1
|
Gentile F, Emdin M, Passino C, Montuoro S, Tognini P, Floras JS, O'Neill J, Giannoni A. The chronobiology of human heart failure: clinical implications and therapeutic opportunities. Heart Fail Rev 2025; 30:103-116. [PMID: 39392534 DOI: 10.1007/s10741-024-10447-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/29/2024] [Indexed: 10/12/2024]
Abstract
Circadian variation in cardiovascular and metabolic dynamics arises from interactions between intrinsic rhythms and extrinsic cues. By anticipating and accommodating adaptation to awakening and activity, their synthesis maintains homeostasis and maximizes efficiency, flexibility, and resilience. The dyssynchrony of cardiovascular load and energetic capacity arising from attenuation or loss of such rhythms is strongly associated with incident heart failure (HF). Once established, molecular, neurohormonal, and metabolic rhythms are frequently misaligned with each other and with extrinsic cycles, contributing to HF progression and adverse outcomes. Realignment of biological rhythms via lifestyle interventions, chronotherapy, and time-tailored autonomic modulation represents an appealing potential strategy for improving HF-related morbidity and mortality.
Collapse
Affiliation(s)
- Francesco Gentile
- Health Science Interdisciplinary Center, Scuola Superiore Sant'Anna, Pisa, Italy
- Division of Cardiology and Cardiovascular Medicine, Fondazione Monasterio, Pisa, Italy
| | - Michele Emdin
- Health Science Interdisciplinary Center, Scuola Superiore Sant'Anna, Pisa, Italy
- Division of Cardiology and Cardiovascular Medicine, Fondazione Monasterio, Pisa, Italy
| | - Claudio Passino
- Health Science Interdisciplinary Center, Scuola Superiore Sant'Anna, Pisa, Italy
- Division of Cardiology and Cardiovascular Medicine, Fondazione Monasterio, Pisa, Italy
| | - Sabrina Montuoro
- Health Science Interdisciplinary Center, Scuola Superiore Sant'Anna, Pisa, Italy
| | - Paola Tognini
- Health Science Interdisciplinary Center, Scuola Superiore Sant'Anna, Pisa, Italy
| | - John S Floras
- University Health Network and Sinai Health Division of Cardiology, Toronto, ON, Canada
| | - John O'Neill
- Medical Research Council Laboratory of Molecular Biology, Cambridge, UK
| | - Alberto Giannoni
- Health Science Interdisciplinary Center, Scuola Superiore Sant'Anna, Pisa, Italy.
- Division of Cardiology and Cardiovascular Medicine, Fondazione Monasterio, Pisa, Italy.
| |
Collapse
|
2
|
Young MJ, Heanue S, Kanki M, Moneghetti KJ. Circadian disruption and its impact on the cardiovascular system. Trends Endocrinol Metab 2024:S1043-2760(24)00316-3. [PMID: 39706759 DOI: 10.1016/j.tem.2024.11.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 11/11/2024] [Accepted: 11/25/2024] [Indexed: 12/23/2024]
Abstract
Circadian rhythms are highly conserved biorhythms of ~24 h that govern many fundamental biological processes, including cardiovascular (CV) homeostasis. Disrupting the timing of cellular oscillators promotes cellular stress, and induction of pathogenic pathways underpins the pathogenesis of many CV diseases (CVDs). Thus, shift work, late eating, sleep disturbances, and other disruptors can result in an elevated risk of heart disease and increased incidence of adverse CV events. Here, we discuss the importance of circadian rhythms for CV homeostasis, recent developments in understanding the impact of disrupted circadian rhythms on CV health and disease progression, and how understanding the interactions between circadian and CV physiology is crucial for improving interventions to mitigate CVD, especially in populations impacted by disrupted circadian rhythms.
Collapse
Affiliation(s)
- Morag J Young
- Cardiovascular Endocrinology Laboratory, Baker Heart and Diabetes Institute, Melbourne, VIC, Australia; Department of Cardiometabolic Health, University of Melbourne, Melbourne, VIC, Australia.
| | - Seamus Heanue
- Cardiovascular Endocrinology Laboratory, Baker Heart and Diabetes Institute, Melbourne, VIC, Australia; Department of Medicine, Central Clinical School, Monash University, Clayton, VIC, Australia
| | - Monica Kanki
- Cardiovascular Endocrinology Laboratory, Baker Heart and Diabetes Institute, Melbourne, VIC, Australia
| | - Kegan J Moneghetti
- Cardiovascular Endocrinology Laboratory, Baker Heart and Diabetes Institute, Melbourne, VIC, Australia; Department of Cardiometabolic Health, University of Melbourne, Melbourne, VIC, Australia
| |
Collapse
|
3
|
El-Tanani M, Rabbani SA, Ali AA, Alfaouri IGA, Al Nsairat H, Al-Ani IH, Aljabali AA, Rizzo M, Patoulias D, Khan MA, Parvez S, El-Tanani Y. Circadian rhythms and cancer: implications for timing in therapy. Discov Oncol 2024; 15:767. [PMID: 39692981 DOI: 10.1007/s12672-024-01643-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2024] [Accepted: 11/27/2024] [Indexed: 12/19/2024] Open
Abstract
Circadian rhythms, intrinsic cycles spanning approximately 24 h, regulate numerous physiological processes, including sleep-wake cycles, hormone release, and metabolism. These rhythms are orchestrated by the circadian clock, primarily located in the suprachiasmatic nucleus (SCN) of the hypothalamus. Disruptions in circadian rhythms, whether due to genetic mutations, environmental factors, or lifestyle choices, can significantly impact health, contributing to disorders such as sleep disturbances, metabolic syndrome, and cardiovascular diseases. Additionally, there is a profound link between the disruption of circadian rhythms and development of various cancer, the influence on disease incidence and progression. This incurred regulation by circadian clock on pathways has its implication in tumorigenesis, such as cell cycle control, DNA damage response, apoptosis, and metabolism. Furthermore, the circadian timing system modulates the efficacy and toxicity of cancer treatments. In cancer treatment, the use of chronotherapy to optimize the timing of medical treatments, involves administering chemotherapy, radiation, or other therapeutic interventions at specific intervals to enhance efficacy and minimize side effects. This approach capitalizes on the circadian variations in cellular processes, including DNA repair, cell cycle progression, and drug metabolism. Preclinical and clinical studies have demonstrated that chronotherapy can significantly improve the therapeutic index of chemotherapeutic agents like cisplatin and 5-fluorouracil by enhancing anticancer activity and reducing toxicity. Further research is needed to elucidate the mechanisms underlying circadian regulation of cancer and to develop robust chronotherapeutic protocols tailored to individual patients' circadian profiles, potentially transforming cancer care into more effective and personalized treatment strategies.
Collapse
Affiliation(s)
- Mohamed El-Tanani
- RAK College of Pharmacy, Ras Al Khaimah Medical and Health Sciences University, Ras Al Khaimah, United Arab Emirates.
- Translational and Medical Research Centre (TMRC), Ras Al Khaimah Medical and Health Sciences University, Ras Al Khaimah, United Arab Emirates.
| | - Syed Arman Rabbani
- RAK College of Pharmacy, Ras Al Khaimah Medical and Health Sciences University, Ras Al Khaimah, United Arab Emirates
- Translational and Medical Research Centre (TMRC), Ras Al Khaimah Medical and Health Sciences University, Ras Al Khaimah, United Arab Emirates
| | - Areeg Anwer Ali
- RAK College of Pharmacy, Ras Al Khaimah Medical and Health Sciences University, Ras Al Khaimah, United Arab Emirates
- Translational and Medical Research Centre (TMRC), Ras Al Khaimah Medical and Health Sciences University, Ras Al Khaimah, United Arab Emirates
| | - Ibrahim Ghaleb Ali Alfaouri
- Translational and Medical Research Centre (TMRC), Ras Al Khaimah Medical and Health Sciences University, Ras Al Khaimah, United Arab Emirates
- RAK College of Nursing, Ras Al Khaimah Medical and Health Sciences University, Ras Al Khaimah, United Arab Emirates
| | - Hamdi Al Nsairat
- Pharmacological and Diagnostic Research Center, Pharmacy, Al-Ahliyya Amman University, Amman, Jordan
| | - Israa Hamid Al-Ani
- Pharmacological and Diagnostic Research Center, Pharmacy, Al-Ahliyya Amman University, Amman, Jordan
| | - Alaa A Aljabali
- Department of Pharmaceutics and Pharmaceutical Technology, Pharmacy, Yarmouk University, Irbid, Jordan
| | - Manfredi Rizzo
- Department of Health Promotion, Mother and Childcare, Internal Medicine and Medical Specialties, School of Medicine, University of Palermo, Palermo, Italy
| | - Dimitrios Patoulias
- Second Department of Cardiology, Aristotle University of Thessaloniki, Hippokration General Hospital, Athens, Greece
- Outpatient Department of Cardiometabolic Medicine, Second Department of Cardiology, Aristotle University of Thessaloniki, Hippokration General Hospital, Athens, Greece
| | - Mohammad Ahmed Khan
- School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India
| | - Suhel Parvez
- School of Chemical and Life Sciences, Jamia Hamdard, New Delhi, India
| | | |
Collapse
|
4
|
Han H, Jia H, Wang YF, Song JP. Cardiovascular adaptations and pathological changes induced by spaceflight: from cellular mechanisms to organ-level impacts. Mil Med Res 2024; 11:68. [PMID: 39334239 PMCID: PMC11429428 DOI: 10.1186/s40779-024-00570-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 09/01/2024] [Indexed: 09/30/2024] Open
Abstract
The advancement in extraterrestrial exploration has highlighted the crucial need for studying how the human cardiovascular system adapts to space conditions. Human development occurs under the influence of gravity, shielded from space radiation by Earth's magnetic field, and within an environment characterized by 24-hour day-night cycles resulting from Earth's rotation, thus deviating from these conditions necessitates adaptive responses for survival. With upcoming manned lunar and Martian missions approaching rapidly, it is essential to understand the impact of various stressors induced by outer-space environments on cardiovascular health. This comprehensive review integrates insights from both actual space missions and simulated experiments on Earth, to analyze how microgravity, space radiation, and disrupted circadian affect cardiovascular well-being. Prolonged exposure to microgravity induces myocardial atrophy and endothelial dysfunction, which may be exacerbated by space radiation. Mitochondrial dysfunction and oxidative stress emerge as key underlying mechanisms along with disturbances in ion channel perturbations, cytoskeletal damage, and myofibril changes. Disruptions in circadian rhythms caused by factors such as microgravity, light exposure, and irregular work schedules, could further exacerbate cardiovascular issues. However, current research tends to predominantly focus on disruptions in the core clock gene, overlooking the multifactorial nature of circadian rhythm disturbances in space. Future space missions should prioritize targeted prevention strategies and early detection methods for identifying cardiovascular risks, to preserve astronaut health and ensure mission success.
Collapse
Affiliation(s)
- Han Han
- Beijing Key Laboratory of Preclinical Research and Evaluation for Cardiovascular Implant Materials, Animal Experimental Centre, National Centre for Cardiovascular Disease; Department of Cardiac Surgery, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100037, China
| | - Hao Jia
- Beijing Key Laboratory of Preclinical Research and Evaluation for Cardiovascular Implant Materials, Animal Experimental Centre, National Centre for Cardiovascular Disease; Department of Cardiac Surgery, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100037, China
| | - Yi-Fan Wang
- Beijing Key Laboratory of Preclinical Research and Evaluation for Cardiovascular Implant Materials, Animal Experimental Centre, National Centre for Cardiovascular Disease; Department of Cardiac Surgery, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100037, China
| | - Jiang-Ping Song
- Beijing Key Laboratory of Preclinical Research and Evaluation for Cardiovascular Implant Materials, Animal Experimental Centre, National Centre for Cardiovascular Disease; Department of Cardiac Surgery, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100037, China.
| |
Collapse
|
5
|
Cui J, Chen Y, Yang Q, Zhao P, Yang M, Wang X, Mang G, Yan X, Wang D, Tong Z, Wang P, Kong Y, Wang N, Wang D, Dong N, Liu M, E M, Zhang M, Yu B. Protosappanin A Protects DOX-Induced Myocardial Injury and Cardiac Dysfunction by Targeting ACSL4/FTH1 Axis-Dependent Ferroptosis. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2310227. [PMID: 38984448 PMCID: PMC11425893 DOI: 10.1002/advs.202310227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 06/12/2024] [Indexed: 07/11/2024]
Abstract
Doxorubicin (DOX) is an effective anticancer agent, but its clinical utility is constrained by dose-dependent cardiotoxicity, partly due to cardiomyocyte ferroptosis. However, the progress of developing cardioprotective medications to counteract ferroptosis has encountered obstacles. Protosappanin A (PrA), an anti-inflammatory compound derived from hematoxylin, shows potential against DOX-induced cardiomyopathy (DIC). Here, it is reported that PrA alleviates myocardial damage and dysfunction by reducing DOX-induced ferroptosis and maintaining mitochondrial homeostasis. Subsequently, the molecular target of PrA through proteome microarray, molecular docking, and dynamics simulation is identified. Mechanistically, PrA physically binds with ferroptosis-related proteins acyl-CoA synthetase long-chain family member 4 (ACSL4) and ferritin heavy chain 1 (FTH1), ultimately inhibiting ACSL4 phosphorylation and subsequent phospholipid peroxidation, while also preventing FTH1 autophagic degradation and subsequent release of ferrous ions (Fe2+) release. Given the critical role of ferroptosis in the pathogenesis of ischemia-reperfusion (IR) injury, this further investigation posits that PrA can confer a protective effect against IR-induced cardiac damage by inhibiting ferroptosis. Overall, a novel pharmacological inhibitor is unveiled that targets ferroptosis and uncover a dual-regulated mechanism for cardiomyocyte ferroptosis in DIC, highlighting additional therapeutic options for chemodrug-induced cardiotoxicity and ferroptosis-triggered disorders.
Collapse
|
6
|
Bao M, Hua X, Chen X, An T, Mo H, Sun Z, Tao M, Yue G, Song J. PICALM Regulating the Generation of Amyloid β-Peptide to Promote Anthracycline-Induced Cardiotoxicity. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2401945. [PMID: 38935046 PMCID: PMC11348153 DOI: 10.1002/advs.202401945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 05/22/2024] [Indexed: 06/28/2024]
Abstract
Anthracyclines are chemotherapeutic drugs used to treat solid and hematologic malignancies. However, life-threatening cardiotoxicity, with cardiac dilation and heart failure, is a drawback. A combination of in vivo for single cell/nucleus RNA sequencing and in vitro approaches is used to elucidate the underlying mechanism. Genetic depletion and pharmacological blocking peptides on phosphatidylinositol binding clathrin assembly (PICALM) are used to evaluate the role of PICALM in doxorubicin-induced cardiotoxicity in vivo. Human heart tissue samples are used for verification. Patients with end-stage heart failure and chemotherapy-induced cardiotoxicity have thinner cell membranes compared to healthy controls do. Using the doxorubicin-induced cardiotoxicity mice model, it is possible to replicate the corresponding phenotype in patients. Cellular changes in doxorubicin-induced cardiotoxicity in mice, especially in cardiomyocytes, are identified using single cell/nucleus RNA sequencing. Picalm expression is upregulated only in cardiomyocytes with doxorubicin-induced cardiotoxicity. Amyloid β-peptide production is also increased after doxorubicin treatment, which leads to a greater increase in the membrane permeability of cardiomyocytes. Genetic depletion and pharmacological blocking peptides on Picalm reduce the generation of amyloid β-peptide. This alleviates the doxorubicin-induced cardiotoxicity in vitro and in vivo. In human heart tissue samples of patients with chemotherapy-induced cardiotoxicity, PICALM, and amyloid β-peptide are elevated as well.
Collapse
Affiliation(s)
- Mengni Bao
- Beijing Key Laboratory of Preclinical Research and Evaluation for Cardiovascular Implant MaterialsAnimal Experimental CentreFuwai HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijing100037China
- State Key Laboratory of Cardiovascular DiseaseFuwai HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijing10037China
- Shenzhen Key Laboratory of Cardiovascular DiseaseFuwai HospitalChinese Academy of Medical SciencesShenzhen518057China
| | - Xiumeng Hua
- Beijing Key Laboratory of Preclinical Research and Evaluation for Cardiovascular Implant MaterialsAnimal Experimental CentreFuwai HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijing100037China
- State Key Laboratory of Cardiovascular DiseaseFuwai HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijing10037China
- Department of Cardiovascular SurgeryFuwai HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijing10037China
- The Cardiomyopathy Research GroupFuwai HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijing10037China
| | - Xiao Chen
- Beijing Key Laboratory of Preclinical Research and Evaluation for Cardiovascular Implant MaterialsAnimal Experimental CentreFuwai HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijing100037China
- State Key Laboratory of Cardiovascular DiseaseFuwai HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijing10037China
- Department of Cardiovascular SurgeryFuwai HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijing10037China
- The Cardiomyopathy Research GroupFuwai HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijing10037China
| | - Tao An
- Beijing Key Laboratory of Preclinical Research and Evaluation for Cardiovascular Implant MaterialsAnimal Experimental CentreFuwai HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijing100037China
- Department of CardiologyFuwai HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijing10037China
| | - Han Mo
- Shenzhen Key Laboratory of Cardiovascular DiseaseFuwai HospitalChinese Academy of Medical SciencesShenzhen518057China
| | - Zhe Sun
- Shenzhen Key Laboratory of Cardiovascular DiseaseFuwai HospitalChinese Academy of Medical SciencesShenzhen518057China
| | - Menghao Tao
- State Key Laboratory of Cardiovascular DiseaseFuwai HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijing10037China
| | - Guangxin Yue
- Beijing Key Laboratory of Preclinical Research and Evaluation for Cardiovascular Implant MaterialsAnimal Experimental CentreFuwai HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijing100037China
| | - Jiangping Song
- Beijing Key Laboratory of Preclinical Research and Evaluation for Cardiovascular Implant MaterialsAnimal Experimental CentreFuwai HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijing100037China
- State Key Laboratory of Cardiovascular DiseaseFuwai HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijing10037China
- Shenzhen Key Laboratory of Cardiovascular DiseaseFuwai HospitalChinese Academy of Medical SciencesShenzhen518057China
- Department of Cardiovascular SurgeryFuwai HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijing10037China
- The Cardiomyopathy Research GroupFuwai HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijing10037China
| |
Collapse
|
7
|
Zhong L, Zhang J, Yang J, Li B, Yi X, Speakman JR, Gao S, Li M. Chronic sleep fragmentation reduces left ventricular contractile function and alters gene expression related to innate immune response and circadian rhythm in the mouse heart. Gene 2024; 914:148420. [PMID: 38556117 DOI: 10.1016/j.gene.2024.148420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Revised: 03/11/2024] [Accepted: 03/27/2024] [Indexed: 04/02/2024]
Abstract
Sleep disorders have emerged as a widespread public health concern, primarily due to their association with an increased risk of developing cardiovascular diseases. Our previous research indicated a potential direct impact of insufficient sleep duration on cardiac remodeling in children and adolescents. Nevertheless, the underlying mechanisms behind the link between sleep fragmentation (SF) and cardiac abnormalities remain unclear. In this study, we aimed to investigate the effects of SF interventions at various life stages on cardiac structure and function, as well as to identify genes associated with SF-induced cardiac dysfunction. To achieve this, we established mouse models of chronic SF and two-week sleep recovery (SR). Our results revealed that chronic SF significantly compromised left ventricular contractile function across different life stages, leading to alterations in cardiac structure and ventricular remodeling, particularly during early life stages. Moreover, microarray analysis of mouse heart tissue identified two significant modules and nine hub genes (Ddx60, Irf9, Oasl2, Rnf213, Cmpk2, Stat2, Parp14, Gbp3, and Herc6) through protein-protein interaction analysis. Notably, the interactome predominantly involved innate immune responses. Importantly, all hub genes lost significance following SR. The second module primarily consisted of circadian clock genes, and real-time PCR validation demonstrated significant upregulation of Arntl, Dbp, and Cry1 after SF, while subsequent SR restored normal Arntl expression. Furthermore, the expression levels of four hub genes (Ddx60, Irf9, Oasl2, and Cmpk2) and three circadian clock genes (Arntl, Dbp, and Cry1) exhibited correlations with structural and functional echocardiographic parameters. Overall, our findings suggest that SF impairs left ventricular contractile function and ventricular remodeling during early life stages, and this may be mediated by modulation of the innate immune response and circadian rhythm. Importantly, our findings suggest that a short period of SR can alleviate the detrimental effects of SF on the cardiac immune response, while the influence of SF on circadian rhythm appears to be more persistent. These findings underscore the importance of good sleep for maintaining cardiac health, particularly during early life stages.
Collapse
Affiliation(s)
- Ling Zhong
- Department of Endocrinology, National Health Committee Key Laboratory of Endocrinology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Jie Zhang
- Department of Endocrinology, Xuanwu Hospital, Capital Medical University, Beijing 100053, China
| | - Jielin Yang
- Department of Cell and Systems Biology, University of Toronto, Toronto, ON M5S 1A1, Canada
| | - Bo Li
- Department of Endocrinology, National Health Committee Key Laboratory of Endocrinology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Xinghao Yi
- Department of Endocrinology, National Health Committee Key Laboratory of Endocrinology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - John R Speakman
- Center for Energy Metabolism and Reproduction, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Shan Gao
- Department of Endocrinology, Xuanwu Hospital, Capital Medical University, Beijing 100053, China.
| | - Ming Li
- Department of Endocrinology, National Health Committee Key Laboratory of Endocrinology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China.
| |
Collapse
|
8
|
Che Y, Shimizu Y, Hayashi T, Suzuki J, Pu Z, Tsuzuki K, Narita S, Shibata R, Murohara T. Chronic circadian rhythm disorder induces heart failure with preserved ejection fraction-like phenotype through the Clock-sGC-cGMP-PKG1 signaling pathway. Sci Rep 2024; 14:10777. [PMID: 38734687 PMCID: PMC11088651 DOI: 10.1038/s41598-024-61710-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 05/08/2024] [Indexed: 05/13/2024] Open
Abstract
Emerging evidence has documented that circadian rhythm disorders could be related to cardiovascular diseases. However, there is limited knowledge on the direct adverse effects of circadian misalignment on the heart. This study aimed to investigate the effect of chronic circadian rhythm disorder on heart homeostasis in a mouse model of consistent jetlag. The jetlag model was induced in mice by a serial 8-h phase advance of the light cycle using a light-controlled isolation box every 4 days for up to 3 months. Herein, we demonstrated for the first time that chronic circadian rhythm disorder established in the mouse jetlag model could lead to HFpEF-like phenotype such as cardiac hypertrophy, cardiac fibrosis, and cardiac diastolic dysfunction, following the attenuation of the Clock-sGC-cGMP-PKG1 signaling. In addition, clock gene knock down in cardiomyocytes induced hypertrophy via decreased sGC-cGMP-PKG signaling pathway. Furthermore, treatment with an sGC-activator riociguat directly attenuated the adverse effects of jetlag model-induced cardiac hypertrophy, cardiac fibrosis, and cardiac diastolic dysfunction. Our data suggest that circadian rhythm disruption could induce HFpEF-like phenotype through downregulation of the clock-sGC-cGMP-PKG1 signaling pathway. sGC could be one of the molecular targets against circadian rhythm disorder-related heart disease.
Collapse
Affiliation(s)
- Yiyang Che
- Department of Cardiology, Nagoya University Graduate School of Medicine, 65 Tsurumai, Showa-ku, Nagoya, 466-8550, Japan
| | - Yuuki Shimizu
- Department of Cardiology, Nagoya University Graduate School of Medicine, 65 Tsurumai, Showa-ku, Nagoya, 466-8550, Japan.
| | - Takumi Hayashi
- Department of Cardiology, Nagoya University Graduate School of Medicine, 65 Tsurumai, Showa-ku, Nagoya, 466-8550, Japan
| | - Junya Suzuki
- Department of Cardiology, Nagoya University Graduate School of Medicine, 65 Tsurumai, Showa-ku, Nagoya, 466-8550, Japan
| | - Zhongyue Pu
- Department of Cardiology, Nagoya University Graduate School of Medicine, 65 Tsurumai, Showa-ku, Nagoya, 466-8550, Japan
| | - Kazuhito Tsuzuki
- Department of Cardiology, Nagoya University Graduate School of Medicine, 65 Tsurumai, Showa-ku, Nagoya, 466-8550, Japan
| | - Shingo Narita
- Department of Cardiology, Nagoya University Graduate School of Medicine, 65 Tsurumai, Showa-ku, Nagoya, 466-8550, Japan
| | - Rei Shibata
- Department of Advanced Cardiovascular Therapeutics, Nagoya University Graduate School of Medicine, Nagoya, 466-8550, Japan
| | - Toyoaki Murohara
- Department of Cardiology, Nagoya University Graduate School of Medicine, 65 Tsurumai, Showa-ku, Nagoya, 466-8550, Japan
| |
Collapse
|
9
|
Wang J, Liu S, Sun L, Kong Z, Chai J, Wen J, Tian X, Chen N, Xu C. Association of attenuated leptin signaling pathways with impaired cardiac function under prolonged high-altitude hypoxia. Sci Rep 2024; 14:10206. [PMID: 38702334 PMCID: PMC11068766 DOI: 10.1038/s41598-024-59559-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 04/12/2024] [Indexed: 05/06/2024] Open
Abstract
Cardiovascular function and adipose metabolism were markedly influenced under high altitudes. However, the interplay between adipokines and heart under hypoxia remains to be elucidated. We aim to explore alterations of adipokines and underlying mechanisms in regulating cardiac function under high altitudes. We investigated the cardiopulmonary function and five adipokines in Antarctic expeditioners at Kunlun Station (4,087 m) for 20 days and established rats exposed to hypobaric hypoxia (5,000 m), simulating Kunlun Station. Antarctic expeditioners exhibited elevated heart rate, blood pressure, systemic vascular resistance, and decreased cardiac pumping function. Plasma creatine phosphokinase-MB (CK-MB) and platelet-endothelial cell adhesion molecule-1 (sPecam-1) increased, and leptin, resistin, and lipocalin-2 decreased. Plasma leptin significantly correlated with altered cardiac function indicators. Additionally, hypoxic rats manifested impaired left ventricular systolic and diastolic function, elevated plasma CK-MB and sPecam-1, and decreased plasma leptin. Chronic hypoxia for 14 days led to increased myocyte hypertrophy, fibrosis, apoptosis, and mitochondrial dysfunction, coupled with reduced protein levels of leptin signaling pathways in myocardial tissues. Cardiac transcriptome analysis revealed leptin was associated with downregulated genes involved in rhythm, Na+/K+ transport, and cell skeleton. In conclusion, chronic hypoxia significantly reduced leptin signaling pathways in cardiac tissues along with significant pathological changes, thus highlighting the pivotal role of leptin in regulation of cardiac function under high altitudes.
Collapse
Affiliation(s)
- Jianan Wang
- Institute of Basic Medical Sciences, School of Basic Medicine, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100005, China
| | - Shiying Liu
- Institute of Basic Medical Sciences, School of Basic Medicine, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100005, China
| | - Lihong Sun
- Center for Experimental Animal Research, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100005, China
| | - Zhanping Kong
- Qinghai Provincial People's Hospital, Xining, 810000, Qinghai, China
| | - Jiamin Chai
- Institute of Basic Medical Sciences, School of Basic Medicine, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100005, China
| | - Jigang Wen
- Institute of Basic Medical Sciences, School of Basic Medicine, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100005, China
| | - Xuan Tian
- Institute of Basic Medical Sciences, School of Basic Medicine, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100005, China
| | - Nan Chen
- Institute of Basic Medical Sciences, School of Basic Medicine, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100005, China
| | - Chengli Xu
- Institute of Basic Medical Sciences, School of Basic Medicine, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100005, China.
- Center of Environmental and Health Sciences, Chinese Academy of Medical Sciences, Beijing, 100005, China.
| |
Collapse
|
10
|
Tran DT, Batchu SN, Advani A. Interferons and interferon-related pathways in heart disease. Front Cardiovasc Med 2024; 11:1357343. [PMID: 38665231 PMCID: PMC11043610 DOI: 10.3389/fcvm.2024.1357343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Accepted: 04/01/2024] [Indexed: 04/28/2024] Open
Abstract
Interferons (IFNs) and IFN-related pathways play key roles in the defence against microbial infection. However, these processes may also be activated during the pathogenesis of non-infectious diseases, where they may contribute to organ injury, or function in a compensatory manner. In this review, we explore the roles of IFNs and IFN-related pathways in heart disease. We consider the cardiac effects of type I IFNs and IFN-stimulated genes (ISGs); the emerging role of the cyclic GMP-AMP synthase (cGAS)-stimulator of interferon genes (STING) pathway; the seemingly paradoxical effects of the type II IFN, IFN-γ; and the varied actions of the interferon regulatory factor (IRF) family of transcription factors. Recombinant IFNs and small molecule inhibitors of mediators of IFN receptor signaling are already employed in the clinic for the treatment of some autoimmune diseases, infections, and cancers. There has also been renewed interest in IFNs and IFN-related pathways because of their involvement in SARS-CoV-2 infection, and because of the relatively recent emergence of cGAS-STING as a pattern recognition receptor-activated pathway. Whether these advances will ultimately result in improvements in the care of those experiencing heart disease remains to be determined.
Collapse
Affiliation(s)
| | | | - Andrew Advani
- Keenan Research Centre for Biomedical Science and Li Ka Shing Knowledge Institute, St. Michael’s Hospital, Toronto, ON, Canada
| |
Collapse
|
11
|
Wang X, Rao J, Zhang L, Liu X, Zhang Y. Identification of circadian rhythm-related gene classification patterns and immune infiltration analysis in heart failure based on machine learning. Heliyon 2024; 10:e27049. [PMID: 38509983 PMCID: PMC10950509 DOI: 10.1016/j.heliyon.2024.e27049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 12/17/2023] [Accepted: 02/22/2024] [Indexed: 03/22/2024] Open
Abstract
Background Circadian rhythms play a key role in the failing heart, but the exact molecular mechanisms linking changes in the expression of circadian rhythm-related genes to heart failure (HF) remain unclear. Methods By intersecting differentially expressed genes (DEGs) between normal and HF samples in the Gene Expression Omnibus (GEO) database with circadian rhythm-related genes (CRGs), differentially expressed circadian rhythm-related genes (DE-CRGs) were obtained. Machine learning algorithms were used to screen for feature genes, and diagnostic models were constructed based on these feature genes. Subsequently, consensus clustering algorithms and non-negative matrix factorization (NMF) algorithms were used for clustering analysis of HF samples. On this basis, immune infiltration analysis was used to score the immune infiltration status between HF and normal samples as well as among different subclusters. Gene Set Variation Analysis (GSVA) evaluated the biological functional differences among subclusters. Results 13 CRGs showed differential expression between HF patients and normal samples. Nine feature genes were obtained through cross-referencing results from four distinct machine learning algorithms. Multivariate LASSO regression and external dataset validation were performed to select five key genes with diagnostic value, including NAMPT, SERPINA3, MAPK10, NPPA, and SLC2A1. Moreover, consensus clustering analysis could divide HF patients into two distinct clusters, which exhibited different biological functions and immune characteristics. Additionally, two subgroups were distinguished using the NMF algorithm based on circadian rhythm associated differentially expressed genes. Studies on immune infiltration showed marked variances in levels of immune infiltration between these subgroups. Subgroup A had higher immune scores and more widespread immune infiltration. Finally, the Weighted Gene Co-expression Network Analysis (WGCNA) method was utilized to discern the modules that had the closest association with the two observed subgroups, and hub genes were pinpointed via protein-protein interaction (PPI) networks. GRIN2A, DLG1, ERBB4, LRRC7, and NRG1 were circadian rhythm-related hub genes closely associated with HF. Conclusion This study provides valuable references for further elucidating the pathogenesis of HF and offers beneficial insights for targeting circadian rhythm mechanisms to regulate immune responses and energy metabolism in HF treatment. Five genes identified by us as diagnostic features could be potential targets for therapy for HF.
Collapse
Affiliation(s)
- Xuefu Wang
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China
| | - Jin Rao
- Department of Cardiothoracic Surgery, Shanghai Changzheng Hospital, Naval Medical University, Shanghai, China
| | - Li Zhang
- Guangxi University, Nanning, China
| | | | - Yufeng Zhang
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China
- Department of Cardiothoracic Surgery, Shanghai Changzheng Hospital, Naval Medical University, Shanghai, China
| |
Collapse
|
12
|
Huang J, Wu T, Jiang YR, Zheng XQ, Wang H, Liu H, Wang H, Leng HJ, Fan DW, Yuan WQ, Song CL. β-Receptor blocker enhances the anabolic effect of PTH after osteoporotic fracture. Bone Res 2024; 12:18. [PMID: 38514644 PMCID: PMC10958005 DOI: 10.1038/s41413-024-00321-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Revised: 02/07/2024] [Accepted: 02/15/2024] [Indexed: 03/23/2024] Open
Abstract
The autonomic nervous system plays a crucial role in regulating bone metabolism, with sympathetic activation stimulating bone resorption and inhibiting bone formation. We found that fractures lead to increased sympathetic tone, enhanced osteoclast resorption, decreased osteoblast formation, and thus hastened systemic bone loss in ovariectomized (OVX) mice. However, the combined administration of parathyroid hormone (PTH) and the β-receptor blocker propranolol dramatically promoted systemic bone formation and osteoporotic fracture healing in OVX mice. The effect of this treatment is superior to that of treatment with PTH or propranolol alone. In vitro, the sympathetic neurotransmitter norepinephrine (NE) suppressed PTH-induced osteoblast differentiation and mineralization, which was rescued by propranolol. Moreover, NE decreased the PTH-induced expression of Runx2 but enhanced the expression of Rankl and the effect of PTH-stimulated osteoblasts on osteoclastic differentiation, whereas these effects were reversed by propranolol. Furthermore, PTH increased the expression of the circadian clock gene Bmal1, which was inhibited by NE-βAR signaling. Bmal1 knockdown blocked the rescue effect of propranolol on the NE-induced decrease in PTH-stimulated osteoblast differentiation. Taken together, these results suggest that propranolol enhances the anabolic effect of PTH in preventing systemic bone loss following osteoporotic fracture by blocking the negative effects of sympathetic signaling on PTH anabolism.
Collapse
Affiliation(s)
- Jie Huang
- Department of Orthopedics, Peking University Third Hospital, 100191, Beijing, China
| | - Tong Wu
- Department of Orthopedics, Peking University Third Hospital, 100191, Beijing, China
| | - Yi-Rong Jiang
- Department of Orthopedics, Peking University Third Hospital, 100191, Beijing, China
| | - Xuan-Qi Zheng
- Department of Orthopedics, Peking University Third Hospital, 100191, Beijing, China
| | - Huan Wang
- Department of Orthopedics, Peking University Third Hospital, 100191, Beijing, China
| | - Hao Liu
- Department of Orthopedics, Peking University Third Hospital, 100191, Beijing, China
| | - Hong Wang
- Department of Orthopedics, Peking University Third Hospital, 100191, Beijing, China
- Beijing Key Laboratory of Spinal Disease, 100191, Beijing, China
- Engineering Research Center of Bone and Joint Precision Medicine, 100191, Beijing, China
| | - Hui-Jie Leng
- Department of Orthopedics, Peking University Third Hospital, 100191, Beijing, China
- Beijing Key Laboratory of Spinal Disease, 100191, Beijing, China
- Engineering Research Center of Bone and Joint Precision Medicine, 100191, Beijing, China
| | - Dong-Wei Fan
- Department of Orthopedics, Peking University Third Hospital, 100191, Beijing, China
- Beijing Key Laboratory of Spinal Disease, 100191, Beijing, China
- Engineering Research Center of Bone and Joint Precision Medicine, 100191, Beijing, China
| | - Wan-Qiong Yuan
- Department of Orthopedics, Peking University Third Hospital, 100191, Beijing, China
- Beijing Key Laboratory of Spinal Disease, 100191, Beijing, China
- Engineering Research Center of Bone and Joint Precision Medicine, 100191, Beijing, China
| | - Chun-Li Song
- Department of Orthopedics, Peking University Third Hospital, 100191, Beijing, China.
- Beijing Key Laboratory of Spinal Disease, 100191, Beijing, China.
- Engineering Research Center of Bone and Joint Precision Medicine, 100191, Beijing, China.
| |
Collapse
|
13
|
Webb AJ, Klerman EB, Mandeville ET. Circadian and Diurnal Regulation of Cerebral Blood Flow. Circ Res 2024; 134:695-710. [PMID: 38484025 PMCID: PMC10942227 DOI: 10.1161/circresaha.123.323049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Revised: 01/30/2024] [Accepted: 02/07/2024] [Indexed: 03/17/2024]
Abstract
Circadian and diurnal variation in cerebral blood flow directly contributes to the diurnal variation in the risk of stroke, either through factors that trigger stroke or due to impaired compensatory mechanisms. Cerebral blood flow results from the integration of systemic hemodynamics, including heart rate, cardiac output, and blood pressure, with cerebrovascular regulatory mechanisms, including cerebrovascular reactivity, autoregulation, and neurovascular coupling. We review the evidence for the circadian and diurnal variation in each of these mechanisms and their integration, from the detailed evidence for mechanisms underlying the nocturnal nadir and morning surge in blood pressure to identifying limited available evidence for circadian and diurnal variation in cerebrovascular compensatory mechanisms. We, thus, identify key systemic hemodynamic factors related to the diurnal variation in the risk of stroke but particularly identify the need for further research focused on cerebrovascular regulatory mechanisms.
Collapse
Affiliation(s)
- Alastair J.S. Webb
- Department of Clinical Neurosciences, Wolfson Centre for Prevention of Stroke and Dementia, University of Oxford, United Kingdom (A.J.S.W.)
| | - Elizabeth B. Klerman
- Department of Clinical Neurosciences, Wolfson Centre for Prevention of Stroke and Dementia, University of Oxford, United Kingdom (A.J.S.W.)
- Department of Neurology, Massachusetts General Hospital, Boston (E.B.K.)
- Division of Sleep and Circadian Disorders, Department of Medicine, Brigham and Women’s Hospital, Boston, MA (E.B.K.)
- Division of Sleep Medicine, Harvard Medical School, Boston, MA (E.B.K.)
| | - Emiri T. Mandeville
- Departments of Radiology and Neurology, Neuroprotection Research Laboratories, Massachusetts General Hospital, Harvard Medical School, Boston (E.T.M.)
| |
Collapse
|
14
|
Eckle T, Bertazzo J, Khatua TN, Tabatabaei SRF, Bakhtiari NM, Walker LA, Martino TA. Circadian Influences on Myocardial Ischemia-Reperfusion Injury and Heart Failure. Circ Res 2024; 134:675-694. [PMID: 38484024 PMCID: PMC10947118 DOI: 10.1161/circresaha.123.323522] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Accepted: 02/08/2024] [Indexed: 03/19/2024]
Abstract
The impact of circadian rhythms on cardiovascular function and disease development is well established, with numerous studies in genetically modified animals emphasizing the circadian molecular clock's significance in the pathogenesis and pathophysiology of myocardial ischemia and heart failure progression. However, translational preclinical studies targeting the heart's circadian biology are just now emerging and are leading to the development of a novel field of medicine termed circadian medicine. In this review, we explore circadian molecular mechanisms and novel therapies, including (1) intense light, (2) small molecules modulating the circadian mechanism, and (3) chronotherapies such as cardiovascular drugs and meal timings. These promise significant clinical translation in circadian medicine for cardiovascular disease. (4) Additionally, we address the differential functioning of the circadian mechanism in males versus females, emphasizing the consideration of biological sex, gender, and aging in circadian therapies for cardiovascular disease.
Collapse
Affiliation(s)
- Tobias Eckle
- Department of Anesthesiology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
- Division of Cardiology, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Júlia Bertazzo
- Department of Anesthesiology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Tarak Nath Khatua
- Centre for Cardiovascular Investigations, Department of Biomedical Sciences, University of Guelph, Guelph, Ontario, Canada
| | - Seyed Reza Fatemi Tabatabaei
- Centre for Cardiovascular Investigations, Department of Biomedical Sciences, University of Guelph, Guelph, Ontario, Canada
| | - Naghmeh Moori Bakhtiari
- Centre for Cardiovascular Investigations, Department of Biomedical Sciences, University of Guelph, Guelph, Ontario, Canada
| | - Lori A Walker
- Division of Cardiology, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Tami A. Martino
- Centre for Cardiovascular Investigations, Department of Biomedical Sciences, University of Guelph, Guelph, Ontario, Canada
| |
Collapse
|
15
|
Faraci FM, Scheer FA. Hypertension: Causes and Consequences of Circadian Rhythms in Blood Pressure. Circ Res 2024; 134:810-832. [PMID: 38484034 PMCID: PMC10947115 DOI: 10.1161/circresaha.124.323515] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 02/16/2024] [Indexed: 03/19/2024]
Abstract
Hypertension is extremely common, affecting approximately 1 in every 2 adults globally. Chronic hypertension is the leading modifiable risk factor for cardiovascular disease and premature mortality worldwide. Despite considerable efforts to define mechanisms that underlie hypertension, a potentially major component of the disease, the role of circadian biology has been relatively overlooked in both preclinical models and humans. Although the presence of daily and circadian patterns has been observed from the level of the genome to the whole organism, the functional and structural impact of biological rhythms, including mechanisms such as circadian misalignment, remains relatively poorly defined. Here, we review the impact of daily rhythms and circadian systems in regulating blood pressure and the onset, progression, and consequences of hypertension. There is an emphasis on the impact of circadian biology in relation to vascular disease and end-organ effects that, individually or in combination, contribute to complex phenotypes such as cognitive decline and the loss of cardiac and brain health. Despite effective treatment options for some individuals, control of blood pressure remains inadequate in a substantial portion of the hypertensive population. Greater insight into circadian biology may form a foundation for novel and more widely effective molecular therapies or interventions to help in the prevention, treatment, and management of hypertension and its related pathophysiology.
Collapse
Affiliation(s)
- Frank M. Faraci
- Department of Internal Medicine, Francois M. Abboud Cardiovascular Center, Carver College of Medicine, University of Iowa, Iowa City, IA 52242-1081
- Department of Neuroscience and Pharmacology, Francois M. Abboud Cardiovascular Center, Carver College of Medicine, University of Iowa, Iowa City, IA 52242-1081
| | - Frank A.J.L. Scheer
- Division of Sleep Medicine, Harvard Medical School, Brigham and Women's Hospital, Boston, Massachusetts, 02115
- Medical Chronobiology Program, Division of Sleep and Circadian Disorders, Departments of Medicine and Neurology, Brigham and Women's Hospital, Boston, Massachusetts, 02115
| |
Collapse
|
16
|
Kim HJ, Jo SH. Nighttime administration of antihypertensive medication: a review of chronotherapy in hypertension. Korean J Intern Med 2024; 39:205-214. [PMID: 37967524 PMCID: PMC10918378 DOI: 10.3904/kjim.2023.304] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 08/14/2023] [Accepted: 09/01/2023] [Indexed: 11/17/2023] Open
Abstract
Hypertension remains a global health concern because of suboptimal blood pressure control despite advancements in antihypertensive treatments. Chronotherapy, defined as evening or bedtime administration of medication based on biological rhythms, is emerging as a potential strategy to improve blood pressure control and treatment outcomes. Clinical trials have investigated the potential effects of nighttime administration of antihypertensive medication in the improvement of 24 hours blood pressure control and reduction of cardiovascular risk. Implementing chronotherapy in clinical practice could have significant implications in enhancing blood pressure control and improving clinical outcomes in patients with hypertension, particularly those with resistant hypertension. However, recent trials have reported contradictory results, causing confusion in real-world practice. Herein we review, analyze, and critique the current evidence and propose suggestions regarding the clinical application and future directions of chronotherapy.
Collapse
Affiliation(s)
- Hyun-Jin Kim
- Division of Cardiology, Department of Internal Medicine, Hanyang University College of Medicine, Seoul, Korea
| | - Sang-Ho Jo
- Division of Cardiology, Department of Internal Medicine, Hallym University Sacred Heart Hospital, Hallym University College of Medicine, Anyang, Korea
| |
Collapse
|
17
|
Malhan D, Relógio A. A matter of timing? The influence of circadian rhythms on cardiac physiology and disease. Eur Heart J 2024; 45:561-563. [PMID: 38104261 DOI: 10.1093/eurheartj/ehad816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2023] Open
Affiliation(s)
- Deeksha Malhan
- Institute for Systems Medicine and Faculty of Human Medicine, MSH Medical School Hamburg, Am Kaiserkai 1, Hamburg 20457, Germany
| | - Angela Relógio
- Institute for Systems Medicine and Faculty of Human Medicine, MSH Medical School Hamburg, Am Kaiserkai 1, Hamburg 20457, Germany
- Institute for Theoretical Biology (ITB), Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Philippstraße 13, Berlin 10117, Germany
| |
Collapse
|
18
|
Malhan D, Schoenrock B, Yalçin M, Blottner D, Relόgio A. Circadian regulation in aging: Implications for spaceflight and life on earth. Aging Cell 2023; 22:e13935. [PMID: 37493006 PMCID: PMC10497835 DOI: 10.1111/acel.13935] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 06/30/2023] [Accepted: 07/07/2023] [Indexed: 07/27/2023] Open
Abstract
Alterations in the circadian system are characteristic of aging on Earth. With the decline in physiological processes due to aging, several health concerns including vision loss, cardiovascular disorders, cognitive impairments, and muscle mass loss arise in elderly populations. Similar health risks are reported as "red flag" risks among astronauts during and after a long-term Space exploration journey. However, little is known about the common molecular alterations underlying terrestrial aging and space-related aging in astronauts, and controversial conclusions have been recently reported. In light of the regulatory role of the circadian clock in the maintenance of human health, we review here the overlapping role of the circadian clock both on aging on Earth and spaceflight with a focus on the four most affected systems: visual, cardiovascular, central nervous, and musculoskeletal systems. In this review, we briefly introduce the regulatory role of the circadian clock in specific cellular processes followed by alterations in those processes due to aging. We next summarize the known molecular alterations associated with spaceflight, highlighting involved clock-regulated genes in space flown Drosophila, nematodes, small mammals, and astronauts. Finally, we discuss common genes that are altered in terms of their expression due to aging on Earth and spaceflight. Altogether, the data elaborated in this review strengthen our hypothesis regarding the timely need to include circadian dysregulation as an emerging hallmark of aging on Earth and beyond.
Collapse
Affiliation(s)
- Deeksha Malhan
- Institute for Systems Medicine and Faculty of Human MedicineMSH Medical School HamburgHamburgGermany
| | - Britt Schoenrock
- Institute of Integrative NeuroanatomyCharité‐Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt‐Universität zu Berlin, and Berlin Institute of HealthBerlinGermany
| | - Müge Yalçin
- Institute for Systems Medicine and Faculty of Human MedicineMSH Medical School HamburgHamburgGermany
- Institute for Theoretical Biology (ITB)Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt‐Universität zu Berlin, and Berlin Institute of HealthBerlinGermany
- Molecular Cancer Research Center (MKFZ), Medical Department of Hematology, Oncology, and Tumour Immunology, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt‐Universität zu Berlin, and Berlin Institute of HealthBerlinGermany
| | - Dieter Blottner
- Institute of Integrative NeuroanatomyCharité‐Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt‐Universität zu Berlin, and Berlin Institute of HealthBerlinGermany
- Neuromuscular System and Neuromuscular SignalingBerlin Center of Space Medicine & Extreme EnvironmentsBerlinGermany
| | - Angela Relόgio
- Institute for Systems Medicine and Faculty of Human MedicineMSH Medical School HamburgHamburgGermany
- Institute for Theoretical Biology (ITB)Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt‐Universität zu Berlin, and Berlin Institute of HealthBerlinGermany
- Molecular Cancer Research Center (MKFZ), Medical Department of Hematology, Oncology, and Tumour Immunology, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt‐Universität zu Berlin, and Berlin Institute of HealthBerlinGermany
| |
Collapse
|
19
|
Nekolla SG, Rischpler C, Higuchi T. Preclinical Imaging of Cardiovascular Disesase. Semin Nucl Med 2023; 53:586-598. [PMID: 37268498 DOI: 10.1053/j.semnuclmed.2023.04.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 04/24/2023] [Accepted: 04/26/2023] [Indexed: 06/04/2023]
Abstract
Noninvasive imaging techniques, such as SPECT, PET, CT, echocardiography, or MRI, have become essential in cardiovascular research. They allow for the evaluation of biological processes in vivo without the need for invasive procedures. Nuclear imaging methods, such as SPECT and PET, offer numerous advantages, including high sensitivity, reliable quantification, and the potential for serial imaging. Modern SPECT and PET imaging systems, equipped with CT and MRI components in order to get access to morphological information with high spatial resolution, are capable of imaging a wide range of established and innovative agents in both preclinical and clinical settings. This review highlights the utility of SPECT and PET imaging as powerful tools for translational research in cardiology. By incorporating these techniques into a well-defined workflow- similar to those used in clinical imaging- the concept of "bench to bedside" can be effectively implemented.
Collapse
Affiliation(s)
- Stephan G Nekolla
- Nuklearmedizinische Klinik der TU München, Munich, Germany; DZHK (German Centre for Cardiovascular Research), partner site Munich Heart Alliance, Munich, Germany.
| | | | - Takahiro Higuchi
- Department of Nuclear Medicine, University Hospital Würzburg, Würzburg, Germany; Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| |
Collapse
|
20
|
Yoshiyama A, Tsujimura A, Hiramatsu I, Morino J, Anno Y, Kurosawa M, Kure A, Uesaka Y, Nozaki T, Shirai M, Kiuchi H, Horie S. Circadian Rhythm of Voided Volume, Maximum Flow Rate, and Voiding Time Evaluated by Toilet Uroflowmetry in Hospitalized Women With Nocturia. Urology 2023; 179:50-57. [PMID: 37353090 DOI: 10.1016/j.urology.2023.06.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 06/05/2023] [Accepted: 06/07/2023] [Indexed: 06/25/2023]
Abstract
OBJECTIVE To clarify the circadian rhythm of urination in hospitalized women with nocturia measured by toilet uroflowmetry and its age-related change. METHODS We evaluated 2602 urinations of 58 female patients (age, 68.4 ± 15.2 years) who were hospitalized in our institution for urological disease. We assessed voided volume (VV) as averages of every hour by generalized linear mixed models with an identity link function to adjust for personal bias and age. Maximum flow rate and voiding time were analyzed by the same method after adjustment for age, personal bias, and VV. We also compared these circadian rhythms between women <70 and ≥70 years. RESULTS VVs in the nighttime were significantly higher than that from 06:00-07:00 (205.6 ± 11.7 ml). Maximum flow rates in the afternoon were significantly higher than that from 06:00-07:00 (18.8 ± 0.93 ml/sec). Voiding time showed no statistically significant difference between the values at any time of day and that from 06:00-07:00. We also showed that the circadian rhythm of VV becomes less clear in the elderly women (P interaction = .0057). However, no significant difference was found in the maximum flow rate and voiding time regarding the pattern of the circadian rhythm between women <70 and ≥70 years old. CONCLUSION The present study clearly showed a circadian rhythm of VV and maximum flow rate in hospitalized women with nocturia. In addition, the pattern of the circadian rhythm of VV was attenuated in women ≥70 years old.
Collapse
Affiliation(s)
- Azusa Yoshiyama
- Department of Urology, Juntendo University, Graduate School of Medicine, Bunkyo-ku, Tokyo, Japan; Department of Urology, Juntendo University Urayasu Hospital, Urayasu, Chiba, Japan
| | - Akira Tsujimura
- Department of Urology, Juntendo University Urayasu Hospital, Urayasu, Chiba, Japan.
| | - Ippei Hiramatsu
- Department of Urology, Juntendo University, Graduate School of Medicine, Bunkyo-ku, Tokyo, Japan; Department of Urology, Juntendo University Urayasu Hospital, Urayasu, Chiba, Japan
| | - Junki Morino
- Department of Urology, Juntendo University Urayasu Hospital, Urayasu, Chiba, Japan
| | - Yuta Anno
- Department of Urology, Juntendo University Urayasu Hospital, Urayasu, Chiba, Japan
| | - Makoto Kurosawa
- Department of Urology, Juntendo University Urayasu Hospital, Urayasu, Chiba, Japan
| | - Akimasa Kure
- Department of Urology, Juntendo University Urayasu Hospital, Urayasu, Chiba, Japan
| | - Yuka Uesaka
- Department of Urology, Juntendo University Urayasu Hospital, Urayasu, Chiba, Japan
| | - Taiji Nozaki
- Department of Urology, Juntendo University Urayasu Hospital, Urayasu, Chiba, Japan
| | - Masato Shirai
- Department of Urology, Juntendo University Urayasu Hospital, Urayasu, Chiba, Japan
| | - Hiroshi Kiuchi
- Osaka University Graduate School of Medicine Department of Urology, Suita, Osaka, Japan
| | - Shigeo Horie
- Department of Urology, Juntendo University, Graduate School of Medicine, Bunkyo-ku, Tokyo, Japan
| |
Collapse
|
21
|
Park S, Ihm SH, Cho IJ, Kim DH, Park JH, Chung WB, Choi S, Lee HY, Kim HC, Sohn IS, Lee EM, Kim JH, Kim KI, Cho EJ, Sung KC, Shin J, Pyun WB. Statement on chronotherapy for the treatment of hypertension: consensus document from the Korean society of hypertension. Clin Hypertens 2023; 29:25. [PMID: 37653547 PMCID: PMC10472721 DOI: 10.1186/s40885-023-00249-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 08/11/2023] [Indexed: 09/02/2023] Open
Abstract
Nocturnal blood pressure (BP) has been shown to have a significant predictive value for cardiovascular disease. In some cases, it has a superior predictive value for future cardiovascular outcomes than daytime BP. As efficacy of BP medications wanes during nighttime and early morning, control of nocturnal hypertension and morning hypertension can be difficult. As such, chronotherapy, the dosing of BP medication in the evening, has been an ongoing topic of interest in the field of hypertension. Some studies have shown that chronotherapy is effective in reducing nocturnal BP, improving non dipping and rising patterns to dipping patterns, and improving cardiovascular prognosis. However, criticism and concerns have been raised regarding the design of these studies, such as the Hygia study, and the implausible clinical benefits in cardiovascular outcomes considering the degree of BP lowering from bedtime dosing. Studies have shown that there is no consistent evidence to suggest that routine administration of antihypertensive medications at bedtime can improve nocturnal BP and early morning BP control. However, in some cases of uncontrolled nocturnal hypertension and morning hypertension, such as in those with diabetes mellitus, chronic kidney disease, and obstructive sleep apnea, bedtime dosing has shown efficacy in reducing evening and early morning BP. The recently published the Treatment in Morning versus Evening (TIME) study failed to demonstrate benefit of bedtime dosing in reducing cardiovascular outcomes in patients with hypertension. With issues of the Hygia study and negative results from the TIME study, it is unclear at this time whether routine bedtime dosing is beneficial for reducing cardiovascular outcomes.
Collapse
Affiliation(s)
- Sungha Park
- Division of Cardiology, Severance Cardiovascular Hospital, Integrative Research Center for Cerebrovascular and Cardiovascular Diseases, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Sang-Hyun Ihm
- Division of cardiology, Department of Internal Medicine, Bucheon St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Bucheon, Republic of Korea & Catholic Research Institute for Intractable Cardiovascular Disease, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea.
- Division of Cardiology, Department of Internal Medicine, Ewha Womans University Seoul Hospital, Ewha Womans University College of Medicine, Seoul, Korea.
| | - In-Jeong Cho
- Division of Cardiology, Department of Internal Medicine, Ewha Womans University Seoul Hospital, Ewha Womans University College of Medicine, Seoul, Korea
| | - Dae-Hee Kim
- Division of Cardiology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Jae Hyeong Park
- Department of Cardiology in Internal Medicine, Chungnam National University Hospital, Chungnam National University School of Medicine, Daejeon, Korea
| | - Woo-Baek Chung
- Division of Cardiology, Department of Internal Medicine, Seoul St Mary's Hospital, The Catholic University, Seoul, South Korea
| | - Seonghoon Choi
- Cardiology, Department of Internal Medicine, Kangnam Sacred Heart Hospital, Hallym University College of Medicine, Seoul, South Korea
| | - Hae Young Lee
- Division of Cardiology, Department of Internal Medicine, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, South Korea
| | - Hyeon Chang Kim
- Department of Preventive Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Il Suk Sohn
- Department of Cardiology, Kyung Hee University Hospital at Gangdong, College of Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - Eun Mi Lee
- Division of Cardiology, Department of Internal Medicine, Wonkwang University Sanbon Hospital, Gunpo, Gyeonggi-do, Republic of Korea
| | - Ju Han Kim
- Department of Cardiology, Chonnam National University Hospital, Gwangju, Korea
| | - Kwang-Il Kim
- Department of Internal Medicine, Director of Geriatric center, Seoul National University College of Medicine, Seoul National University Bundang Hospital, Seongnam-Si, Gyeonggi-Do, Korea
| | - Eun Joo Cho
- Division of Cardiology, Department of Internal Medicine, Yeouido St. Mary's Hospital, The Catholic University College of Medicine, Seoul, Korea
| | - Ki-Chul Sung
- Division of Cardiology, Department of Internal Medicine, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Jinho Shin
- Division of Cardiology, Department of Internal Medicine, Hanyang University Seoul Hospital, Seoul, Korea
| | - Wook Bum Pyun
- Division of cardiology, Department of Internal Medicine, Bucheon St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Bucheon, Republic of Korea & Catholic Research Institute for Intractable Cardiovascular Disease, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| |
Collapse
|
22
|
Zhang S, Shen J, Zhu Y, Zheng Y, San W, Cao D, Chen Y, Meng G. Hydrogen sulfide promoted retinoic acid-related orphan receptor α transcription to alleviate diabetic cardiomyopathy. Biochem Pharmacol 2023; 215:115748. [PMID: 37591449 DOI: 10.1016/j.bcp.2023.115748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 08/02/2023] [Accepted: 08/14/2023] [Indexed: 08/19/2023]
Abstract
Diabetic cardiomyopathy (DCM) is one serious and common complication in diabetes without effective treatments. Hydrogen sulfide (H2S) fights against a variety of cardiovascular diseases including DCM. Retinoic acid-related orphan receptor α (RORα) has protective effects on cardiovascular system. However, whether RORα mediates the protective effect of H2S against DCM remains unknown. The present research was to explore the roles and mechanisms of RORα in H2S against DCM. The study demonstrated that H2S donor sodium hydrosulfide (NaHS) alleviated cell injury but enhanced RORα expression in high glucose (HG)-stimulated cardiomyocytes. However, NaHS no longer had the protective effect on attenuating cell damage and oxidative stress, improving mitochondrial membrane potential, inhibiting necroptosis and enhanced signal transducer and activator of transcription 3 (STAT3) Ser727 phosphorylation in HG-stimulated cardiomyocytes after RORα siRNA transfection. Moreover, NaHS improved cardiac function, attenuated myocardial hypertrophy and fibrosis, alleviated oxidative stress, inhibited necroptosis, but increased STAT3 phosphorylation in wild type (WT) mice but not in RORα knockout mice (a spontaneous staggerer mice, sg/sg mice) with diabetes. Additionally, NaHS increased RORα promoter activity in cardiomyocytes with HG stimulation, which was related to the binding sites of E2F transcription factor 1 (E2F1) in the upstream region of RORα promoter. NaHS enhanced E2F1 expression and increased the binding of E2F1 to RORα promoter in cardiomyocytes with HG stimulation. In sum, H2S promoted RORα transcription via E2F1 to alleviate necroptosis and protect against DCM. It is helpful to propose a novel therapeutic implication for DCM.
Collapse
Affiliation(s)
- Shuping Zhang
- Department of Pharmacology, School of Pharmacy, Nantong University, Nantong 226001, Jiangsu, China; Department of Pharmacy, Nantong Third People's Hospital; Department of Pharmacy, Affiliated Nantong Hospital 3 of Nantong University, Nantong 226001, Jiangsu, China
| | - Jieru Shen
- Department of Pharmacology, School of Pharmacy, Nantong University, Nantong 226001, Jiangsu, China
| | - Yu Zhu
- Department of Pharmacology, School of Pharmacy, Nantong University, Nantong 226001, Jiangsu, China
| | - Yangyang Zheng
- Department of Pharmacology, School of Pharmacy, Nantong University, Nantong 226001, Jiangsu, China
| | - Wenqing San
- Department of Pharmacology, School of Pharmacy, Nantong University, Nantong 226001, Jiangsu, China
| | - Danyi Cao
- Department of Pharmacology, School of Pharmacy, Nantong University, Nantong 226001, Jiangsu, China
| | - Yun Chen
- Department of Pharmacology, School of Pharmacy, Nantong University, Nantong 226001, Jiangsu, China.
| | - Guoliang Meng
- Department of Pharmacology, School of Pharmacy, Nantong University, Nantong 226001, Jiangsu, China.
| |
Collapse
|