed: 02/22/2023]
Abstract
BACKGROUND Calcific aortic stenosis (CAS) is the most common valvular heart disease in older adults and has no effective preventive therapies. Genome-wide association studies (GWAS) can identify genes influencing disease and may help prioritize therapeutic targets for CAS. METHODS We performed a GWAS and gene association study of 14 451 patients with CAS and 398 544 controls in the Million Veteran Program. Replication was performed in the Million Veteran Program, Penn Medicine Biobank, Mass General Brigham Biobank, BioVU, and BioMe, totaling 12 889 cases and 348 094 controls. Causal genes were prioritized from genome-wide significant variants using polygenic priority score gene localization, expression quantitative trait locus colocalization, and nearest gene methods. CAS genetic architecture was compared with that of atherosclerotic cardiovascular disease. Causal inference for cardiometabolic biomarkers in CAS was performed using Mendelian randomization and genome-wide significant loci were characterized further through phenome-wide association study. RESULTS We identified 23 genome-wide significant lead variants in our GWAS representing 17 unique genomic regions. Of the 23 lead variants, 14 were significant in replication, representing 11 unique genomic regions. Five replicated genomic regions were previously known risk loci for CAS (PALMD, TEX41, IL6, LPA, FADS) and 6 were novel (CEP85L, FTO, SLMAP, CELSR2, MECOM, CDAN1). Two novel lead variants were associated in non-White individuals (P<0.05): rs12740374 (CELSR2) in Black and Hispanic individuals and rs1522387 (SLMAP) in Black individuals. Of the 14 replicated lead variants, only 2 (rs10455872 [LPA], rs12740374 [CELSR2]) were also significant in atherosclerotic cardiovascular disease GWAS. In Mendelian randomization, lipoprotein(a) and low-density lipoprotein cholesterol were both associated with CAS, but the association between low-density lipoprotein cholesterol and CAS was attenuated when adjusting for lipoprotein(a). Phenome-wide association study highlighted varying degrees of pleiotropy, including between CAS and obesity at the FTO locus. However, the FTO locus remained associated with CAS after adjusting for body mass index and maintained a significant independent effect on CAS in mediation analysis. CONCLUSIONS We performed a multiancestry GWAS in CAS and identified 6 novel genomic regions in the disease. Secondary analyses highlighted the roles of lipid metabolism, inflammation, cellular senescence, and adiposity in the pathobiology of CAS and clarified the shared and differential genetic architectures of CAS with atherosclerotic cardiovascular diseases.
Collapse
Affiliation(s)
- Aeron M Small
- Department of Cardiology, Boston Veterans Affairs Healthcare System, West Roxbury, MA, USA
- Cardiovascular Medicine Division, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, MA, USA
| | - Gina Peloso
- Massachusetts Veterans Epidemiology Research and Information Center (MAVERIC), Veterans Affairs, Boston Healthcare System, Boston, Massachusetts
- Department of Biostatistics, Boston University School of Public Health, Boston, MA, United States
| | - Jason Linefsky
- Atlanta Veterans Affairs Medical Center, Decatur, Georgia
- Division of Cardiology, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia
| | - Jayashri Aragam
- Department of Cardiology, Boston Veterans Affairs Healthcare System, West Roxbury, MA, USA
| | - Ashley Galloway
- Massachusetts Veterans Epidemiology Research and Information Center (MAVERIC), Veterans Affairs, Boston Healthcare System, Boston, Massachusetts
| | | | - Lu-Chen Wang
- Cardiovascular Research Center, Massachusetts General Hospital, Boston, MA, USA, 02114
- Cardiovascular Disease Initiative, Broad Institute, Cambridge, MA, USA, 02142
| | - Zhi Yu
- Cardiovascular Research Center, Massachusetts General Hospital, Boston, MA, USA, 02114
- Cardiovascular Disease Initiative, Broad Institute, Cambridge, MA, USA, 02142
- Program in Medical and Population Genetics, Broad Institute of Harvard and MIT, Cambridge, MA, USA
| | - Margaret Sunitha Selvaraj
- Cardiovascular Research Center, Massachusetts General Hospital, Boston, MA, USA, 02114
- Program in Medical and Population Genetics, Broad Institute of Harvard and MIT, Cambridge, MA, USA
- Department of Medicine, Harvard Medical School, Boston, Massachusetts
| | - Eric H Farber-Eger
- Vanderbilt Institute for Clinical and Translational Research, Vanderbilt University Medical Center, Nashville, TN, United States, 37232
| | - Michael T Baker
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232
| | - Shefali Setia-Verma
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Simon SK Lee
- The Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA, 10029
| | - Michael Preuss
- The Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA, 10029
| | - Marylyn Ritchie
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Scott M Damrauer
- Department of Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA, 19104
- Corporal Michael Crescenz VA Medical Center, Philadelphia, PA, USA, 19104
| | - Daniel J Rader
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Quinn S Wells
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232
- Vanderbilt Genetics Institute, Vanderbilt University Medical Center, Nashville, TN 37232
- Department of Biomedical Informatics, Vanderbilt University Medical Center, Nashville, TN 37232
| | - Ruth J F Loos
- The Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA, 10029
- The Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA, 10029
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Science, University of Copenhagen, Copenhagen, Denmark
| | - Steven Lubitz
- Cardiovascular Research Center, Massachusetts General Hospital, Boston, MA, USA, 02114
| | - George Thanassoulis
- Department of Medicine, Division of Experimental Medicine, McGill University Health Center, 1001 Decarie Boulevard, Montreal, QC H4A 3J1, Canada
| | - Kelly Cho
- Massachusetts Veterans Epidemiology Research and Information Center (MAVERIC), Veterans Affairs, Boston Healthcare System, Boston, Massachusetts
| | - Peter WF Wilson
- Atlanta Veterans Affairs Medical Center, Decatur, Georgia
- Division of Cardiology, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia
- Department of Epidemiology, Rollins School of Public Health, Emory University, Atlanta, Georgia
| | | | - Pradeep Natarajan
- Cardiovascular Research Center, Massachusetts General Hospital, Boston, MA, USA, 02114
- Cardiovascular Disease Initiative, Broad Institute, Cambridge, MA, USA, 02142
- Department of Medicine, Harvard Medical School, Boston, Massachusetts
- Division of Cardiology, Department of Medicine, Massachusetts General Hospital, Boston
- Center for Genomic Medicine, Department of Medicine, Massachusetts General Hospital, Boston
| | - Christopher J O’Donnell
- Department of Cardiology, Boston Veterans Affairs Healthcare System, West Roxbury, MA, USA
- Cardiovascular Medicine Division, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, MA, USA
| |
Collapse
|
24
|
Motta SE, Martin M, Gähwiler EKN, Visser VL, Zaytseva P, Ehterami A, Hoerstrup SP, Emmert MY. Combining Cell Technologies With Biomimetic Tissue Engineering Applications: A New Paradigm for Translational Cardiovascular Therapies. Stem Cells Transl Med 2023; 12:72-82. [PMID: 36806699 PMCID: PMC9985110 DOI: 10.1093/stcltm/szad002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Accepted: 12/24/2022] [Indexed: 02/22/2023] Open
Abstract
Cardiovascular disease is a major cause of morbidity and mortality worldwide and, to date, the clinically available prostheses still present several limitations. The design of next-generation regenerative replacements either based on cellular or extracellular matrix technologies can address these shortcomings. Therefore, tissue engineered constructs could potentially become a promising alterative to the current therapeutic options for patients with cardiovascular diseases. In this review, we selectively present an overview of the current tissue engineering tools such as induced pluripotent stem cells, biomimetic materials, computational modeling, and additive manufacturing technologies, with a focus on their application to translational cardiovascular therapies. We discuss how these advanced technologies can help the development of biomimetic tissue engineered constructs and we finally summarize the latest clinical evidence for their use, and their potential therapeutic outcome.
Collapse
Affiliation(s)
- Sarah E Motta
- Institute for Regenerative Medicine (IREM), University of Zurich, Zurich, Switzerland
| | - Marcy Martin
- Institute for Regenerative Medicine (IREM), University of Zurich, Zurich, Switzerland
| | - Eric K N Gähwiler
- Institute for Regenerative Medicine (IREM), University of Zurich, Zurich, Switzerland
| | - Valery L Visser
- Institute for Regenerative Medicine (IREM), University of Zurich, Zurich, Switzerland
| | - Polina Zaytseva
- Institute for Regenerative Medicine (IREM), University of Zurich, Zurich, Switzerland
| | - Arian Ehterami
- Institute for Regenerative Medicine (IREM), University of Zurich, Zurich, Switzerland
| | - Simon P Hoerstrup
- Institute for Regenerative Medicine (IREM), University of Zurich, Zurich, Switzerland
- Wyss Zurich, University and ETH Zurich, Zurich, Switzerland
| | - Maximilian Y Emmert
- Institute for Regenerative Medicine (IREM), University of Zurich, Zurich, Switzerland
- Wyss Zurich, University and ETH Zurich, Zurich, Switzerland
- Charité Universitätsmedizin Berlin, Berlin, Germany
- Deutsches Herzzentrum der Charité (DHZC), Dept of Cardiothoracic and Vascular Surgery, Berlin, Germany
| |
Collapse
|
25
|
Hao X, Cheng S, Jiang B, Xin S. Applying multi-omics techniques to the discovery of biomarkers for acute aortic dissection. Front Cardiovasc Med 2022; 9:961991. [PMID: 36588568 PMCID: PMC9797526 DOI: 10.3389/fcvm.2022.961991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Accepted: 11/28/2022] [Indexed: 12/23/2022] Open
Abstract
Acute aortic dissection (AAD) is a cardiovascular disease that manifests suddenly and fatally. Due to the lack of specific early symptoms, many patients with AAD are often overlooked or misdiagnosed, which is undoubtedly catastrophic for patients. The particular pathogenic mechanism of AAD is yet unknown, which makes clinical pharmacological therapy extremely difficult. Therefore, it is necessary and crucial to find and employ unique biomarkers for Acute aortic dissection (AAD) as soon as possible in clinical practice and research. This will aid in the early detection of AAD and give clear guidelines for the creation of focused treatment agents. This goal has been made attainable over the past 20 years by the quick advancement of omics technologies and the development of high-throughput tissue specimen biomarker screening. The primary histology data support and add to one another to create a more thorough and three-dimensional picture of the disease. Based on the introduction of the main histology technologies, in this review, we summarize the current situation and most recent developments in the application of multi-omics technologies to AAD biomarker discovery and emphasize the significance of concentrating on integration concepts for integrating multi-omics data. In this context, we seek to offer fresh concepts and recommendations for fundamental investigation, perspective innovation, and therapeutic development in AAD.
Collapse
Affiliation(s)
- Xinyu Hao
- Department of Vascular Surgery, The First Affiliated Hospital of China Medical University, China Medical University, Shenyang, China,Key Laboratory of Pathogenesis, Prevention and Therapeutics of Aortic Aneurysm, Shenyang, Liaoning, China
| | - Shuai Cheng
- Department of Vascular Surgery, The First Affiliated Hospital of China Medical University, China Medical University, Shenyang, China,Key Laboratory of Pathogenesis, Prevention and Therapeutics of Aortic Aneurysm, Shenyang, Liaoning, China
| | - Bo Jiang
- Department of Vascular Surgery, The First Affiliated Hospital of China Medical University, China Medical University, Shenyang, China,Key Laboratory of Pathogenesis, Prevention and Therapeutics of Aortic Aneurysm, Shenyang, Liaoning, China
| | - Shijie Xin
- Department of Vascular Surgery, The First Affiliated Hospital of China Medical University, China Medical University, Shenyang, China,Key Laboratory of Pathogenesis, Prevention and Therapeutics of Aortic Aneurysm, Shenyang, Liaoning, China,*Correspondence: Shijie Xin,
| |
Collapse
|
26
|
Clift CL, Saunders J, Drake RR, Angel PM. Perspectives on pediatric congenital aortic valve stenosis: Extracellular matrix proteins, post translational modifications, and proteomic strategies. Front Cardiovasc Med 2022; 9:1024049. [PMID: 36439995 PMCID: PMC9685993 DOI: 10.3389/fcvm.2022.1024049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Accepted: 10/24/2022] [Indexed: 11/11/2022] Open
Abstract
In heart valve biology, organization of the extracellular matrix structure is directly correlated to valve function. This is especially true in cases of pediatric congenital aortic valve stenosis (pCAVS), in which extracellular matrix (ECM) dysregulation is a hallmark of the disease, eventually leading to left ventricular hypertrophy and heart failure. Therapeutic strategies are limited, especially in pediatric cases in which mechanical and tissue engineered valve replacements may not be a suitable option. By identifying mechanisms of translational and post-translational dysregulation of ECM in CAVS, potential drug targets can be identified, and better bioengineered solutions can be developed. In this review, we summarize current knowledge regarding ECM proteins and their post translational modifications (PTMs) during aortic valve development and disease and contributing factors to ECM dysregulation in CAVS. Additionally, we aim to draw parallels between other fibrotic disease and contributions to ECM post-translational modifications. Finally, we explore the current treatment options in pediatrics and identify how the field of proteomics has advanced in recent years, highlighting novel characterization methods of ECM and PTMs that may be used to identify potential therapeutic strategies relevant to pCAVS.
Collapse
Affiliation(s)
- Cassandra L. Clift
- Department of Cell and Molecular Pharmacology and Experimental Therapeutics, Medical University of South Carolina, Charleston, SC, United States
- Division of Cardiovascular Medicine, Center for Interdisciplinary Cardiovascular Sciences, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, United States
| | - Janet Saunders
- Department of Cell and Molecular Pharmacology and Experimental Therapeutics, Medical University of South Carolina, Charleston, SC, United States
| | - Richard R. Drake
- Department of Cell and Molecular Pharmacology and Experimental Therapeutics, Medical University of South Carolina, Charleston, SC, United States
| | - Peggi M. Angel
- Department of Cell and Molecular Pharmacology and Experimental Therapeutics, Medical University of South Carolina, Charleston, SC, United States
- *Correspondence: Peggi M. Angel,
| |
Collapse
|
27
|
Majumdar U, Choudhury TZ, Manivannan S, Ueyama Y, Basu M, Garg V. Single-cell RNA-sequencing analysis of aortic valve interstitial cells demonstrates the regulation of integrin signaling by nitric oxide. Front Cardiovasc Med 2022; 9:742850. [PMID: 36386365 PMCID: PMC9640371 DOI: 10.3389/fcvm.2022.742850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 09/30/2022] [Indexed: 11/22/2022] Open
Abstract
Calcific aortic valve disease (CAVD) is an increasingly prevalent condition among the elderly population that is associated with significant morbidity and mortality. Insufficient understanding of the underlying disease mechanisms has hindered the development of pharmacologic therapies for CAVD. Recently, we described nitric oxide (NO) mediated S-nitrosylation as a novel mechanism for preventing the calcific process. We demonstrated that NO donor or an S-nitrosylating agent, S-nitrosoglutathione (GSNO), inhibits spontaneous calcification in porcine aortic valve interstitial cells (pAVICs) and this was supported by single-cell RNA sequencing (scRNAseq) that demonstrated NO donor and GSNO inhibited myofibroblast activation of pAVICs. Here, we investigated novel signaling pathways that are critical for the calcification of pAVICs that are altered by NO and GSNO by performing an in-depth analysis of the scRNA-seq dataset. Transcriptomic analysis revealed 1,247 differentially expressed genes in pAVICs after NO donor or GSNO treatment compared to untreated cells. Pathway-based analysis of the differentially expressed genes revealed an overrepresentation of the integrin signaling pathway, along with the Rho GTPase, Wnt, TGF-β, and p53 signaling pathways. We demonstrate that ITGA8 and VCL, two of the identified genes from the integrin signaling pathway, which are known to regulate cell-extracellular matrix (ECM) communication and focal adhesion, were upregulated in both in vitro and in vivo calcific conditions. Reduced expression of these genes after treatment with NO donor suggests that NO inhibits calcification by targeting myofibroblast adhesion and ECM remodeling. In addition, withdrawal of NO donor after 3 days of exposure revealed that NO-mediated transcriptional and translational regulation is a transient event and requires continuous NO exposure to inhibit calcification. Overall, our data suggest that NO and S-nitrosylation regulate the integrin signaling pathway to maintain healthy cell-ECM interaction and prevent CAVD.
Collapse
Affiliation(s)
- Uddalak Majumdar
- Center for Cardiovascular Research, Nationwide Children’s Hospital, Columbus, OH, United States
- The Heart Center, Nationwide Children’s Hospital, Columbus, OH, United States
| | - Talita Z. Choudhury
- Center for Cardiovascular Research, Nationwide Children’s Hospital, Columbus, OH, United States
- The Heart Center, Nationwide Children’s Hospital, Columbus, OH, United States
| | - Sathiyanarayanan Manivannan
- Center for Cardiovascular Research, Nationwide Children’s Hospital, Columbus, OH, United States
- The Heart Center, Nationwide Children’s Hospital, Columbus, OH, United States
| | - Yukie Ueyama
- Center for Cardiovascular Research, Nationwide Children’s Hospital, Columbus, OH, United States
- The Heart Center, Nationwide Children’s Hospital, Columbus, OH, United States
| | - Madhumita Basu
- Center for Cardiovascular Research, Nationwide Children’s Hospital, Columbus, OH, United States
- The Heart Center, Nationwide Children’s Hospital, Columbus, OH, United States
- Department of Pediatrics, The Ohio State University, Columbus, OH, United States
| | - Vidu Garg
- Center for Cardiovascular Research, Nationwide Children’s Hospital, Columbus, OH, United States
- The Heart Center, Nationwide Children’s Hospital, Columbus, OH, United States
- Department of Pediatrics, The Ohio State University, Columbus, OH, United States
- Department of Molecular Genetics, The Ohio State University, Columbus, OH, United States
| |
Collapse
|
28
|
[Optimal time window for observation of calcific aortic valve disease in mice following catheter-induced valve injury]. NAN FANG YI KE DA XUE XUE BAO = JOURNAL OF SOUTHERN MEDICAL UNIVERSITY 2022; 42:1532-1538. [PMID: 36329588 PMCID: PMC9637488 DOI: 10.12122/j.issn.1673-4254.2022.10.13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
OBJECTIVE To investigate the optimal time window for observation of catheter-induced valve injury that mimics calcified aortic valve disease in mice. METHODS A catheter was inserted into the right common carotid artery of 8-week-old C57BL6 mice under ultrasound guidance, and aortic valve injury was induced using the guide wire.At 4, 8 and 16 weeks after modeling, the mice were subjected to ultrasound measurement of the heart short axial shortening rate, aortic valve peak velocity and aortic valve orifice area.Grain-Eosin staining was used to observe the changes in the thickness of the aortic valve, and calcium deposition in the aortic valve was assessed using Alizarin red staining.Immunofluorescence assay was performed to detect the expression of alkaline phosphatase (ALP) in the aortic valve. RESULTS At 4, 8 and 16 weeks after modeling, valve thickness (P=0.002), calcium deposition (P < 0.0001) and the expression of osteogenic protein ALP (P=0.0016) were significantly increased, but their increments were comparable at the 3 time points of observation. CONCLUSION In mouse models of calcific aortic valve disease induced by catheter valve injury, 4 weeks after the injury appears to be the optimal time window for observation of pathophysiological changes in the aortic valves to avoid further increase of the death rate of the mice over time.
Collapse
|
29
|
Fu B, Wang J, Wang L, Wang Q, Guo Z, Xu M, Jiang N. Integrated proteomic and metabolomic profile analyses of cardiac valves revealed molecular mechanisms and targets in calcific aortic valve disease. Front Cardiovasc Med 2022; 9:944521. [PMID: 36312243 PMCID: PMC9606238 DOI: 10.3389/fcvm.2022.944521] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Accepted: 09/13/2022] [Indexed: 12/02/2022] Open
Abstract
Background This study aimed to define changes in the metabolic and protein profiles of patients with calcific aortic valve disease (CAVD). Methods and results We analyzed cardiac valve samples of patients with and without (control) CAVD (n = 24 per group) using untargeted metabolomics and tandem mass tag-based quantitative proteomics. Significantly different metabolites and proteins between the CAVD and control groups were screened; then, functional enrichment was analyzed. We analyzed co-expressed differential metabolites and proteins, and constructed a metabolite-protein-pathway network. The expression of key proteins was validated using western blotting. Differential analysis identified 229 metabolites in CAVD among which, 2-aminophenol, hydroxykynurenine, erythritol, carnosine, and choline were the top five. Proteomic analysis identified 549 differentially expressed proteins in CAVD, most of which were localized in the nuclear, cytoplasmic, extracellular, and plasma membranes. Levels of selenium binding protein 1 (SELENBP1) positively correlated with multiple metabolites. Adenosine triphosphate-binding cassette transporters, starch and sucrose metabolism, hypoxia-inducible factor 1 (HIF-1) signaling, and purine metabolism were key pathways in the network. Ectonucleotide pyrophosphatase/phosphodiesterase 1 (ENPP1), calcium2+/calmodulin-dependent protein kinase II delta (CAMK2D), and ATP binding cassette subfamily a member 8 (ABCA8) were identified as hub proteins in the metabolite-protein-pathway network as they interacted with ADP, glucose 6-phosphate, choline, and other proteins. Western blotting confirmed that ENPP1 was upregulated, whereas ABCA8 and CAMK2D were downregulated in CAVD samples. Conclusion The metabolic and protein profiles of cardiac valves from patients with CAVD significantly changed. The present findings provide a holistic view of the molecular mechanisms underlying CAVD that may lead to the development of novel diagnostic biomarkers and therapeutic targets to treat CAVD.
Collapse
Affiliation(s)
- Bo Fu
- Department of Cardiovascular Surgery, Tianjin Chest Hospital, Tianjin, China,Postdoctoral Mobile Station, Tianjin Medical University, Tianjin, China
| | - Jing Wang
- Department of Pathology, Tianjin Chest Hospital, Tianjin, China
| | - Lianqun Wang
- Department of Cardiovascular Surgery, Tianjin Chest Hospital, Tianjin, China
| | - Qiang Wang
- Department of Cardiovascular Surgery, Tianjin Chest Hospital, Tianjin, China
| | - Zhigang Guo
- Department of Cardiovascular Surgery, Tianjin Chest Hospital, Tianjin, China,Zhigang Guo,
| | - Meilin Xu
- Department of Pathology, Tianjin Chest Hospital, Tianjin, China
| | - Nan Jiang
- Department of Cardiovascular Surgery, Tianjin Chest Hospital, Tianjin, China,*Correspondence: Nan Jiang,
| |
Collapse
|
30
|
Wu LD, Xiao F, Sun JY, Li F, Chen YJ, Chen JY, Zhang J, Qian LL, Wang RX. Integrated identification of key immune related genes and patterns of immune infiltration in calcified aortic valvular disease: A network based meta-analysis. Front Genet 2022; 13:971808. [PMID: 36212153 PMCID: PMC9532575 DOI: 10.3389/fgene.2022.971808] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Accepted: 09/05/2022] [Indexed: 11/13/2022] Open
Abstract
Background: As the most prevalent valvular heart disease, calcific aortic valve disease (CAVD) has become a primary cause of aortic valve stenosis and insufficiency. We aim to illustrate the roles of immune related genes (IRGs) and immune cells infiltration in the occurrence of CAVD.Methods: Integrative meta-analysis of expression data (INMEX) was adopted to incorporate multiple gene expression datasets of CAVD from Gene Expression Omnibus (GEO) database. By matching the differentially expressed genes (DEGs) to IRGs from “ImmPort” database, differentially expressed immune related genes (DEIRGs) were screened out. We performed enrichment analysis and found that DEIRGs in CAVD were closely related to inflammatory response and immune cells infiltration. We also constructed protein–protein interaction (PPI) network of DEIRGs and identified 5 key DEIRGs in CAVD according to the mixed character calculation results. Moreover, CIBERSORT algorithm was used to explore the profile of infiltrating immune cells in CAVD. Based on Spearman’s rank correlation method, correlation analysis between key DEIRGs and infiltrating immune cells was performed.Results: A total of 220 DEIRGs were identified and the enrichment analysis of DEIRGs showed that they were significantly enriched in inflammatory responses. PPI network was constructed and PTPN11, GRB2, SYK, PTPN6 and SHC1 were identified as key DEIRGs. Compared with normal aortic valve tissue samples, the proportion of neutrophils, T cells CD4 memory activated and macrophages M0 was elevated in calcified aortic valves tissue samples, as well as reduced infiltration of macrophages M2 and NK cells activated. Furthermore, key DEIRGs identified in the present study, including PTPN11, GRB2, PTPN6, SYK, and SHC1, were all significantly correlated with infiltration of various immune cells.Conclusion: This meta-analysis suggested that PTPN11, GRB2, PTPN6, SYK, and SHC1 might be key DEIRGs associated with immune cells infiltration, which play a pivotal role in pathogenesis of CAVD.
Collapse
Affiliation(s)
- Li-Da Wu
- Department of Cardiology, Wuxi People’s Hospital Affiliated to Nanjing Medical University, Wuxi, China
| | - Feng Xiao
- Department of Cardiology, Wuxi People’s Hospital Affiliated to Nanjing Medical University, Wuxi, China
| | - Jin-Yu Sun
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Feng Li
- Department of Cardiology, Wuxi People’s Hospital Affiliated to Nanjing Medical University, Wuxi, China
| | - Yu-Jia Chen
- Department of Cardiology, Wuxi People’s Hospital Affiliated to Nanjing Medical University, Wuxi, China
| | - Jia-Yi Chen
- Department of Cardiology, Wuxi People’s Hospital Affiliated to Nanjing Medical University, Wuxi, China
| | - Jie Zhang
- Department of Cardiology, Wuxi People’s Hospital Affiliated to Nanjing Medical University, Wuxi, China
| | - Ling-Ling Qian
- Department of Cardiology, Wuxi People’s Hospital Affiliated to Nanjing Medical University, Wuxi, China
| | - Ru-Xing Wang
- Department of Cardiology, Wuxi People’s Hospital Affiliated to Nanjing Medical University, Wuxi, China
- *Correspondence: Ru-Xing Wang,
| |
Collapse
|
31
|
Zhang S, Sun X, Mou M, Amahong K, Sun H, Zhang W, Shi S, Li Z, Gao J, Zhu F. REGLIV: Molecular regulation data of diverse living systems facilitating current multiomics research. Comput Biol Med 2022; 148:105825. [PMID: 35872412 DOI: 10.1016/j.compbiomed.2022.105825] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 06/29/2022] [Accepted: 07/03/2022] [Indexed: 12/24/2022]
Abstract
Multiomics is a powerful technique in molecular biology that facilitates the identification of new associations among different molecules (genes, proteins & metabolites). It has attracted tremendous research interest from the scientists worldwide and has led to an explosive number of published studies. Most of these studies are based on the regulation data provided in available databases. Therefore, it is essential to have molecular regulation data that are strictly validated in the living systems of various cell lines and in vivo models. However, no database has been developed yet to provide comprehensive molecular regulation information validated by living systems. Herein, a new database, Molecular Regulation Data of Living System Facilitating Multiomics Study (REGLIV) is introduced to describe various types of molecular regulation tested by the living systems. (1) A total of 2996 regulations describe the changes in 1109 metabolites triggered by alterations in 284 genes or proteins, and (2) 1179 regulations describe the variations in 926 proteins induced by 125 endogenous metabolites. Overall, REGLIV is unique in (a) providing the molecular regulation of a clearly defined regulatory direction other than simple correlation, (b) focusing on molecular regulations that are validated in a living system not simply in an in vitro test, and (c) describing the disease/tissue/species specific property underlying each regulation. Therefore, REGLIV has important implications for the future practice of not only multiomics, but also other fields relevant to molecular regulation. REGLIV is freely accessible at: https://idrblab.org/regliv/.
Collapse
Affiliation(s)
- Song Zhang
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Xiuna Sun
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Minjie Mou
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Kuerbannisha Amahong
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Huaicheng Sun
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Wei Zhang
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Shuiyang Shi
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Zhaorong Li
- Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, Alibaba-Zhejiang University Joint Research Center of Future Digital Healthcare, Hangzhou, 330110, China
| | - Jianqing Gao
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China; Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China
| | - Feng Zhu
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China; Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, Alibaba-Zhejiang University Joint Research Center of Future Digital Healthcare, Hangzhou, 330110, China.
| |
Collapse
|
32
|
Halawa S, Latif N, Tseng YT, Ibrahim AM, Chester AH, Moustafa A, Aguib Y, Yacoub MH. Profiling Genome-Wide DNA Methylation Patterns in Human Aortic and Mitral Valves. Front Cardiovasc Med 2022; 9:840647. [PMID: 35463757 PMCID: PMC9019152 DOI: 10.3389/fcvm.2022.840647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 03/11/2022] [Indexed: 12/05/2022] Open
Abstract
Cardiac valves exhibit highly complex structures and specialized functions that include dynamic interactions between cells, extracellular matrix (ECM) and their hemodynamic environment. Valvular gene expression is tightly regulated by a variety of mechanisms including epigenetic factors such as histone modifications, RNA-based mechanisms and DNA methylation. To date, methylation fingerprints of non-diseased human aortic and mitral valves have not been studied. In this work we analyzed the differential methylation profiles of 12 non-diseased aortic and mitral valve tissue samples (in matched pairs). Analysis of methylation data [reduced representation bisulfite sequencing (RRBS)] of 16,101 promoters genome-wide revealed 584 differentially methylated (DM) promoters, of which 13 were reported in endothelial mesenchymal trans-differentiation (EMT), 37 in aortic and mitral valve disease and 7 in ECM remodeling. Both functional classification as well as network analysis showed that the genes associated with the DM promoters were enriched for WNT-, Cadherin-, Endothelin-, PDGF-, HIF-1 and VEGF- signaling implicated in valvular physiology and pathophysiology. Additional enrichment was detected for TGFB-, NOTCH- and Integrin- signaling involved in EMT as well as ECM remodeling. This data provides the first insight into differential regulation of human aortic and mitral valve tissue and identifies candidate genes linked to DM promoters. Our work will improve the understanding of valve biology, valve tissue engineering approaches and contributes to the identification of relevant drug targets.
Collapse
Affiliation(s)
- Sarah Halawa
- Aswan Heart Centre, Aswan, Egypt
- Biotechnology Graduate Program, American University in Cairo, New Cairo, Egypt
- Sarah Halawa
| | - Najma Latif
- Heart Science Centre, Magdi Yacoub Institute, Harefield, United Kingdom
- National Heart and Lung Institute (NHLI), Imperial College London, London, United Kingdom
| | - Yuan-Tsan Tseng
- Heart Science Centre, Magdi Yacoub Institute, Harefield, United Kingdom
- National Heart and Lung Institute (NHLI), Imperial College London, London, United Kingdom
| | - Ayman M. Ibrahim
- Aswan Heart Centre, Aswan, Egypt
- Zoology Department, Faculty of Science, Cairo University, Giza, Egypt
| | - Adrian H. Chester
- Heart Science Centre, Magdi Yacoub Institute, Harefield, United Kingdom
- National Heart and Lung Institute (NHLI), Imperial College London, London, United Kingdom
| | - Ahmed Moustafa
- Biotechnology Graduate Program, American University in Cairo, New Cairo, Egypt
- Department of Biology, American University in Cairo, New Cairo, Egypt
| | - Yasmine Aguib
- Aswan Heart Centre, Aswan, Egypt
- National Heart and Lung Institute (NHLI), Imperial College London, London, United Kingdom
- Yasmine Aguib
| | - Magdi H. Yacoub
- Aswan Heart Centre, Aswan, Egypt
- Heart Science Centre, Magdi Yacoub Institute, Harefield, United Kingdom
- National Heart and Lung Institute (NHLI), Imperial College London, London, United Kingdom
- *Correspondence: Magdi H. Yacoub
| |
Collapse
|
33
|
Dayawansa NH, Baratchi S, Peter K. Uncoupling the Vicious Cycle of Mechanical Stress and Inflammation in Calcific Aortic Valve Disease. Front Cardiovasc Med 2022; 9:783543. [PMID: 35355968 PMCID: PMC8959593 DOI: 10.3389/fcvm.2022.783543] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Accepted: 02/15/2022] [Indexed: 12/24/2022] Open
Abstract
Calcific aortic valve disease (CAVD) is a common acquired valvulopathy, which carries a high burden of mortality. Chronic inflammation has been postulated as the predominant pathophysiological process underlying CAVD. So far, no effective medical therapies exist to halt the progression of CAVD. This review aims to outline the known pathways of inflammation and calcification in CAVD, focussing on the critical roles of mechanical stress and mechanosensing in the perpetuation of valvular inflammation. Following initiation of valvular inflammation, dysregulation of proinflammatory and osteoregulatory signalling pathways stimulates endothelial-mesenchymal transition of valvular endothelial cells (VECs) and differentiation of valvular interstitial cells (VICs) into active myofibroblastic and osteoblastic phenotypes, which in turn mediate valvular extracellular matrix remodelling and calcification. Mechanosensitive signalling pathways convert mechanical forces experienced by valve leaflets and circulating cells into biochemical signals and may provide the positive feedback loop that promotes acceleration of disease progression in the advanced stages of CAVD. Mechanosensing is implicated in multiple aspects of CAVD pathophysiology. The mechanosensitive RhoA/ROCK and YAP/TAZ systems are implicated in aortic valve leaflet mineralisation in response to increased substrate stiffness. Exposure of aortic valve leaflets, endothelial cells and platelets to high shear stress results in increased expression of mediators of VIC differentiation. Upregulation of the Piezo1 mechanoreceptor has been demonstrated to promote inflammation in CAVD, which normalises following transcatheter valve replacement. Genetic variants and inhibition of Notch signalling accentuate VIC responses to altered mechanical stresses. The study of mechanosensing pathways has revealed promising insights into the mechanisms that perpetuate inflammation and calcification in CAVD. Mechanotransduction of altered mechanical stresses may provide the sought-after coupling link that drives a vicious cycle of chronic inflammation in CAVD. Mechanosensing pathways may yield promising targets for therapeutic interventions and prognostic biomarkers with the potential to improve the management of CAVD.
Collapse
Affiliation(s)
- Nalin H. Dayawansa
- Baker Heart and Diabetes Institute, Melbourne, VIC, Australia
- Department of Cardiology, Alfred Hospital, Melbourne, VIC, Australia
- Department of Medicine, Monash University, Melbourne, VIC, Australia
| | - Sara Baratchi
- Baker Heart and Diabetes Institute, Melbourne, VIC, Australia
- School of Health and Biomedical Sciences, RMIT University, Melbourne, VIC, Australia
- Department of Cardiometabolic Health, The University of Melbourne, Melbourne, VIC, Australia
| | - Karlheinz Peter
- Baker Heart and Diabetes Institute, Melbourne, VIC, Australia
- Department of Cardiology, Alfred Hospital, Melbourne, VIC, Australia
- Department of Medicine, Monash University, Melbourne, VIC, Australia
- Department of Cardiometabolic Health, The University of Melbourne, Melbourne, VIC, Australia
| |
Collapse
|
34
|
Moschetta D, Di Maria E, Valerio V, Massaiu I, Bozzi M, Songia P, D’alessandra Y, Myasoedova VA, Poggio P. Purinergic Receptor P2Y2 Stimulation Averts Aortic Valve Interstitial Cell Calcification and Myofibroblastic Activation. Biomedicines 2022; 10:biomedicines10020457. [PMID: 35203666 PMCID: PMC8962345 DOI: 10.3390/biomedicines10020457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 02/11/2022] [Accepted: 02/14/2022] [Indexed: 12/04/2022] Open
Abstract
Rationale—Calcific aortic valve stenosis (CAVS) is a pathological condition of the aortic valve with a prevalence of 3% in the general population. It is characterized by massive rearrangement of the extracellular matrix, mostly due to the accumulation of fibro-calcific deposits driven by valve interstitial cells (VIC), and no pharmacological treatment is currently available. The aim of this study was to evaluate the effects of P2Y2 receptor (P2RY2) activation on fibro-calcific remodeling of CAVS. Methods—We employed human primary VICs isolated from CAVS leaflets treated with 2-thiouridine-5′-triphosphate (2ThioUTP, 10 µM), an agonist of P2RY2. The calcification was induced by inorganic phosphate (2 mM) and ascorbic acid (50 µg/mL) for 7 or 14 days, while the 2ThioUTP was administered starting from the seventh day. 2ThioUTP was chronically administered for 5 days to evaluate myofibroblastic activation. Results—P2RY2 activation, under continuous or interrupted pro-calcific stimuli, led to a significant inhibition of VIC calcification potential (p < 0.01). Moreover, 2ThioUTP treatment was able to significantly reduce pro-fibrotic gene expression (p < 0.05), as well as that of protein α-smooth muscle actin (p = 0.004). Conclusions—Our data suggest that P2RY2 activation should be further investigated as a pharmacological target for the prevention of CAVS progression, acting on both calcification and myofibroblastic activation.
Collapse
Affiliation(s)
- Donato Moschetta
- Centro Cardiologico Monzino IRCCS, 20138 Milan, Italy; (D.M.); (E.D.M.); (V.V.); (I.M.); (M.B.); (P.S.); (Y.D.); (V.A.M.)
- Department of Pharmacological and Biomolecular Sciences, University of Milan, 20133 Milan, Italy
| | - Enrico Di Maria
- Centro Cardiologico Monzino IRCCS, 20138 Milan, Italy; (D.M.); (E.D.M.); (V.V.); (I.M.); (M.B.); (P.S.); (Y.D.); (V.A.M.)
| | - Vincenza Valerio
- Centro Cardiologico Monzino IRCCS, 20138 Milan, Italy; (D.M.); (E.D.M.); (V.V.); (I.M.); (M.B.); (P.S.); (Y.D.); (V.A.M.)
| | - Ilaria Massaiu
- Centro Cardiologico Monzino IRCCS, 20138 Milan, Italy; (D.M.); (E.D.M.); (V.V.); (I.M.); (M.B.); (P.S.); (Y.D.); (V.A.M.)
- Developmental Biology of the Immune System, Life & Medical Sciences (LIMES) Institute, University of Bonn, 53115 Bonn, Germany
| | - Michele Bozzi
- Centro Cardiologico Monzino IRCCS, 20138 Milan, Italy; (D.M.); (E.D.M.); (V.V.); (I.M.); (M.B.); (P.S.); (Y.D.); (V.A.M.)
| | - Paola Songia
- Centro Cardiologico Monzino IRCCS, 20138 Milan, Italy; (D.M.); (E.D.M.); (V.V.); (I.M.); (M.B.); (P.S.); (Y.D.); (V.A.M.)
| | - Yuri D’alessandra
- Centro Cardiologico Monzino IRCCS, 20138 Milan, Italy; (D.M.); (E.D.M.); (V.V.); (I.M.); (M.B.); (P.S.); (Y.D.); (V.A.M.)
| | - Veronika A. Myasoedova
- Centro Cardiologico Monzino IRCCS, 20138 Milan, Italy; (D.M.); (E.D.M.); (V.V.); (I.M.); (M.B.); (P.S.); (Y.D.); (V.A.M.)
| | - Paolo Poggio
- Centro Cardiologico Monzino IRCCS, 20138 Milan, Italy; (D.M.); (E.D.M.); (V.V.); (I.M.); (M.B.); (P.S.); (Y.D.); (V.A.M.)
- Correspondence: ; Tel.: +39-02-5800-2853
| |
Collapse
|
35
|
Zhang C, Liu M, Wang X, Chen S, Fu X, Li G, Dong N, Shang X. Mechanism of CircANKRD36 regulating cell heterogeneity and endothelial mesenchymal transition in aortic valve stromal cells by regulating miR-599 and TGF-β signaling pathway. Int J Cardiol 2022; 352:104-114. [DOI: 10.1016/j.ijcard.2022.01.043] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 01/09/2022] [Accepted: 01/19/2022] [Indexed: 02/08/2023]
|
36
|
Evaluating Medical Therapy for Calcific Aortic Stenosis: JACC State-of-the-Art Review. J Am Coll Cardiol 2021; 78:2354-2376. [PMID: 34857095 DOI: 10.1016/j.jacc.2021.09.1367] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 09/08/2021] [Accepted: 09/27/2021] [Indexed: 12/23/2022]
Abstract
Despite numerous promising therapeutic targets, there are no proven medical treatments for calcific aortic stenosis (AS). Multiple stakeholders need to come together and several scientific, operational, and trial design challenges must be addressed to capitalize on the recent and emerging mechanistic insights into this prevalent heart valve disease. This review briefly discusses the pathobiology and most promising pharmacologic targets, screening, diagnosis and progression of AS, identification of subgroups that should be targeted in clinical trials, and the need to elicit the patient voice earlier rather than later in clinical trial design and implementation. Potential trial end points and tools for assessment and approaches to implementation and design of clinical trials are reviewed. The efficiencies and advantages offered by a clinical trial network and platform trial approach are highlighted. The objective is to provide practical guidance that will facilitate a series of trials to identify effective medical therapies for AS resulting in expansion of therapeutic options to complement mechanical solutions for late-stage disease.
Collapse
|
37
|
Mazine A, Elbatarny M, Ouzounian M. Commentary: Nature versus nurture in unicuspid aortic valve aortopathy. JTCVS OPEN 2021; 8:170-171. [PMID: 36004073 PMCID: PMC9390777 DOI: 10.1016/j.xjon.2021.10.058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 10/25/2021] [Accepted: 10/29/2021] [Indexed: 11/26/2022]
Affiliation(s)
- Amine Mazine
- Division of Cardiovascular Surgery, Peter Munk Cardiac Centre, Toronto General Hospital and the University of Toronto, Toronto, Ontario, Canada
| | - Malak Elbatarny
- Division of Cardiovascular Surgery, Peter Munk Cardiac Centre, Toronto General Hospital and the University of Toronto, Toronto, Ontario, Canada
| | - Maral Ouzounian
- Division of Cardiovascular Surgery, Peter Munk Cardiac Centre, Toronto General Hospital and the University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
38
|
Kraler S, Blaser MC, Aikawa E, Camici GG, Lüscher TF. Calcific aortic valve disease: from molecular and cellular mechanisms to medical therapy. Eur Heart J 2021; 43:683-697. [PMID: 34849696 DOI: 10.1093/eurheartj/ehab757] [Citation(s) in RCA: 79] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2021] [Revised: 09/12/2021] [Accepted: 10/20/2021] [Indexed: 12/12/2022] Open
Abstract
Calcific aortic valve disease (CAVD) is a highly prevalent condition that comprises a disease continuum, ranging from microscopic changes to profound fibro-calcific leaflet remodelling, culminating in aortic stenosis, heart failure, and ultimately premature death. Traditional risk factors, such as hypercholesterolaemia and (systolic) hypertension, are shared among atherosclerotic cardiovascular disease and CAVD, yet the molecular and cellular mechanisms differ markedly. Statin-induced low-density lipoprotein cholesterol lowering, a remedy highly effective for secondary prevention of atherosclerotic cardiovascular disease, consistently failed to impact CAVD progression or to improve patient outcomes. However, recently completed phase II trials provide hope that pharmaceutical tactics directed at other targets implicated in CAVD pathogenesis offer an avenue to alter the course of the disease non-invasively. Herein, we delineate key players of CAVD pathobiology, outline mechanisms that entail compromised endothelial barrier function, and promote lipid homing, immune-cell infiltration, and deranged phospho-calcium metabolism that collectively perpetuate a pro-inflammatory/pro-osteogenic milieu in which valvular interstitial cells increasingly adopt myofibro-/osteoblast-like properties, thereby fostering fibro-calcific leaflet remodelling and eventually resulting in left ventricular outflow obstruction. We provide a glimpse into the most promising targets on the horizon, including lipoprotein(a), mineral-binding matrix Gla protein, soluble guanylate cyclase, dipeptidyl peptidase-4 as well as candidates involved in regulating phospho-calcium metabolism and valvular angiotensin II synthesis and ultimately discuss their potential for a future therapy of this insidious disease.
Collapse
Affiliation(s)
- Simon Kraler
- Center for Molecular Cardiology, University of Zurich, Wagistrasse 12, 8952 Schlieren, Switzerland.,University Heart Center, Department of Cardiology, University Hospital, Rämistrasse 100, 8091 Zurich, Switzerland
| | - Mark C Blaser
- Center for Interdisciplinary Cardiovascular Sciences, Cardiovascular Division, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, 3 Blackfan Street, Boston, MA 02115, USA
| | - Elena Aikawa
- Center for Interdisciplinary Cardiovascular Sciences, Cardiovascular Division, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, 3 Blackfan Street, Boston, MA 02115, USA.,Center for Excellence in Vascular Biology, Cardiovascular Division, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, 77 Ave Louis Pasteur, NRB7, Boston, MA 02115, USA
| | - Giovanni G Camici
- Center for Molecular Cardiology, University of Zurich, Wagistrasse 12, 8952 Schlieren, Switzerland.,University Heart Center, Department of Cardiology, University Hospital, Rämistrasse 100, 8091 Zurich, Switzerland.,Department of Research and Education, University Hospital Zurich, Rämistrasse 100, 8091 Zurich, Switzerland
| | - Thomas F Lüscher
- Center for Molecular Cardiology, University of Zurich, Wagistrasse 12, 8952 Schlieren, Switzerland.,Heart Division, Royal Brompton & Harefield Hospitals, Sydney Street, London SW3 6NP, UK.,National Heart and Lung Institute, Imperial College, Guy Scadding Building, Dovehouse Street, London SW3 6LY, UK
| |
Collapse
|
39
|
Wang C, Huang Y, Liu X, Li L, Xu H, Dong N, Xu K. Andrographolide ameliorates aortic valve calcification by regulation of lipid biosynthesis and glycerolipid metabolism targeting MGLL expression in vitro and in vivo. Cell Calcium 2021; 100:102495. [PMID: 34740021 DOI: 10.1016/j.ceca.2021.102495] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 10/18/2021] [Accepted: 10/19/2021] [Indexed: 02/09/2023]
Abstract
Calcific aortic valve disease (CAVD) is caused by the initiation of the thickening and calcification of valve leaflets by valve interstitial cells (VICs). Cell metabolic changes during the CAVD process are a new field of basic research on this disease. The present study aimed to investigate whether andrographolide (AGP) could attenuate the calcification of aortic valves by regulating cell metabolism. Gas chromatography-mass spectroscopy (GC-MS) metabolome analysis was utilized to investigate the changes in the metabolites of VICs from healthy and CAVD samples. Cell growth and the osteogenic differentiation of human VICs (hVICs) were assessed using a CCK8 assay and Alizarin Red S staining, respectively. The expression of two calcification-related markers, RUNX2 and ALP, was analyzed by quantitative real-time polymerase chain reaction (qRT-PCR) and immunofluorescence staining. Molecular docking was used to detect the interaction between AGP and monoglyceride lipase (MGLL). The high-fat-fed ApoE-/- mice aortic valve calcification animal model was used to verify the effect of AGP on CAVD in vivo. Metabolome analysis showed that the metabolites of VICs from healthy and CAVD samples were highly enriched in the biosynthesis of unsaturated fatty acids and glycerolipid metabolism. The top six highlighted metabolites were selected to reveal a high regulation of lipids in VICs from CAVD. AGP significantly suppressed the calcific differentiation of VICs while it decreased the accumulation of the above six metabolites, 1-monopalmitic, palmitic acid, glycerol, l-asparagine, tetraethylene glycol, and stearic acid induced by osteogenic medium (OM) stimulation. These metabolites were highly correlated with the calcific marker ALP and showed a positive correlation with CAVD. In the comprehensive assessment, MGLL, associated with glycerol synthesis, was selected as the molecular target of AGP in inhibiting the calcific phenotype of transforming hVICs. The in vivo results revealed that AGP visibly ameliorated aortic valve calcification by reducing Von Kossa and ALP staining, which was positively correlated with MGLL expression. AGP ameliorated aortic valve calcification by regulating lipid biosynthesis and glycerolipid metabolism targeting MGLL expression in vitro and in vivo. It is a potent therapeutic supplement that prevents the occurrence of heart valve calcification disease by regulating cell metabolism.
Collapse
Affiliation(s)
- Chunli Wang
- Hubei Engineering Technology Research Center of Chinese Materia Medica Processing, College of Pharmacy, Hubei University of Chinese Medicine, No. 16, Huangjiahu West Road, Wuhan 430065, China
| | - Yuming Huang
- Hubei Engineering Technology Research Center of Chinese Materia Medica Processing, College of Pharmacy, Hubei University of Chinese Medicine, No. 16, Huangjiahu West Road, Wuhan 430065, China; Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Xianqiong Liu
- Hubei Engineering Technology Research Center of Chinese Materia Medica Processing, College of Pharmacy, Hubei University of Chinese Medicine, No. 16, Huangjiahu West Road, Wuhan 430065, China
| | - Lanqing Li
- Hubei Engineering Technology Research Center of Chinese Materia Medica Processing, College of Pharmacy, Hubei University of Chinese Medicine, No. 16, Huangjiahu West Road, Wuhan 430065, China
| | - Haiying Xu
- Hubei Engineering Technology Research Center of Chinese Materia Medica Processing, College of Pharmacy, Hubei University of Chinese Medicine, No. 16, Huangjiahu West Road, Wuhan 430065, China
| | - Nianguo Dong
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Kang Xu
- Hubei Engineering Technology Research Center of Chinese Materia Medica Processing, College of Pharmacy, Hubei University of Chinese Medicine, No. 16, Huangjiahu West Road, Wuhan 430065, China.
| |
Collapse
|
40
|
Chester AH, Sarathchandra P, McCormack A, Yacoub MH. Organ Culture Model of Aortic Valve Calcification. Front Cardiovasc Med 2021; 8:734692. [PMID: 34660737 PMCID: PMC8517236 DOI: 10.3389/fcvm.2021.734692] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 09/02/2021] [Indexed: 01/10/2023] Open
Abstract
A significant amount of knowledge has been gained with the use of cell-based assays to elucidate the mechanisms that mediate heart valve calcification. However, cells used in these studies lack their association with the extra-cellular matrix or the influence of other cellular components of valve leaflets. We have developed a model of calcification using intact porcine valve leaflets, that relies upon a biological stimulus to drive the formation of calcified nodules within the valve leaflets. Alizarin Red positive regions were formed in response to lipopolysaccharide and inorganic phosphate, which could be quantified when viewed under polarized light. Point analysis and elemental mapping analysis of electron microscope images confirmed the presence of nodules containing calcium and phosphorus. Immunohistochemical staining showed that the development of these calcified regions corresponded with the expression of RUNX2, osteocalcin, NF-kB and the apoptosis marker caspase 3. The formation of calcified nodules and the expression of bone markers were both inhibited by adenosine in a concentration-dependent manner, illustrating that the model is amenable to pharmacological manipulation. This organ culture model offers an increased level of tissue complexity in which to study the mechanisms that are involved in heart valve calcification.
Collapse
Affiliation(s)
- Adrian H Chester
- Heart Science Centre, Magdi Yacoub Institute, Harefield, United Kingdom.,National Heart & Lung Institute, Imperial College, Imperial College London, London, United Kingdom
| | - Padmini Sarathchandra
- National Heart & Lung Institute, Imperial College, Imperial College London, London, United Kingdom
| | - Ann McCormack
- National Heart & Lung Institute, Imperial College, Imperial College London, London, United Kingdom
| | - Magdi H Yacoub
- Heart Science Centre, Magdi Yacoub Institute, Harefield, United Kingdom.,National Heart & Lung Institute, Imperial College, Imperial College London, London, United Kingdom
| |
Collapse
|
41
|
Cuevas RA, St Hilaire C. Introduction to the Aortic Valve Disease Review Series. Circ Res 2021; 128:1327-1329. [PMID: 33914602 DOI: 10.1161/circresaha.121.319286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Rolando A Cuevas
- Division of Cardiology, Departments of Medicine and Bioengineering, Pittsburgh Heart, Lung, and Blood Vascular Medicine Institute, University of Pittsburgh, PA
| | - Cynthia St Hilaire
- Division of Cardiology, Departments of Medicine and Bioengineering, Pittsburgh Heart, Lung, and Blood Vascular Medicine Institute, University of Pittsburgh, PA
| |
Collapse
|