1
|
Qi X, Xiong F, Xiao J, Muthukumarasamy KM, Altuntas Y, Zhong Y, Abu-Taha I, Bruns F, Tekook M, Kamler M, Villeneuve L, Nozza A, Sirois M, Karch J, Pasdois P, Bers DM, Dobrev D, Nattel S. Time-dependent Mitochondrial Remodeling in Experimental Atrial Fibrillation and Potential Therapeutic Relevance. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.29.635508. [PMID: 39975327 PMCID: PMC11838346 DOI: 10.1101/2025.01.29.635508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
BACKGROUND Changes in mitochondria have been implicated in atrial fibrillation (AF), but their manifestations and significance are poorly understood. Here, we studied changes in mitochondrial morphology and function during AF and assessed the effect of a mitochondrial-targeted intervention in a large animal model. METHODS AND RESULTS Atrial cardiomyocytes (ACMs) were isolated from dogs in electrically-driven AF for periods of 24 hours to 3 weeks and from humans with/without longstanding persistent AF. Mitochondrial Ca 2+ -concentration ([Ca 2+ ] Mito ), reactive oxygen species (mtROS) production, membrane potential (ΔΨ m ), permeability transition-pore (mPTP) opening and flavin adenine dinucleotide (FAD) were measured via confocal microscopy; nicotine adenine dinucleotide (NADH) under ultraviolet light. mtROS-production increased within 24 hours and superoxide-dismutase type-2 was significantly reduced from 3-day AF. [Ca 2+ ] Mito and mPTP-opening frequency/duration increased progressively during AF. Mitochondrial depolarization was detectable 24 hours after AF-onset. NADH increased by 15% at 24-hour AF, concomitant with increased pyruvate-dehydrogenase expression, then gradually decreased. Mitochondria enlarged and elongated at 24-hour and 3-day AF, followed by progressive fragmentation, rupture and shrinkage. Mitochondrial fusion protein-1 (MFN1) was reduced from 3-day to 3-week AF and phosphorylated dynamin-related protein-1 (p-DRP1ser-616) increased after 1 week of canine AF and in human AF. Addition of the mitochondrial antioxidant MitoTempo attenuated action-potential shortening and L-type Ca 2+ -current (I CaL )-downregulation in canine and human AF ACMs in vitro . Administration of the orally-active mitochondrial-targeted ubiquinone mitoquinone to dogs during 3-week AF prevented mitochondrial Ca 2+ -overload, mtROS-overproduction, structural damage and abnormalities in ΔΨ m and respiration. Functionally, mitoquinone reduced AF-induced Ca 2+ -current downregulation, action-potential abbreviation, contractile dysfunction and fibrosis, preventing AF-substrate development and AF-sustainability. CONCLUSIONS Mitochondria show a series of changes during AF, with early hyperfunction and enhanced ROS-generation, followed by progressive damage and dysfunction. Mitochondrial-targeted therapy prevents mitochondrial dysfunction and attenuates adverse AF-related remodeling, positioning mitochondrial protection as a potential novel therapeutic target in AF.
Collapse
|
2
|
Schuijt E, Scherr D, Plank G, Schotten U, Heijman J. Evolution in electrophysiology 100 years after Einthoven: translational and computational innovations in rhythm control of atrial fibrillation. Europace 2024; 27:euae304. [PMID: 39729032 PMCID: PMC11707389 DOI: 10.1093/europace/euae304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Revised: 12/06/2024] [Accepted: 12/20/2024] [Indexed: 12/28/2024] Open
Abstract
In 1924, the Dutch physiologist Willem Einthoven received the Nobel Prize in Physiology or Medicine for his discovery of the mechanism of the electrocardiogram (ECG). Anno 2024, the ECG is commonly used as a diagnostic tool in cardiology. In the paper 'Le Télécardiogramme', Einthoven described the first recording of the now most common cardiac arrhythmia: atrial fibrillation (AF). The treatment of AF includes rhythm control, aiming to alleviate symptoms and improve quality of life. Recent studies found that early rhythm control might additionally improve clinical outcomes. However, current therapeutic options have suboptimal efficacy and safety, highlighting a need for better rhythm-control strategies. In this review, we address the challenges related to antiarrhythmic drugs (AADs) and catheter ablation for rhythm control of AF, including significant recurrence rates and adverse side effects such as pro-arrhythmia. Furthermore, we discuss potential solutions to these challenges including novel tools, such as atrial-specific AADs and digital-twin-guided AF ablation. In particular, digital twins are a promising method to integrate a wide range of clinical data to address the heterogeneity in AF mechanisms. This may enable a more mechanism-based tailored approach that may overcome the limitations of previous precision medicine approaches based on individual biomarkers. However, several translational challenges need to be addressed before digital twins can be routinely applied in clinical practice, which we discuss at the end of this narrative review. Ultimately, the significant advances in the detection, understanding, and treatment of AF since its first ECG documentation are expected to help reduce the burden of this troublesome condition.
Collapse
Affiliation(s)
- Eva Schuijt
- Department of Physiology, CARIM School for Cardiovascular Diseases, Maastricht University, Maastricht, The Netherlands
| | - Daniel Scherr
- Department of Cardiology, Medical University of Graz, Graz, Austria
| | - Gernot Plank
- Division of Medical Physics and Biophysics, Gottfried Schatz Research Center, Medical University of Graz, Neue Stiftingtalstr. 6, 8010 Graz, Austria
| | - Ulrich Schotten
- Department of Physiology, CARIM School for Cardiovascular Diseases, Maastricht University, Maastricht, The Netherlands
| | - Jordi Heijman
- Division of Medical Physics and Biophysics, Gottfried Schatz Research Center, Medical University of Graz, Neue Stiftingtalstr. 6, 8010 Graz, Austria
- Department of Cardiology, CARIM School for Cardiovascular Diseases, Maastricht University and Maastricht University Medical Center, Universiteitssingel 50, 6229 ER Maastricht, The Netherlands
| |
Collapse
|
3
|
Saljic A, Heijman J, Dobrev D. From Atrial Small-conductance Calcium-activated Potassium Channels to New Antiarrhythmics. Eur Cardiol 2024; 19:e26. [PMID: 39872420 PMCID: PMC11770539 DOI: 10.15420/ecr.2024.41] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Accepted: 10/27/2024] [Indexed: 01/30/2025] Open
Abstract
Despite significant advances in its management, AF remains a major healthcare burden affecting millions of individuals. Rhythm control with antiarrhythmic drugs or catheter ablation has been shown to improve symptoms and outcomes in AF patients, but current treatment options have limited efficacy and/or significant side-effects. Novel mechanism-based approaches could potentially be more effective, enabling improved therapeutic strategies for managing AF. Small-conductance calcium-activated potassium (SK or KCa2.x) channels encoded by KCNN1-3 have recently gathered interest as novel antiarrhythmic targets with potential atrial-predominant effects. Here, the molecular composition of smallconductance calcium-activated potassium channels and their complex regulation in AF as the basis for understanding the distinct mechanism of action of pore-blockers (apamin, UCL1684, ICAGEN) and modulators of calcium-dependent activation (NS8593, AP14145, AP30663) are summarised. Furthermore, the preclinical and early clinical evidence for the role of small-conductance calcium-activated potassium channel inhibitors in the treatment of AF are reviewed.
Collapse
Affiliation(s)
- Arnela Saljic
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of CopenhagenCopenhagen, Denmark
- Institute of Pharmacology, West German Heart and Vascular Center, University of Duisburg-EssenEssen, Germany
| | - Jordi Heijman
- Gottfried Schatz Research Centre, Division of Medical Physics & Biophysics, Medical University of GrazGraz, Austria
- Department of Cardiology, Maastricht University Medical Centre and Cardiovascular Research Institute Maastricht, Maastricht UniversityMaastricht, the Netherlands
| | - Dobromir Dobrev
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of CopenhagenCopenhagen, Denmark
- Departments of Medicine and Research Centre, Montreal Heart Institute and Université de MontréalMontreal, Canada
- Department of Integrative Physiology, Baylor College of MedicineHouston, TX, US
| |
Collapse
|
4
|
Sweat ME, Pu WIT. Genetic and Molecular Underpinnings of Atrial Fibrillation. NPJ CARDIOVASCULAR HEALTH 2024; 1:35. [PMID: 39867228 PMCID: PMC11759492 DOI: 10.1038/s44325-024-00035-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Accepted: 11/02/2024] [Indexed: 01/28/2025]
Abstract
Atrial fibrillation (AF), the most common sustained arrhythmia, increases stroke and heart failure risks. Here we review genes linked to AF and mechanisms by which they alter AF risk. We highlight gene expression differences between atrial and ventricular cardiomyocytes, regulatory mechanisms responsible for these differences, and their potential contribution to AF. Understanding AF mechanisms through the lens of atrial gene regulation is crucial to improving AF treatment.
Collapse
Affiliation(s)
- Mason E. Sweat
- Department of Cardiology, Boston Children’s
Hospital, Boston, MA 02115, USA
| | - WIlliam T. Pu
- Department of Cardiology, Boston Children’s
Hospital, Boston, MA 02115, USA
- Harvard Stem Cell Institute, Harvard University, Cambridge,
MA 02138, USA
| |
Collapse
|
5
|
Dasí A, Berg LA, Martinez-Navarro H, Bueno-Orovio A, Rodriguez B. Prospective in silico trials identify combined SK and K 2P channel block as an effective strategy for atrial fibrillation cardioversion. J Physiol 2024. [PMID: 39557619 DOI: 10.1113/jp287124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Accepted: 10/23/2024] [Indexed: 11/20/2024] Open
Abstract
Virtual evaluation of medical therapy through human-based modelling and simulation can accelerate and augment clinical investigations. Treatment of the most common cardiac arrhythmia, atrial fibrillation (AF), requires novel approaches. This study prospectively evaluates and mechanistically explains three novel pharmacological therapies for AF through in silico trials, including single and combined SK and K2P channel block. AF and pharmacological action were assessed in a large cohort of 1000 virtual patients, through 2962 multiscale simulations. Extensive calibration and validation with experimental and clinical data support their credibility. Sustained AF was observed in 654 virtual patients. In this cohort, cardioversion efficacy increased to 82% (535 of 654) through combined SK+K2P channel block, from 33% (213 of 654) and 43% (278 of 654) for single SK and K2P blocks, respectively. Drug-induced prolongation of tissue refractoriness, dependent on the virtual patient's ionic current profile, explained cardioversion efficacy (atrial refractory period increase: 133.0 ± 48.4 ms for combined vs. 45.2 ± 43.0 and 71.0 ± 55.3 ms for single SK and K2P block, respectively). Virtual patients cardioverted by SK channel block presented lower K2P densities, while lower SK densities favoured the success of K2P channel inhibition. Both ionic currents had a crucial role on atrial repolarization, and thus a synergism resulted from the multichannel block. All three strategies, including the multichannel block, preserved atrial electrophysiological function (i.e. conduction velocity and calcium transient dynamics) and thus its contractile properties (safety). In silico trials identify key factors determining treatment success and the combined SK+K2P channel block as a promising strategy for AF management. KEY POINTS: This is a large-scale in silico trial study involving 2962 multiscale simulations. A population of 1000 virtual patients underwent three treatments for atrial fibrillation. Single and combined SK+K2P channel block were assessed prospectively. The multi-ion channel inhibition resulted in 82% cardioversion efficacy. In silico trials have broad implications for precision medicine.
Collapse
Affiliation(s)
- Albert Dasí
- Department of Computer Science, University of Oxford, Oxford, UK
| | | | | | | | - Blanca Rodriguez
- Department of Computer Science, University of Oxford, Oxford, UK
| |
Collapse
|
6
|
Singh H, Sanghvi SK. Top stories on intracellular potassium channels in cardiac arrhythmia. Heart Rhythm 2024; 21:2074-2075. [PMID: 39357933 DOI: 10.1016/j.hrthm.2024.07.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Accepted: 07/08/2024] [Indexed: 10/04/2024]
Affiliation(s)
- Harpreet Singh
- Department of Physiology and Cell Biology, The Ohio State University, Columbus, Ohio; Department of Molecular, Cellular and Developmental Biology, The Ohio State University, Columbus, Ohio.
| | - Shridhar Kiran Sanghvi
- Department of Physiology and Cell Biology, The Ohio State University, Columbus, Ohio; Department of Molecular, Cellular and Developmental Biology, The Ohio State University, Columbus, Ohio
| |
Collapse
|
7
|
Linz D. Recent highlights from the International Journal of Cardiology heart & Vasculature: Comprehensive management of atrial fibrillation. IJC HEART & VASCULATURE 2024; 53:101478. [PMID: 39175655 PMCID: PMC11339049 DOI: 10.1016/j.ijcha.2024.101478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/24/2024]
Affiliation(s)
- Dominik Linz
- Corresponding author at: Maastricht UMC+, Maastricht Heart+Vascular Center Universiteitssingel 50, 6229 ER Maastricht, the Netherlands.
| |
Collapse
|
8
|
Riddle A, Srivastava T, Wang K, Tellez E, O'Neill H, Gong X, O'Niel A, Bell JA, Raber J, Lattal M, Maylie J, Back SA. Mild neonatal hypoxia disrupts adult hippocampal learning and memory and is associated with CK2-mediated dysregulation of synaptic calcium-activated potassium channel KCNN2. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.10.602558. [PMID: 39071376 PMCID: PMC11275740 DOI: 10.1101/2024.07.10.602558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/30/2024]
Abstract
Objective Although nearly half of preterm survivors display persistent neurobehavioral dysfunction including memory impairment without overt gray matter injury, the underlying mechanisms of neuronal or glial dysfunction, and their relationship to commonly observed cerebral white matter injury are unclear. We developed a mouse model to test the hypothesis that mild hypoxia during preterm equivalence is sufficient to persistently disrupt hippocampal neuronal maturation related to adult cellular mechanisms of learning and memory. Methods: Neonatal (P2) mice were exposed to mild hypoxia (8%O 2 ) for 30 min and evaluated for acute injury responses or survived until adulthood for assessment of learning and memory and hippocampal neurodevelopment. Results Neonatal mild hypoxia resulted in clinically relevant oxygen desaturation and tachycardia without bradycardia and was not accompanied by cerebral gray or white matter injury. Neonatal hypoxia exposure was sufficient to cause hippocampal learning and memory deficits and abnormal maturation of CA1 neurons that persisted into adulthood. This was accompanied by reduced hippocampal CA3-CA1 synaptic strength and LTP and reduced synaptic activity of calcium-sensitive SK2 channels, key regulators of spike timing dependent neuroplasticity, including LTP. Structural illumination microscopy revealed reduced synaptic density, but intact SK2 localization at the synapse. Persistent loss of SK2 activity was mediated by altered casein kinase 2 (CK2) signaling. Interpretation Clinically relevant mild hypoxic exposure in the neonatal mouse is sufficient to produce morphometric and functional disturbances in hippocampal neuronal maturation independently of white matter injury. Additionally, we describe a novel persistent mechanism of potassium channel dysregulation after neonatal hypoxia. Collectively our findings suggest an unexplored explanation for the broad spectrum of neurobehavioral, cognitive and learning disabilities that paradoxically persist into adulthood without overt gray matter injury after preterm birth.
Collapse
|
9
|
Zhu X, Lv M, Cheng T, Zhou Y, Yuan G, Chu Y, Luan Y, Song Q, Hu Y. Bibliometric analysis of atrial fibrillation and ion channels. Heart Rhythm 2024; 21:1161-1169. [PMID: 38280618 DOI: 10.1016/j.hrthm.2024.01.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 01/18/2024] [Accepted: 01/19/2024] [Indexed: 01/29/2024]
Abstract
Atrial fibrillation (AF) is a common clinical malignant arrhythmia with an increasing global incidence. Ion channel dysfunction is an important mechanism in the development of AF. In this study, we used bibliometrics to analyze the studies of ion channels and AF, aiming to provide inspiration and reference for researchers. A total of 3179 literature citations were obtained from Web of Science core databases. Analysis software included Excel 2019, VOSviewer 1.6.16, and CiteSpace 5.7.R2. This field of research has been growing since 1985. The most active country is the United States. The University of Montreal is the most important research institution. The journal Cardiovascular Research has published the largest number of articles in this field. Stanley Nattel and Dobromir Dobrev are the most frequently cited authors. The most cited literature was published in Nature and Science. Cardiac electrophysiology, gene expression, pathogenesis of AF, and AF prevention and treatment are the hot topics for this field research. Cardiac fibrillation and catheter ablation may be future research hotspots in this field.
Collapse
Affiliation(s)
- Xueping Zhu
- Guang 'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Meng Lv
- Guang 'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Tao Cheng
- Graduate School of Beijing University of Chinese Medicine, Beijing, China
| | - Yan Zhou
- Graduate School of Beijing University of Chinese Medicine, Beijing, China
| | - Guozhen Yuan
- Guang 'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yuguang Chu
- Guang 'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yujie Luan
- Graduate School of Beijing University of Chinese Medicine, Beijing, China
| | - Qingqiao Song
- Guang 'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China.
| | - Yuanhui Hu
- Guang 'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China.
| |
Collapse
|
10
|
Liutkute A, Prosser BL, Voigt N. Microtubules: highway to … arrhythmia? Cardiovasc Res 2024; 120:671-672. [PMID: 38637305 DOI: 10.1093/cvr/cvae072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 03/19/2024] [Indexed: 04/20/2024] Open
Affiliation(s)
- Aiste Liutkute
- Institute of Pharmacology and Toxicology, University Medical Center Göttingen, Robert-Koch-Str. 40, 37075 Göttingen, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Göttingen, Germany
- Cluster of Excellence 'Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells' (MBExC), University of Göttingen, Germany
| | - Benjamin L Prosser
- Department of Physiology, Pennsylvania Muscle Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, USA
| | - Niels Voigt
- Institute of Pharmacology and Toxicology, University Medical Center Göttingen, Robert-Koch-Str. 40, 37075 Göttingen, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Göttingen, Germany
- Cluster of Excellence 'Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells' (MBExC), University of Göttingen, Germany
| |
Collapse
|
11
|
Liuzzo G, Pedicino D. Weekly journal scan: the KCa2 potassium channel as a promising target for the pharmacologic cardioversion of atrial fibrillation. Eur Heart J 2024; 45:1699-1700. [PMID: 38558097 DOI: 10.1093/eurheartj/ehae138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 04/04/2024] Open
Affiliation(s)
- Giovanna Liuzzo
- Department of Cardiovascular Sciences, Fondazione Policlinico Universitario A. Gemelli-IRCCS, Largo A. Gemelli 8, Rome 00168, Italy
- Department of Cardiovascular and Pulmonary Sciences, Catholic University School of Medicine, Largo F.Vito 1, Rome 00168, Italy
| | - Daniela Pedicino
- Department of Cardiovascular Sciences, Fondazione Policlinico Universitario A. Gemelli-IRCCS, Largo A. Gemelli 8, Rome 00168, Italy
| |
Collapse
|
12
|
Burg S, Levi O, Elyagon S, Shapiro S, Murninkas M, Etzion S, Gradwohl G, Makarovsky D, Lichtenstein A, Gordon Y, Attali B, Etzion Y. The SK4 channel allosteric blocker, BA6b9, reduces atrial fibrillation substrate in rats with reduced ejection fraction. PNAS NEXUS 2024; 3:pgae192. [PMID: 38783894 PMCID: PMC11114471 DOI: 10.1093/pnasnexus/pgae192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Accepted: 04/30/2024] [Indexed: 05/25/2024]
Abstract
Atrial fibrillation (AF), the most common cardiac arrhythmia, is strongly associated with several comorbidities including heart failure (HF). AF in general, and specifically in the context of HF, is progressive in nature and associated with poor clinical outcomes. Current therapies for AF are limited in number and efficacy and do not target the underlying causes of atrial remodeling such as inflammation or fibrosis. We previously identified the calcium-activated SK4 K+ channels, which are preferentially expressed in the atria relative to the ventricles in both rat and human hearts, as attractive druggable target for AF treatment. Here, we examined the ability of BA6b9, a novel allosteric inhibitor of SK4 channels that targets the specific calmodulin-PIP2 binding domain, to alter AF susceptibility and atrial remodeling in a systolic HF rat postmyocardial infarction (post-MI) model. Daily BA6b9 injection (20 mg/kg/day) for 3 weeks starting 1-week post-MI prolonged the atrial effective refractory period, reduced AF induction and duration, and dramatically prevented atrial structural remodeling. In the post-MI left atrium (LA), pronounced upregulation of the SK4 K+ channel was observed, with corresponding increases in collagen deposition, α-SMA levels, and NLRP3 inflammasome expression. Strikingly, BA6b9 treatment reversed these changes while also significantly reducing the lateralization of the atrial connexin Cx43 in the LA of post-MI rats. Our findings indicate that the blockade of SK4 K+ channels using BA6b9 not only favors rhythm control but also remarkably reduces atrial structural remodeling, a property that is highly desirable for novel AF therapies, particularly in patients with comorbid HF.
Collapse
Affiliation(s)
- Shira Burg
- Department of Physiology & Pharmacology, Sackler Faculty of Medicine and Sagol School of Neurosciences, Tel Aviv University, Tel Aviv 69978, Israel
| | - Or Levi
- Cardiac Arrhythmia Research Laboratory, Department of Physiology and Cell Biology, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva 8410501, Israel
- Regenerative Medicine & Stem Cell Research Center, Ben-Gurion University of the Negev, Beer-Sheva 8410501, Israel
| | - Sigal Elyagon
- Cardiac Arrhythmia Research Laboratory, Department of Physiology and Cell Biology, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva 8410501, Israel
- Regenerative Medicine & Stem Cell Research Center, Ben-Gurion University of the Negev, Beer-Sheva 8410501, Israel
| | - Shir Shapiro
- Cardiac Arrhythmia Research Laboratory, Department of Physiology and Cell Biology, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva 8410501, Israel
- Regenerative Medicine & Stem Cell Research Center, Ben-Gurion University of the Negev, Beer-Sheva 8410501, Israel
| | - Michael Murninkas
- Cardiac Arrhythmia Research Laboratory, Department of Physiology and Cell Biology, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva 8410501, Israel
- Regenerative Medicine & Stem Cell Research Center, Ben-Gurion University of the Negev, Beer-Sheva 8410501, Israel
| | - Sharon Etzion
- Regenerative Medicine & Stem Cell Research Center, Ben-Gurion University of the Negev, Beer-Sheva 8410501, Israel
| | - Gideon Gradwohl
- Medical Engineering Unit, The Jerusalem College of Technology, Jerusalem 9116001, Israel
| | - Daria Makarovsky
- Inter-Departmental Core Facility, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| | - Alexandra Lichtenstein
- Inter-Departmental Core Facility, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| | - Yaara Gordon
- Department of Clinical Microbiology and Immunology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| | - Bernard Attali
- Department of Physiology & Pharmacology, Sackler Faculty of Medicine and Sagol School of Neurosciences, Tel Aviv University, Tel Aviv 69978, Israel
| | - Yoram Etzion
- Cardiac Arrhythmia Research Laboratory, Department of Physiology and Cell Biology, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva 8410501, Israel
- Regenerative Medicine & Stem Cell Research Center, Ben-Gurion University of the Negev, Beer-Sheva 8410501, Israel
| |
Collapse
|
13
|
Tubeeckx MRL, De Keulenaer GW, Heidbuchel H, Segers VFM. Pathophysiology and clinical relevance of atrial myopathy. Basic Res Cardiol 2024; 119:215-242. [PMID: 38472506 DOI: 10.1007/s00395-024-01038-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 02/01/2024] [Accepted: 02/02/2024] [Indexed: 03/14/2024]
Abstract
Atrial myopathy is a condition that consists of electrical, structural, contractile, and autonomic remodeling of the atria and is the substrate for development of atrial fibrillation, the most common arrhythmia. Pathophysiologic mechanisms driving atrial myopathy are inflammation, oxidative stress, atrial stretch, and neurohormonal signals, e.g., angiotensin-II and aldosterone. These mechanisms initiate the structural and functional remodeling of the atrial myocardium. Novel therapeutic strategies are being developed that target the pathophysiologic mechanisms of atrial myopathy. In this review, we will discuss the pathophysiology of atrial myopathy, as well as diagnostic and therapeutic strategies.
Collapse
Affiliation(s)
- Michiel R L Tubeeckx
- Laboratory of Physiopharmacology, Universiteitsplein 1, Building T (2nd Floor), 2610, Antwerp, Belgium.
| | - Gilles W De Keulenaer
- Laboratory of Physiopharmacology, Universiteitsplein 1, Building T (2nd Floor), 2610, Antwerp, Belgium
- Department of Cardiology, ZNA Middelheim Hospital Antwerp, Antwerp, Belgium
| | - Hein Heidbuchel
- Research Group Cardiovascular Diseases, GENCOR, University of Antwerp, Antwerp, Belgium
- Department of Cardiology, University Hospital Antwerp, Antwerp, Belgium
| | - Vincent F M Segers
- Laboratory of Physiopharmacology, Universiteitsplein 1, Building T (2nd Floor), 2610, Antwerp, Belgium
- Department of Cardiology, University Hospital Antwerp, Antwerp, Belgium
| |
Collapse
|
14
|
Linz D, Andrade JG, Arbelo E, Boriani G, Breithardt G, Camm AJ, Caso V, Nielsen JC, De Melis M, De Potter T, Dichtl W, Diederichsen SZ, Dobrev D, Doll N, Duncker D, Dworatzek E, Eckardt L, Eisert C, Fabritz L, Farkowski M, Filgueiras-Rama D, Goette A, Guasch E, Hack G, Hatem S, Haeusler KG, Healey JS, Heidbuechel H, Hijazi Z, Hofmeister LH, Hove-Madsen L, Huebner T, Kääb S, Kotecha D, Malaczynska-Rajpold K, Merino JL, Metzner A, Mont L, Ng GA, Oeff M, Parwani AS, Puererfellner H, Ravens U, Rienstra M, Sanders P, Scherr D, Schnabel R, Schotten U, Sohns C, Steinbeck G, Steven D, Toennis T, Tzeis S, van Gelder IC, van Leerdam RH, Vernooy K, Wadhwa M, Wakili R, Willems S, Witt H, Zeemering S, Kirchhof P. Longer and better lives for patients with atrial fibrillation: the 9th AFNET/EHRA consensus conference. Europace 2024; 26:euae070. [PMID: 38591838 PMCID: PMC11003300 DOI: 10.1093/europace/euae070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 02/16/2024] [Indexed: 04/10/2024] Open
Abstract
AIMS Recent trial data demonstrate beneficial effects of active rhythm management in patients with atrial fibrillation (AF) and support the concept that a low arrhythmia burden is associated with a low risk of AF-related complications. The aim of this document is to summarize the key outcomes of the 9th AFNET/EHRA Consensus Conference of the Atrial Fibrillation NETwork (AFNET) and the European Heart Rhythm Association (EHRA). METHODS AND RESULTS Eighty-three international experts met in Münster for 2 days in September 2023. Key findings are as follows: (i) Active rhythm management should be part of the default initial treatment for all suitable patients with AF. (ii) Patients with device-detected AF have a low burden of AF and a low risk of stroke. Anticoagulation prevents some strokes and also increases major but non-lethal bleeding. (iii) More research is needed to improve stroke risk prediction in patients with AF, especially in those with a low AF burden. Biomolecules, genetics, and imaging can support this. (iv) The presence of AF should trigger systematic workup and comprehensive treatment of concomitant cardiovascular conditions. (v) Machine learning algorithms have been used to improve detection or likely development of AF. Cooperation between clinicians and data scientists is needed to leverage the potential of data science applications for patients with AF. CONCLUSIONS Patients with AF and a low arrhythmia burden have a lower risk of stroke and other cardiovascular events than those with a high arrhythmia burden. Combining active rhythm control, anticoagulation, rate control, and therapy of concomitant cardiovascular conditions can improve the lives of patients with AF.
Collapse
Affiliation(s)
- Dominik Linz
- Department of Cardiology, Maastricht University Medical Center, Cardiovascular Research Institute Maastricht, Maastricht, The Netherlands
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Jason G Andrade
- Division of Cardiology, Vancouver General Hospital, Vancouver, Canada
- Montreal Heart Institute, Montreal, Canada
| | - Elena Arbelo
- Institut Clínic Cardiovascular, Hospital Clinic, Universitat de Barcelona, Barcelona, Catalonia, Spain
- Institut d’Investigació August Pi i Sunyer (IDIBAPS), Barcelona, Catalonia, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
- European Reference Network for Rare, Low Prevalence and Complex Diseases of the Heart—ERN GUARD-Heart
| | - Giuseppe Boriani
- Cardiology Division, Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Polyclinic of Modena, Modena, Italy
| | - Guenter Breithardt
- Department of Cardiovascular Medicine, University Hospital, Münster, Germany
- Atrial Fibrillation NETwork (AFNET), Muenster, Germany
| | - A John Camm
- Cardiology Clinical Academic Group, Molecular and Clinical Sciences Institute, St. George's University of London, London, UK
| | - Valeria Caso
- Stroke Unit, Santa Maria della Misericordia Hospital, University of Perugia, Perugia, Italy
| | - Jens Cosedis Nielsen
- Department of Cardiology, Aarhus University Hospital and Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | | | | | - Wolfgang Dichtl
- Department of Internal Medicine III, Cardiology and Angiology, Medical University Innsbruck, Innsbruck, Austria
| | | | - Dobromir Dobrev
- Institute of Pharmacology, Faculty of Medicine, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Nicolas Doll
- Department of Cardiac Surgery, Schüchtermann-Klinik, Bad Rothenfelde, Germany
| | - David Duncker
- Hannover Heart Rhythm Center, Department of Cardiology and Angiology, Hannover Medical School, Hannover, Germany
| | | | - Lars Eckardt
- Atrial Fibrillation NETwork (AFNET), Muenster, Germany
- Department of Cardiology II—Electrophysiology, University Hospital Münster, Münster, Germany
| | | | - Larissa Fabritz
- Atrial Fibrillation NETwork (AFNET), Muenster, Germany
- University Center of Cardiovascular Science, UHZ, UKE, Hamburg, Germany
- German Centre for Cardiovascular Research (DZHK), Partner Site: Hamburg/Kiel/Lübeck, Hamburg, Germany
- Institute of Cardiovascular Sciences, University of Birmingham, Edgbaston, Birmingham, UK
| | - Michal Farkowski
- Department of Cardiology, Ministry of Interior and Administration, National Medical Institute, Warsaw, Poland
| | - David Filgueiras-Rama
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Novel Arrhythmogenic Mechanisms Program, Madrid, Spain
- Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), Cardiovascular Institute, C/ Profesor Martín Lagos, Madrid, Spain
| | - Andreas Goette
- Atrial Fibrillation NETwork (AFNET), Muenster, Germany
- Department of Cardiology and Intensive Care Medicine, St Vincenz-Hospital Paderborn, Paderborn, Germany
| | - Eduard Guasch
- Institut d’Investigació August Pi i Sunyer (IDIBAPS), Barcelona, Catalonia, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
- Clinic Barcelona, University of Barcelona, Barcelona, Spain
| | - Guido Hack
- Bristol-Myers Squibb GmbH & Co. KGaA, Munich, Germany
| | | | - Karl Georg Haeusler
- Atrial Fibrillation NETwork (AFNET), Muenster, Germany
- Department of Neurology, Universitätsklinikum Würzburg (UKW), Würzburg, Germany
| | - Jeff S Healey
- Division of Cardiology, McMaster University, Hamilton, Ontario, Canada
- Population Health Research Institute, Hamilton, Ontario, Canada
| | - Hein Heidbuechel
- Antwerp University Hospital, Cardiovascular Sciences, University of Antwerp, Antwerp, Belgium
| | - Ziad Hijazi
- Antwerp University Hospital, Cardiovascular Sciences, University of Antwerp, Antwerp, Belgium
- Department of Medical Sciences, Cardiology, Uppsala University, Uppsala, Sweden
- Uppsala Clinical Research Center, Uppsala University, Uppsala, Sweden
| | | | - Leif Hove-Madsen
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
- Biomedical Research Institute Barcelona (IIBB-CSIC), Barcelona, Spain
- IR Sant Pau, Hospital de Sant Pau, Barcelona, Spain
| | | | - Stefan Kääb
- European Reference Network for Rare, Low Prevalence and Complex Diseases of the Heart—ERN GUARD-Heart
- Department of Medicine I, University Hospital, LMU Munich, Munich, Germany
- German Centre for Cardiovascular Research (DZHK), Partner Site Munich, Munich Heart Alliance, Munich, Germany
| | - Dipak Kotecha
- Institute of Cardiovascular Sciences, University of Birmingham, Edgbaston, Birmingham, UK
- NIHR Birmingham Biomedical Research Centre, University Hospitals Birmingham NHS Trust, Birmingham, UK
| | - Katarzyna Malaczynska-Rajpold
- Lister Hospital, East and North Hertfordshire NHS Trust, Stevenage, UK
- Royal Brompton Hospital, Guy’s and St Thomas’ NHS Foundation Trust, London, UK
| | - José Luis Merino
- La Paz University Hospital, IdiPaz, Autonomous University of Madrid, Madrid, Spain
| | - Andreas Metzner
- Department of Cardiology, University Heart & Vascular Center Hamburg, University Medical Center Hamburg-Eppendorf, Martinistr. 52, Hamburg, Germany
| | - Lluís Mont
- Institut Clínic Cardiovascular, Hospital Clinic, Universitat de Barcelona, Barcelona, Catalonia, Spain
- Institut d’Investigació August Pi i Sunyer (IDIBAPS), Barcelona, Catalonia, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
| | - Ghulam Andre Ng
- Department of Cardiovascular Sciences, University of Leicester, Leicester, UK
- NIHR Leicester Biomedical Research Centre, Leicester, UK
| | - Michael Oeff
- Atrial Fibrillation NETwork (AFNET), Muenster, Germany
- Cardiology Department, Medizinische Hochschule Brandenburg, Brandenburg/Havel, Germany
| | - Abdul Shokor Parwani
- Department of Cardiology, Deutsches Herzzentrum der Charité (CVK), Berlin, Germany
| | | | - Ursula Ravens
- Atrial Fibrillation NETwork (AFNET), Muenster, Germany
- Institute of Experimental Cardiovascular Medicine, University Clinic Freiburg, Freiburg, Germany
| | - Michiel Rienstra
- University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Prashanthan Sanders
- Centre for Heart Rhythm Disorders, University of Adelaide and Royal Adelaide Hospital, Adelaide, Australia
| | - Daniel Scherr
- Division of Cardiology, Medical University of Graz, Graz, Austria
| | - Renate Schnabel
- Atrial Fibrillation NETwork (AFNET), Muenster, Germany
- German Centre for Cardiovascular Research (DZHK), Partner Site: Hamburg/Kiel/Lübeck, Hamburg, Germany
- Department of Cardiology, University Heart & Vascular Center Hamburg, University Medical Center Hamburg-Eppendorf, Martinistr. 52, Hamburg, Germany
| | - Ulrich Schotten
- Atrial Fibrillation NETwork (AFNET), Muenster, Germany
- Departments of Physiology, Cardiovascular Research Institute Maastricht, Maastricht University, Maastricht, The Netherlands
| | - Christian Sohns
- Herz- und Diabeteszentrum Nordrhein-Westfalen, Universitätsklinik der Ruhr-Universität Bochum, Klinik für Elektrophysiologie—Rhythmologie, Bad Oeynhausen, Germany
| | - Gerhard Steinbeck
- Atrial Fibrillation NETwork (AFNET), Muenster, Germany
- Center for Cardiology at Clinic Starnberg, Starnberg, Germany
| | - Daniel Steven
- Atrial Fibrillation NETwork (AFNET), Muenster, Germany
- Heart Center, Department of Electrophysiology, University Hospital Cologne, Cologne, Germany
| | - Tobias Toennis
- German Centre for Cardiovascular Research (DZHK), Partner Site: Hamburg/Kiel/Lübeck, Hamburg, Germany
- Department of Cardiology, University Heart & Vascular Center Hamburg, University Medical Center Hamburg-Eppendorf, Martinistr. 52, Hamburg, Germany
| | | | - Isabelle C van Gelder
- University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | | | - Kevin Vernooy
- Department of Cardiology, Maastricht University Medical Center, Cardiovascular Research Institute Maastricht, Maastricht, The Netherlands
| | - Manish Wadhwa
- Medical Office, Philips Ambulatory Monitoring and Diagnostics, San Diego, CA, USA
| | - Reza Wakili
- Atrial Fibrillation NETwork (AFNET), Muenster, Germany
- Department of Medicine and Cardiology, Goethe University, Frankfurt, Germany
- German Centre for Cardiovascular Research (DZHK), Partner Site Rhine-Main, Germany
| | - Stephan Willems
- Atrial Fibrillation NETwork (AFNET), Muenster, Germany
- German Centre for Cardiovascular Research (DZHK), Partner Site: Hamburg/Kiel/Lübeck, Hamburg, Germany
- Asklepios Hospital St. Georg, Department of Cardiology and Internal Care Medicine, Faculty of Medicine, Semmelweis University Campus, Hamburg, Germany
| | | | - Stef Zeemering
- Departments of Physiology, Cardiovascular Research Institute Maastricht, Maastricht University, Maastricht, The Netherlands
| | - Paulus Kirchhof
- Atrial Fibrillation NETwork (AFNET), Muenster, Germany
- German Centre for Cardiovascular Research (DZHK), Partner Site: Hamburg/Kiel/Lübeck, Hamburg, Germany
- Institute of Cardiovascular Sciences, University of Birmingham, Edgbaston, Birmingham, UK
- Department of Cardiology, University Heart & Vascular Center Hamburg, University Medical Center Hamburg-Eppendorf, Martinistr. 52, Hamburg, Germany
| |
Collapse
|
15
|
Xu J, Zhang D, Ma Y, Du H, Wang Y, Luo W, Wang R, Yi F. ROS in diabetic atria regulate SK2 degradation by Atrogin-1 through the NF-κB signaling pathway. J Biol Chem 2024; 300:105735. [PMID: 38336298 PMCID: PMC10938124 DOI: 10.1016/j.jbc.2024.105735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 01/13/2024] [Accepted: 01/19/2024] [Indexed: 02/12/2024] Open
Abstract
One of the independent risk factors for atrial fibrillation is diabetes mellitus (DM); however, the underlying mechanisms causing atrial fibrillation in DM are unknown. The underlying mechanism of Atrogin-1-mediated SK2 degradation and associated signaling pathways are unclear. The aim of this study was to elucidate the relationship among reactive oxygen species (ROS), the NF-κB signaling pathway, and Atrogin-1 protein expression in the atrial myocardia of DM mice. We found that SK2 expression was downregulated comitant with increased ROS generation and enhanced NF-κB signaling activation in the atrial cardiomyocytes of DM mice. These observations were mimicked by exogenously applicating H2O2 and by high glucose culture conditions in HL-1 cells. Inhibition of ROS production by diphenyleneiodonium chloride or silencing of NF-κB by siRNA decreased the protein expression of NF-κB and Atrogin-1 and increased that of SK2 in HL-1 cells with high glucose culture. Moreover, chromatin immunoprecipitation assay demonstrated that NF-κB/p65 directly binds to the promoter of the FBXO32 gene (encoding Atrogin-1), regulating the FBXO32 transcription. Finally, we evaluated the therapeutic effects of curcumin, known as a NF-κB inhibitor, on Atrogin-1 and SK2 expression in DM mice and confirmed that oral administration of curcumin for 4 weeks significantly suppressed Atrogin-1 expression and protected SK2 expression against hyperglycemia. In summary, the results from this study indicated that the ROS/NF-κB signaling pathway participates in Atrogin-1-mediated SK2 regulation in the atria of streptozotocin-induced DM mice.
Collapse
Affiliation(s)
- Jian Xu
- Department of Cardiovascular Diseases, Xijing Hospital, Fourth Military Medical University, Xi'an, China; Senior Department of Cardiology, The Sixth Medical Center of PLA General Hospital, Beijing, China
| | - Dong Zhang
- Department of Cardiovascular Diseases, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Yibo Ma
- Department of Cardiovascular Diseases, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Hui Du
- Department of Cardiovascular Diseases, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Yi Wang
- Department of Cardiovascular Diseases, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Wenping Luo
- Institute of Cardiovascular and Vascular Disease, Shaanxi University of Traditional Chinese Medicine, Xianyang, China
| | - Ruxing Wang
- Department of Cardiology, Wuxi People's Hospital Affiliated to Nanjing Medical University, Wuxi, Jiangsu, China
| | - Fu Yi
- Department of Cardiovascular Diseases, Xijing Hospital, Fourth Military Medical University, Xi'an, China.
| |
Collapse
|
16
|
Babini H, Jiménez-Sábado V, Stogova E, Arslanova A, Butt M, Dababneh S, Asghari P, Moore EDW, Claydon TW, Chiamvimonvat N, Hove-Madsen L, Tibbits GF. hiPSC-derived cardiomyocytes as a model to study the role of small-conductance Ca 2+-activated K + (SK) ion channel variants associated with atrial fibrillation. Front Cell Dev Biol 2024; 12:1298007. [PMID: 38304423 PMCID: PMC10830749 DOI: 10.3389/fcell.2024.1298007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 01/05/2024] [Indexed: 02/03/2024] Open
Abstract
Atrial fibrillation (AF), the most common arrhythmia, has been associated with different electrophysiological, molecular, and structural alterations in atrial cardiomyocytes. Therefore, more studies are required to elucidate the genetic and molecular basis of AF. Various genome-wide association studies (GWAS) have strongly associated different single nucleotide polymorphisms (SNPs) with AF. One of these GWAS identified the rs13376333 risk SNP as the most significant one from the 1q21 chromosomal region. The rs13376333 risk SNP is intronic to the KCNN3 gene that encodes for small conductance calcium-activated potassium channels type 3 (SK3). However, the functional electrophysiological effects of this variant are not known. SK channels represent a unique family of K+ channels, primarily regulated by cytosolic Ca2+ concentration, and different studies support their critical role in the regulation of atrial excitability and consequently in the development of arrhythmias like AF. Since different studies have shown that both upregulation and downregulation of SK3 channels can lead to arrhythmias by different mechanisms, an important goal is to elucidate whether the rs13376333 risk SNP is a gain-of-function (GoF) or a loss-of-function (LoF) variant. A better understanding of the functional consequences associated with these SNPs could influence clinical practice guidelines by improving genotype-based risk stratification and personalized treatment. Although research using native human atrial cardiomyocytes and animal models has provided useful insights, each model has its limitations. Therefore, there is a critical need to develop a human-derived model that represents human physiology more accurately than existing animal models. In this context, research with human induced pluripotent stem cells (hiPSC) and subsequent generation of cardiomyocytes derived from hiPSC (hiPSC-CMs) has revealed the underlying causes of various cardiovascular diseases and identified treatment opportunities that were not possible using in vitro or in vivo studies with animal models. Thus, the ability to generate atrial cardiomyocytes and atrial tissue derived from hiPSCs from human/patients with specific genetic diseases, incorporating novel genetic editing tools to generate isogenic controls and organelle-specific reporters, and 3D bioprinting of atrial tissue could be essential to study AF pathophysiological mechanisms. In this review, we will first give an overview of SK-channel function, its role in atrial fibrillation and outline pathophysiological mechanisms of KCNN3 risk SNPs. We will then highlight the advantages of using the hiPSC-CM model to investigate SNPs associated with AF, while addressing limitations and best practices for rigorous hiPSC studies.
Collapse
Affiliation(s)
- Hosna Babini
- Cellular and Regenerative Medicine Centre, BC Children’s Hospital Research Institute, Vancouver, BC, Canada
- Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, BC, Canada
| | - Verónica Jiménez-Sábado
- Cellular and Regenerative Medicine Centre, BC Children’s Hospital Research Institute, Vancouver, BC, Canada
- Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, BC, Canada
- IIB SANT PAU, and CIBERCV, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain
| | - Ekaterina Stogova
- Cellular and Regenerative Medicine Centre, BC Children’s Hospital Research Institute, Vancouver, BC, Canada
- Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, BC, Canada
| | - Alia Arslanova
- Cellular and Regenerative Medicine Centre, BC Children’s Hospital Research Institute, Vancouver, BC, Canada
- Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, BC, Canada
| | - Mariam Butt
- Cellular and Regenerative Medicine Centre, BC Children’s Hospital Research Institute, Vancouver, BC, Canada
- Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, BC, Canada
| | - Saif Dababneh
- Cellular and Regenerative Medicine Centre, BC Children’s Hospital Research Institute, Vancouver, BC, Canada
- Department of Cellular and Physiological Sciences, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Parisa Asghari
- Department of Cellular and Physiological Sciences, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Edwin D. W. Moore
- Department of Cellular and Physiological Sciences, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Thomas W. Claydon
- Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, BC, Canada
| | | | - Leif Hove-Madsen
- IIB SANT PAU, and CIBERCV, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain
- Instituto de Investigaciones Biomédicas de Barcelona (IIBB-CSIC), Barcelona, Spain
| | - Glen F. Tibbits
- Cellular and Regenerative Medicine Centre, BC Children’s Hospital Research Institute, Vancouver, BC, Canada
- Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, BC, Canada
- Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, BC, Canada
- School of Biomedical Engineering, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
17
|
Holst AG, Tomcsányi J, Vestbjerg B, Grunnet M, Sørensen US, Diness JG, Bentzen BH, Edvardsson N, Hohnloser SH, Bhatt DL, Dorian P. Inhibition of the K Ca2 potassium channel in atrial fibrillation: a randomized phase 2 trial. Nat Med 2024; 30:106-111. [PMID: 38092897 PMCID: PMC10803288 DOI: 10.1038/s41591-023-02679-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 11/01/2023] [Indexed: 01/24/2024]
Abstract
Existing antiarrhythmic drugs to treat atrial fibrillation (AF) have incomplete efficacy, contraindications and adverse effects, including proarrhythmia. AP30663, an inhibitor of the KCa2 channel, has demonstrated AF efficacy in animals; however, its efficacy in humans with AF is unknown. Here we conducted a phase 2 trial in which patients with a current episode of AF lasting for 7 days or less were randomized to receive an intravenous infusion of 3 or 5 mg kg-1 AP30663 or placebo. The trial was prematurely discontinued because of slow enrollment during the coronavirus disease 2019 pandemic. The primary endpoint of the trial was cardioversion from AF to sinus rhythm within 90 min from the start of the infusion, analyzed with Bayesian statistics. Among 59 patients randomized and included in the efficacy analyses, the primary endpoint occurred in 42% (5 of 12), 55% (12 of 22) and 0% (0 of 25) of patients treated with 3 mg kg-1 AP30663, 5 mg kg-1 AP30663 or placebo, respectively. Both doses demonstrated more than 99.9% probability of superiority over placebo, surpassing the prespecified 95% threshold. The mean time to cardioversion, a secondary endpoint, was 47 (s.d. = 23) and 41 (s.d. = 24) minutes for 3 mg kg-1 and 5 mg kg-1 AP30663, respectively. AP30663 caused a transient increase in the QTcF interval, with a maximum mean effect of 37.7 ms for the 5 mg kg-1 dose. For both dose groups, no ventricular arrhythmias occurred and adverse event rates were comparable to the placebo group. AP30663 demonstrated AF cardioversion efficacy in patients with recent-onset AF episodes. KCa2 channel inhibition may be an attractive mechanism for rhythm control of AF that should be studied further in randomized trials. ClinicalTrials.gov registration: NCT04571385 .
Collapse
Affiliation(s)
| | - János Tomcsányi
- Cardiology Department, St. John of God Hospital, Budapest, Hungary
| | | | | | | | | | | | - Nils Edvardsson
- Acesion Pharma, Copenhagen, Denmark
- Department of Molecular and Clinical Medicine/Cardiology, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | | | - Deepak L Bhatt
- Mount Sinai Heart, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Paul Dorian
- Department of Medicine, Division of Cardiology, University of Toronto, St. Michael's Hospital, Toronto, Ontario, Canada
| |
Collapse
|
18
|
Ni H, Morotti S, Zhang X, Dobrev D, Grandi E. Integrative human atrial modelling unravels interactive protein kinase A and Ca2+/calmodulin-dependent protein kinase II signalling as key determinants of atrial arrhythmogenesis. Cardiovasc Res 2023; 119:2294-2311. [PMID: 37523735 PMCID: PMC11318383 DOI: 10.1093/cvr/cvad118] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 05/18/2023] [Accepted: 06/05/2023] [Indexed: 08/02/2023] Open
Abstract
AIMS Atrial fibrillation (AF), the most prevalent clinical arrhythmia, is associated with atrial remodelling manifesting as acute and chronic alterations in expression, function, and regulation of atrial electrophysiological and Ca2+-handling processes. These AF-induced modifications crosstalk and propagate across spatial scales creating a complex pathophysiological network, which renders AF resistant to existing pharmacotherapies that predominantly target transmembrane ion channels. Developing innovative therapeutic strategies requires a systems approach to disentangle quantitatively the pro-arrhythmic contributions of individual AF-induced alterations. METHODS AND RESULTS Here, we built a novel computational framework for simulating electrophysiology and Ca2+-handling in human atrial cardiomyocytes and tissues, and their regulation by key upstream signalling pathways [i.e. protein kinase A (PKA), and Ca2+/calmodulin-dependent protein kinase II (CaMKII)] involved in AF-pathogenesis. Populations of atrial cardiomyocyte models were constructed to determine the influence of subcellular ionic processes, signalling components, and regulatory networks on atrial arrhythmogenesis. Our results reveal a novel synergistic crosstalk between PKA and CaMKII that promotes atrial cardiomyocyte electrical instability and arrhythmogenic triggered activity. Simulations of heterogeneous tissue demonstrate that this cellular triggered activity is further amplified by CaMKII- and PKA-dependent alterations of tissue properties, further exacerbating atrial arrhythmogenesis. CONCLUSIONS Our analysis reveals potential mechanisms by which the stress-associated adaptive changes turn into maladaptive pro-arrhythmic triggers at the cellular and tissue levels and identifies potential anti-AF targets. Collectively, our integrative approach is powerful and instrumental to assemble and reconcile existing knowledge into a systems network for identifying novel anti-AF targets and innovative approaches moving beyond the traditional ion channel-based strategy.
Collapse
Affiliation(s)
- Haibo Ni
- Department of Pharmacology, University of California Davis,
451 Health Sciences Drive, Davis, CA 95616, USA
| | - Stefano Morotti
- Department of Pharmacology, University of California Davis,
451 Health Sciences Drive, Davis, CA 95616, USA
| | - Xianwei Zhang
- Department of Pharmacology, University of California Davis,
451 Health Sciences Drive, Davis, CA 95616, USA
| | - Dobromir Dobrev
- Institute of Pharmacology, Faculty of Medicine, University
Duisburg-Essen, Essen, Germany
- Department of Medicine and Research Center, Montreal Heart Institute and
Université de Montréal, Montréal, Canada
- Department of Molecular Physiology and Biophysics, Baylor College of
Medicine, Houston, TX, USA
| | - Eleonora Grandi
- Department of Pharmacology, University of California Davis,
451 Health Sciences Drive, Davis, CA 95616, USA
| |
Collapse
|
19
|
Giommi A, Gurgel ARB, Smith GL, Workman AJ. Does the small conductance Ca 2+-activated K + current I SK flow under physiological conditions in rabbit and human atrial isolated cardiomyocytes? J Mol Cell Cardiol 2023; 183:70-80. [PMID: 37704101 DOI: 10.1016/j.yjmcc.2023.09.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 08/16/2023] [Accepted: 09/02/2023] [Indexed: 09/15/2023]
Abstract
BACKGROUND The small conductance Ca2+-activated K+ current (ISK) is a potential therapeutic target for treating atrial fibrillation. AIM To clarify, in rabbit and human atrial cardiomyocytes, the intracellular [Ca2+]-sensitivity of ISK, and its contribution to action potential (AP) repolarisation, under physiological conditions. METHODS Whole-cell-patch clamp, fluorescence microscopy: to record ion currents, APs and [Ca2+]i; 35-37°C. RESULTS In rabbit atrial myocytes, 0.5 mM Ba2+ (positive control) significantly decreased whole-cell current, from -12.8 to -4.9 pA/pF (P < 0.05, n = 17 cells, 8 rabbits). By contrast, the ISK blocker apamin (100 nM) had no effect on whole-cell current, at any set [Ca2+]i (∼100-450 nM). The ISK blocker ICAGEN (1 μM: ≥2 x IC50) also had no effect on current over this [Ca2+]i range. In human atrial myocytes, neither 1 μM ICAGEN (at [Ca2+]i ∼ 100-450 nM), nor 100 nM apamin ([Ca2+]i ∼ 250 nM) affected whole-cell current (5-10 cells, 3-5 patients/group). APs were significantly prolonged (at APD30 and APD70) by 2 mM 4-aminopyridine (positive control) in rabbit atrial myocytes, but 1 μM ICAGEN had no effect on APDs, versus either pre-ICAGEN or time-matched controls. High concentration (10 μM) ICAGEN (potentially ISK-non-selective) moderately increased APD70 and APD90, by 5 and 26 ms, respectively. In human atrial myocytes, 1 μM ICAGEN had no effect on APD30-90, whether stimulated at 1, 2 or 3 Hz (6-9 cells, 2-4 patients/rate). CONCLUSION ISK does not flow in human or rabbit atrial cardiomyocytes with [Ca2+]i set within the global average diastolic-systolic range, nor during APs stimulated at physiological or supra-physiological (≤3 Hz) rates.
Collapse
Affiliation(s)
- Alessandro Giommi
- School of Cardiovascular and Metabolic Health, University of Glasgow, Glasgow, UK
| | - Aline R B Gurgel
- School of Cardiovascular and Metabolic Health, University of Glasgow, Glasgow, UK
| | - Godfrey L Smith
- School of Cardiovascular and Metabolic Health, University of Glasgow, Glasgow, UK
| | - Antony J Workman
- School of Cardiovascular and Metabolic Health, University of Glasgow, Glasgow, UK.
| |
Collapse
|
20
|
Terentyev D, Belevych AE, Choi BR, Hamilton S. To block or not to block: Targeting SK channels in diseased hearts. J Mol Cell Cardiol 2023; 183:98-99. [PMID: 37742783 DOI: 10.1016/j.yjmcc.2023.09.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Accepted: 09/19/2023] [Indexed: 09/26/2023]
Affiliation(s)
- Dmitry Terentyev
- Department of Physiology and Cell Biology, Davis Heart and Lung Research Institute, Wexner Medical Center, The Ohio State University, Columbus, OH, United States of America.
| | - Andriy E Belevych
- Department of Physiology and Cell Biology, Davis Heart and Lung Research Institute, Wexner Medical Center, The Ohio State University, Columbus, OH, United States of America
| | - Bum-Rak Choi
- Cardiovascular Research Center, Cardiovascular Institute, Rhode Island Hospital and Alpert Medical School of Brown University, Providence, RI, United States of America
| | - Shanna Hamilton
- Department of Cellular and Molecular Medicine, University of Arizona, Tucson, AZ, United States of America
| |
Collapse
|
21
|
Herrera NT, Zhang X, Ni H, Maleckar MM, Heijman J, Dobrev D, Grandi E, Morotti S. Dual effects of the small-conductance Ca 2+-activated K + current on human atrial electrophysiology and Ca 2+-driven arrhythmogenesis: an in silico study. Am J Physiol Heart Circ Physiol 2023; 325:H896-H908. [PMID: 37624096 PMCID: PMC10659325 DOI: 10.1152/ajpheart.00362.2023] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 08/11/2023] [Accepted: 08/11/2023] [Indexed: 08/26/2023]
Abstract
By sensing changes in intracellular Ca2+, small-conductance Ca2+-activated K+ (SK) channels dynamically regulate the dynamics of the cardiac action potential (AP) on a beat-to-beat basis. Given their predominance in atria versus ventricles, SK channels are considered a promising atrial-selective pharmacological target against atrial fibrillation (AF), the most common cardiac arrhythmia. However, the precise contribution of SK current (ISK) to atrial arrhythmogenesis is poorly understood, and may potentially involve different mechanisms that depend on species, heart rates, and degree of AF-induced atrial remodeling. Both reduced and enhanced ISK have been linked to AF. Similarly, both SK channel up- and downregulation have been reported in chronic AF (cAF) versus normal sinus rhythm (nSR) patient samples. Here, we use our multiscale modeling framework to obtain mechanistic insights into the contribution of ISK in human atrial cardiomyocyte electrophysiology. We simulate several protocols to quantify how ISK modulation affects the regulation of AP duration (APD), Ca2+ transient, refractoriness, and occurrence of alternans and delayed afterdepolarizations (DADs). Our simulations show that ISK activation shortens the APD and atrial effective refractory period, limits Ca2+ cycling, and slightly increases the propensity for alternans in both nSR and cAF conditions. We also show that increasing ISK counteracts DAD development by enhancing the repolarization force that opposes the Ca2+-dependent depolarization. Taken together, our results suggest that increasing ISK in human atrial cardiomyocytes could promote reentry while protecting against triggered activity. Depending on the leading arrhythmogenic mechanism, ISK inhibition may thus be a beneficial or detrimental anti-AF strategy.NEW & NOTEWORTHY Using our established framework for human atrial myocyte simulations, we investigated the role of the small-conductance Ca2+-activated K+ current (ISK) in the regulation of cell function and the development of Ca2+-driven arrhythmias. We found that ISK inhibition, a promising atrial-selective pharmacological strategy against atrial fibrillation, counteracts the reentry-promoting abbreviation of atrial refractoriness, but renders human atrial myocytes more vulnerable to delayed afterdepolarizations, thus potentially increasing the propensity for ectopic (triggered) activity.
Collapse
Affiliation(s)
- Nathaniel T Herrera
- Department of Pharmacology, University of California Davis, Davis, California, United States
| | - Xianwei Zhang
- Department of Pharmacology, University of California Davis, Davis, California, United States
| | - Haibo Ni
- Department of Pharmacology, University of California Davis, Davis, California, United States
| | - Mary M Maleckar
- Department of Computational Physiology, Simula Research Laboratory, Oslo, Norway
| | - Jordi Heijman
- Department of Cardiology, Faculty of Health, Medicine, and Life Sciences, Cardiovascular Research Institute Maastricht, Maastricht University, Maastricht, The Netherlands
| | - Dobromir Dobrev
- Faculty of Medicine, West German Heart and Vascular Center, Institute of Pharmacology, University Duisburg-Essen, Essen, Germany
- Department of Medicine, Montreal Heart Institute and Université de Montréal, Montreal, Quebec, Canada
- Department of Integrative Physiology, Baylor College of Medicine, Houston, Texas, United States
| | - Eleonora Grandi
- Department of Pharmacology, University of California Davis, Davis, California, United States
| | - Stefano Morotti
- Department of Pharmacology, University of California Davis, Davis, California, United States
| |
Collapse
|
22
|
Dupuy M, Gueguinou M, Potier-Cartereau M, Lézot F, Papin M, Chantôme A, Rédini F, Vandier C, Verrecchia F. SK Ca- and Kv1-type potassium channels and cancer: Promising therapeutic targets? Biochem Pharmacol 2023; 216:115774. [PMID: 37678626 DOI: 10.1016/j.bcp.2023.115774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 08/29/2023] [Accepted: 08/30/2023] [Indexed: 09/09/2023]
Abstract
Ion channels are transmembrane structures that allow the passage of ions across cell membranes such as the plasma membrane or the membranes of various organelles like the nucleus, endoplasmic reticulum, Golgi apparatus or mitochondria. Aberrant expression of various ion channels has been demonstrated in several tumor cells, leading to the promotion of key functions in tumor development, such as cell proliferation, resistance to apoptosis, angiogenesis, invasion and metastasis. The link between ion channels and these key biological functions that promote tumor development has led to the classification of cancers as oncochannelopathies. Among all ion channels, the most varied and numerous, forming the largest family, are the potassium channels, with over 70 genes encoding them in humans. In this context, this review will provide a non-exhaustive overview of the role of plasma membrane potassium channels in cancer, describing 1) the nomenclature and structure of potassium channels, 2) the role of these channels in the control of biological functions that promotes tumor development such as proliferation, migration and cell death, and 3) the role of two particular classes of potassium channels, the SKCa- and Kv1- type potassium channels in cancer progression.
Collapse
Affiliation(s)
- Maryne Dupuy
- Nantes Université, Inserm UMR 1307, CNRS UMR 6075, Université d'Angers, CRCI2NA, F-44000 Nantes, France.
| | | | | | - Frédéric Lézot
- Sorbonne University, INSERM UMR933, Hôpital Trousseau (AP-HP), Paris F-75012, France
| | - Marion Papin
- N2C UMR 1069, University of Tours, INSERM, Tours, France
| | | | - Françoise Rédini
- Nantes Université, Inserm UMR 1307, CNRS UMR 6075, Université d'Angers, CRCI2NA, F-44000 Nantes, France
| | | | - Franck Verrecchia
- Nantes Université, Inserm UMR 1307, CNRS UMR 6075, Université d'Angers, CRCI2NA, F-44000 Nantes, France.
| |
Collapse
|
23
|
Abstract
Cardiac arrhythmias remain a common cause of death and disability. Antiarrhythmic drugs (AADs) and antiarrhythmic agents remain a cornerstone of current cardiac arrhythmia management, despite moderate efficacy and the potential for significant adverse proarrhythmic effects. Due to conceptual, regulatory and financial considerations, the number of novel antiarrhythmic targets and agents in the development pipeline has decreased substantially during the last few decades. However, several promising candidates remain and there are exciting developments in repurposing and reformulating already existing drugs for indications related to cardiac arrhythmias. This review discusses the key conceptual considerations for the development of new antiarrhythmic agents, summarizes new compounds and formulations currently in clinical development for rhythm control of atrial fibrillation, and highlights the potential for drug repurposing. Finally, future directions in AAD development are discussed. Together with an ever-increasing understanding of the molecular mechanisms underlying cardiac arrhythmias, these components support a cautiously optimistic outlook towards improved pharmacological treatment opportunities for patients suffering from cardiac arrhythmias.
Collapse
Affiliation(s)
- Arnela Saljic
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Institute of Pharmacology, West German Heart and Vascular Center, University Duisburg-Essen, Essen, Germany
| | - Jordi Heijman
- Department of Cardiology, Maastricht University Medical Centre and Cardiovascular Research Institute Maastricht, Maastricht University, Maastricht, The Netherlands
| | - Dobromir Dobrev
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.
- Montréal Heart Institute and University de Montréal, Medicine and Research Center, Montréal, Canada.
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, USA.
- , Hufelandstrasse 55, 45122, Essen, Germany.
| |
Collapse
|
24
|
Zhang XD, Chiamvimonvat N. Targeting Small-Conductance Calcium-Activated Potassium Channels in Atrial Fibrillation: Therapeutic Opportunities. Circ Res 2023; 132:1104-1106. [PMID: 37104564 PMCID: PMC10155264 DOI: 10.1161/circresaha.123.322777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 04/29/2023]
Affiliation(s)
- Xiao-Dong Zhang
- Division of Cardiovascular Medicine, Department of Internal Medicine (X.-D.Z., N.C.), School of Medicine, University of California, Davis
| | - Nipavan Chiamvimonvat
- Division of Cardiovascular Medicine, Department of Internal Medicine (X.-D.Z., N.C.), School of Medicine, University of California, Davis
- Department of Pharmacology (N.C.), School of Medicine, University of California, Davis
- Department of Veterans Affairs, Northern California Health Care System, Mather (N.C.)
| |
Collapse
|