1
|
Sun J, Ibragimov E, Luigi-Sierra MG, Fredholm M, Karlskov-Mortensen P. Investigation of the effect of missense mutations in AHR and DNAH11 on feed conversion ratio and average daily residual feed intake in Duroc, Landrace and Yorkshire pigs. Anim Genet 2025; 56:e13492. [PMID: 39561984 DOI: 10.1111/age.13492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 11/06/2024] [Accepted: 11/07/2024] [Indexed: 11/21/2024]
Abstract
Feed efficiency (FE) in pigs is an important factor in the profitability of pig farming operations. It refers to the ability of a pig to convert the feed it consumes into body weight. We used two metrics to measure FE: feed conversion ratio and average daily residual feed intake. A previous genome-wide association study and transcriptome study in crossbred pigs identified two QTL regions on SSC9 associated with residual feed intake and pointed out two candidate genes of interest: (a) the gene encoding the Aryl Hydrocarbon Receptor gene (AHR) transcription factor; and (b) the Dynein, Axonemal, Heavy Polypeptide 11 gene (DNAH11). The previous study identified missense mutations in both genes leading to a conservative substitution of glycine to cysteine in AHR (AHR_rs339939442) and two non-conservative substitutions in DNAH11, where arginine is replaced by threonine (DNAH11_rs325475644) and alanine is replaced by threonine (DNAH11_rs346074031). We have now genotyped the missense mutations in independent cohorts of 107 Duroc, 155 Landrace and 160 Yorkshire pigs to substantiate further if these variants directly impact FE-related phenotypes. We verified that allele T of AHR_rs339939442 in AHR improves FE in Yorkshire pigs. Genotype GG of AHR_rs339939442 was fixed in Duroc pigs. We also confirmed that the variants rs325475644 and rs346074031 in DNAH11 did not affect FE. The findings contribute valuable insights into the genetic mechanisms governing FE in pigs, potentially offering contributions for future enhancements of FE.
Collapse
Affiliation(s)
- Jiahong Sun
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg C, Denmark
| | - Emil Ibragimov
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg C, Denmark
| | - Maria Gracia Luigi-Sierra
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg C, Denmark
| | - Merete Fredholm
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg C, Denmark
| | - Peter Karlskov-Mortensen
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg C, Denmark
| |
Collapse
|
2
|
Silva RCMC. The dichotomic role of cytokines in aging. Biogerontology 2024; 26:17. [PMID: 39621124 DOI: 10.1007/s10522-024-10152-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Accepted: 10/30/2024] [Indexed: 12/11/2024]
Abstract
The chronic inflammation present in aged individuals is generally depicted as a detrimental player for longevity. Here, it is discussed several beneficial effects associated with the cytokines that are chronically elevated in inflammaging. These cytokines, such as IL-1β, type I interferons, IL-6 and TNF positively regulate macroautophagy, mitochondrial function, anti-tumor immune responses and skeletal muscle biogenesis, possibly contributing to longevity. On the other side, the detrimental and antagonistic role of these cytokines including the induction of sarcopenia, tissue damage and promotion of tumorigenesis are also discussed, underscoring the dichotomy associated with inflammaging and its players. In addition, it is discussed the role of the anti-inflammatory cytokine IL-10 and other cytokines that affect aging in a more linear way, such as IL-11, which promotes senescence, and IL-4 and IL-15, which promotes longevity. It is also discussed more specific regulators of aging that are downstream cytokines-mediated signaling.
Collapse
|
3
|
Figuer A, Santos FM, Ciordia S, Valera G, Martín-Jouve B, Hernández-Fonseca JP, Bodega G, Ceprián N, Ramírez R, Carracedo J, Alique M. Proteomic analysis of endothelial cells and extracellular vesicles in response to indoxyl sulfate: Mechanisms of endothelial dysfunction in chronic kidney disease. Life Sci 2024; 351:122810. [PMID: 38871114 DOI: 10.1016/j.lfs.2024.122810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 05/19/2024] [Accepted: 06/04/2024] [Indexed: 06/15/2024]
Abstract
AIMS Cardiovascular pathology is the main cause of death in chronic kidney disease (CKD) patients. CKD is associated with the accumulation of uremic toxins in the bloodstream, and indoxyl sulfate (IS) is one of the most abundant uremic toxins found in the blood of CKD patients. We conducted an in vitro study to assess the mechanisms underlying the IS-induced endothelial dysfunction that could lead to cardiovascular diseases. We also studied their extracellular vesicles (EVs) owing to their capacity to act as messengers that transmit signals through their cargo. MAIN METHODS EVs were characterized by nanoparticle tracking analysis, transmission electron microscopy, flow cytometry, and tetraspanin expression. Cell lysates and isolated EVs were analyzed using liquid chromatography coupled with mass spectrometry, followed by Gene Set Enrichment Analysis to identify the altered pathways. KEY FINDINGS Proteomic analysis of endothelial cells revealed that IS causes an increase in proteins related to adipogenesis, inflammation, and xenobiotic metabolism and a decrease in proliferation. Extracellular matrix elements, as well as proteins associated with myogenesis, response to UV irradiation, and inflammation, were found to be downregulated in IS-treated EVs. Fatty acid metabolism was also found to be increased along with adipogenesis and inflammation observed in cells. SIGNIFICANCE The treatment of endothelial cells with IS increased the expression of proteins related to adipogenesis, inflammation, and xenobiotic metabolism and was less associated with proliferation. Furthermore, EVs from cells treated with IS may mediate endothelial dysfunction, since they present fewer extracellular matrix elements, myogenesis, inflammatory factors, and proteins downregulated in response to UV radiation.
Collapse
Affiliation(s)
- Andrea Figuer
- Departamento de Biología de Sistemas, Universidad de Alcalá, 28871 Alcala de Henares, Madrid, Spain; Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), 28034 Madrid, Spain
| | - Fátima M Santos
- Cellular Biology in Renal Diseases Laboratory, IIS-Fundación Jiménez Díaz-Universidad Autónoma Madrid, 28040 Madrid, Spain; Functional Proteomics Laboratory, Centro Nacional de Biotecnología, CSIC, Calle Darwin 3, Campus de Cantoblanco, 28049 Madrid, Spain
| | - Sergio Ciordia
- Functional Proteomics Laboratory, Centro Nacional de Biotecnología, CSIC, Calle Darwin 3, Campus de Cantoblanco, 28049 Madrid, Spain
| | - Gemma Valera
- Departamento de Genética, Fisiología y Microbiología, Universidad Complutense, 28040 Madrid, Spain; Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), 28040 Madrid, Spain
| | - Beatriz Martín-Jouve
- Electron Microscopy Unit, Centro Nacional de Biotecnología, CSIC, Calle Darwin 3, Campus de Cantoblanco, 28049 Madrid, Spain
| | - Juan Pablo Hernández-Fonseca
- Electron Microscopy Unit, Centro Nacional de Biotecnología, CSIC, Calle Darwin 3, Campus de Cantoblanco, 28049 Madrid, Spain
| | - Guillermo Bodega
- Departamento de Biomedicina y Biotecnología, Universidad de Alcalá, 28871 Alcala de Henares, Madrid, Spain
| | - Noemí Ceprián
- Departamento de Genética, Fisiología y Microbiología, Universidad Complutense, 28040 Madrid, Spain
| | - Rafael Ramírez
- Departamento de Biología de Sistemas, Universidad de Alcalá, 28871 Alcala de Henares, Madrid, Spain; Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), 28034 Madrid, Spain
| | - Julia Carracedo
- Departamento de Genética, Fisiología y Microbiología, Universidad Complutense, 28040 Madrid, Spain; Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), 28040 Madrid, Spain.
| | - Matilde Alique
- Departamento de Biología de Sistemas, Universidad de Alcalá, 28871 Alcala de Henares, Madrid, Spain; Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), 28034 Madrid, Spain.
| |
Collapse
|
4
|
Miao H, Liu F, Wang YN, Yu XY, Zhuang S, Guo Y, Vaziri ND, Ma SX, Su W, Shang YQ, Gao M, Zhang JH, Zhang L, Zhao YY, Cao G. Targeting Lactobacillus johnsonii to reverse chronic kidney disease. Signal Transduct Target Ther 2024; 9:195. [PMID: 39098923 PMCID: PMC11298530 DOI: 10.1038/s41392-024-01913-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 06/10/2024] [Accepted: 07/04/2024] [Indexed: 08/06/2024] Open
Abstract
Accumulated evidence suggested that gut microbial dysbiosis interplayed with progressive chronic kidney disease (CKD). However, no available therapy is effective in suppressing progressive CKD. Here, using microbiomics in 480 participants including healthy controls and patients with stage 1-5 CKD, we identified an elongation taxonomic chain Bacilli-Lactobacillales-Lactobacillaceae-Lactobacillus-Lactobacillus johnsonii correlated with patients with CKD progression, whose abundance strongly correlated with clinical kidney markers. L. johnsonii abundance reduced with progressive CKD in rats with adenine-induced CKD. L. johnsonii supplementation ameliorated kidney lesion. Serum indole-3-aldehyde (IAld), whose level strongly negatively correlated with creatinine level in CKD rats, decreased in serum of rats induced using unilateral ureteral obstruction (UUO) and 5/6 nephrectomy (NX) as well as late CKD patients. Treatment with IAld dampened kidney lesion through suppressing aryl hydrocarbon receptor (AHR) signal in rats with CKD or UUO, and in cultured 1-hydroxypyrene-induced HK-2 cells. Renoprotective effect of IAld was partially diminished in AHR deficiency mice and HK-2 cells. Our further data showed that treatment with L. johnsonii attenuated kidney lesion by suppressing AHR signal via increasing serum IAld level. Taken together, targeting L. johnsonii might reverse patients with CKD. This study provides a deeper understanding of how microbial-produced tryptophan metabolism affects host disease and discovers potential pathways for prophylactic and therapeutic treatments for CKD patients.
Collapse
Affiliation(s)
- Hua Miao
- School of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Fei Liu
- State Key Laboratory of Quality Research in Chinese Medicines, Macau University of Science and Technology, Macau, China.
- State Key Laboratory of Kidney Diseases, First Medical Center of Chinese PLA General Hospital, Beijing, China.
- Department of Urology, Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| | - Yan-Ni Wang
- School of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Xiao-Yong Yu
- Department of Nephrology, Shaanxi Traditional Chinese Medicine Hospital, Xi'an, Shaanxi, China
| | - Shougang Zhuang
- Department of Medicine, Rhode Island Hospital and Alpert Medical School, Brown University, Providence, RI, USA
| | - Yan Guo
- Department of Public Health and Sciences, University of Miami, Miami, FL, USA
| | | | - Shi-Xing Ma
- Department of Nephrology, Baoji Central Hospital, Baoji, Shaanxi, China
| | - Wei Su
- Department of Nephrology, Baoji Central Hospital, Baoji, Shaanxi, China
| | - You-Quan Shang
- Department of Nephrology, Baoji Central Hospital, Baoji, Shaanxi, China
| | - Ming Gao
- Department of Nephrology, Xi'an Peoples Hospital, Xi'an, Shaanxi, China
| | - Jin-Hua Zhang
- Department of Nephrology, Xi'an Peoples Hospital, Xi'an, Shaanxi, China
| | - Li Zhang
- Department of Nephrology, Xi'an Peoples Hospital, Xi'an, Shaanxi, China
| | - Ying-Yong Zhao
- School of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China.
- State Key Laboratory of Kidney Diseases, First Medical Center of Chinese PLA General Hospital, Beijing, China.
| | - Gang Cao
- School of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China.
| |
Collapse
|
5
|
Li B, Zhang Q, Cheng J, Feng Y, Jiang L, Zhao X, Lv Y, Yang K, Shi J, Wei W, Guo P, Wang J, Cao M, Ding W, Wang J, Su D, Zhou Y, Gao R. A Nanocapsule System Combats Aging by Inhibiting Age-Related Angiogenesis Deficiency and Glucolipid Metabolism Disorders. ACS NANO 2024. [PMID: 39086076 DOI: 10.1021/acsnano.4c02269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/02/2024]
Abstract
Insufficient angiogenic stimulation and dysregulated glycolipid metabolism in senescent vascular endothelial cells (VECs) constitute crucial features of vascular aging. Concomitantly, the generation of excess senescence-associated secretory phenotype (SASP) and active immune-inflammatory responses propagates within injured vessels, tissues, and organs. Until now, targeted therapies that efficiently rectify phenotypic abnormalities in senescent VECs have still been lacking. Here, we constructed a Pd/hCeO2-BMS309403@platelet membrane (PCBP) nanoheterostructured capsule system loaded with fatty acid-binding protein 4 (FABP4) inhibitors and modified with platelet membranes and investigated its therapeutic role in aged mice. PCBP showed significant maintenance in aged organs and demonstrated excellent biocompatibility. Through cyclic tail vein administration, PCBP extended the lifespan and steadily ameliorated abnormal phenotypes in aged mice, including SASP production, immune and inflammatory status, and age-related metabolic disorders. In senescent ECs, PCBP mediated the activation of vascular endothelial growth factor (VEGF) signaling and glycolysis and inhibition of FABP4 by inducing the synthesis of hypoxia-inducible factor-1α, thereby reawakening neovascularization and restoring glycolipid metabolic homeostasis. In conclusion, the PCBP nanocapsule system provides a promising avenue for interventions against aging-induced dysfunction.
Collapse
Affiliation(s)
- Bo Li
- Department of Radiology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, No. 160, Pujian Road, Pudong District, Shanghai 200127, China
- Key Laboratory of Anesthesiology (Shanghai Jiao Tong University), Ministry of Education, No. 160, Pujian Road, Pudong District, Shanghai 200127, China
| | - Qiang Zhang
- Institute of Diagnostic and Interventional Radiology, Shanghai Sixth People's Hospital, Shanghai Jiao Tong University School of Medicine, No. 600, Yishan Road, Xuhui District, Shanghai 200233, China
| | - Jiahui Cheng
- Department of Radiology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, No. 160, Pujian Road, Pudong District, Shanghai 200127, China
| | - Yanfei Feng
- Department of Vascular Surgery, The Second Affiliated Hospital, Zhejiang University, No. 88, Jiefang Road, Hangzhou 310009, China
| | - Lixian Jiang
- Department of Ultrasound in Medicine, Shanghai Sixth People's Hospital, Shanghai Jiao Tong University School of Medicine, No. 600, Yishan Road, Xuhui District, Shanghai 200233, China
| | - Xinxin Zhao
- Department of Radiology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, No. 160, Pujian Road, Pudong District, Shanghai 200127, China
| | - Yang Lv
- Department of Cardiology, Shanghai Fifth People's Hospital, Fudan University, No. 801, Heqing Road, Minhang District, Shanghai 200240, China
| | - Kun Yang
- Department of Cardiac Surgery, The Second Affiliated Hospital, Zhejiang University, No. 88, Jiefang Road, Hangzhou 310009, China
| | - Jiaran Shi
- Department of Cardiology, Lihuili Hospital Facilitated to Ningbo University, Ningbo 315048, China
| | - Wei Wei
- Department of Cardiology, Shanghai Chest Hospital, Shanghai Jiao Tong University, No. 241, Huaihaixi Road, Xuhui District, Shanghai 200030, China
| | - Peng Guo
- Department of Radiology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, No. 160, Pujian Road, Pudong District, Shanghai 200127, China
| | - Jun Wang
- Department of Interventional Oncology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, No. 160, Pujian Road, Pudong District, Shanghai 200127, China
| | - Mengqiu Cao
- Department of Radiology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, No. 160, Pujian Road, Pudong District, Shanghai 200127, China
| | - Weina Ding
- Department of Radiology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, No. 160, Pujian Road, Pudong District, Shanghai 200127, China
| | - Ji Wang
- Department of Radiology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, No. 160, Pujian Road, Pudong District, Shanghai 200127, China
| | - Diansan Su
- Key Laboratory of Anesthesiology (Shanghai Jiao Tong University), Ministry of Education, No. 160, Pujian Road, Pudong District, Shanghai 200127, China
- Department of Anesthesiology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, No. 160, Pujian Road, Pudong District, Shanghai 200127, China
| | - Yan Zhou
- Department of Radiology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, No. 160, Pujian Road, Pudong District, Shanghai 200127, China
- College of Health Science and Technology, Shanghai Jiao Tong University School of Medicine, No. 227, Chongqingnan Road, Huangpu District, Shanghai 200025, China
| | - Rifeng Gao
- Department of Cardiac Surgery, The Second Affiliated Hospital, Zhejiang University, No. 88, Jiefang Road, Hangzhou 310009, China
| |
Collapse
|
6
|
Thome T, Vugman NA, Stone LE, Wimberly K, Scali ST, Ryan TE. A tryptophan-derived uremic metabolite/Ahr/Pdk4 axis governs skeletal muscle mitochondrial energetics in chronic kidney disease. JCI Insight 2024; 9:e178372. [PMID: 38652558 PMCID: PMC11141944 DOI: 10.1172/jci.insight.178372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 04/12/2024] [Indexed: 04/25/2024] Open
Abstract
Chronic kidney disease (CKD) causes accumulation of uremic metabolites that negatively affect skeletal muscle. Tryptophan-derived uremic metabolites are agonists of the aryl hydrocarbon receptor (AHR), which has been shown to be activated in CKD. This study investigated the role of the AHR in skeletal muscle pathology of CKD. Compared with controls with normal kidney function, AHR-dependent gene expression (CYP1A1 and CYP1B1) was significantly upregulated in skeletal muscle of patients with CKD, and the magnitude of AHR activation was inversely correlated with mitochondrial respiration. In mice with CKD, muscle mitochondrial oxidative phosphorylation (OXPHOS) was markedly impaired and strongly correlated with the serum level of tryptophan-derived uremic metabolites and AHR activation. Muscle-specific deletion of the AHR substantially improved mitochondrial OXPHOS in male mice with the greatest uremic toxicity (CKD + probenecid) and abolished the relationship between uremic metabolites and OXPHOS. The uremic metabolite/AHR/mitochondrial axis in skeletal muscle was verified using muscle-specific AHR knockdown in C57BL/6J mice harboring a high-affinity AHR allele, as well as ectopic viral expression of constitutively active mutant AHR in mice with normal renal function. Notably, OXPHOS changes in AHRmKO mice were present only when mitochondria were fueled by carbohydrates. Further analyses revealed that AHR activation in mice led to significantly increased pyruvate dehydrogenase kinase 4 (Pdk4) expression and phosphorylation of pyruvate dehydrogenase enzyme. These findings establish a uremic metabolite/AHR/Pdk4 axis in skeletal muscle that governs mitochondrial deficits in carbohydrate oxidation during CKD.
Collapse
Affiliation(s)
- Trace Thome
- Department of Applied Physiology and Kinesiology and
| | | | | | - Keon Wimberly
- Department of Applied Physiology and Kinesiology and
| | - Salvatore T. Scali
- Division of Vascular Surgery and Endovascular Therapy, University of Florida, Gainesville, Florida, USA
- Malcom Randall VA Medical Center, Gainesville, Florida, USA
| | - Terence E. Ryan
- Department of Applied Physiology and Kinesiology and
- Center for Exercise Science and
- Myology Institute, University of Florida, Gainesville, Florida, USA
| |
Collapse
|
7
|
Kim K, Fazzone B, Cort TA, Kunz EM, Alvarez S, Moerschel J, Palzkill VR, Dong G, Anderson EM, O'Malley KA, Berceli SA, Ryan TE, Scali ST. Mitochondrial targeted catalase improves muscle strength following arteriovenous fistula creation in mice with chronic kidney disease. Sci Rep 2024; 14:8288. [PMID: 38594299 PMCID: PMC11004135 DOI: 10.1038/s41598-024-58805-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 04/03/2024] [Indexed: 04/11/2024] Open
Abstract
Hand dysfunction is a common observation after arteriovenous fistula (AVF) creation for hemodialysis access and has a variable clinical phenotype; however, the underlying mechanism responsible is unclear. Grip strength changes are a common metric used to assess AVF-associated hand disability but has previously been found to poorly correlate with the hemodynamic perturbations post-AVF placement implicating other tissue-level factors as drivers of hand outcomes. In this study, we sought to test if expression of a mitochondrial targeted catalase (mCAT) in skeletal muscle could reduce AVF-related limb dysfunction in mice with chronic kidney disease (CKD). Male and female C57BL/6J mice were fed an adenine-supplemented diet to induce CKD prior to placement of an AVF in the iliac vascular bundle. Adeno-associated virus was used to drive expression of either a green fluorescent protein (control) or mCAT using the muscle-specific human skeletal actin (HSA) gene promoter prior to AVF creation. As expected, the muscle-specific AAV-HSA-mCAT treatment did not impact blood urea nitrogen levels (P = 0.72), body weight (P = 0.84), or central hemodynamics including infrarenal aorta and inferior vena cava diameters (P > 0.18) or velocities (P > 0.38). Hindlimb perfusion recovery and muscle capillary densities were also unaffected by AAV-HSA-mCAT treatment. In contrast to muscle mass and myofiber size which were not different between groups, both absolute and specific muscle contractile forces measured via a nerve-mediated in-situ preparation were significantly greater in AAV-HSA-mCAT treated mice (P = 0.0012 and P = 0.0002). Morphological analysis of the post-synaptic neuromuscular junction uncovered greater acetylcholine receptor cluster areas (P = 0.0094) and lower fragmentation (P = 0.0010) in AAV-HSA-mCAT treated mice. Muscle mitochondrial oxidative phosphorylation was not different between groups, but AAV-HSA-mCAT treated mice had lower succinate-fueled mitochondrial hydrogen peroxide emission compared to AAV-HSA-GFP mice (P < 0.001). In summary, muscle-specific scavenging of mitochondrial hydrogen peroxide significantly improves neuromotor function in mice with CKD following AVF creation.
Collapse
Affiliation(s)
- Kyoungrae Kim
- Department of Applied Physiology and Kinesiology, University of Florida, 1864 Stadium Rd, Gainesville, FL, 32611, USA
| | - Brian Fazzone
- Division of Vascular Surgery and Endovascular Therapy, University of Florida, P.O. Box 100128, Gainesville, FL, 32610, USA
- Malcom Randall Veteran Affairs Medical Center, Gainesville, FL, USA
| | - Tomas A Cort
- Department of Applied Physiology and Kinesiology, University of Florida, 1864 Stadium Rd, Gainesville, FL, 32611, USA
| | - Eric M Kunz
- Department of Applied Physiology and Kinesiology, University of Florida, 1864 Stadium Rd, Gainesville, FL, 32611, USA
| | - Samuel Alvarez
- Department of Applied Physiology and Kinesiology, University of Florida, 1864 Stadium Rd, Gainesville, FL, 32611, USA
| | - Jack Moerschel
- Department of Applied Physiology and Kinesiology, University of Florida, 1864 Stadium Rd, Gainesville, FL, 32611, USA
| | - Victoria R Palzkill
- Department of Applied Physiology and Kinesiology, University of Florida, 1864 Stadium Rd, Gainesville, FL, 32611, USA
| | - Gengfu Dong
- Department of Applied Physiology and Kinesiology, University of Florida, 1864 Stadium Rd, Gainesville, FL, 32611, USA
| | - Erik M Anderson
- Division of Vascular Surgery and Endovascular Therapy, University of Florida, P.O. Box 100128, Gainesville, FL, 32610, USA
- Malcom Randall Veteran Affairs Medical Center, Gainesville, FL, USA
| | - Kerri A O'Malley
- Division of Vascular Surgery and Endovascular Therapy, University of Florida, P.O. Box 100128, Gainesville, FL, 32610, USA
- Malcom Randall Veteran Affairs Medical Center, Gainesville, FL, USA
| | - Scott A Berceli
- Division of Vascular Surgery and Endovascular Therapy, University of Florida, P.O. Box 100128, Gainesville, FL, 32610, USA
- Malcom Randall Veteran Affairs Medical Center, Gainesville, FL, USA
| | - Terence E Ryan
- Department of Applied Physiology and Kinesiology, University of Florida, 1864 Stadium Rd, Gainesville, FL, 32611, USA.
- Center for Exercise Science, University of Florida, Gainesville, FL, USA.
| | - Salvatore T Scali
- Division of Vascular Surgery and Endovascular Therapy, University of Florida, P.O. Box 100128, Gainesville, FL, 32610, USA.
- Malcom Randall Veteran Affairs Medical Center, Gainesville, FL, USA.
| |
Collapse
|
8
|
Palzkill VR, Tan J, Tice AL, Ferriera LF, Ryan TE. A 6-minute Limb Function Assessment for Therapeutic Testing in Experimental Peripheral Artery Disease Models. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.21.586197. [PMID: 38585832 PMCID: PMC10996543 DOI: 10.1101/2024.03.21.586197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/09/2024]
Abstract
Background The translation of promising therapies from pre-clinical models of hindlimb ischemia (HLI) to patients with peripheral artery disease (PAD) has been inadequate. While this failure is multifactorial, primary outcome measures in preclinical HLI models and clinical trials involving patients with PAD are not aligned well. For example, laser Doppler perfusion recovery measured under resting conditions is the most used outcome in HLI studies, whereas clinical trials involving patients with PAD primarily assess walking performance. Here, we sought to develop a 6-min limb function test for preclinical HLI models that assess muscular performance and hemodynamics congruently. Methods We developed an in situ 6-min limb function test that involves repeated isotonic (shortening) contractions performed against a submaximal load. Continuous measurement of muscle blood flow was performed using laser Doppler flowmetry. Quantification of muscle power, work, and perfusion are obtained across the test. To assess the efficacy of this test, we performed HLI via femoral artery ligation on several mouse strains: C57BL6J, BALBc/J, and MCK-PGC1α (muscle-specific overexpression of PGC1α). Additional experiments were performed using an exercise intervention (voluntary wheel running) following HLI. Results The 6-min limb function test was successful at detecting differences in limb function of C57BL6/J and BALBc/J mice subjected to HLI with effect sizes superior to laser Doppler perfusion recovery. C57BL6/J mice randomized to exercise therapy following HLI had smaller decline in muscle power, greater hyperemia, and performed more work across the 6-min limb function test compared to non-exercise controls with HLI. Mice with muscle-specific overexpression of PGC1α had no differences in perfusion recovery in resting conditions, but exhibited greater capillary density, increased muscle mass and absolute force levels, and performed more work across the 6-min limb function test compared to their wildtype littermates without the transgene. Conclusion These results demonstrate the efficacy of the 6-min limb function test to detect differences in the response to HLI across several interventions including where traditional perfusion recovery, capillary density, and muscle strength measures were unable to detect therapeutic differences.
Collapse
Affiliation(s)
- Victoria R. Palzkill
- Department of Applied Physiology and Kinesiology, The University of Florida, Gainesville, FL, USA
| | - Jianna Tan
- Department of Applied Physiology and Kinesiology, The University of Florida, Gainesville, FL, USA
| | | | - Leonardo F. Ferriera
- Department of Applied Physiology and Kinesiology, The University of Florida, Gainesville, FL, USA
- Center for Exercise Science, The University of Florida, Gainesville, FL, USA
- The Myology Institute, The University of Florida, Gainesville, FL, USA
- Department of Orthopaedic Surgery, Duke University School of Medicine, Durham, NC, USA
| | - Terence E. Ryan
- Department of Applied Physiology and Kinesiology, The University of Florida, Gainesville, FL, USA
- Center for Exercise Science, The University of Florida, Gainesville, FL, USA
- The Myology Institute, The University of Florida, Gainesville, FL, USA
| |
Collapse
|
9
|
Xie H, Yang N, Yu C, Lu L. Uremic toxins mediate kidney diseases: the role of aryl hydrocarbon receptor. Cell Mol Biol Lett 2024; 29:38. [PMID: 38491448 PMCID: PMC10943832 DOI: 10.1186/s11658-024-00550-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 02/19/2024] [Indexed: 03/18/2024] Open
Abstract
Aryl hydrocarbon receptor (AhR) was originally identified as an environmental sensor that responds to pollutants. Subsequent research has revealed that AhR recognizes multiple exogenous and endogenous molecules, including uremic toxins retained in the body due to the decline in renal function. Therefore, AhR is also considered to be a uremic toxin receptor. As a ligand-activated transcriptional factor, the activation of AhR is involved in cell differentiation and senescence, lipid metabolism and fibrogenesis. The accumulation of uremic toxins in the body is hazardous to all tissues and organs. The identification of the endogenous uremic toxin receptor opens the door to investigating the precise role and molecular mechanism of tissue and organ damage induced by uremic toxins. This review focuses on summarizing recent findings on the role of AhR activation induced by uremic toxins in chronic kidney disease, diabetic nephropathy and acute kidney injury. Furthermore, potential clinical approaches to mitigate the effects of uremic toxins are explored herein, such as enhancing uremic toxin clearance through dialysis, reducing uremic toxin production through dietary interventions or microbial manipulation, and manipulating metabolic pathways induced by uremic toxins through controlling AhR signaling. This information may also shed light on the mechanism of uremic toxin-induced injury to other organs, and provide insights into clinical approaches to manipulate the accumulated uremic toxins.
Collapse
Affiliation(s)
- Hongyan Xie
- Department of Nephrology, Tongji Hospital, Tongji University School of Medicine, 389 Xincun Road, Shanghai, 200065, China
| | - Ninghao Yang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fudan University, 138 Yixueyuan Road, Shanghai, 200032, China
| | - Chen Yu
- Department of Nephrology, Tongji Hospital, Tongji University School of Medicine, 389 Xincun Road, Shanghai, 200065, China.
| | - Limin Lu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fudan University, 138 Yixueyuan Road, Shanghai, 200032, China.
| |
Collapse
|
10
|
Palzkill VR, Tan J, Yang Q, Morcos J, Laitano O, Ryan TE. Deletion of the aryl hydrocarbon receptor in endothelial cells improves ischemic angiogenesis in chronic kidney disease. Am J Physiol Heart Circ Physiol 2024; 326:H44-H60. [PMID: 37921663 PMCID: PMC11213484 DOI: 10.1152/ajpheart.00530.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 10/13/2023] [Accepted: 10/30/2023] [Indexed: 11/04/2023]
Abstract
Chronic kidney disease (CKD) is a strong risk factor for peripheral artery disease (PAD) that is associated with worsened clinical outcomes. CKD leads to the accumulation of tryptophan metabolites that are associated with adverse limb events in PAD and are ligands of the aryl hydrocarbon receptor (AHR), which may regulate ischemic angiogenesis. To test if endothelial cell-specific deletion of the AHR (AHRecKO) alters ischemic angiogenesis and limb function in mice with CKD subjected to femoral artery ligation. Male AHRecKO mice with CKD displayed better limb perfusion recovery and enhanced ischemic angiogenesis compared with wild-type mice with CKD. However, the improved limb perfusion did not result in better muscle performance. In contrast to male mice, deletion of the AHR in female mice with CKD had no impact on perfusion recovery or angiogenesis. With the use of primary endothelial cells from male and female mice, treatment with indoxyl sulfate uncovered sex-dependent differences in AHR activating potential and RNA sequencing revealed wide-ranging sex differences in angiogenic signaling pathways. Endothelium-specific deletion of the AHR improved ischemic angiogenesis in male, but not female, mice with CKD. There are sex-dependent differences in Ahr activating potential within endothelial cells that are independent of sex hormones.NEW & NOTEWORTHY This study provides novel insights into the mechanisms by which chronic kidney disease worsens ischemic limb outcomes in an experimental model of peripheral artery disease. Deletion of the aryl hydrocarbon receptor (AHR) in the endothelium improved ischemic angiogenesis suggesting that AHR inhibition could be a viable therapeutic target; however, this effect was only observed in male mice. Subsequent analysis in primary endothelial cells reveals sex differences in Ahr activating potential independent of sex hormones.
Collapse
Affiliation(s)
- Victoria R Palzkill
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, Florida, United States
| | - Jianna Tan
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, Florida, United States
| | - Qingping Yang
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, Florida, United States
| | - Juliana Morcos
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, Florida, United States
| | - Orlando Laitano
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, Florida, United States
- Center for Exercise Science, University of Florida, Gainesville, Florida, United States
- The Myology Institute, University of Florida, Gainesville, Florida, United States
| | - Terence E Ryan
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, Florida, United States
- Center for Exercise Science, University of Florida, Gainesville, Florida, United States
- The Myology Institute, University of Florida, Gainesville, Florida, United States
| |
Collapse
|
11
|
Narkar VA. Exercise and Ischemia-Activated Pathways in Limb Muscle Angiogenesis and Vascular Regeneration. Methodist Debakey Cardiovasc J 2023; 19:58-68. [PMID: 38028974 PMCID: PMC10655757 DOI: 10.14797/mdcvj.1304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 10/26/2023] [Indexed: 12/01/2023] Open
Abstract
Exercise has a profound effect on cardiovascular disease, particularly through vascular remodeling and regeneration. Peripheral artery disease (PAD) is one such cardiovascular condition that benefits from regular exercise or rehabilitative physical therapy in terms of slowing the progression of disease and delaying amputations. Various rodent pre-clinical studies using models of PAD and exercise have shed light on molecular pathways of vascular regeneration. Here, I review key exercise-activated signaling pathways (nuclear receptors, kinases, and hypoxia inducible factors) in the skeletal muscle that drive paracrine regenerative angiogenesis. The rationale for highlighting the skeletal muscle is that it is the largest organ recruited during exercise. During exercise, skeletal muscle releases several myokines, including angiogenic factors and cytokines that drive tissue vascular regeneration via activation of endothelial cells, as well as by recruiting immune and endothelial progenitor cells. Some of these core exercise-activated pathways can be extrapolated to vascular regeneration in other organs. I also highlight future areas of exercise research (including metabolomics, single cell transcriptomics, and extracellular vesicle biology) to advance our understanding of how exercise induces vascular regeneration at the molecular level, and propose the idea of "exercise-mimicking" therapeutics for vascular recovery.
Collapse
Affiliation(s)
- Vihang A. Narkar
- Brown Foundation Institute of Molecular Medicine, McGovern Medical School, UTHealth, Houston, Texas, US
| |
Collapse
|