1
|
Zhou X, Wang ZJ, Camps J, Tomek J, Santiago A, Quintanas A, Vazquez M, Vaseghi M, Rodriguez B. Clinical phenotypes in acute and chronic infarction explained through human ventricular electromechanical modelling and simulations. eLife 2024; 13:RP93002. [PMID: 39711335 DOI: 10.7554/elife.93002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2024] Open
Abstract
Sudden death after myocardial infarction (MI) is associated with electrophysiological heterogeneities and ionic current remodelling. Low ejection fraction (EF) is used in risk stratification, but its mechanistic links with pro-arrhythmic heterogeneities are unknown. We aim to provide mechanistic explanations of clinical phenotypes in acute and chronic MI, from ionic current remodelling to ECG and EF, using human electromechanical modelling and simulation to augment experimental and clinical investigations. A human ventricular electromechanical modelling and simulation framework is constructed and validated with rich experimental and clinical datasets, incorporating varying degrees of ionic current remodelling as reported in literature. In acute MI, T-wave inversion and Brugada phenocopy were explained by conduction abnormality and local action potential prolongation in the border zone. In chronic MI, upright tall T-waves highlight large repolarisation dispersion between the border and remote zones, which promoted ectopic propagation at fast pacing. Post-MI EF at resting heart rate was not sensitive to the extent of repolarisation heterogeneity and the risk of repolarisation abnormalities at fast pacing. T-wave and QT abnormalities are better indicators of repolarisation heterogeneities than EF in post-MI.
Collapse
Affiliation(s)
- Xin Zhou
- Department of Computer Science, University of Oxford, Oxford, United Kingdom
| | - Zhinuo Jenny Wang
- Department of Computer Science, University of Oxford, Oxford, United Kingdom
| | - Julia Camps
- Department of Computer Science, University of Oxford, Oxford, United Kingdom
| | - Jakub Tomek
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom
| | - Alfonso Santiago
- Department of Computer Applications in Science and Engineering, Barcelona Supercomputing Centre (BSC), Barcelona, Spain
- ELEM Biotech, Barcelona, Spain
| | - Adria Quintanas
- Department of Computer Applications in Science and Engineering, Barcelona Supercomputing Centre (BSC), Barcelona, Spain
| | - Mariano Vazquez
- Department of Computer Applications in Science and Engineering, Barcelona Supercomputing Centre (BSC), Barcelona, Spain
- ELEM Biotech, Barcelona, Spain
| | - Marmar Vaseghi
- UCLA Cardiac Arrhythmia Center, University of California, Los Angeles, Los Angeles, United States
- Neurocardiology Research Center of Excellence, University of California, Los Angeles, Los Angeles, United States
| | - Blanca Rodriguez
- Department of Computer Science, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
2
|
Hinata Y, Sasaki D, Matsuura K, Shimizu T. Induction of cardiac alternans in human iPS-derived cardiomyocytes through β-adrenergic receptor stimulation. Physiol Rep 2024; 12:e70152. [PMID: 39715724 DOI: 10.14814/phy2.70152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Revised: 11/28/2024] [Accepted: 11/28/2024] [Indexed: 12/25/2024] Open
Abstract
Cardiac alternans (C-ALT) is a phenomenon of alternating strong and weak contractions in the heart and is considered a risk factor for the development of heart failure and arrhythmias. However, no model has been reported that can induce C-ALT in vitro using human cells, and the developmental mechanism of C-ALT has not been studied using human cells. In this study, we successfully induced C-ALT in vitro using human-induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs). By stimulating β-adrenergic receptor with isoproterenol on hiPSC-CMs cultured in atmospheric condition (with ~0.04% CO2), contractility and calcium transient were observed to alternately increase and decrease with each beat. In contrast, C-ALT was not induced in hiPSC-CMs cultured at 5% CO2 concentration. Since previous studies have linked C-ALT to problems with calcium regulation in the sarcoplasmic reticulum (SR), we exposed hiPSC-CMs to compounds that alter SR Ca2+ loading and analyzed their contractile responses. The results showed that exposure to verapamil, thapsigargin, and ryanodine either suppressed or eliminated C-ALT. In contrast, omecamtiv mecarbil and blebbistatin, which alter contractility without SR Ca2+ loading, did not induce or suppress C-ALT. These results suggest that C-ALT in hiPSC-CMs induced by isoproterenol may be due to abnormal regulation of the ryanodine receptor's opening and closing caused by excessive Ca2+ load in the SR from β-adrenergic receptor stimulation.
Collapse
Affiliation(s)
- Yuto Hinata
- Ogino Memorial Laboratory, Nihon Kohden Corporation, TWIns, Shinjuku-ku, Tokyo, Japan
- Institute of Advanced Biomedical Engineering and Science, TWIns, Tokyo Women's Medical University, Shinjuku-ku, Tokyo, Japan
| | - Daisuke Sasaki
- Institute of Advanced Biomedical Engineering and Science, TWIns, Tokyo Women's Medical University, Shinjuku-ku, Tokyo, Japan
| | - Katsuhisa Matsuura
- Institute of Advanced Biomedical Engineering and Science, TWIns, Tokyo Women's Medical University, Shinjuku-ku, Tokyo, Japan
- Department of Pharmacology, Tokyo Women's Medical University, Shinjuku-ku, Tokyo, Japan
| | - Tatsuya Shimizu
- Institute of Advanced Biomedical Engineering and Science, TWIns, Tokyo Women's Medical University, Shinjuku-ku, Tokyo, Japan
| |
Collapse
|
3
|
Duan S, Liu X, Li J, Li Y, Chen T, Zhou S. Effects and mechanisms of dexmedetomidine preconditioning on isoproterenol-induced ventricular arrhythmias. Sci Rep 2024; 14:28662. [PMID: 39562591 PMCID: PMC11576759 DOI: 10.1038/s41598-024-79236-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Accepted: 11/07/2024] [Indexed: 11/21/2024] Open
Abstract
Dexmedetomidine (DEX) is commonly used in clinical practice because of its sedative, analgesic, antisympathetic, hemodynamic stabilization and antianxiety effects. Previous clinical studies have demonstrated that DEX plays a role in both the prevention and treatment of perioperative arrhythmias. However, the precise mechanisms underlying the effects of DEX remain unclear. Furthermore, few studies have examined the effect of DEX on cardiac electrophysiology. ECG recording was performed in vivo and ex vivo on C57 mice. Simultaneous recording of membrane voltage (Vm) and [Ca2+]i changes was achieved with dual-dye optical mapping, in which voltage- and Ca2+-sensitive dyes are employed. Simultaneous programmed electrical stimulation was used to pacing and induce arrhythmias. Simulating catecholamine-induced arrhythmias with isoprotereno (ISO) and preconditioning with DEX to investigate the antiarrhythmic effects of DEX. Our findings demonstrated that ISO increased the incidence of ventricular tachycardia or ventricular fibrillation in mice during rapid pacing stimulation. DEX preconditioning reduced the incidence of ISO-induced ventricular arrhythmias. Optical mapping with simultaneous recordings of dual dyes (Vm dye and intracellular Ca2+ dye) revealed that DEX pretreatment attenuated the ISO-induced shortening of action potential duration (APD), calcium transient duration (CaTD), and time-to-peak (TTP) of calcium transients, as well as the ISO-induced increase in repolarization heterogeneity. DEX also slowed the conduction velocity. More importantly, DEX preconditioning significantly reduced the calcium transient alternans ratio at 80-ms, 70-ms, and 60-ms pacing cycles. These findings suggest that DEX preconditioning can reduce the incidence of ventricular arrhythmias induced by acute stress simulated by ISO. Prolongation of action potential duration and calcium transient duration and the maintenance of intracellular calcium homeostasis may be the electrophysiological mechanisms involved.
Collapse
Affiliation(s)
- Shengji Duan
- Department of Anesthesiology, The Second People's Hospital of Yibin, Yibin, 644000, Sichuan, China
- Department of Anesthesiology, Ya 'an People's Hospital, Ya 'an, 625000, Sichuan, China
| | - Xueru Liu
- Department of Anesthesiology, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, China
| | - Jianhong Li
- Key Laboratory of Medical Electrophysiology of the Ministry of Education, and Medical Electrophysiological Key Laboratory of Sichuan Province, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, 646000, Sichuan, China
| | - Yangpeng Li
- Key Laboratory of Medical Electrophysiology of the Ministry of Education, and Medical Electrophysiological Key Laboratory of Sichuan Province, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, 646000, Sichuan, China
| | - Tangting Chen
- Key Laboratory of Medical Electrophysiology of the Ministry of Education, and Medical Electrophysiological Key Laboratory of Sichuan Province, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, 646000, Sichuan, China.
| | - Shuzhi Zhou
- Department of Anesthesiology, Ya 'an People's Hospital, Ya 'an, 625000, Sichuan, China.
| |
Collapse
|
4
|
Zhang X, Wu Y, Smith CER, Louch WE, Morotti S, Dobrev D, Grandi E, Ni H. Enhanced Ca 2+-Driven Arrhythmogenic Events in Female Patients With Atrial Fibrillation: Insights From Computational Modeling. JACC Clin Electrophysiol 2024; 10:2371-2391. [PMID: 39340505 PMCID: PMC11602355 DOI: 10.1016/j.jacep.2024.07.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 07/10/2024] [Accepted: 07/29/2024] [Indexed: 09/30/2024]
Abstract
BACKGROUND Substantial sex-based differences have been reported in atrial fibrillation (AF), but the underlying mechanisms are poorly understood. OBJECTIVES This study sought to gain a mechanistic understanding of Ca2+-handling disturbances and Ca2+-driven arrhythmogenic events in male vs female atrial cardiomyocytes and establish their responses to Ca2+-targeted interventions. METHODS We integrated reported sex differences and AF-associated changes (ie, expression and phosphorylation of Ca2+-handling proteins, cardiomyocyte ultrastructural characteristics, and dimensions) into our human atrial cardiomyocyte model that couples electrophysiology with spatially detailed Ca2+-handling processes. Sex-specific responses of atrial cardiomyocytes to arrhythmia-provoking protocols and Ca2+-targeted interventions were evaluated. RESULTS Simulated quiescent cardiomyocytes showed increased incidence of Ca2+ sparks in female vs male myocytes in AF, in agreement with previous experimental reports. Additionally, our female model exhibited elevated propensity to develop pacing-induced spontaneous Ca2+ releases (SCRs) and augmented beat-to-beat variability in action potential (AP)-elicited Ca2+ transients compared with the male model. Sensitivity analysis uncovered distinct arrhythmogenic contributions of each component involved in sex and/or AF alterations. Specifically, increased ryanodine receptor phosphorylation emerged as the major SCR contributor in female AF cardiomyocytes, whereas reduced L-type Ca2+ current was protective against SCRs for male AF cardiomyocytes. Furthermore, simulated Ca2+-targeted interventions identified potential strategies (eg, t-tubule restoration, and inhibition of ryanodine receptor and sarcoplasmic/endoplasmic reticulum Ca2⁺-ATPase) to attenuate Ca2+-driven arrhythmogenic events in women, and revealed enhanced efficacy when applied in combination. CONCLUSIONS Sex-specific modeling uncovers increased Ca2+-driven arrhythmogenic events in female vs male atria in AF, and suggests combined Ca2+-targeted interventions are promising therapeutic approaches in women.
Collapse
Affiliation(s)
- Xianwei Zhang
- Department of Pharmacology, University of California-Davis, Davis, California, USA. https://twitter.com/xianweizhang1
| | - Yixuan Wu
- Department of Pharmacology, University of California-Davis, Davis, California, USA
| | - Charlotte E R Smith
- Department of Pharmacology, University of California-Davis, Davis, California, USA. https://twitter.com/Char_Smith3
| | - William E Louch
- Institute for Experimental Medical Research, Oslo University Hospital and University of Oslo, Oslo, Norway. https://twitter.com/IEMRLouch
| | - Stefano Morotti
- Department of Pharmacology, University of California-Davis, Davis, California, USA. https://twitter.com/MorottiLab
| | - Dobromir Dobrev
- Institute of Pharmacology, West German Heart and Vascular Center, University Duisburg-Essen, Essen, Germany; Montréal Heart Institute, Université de Montréal, Montréal, Québec, Canada; Department of Integrative Physiology, Baylor College of Medicine, Houston, Texas, USA. https://twitter.com/dr_dobrev
| | - Eleonora Grandi
- Department of Pharmacology, University of California-Davis, Davis, California, USA.
| | - Haibo Ni
- Department of Pharmacology, University of California-Davis, Davis, California, USA.
| |
Collapse
|
5
|
Takasugi N, Endo S, Takasugi M, Tochibora R, Yoshida A, Watanabe T, Kawaguchi T, Yamada Y, Kanamori H, Ushikoshi H, Okura H. Roles of Atrial Arrhythmias in Triggering Torsade de Pointes in Patients With Acquired Long QT Syndrome. Circ Arrhythm Electrophysiol 2024; 17:e012675. [PMID: 39234741 DOI: 10.1161/circep.123.012675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 08/13/2024] [Indexed: 09/06/2024]
Abstract
BACKGROUND Little is known about the role of atrial arrhythmias (AAs) in triggering Torsade de Pointes (TdP) in patients with long QT syndrome (LQTS). The aim of this study was to examine the contribution of AAs to the development of TdP in acquired LQTS patients. METHODS The initiation patterns of 81 episodes of TdP obtained from 34 consecutive acute acquired LQTS patients (14 men, median age, 69 years; median QTc, 645.5 ms) with documented TdP were analyzed. The initiation mode of TdP was divided into 3 categories: (1) preceding short-long sequence (SLS); (2) sudden R-on-T phenomenon without preceding SLS; and (3) increased atrial rate. The patients were divided into 2 groups based on the presence or absence of AAs-induced TdP; AAs-induced (n=18) and non-AAs-induced (n=16) groups. The association of clinical/ECG characteristics and TdP frequency after initiating conventional therapy with AAs-induced TdP was evaluated. The groups were compared using the Mann-Whitney U test or Fisher exact test. RESULTS AAs-induced group comprised 52.9% (18/34) of the patients studied. TdP was preceded by AAs-initiated SLSs in 41.2% (14/34) of the patients and was directly induced by R-on-T AAs (AAs coincidentally encountered a vulnerable repolarizing region during the T wave) in 23.5% (8/34). AAs triggered 48 (59.3%) of the 81 TdP episodes. AAs initiated SLSs in 67.8% (40/59) of the SLS-induced TdP episodes. R-on-T AAs accounted for 23.5% (19/81) of the TdP episodes. AAs-induced group experienced TdP after initiating therapy more frequently than non-AAs-induced group (2.5 versus 1 event, P=0.008). AAs-induced group exhibited macroscopic T-wave alternans more frequently than non-AAs-induced group (6 versus 0 event, P=0.02). CONCLUSIONS AAs play a key role in triggering TdP in more than half of patients with acute acquired LQTS and can increase TdP frequency after initiating therapy. Thus, AAs are not benign but rather can be life-threatening in patients with acute acquired LQTS.
Collapse
Affiliation(s)
- Nobuhiro Takasugi
- Gifu University Hospital (N.T., S.E., R.T., A.Y., T.W., T.K., Y.Y., H.K., H.U., H.O.)
| | - Susumu Endo
- Gifu University Hospital (N.T., S.E., R.T., A.Y., T.W., T.K., Y.Y., H.K., H.U., H.O.)
| | | | - Ryota Tochibora
- Gifu University Hospital (N.T., S.E., R.T., A.Y., T.W., T.K., Y.Y., H.K., H.U., H.O.)
| | - Akihiro Yoshida
- Gifu University Hospital (N.T., S.E., R.T., A.Y., T.W., T.K., Y.Y., H.K., H.U., H.O.)
| | - Takatomo Watanabe
- Gifu University Hospital (N.T., S.E., R.T., A.Y., T.W., T.K., Y.Y., H.K., H.U., H.O.)
| | - Tomonori Kawaguchi
- Gifu University Hospital (N.T., S.E., R.T., A.Y., T.W., T.K., Y.Y., H.K., H.U., H.O.)
| | - Yoshihisa Yamada
- Gifu University Hospital (N.T., S.E., R.T., A.Y., T.W., T.K., Y.Y., H.K., H.U., H.O.)
| | - Hiromitsu Kanamori
- Gifu University Hospital (N.T., S.E., R.T., A.Y., T.W., T.K., Y.Y., H.K., H.U., H.O.)
| | - Hiroaki Ushikoshi
- Gifu University Hospital (N.T., S.E., R.T., A.Y., T.W., T.K., Y.Y., H.K., H.U., H.O.)
| | - Hiroyuki Okura
- Gifu University Hospital (N.T., S.E., R.T., A.Y., T.W., T.K., Y.Y., H.K., H.U., H.O.)
| |
Collapse
|
6
|
Frick WH, Herman R, Simancik F, Mar PL. First in Human: T-Wave Alternans With 3-Beat Periodicity. JACC Clin Electrophysiol 2024; 10:2297-2299. [PMID: 39207287 DOI: 10.1016/j.jacep.2024.06.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 06/03/2024] [Accepted: 06/26/2024] [Indexed: 09/04/2024]
Affiliation(s)
- William H Frick
- SSM Saint Louis University Hospital, St. Louis, Missouri, USA
| | - Robert Herman
- Department of Advanced Biomedical Sciences, University of Naples Frederico II, Naples, Italy; Cardiovascular Center, OLV Hospital, Aalst, Belgium; Powerful Medical, Bratislava, Slovak Republic
| | | | - Philip L Mar
- SSM Saint Louis University Hospital, St. Louis, Missouri, USA.
| |
Collapse
|
7
|
Warren M, Poelzing S. The calcium transient coupled to the L-type calcium current attenuates cardiac alternans. Front Physiol 2024; 15:1404886. [PMID: 39397855 PMCID: PMC11466891 DOI: 10.3389/fphys.2024.1404886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 08/26/2024] [Indexed: 10/15/2024] Open
Abstract
Cardiac action potential (AP) alternans have been linked to the development of arrhythmia. AP alternans may be driven by AP instabilities, Ca2+ transient (CaT) instabilities, or both. The mechanisms underlying CaT driven AP alternans is well-supported experimentally, but the ionic mechanism underlying alternans driven by AP instabilities remain incompletely understood. Here we used the Ca2+ buffer BAPTA to remove the CaT and generate a model of AP alternans driven primarily by AP instabilities. In isolated rabbit ventricle myocytes, AP alternans induced by rapid pacing were either critically damped and persisted over time, overdamped and ceased over seconds, or underdamped progressing to 2:1 capture. Control cells predominantly exhibited critically damped alternans. In contrast, removing CaT with BAPTA destabilized alternans formation in a concentration dependent manner. Importantly, alternans were easier to induce in CaT free cells as evidenced by a higher alternans threshold relative to control cells. While the L-type Ca2+ channel agonist Bay K 8644 had a minor effect on alternans formation in myocytes with conserved CaT, combining the agonist with BAPTA markedly promoted the formation of underdamped alternans and increased the alternans threshold more than four-fold as compared to controls. Our data support a mechanistic model in which AP alternans are a primary self-sustained event in which the CaT serves as a dampening cue that curbs alternans development, likely via a canonical negative feedback process involving Ca2+ induced inhibition of L-type Ca2+ current.
Collapse
Affiliation(s)
- Mark Warren
- Fralin Biomedical Research Institute at Virginia Tech Carilion, Roanoke, VA, United States
- Nora Eccles Harrison Cardiovascular Research and Training Institute, University of Utah, Salt Lake City, UT, United States
- Department of Bioengineering, University of Utah, Salt Lake City, UT, United States
| | - Steven Poelzing
- Fralin Biomedical Research Institute at Virginia Tech Carilion, Roanoke, VA, United States
- Department of Biomedical Engineering and Mechanics at Virginia Tech, Blacksburg, VA, United States
- Department of Internal Medicine at Virginia Tech Carilion, Roanoke, VA, United States
| |
Collapse
|
8
|
Erhardt J, Ludwig S, Brock J, Hörning M. Native mechano-regulative matrix properties stabilize alternans dynamics and reduce spiral wave stabilization in cardiac tissue. FRONTIERS IN NETWORK PHYSIOLOGY 2024; 4:1443156. [PMID: 39381499 PMCID: PMC11458432 DOI: 10.3389/fnetp.2024.1443156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Accepted: 09/09/2024] [Indexed: 10/10/2024]
Abstract
The stability of wave conduction in the heart is strongly related to the proper interplay between the electrophysiological activation and mechanical contraction of myocytes and extracellular matrix (ECM) properties. In this study, we statistically compare bioengineered cardiac tissues cultured on soft hydrogels ( E ≃ 12 kPa) and rigid glass substrates by focusing on the critical threshold of alternans, network-physiological tissue properties, and the formation of stable spiral waves that manifest after wave breakups. For the classification of wave dynamics, we use an improved signal oversampling technique and introduce simple probability maps to identify and visualize spatially concordant and discordant alternans as V- and X-shaped probability distributions. We found that cardiac tissues cultured on ECM-mimicking soft hydrogels show a lower variability of the calcium transient durations among cells in the tissue. This lowers the likelihood of forming stable spiral waves because of the larger dynamical range that tissues can be stably entrained with to form alternans and larger spatial spiral tip movement that increases the chance of self-termination on the tissue boundary. Conclusively, we show that a dysfunction in the excitation-contraction coupling dynamics facilitates life-threatening arrhythmic states such as spiral waves and, thus, highlights the importance of the network-physiological interplay between contractile myocytes and the ECM.
Collapse
Affiliation(s)
| | | | | | - Marcel Hörning
- Institute of Biomaterials and Biomolecular Systems, University of Stuttgart, Stuttgart, Germany
| |
Collapse
|
9
|
Iwamiya S, Ihara K, Nitta G, Sasano T. Atrial Fibrillation and Underlying Structural and Electrophysiological Heterogeneity. Int J Mol Sci 2024; 25:10193. [PMID: 39337682 PMCID: PMC11432636 DOI: 10.3390/ijms251810193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 09/16/2024] [Accepted: 09/19/2024] [Indexed: 09/30/2024] Open
Abstract
As atrial fibrillation (AF) progresses from initial paroxysmal episodes to the persistent phase, maintaining sinus rhythm for an extended period through pharmacotherapy and catheter ablation becomes difficult. A major cause of the deteriorated treatment outcome is the atrial structural and electrophysiological heterogeneity, which AF itself can exacerbate. This heterogeneity exists or manifests in various dimensions, including anatomically segmental structural features, the distribution of histological fibrosis and the autonomic nervous system, sarcolemmal ion channels, and electrophysiological properties. All these types of heterogeneity are closely related to the development of AF. Recognizing the heterogeneity provides a valuable approach to comprehending the underlying mechanisms in the complex excitatory patterns of AF and the determining factors that govern the seemingly chaotic propagation. Furthermore, substrate modification based on heterogeneity is a potential therapeutic strategy. This review aims to consolidate the current knowledge on structural and electrophysiological atrial heterogeneity and its relation to the pathogenesis of AF, drawing insights from clinical studies, animal and cell experiments, molecular basis, and computer-based approaches, to advance our understanding of the pathophysiology and management of AF.
Collapse
Affiliation(s)
- Satoshi Iwamiya
- Department of Cardiovascular Medicine, Tokyo Medical and Dental University (TMDU), 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8510, Japan
| | - Kensuke Ihara
- Department of Cardiovascular Medicine, Tokyo Medical and Dental University (TMDU), 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8510, Japan
| | - Giichi Nitta
- Department of Cardiovascular Medicine, Tokyo Medical and Dental University (TMDU), 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8510, Japan
| | - Tetsuo Sasano
- Department of Cardiovascular Medicine, Tokyo Medical and Dental University (TMDU), 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8510, Japan
| |
Collapse
|
10
|
Roth DJ, Strasburger JF, Wakai RT. Fetal T-wave and isovolumetric relaxation time alternans can be identified by fetal echocardiography. Heart Rhythm 2024:S1547-5271(24)03118-7. [PMID: 39111612 DOI: 10.1016/j.hrthm.2024.08.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Revised: 07/30/2024] [Accepted: 08/01/2024] [Indexed: 09/04/2024]
Affiliation(s)
- Dalton J Roth
- University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin.
| | | | - Ronald T Wakai
- Department of Medical Physics, Biomagnetism Laboratory, University of Wisconsin, Madison, Wisconsin
| |
Collapse
|
11
|
Cathey BM, Bellach A, Troendle J, Smith K, Osgood S, Raja N, Kozel BA, Levin MD. Increased heart rate fragmentation in those with Williams-Beuren syndrome suggests nonautonomic mechanistic contributors to sudden death risk. Am J Physiol Heart Circ Physiol 2024; 327:H521-H532. [PMID: 38904853 PMCID: PMC11442095 DOI: 10.1152/ajpheart.00601.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 06/12/2024] [Accepted: 06/12/2024] [Indexed: 06/22/2024]
Abstract
Williams-Beuren syndrome (WBS) is a rare genetic condition caused by a chromosomal microdeletion at 7q11.23. It is a multisystem disorder characterized by distinct facies, intellectual disability, and supravalvar aortic stenosis (SVAS). Those with WBS are at increased risk of sudden death, but mechanisms underlying this remain poorly understood. We recently demonstrated autonomic abnormalities in those with WBS that are associated with increased susceptibility to arrhythmia and sudden cardiac death (SCD). A recently introduced method for heart rate variability (HRV) analysis called "heart rate fragmentation" (HRF) correlates with adverse cardiovascular events (CVEs) and death in studies where heart rate variability (HRV) failed to identify high-risk subjects. Some argue that HRF quantifies nonautonomic cardiovascular modulators. We, therefore, sought to apply HRF analysis to a WBS cohort to determine 1) if those with WBS show differences in HRF compared with healthy controls and 2) if HRF helps characterize HRV abnormalities in those with WBS. Similar to studies of those with coronary artery disease (CAD) and atherosclerosis, we found significantly higher HRF (4 out of 7 metrics) in those with WBS compared with healthy controls. Multivariable analyses showed a weak-to-moderate association between HRF and HRV, suggesting that HRF may reflect HRV characteristics not fully captured by traditional HRV metrics (autonomic markers). We also introduce a new metric inspired by HRF methodology, significant acute rate drop (SARD), which may detect vagal activity more directly. HRF and SARD may improve on traditional HRV measures to identify those at greatest risk for SCD both in those with WBS and in other populations.NEW & NOTEWORTHY This work is the first to apply heart rate fragmentation analyses to individuals with Williams syndrome and posits that the heart rate fragmentation parameter W3 may enable detection and investigation of phenomena underlying the proarrhythmic short-long-short RR interval sequences paradigm known to precede ventricular fibrillation and ventricular tachycardia. It also forwards a novel method for quantifying sinus arrhythmia and sinus pauses that likely correlate with parasympathetic activity.
Collapse
Affiliation(s)
- Brianna M Cathey
- School of Engineering Medicine, Texas A&M University, Houston, Texas, United States
- Translational Vascular Medicine Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland, United States
| | - Anna Bellach
- Office of Biostatistics Research, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland, United States
| | - James Troendle
- Office of Biostatistics Research, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland, United States
| | - Kevin Smith
- Nursing Department, Clinical Center, National Institutes of Health, Bethesda, Maryland, United States
| | - Sharon Osgood
- Office of the Clinical Director, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland, United States
| | - Neelam Raja
- School of Engineering Medicine, Texas A&M University, Houston, Texas, United States
| | - Beth A Kozel
- Translational Vascular Medicine Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland, United States
| | - Mark D Levin
- Translational Vascular Medicine Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland, United States
| |
Collapse
|
12
|
Bak T, Sato D. Spatially discordant alternans due to periodic pacing site alternation. Heart Rhythm 2024:S1547-5271(24)02900-X. [PMID: 39025387 DOI: 10.1016/j.hrthm.2024.07.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Revised: 07/07/2024] [Accepted: 07/08/2024] [Indexed: 07/20/2024]
Abstract
BACKGROUND Bidirectional ventricular tachycardia (BVT) is a rare type of ventricular tachycardia that is characterized by a beat-to-beat alternation in the QRS axis. Previous studies have shown that it is caused by alternating focal activities from 2 locations. OBJECTIVE This study proposes a novel mechanism for the formation of spatially discordant alternans (SDA) due to the periodic pacing site alternation that occurs in BVT. METHODS We used mathematical models of cardiac tissue to understand the dynamic and physiologic mechanisms underlying SDA formation. RESULTS We found that SDA was formed by periodic pacing site alternation. When tissue was paced from 2 locations alternately, the timing of pacing at distant locations varied, creating a long-short-long-short sequence of pacing periods and thus action potential durations. Importantly, the nodal lines were perpendicular to the wavefront, which is more arrhythmogenic than when nodal lines are parallel to the wavefront. A positive correlation was observed between the separation distance of the 2 sites and the alternans amplitude. SDA patterns can be predicted from the tissue geometry and pacing site locations. CONCLUSION Periodic pacing site alternation, which occurs in BVT, leads to arrhythmogenic SDA. The nodal lines associated with this phenomenon can be predicted on the basis of tissue geometry and focal locations.
Collapse
Affiliation(s)
- Tymoteusz Bak
- Department of Pharmacology, University of California, Davis, California
| | - Daisuke Sato
- Department of Pharmacology, University of California, Davis, California.
| |
Collapse
|
13
|
Nearing BD, Fialho GL, Waks JW, Maher TR, Clarke JR, Shepherd AJ, D'Avila A, Verrier RL. P-wave alternans rebound following pulmonary vein isolation predicts atrial arrhythmia recurrence. J Cardiovasc Electrophysiol 2024; 35:1360-1367. [PMID: 38715310 DOI: 10.1111/jce.16291] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 03/27/2024] [Accepted: 04/16/2024] [Indexed: 07/12/2024]
Abstract
INTRODUCTION Numerous P-wave indices have been explored as biomarkers to assess atrial fibrillation (AF) risk and the impact of therapy with variable success. OBJECTIVE We investigated the utility of P-wave alternans (PWA) to track the effects of pulmonary vein isolation (PVI) and to predict atrial arrhythmia recurrence. METHODS This medical records study included patients who underwent PVI for AF ablation at our institution, along with 20 control subjects without AF or overt cardiovascular disease. PWA was assessed using novel artificial intelligence-enabled modified moving average (AI-MMA) algorithms. PWA was monitored from the 12-lead ECG at ~1 h before and ~16 h after PVI (n = 45) and at the 4- to 17-week clinically indicated follow-up visit (n = 30). The arrhythmia follow-up period was 955 ± 112 days. RESULTS PVI acutely reduced PWA by 48%-63% (p < .05) to control ranges in leads II, III, aVF, the leads with the greatest sensitivity in monitoring PWA. Pre-ablation PWA was ~6 µV and decreased to ~3 µV following ablation. Patients who exhibited a rebound in PWA to pre-ablation levels at 4- to 17-week follow-up (p < .01) experienced recurrent atrial arrhythmias, whereas patients whose PWA remained reduced (p = .85) did not, resulting in a significant difference (p < .001) at follow-up. The AUC for PWA's prediction of first recurrence of atrial arrhythmia was 0.81 (p < .01) with 88% sensitivity and 82% specificity. Kaplan-Meier analysis estimated atrial arrhythmia-free survival (p < .01) with an adjusted hazard ratio of 3.4 (95% CI: 1.47-5.24, p < .02). CONCLUSION A rebound in PWA to pre-ablation levels detected by AI-MMA in the 12-lead ECG at standard clinical follow-up predicts atrial arrhythmia recurrence.
Collapse
Affiliation(s)
- Bruce D Nearing
- Department of Neurology, Beth Israel Deaconess Medical Center, Boston, Massachusetts, USA
| | | | - Jonathan W Waks
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Timothy R Maher
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| | - John-Ross Clarke
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Alyssa J Shepherd
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Andre D'Avila
- Federal University of Santa Catarina, Florianopolis, Brazil
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Richard L Verrier
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
14
|
Zhao Y, Chakraborty P, Tomassetti J, Subha T, Massé S, Thavendiranathan P, Billia F, Lai PFH, Abdel-Qadir H, Nanthakumar K. Arrhythmogenic Ventricular Remodeling by Next-Generation Bruton's Tyrosine Kinase Inhibitor Acalabrutinib. Int J Mol Sci 2024; 25:6207. [PMID: 38892396 PMCID: PMC11173147 DOI: 10.3390/ijms25116207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Revised: 05/22/2024] [Accepted: 05/24/2024] [Indexed: 06/21/2024] Open
Abstract
Cardiac arrhythmias remain a significant concern with Ibrutinib (IBR), a first-generation Bruton's tyrosine kinase inhibitor (BTKi). Acalabrutinib (ABR), a next-generation BTKi, is associated with reduced atrial arrhythmia events. However, the role of ABR in ventricular arrhythmia (VA) has not been adequately evaluated. Our study aimed to investigate VA vulnerability and ventricular electrophysiology following chronic ABR therapy in male Sprague-Dawley rats utilizing epicardial optical mapping for ventricular voltage and Ca2+ dynamics and VA induction by electrical stimulation in ex-vivo perfused hearts. Ventricular tissues were snap-frozen for protein analysis for sarcoplasmic Ca2+ and metabolic regulatory proteins. The results show that both ABR and IBR treatments increased VA vulnerability, with ABR showing higher VA regularity index (RI). IBR, but not ABR, is associated with the abbreviation of action potential duration (APD) and APD alternans. Both IBR and ABR increased diastolic Ca2+ leak and Ca2+ alternans, reduced conduction velocity (CV), and increased CV dispersion. Decreased SERCA2a expression and AMPK phosphorylation were observed with both treatments. Our results suggest that ABR treatment also increases the risk of VA by inducing proarrhythmic changes in Ca2+ signaling and membrane electrophysiology, as seen with IBR. However, the different impacts of these two BTKi on ventricular electrophysiology may contribute to differences in VA vulnerability and distinct VA characteristics.
Collapse
Affiliation(s)
- Yanan Zhao
- Toronto General Hospital Research Institute, University Health Network, Toronto, ON M5G 2M1, Canada; (Y.Z.); (P.C.); (J.T.); (T.S.); (S.M.); (P.T.); (F.B.); (P.F.H.L.); (H.A.-Q.)
| | - Praloy Chakraborty
- Toronto General Hospital Research Institute, University Health Network, Toronto, ON M5G 2M1, Canada; (Y.Z.); (P.C.); (J.T.); (T.S.); (S.M.); (P.T.); (F.B.); (P.F.H.L.); (H.A.-Q.)
| | - Julianna Tomassetti
- Toronto General Hospital Research Institute, University Health Network, Toronto, ON M5G 2M1, Canada; (Y.Z.); (P.C.); (J.T.); (T.S.); (S.M.); (P.T.); (F.B.); (P.F.H.L.); (H.A.-Q.)
| | - Tasnia Subha
- Toronto General Hospital Research Institute, University Health Network, Toronto, ON M5G 2M1, Canada; (Y.Z.); (P.C.); (J.T.); (T.S.); (S.M.); (P.T.); (F.B.); (P.F.H.L.); (H.A.-Q.)
| | - Stéphane Massé
- Toronto General Hospital Research Institute, University Health Network, Toronto, ON M5G 2M1, Canada; (Y.Z.); (P.C.); (J.T.); (T.S.); (S.M.); (P.T.); (F.B.); (P.F.H.L.); (H.A.-Q.)
| | - Paaladinesh Thavendiranathan
- Toronto General Hospital Research Institute, University Health Network, Toronto, ON M5G 2M1, Canada; (Y.Z.); (P.C.); (J.T.); (T.S.); (S.M.); (P.T.); (F.B.); (P.F.H.L.); (H.A.-Q.)
- Ted Rogers Centre for Heart Research, Toronto, ON M5G 1M1, Canada
| | - Filio Billia
- Toronto General Hospital Research Institute, University Health Network, Toronto, ON M5G 2M1, Canada; (Y.Z.); (P.C.); (J.T.); (T.S.); (S.M.); (P.T.); (F.B.); (P.F.H.L.); (H.A.-Q.)
- Ted Rogers Centre for Heart Research, Toronto, ON M5G 1M1, Canada
| | - Patrick F. H. Lai
- Toronto General Hospital Research Institute, University Health Network, Toronto, ON M5G 2M1, Canada; (Y.Z.); (P.C.); (J.T.); (T.S.); (S.M.); (P.T.); (F.B.); (P.F.H.L.); (H.A.-Q.)
| | - Husam Abdel-Qadir
- Toronto General Hospital Research Institute, University Health Network, Toronto, ON M5G 2M1, Canada; (Y.Z.); (P.C.); (J.T.); (T.S.); (S.M.); (P.T.); (F.B.); (P.F.H.L.); (H.A.-Q.)
- Ted Rogers Centre for Heart Research, Toronto, ON M5G 1M1, Canada
- Women’s College Hospital, Toronto, ON M5S 1B2, Canada
| | - Kumaraswamy Nanthakumar
- Toronto General Hospital Research Institute, University Health Network, Toronto, ON M5G 2M1, Canada; (Y.Z.); (P.C.); (J.T.); (T.S.); (S.M.); (P.T.); (F.B.); (P.F.H.L.); (H.A.-Q.)
| |
Collapse
|
15
|
Roman-Campos D, Marin-Neto JA, Santos-Miranda A, Kong N, D’Avila A, Rassi A. Arrhythmogenic Manifestations of Chagas Disease: Perspectives From the Bench to Bedside. Circ Res 2024; 134:1379-1397. [PMID: 38723031 PMCID: PMC11081486 DOI: 10.1161/circresaha.124.324507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 05/13/2024]
Abstract
Chagas cardiomyopathy caused by infection with the intracellular parasite Trypanosoma cruzi is the most common and severe expression of human Chagas disease. Heart failure, systemic and pulmonary thromboembolism, arrhythmia, and sudden cardiac death are the principal clinical manifestations of Chagas cardiomyopathy. Ventricular arrhythmias contribute significantly to morbidity and mortality and are the major cause of sudden cardiac death. Significant gaps still exist in the understanding of the pathogenesis mechanisms underlying the arrhythmogenic manifestations of Chagas cardiomyopathy. This article will review the data from experimental studies and translate those findings to draw hypotheses about clinical observations. Human- and animal-based studies at molecular, cellular, tissue, and organ levels suggest 5 main pillars of remodeling caused by the interaction of host and parasite: immunologic, electrical, autonomic, microvascular, and contractile. Integrating these 5 remodeling processes will bring insights into the current knowledge in the field, highlighting some key features for future management of this arrhythmogenic disease.
Collapse
Affiliation(s)
- Danilo Roman-Campos
- Departamento de Biofísica, Escola Paulsita de Medicina, Laboratório de Cardiobiologia, Universidade Federal de São Paulo, São Paulo, SP, Brazil (D.R-C)
| | - José Antonio Marin-Neto
- Unidade de Hemodinâmica e Cardiologia Intervencionista, Escola de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, Brazil (J.A.M-N.)
| | - Artur Santos-Miranda
- Departamento de Fisiologia, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil (A.S.-M)
| | - Nathan Kong
- Departamento de Biofísica, Escola Paulsita de Medicina, Laboratório de Cardiobiologia, Universidade Federal de São Paulo, São Paulo, SP, Brazil (D.R-C)
- Unidade de Hemodinâmica e Cardiologia Intervencionista, Escola de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, Brazil (J.A.M-N.)
- Departamento de Fisiologia, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil (A.S.-M)
- Hospital do Coração Anis Rassi, Goiânia, GO, Brazil (A.R.J.)
| | - André D’Avila
- Departamento de Biofísica, Escola Paulsita de Medicina, Laboratório de Cardiobiologia, Universidade Federal de São Paulo, São Paulo, SP, Brazil (D.R-C)
- Unidade de Hemodinâmica e Cardiologia Intervencionista, Escola de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, Brazil (J.A.M-N.)
- Departamento de Fisiologia, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil (A.S.-M)
- Hospital do Coração Anis Rassi, Goiânia, GO, Brazil (A.R.J.)
| | - Anis Rassi
- Hospital do Coração Anis Rassi, Goiânia, GO, Brazil (A.R.J.)
| |
Collapse
|
16
|
Mira Hernandez J, Shen EY, Ko CY, Hourani Z, Spencer ER, Smoliarchuk D, Bossuyt J, Granzier H, Bers DM, Hegyi B. Differential sex-dependent susceptibility to diastolic dysfunction and arrhythmia in cardiomyocytes from obese diabetic HFpEF model. Cardiovasc Res 2024:cvae070. [PMID: 38666446 DOI: 10.1093/cvr/cvae070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 02/29/2024] [Accepted: 03/17/2024] [Indexed: 06/06/2024] Open
Abstract
AIM Sex-differences in heart failure with preserved ejection fraction (HFpEF) are important, but key mechanisms involved are incompletely understood. While animal models can inform about sex-dependent cellular and molecular changes, many previous preclinical HFpEF models have failed to recapitulate sex-dependent characteristics of human HFpEF. We tested for sex-differences in HFpEF using a two-hit mouse model (leptin receptor-deficient db/db mice plus aldosterone infusion for 4 weeks; db/db+Aldo). METHODS AND RESULTS We performed echocardiography, electrophysiology, intracellular Ca2+ imaging, and protein analysis. Female HFpEF mice exhibited more severe diastolic dysfunction in line with increased titin N2B isoform expression and PEVK element phosphorylation, and reduced troponin-I phosphorylation. Female HFpEF mice had lower BNP levels than males despite similar comorbidity burden (obesity, diabetes) and cardiac hypertrophy in both sexes. Male HFpEF mice were more susceptible to cardiac alternans. Male HFpEF cardiomyocytes (versus female) exhibited higher diastolic [Ca2+], slower Ca2+ transient decay, reduced L-type Ca2+ current, more pronounced enhancement of the late Na+ current, and increased short-term variability of action potential duration (APD). However, male and female HFpEF myocytes showed similar downregulation of inward rectifier and transient outward K+ currents, APD prolongation, and frequency of delayed afterdepolarizations. Inhibition of Ca2+/calmodulin-dependent protein kinase II (CaMKII) reversed all pathological APD changes in HFpEF in both sexes, and empagliflozin pretreatment mimicked these effects of CaMKII inhibition. Vericiguat had only slight benefits, and these effects were larger in HFpEF females. CONCLUSION We conclude that the db/db+Aldo preclinical HFpEF murine model recapitulates key sex-specific mechanisms in HFpEF and provides mechanistic insights into impaired excitation-contraction coupling and sex-dependent differential arrhythmia susceptibility in HFpEF with potential therapeutic implications. In male HFpEF myocytes, altered Ca2+ handling and electrophysiology aligned with diastolic dysfunction and arrhythmias, while worse diastolic dysfunction in females may depend more on altered myofilaments properties.
Collapse
Affiliation(s)
- Juliana Mira Hernandez
- Department of Pharmacology, University of California, Davis, CA, USA
- Research Group Biogenesis, Faculty of Agricultural Sciences, Veterinary Medicine, University of Antioquia, Medellin-Colombia
| | - Erin Y Shen
- Department of Pharmacology, University of California, Davis, CA, USA
| | - Christopher Y Ko
- Department of Pharmacology, University of California, Davis, CA, USA
| | - Zaynab Hourani
- Department of Cellular and Molecular Medicine, University of Arizona, Tucson, AZ, USA
| | - Emily R Spencer
- Department of Pharmacology, University of California, Davis, CA, USA
| | - Daria Smoliarchuk
- Department of Pharmacology, University of California, Davis, CA, USA
| | - Julie Bossuyt
- Department of Pharmacology, University of California, Davis, CA, USA
| | - Henk Granzier
- Department of Cellular and Molecular Medicine, University of Arizona, Tucson, AZ, USA
| | - Donald M Bers
- Department of Pharmacology, University of California, Davis, CA, USA
| | - Bence Hegyi
- Department of Pharmacology, University of California, Davis, CA, USA
| |
Collapse
|
17
|
Wang X, Landaw J, Qu Z. Intracellular ion accumulation in the genesis of complex action potential dynamics under cardiac diseases. Phys Rev E 2024; 109:024410. [PMID: 38491656 PMCID: PMC11325458 DOI: 10.1103/physreve.109.024410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 01/19/2024] [Indexed: 03/18/2024]
Abstract
Intracellular ions, including sodium (Na^{+}), calcium (Ca^{2+}), and potassium (K^{+}), etc., accumulate slowly after a change of the state of the heart, such as a change of the heart rate. The goal of this study is to understand the roles of slow ion accumulation in the genesis of cardiac memory and complex action-potential duration (APD) dynamics that can lead to lethal cardiac arrhythmias. We carry out numerical simulations of a detailed action potential model of ventricular myocytes under normal and diseased conditions, which exhibit memory effects and complex APD dynamics. We develop a low-dimensional iterated map (IM) model to describe the dynamics of Na^{+}, Ca^{2+}, and APD and use it to uncover the underlying dynamical mechanisms. The development of the IM model is informed by simulation results under the normal condition. We then use the IM model to perform linear stability analyses and computer simulations to investigate the bifurcations and complex APD dynamics, which depend on the feedback loops between APD and intracellular Ca^{2+} and Na^{+} concentrations and the steepness of the APD response to the ion concentrations. When the feedback between APD and Ca^{2+} concentration is positive, a Hopf bifurcation leading to periodic oscillatory behavior occurs as the steepness of the APD response to the ion concentrations increases. The negative feedback loop between APD and Na^{+} concentration is required for the Hopf bifurcation. When the feedback between APD and Ca^{2+} concentration is negative, period-doubling bifurcations leading to high periodicity and chaos occurs. In this case, Na^{+} accumulation plays little role in the dynamics. Finally, we carry out simulations of the detailed action potential model under two diseased conditions, which exhibit steep APD responses to ion concentrations. Under both conditions, Hopf bifurcations leading to slow oscillations or period-doubling bifurcations leading to high periodicity and chaotic APD dynamics occur, depending on the strength of the ion pump-Na^{+}-Ca^{2+} exchanger. Using functions reconstructed from the simulation data, the IM model accurately captures the bifurcations and dynamics under the two diseased conditions. In conclusion, besides using computer simulations of a detailed high-dimensional action-potential model to investigate the effects of slow ion accumulation and short-term memory on bifurcations and genesis of complex APD dynamics in cardiac myocytes under diseased conditions, this study also provides a low-dimensional mathematical tool, i.e., the IM model, to allow stability analyses for uncovering the underlying mechanisms.
Collapse
Affiliation(s)
- Xinyu Wang
- Department of Medicine (Cardiology), David Geffen School of Medicine, University of California, Los Angeles, California 90095, USA
| | - Julian Landaw
- Department of Medicine (Cardiology), David Geffen School of Medicine, University of California, Los Angeles, California 90095, USA
| | - Zhilin Qu
- Department of Medicine (Cardiology), David Geffen School of Medicine, University of California, Los Angeles, California 90095, USA
| |
Collapse
|
18
|
Li P, Kim JK. Circadian regulation of sinoatrial nodal cell pacemaking function: Dissecting the roles of autonomic control, body temperature, and local circadian rhythmicity. PLoS Comput Biol 2024; 20:e1011907. [PMID: 38408116 PMCID: PMC10927146 DOI: 10.1371/journal.pcbi.1011907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 03/11/2024] [Accepted: 02/12/2024] [Indexed: 02/28/2024] Open
Abstract
Strong circadian (~24h) rhythms in heart rate (HR) are critical for flexible regulation of cardiac pacemaking function throughout the day. While this circadian flexibility in HR is sustained in diverse conditions, it declines with age, accompanied by reduced maximal HR performance. The intricate regulation of circadian HR involves the orchestration of the autonomic nervous system (ANS), circadian rhythms of body temperature (CRBT), and local circadian rhythmicity (LCR), which has not been fully understood. Here, we developed a mathematical model describing ANS, CRBT, and LCR in sinoatrial nodal cells (SANC) that accurately captures distinct circadian patterns in adult and aged mice. Our model underscores how the alliance among ANS, CRBT, and LCR achieves circadian flexibility to cover a wide range of firing rates in SANC, performance to achieve maximal firing rates, while preserving robustness to generate rhythmic firing patterns irrespective of external conditions. Specifically, while ANS dominates in promoting SANC flexibility and performance, CRBT and LCR act as primary and secondary boosters, respectively, to further enhance SANC flexibility and performance. Disruption of this alliance with age results in impaired SANC flexibility and performance, but not robustness. This unexpected outcome is primarily attributed to the age-related reduction in parasympathetic activities, which maintains SANC robustness while compromising flexibility. Our work sheds light on the critical alliance of ANS, CRBT, and LCR in regulating time-of-day cardiac pacemaking function and dysfunction, offering insights into novel therapeutic targets for the prevention and treatment of cardiac arrhythmias.
Collapse
Affiliation(s)
- Pan Li
- Biomedical Mathematics Group, Pioneer Research Center for Mathematical and Computational Sciences, Institute for Basic Science, Daejeon, Republic of Korea
| | - Jae Kyoung Kim
- Biomedical Mathematics Group, Pioneer Research Center for Mathematical and Computational Sciences, Institute for Basic Science, Daejeon, Republic of Korea
- Department of Mathematical Sciences, KAIST, Daejeon, Republic of Korea
| |
Collapse
|
19
|
Iravanian S, Uzelac I, Shah AD, Toye MJ, Lloyd MS, Burke MA, Daneshmand MA, Attia TS, Vega JD, El-Chami MF, Merchant FM, Cherry EM, Bhatia NK, Fenton FH. Complex repolarization dynamics in ex vivo human ventricles are independent of the restitution properties. Europace 2023; 25:euad350. [PMID: 38006390 PMCID: PMC10751849 DOI: 10.1093/europace/euad350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Accepted: 11/13/2023] [Indexed: 11/27/2023] Open
Abstract
AIMS The mechanisms of transition from regular rhythms to ventricular fibrillation (VF) are poorly understood. The concordant to discordant repolarization alternans pathway is extensively studied; however, despite its theoretical centrality, cannot guide ablation. We hypothesize that complex repolarization dynamics, i.e. oscillations in the repolarization phase of action potentials with periods over two of classic alternans, is a marker of electrically unstable substrate, and ablation of these areas has a stabilizing effect and may reduce the risk of VF. To prove the existence of higher-order periodicities in human hearts. METHODS AND RESULTS We performed optical mapping of explanted human hearts obtained from recipients of heart transplantation at the time of surgery. Signals recorded from the right ventricle endocardial surface were processed to detect global and local repolarization dynamics during rapid pacing. A statistically significant global 1:4 peak was seen in three of six hearts. Local (pixel-wise) analysis revealed the spatially heterogeneous distribution of Periods 4, 6, and 8, with the regional presence of periods greater than two in all the hearts. There was no significant correlation between the underlying restitution properties and the period of each pixel. CONCLUSION We present evidence of complex higher-order periodicities and the co-existence of such regions with stable non-chaotic areas in ex vivo human hearts. We infer that the oscillation of the calcium cycling machinery is the primary mechanism of higher-order dynamics. These higher-order regions may act as niduses of instability and may provide targets for substrate-based ablation of VF.
Collapse
Affiliation(s)
- Shahriar Iravanian
- Department of Medicine, Division of Cardiology, Emory University School of Medicine, 1364 Clifton Road, Atlanta, GA 30322, USA
| | - Ilija Uzelac
- Georgia Institute of Technology, Department of Physics, 837 State St NW, Atlanta, GA 30332, USA
| | - Anand D Shah
- Department of Medicine, Division of Cardiology, Emory University School of Medicine, 1364 Clifton Road, Atlanta, GA 30322, USA
| | - Mikael J Toye
- Georgia Institute of Technology, Department of Physics, 837 State St NW, Atlanta, GA 30332, USA
| | - Michael S Lloyd
- Department of Medicine, Division of Cardiology, Emory University School of Medicine, 1364 Clifton Road, Atlanta, GA 30322, USA
| | - Michael A Burke
- Department of Medicine, Division of Cardiology, Emory University School of Medicine, 1364 Clifton Road, Atlanta, GA 30322, USA
| | - Mani A Daneshmand
- Department of Surgery, Division of Cardiovascular Surgery, Emory University School of Medicine, 1364 Clifton Road, Atlanta, GA 30322, USA
| | - Tamer S Attia
- Department of Surgery, Division of Cardiovascular Surgery, Emory University School of Medicine, 1364 Clifton Road, Atlanta, GA 30322, USA
| | - John David Vega
- Department of Surgery, Division of Cardiovascular Surgery, Emory University School of Medicine, 1364 Clifton Road, Atlanta, GA 30322, USA
| | - Mikhael F El-Chami
- Department of Medicine, Division of Cardiology, Emory University School of Medicine, 1364 Clifton Road, Atlanta, GA 30322, USA
| | - Faisal M Merchant
- Department of Medicine, Division of Cardiology, Emory University School of Medicine, 1364 Clifton Road, Atlanta, GA 30322, USA
| | - Elizabeth M Cherry
- Georgia Institute of Technology, Department of Physics, 837 State St NW, Atlanta, GA 30332, USA
| | - Neal K Bhatia
- Department of Medicine, Division of Cardiology, Emory University School of Medicine, 1364 Clifton Road, Atlanta, GA 30322, USA
| | - Flavio H Fenton
- Georgia Institute of Technology, Department of Physics, 837 State St NW, Atlanta, GA 30332, USA
| |
Collapse
|
20
|
Chakraborty P, Azam MA, Massé S, Lai PF, Rose RA, Ibarra Moreno CA, Riazi S, Nanthakumar K. Uncoupling cytosolic calcium from membrane voltage by transient receptor potential melastatin 4 channel (TRPM4) modulation: A novel strategy to treat ventricular arrhythmias. Heart Rhythm O2 2023; 4:725-732. [PMID: 38034891 PMCID: PMC10685170 DOI: 10.1016/j.hroo.2023.10.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2023] Open
Abstract
The current antiarrhythmic paradigm is mainly centered around modulating membrane voltage. However, abnormal cytosolic calcium (Ca2+) signaling, which plays an important role in driving membrane voltage, has not been targeted for therapeutic purposes in arrhythmogenesis. There is clear evidence for bidirectional coupling between membrane voltage and intracellular Ca2+. Cytosolic Ca2+ regulates membrane voltage through Ca2+-sensitive membrane currents. As a component of Ca2+-sensitive currents, Ca2+-activated nonspecific cationic current through the TRPM4 (transient receptor potential melastatin 4) channel plays a significant role in Ca2+-driven changes in membrane electrophysiology. In myopathic and ischemic ventricles, upregulation and/or enhanced activity of this current is associated with the generation of afterdepolarization (both early and delayed), reduction of repolarization reserve, and increased propensity to ventricular arrhythmias. In this review, we describe a novel concept for the management of ventricular arrhythmias in the remodeled ventricle based on mechanistic concepts from experimental studies, by uncoupling the Ca2+-induced changes in membrane voltage by inhibition of this TRPM4-mediated current.
Collapse
Affiliation(s)
- Praloy Chakraborty
- Hull Family Cardiac Fibrillation Management Laboratory, Toronto General Hospital, University Health Network, Toronto, Ontario, Canada
| | - Mohammed Ali Azam
- Hull Family Cardiac Fibrillation Management Laboratory, Toronto General Hospital, University Health Network, Toronto, Ontario, Canada
| | - Stéphane Massé
- Hull Family Cardiac Fibrillation Management Laboratory, Toronto General Hospital, University Health Network, Toronto, Ontario, Canada
| | - Patrick F.H. Lai
- Hull Family Cardiac Fibrillation Management Laboratory, Toronto General Hospital, University Health Network, Toronto, Ontario, Canada
| | - Robert A. Rose
- Libin Cardiovascular Institute of Alberta, University of Calgary, Calgary, Alberta, Canada
| | - Carlos A. Ibarra Moreno
- Malignant Hyperthermia Investigation Unit, Department of Anesthesiology and Pain Medicine, Toronto General Hospital, University Health Network, Toronto, Ontario, Canada
| | - Sheila Riazi
- Malignant Hyperthermia Investigation Unit, Department of Anesthesiology and Pain Medicine, Toronto General Hospital, University Health Network, Toronto, Ontario, Canada
| | - Kumaraswamy Nanthakumar
- Hull Family Cardiac Fibrillation Management Laboratory, Toronto General Hospital, University Health Network, Toronto, Ontario, Canada
| |
Collapse
|
21
|
Jones CA, Wallace MJ, Bandaru P, Woodbury ED, Mohler PJ, Wold LE. E-cigarettes and arrhythmogenesis: a comprehensive review of pre-clinical studies and their clinical implications. Cardiovasc Res 2023; 119:2157-2164. [PMID: 37517059 PMCID: PMC10578912 DOI: 10.1093/cvr/cvad113] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 06/21/2023] [Accepted: 06/29/2023] [Indexed: 08/01/2023] Open
Abstract
Electronic cigarette use has grown exponentially in recent years, and while their popularity has increased, the long-term effects on the heart are yet to be fully studied and understood. Originally designed as devices to assist with those trying to quit traditional combustible cigarette use, their popularity has attracted use by teens and adolescents who traditionally have not smoked combustible cigarettes. Acute effects on the heart have been shown to be similar to traditional combustible cigarettes, including increased heart rate and blood pressure. The main components of electronic cigarettes that contribute to these arrhythmic effects are found in the e-liquid that is aerosolized and inhaled, comprised of nicotine, flavourings, and a combination of vegetable glycerin (VG) and propylene glycol (PG). Nicotine can potentially induce both ventricular and atrial arrhythmogenesis, with both the atrial and ventricular effects resulting from the interactions of nicotine and the catecholamines they release via potassium channels. Atrial arrhythmogenesis, more specifically atrial fibrillation, can also occur due to structural alterations, which happens because of nicotine downregulating microRNAs 133 and 590, both post-transcriptional growth factor repressors. Liquid flavourings and the combination of PG and VG can possibly lead to arrhythmic events by exposing users to acrolein, an aldehyde that stimulates TRPA1 that in turn causes a change towards sympathetic activation and autonomic imbalance. The design of these electronic delivery devices is constantly changing; therefore, it has proven extremely difficult to study the long-term effects on the heart caused by electronic cigarettes but will be important to understand given their rising popularity. The arrhythmic effects of electronic cigarettes appear similar to traditional cigarettes as well; however, a comprehensive review has not been compiled and is the focus of this article.
Collapse
Affiliation(s)
- Carson A Jones
- Dorothy M. Davis Heart and Lung Research Institute, Wexner Medical Center, The Ohio State University, 473 W 12th Avenue, Columbus, OH 43210, USA
| | - Michael J Wallace
- Dorothy M. Davis Heart and Lung Research Institute, Wexner Medical Center, The Ohio State University, 473 W 12th Avenue, Columbus, OH 43210, USA
| | - Priya Bandaru
- Dorothy M. Davis Heart and Lung Research Institute, Wexner Medical Center, The Ohio State University, 473 W 12th Avenue, Columbus, OH 43210, USA
| | - Emerson D Woodbury
- Dorothy M. Davis Heart and Lung Research Institute, Wexner Medical Center, The Ohio State University, 473 W 12th Avenue, Columbus, OH 43210, USA
| | - Peter J Mohler
- Dorothy M. Davis Heart and Lung Research Institute, Wexner Medical Center, The Ohio State University, 473 W 12th Avenue, Columbus, OH 43210, USA
- Department of Internal Medicine, Wexner Medical Center, The Ohio State University, Columbus, OH, USA
| | - Loren E Wold
- Dorothy M. Davis Heart and Lung Research Institute, Wexner Medical Center, The Ohio State University, 473 W 12th Avenue, Columbus, OH 43210, USA
- Division of Cardiac Surgery, Department of Surgery, Wexner Medical Center, The Ohio State University, 473 W 12th Avenue, Room 603, Columbus, OH 43210, USA
| |
Collapse
|
22
|
Feng HW, Zhao YT, Lin J, Weng CL. T-wave alternans: an ominous pattern for malignant arrhythmias. QJM 2023; 116:781-783. [PMID: 37202351 DOI: 10.1093/qjmed/hcad097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Indexed: 05/20/2023] Open
Affiliation(s)
- Hang-Wei Feng
- Department of Intensive Care Unit, The Shengli Clinical Medical College of Fujian Medical University, Fujian Provincial Hospital South Branch, No. 516, Jinrong South, Fuzhou, Fujian Province, China
| | - Yun-Tao Zhao
- Department of Cardiology, Aerospace Center Hospital, Beijing, China
| | - Jian Lin
- Department of Intensive Care Unit, The Shengli Clinical Medical College of Fujian Medical University, Fujian Provincial Hospital South Branch, No. 516, Jinrong South, Fuzhou, Fujian Province, China
| | - Cui-Lian Weng
- Department of Intensive Care Unit, The Shengli Clinical Medical College of Fujian Medical University, Fujian Provincial Hospital South Branch, No. 516, Jinrong South, Fuzhou, Fujian Province, China
| |
Collapse
|
23
|
Eisner D, Neher E, Taschenberger H, Smith G. Physiology of intracellular calcium buffering. Physiol Rev 2023; 103:2767-2845. [PMID: 37326298 PMCID: PMC11550887 DOI: 10.1152/physrev.00042.2022] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 05/08/2023] [Accepted: 06/11/2023] [Indexed: 06/17/2023] Open
Abstract
Calcium signaling underlies much of physiology. Almost all the Ca2+ in the cytoplasm is bound to buffers, with typically only ∼1% being freely ionized at resting levels in most cells. Physiological Ca2+ buffers include small molecules and proteins, and experimentally Ca2+ indicators will also buffer calcium. The chemistry of interactions between Ca2+ and buffers determines the extent and speed of Ca2+ binding. The physiological effects of Ca2+ buffers are determined by the kinetics with which they bind Ca2+ and their mobility within the cell. The degree of buffering depends on factors such as the affinity for Ca2+, the Ca2+ concentration, and whether Ca2+ ions bind cooperatively. Buffering affects both the amplitude and time course of cytoplasmic Ca2+ signals as well as changes of Ca2+ concentration in organelles. It can also facilitate Ca2+ diffusion inside the cell. Ca2+ buffering affects synaptic transmission, muscle contraction, Ca2+ transport across epithelia, and the killing of bacteria. Saturation of buffers leads to synaptic facilitation and tetanic contraction in skeletal muscle and may play a role in inotropy in the heart. This review focuses on the link between buffer chemistry and function and how Ca2+ buffering affects normal physiology and the consequences of changes in disease. As well as summarizing what is known, we point out the many areas where further work is required.
Collapse
Affiliation(s)
- David Eisner
- Division of Cardiovascular Sciences, University of Manchester, Manchester, United Kingdom
| | - Erwin Neher
- Membrane Biophysics Laboratory, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
- Cluster of Excellence "Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells" (MBExC), University of Göttingen, Göttingen, Germany
| | - Holger Taschenberger
- Department of Molecular Neurobiology, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Godfrey Smith
- School of Cardiovascular and Metabolic Health, College of Medical, Veterinary, and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| |
Collapse
|
24
|
Iravanian S, Uzelac I, Shah AD, Toye MJ, Lloyd MS, Burke MA, Daneshmand MA, Attia TS, Vega JD, El-Chami M, Merchant FM, Cherry EM, Bhatia NK, Fenton FH. Higher-Order Dynamics Beyond Repolarization Alternans in Ex-Vivo Human Ventricles are Independent of the Restitution Properties. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.08.16.23293853. [PMID: 37662394 PMCID: PMC10473769 DOI: 10.1101/2023.08.16.23293853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/05/2023]
Abstract
Background Repolarization alternans, defined as period-2 oscillation in the repolarization phase of the action potentials, provides a mechanistic link between cellular dynamics and ventricular fibrillation (VF). Theoretically, higher-order periodicities (e.g., periods 4, 6, 8,...) are expected but have minimal experimental evidence. Methods We studied explanted human hearts obtained from recipients of heart transplantation at the time of surgery. Optical mapping of the transmembrane potential was performed after staining the hearts with voltage-sensitive fluorescent dyes. Hearts were stimulated at an increasing rate until VF was induced. Signals recorded from the right ventricle endocardial surface prior to induction of VF and in the presence of 1:1 conduction were processed using the Principal Component Analysis and a combinatorial algorithm to detect and quantify higher-order dynamics. Results were correlated to the underlying electrophysiological characteristics as quantified by restitution curves and conduction velocity. Results A prominent and statistically significant global 1:4 peak (corresponding to period-4 dynamics) was seen in three of the six studied hearts. Local (pixel-wise) analysis revealed the spatially heterogeneous distribution of periods 4, 6, and 8, with the regional presence of periods greater than two in all the hearts. There was no significant correlation between the underlying restitution properties and the period of each pixel. Discussion We present evidence of higher-order periodicities and the co-existence of such regions with stable non-chaotic areas in ex-vivo human hearts. We infer from the independence of the period to the underlying restitution properties that the oscillation of the excitation-contraction coupling and calcium cycling mechanisms is the primary mechanism of higher-order dynamics. These higher-order regions may act as niduses of instability that can degenerate into chaotic fibrillation and may provide targets for substrate-based ablation of VF.
Collapse
Affiliation(s)
- Shahriar Iravanian
- Department of Cardiovascular Medicine, Emory University School of Medicine, Atlanta, GA
| | - Ilija Uzelac
- Georgia Tech, Department of Physics, Atlanta, GA
| | - Anand D Shah
- Department of Cardiovascular Medicine, Emory University School of Medicine, Atlanta, GA
| | | | - Michael S. Lloyd
- Department of Cardiovascular Medicine, Emory University School of Medicine, Atlanta, GA
| | - Michael A. Burke
- Department of Cardiovascular Medicine, Emory University School of Medicine, Atlanta, GA
| | - Mani A Daneshmand
- Division of Cardiovascular Surgery, Department of Surgery, Emory University School of Medicine, Atlanta, GA
| | - Tamer S Attia
- Division of Cardiovascular Surgery, Department of Surgery, Emory University School of Medicine, Atlanta, GA
| | - J David Vega
- Division of Cardiovascular Surgery, Department of Surgery, Emory University School of Medicine, Atlanta, GA
| | - Michael El-Chami
- Department of Cardiovascular Medicine, Emory University School of Medicine, Atlanta, GA
| | - Faisal M. Merchant
- Department of Cardiovascular Medicine, Emory University School of Medicine, Atlanta, GA
| | | | - Neal K. Bhatia
- Department of Cardiovascular Medicine, Emory University School of Medicine, Atlanta, GA
| | | |
Collapse
|
25
|
Phadumdeo VM, Mallare BL, Hund TJ, Weinberg SH. Long-term changes in heart rate and electrical remodeling contribute to alternans formation in heart failure: a patient-specific in silico study. Am J Physiol Heart Circ Physiol 2023; 325:H414-H431. [PMID: 37417871 PMCID: PMC11575914 DOI: 10.1152/ajpheart.00220.2023] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 06/26/2023] [Accepted: 06/29/2023] [Indexed: 07/08/2023]
Abstract
Individuals with chronic heart failure (CHF) have an increased risk of ventricular arrhythmias, which has been linked to pathological cellular remodeling and may also be mediated by changes in heart rate. Heart rate typically fluctuates on a timescale ranging from seconds to hours, termed heart rate variability (HRV). This variability is reduced in CHF, and this HRV reduction is associated with a greater risk for arrhythmias. Furthermore, variations in heart rate influence the formation of proarrhythmic alternans, a beat-to-beat alternation in the action potential duration (APD), or intracellular calcium (Ca). In this study, we investigate how long-term changes in heart rate and electrical remodeling associated with CHF influence alternans formation. We measure key statistical properties of the RR-interval sequences from ECGs of individuals with normal sinus rhythm (NSR) and CHF. Patient-specific RR-interval sequences and synthetic sequences (randomly generated to mimicking these statistical properties) are used as the pacing protocol for a discrete time-coupled map model that governs APD and intracellular Ca handling of a single cardiac myocyte, modified to account for pathological electrical remodeling in CHF. Patient-specific simulations show that beat-to-beat differences in APD vary temporally in both populations, with alternans formation more prevalent in CHF. Parameter studies using synthetic sequences demonstrate that increasing the autocorrelation time or mean RR-interval reduces APD alternations, whereas increasing the RR-interval standard deviation leads to higher alternans magnitudes. Importantly, we find that although both the CHF-associated changes in heart rate and electrical remodeling influence alternans formation, variations in heart rate may be more influential.NEW & NOTEWORTHY Using patient-specific data, we show that both the changes in heart rate and electrical remodeling associated with chronic heart failure influence the formation of proarrhythmic alternans in the heart.
Collapse
Affiliation(s)
- Vrishti M Phadumdeo
- Department of Biomedical Engineering, The Ohio State University, Columbus, Ohio, United States
| | - Brianna L Mallare
- Department of Biomedical Engineering, The Ohio State University, Columbus, Ohio, United States
| | - Thomas J Hund
- Department of Biomedical Engineering, The Ohio State University, Columbus, Ohio, United States
- Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University, Columbus, Ohio, United States
- Department of Internal Medicine, The Ohio State University, Columbus, Ohio, United States
| | - Seth H Weinberg
- Department of Biomedical Engineering, The Ohio State University, Columbus, Ohio, United States
- Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University, Columbus, Ohio, United States
| |
Collapse
|
26
|
Ferreira G, Cardozo R, Sastre S, Costa C, Santander A, Chavarría L, Guizzo V, Puglisi J, Nicolson GL. Bacterial toxins and heart function: heat-labile Escherichia coli enterotoxin B promotes changes in cardiac function with possible relevance for sudden cardiac death. Biophys Rev 2023; 15:447-473. [PMID: 37681088 PMCID: PMC10480140 DOI: 10.1007/s12551-023-01100-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 07/11/2023] [Indexed: 09/09/2023] Open
Abstract
Bacterial toxins can cause cardiomyopathy, though it is not its most common cause. Some bacterial toxins can form pores in the membrane of cardiomyocytes, while others can bind to membrane receptors. Enterotoxigenic E. coli can secrete enterotoxins, including heat-resistant (ST) or labile (LT) enterotoxins. LT is an AB5-type toxin that can bind to specific cell receptors and disrupt essential host functions, causing several common conditions, such as certain diarrhea. The pentameric B subunit of LT, without A subunit (LTB), binds specifically to certain plasma membrane ganglioside receptors, found in lipid rafts of cardiomyocytes. Isolated guinea pig hearts and cardiomyocytes were exposed to different concentrations of purified LTB. In isolated hearts, mechanical and electrical alternans and an increment of heart rate variability, with an IC50 of ~0.2 μg/ml LTB, were observed. In isolated cardiomyocytes, LTB promoted significant decreases in the amplitude and the duration of action potentials. Na+ currents were inhibited whereas L-type Ca2+ currents were augmented at their peak and their fast inactivation was promoted. Delayed rectifier K+ currents decreased. Measurements of basal Ca2+ or Ca2+ release events in cells exposed to LTB suggest that LTB impairs Ca2+ homeostasis. Impaired calcium homeostasis is linked to sudden cardiac death. The results are consistent with the recent view that the B subunit is not merely a carrier of the A subunit, having a role explaining sudden cardiac death in children (SIDS) infected with enterotoxigenic E. coli, explaining several epidemiological findings that establish a strong relationship between SIDS and ETEC E. coli. Supplementary Information The online version contains supplementary material available at 10.1007/s12551-023-01100-6.
Collapse
Affiliation(s)
- Gonzalo Ferreira
- Ion Channels, Biological Membranes and Cell Signaling Laboratory, Dept. Of Biophysics, Facultad de Medicina, Universidad de la Republica, Gral Flores 2125, 11800 Montevideo, CP Uruguay
| | - Romina Cardozo
- Ion Channels, Biological Membranes and Cell Signaling Laboratory, Dept. Of Biophysics, Facultad de Medicina, Universidad de la Republica, Gral Flores 2125, 11800 Montevideo, CP Uruguay
| | - Santiago Sastre
- Ion Channels, Biological Membranes and Cell Signaling Laboratory, Dept. Of Biophysics and Centro de Investigaciones Biomédicas (CeInBio), Facultad de Medicina, Universidad de la Republica, Gral Flores 2125, 11800 Montevideo, CP Uruguay
| | - Carlos Costa
- Ion Channels, Biological Membranes and Cell Signaling Laboratory, Dept. Of Biophysics, Facultad de Medicina, Universidad de la Republica, Gral Flores 2125, 11800 Montevideo, CP Uruguay
| | - Axel Santander
- Ion Channels, Biological Membranes and Cell Signaling Laboratory, Dept. Of Biophysics, Facultad de Medicina, Universidad de la Republica, Gral Flores 2125, 11800 Montevideo, CP Uruguay
| | - Luisina Chavarría
- Ion Channels, Biological Membranes and Cell Signaling Laboratory, Dept. Of Biophysics, Facultad de Medicina, Universidad de la Republica, Gral Flores 2125, 11800 Montevideo, CP Uruguay
| | - Valentina Guizzo
- Ion Channels, Biological Membranes and Cell Signaling Laboratory, Dept. Of Biophysics, Facultad de Medicina, Universidad de la Republica, Gral Flores 2125, 11800 Montevideo, CP Uruguay
| | - José Puglisi
- College of Medicine, California North State University, 9700 West Taron Drive, Elk Grove, CA 95757 USA
| | - G. L. Nicolson
- Institute for Molecular Medicine, Beach, Huntington, CA USA
| |
Collapse
|
27
|
Iravanian S, Uzelac I, Shah AD, Toye MJ, Lloyd MS, Burke MA, Daneshmand MA, Attia TS, Vega JD, Merchant FM, Cherry EM, Bhatia NK, Fenton FH. Beyond Alternans: Detection of Higher-Order Periodicity in Ex-Vivo Human Ventricles Before Induction of Ventricular Fibrillation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.01.539003. [PMID: 37205562 PMCID: PMC10187180 DOI: 10.1101/2023.05.01.539003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Background Repolarization alternans, defined as period-2 oscillation in the repolarization phase of the action potentials, is one of the cornerstones of cardiac electrophysiology as it provides a mechanistic link between cellular dynamics and ventricular fibrillation (VF). Theoretically, higher-order periodicities (e.g., period-4, period-8,...) are expected but have very limited experimental evidence. Methods We studied explanted human hearts, obtained from the recipients of heart transplantation at the time of surgery, using optical mapping technique with transmembrane voltage-sensitive fluorescent dyes. The hearts were stimulated at an increasing rate until VF was induced. The signals recorded from the right ventricle endocardial surface just before the induction of VF and in the presence of 1:1 conduction were processed using the Principal Component Analysis and a combinatorial algorithm to detect and quantify higher-order dynamics. Results A prominent and statistically significant 1:4 peak (corresponding to period-4 dynamics) was seen in three of the six studied hearts. Local analysis revealed the spatiotemporal distribution of higher-order periods. Period-4 was localized to temporally stable islands. Higher-order oscillations (period-5, 6, and 8) were transient and primarily occurred in arcs parallel to the activation isochrones. Discussion We present evidence of higher-order periodicities and the co-existence of such regions with stable non-chaotic areas in ex-vivo human hearts before VF induction. This result is consistent with the period-doubling route to chaos as a possible mechanism of VF initiation, which complements the concordant to discordant alternans mechanism. The presence of higher-order regions may act as niduses of instability that can degenerate into chaotic fibrillation.
Collapse
|
28
|
Kanaporis G, Martinez‐Hernandez E, Blatter LA. Calcium- and voltage-driven atrial alternans: Insight from [Ca] i and V m asynchrony. Physiol Rep 2023; 11:e15703. [PMID: 37226365 PMCID: PMC10209431 DOI: 10.14814/phy2.15703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 04/21/2023] [Accepted: 04/23/2023] [Indexed: 05/26/2023] Open
Abstract
Cardiac alternans is defined as beat-to-beat alternations in contraction strength, action potential duration (APD), and Ca transient (CaT) amplitude. Cardiac excitation-contraction coupling relies on the activity of two bidirectionally coupled excitable systems, membrane voltage (Vm ) and Ca release. Alternans has been classified as Vm - or Ca-driven, depending whether a disturbance of Vm or [Ca]i regulation drives the alternans. We determined the primary driver of pacing induced alternans in rabbit atrial myocytes, using combined patch clamp and fluorescence [Ca]i and Vm measurements. APD and CaT alternans are typically synchronized; however, uncoupling between APD and CaT regulation can lead to CaT alternans in the absence of APD alternans, and APD alternans can fail to precipitate CaT alternans, suggesting a considerable degree of independence of CaT and APD alternans. Using alternans AP voltage clamp protocols with extra APs showed that most frequently the pre-existing CaT alternans pattern prevailed after the extra-beat, indicating that alternans is Ca-driven. In electrically coupled cell pairs, dyssynchrony of APD and CaT alternans points to autonomous regulation of CaT alternans. Thus, with three novel experimental protocols, we collected evidence for Ca-driven alternans; however, the intimately intertwined regulation of Vm and [Ca]i precludes entirely independent development of CaT and APD alternans.
Collapse
Affiliation(s)
- G. Kanaporis
- Department of Physiology & BiophysicsRush University Medical CenterChicagoIllinoisUSA
| | - E. Martinez‐Hernandez
- Department of Physiology & BiophysicsRush University Medical CenterChicagoIllinoisUSA
| | - L. A. Blatter
- Department of Physiology & BiophysicsRush University Medical CenterChicagoIllinoisUSA
| |
Collapse
|
29
|
Netiazhenko VZ, Mostovyi SE, Safonova OM. The Impact of COVID-19 upon Intracardiac Hemodynamics and Heart Rate Variability in Stable Coronary Artery Disease Patients. UKRAINIAN JOURNAL OF CARDIOVASCULAR SURGERY 2023. [DOI: 10.30702/ujcvs/23.31(01)/nm009-1928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/03/2023]
Abstract
The aim. To study the impact of COVID-19 upon intracardiac hemodynamics and heart rate variability (HRV) in stable coronary artery disease (SCAD) patients.
Materials and methods. In this cross-sectional study we analyzed clinical and instrumental data obtained from a sample of 80 patients. The patients were divided into three groups: group 1 included patients with SCAD without COVID-19 (n=30), group 2 included patients with SCAD and COVID-19 (n=25), and group 3 included patients with COVID-19 without SCAD (n=25). The control group included 30 relatively healthy volunteers.
Results. The changes in intracardiac hemodynamics and HRV in group 2 were characterized by the impaired left ventricular systolic and diastolic function, dilation of both ventricles and elevated systolic pulmonary artery pressure. Left ventricular end-diastolic volume was higher in group 2 (205±21 ml) than that in group 1 (176±33 ml; р<0.001) and group 3 (130±21 ml; р<0.001). Patients in the groups 1–3, compared to controls, presented with the decrease in the overall HRV (by standard deviation [SD] of all NN intervals [SDNN]; SD of the averages of NN intervals in all 5 min segments of the entire recording; and mean of the SDs of all NN intervals for all 5 min segments of the entire recording) and parasympathetic activity (root-mean-square difference of successive NN intervals; the proportion derived by dividing the number of interval differences of successive NN intervals greater than 50 ms [NN50] by the total number of NN intervals [pNN50], and high frequency spectral component), along with QT interval prolongation and increase in its variability. Group 2 demonstrated the most advanced changes in HRV (by SDNN and pNN50) and both QT interval characteristics.
Conclusions. The patients with SCAD and concomitant COVID-19, along with both ventricles dilation and intracardiac hemodynamics impairment, presented with the sings of autonomic dysfunction, QT interval prolongation and increase in its variability. The heart rate variability and QT interval characteristics should be additionally considered in the management of such patients.
Collapse
|