1
|
Lee YS, Choi JR, Kim JB. Gene Therapy for Cardiovascular Disease: Clinical Perspectives. Yonsei Med J 2024; 65:557-571. [PMID: 39313446 PMCID: PMC11427124 DOI: 10.3349/ymj.2024.0127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 07/29/2024] [Accepted: 08/01/2024] [Indexed: 09/25/2024] Open
Abstract
Cardiovascular disease (CVD) stands as one of the leading causes of death in the United States, with its prevalence steadily on the rise. Traditional therapeutic approaches, such as pharmacological treatment, cardiovascular intervention, and surgery, have inherent limitations. In response to these challenges, cardiac gene therapy has emerged as a promising alternative for treating CVD patients. However, several obstacles persist, including the low efficiency of gene transduction, immune reactions to vectors or transduced cells, and the occurrence of off-target effects. While preclinical research has demonstrated significant success in various CVD model in both small and large animals, the translation of these findings to clinical applications has, for the most part, yielded disappointing results, except for some early, albeit small, trials. This review aims to provide a comprehensive summary of recent preclinical and clinical studies on gene therapy for various CVDs. Additionally, we discuss the existing limitations and challenges that hinder the widespread clinical application of cardiac gene therapy.
Collapse
Affiliation(s)
- Young Shin Lee
- Division of Cardiology, Department of Internal Medicine, College of Medicine, Kyung Hee University, Seoul, Korea
| | - Jung Ran Choi
- College of Medicine, Kyung Hee University, Seoul, Korea
| | - Jin-Bae Kim
- Division of Cardiology, Department of Internal Medicine, College of Medicine, Kyung Hee University, Seoul, Korea
- College of Medicine, Kyung Hee University, Seoul, Korea.
| |
Collapse
|
2
|
Feng L, Sun J, Xia L, Shi Q, Hou Y, Zhang L, Li M, Fan C, Sun B. Ferroptosis mechanism and Alzheimer's disease. Neural Regen Res 2024; 19:1741-1750. [PMID: 38103240 PMCID: PMC10960301 DOI: 10.4103/1673-5374.389362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 07/05/2023] [Accepted: 09/09/2023] [Indexed: 12/18/2023] Open
Abstract
Regulated cell death is a genetically determined form of programmed cell death that commonly occurs during the development of living organisms. This process plays a crucial role in modulating homeostasis and is evolutionarily conserved across a diverse range of living organisms. Ferroptosis is a classic regulatory mode of cell death. Extensive studies of regulatory cell death in Alzheimer's disease have yielded increasing evidence that ferroptosis is closely related to the occurrence, development, and prognosis of Alzheimer's disease. This review summarizes the molecular mechanisms of ferroptosis and recent research advances in the role of ferroptosis in Alzheimer's disease. Our findings are expected to serve as a theoretical and experimental foundation for clinical research and targeted therapy for Alzheimer's disease.
Collapse
Affiliation(s)
- Lina Feng
- Shandong Key Laboratory of TCM Multi-Target Intervention and Disease Control, the Second Affiliated Hospital of Shandong First Medical University, Taian, Shandong Province, China
| | - Jingyi Sun
- Shandong Key Laboratory of TCM Multi-Target Intervention and Disease Control, the Second Affiliated Hospital of Shandong First Medical University, Taian, Shandong Province, China
| | - Ling Xia
- Shandong Key Laboratory of TCM Multi-Target Intervention and Disease Control, the Second Affiliated Hospital of Shandong First Medical University, Taian, Shandong Province, China
| | - Qiang Shi
- Shandong Key Laboratory of TCM Multi-Target Intervention and Disease Control, the Second Affiliated Hospital of Shandong First Medical University, Taian, Shandong Province, China
| | - Yajun Hou
- Shandong Key Laboratory of TCM Multi-Target Intervention and Disease Control, the Second Affiliated Hospital of Shandong First Medical University, Taian, Shandong Province, China
| | - Lili Zhang
- Department of Internal Medicine, Taian Traffic Hospital, Taian, Shandong Province, China
| | - Mingquan Li
- Department of Neurology, the Third Affiliated Clinical Hospital of Changchun University of Chinese Medicine, Changchun, Jilin Province, China
| | - Cundong Fan
- Shandong Key Laboratory of TCM Multi-Target Intervention and Disease Control, the Second Affiliated Hospital of Shandong First Medical University, Taian, Shandong Province, China
| | - Baoliang Sun
- Shandong Key Laboratory of TCM Multi-Target Intervention and Disease Control, the Second Affiliated Hospital of Shandong First Medical University, Taian, Shandong Province, China
| |
Collapse
|
3
|
Yang C, Mu Y, Li S, Zhang Y, Liu X, Li J. Tanshinone IIA: a Chinese herbal ingredient for the treatment of atherosclerosis. Front Pharmacol 2023; 14:1321880. [PMID: 38108067 PMCID: PMC10722201 DOI: 10.3389/fphar.2023.1321880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Accepted: 11/21/2023] [Indexed: 12/19/2023] Open
Abstract
Tanshinone IIA (Tan IIA) is a fat-soluble compound extracted from Salvia miltiorrhiza, which has a protective effect against atherosclerosis (AS). Tan IIA can inhibit oxidative stress and inflammatory damage of vascular endothelial cells (VECs) and improve endothelial cell dysfunction. Tan IIA also has a good protective effect on vascular smooth muscle cells (VSMCs). It can reduce vascular stenosis by inhibiting the proliferation and migration of vascular smooth muscle cells (VSMCs), and improve the stability of the fibrous cap of atherosclerotic plaque by inhibiting apoptosis and inflammation of VSMCs. In addition, Tan IIA inhibits the inflammatory response of macrophages and the formation of foam cells in atherosclerotic plaques. In summary, Tan IIA improves AS through a complex pathway. We propose to further study the specific molecular targets of Tan IIA using systems biology methods, so as to fundamentally elucidate the mechanism of Tan IIA. It is worth mentioning that there is a lack of high-quality evidence-based medical data on Tan IIA treatment of AS. We recommend that a randomized controlled clinical trial be conducted to evaluate the exact efficacy of Tan IIA in improving AS. Finally, sodium tanshinone IIA sulfonate (STS) can cause adverse drug reactions in some patients, which needs our attention.
Collapse
Affiliation(s)
- Chunkun Yang
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | | | - Shuanghong Li
- Weifang Hospital of Traditional Chinese Medicine, Weifang, China
| | - Yang Zhang
- Weifang People’s Hospital, Weifang, China
| | - Xiaoyuan Liu
- Weifang Hospital of Traditional Chinese Medicine, Weifang, China
| | - Jun Li
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
4
|
Tran NKS, Trinh TA, Pyo J, Kim CG, Park JG, Kang KS. Neuroprotective Potential of Pyranocoumarins from Angelica gigas Nakai on Glutamate-Induced Hippocampal Cell Death. Antioxidants (Basel) 2023; 12:1651. [PMID: 37627646 PMCID: PMC10451762 DOI: 10.3390/antiox12081651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 08/07/2023] [Accepted: 08/15/2023] [Indexed: 08/27/2023] Open
Abstract
Chronic neurodegenerative diseases are typically associated with oxidative stress conditions leading to neuronal cell death. We aimed to investigate the neuroprotective effect of three pyranocoumarins (decursin, decursinol angelate, and decursinol) targeting oxidative stress factors. Decursin (also known as dehydro-8-prenylnaringenin) is a prenylated coumarin compound consisting of a coumarin ring system with a prenyl group attached to one of the carbons in the ring. As a secondary metabolite of plants, pyranocoumarin decursin from Angelica gigas Nakai presented protective effects against glutamate-induced oxidative stress in HT22, a murine hippocampal neuronal cell line. Decursinol (DOH) is a metabolite of decursin, sharing same coumarin ring system but a slightly different chemical structure with the prenyl group replaced by a hydroxyl group (-OH). In our findings, DOH was ineffective while decursin was, suggesting that this prenyl structure may be important for compound absorption and neuroprotection. By diminishing the accumulation of intracellular reactive oxygen species as well as stimulating the expression of HO-1, decursin triggers the self-protection system in neuronal cells. Additionally, decursin also revealed an anti-apoptotic effect by inhibiting chromatin condensation and reducing the forming of annexin-V-positive cells.
Collapse
Affiliation(s)
| | - Tuy An Trinh
- Saigon Pharmaceutical Science and Technology Center, University of Medicine and Pharmacy at Ho Chi Minh City, Ho Chi Minh 70000, Vietnam;
| | - Jaesung Pyo
- College of Pharmacy, Kyungsung University, Busan 48434, Republic of Korea;
| | - Chang Geon Kim
- Advanced Bio Convergence Center (ABCC), Pohang Technopark Foundation, Pohang 37668, Republic of Korea;
| | - Jae Gyu Park
- Advanced Bio Convergence Center (ABCC), Pohang Technopark Foundation, Pohang 37668, Republic of Korea;
| | - Ki Sung Kang
- College of Korean Medicine, Gachon University, Seongnam 13120, Republic of Korea;
| |
Collapse
|
5
|
Nilsen DWT, Myhre PL, Solheim S, Tveit SH, Kalstad AA, Laake K, Tveit A, Seljeflot I. Total Bilirubin Yields Prognostic Information Following a Myocardial Infarction in the Elderly. Antioxidants (Basel) 2023; 12:1157. [PMID: 37371887 DOI: 10.3390/antiox12061157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 05/07/2023] [Accepted: 05/24/2023] [Indexed: 06/29/2023] Open
Abstract
Total bilirubin consists of an unconjugated form, solubilized by its binding to albumin, and a conjugated form representing a minor part of the circulating bilirubin. As total bilirubin in physiological concentrations is a powerful antioxidant, its concentration gradient may reflect the health status of an individual, and serve as a prognostic indicator of outcome in primary and secondary cardiovascular disease prevention. The aim of this study was to assess the association between total bilirubin and incident cardiovascular events following a myocardial infarction. Total bilirubin in serum was measured at baseline 2-8 weeks after hospitalization for an MI in 881 patients, aged 70 to 82 years, included in the OMEMI (Omega-3 Fatty acids in Elderly with Myocardial Infarction) study, where patients were followed-up for up to 2 years. The first major adverse clinical event (MACE) was the primary endpoint and consisted of nonfatal MI, unscheduled coronary revascularization, stroke, hospitalization for heart failure or all-cause death. As total bilirubin was non-normally distributed, log-transformed values and quartiles of bilirubin were analyzed using Cox regression models. The median (Q1, and Q3) baseline concentration of bilirubin was 11 (9, and 14) µmol/L, and higher log-transformed concentrations were associated with male sex, lower New York Heart Association (NYHA) class and non-smoking. MACE occurred in 177 (20.1%) patients during the follow-up. Higher concentrations of bilirubin were associated with a lower risk of MACE: HR 0.67 (95%CI 0.47-0.97) per log-unit increase, p = 0.032. Patients in the lowest quartile of bilirubin (<9 µmol/L) had the highest risk with HR 1.61 (95%CI 1.19-2.18), p = 0.002, compared to quartiles 2-4. This association remained significant even after adjusting for age, sex, body mass index (BMI), smoking status, NYHA class and treatment allocation: HR 1.52 (1.21-2.09), p = 0.009. Low concentrations of bilirubin (<9 µmol/L) are associated with increased nonfatal cardiovascular events or death in elderly patients with a recent myocardial infarction.
Collapse
Affiliation(s)
- Dennis Winston T Nilsen
- Department of Cardiology, Stavanger University Hospital, 4068 Stavanger, Norway
- Department of Clinical Science, Faculty of Medicine, University of Bergen, 5020 Bergen, Norway
| | - Peder Langeland Myhre
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, 0315 Oslo, Norway
- Department of Cardiology, Division of Medicine, Akershus University Hospital, 1474 Lørenskog, Norway
| | - Svein Solheim
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, 0315 Oslo, Norway
- Center for Clinical Heart Research, Department of Cardiology, Oslo University Hospital Ullevål, 0450 Oslo, Norway
| | - Sjur Hansen Tveit
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, 0315 Oslo, Norway
- Department of Cardiology, Division of Medicine, Akershus University Hospital, 1474 Lørenskog, Norway
| | - Are Annesønn Kalstad
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, 0315 Oslo, Norway
- Center for Clinical Heart Research, Department of Cardiology, Oslo University Hospital Ullevål, 0450 Oslo, Norway
| | - Kristian Laake
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, 0315 Oslo, Norway
- Center for Clinical Heart Research, Department of Cardiology, Oslo University Hospital Ullevål, 0450 Oslo, Norway
| | - Arnljot Tveit
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, 0315 Oslo, Norway
- Department of Medical Research, Bærum Hospital, Vestre Viken Hospital Trust, 1346 Gjettum, Norway
| | - Ingebjørg Seljeflot
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, 0315 Oslo, Norway
- Center for Clinical Heart Research, Department of Cardiology, Oslo University Hospital Ullevål, 0450 Oslo, Norway
| |
Collapse
|
6
|
Mancuso C. The impact of heme oxygenase-2 on pharmacological research: A bibliometric analysis and beyond. Front Pharmacol 2023; 14:1156333. [PMID: 37153762 PMCID: PMC10154548 DOI: 10.3389/fphar.2023.1156333] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 04/06/2023] [Indexed: 05/10/2023] Open
Abstract
Heme oxygenase (HO-2) is an enzyme mainly involved in the physiologic turnover of heme and intracellular gas sensing, and it is very abundant in the brain, testes, kidneys and vessels. Since 1990, when HO-2 was discovered, the scientific community has underestimated the role of this protein in health and disease, as attested by the small amount of articles published and citations received. One of the reason that have contributed to the lack of interest in HO-2 was the difficulty in upregulating or inhibiting this enzyme. However, over the last 10 years, novel HO-2 agonists and antagonists have been synthesized, and the availability of these pharmacological tools should increase the appeal of HO-2 as drug target. In particular, these agonists and antagonists could help explain some controversial aspects, such as the neuroprotective versus neurotoxic roles of HO-2 in cerebrovascular diseases. Furthermore, the discovery of HO-2 genetic variants and their involvement in Parkinson's disease, in particular in males, opens new avenues for pharmacogenetic studies in gender medicine.
Collapse
Affiliation(s)
- Cesare Mancuso
- Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
- Department of Healthcare Surveillance and Bioethics, Section of Pharmacology, Università Cattolica Del Sacro Cuore, Rome, Italy
- *Correspondence: Cesare Mancuso,
| |
Collapse
|
7
|
Novakova Z, Milosevic M, Kutil Z, Ondrakova M, Havlinova B, Kasparek P, Sandoval-Acuña C, Korandova Z, Truksa J, Vrbacky M, Rohlena J, Barinka C. Generation and characterization of human U-2 OS cell lines with the CRISPR/Cas9-edited protoporphyrinogen oxidase IX gene. Sci Rep 2022; 12:17081. [PMID: 36224252 PMCID: PMC9556554 DOI: 10.1038/s41598-022-21147-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 09/23/2022] [Indexed: 02/05/2023] Open
Abstract
In humans, disruptions in the heme biosynthetic pathway are associated with various types of porphyrias, including variegate porphyria that results from the decreased activity of protoporphyrinogen oxidase IX (PPO; E.C.1.3.3.4), the enzyme catalyzing the penultimate step of the heme biosynthesis. Here we report the generation and characterization of human cell lines, in which PPO was inactivated using the CRISPR/Cas9 system. The PPO knock-out (PPO-KO) cell lines are viable with the normal proliferation rate and show massive accumulation of protoporphyrinogen IX, the PPO substrate. Observed low heme levels trigger a decrease in the amount of functional heme containing respiratory complexes III and IV and overall reduced oxygen consumption rates. Untargeted proteomics further revealed dysregulation of 22 cellular proteins, including strong upregulation of 5-aminolevulinic acid synthase, the major regulatory protein of the heme biosynthesis, as well as additional ten targets with unknown association to heme metabolism. Importantly, knock-in of PPO into PPO-KO cells rescued their wild-type phenotype, confirming the specificity of our model. Overall, our model system exploiting a non-erythroid human U-2 OS cell line reveals physiological consequences of the PPO ablation at the cellular level and can serve as a tool to study various aspects of dysregulated heme metabolism associated with variegate porphyria.
Collapse
Affiliation(s)
- Zora Novakova
- grid.448014.dLaboratory of Structural Biology, Institute of Biotechnology of the Czech Academy of Sciences, BIOCEV, Prumyslova 595, Vestec, 25250 Czech Republic
| | - Mirko Milosevic
- grid.448014.dLaboratory of Cellular Metabolism, Institute of Biotechnology of the Czech Academy of Sciences, BIOCEV, Prumyslova 595, Vestec, 25250 Czech Republic ,grid.4491.80000 0004 1937 116XFaculty of Science, Charles University, Vinicna 5, Prague, 12108 Czech Republic
| | - Zsofia Kutil
- grid.448014.dLaboratory of Structural Biology, Institute of Biotechnology of the Czech Academy of Sciences, BIOCEV, Prumyslova 595, Vestec, 25250 Czech Republic
| | - Marketa Ondrakova
- grid.448014.dLaboratory of Structural Biology, Institute of Biotechnology of the Czech Academy of Sciences, BIOCEV, Prumyslova 595, Vestec, 25250 Czech Republic
| | - Barbora Havlinova
- grid.448014.dLaboratory of Structural Biology, Institute of Biotechnology of the Czech Academy of Sciences, BIOCEV, Prumyslova 595, Vestec, 25250 Czech Republic
| | - Petr Kasparek
- grid.418827.00000 0004 0620 870XCzech Centre for Phenogenomics, Institute of Molecular Genetics of the Czech Academy of Sciences, BIOCEV, Prumyslova 595, Vestec, 25250 Czech Republic
| | - Cristian Sandoval-Acuña
- grid.448014.dLaboratory of Tumour Resistance, Institute of Biotechnology of the Czech Academy of Sciences, BIOCEV, Prumyslova 595, Vestec, 25250 Czech Republic
| | - Zuzana Korandova
- grid.418925.30000 0004 0633 9419Laboratory of Bioenergetics, Institute of Physiology of the Czech Academy of Sciences, Videnska 1083, Prague, 14220 Czech Republic ,grid.4491.80000 0004 1937 116XFirst Faculty of Medicine, Charles University, Katerinska 32, Prague, 12108 Czech Republic
| | - Jaroslav Truksa
- grid.448014.dLaboratory of Tumour Resistance, Institute of Biotechnology of the Czech Academy of Sciences, BIOCEV, Prumyslova 595, Vestec, 25250 Czech Republic
| | - Marek Vrbacky
- grid.418925.30000 0004 0633 9419Laboratory of Bioenergetics, Institute of Physiology of the Czech Academy of Sciences, Videnska 1083, Prague, 14220 Czech Republic
| | - Jakub Rohlena
- grid.448014.dLaboratory of Cellular Metabolism, Institute of Biotechnology of the Czech Academy of Sciences, BIOCEV, Prumyslova 595, Vestec, 25250 Czech Republic
| | - Cyril Barinka
- grid.448014.dLaboratory of Structural Biology, Institute of Biotechnology of the Czech Academy of Sciences, BIOCEV, Prumyslova 595, Vestec, 25250 Czech Republic
| |
Collapse
|
8
|
Ross RL, Mavria G, Del Galdo F, Elies J. Downregulation of Vascular Hemeoxygenase-1 Leads to Vasculopathy in Systemic Sclerosis. Front Physiol 2022; 13:900631. [PMID: 35600300 PMCID: PMC9117635 DOI: 10.3389/fphys.2022.900631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 04/12/2022] [Indexed: 11/13/2022] Open
Abstract
Systemic sclerosis (SSc) is a terminal disease characterized by vasculopathy, tissue fibrosis, and autoimmunity. Although the exact etiology of SSc remains unknown, endothelial dysfunction, oxidative stress, and calcium handling dysregulation have been associated with a large number of SSc-related complications such as neointima formation, vasculogenesis, pulmonary arterial hypertension, impaired angiogenesis, and cardiac arrhythmias. Hemeoxygenase-1 (HO-1) is an antioxidant enzyme involved in multiple biological actions in the cardiovascular system including vascular tone, angiogenesis, cellular proliferation, apoptosis, and oxidative stress. The aim of this work was to investigate the physiological role of HO-1 and its relevance in the cardiovascular complications occurring in SSc. We found that, in early phases of SSc, the expression of HO-1 in dermal fibroblast is lower compared to those isolated from healthy control individuals. This is particularly relevant as reduction of the HO-1/CO signaling pathway is associated with endothelial dysfunction and vasculopathy. We show evidence of the role of HO-1/carbon monoxide (CO) signaling pathway in calcium handling. Using an in vitro model of pulmonary arterial hypertension (PAH) we investigated the role of HO-1 in Ca2+ mobilization from intracellular stores. Our results indicate that HO-1 regulates calcium release from intracellular stores of human pulmonary arterial endothelial cells. We interrogated the activity of HO-1 in angiogenesis using an organotypic co-culture of fibroblast-endothelial cell. Inhibition of HO-1 significantly reduced the ability of endothelial cells to form tubules. We further investigated if this could be associated with cell motility or migration of endothelial cells into the extracellular matrix synthesized by fibroblasts. By mean of holographic imaging, we studied the morphological and functional features of endothelial cells in the presence of an HO-1 activator and selective inhibitors. Our results demonstrate that inhibition of HO-1 significantly reduces cell proliferation and cell motility (migration) of cultured endothelial cells, whilst activation of HO-1 does not modify either morphology, proliferation or motility. In addition, we investigated the actions of CO on the Kv7.1 (KCQN1) channel current, an important component of the cardiac action potential repolarization. Using electrophysiology (whole-cell patch-clamp in a recombinant system overexpressing the KCQN1 channel), we assessed the regulation of KCQN1 by CO. CORM-2, a CO donor, significantly reduced the Kv7.1 current, suggesting that HO-1/CO signaling may play a role in the modulation of the cardiac action potential via regulation of this ion channel. In summary, our results indicate a clear link between: 1) downregulation of HO-1/CO signaling; and 2) pathophysiological processes occurring in early phases of SSc, such as calcium homeostasis dysregulation, impaired angiogenesis and cardiac arrhythmias. A better understanding of the canonical actions (mainly due to the biological actions of CO), and non-canonical actions of HO-1, as well as the interaction of HO-1/CO signaling with other gasotransmitters in SSc will contribute to the development of novel therapeutic approaches.
Collapse
Affiliation(s)
- Rebecca L Ross
- Leeds Institute of Rheumatic and Musculoskeletal Medicine, Faculty of Medicine and Health, University of Leeds, Leeds, United Kingdom
- Scleroderma Programme, NIHR Leeds Musculoskeletal Biomedical Research Centre, Leeds, United Kingdom
| | - Georgia Mavria
- Signal Transduction and Tumour Microenvironment Group, Leeds Institute of Cancer and Pathology, University of Leeds, Leeds, United Kingdom
| | - Francesco Del Galdo
- Leeds Institute of Rheumatic and Musculoskeletal Medicine, Faculty of Medicine and Health, University of Leeds, Leeds, United Kingdom
- Scleroderma Programme, NIHR Leeds Musculoskeletal Biomedical Research Centre, Leeds, United Kingdom
| | - Jacobo Elies
- Cardiovascular Research Group, Faculty of Life Sciences, University of Bradford, Bradford, United Kingdom
- *Correspondence: Jacobo Elies,
| |
Collapse
|
9
|
Huang T, Wang K, Li Y, Ye Y, Chen Y, Wang J, Yao C. Construction of a Novel Ferroptosis-Related Gene Signature of Atherosclerosis. Front Cell Dev Biol 2022; 9:800833. [PMID: 35071238 PMCID: PMC8766414 DOI: 10.3389/fcell.2021.800833] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2021] [Accepted: 11/15/2021] [Indexed: 12/12/2022] Open
Abstract
Atheroclerosis refers to a chronic inflammatory disease featured by the accumulation of fibrofatty lesions in the intima of arteries. Cardiovasular events associated with atherosclerosis remain the major causes of mortality worldwide. Recent studies have indicated that ferroptosis, a novel programmed cell death, might participate in the process of atherosclerosis. However, the ferroptosis landscape is still not clear. In this study, 59 genes associated with ferroptosis were ultimately identified in atherosclerosis in the intima. Gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses were performed for functional annotation. Through the construction of protein–protein interaction (PPI) network, five hub genes (TP53, MAPK1, STAT3, HMOX1, and PTGS2) were then validated histologically. The competing endogenous RNA (ceRNA) network of hub genes was ultimately constructed to explore the regulatory mechanism between lncRNAs, miRNAs, and hub genes. The findings provide more insights into the ferroptosis landscape and, potentially, the therapeutic targets of atherosclerosis.
Collapse
Affiliation(s)
- Tucheng Huang
- Department of Cardiology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China.,Laboratory of Cardiac Electrophysiology and Arrhythmia in Guangdong Province, Guangzhou, China
| | - Kangjie Wang
- Division of Vascular Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.,National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Yuewei Li
- Department of Respiratory Medicine, Sun Yat-Sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Yanchen Ye
- Division of Vascular Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.,National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Yangxin Chen
- Department of Cardiology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China.,Laboratory of Cardiac Electrophysiology and Arrhythmia in Guangdong Province, Guangzhou, China
| | - Jingfeng Wang
- Department of Cardiology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China.,Laboratory of Cardiac Electrophysiology and Arrhythmia in Guangdong Province, Guangzhou, China
| | - Chen Yao
- Division of Vascular Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.,National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
10
|
de Holanda GS, dos Santos Valença S, Carra AM, Lichtenberger RCL, de Castilho B, Franco OB, de Moraes JA, Schanaider A. Translational Application of Fluorescent Molecular Probes for the Detection of Reactive Oxygen and Nitrogen Species Associated with Intestinal Reperfusion Injury. Metabolites 2021; 11:metabo11120802. [PMID: 34940560 PMCID: PMC8705498 DOI: 10.3390/metabo11120802] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 11/23/2021] [Accepted: 11/23/2021] [Indexed: 02/07/2023] Open
Abstract
Acute mesenteric ischemia, caused by an abrupt interruption of blood flow in the mesenteric vessels, is associated with high mortality. When treated with surgical interventions or drugs to re-open the vascular lumen, the reperfusion process itself can inflict damage to the intestinal wall. Ischemia and reperfusion injury comprise complex mechanisms involving disarrangement of the splanchnic microcirculatory flow and impairment of the mitochondrial respiratory chain due to initial hypoxemia and subsequent oxidative stress during the reperfusion phase. This pathophysiologic process results in the production of large amounts of reactive oxygen (ROS) and nitrogen (RNS) species, which damage deoxyribonucleic acid, protein, lipids, and carbohydrates by autophagy, mitoptosis, necrosis, necroptosis, and apoptosis. Fluorescence-based systems using molecular probes have emerged as highly effective tools to monitor the concentrations and locations of these often short-lived ROS and RNS. The timely and accurate detection of both ROS and RNS by such an approach would help to identify early injury events associated with ischemia and reperfusion and increase overall clinical diagnostic sensitivity. This abstract describes the pathophysiology of intestinal ischemia and reperfusion and the early biological laboratory diagnosis using fluorescent molecular probes anticipating clinical decisions in the face of an extremely morbid disease.
Collapse
Affiliation(s)
- Gustavo Sampaio de Holanda
- Centre of Experimental Surgery, Post Graduate Program in Surgical Sciences, Department of Surgery, Faculty of Medicine, Federal University of Rio de Janeiro, Rio de Janeiro 219491-590, Brazil; (A.M.C.); (R.C.L.L.); (B.d.C.); (O.B.F.); (A.S.)
- Correspondence: ; Tel.: +55-21-9657-13794
| | - Samuel dos Santos Valença
- Redox Biology Laboratory, Institute of Biomedical Sciences, Federal University of Rio de Janeiro, Rio de Janeiro 21941-901, Brazil; (S.d.S.V.); (J.A.d.M.)
| | - Amabile Maran Carra
- Centre of Experimental Surgery, Post Graduate Program in Surgical Sciences, Department of Surgery, Faculty of Medicine, Federal University of Rio de Janeiro, Rio de Janeiro 219491-590, Brazil; (A.M.C.); (R.C.L.L.); (B.d.C.); (O.B.F.); (A.S.)
| | - Renata Cristina Lopes Lichtenberger
- Centre of Experimental Surgery, Post Graduate Program in Surgical Sciences, Department of Surgery, Faculty of Medicine, Federal University of Rio de Janeiro, Rio de Janeiro 219491-590, Brazil; (A.M.C.); (R.C.L.L.); (B.d.C.); (O.B.F.); (A.S.)
| | - Bianca de Castilho
- Centre of Experimental Surgery, Post Graduate Program in Surgical Sciences, Department of Surgery, Faculty of Medicine, Federal University of Rio de Janeiro, Rio de Janeiro 219491-590, Brazil; (A.M.C.); (R.C.L.L.); (B.d.C.); (O.B.F.); (A.S.)
| | - Olavo Borges Franco
- Centre of Experimental Surgery, Post Graduate Program in Surgical Sciences, Department of Surgery, Faculty of Medicine, Federal University of Rio de Janeiro, Rio de Janeiro 219491-590, Brazil; (A.M.C.); (R.C.L.L.); (B.d.C.); (O.B.F.); (A.S.)
| | - João Alfredo de Moraes
- Redox Biology Laboratory, Institute of Biomedical Sciences, Federal University of Rio de Janeiro, Rio de Janeiro 21941-901, Brazil; (S.d.S.V.); (J.A.d.M.)
| | - Alberto Schanaider
- Centre of Experimental Surgery, Post Graduate Program in Surgical Sciences, Department of Surgery, Faculty of Medicine, Federal University of Rio de Janeiro, Rio de Janeiro 219491-590, Brazil; (A.M.C.); (R.C.L.L.); (B.d.C.); (O.B.F.); (A.S.)
| |
Collapse
|
11
|
Tao J, Zhang L, Zhang X, Chen Y, Chen Q, Shen M, Liu H, Deng S. Effect of Exogenous Melatonin on the Development of Mice Ovarian Follicles and Follicular Angiogenesis. Int J Mol Sci 2021; 22:ijms222011262. [PMID: 34681919 PMCID: PMC8540648 DOI: 10.3390/ijms222011262] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 10/15/2021] [Accepted: 10/17/2021] [Indexed: 12/21/2022] Open
Abstract
In mammalian, the periodic growth and development of ovarian follicles constitutes the physiological basis of female estrus and ovulation. Concomitantly, follicular angiogenesis exerts a pivotal role in the growth of ovarian follicles. Melatonin (N-acetyl-5-methoxytryptamine, Mel), exists in follicle fluid, was suggested to affect the development of follicles and angiogenesis. This research was conducted to investigate the effects and mechanisms of Mel on the development of ovarian follicles and its angiogenesis. In total, 40 ICR mice at age of 3 weeks were allocated into four groups at liberty: control, Mel, FSH and FSH + Mel for a 12-day trial. Ovaries were collected at 8:00 a.m. on Day 13 for detecting the development of ovarian follicles and angiogenesis. Results indicated that Mel promoted the development of ovarian follicles of 50–250 μm (secondary follicles) and periphery angiogenesis, while FSH remarkably increased the number of antral follicles and periphery angiogenesis. Mechanically, Mel and FSH may regulate the expression of VEGF and antioxidant enzymes in different follicular stages. In conclusion, Mel primarily acted on the secondary follicles, while FSH mainly promoted the development of antral follicles. They both conduced to related periphery angiogenesis by increasing the expression of VEGF. These findings may provide new targets for the regulating of follicular development.
Collapse
Affiliation(s)
- Jingli Tao
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China; (J.T.); (L.Z.); (X.Z.); (Y.C.); (Q.C.); (M.S.)
| | - Liangliang Zhang
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China; (J.T.); (L.Z.); (X.Z.); (Y.C.); (Q.C.); (M.S.)
| | - Xuan Zhang
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China; (J.T.); (L.Z.); (X.Z.); (Y.C.); (Q.C.); (M.S.)
| | - Yuanyuan Chen
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China; (J.T.); (L.Z.); (X.Z.); (Y.C.); (Q.C.); (M.S.)
| | - Qianqian Chen
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China; (J.T.); (L.Z.); (X.Z.); (Y.C.); (Q.C.); (M.S.)
| | - Ming Shen
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China; (J.T.); (L.Z.); (X.Z.); (Y.C.); (Q.C.); (M.S.)
| | - Honglin Liu
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China; (J.T.); (L.Z.); (X.Z.); (Y.C.); (Q.C.); (M.S.)
- Correspondence: (H.L.); (S.D.); Tel.: +86-138-1398-3156 (H.L.); +86-188-0102-7688 (S.D.)
| | - Shoulong Deng
- Institute of Laboratory Animal Sciences, Chinese Academy of Medical Sciences and Comparative Medicine Center, Peking Union Medical College, Beijing 100021, China
- Correspondence: (H.L.); (S.D.); Tel.: +86-138-1398-3156 (H.L.); +86-188-0102-7688 (S.D.)
| |
Collapse
|
12
|
Zhang LX, Li CX, Kakar MU, Khan MS, Wu PF, Amir RM, Dai DF, Naveed M, Li QY, Saeed M, Shen JQ, Rajput SA, Li JH. Resveratrol (RV): A pharmacological review and call for further research. Biomed Pharmacother 2021; 143:112164. [PMID: 34649335 DOI: 10.1016/j.biopha.2021.112164] [Citation(s) in RCA: 154] [Impact Index Per Article: 51.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 08/27/2021] [Accepted: 09/03/2021] [Indexed: 12/27/2022] Open
Abstract
Resveratrol (RV) is a well-known polyphenolic compound in various plants, including grape, peanut, and berry fruits, which is quite famous for its association with several health benefits such as anti-obesity, cardioprotective neuroprotective, antitumor, antidiabetic, antioxidants, anti-age effects, and glucose metabolism. Significantly, promising therapeutic properties have been reported in various cancer, neurodegeneration, and atherosclerosis and are regulated by several synergistic pathways that control oxidative stress, cell death, and inflammation. Similarly, RV possesses a strong anti-adipogenic effect by inhibiting fat accumulation processes and activating oxidative and lipolytic pathways, exhibiting their cardioprotective effects by inhibiting platelet aggregation. The RV also shows significant antibacterial effects against various food-borne pathogens (Listeria, Campylobacter, Staphylococcus aureus, and E. coli) by inhibiting an electron transport chain (ETC) and F0F1-ATPase, which decreases the production of cellular energy that leads to the spread of pathogens. After collecting and analyzing scientific literature, it may be concluded that RV is well tolerated and favorably affects cardiovascular, neurological, and diabetic disorders. As such, it is possible that RV can be considered the best nutritional additive and a complementary drug, especially a therapeutic candidate. Therefore, this review would increase knowledge about the blend of RV as well as inspire researchers around the world to consider RV as a pharmaceutical drug to combat future health crises against various inhumane diseases. In the future, this article will be aware of discoveries about the potential of this promising natural compound as the best nutraceuticals and therapeutic drugs in medicine.
Collapse
Affiliation(s)
- Li-Xue Zhang
- School of Medicine, Northwest Minzu University, Lanzhou 730030, China
| | - Chang-Xing Li
- Department of Human Anatomy, Medical College of Qinghai University, 810000 Xining, China
| | - Mohib Ullah Kakar
- Faculty of Marine Sciences, Lasbela University of Agriculture Water and Marine Sciences, Uthal 90150, Balochistan, Pakistan
| | - Muhammad Sajjad Khan
- The Cholistan University of Veterinary and Animal Sciences, Bahawalpur 6300, Pakistan.
| | - Pei-Feng Wu
- Department of Human Anatomy, Medical College of Qinghai University, 810000 Xining, China
| | - Rai Muhammad Amir
- Institute of Food and Nutritional Sciences, PMAS-Arid Agriculture University, Rawalpindi, Pakistan
| | - Dong-Fang Dai
- Department of Human Anatomy, Medical College of Qinghai University, 810000 Xining, China
| | - Muhammad Naveed
- School of Pharmacy, Nanjing Medical University, Nanjing 211166, China
| | - Qin-Yuan Li
- Department of Human Anatomy, Medical College of Qinghai University, 810000 Xining, China
| | - Muhammad Saeed
- The Cholistan University of Veterinary and Animal Sciences, Bahawalpur 6300, Pakistan
| | - Ji-Qiang Shen
- Department of Human Anatomy, Medical College of Qinghai University, 810000 Xining, China
| | - Shahid Ali Rajput
- College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Jian-Hua Li
- Department of Human Anatomy, Medical College of Qinghai University, 810000 Xining, China.
| |
Collapse
|
13
|
The Role of HO-1 and Its Crosstalk with Oxidative Stress in Cancer Cell Survival. Cells 2021; 10:cells10092401. [PMID: 34572050 PMCID: PMC8471703 DOI: 10.3390/cells10092401] [Citation(s) in RCA: 84] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 09/04/2021] [Accepted: 09/08/2021] [Indexed: 12/19/2022] Open
Abstract
Heme oxygenases (HOs) act on heme degradation to produce carbon monoxide (CO), free iron, ferritin, and biliverdin. Upregulation of cellular HO-1 levels is signature of oxidative stress for its downstream effects particularly under pro-oxidative status. Subcellular traffics of HO-1 to different organelles constitute a network of interactions compromising a variety of effectors such as pro-oxidants, ROS, mitochondrial enzymes, and nucleic transcription factors. Some of the compartmentalized HO-1 have been demonstrated as functioning in the progression of cancer. Emerging data show the multiple roles of HO-1 in tumorigenesis from pathogenesis to the progression to malignancy, metastasis, and even resistance to therapy. However, the role of HO-1 in tumorigenesis has not been systematically addressed. This review describes the crosstalk between HO-1 and oxidative stress, and following redox regulation in the tumorigenesis. HO-1-regulated signaling pathways are also summarized. This review aims to integrate basic information and current progress of HO-1 in cancer research in order to enhance the understandings and facilitate following studies.
Collapse
|
14
|
Patients with Gilbert syndrome and type 2 diabetes have lower prevalence of microvascular complications. Metabol Open 2021; 11:100114. [PMID: 34386764 PMCID: PMC8346683 DOI: 10.1016/j.metop.2021.100114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 07/21/2021] [Accepted: 07/26/2021] [Indexed: 11/23/2022] Open
Abstract
Objective Accumulating clinical evidence indicates an inverse relationship between oxidative stress and unconjugated hyperbilirubinemia. This study aimed to compare the prevalence of diabetes microvascular complications in patients with Gilbert syndrome and type 2 diabetes mellitus (T2D). Methods A total of 1200 electronic records with T2D were reviewed. From them, 50 patients with Gilbert syndrome (cases [indirect bilirubin ≥1.2 mg/dl without evidence of hemolysis or liver disease]) and 50 controls (T2D without hyperbilirubinemia) were included. Linear and logistic regression models were performed to evaluate the independent association between indirect hyperbilirubinemia with microvascular complications related with T2D. Results Both case and control group had the same proportion of gender (female = 20 [40 %]) and diabetes duration (14.0 ± 6.5 years) and similar mean of age (60 ± 9.6 and 60 ± 9.2 years, respectively, p = 0.91). The median of unconjugated bilirubin of case and control group was 1.4 (1.2–1.6) vs. 0.4 (0.2–0.6) mg/dl (p < 0.001), respectively. Patients with elevated unconjugated bilirubin had less urine albumin-creatinine ratio compared with control group (8.5 [4.3–23] vs. 80 [8–408] mg/g, p < 0.001), and lower rate of diabetes microvascular complications and metabolic syndrome. After adjustment for BMI, age, HbA1c, blood pressure, triglycerides, and the metabolic syndrome, the lineal regression analysis showed that unconjugated bilirubin protects against microalbuminuria in T2D patients (β = −414.11, 95 % CI [-747.9, −80.3], p = 0.006. Also, unconjugated hyperbilirubinemia was independently associated with a better glomerular filtration rate (GFR) (β = 9.87, 95 % CI [1.5, 18.3], P = 0.02). Conclusions Patients with Gilbert syndrome and T2D had a lower prevalence of diabetes microvascular complications.
Collapse
|
15
|
Tejchman K, Kotfis K, Sieńko J. Biomarkers and Mechanisms of Oxidative Stress-Last 20 Years of Research with an Emphasis on Kidney Damage and Renal Transplantation. Int J Mol Sci 2021; 22:ijms22158010. [PMID: 34360776 PMCID: PMC8347360 DOI: 10.3390/ijms22158010] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2021] [Revised: 07/22/2021] [Accepted: 07/23/2021] [Indexed: 02/06/2023] Open
Abstract
Oxidative stress is an imbalance between pro- and antioxidants that adversely influences the organism in various mechanisms and on many levels. Oxidative damage occurring concomitantly in many cellular structures may cause a deterioration of function, including apoptosis and necrosis. The damage leaves a molecular “footprint”, which can be detected by specific methodology, using certain oxidative stress biomarkers. There is an intimate relationship between oxidative stress, inflammation, and functional impairment, resulting in various diseases affecting the entire human body. In the current narrative review, we strengthen the connection between oxidative stress mechanisms and their active compounds, emphasizing kidney damage and renal transplantation. An analysis of reactive oxygen species (ROS), antioxidants, products of peroxidation, and finally signaling pathways gives a lot of promising data that potentially will modify cell responses on many levels, including gene expression. Oxidative damage, stress, and ROS are still intensively exploited research subjects. We discuss compounds mentioned earlier as biomarkers of oxidative stress and present their role documented during the last 20 years of research. The following keywords and MeSH terms were used in the search: oxidative stress, kidney, transplantation, ischemia-reperfusion injury, IRI, biomarkers, peroxidation, and treatment.
Collapse
Affiliation(s)
- Karol Tejchman
- Department of General and Transplantation Surgery, Pomeranian Medical University, 70-111 Szczecin, Poland; (K.T.); (J.S.)
| | - Katarzyna Kotfis
- Department of Anesthesiology, Intensive Therapy and Acute Intoxications, Pomeranian Medical University, 70-111 Szczecin, Poland
- Correspondence: ; Tel.: +48914661144
| | - Jerzy Sieńko
- Department of General and Transplantation Surgery, Pomeranian Medical University, 70-111 Szczecin, Poland; (K.T.); (J.S.)
| |
Collapse
|
16
|
Vozzi F, Cecchettini A, Cabiati M, Mg F, Aretini P, Del Ry S, Rocchiccioli S, Pelosi G. Modulated molecular markers of restenosis and thrombosis by in-vitrovascular cells exposed to bioresorbable scaffolds. Biomed Mater 2021; 16. [PMID: 34020430 DOI: 10.1088/1748-605x/ac0401] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Accepted: 05/21/2021] [Indexed: 01/06/2023]
Abstract
Drug-eluting bioresorbable vascular scaffolds (BVSs) have emerged as a potential breakthrough for the treatment of coronary artery stenosis, providing mechanical support and drug delivery followed by complete resorption. Restenosis and thrombosis remain the primary limitations in clinical use. The study aimed to identify potential markers of restenosis and thrombosis analyzing the vascular wall cell transcriptomic profile modulation triggered by BVS at different values of shear stress (SS). Human coronary artery endothelial cells and smooth muscle cells were cultured under SS (1 and 20 dyne cm-2) for 6 h without and with application of BVS and everolimus 600 nM. Cell RNA-Seq and bioinformatics analysis identified modulated genes by direct comparison of SS conditions and Gene Ontology (GO). The results of different experimental conditions and GO analysis highlighted the modulation of specific genes as semaphorin 3E, mesenchyme homeobox 2, bone morphogenetic protein 4, (heme oxygenase 1) and selectin E, with different roles in pathological evolution of disease. Transcriptomic analysis of dynamic vascular cell cultures identifies candidate genes related to pro-restenotic and pro-thrombotic mechanisms in anin-vitrosetting of BVS, which are not adequately contrasted by everolimus addition.
Collapse
Affiliation(s)
- F Vozzi
- Institute of Clinical Physiology IFC-CNR, Via Giuseppe Moruzzi 1, Pisa, Italy
| | - A Cecchettini
- Institute of Clinical Physiology IFC-CNR, Via Giuseppe Moruzzi 1, Pisa, Italy.,Department of Clinical and Experimental Medicine, University of Pisa, Via Volta 4, Pisa, Italy
| | - M Cabiati
- Institute of Clinical Physiology IFC-CNR, Via Giuseppe Moruzzi 1, Pisa, Italy
| | - Fornaro Mg
- Institute of Clinical Physiology IFC-CNR, Via Giuseppe Moruzzi 1, Pisa, Italy
| | - P Aretini
- Fondazione Pisana per la Scienza ONLUS, Via Ferruccio Giovannini, 13, San Giuliano Terme, Italy
| | - S Del Ry
- Institute of Clinical Physiology IFC-CNR, Via Giuseppe Moruzzi 1, Pisa, Italy
| | - S Rocchiccioli
- Institute of Clinical Physiology IFC-CNR, Via Giuseppe Moruzzi 1, Pisa, Italy
| | - G Pelosi
- Institute of Clinical Physiology IFC-CNR, Via Giuseppe Moruzzi 1, Pisa, Italy
| |
Collapse
|
17
|
Lee SE, Park YS. The Emerging Roles of Antioxidant Enzymes by Dietary Phytochemicals in Vascular Diseases. Life (Basel) 2021; 11:life11030199. [PMID: 33806594 PMCID: PMC8001043 DOI: 10.3390/life11030199] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 02/26/2021] [Accepted: 02/26/2021] [Indexed: 12/21/2022] Open
Abstract
Vascular diseases are major causes of death worldwide, causing pathologies including diabetes, atherosclerosis, and chronic obstructive pulmonary disease (COPD). Exposure of the vascular system to a variety of stressors and inducers has been implicated in the development of various human diseases, including chronic inflammatory diseases. In the vascular wall, antioxidant enzymes form the first line of defense against oxidative stress. Recently, extensive research into the beneficial effects of phytochemicals has been conducted; phytochemicals are found in commonly used spices, fruits, and herbs, and are used to prevent various pathologic conditions, including vascular diseases. The present review aims to highlight the effects of dietary phytochemicals role on antioxidant enzymes in vascular diseases.
Collapse
|
18
|
Akhigbe R, Ajayi A. The impact of reactive oxygen species in the development of cardiometabolic disorders: a review. Lipids Health Dis 2021; 20:23. [PMID: 33639960 PMCID: PMC7916299 DOI: 10.1186/s12944-021-01435-7] [Citation(s) in RCA: 59] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Accepted: 01/26/2021] [Indexed: 02/07/2023] Open
Abstract
Oxidative stress, an alteration in the balance between reactive oxygen species (ROS) generation and antioxidant buffering capacity, has been implicated in the pathogenesis of cardiometabolic disorders (CMD). At physiological levels, ROS functions as signalling mediators, regulates various physiological functions such as the growth, proliferation, and migration endothelial cells (EC) and smooth muscle cells (SMC); formation and development of new blood vessels; EC and SMC regulated death; vascular tone; host defence; and genomic stability. However, at excessive levels, it causes a deviation in the redox state, mediates the development of CMD. Multiple mechanisms account for the rise in the production of free radicals in the heart. These include mitochondrial dysfunction and uncoupling, increased fatty acid oxidation, exaggerated activity of nicotinamide adenine dinucleotide phosphate oxidase (NOX), reduced antioxidant capacity, and cardiac metabolic memory. The purpose of this study is to discuss the link between oxidative stress and the aetiopathogenesis of CMD and highlight associated mechanisms. Oxidative stress plays a vital role in the development of obesity and dyslipidaemia, insulin resistance and diabetes, hypertension via various mechanisms associated with ROS-led inflammatory response and endothelial dysfunction.
Collapse
Affiliation(s)
- Roland Akhigbe
- Department of Physiology, College of Medicine, Ladoke Akintola University of Technology, Ogbomoso, Oyo State Nigeria
- Reproductive Biology and Toxicology Research Laboratories, Oasis of Grace Hospital, Osogbo, Osun State Nigeria
- Department of Chemical Sciences, Kings University, Odeomu, Osun Nigeria
| | - Ayodeji Ajayi
- Department of Physiology, College of Medicine, Ladoke Akintola University of Technology, Ogbomoso, Oyo State Nigeria
| |
Collapse
|
19
|
Hu W, Wu R, Gao C, Liu F, Zeng Z, Zhu Q, Chen J, Cheng S, Yu K, Qian Y, Zhao J, Zhong S, Li Q, Wang L, Liu X, Wang J. Knockdown of estrogen-related receptor α inhibits valve interstitial cell calcification in vitro by regulating heme oxygenase 1. FASEB J 2021; 35:e21183. [PMID: 33184978 DOI: 10.1096/fj.202001588rr] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 10/15/2020] [Accepted: 10/28/2020] [Indexed: 12/19/2022]
Abstract
Calcific aortic valve disease (CAVD) is the most common valvular heart disease in adults. The cellular mechanisms of CAVD are still unknown, but accumulating evidence has revealed that osteogenic differentiation of human valve interstitial cells (hVICs) plays an important role in CAVD. Thus, we aimed to investigate the function of estrogen-related receptor α (ERRα) in the osteogenic differentiation of hVICs. We found that the level of ERRα was significantly increased in CAVD samples compared to normal controls. In addition, ERRα was significantly upregulated during hVIC osteogenic differentiation in vitro. Gain- and loss-of-function experiments were performed to identify the function of ERRα in hVIC calcification in vitro. Inhibition of endogenous ERRα attenuated hVIC calcification, whereas overexpression of ERRα in hVICs promoted this process. RNA sequencing results suggested that heme oxygenase-1 (Hmox1) was a downstream target of ERRα, which was further confirmed by western blotting. Additionally, we also found that downregulation of Hmox1 by shHmox1 efficiently reversed the inhibition of calcification induced by ERRα shRNA in hVICs. ChIP-qPCR and luciferase assays indicated that Hmox1 was negatively regulated by ERRα. We found that overexpression of Hmox1 or its substrates significantly inhibited hVIC calcification in vitro. In conclusion, we found that knockdown of ERRα can inhibit hVIC calcification through upregulating Hmox1 and that ERRα and Hmox1 are potential targets for the treatment of CAVD.
Collapse
Affiliation(s)
- Wangxing Hu
- Department of Cardiology of the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- Key Laboratory of Cardiovascular Disease of Zhejiang Province, Hangzhou, China
| | - Rongrong Wu
- Department of Cardiology of the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- Key Laboratory of Cardiovascular Disease of Zhejiang Province, Hangzhou, China
| | - Chenyang Gao
- Department of Cardiology of the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- Key Laboratory of Cardiovascular Disease of Zhejiang Province, Hangzhou, China
| | - Feng Liu
- Department of Cardiology of the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- Key Laboratory of Cardiovascular Disease of Zhejiang Province, Hangzhou, China
| | - Zhiru Zeng
- Department of Cardiology of the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- Key Laboratory of Cardiovascular Disease of Zhejiang Province, Hangzhou, China
| | - Qifeng Zhu
- Department of Cardiology of the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- Key Laboratory of Cardiovascular Disease of Zhejiang Province, Hangzhou, China
| | - Jinyong Chen
- Department of Cardiology of the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- Key Laboratory of Cardiovascular Disease of Zhejiang Province, Hangzhou, China
| | - Si Cheng
- Department of Cardiology of the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- Key Laboratory of Cardiovascular Disease of Zhejiang Province, Hangzhou, China
| | - Kaixiang Yu
- Department of Cardiology of the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- Key Laboratory of Cardiovascular Disease of Zhejiang Province, Hangzhou, China
| | - Yi Qian
- Department of Cardiology of the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- Key Laboratory of Cardiovascular Disease of Zhejiang Province, Hangzhou, China
| | - Jing Zhao
- Department of Cardiology of the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- Key Laboratory of Cardiovascular Disease of Zhejiang Province, Hangzhou, China
| | - Shuhan Zhong
- Department of Cardiology of the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- Key Laboratory of Cardiovascular Disease of Zhejiang Province, Hangzhou, China
| | - Qingju Li
- Department of Cardiology of the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- Key Laboratory of Cardiovascular Disease of Zhejiang Province, Hangzhou, China
| | - Lihan Wang
- Department of Cardiology of the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- Key Laboratory of Cardiovascular Disease of Zhejiang Province, Hangzhou, China
| | - Xianbao Liu
- Department of Cardiology of the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- Key Laboratory of Cardiovascular Disease of Zhejiang Province, Hangzhou, China
| | - Jian'an Wang
- Department of Cardiology of the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- Key Laboratory of Cardiovascular Disease of Zhejiang Province, Hangzhou, China
| |
Collapse
|
20
|
Khojandi N, Kuehm LM, Piening A, Donlin MJ, Hsueh EC, Schwartz TL, Farrell K, Richart JM, Geerling E, Pinto AK, George SL, Albert CJ, Ford DA, Chen X, Kline J, Teague RM. Oxidized Lipoproteins Promote Resistance to Cancer Immunotherapy Independent of Patient Obesity. Cancer Immunol Res 2021; 9:214-226. [PMID: 33303575 PMCID: PMC7864876 DOI: 10.1158/2326-6066.cir-20-0358] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 10/07/2020] [Accepted: 12/03/2020] [Indexed: 11/16/2022]
Abstract
Antitumor immunity is impaired in obese mice. Mechanistic insight into this observation remains sparse and whether it is recapitulated in patients with cancer is unclear because clinical studies have produced conflicting and controversial findings. We addressed this by analyzing data from patients with a diverse array of cancer types. We found that survival after immunotherapy was not accurately predicted by body mass index or serum leptin concentrations. However, oxidized low-density lipoprotein (ox-LDL) in serum was identified as a suppressor of T-cell function and a driver of tumor cytoprotection mediated by heme oxygenase-1 (HO-1). Analysis of a human melanoma gene expression database showed a clear association between higher HMOX1 (HO-1) expression and reduced progression-free survival. Our in vivo experiments using mouse models of both melanoma and breast cancer revealed HO-1 as a mechanism of resistance to anti-PD1 immunotherapy but also exposed HO-1 as a vulnerability that could be exploited therapeutically using a small-molecule inhibitor. In conclusion, our clinical data have implicated serum ox-LDL as a mediator of therapeutic resistance in patients with cancer, operating as a double-edged sword that both suppressed T-cell immunity and simultaneously induced HO-1-mediated tumor cell protection. Our studies also highlight the therapeutic potential of targeting HO-1 during immunotherapy, encouraging further translational development of this combination approach.See article by Kuehm et al., p. 227.
Collapse
Affiliation(s)
- Niloufar Khojandi
- Department of Molecular Microbiology and Immunology, Saint Louis University School of Medicine, St. Louis, Missouri
| | - Lindsey M Kuehm
- Department of Molecular Microbiology and Immunology, Saint Louis University School of Medicine, St. Louis, Missouri
| | - Alexander Piening
- Department of Molecular Microbiology and Immunology, Saint Louis University School of Medicine, St. Louis, Missouri
| | - Maureen J Donlin
- Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, St. Louis, Missouri
| | - Eddy C Hsueh
- Department of Surgery, Saint Louis University School of Medicine, St. Louis, Missouri
| | - Theresa L Schwartz
- Department of Surgery, Saint Louis University School of Medicine, St. Louis, Missouri
| | - Kaitlin Farrell
- Department of Surgery, Saint Louis University School of Medicine, St. Louis, Missouri
| | - John M Richart
- Department of Internal Medicine, Division of Hematology and Oncology, Saint Louis University School of Medicine, St. Louis, Missouri
| | - Elizabeth Geerling
- Department of Molecular Microbiology and Immunology, Saint Louis University School of Medicine, St. Louis, Missouri
| | - Amelia K Pinto
- Department of Molecular Microbiology and Immunology, Saint Louis University School of Medicine, St. Louis, Missouri
| | - Sarah L George
- Department of Internal Medicine, Division of Infectious Diseases, Allergy and Immunology, Saint Louis University School of Medicine, St. Louis, Missouri
| | - Carolyn J Albert
- Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, St. Louis, Missouri
| | - David A Ford
- Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, St. Louis, Missouri
| | - Xiufen Chen
- Department of Medicine, University of Chicago, Chicago, Illinois
| | - Justin Kline
- Department of Medicine, University of Chicago, Chicago, Illinois
| | - Ryan M Teague
- Department of Molecular Microbiology and Immunology, Saint Louis University School of Medicine, St. Louis, Missouri.
- Alvin J. Siteman National Cancer Institute Comprehensive Cancer Center, St. Louis, Missouri
| |
Collapse
|
21
|
Gencer S, Evans BR, van der Vorst EP, Döring Y, Weber C. Inflammatory Chemokines in Atherosclerosis. Cells 2021; 10:cells10020226. [PMID: 33503867 PMCID: PMC7911854 DOI: 10.3390/cells10020226] [Citation(s) in RCA: 94] [Impact Index Per Article: 31.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 01/18/2021] [Accepted: 01/22/2021] [Indexed: 12/14/2022] Open
Abstract
Atherosclerosis is a long-term, chronic inflammatory disease of the vessel wall leading to the formation of occlusive or rupture-prone lesions in large arteries. Complications of atherosclerosis can become severe and lead to cardiovascular diseases (CVD) with lethal consequences. During the last three decades, chemokines and their receptors earned great attention in the research of atherosclerosis as they play a key role in development and progression of atherosclerotic lesions. They orchestrate activation, recruitment, and infiltration of immune cells and subsequent phenotypic changes, e.g., increased uptake of oxidized low-density lipoprotein (oxLDL) by macrophages, promoting the development of foam cells, a key feature developing plaques. In addition, chemokines and their receptors maintain homing of adaptive immune cells but also drive pro-atherosclerotic leukocyte responses. Recently, specific targeting, e.g., by applying cell specific knock out models have shed new light on their functions in chronic vascular inflammation. This article reviews recent findings on the role of immunomodulatory chemokines in the development of atherosclerosis and their potential for targeting.
Collapse
Affiliation(s)
- Selin Gencer
- Institute for Cardiovascular Prevention, Ludwig-Maximilians-University, 80336 Munich, Germany; (S.G.); (E.P.C.v.d.V.); (Y.D.)
| | - Bryce R. Evans
- Department of Angiology, Swiss Cardiovascular Center, Inselspital, Bern University Hospital, University of Bern, 3010 Bern, Switzerland; (B.R.E.)
| | - Emiel P.C. van der Vorst
- Institute for Cardiovascular Prevention, Ludwig-Maximilians-University, 80336 Munich, Germany; (S.G.); (E.P.C.v.d.V.); (Y.D.)
- German Center for Cardiovascular Research (DZHK), Partner Site Munich Heart Alliance, 80336 Munich, Germany
- Interdisciplinary Center for Clinical Research (IZKF), Institute for Molecular Cardiovascular Research (IMCAR), RWTH Aachen University, 52074 Aachen, Germany
- Department of Pathology, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, 6229 ER Maastricht, The Netherlands
| | - Yvonne Döring
- Institute for Cardiovascular Prevention, Ludwig-Maximilians-University, 80336 Munich, Germany; (S.G.); (E.P.C.v.d.V.); (Y.D.)
- Department of Angiology, Swiss Cardiovascular Center, Inselspital, Bern University Hospital, University of Bern, 3010 Bern, Switzerland; (B.R.E.)
- German Center for Cardiovascular Research (DZHK), Partner Site Munich Heart Alliance, 80336 Munich, Germany
| | - Christian Weber
- Institute for Cardiovascular Prevention, Ludwig-Maximilians-University, 80336 Munich, Germany; (S.G.); (E.P.C.v.d.V.); (Y.D.)
- German Center for Cardiovascular Research (DZHK), Partner Site Munich Heart Alliance, 80336 Munich, Germany
- Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University Medical Centre, 6229 ER Maastricht, The Netherlands
- Munich Cluster for Systems Neurology (SyNergy), 80336 Munich, Germany
- Correspondence:
| |
Collapse
|
22
|
Cannabidiol Promotes Endothelial Cell Survival by Heme Oxygenase-1-Mediated Autophagy. Cells 2020; 9:cells9071703. [PMID: 32708634 PMCID: PMC7407143 DOI: 10.3390/cells9071703] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 07/06/2020] [Accepted: 07/10/2020] [Indexed: 12/17/2022] Open
Abstract
Cannabidiol (CBD), a non-psychoactive cannabinoid, has been reported to mediate antioxidant, anti-inflammatory, and anti-angiogenic effects in endothelial cells. This study investigated the influence of CBD on the expression of heme oxygenase-1 (HO-1) and its functional role in regulating metabolic, autophagic, and apoptotic processes of human umbilical vein endothelial cells (HUVEC). Concentrations up to 10 µM CBD showed a concentration-dependent increase of HO-1 mRNA and protein and an increase of the HO-1-regulating transcription factor nuclear factor erythroid 2-related factor 2 (Nrf2). CBD-induced HO-1 expression was not decreased by antagonists of cannabinoid-activated receptors (CB1, CB2, transient receptor potential vanilloid 1), but by the reactive oxygen species (ROS) scavenger N-acetyl-L-cysteine (NAC). The incubation of HUVEC with 6 µM CBD resulted in increased metabolic activity, while 10 µM CBD caused decreased metabolic activity and an induction of apoptosis, as demonstrated by enhanced caspase-3 cleavage. In addition, CBD triggered a concentration-dependent increase of the autophagy marker LC3A/B-II. Both CBD-induced LC3A/B-II levels and caspase-3 cleavage were reduced by NAC. The inhibition of autophagy by bafilomycin A1 led to apoptosis induction by 6 µM CBD and a further increase of the proapoptotic effect of 10 µM CBD. On the other hand, the inhibition of HO-1 activity with tin protoporphyrin IX (SnPPIX) or knockdown of HO-1 expression by Nrf2 siRNA was associated with a decrease in CBD-mediated autophagy and apoptosis. In summary, our data show for the first time ROS-mediated HO-1 expression in endothelial cells as a mechanism by which CBD mediates protective autophagy, which at higher CBD concentrations, however, can no longer prevent cell death inducing apoptosis.
Collapse
|
23
|
Zhang X, Shi S, Shen J, Zhao M, He Q. Functional Immunoregulation by Heme Oxygenase 1 in Juvenile Autoimmune Diseases. Curr Gene Ther 2020; 19:110-116. [PMID: 31288720 DOI: 10.2174/1566523219666190710092935] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Revised: 06/26/2019] [Accepted: 06/28/2019] [Indexed: 12/11/2022]
Abstract
An autoimmune disease is an inflammatory condition in which the human body's immune system attacks normal cells, resulting in decreased and abnormal immune function, which eventually leads to tissue damage or organ dysfunction. In the field of medicine, especially in pediatrics, knowledge about autoimmune diseases is still inadequate. Some common juvenile autoimmune diseases such as Henoch-Schonlein purpura, systemic juvenile idiopathic arthritis, mucocutaneous lymph node syndrome, and autoimmune encephalitis cause considerable public concern. Recent studies revealed that heme oxygenase 1 (HO-1), an enzyme that participates in heme degradation, plays a critical role in the pathogenesis and may regulate autoimmunity. Firstly, it may promote the differentiation of T lymphocytes into CD4+CD25+ regulatory T cells and may be associated with changes in the ratios of cytokines (Th1/Th2 and Th17/Treg) as well. Secondly, HO-1 can regulate the immune system through the secretion of proteins such as transforming growth factors and interleukins. Moreover, increasing the expression of HO-1 can improve vascular function by increasing antioxidant levels. Thus, HO-1 may provide a theoretical basis and guidance for therapeutic management of juvenile autoimmune diseases.
Collapse
Affiliation(s)
- Xueyan Zhang
- Department of Pediatrics, The Third Xiangya Hospital, Central South University, Changsha, Hunan Province, 410013, China.,Medical College of Xiangya, Central South University, Changsha, Hunan Province, 410013, China
| | - Shupeng Shi
- Department of Pediatrics, The Third Xiangya Hospital, Central South University, Changsha, Hunan Province, 410013, China.,Medical College of Xiangya, Central South University, Changsha, Hunan Province, 410013, China
| | - Jie Shen
- Department of Pediatrics, The Third Xiangya Hospital, Central South University, Changsha, Hunan Province, 410013, China
| | - Mingyi Zhao
- Department of Pediatrics, The Third Xiangya Hospital, Central South University, Changsha, Hunan Province, 410013, China
| | - Qingnan He
- Department of Pediatrics, The Third Xiangya Hospital, Central South University, Changsha, Hunan Province, 410013, China
| |
Collapse
|
24
|
Cho HR, Lee SO. Novel hepatoprotective peptides derived from protein hydrolysates of mealworm (Tenebrio molitor). Food Res Int 2020; 133:109194. [PMID: 32466897 DOI: 10.1016/j.foodres.2020.109194] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Revised: 03/03/2020] [Accepted: 03/21/2020] [Indexed: 12/21/2022]
Abstract
In the present study, we hypothesized that protein hydrolysates of mealworm (Tenebrio molitor) which is known to exert significant scavenging activity toward reactive oxygen species (ROS) might protect liver cells against ROS-induced cytotoxicity. Therefore, hepatoprotective effects of protein hydrolysates of mealworm and their underlying mechanisms were investigated in AML12 mouse liver cells and the responsible peptides were further identified. Pretreatment with the mealworm alcalase hydrolysate (MAH; <1 kDa) showed the highest protective effect against H2O2-induced cytotoxicity in AML12 cells among three mealworm hydrolysates produced by different proteases (alcalase, flavourzyme, and neutrase). Further mechanistic studies demonstrated that MAH reduces ROS levels through increasing NF-E2-related factor 2-mediated expression of catalase, heme oxygenase-1, and genes involved in glutathione synthesis. Moreover, two novel hepatoprotective peptides, Ala-Lys-Lys-His-Lys-Glu and Leu-Glu, which shared similar mechanisms of action with MAH were identified. These results suggest that MAH and the two peptides represent potential sources of natural hepatoprotective agents.
Collapse
Affiliation(s)
- Hye-Rin Cho
- Department of Food Science and Technology, Keimyung University, Daegu 42601, Republic of Korea
| | - Syng-Ook Lee
- Department of Food Science and Technology, Keimyung University, Daegu 42601, Republic of Korea.
| |
Collapse
|
25
|
Lan Y, Liu H, Liu J, Zhao H, Wang H. The Relationship Between Serum Bilirubin Levels and Peripheral Arterial Disease and Gender Difference in Patients With Hypertension: BEST Study. Angiology 2020; 71:340-348. [PMID: 32013527 DOI: 10.1177/0003319719900734] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
We evaluated the relationship between serum bilirubin levels and ankle-brachial index (ABI) to determine whether gender affected the relationship between bilirubin levels and peripheral arterial disease (PAD) in patients with hypertension. A total of 543 patients were included in our studies (78 patients with PAD and 465 without PAD). Peripheral arterial disease was defined as ABI <0.90 for either and/or both sides. Serum bilirubin levels were measured with a vanadate oxidation method by using fasting venous blood samples. Serum total bilirubin (TBiL) and direct bilirubin (DBiL) levels were higher in males compared with females (both P < .05). Total bilirubin and DBiL were significantly lower in the PAD group. After adjustment for cardiovascular risk factors, PAD was independently negatively related to TBiL and DBiL, with odds ratios (OR) 0.914 (95% confidence interval [CI]: 0.845-0.990) and 0.748 (95% CI: 0.572-0.977). In addition, there was a relationship between PAD and bilirubin levels (TBiL-OR = 0.884, 95% CI: 0.792-0.985; DBiL-OR = 0.621; 95% CI: 0.424-0.909) only in males but not in females. Future studies should further evaluate whether interventions that increase serum bilirubin levels will have a particular role in PAD prevention in males.
Collapse
Affiliation(s)
- Yang Lan
- Vascular Medicine Center, Peking University Shougang Hospital, Beijing, China
| | - Huan Liu
- Vascular Medicine Center, Peking University Shougang Hospital, Beijing, China
| | - Jinbo Liu
- Vascular Medicine Center, Peking University Shougang Hospital, Beijing, China
| | - Hongwei Zhao
- Vascular Medicine Center, Peking University Shougang Hospital, Beijing, China
| | - Hongyu Wang
- Vascular Medicine Center, Peking University Shougang Hospital, Beijing, China
| |
Collapse
|
26
|
Spotlight on a New Heme Oxygenase Pathway: Testosterone-Induced Shifts in Cardiac Oxidant/Antioxidant Status. Antioxidants (Basel) 2019; 8:antiox8080288. [PMID: 31394727 PMCID: PMC6720826 DOI: 10.3390/antiox8080288] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Revised: 08/02/2019] [Accepted: 08/03/2019] [Indexed: 01/01/2023] Open
Abstract
A low testosterone level contributes to the development of oxidative damages; however, the cardiovascular effects of exogenous hormone therapy are not well elucidated. The aim of our work is to study the association of the testosterone level, antioxidant/oxidant system, and anti-inflammatory status related to the heme oxygenase (HO) system. To determine the effects of testosterone, 10-week-old, and 24-month-old sham-operated and castrated male Wistar rats were used. One part of the castrated animals was daily treated with 2.5 mg/kg cyproterone acetate, while the hormone replacement therapy was performed via an i.m. injection of a dose of 8.0 mg testosterone undecanoate/kg/once a week. The plasma testosterone level, the activity of HO and myeloperoxidase (MPO) enzymes; the concentrations of the HO-1, tumor necrosis alpha (TNF-α), and cyclic guanosine monophosphate (cGMP), as well as the total level of glutathione (GSH + GSSG) were determined from the cardiac left ventricle. In accordance with the testosterone values, the aging process and castration resulted in a decrease in antioxidant HO activity, HO-1 and cGMP concentrations and in the level of GSH + GSSG, whereas the inflammatory TNF-α and MPO activity significantly increased. Testosterone therapy was able to restore the physiological values. Our results clearly show that testosterone replacement therapy increases the antioxidant status and mitigates the inflammatory parameters via the modulation of the HO system.
Collapse
|
27
|
Seo MS, Kim HJ, Kim H, Park SW. Ethyl Pyruvate Directly Attenuates Active Secretion of HMGB1 in Proximal Tubular Cells via Induction of Heme Oxygenase-1. J Clin Med 2019; 8:jcm8050629. [PMID: 31072024 PMCID: PMC6572201 DOI: 10.3390/jcm8050629] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2019] [Revised: 04/09/2019] [Accepted: 05/07/2019] [Indexed: 12/25/2022] Open
Abstract
Renal ischemia reperfusion (IR) is a main cause of acute kidney injury leading to high morbidity and mortality during postoperative periods. This study investigated whether ethyl pyruvate (EP) protects the kidney against renal IR injury. Male C57BL/6 mice were treated with vehicle or EP (40 mg/kg) 1 h before ischemia and the plasma creatinine (Cr) levels and tubular damage were evaluated after reperfusion. EP attenuated the IR-induced plasma Cr levels, renal inflammation and apoptotic cell death, but the effect of EP was abolished by pretreating Zinc protoporphyrin (ZnPP), a heme oxygenase (HO)-1 inhibitor. HO-1 is a stress-induced protein and protects the kidney against IR injury. EP increased significantly HO-1 expression in the proximal tubular cells in vivo and HK-2 cells in vitro. Inhibition of PI3K/Akt pathway and knockdown of Nrf2 blocked HO-1 induction by EP. High mobility group box 1 (HMGB1) secretion was assessed as an early mediator of IR injury; plasma HMGB1 were significantly elevated as early as 2 h to 24 h after reperfusion and these were attenuated by EP, but the effect of EP was abolished by ZnPP. EP also reduced HMGB1 secretion stimulated by TNF-α in HK-2 cells, and the inhibition of PI3K/Akt and knockdown of HO-1 blocked the effect of EP. Conclusively, EP inhibits the active secretion of HMGB1 from proximal tubular cells during IR injury by inducing HO-1 via activation of PI3K/Akt and Nrf2 pathway.
Collapse
Affiliation(s)
- Min Suk Seo
- Department of Pharmacology, Institute of Health Sciences, Gyeongsang National University College of Medicine, Jinju 52727, Korea.
- Department of Internal Medicine, Samsung Changwon Hospital, Changwon 51353, Korea.
| | - Hye Jung Kim
- Department of Pharmacology, Institute of Health Sciences, Gyeongsang National University College of Medicine, Jinju 52727, Korea.
| | - Hwajin Kim
- Department of Pharmacology, Institute of Health Sciences, Gyeongsang National University College of Medicine, Jinju 52727, Korea.
| | - Sang Won Park
- Department of Pharmacology, Institute of Health Sciences, Gyeongsang National University College of Medicine, Jinju 52727, Korea.
| |
Collapse
|
28
|
De Silva SF, Alcorn J. Flaxseed Lignans as Important Dietary Polyphenols for Cancer Prevention and Treatment: Chemistry, Pharmacokinetics, and Molecular Targets. Pharmaceuticals (Basel) 2019; 12:E68. [PMID: 31060335 PMCID: PMC6630319 DOI: 10.3390/ph12020068] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Revised: 04/26/2019] [Accepted: 04/30/2019] [Indexed: 02/07/2023] Open
Abstract
Cancer causes considerable morbidity and mortality across the world. Socioeconomic, environmental, and lifestyle factors contribute to the increasing cancer prevalence, bespeaking a need for effective prevention and treatment strategies. Phytochemicals like plant polyphenols are generally considered to have anticancer, anti-inflammatory, antiviral, antimicrobial, and immunomodulatory effects, which explain their promotion for human health. The past several decades have contributed to a growing evidence base in the literature that demonstrate ability of polyphenols to modulate multiple targets of carcinogenesis linking models of cancer characteristics (i.e., hallmarks and nutraceutical-based targeting of cancer) via direct or indirect interaction or modulation of cellular and molecular targets. This evidence is particularly relevant for the lignans, an ubiquitous, important class of dietary polyphenols present in high levels in food sources such as flaxseed. Literature evidence on lignans suggests potential benefit in cancer prevention and treatment. This review summarizes the relevant chemical and pharmacokinetic properties of dietary polyphenols and specifically focuses on the biological targets of flaxseed lignans. The consolidation of the considerable body of data on the diverse targets of the lignans will aid continued research into their potential for use in combination with other cancer chemotherapies, utilizing flaxseed lignan-enriched natural products.
Collapse
Affiliation(s)
- S Franklyn De Silva
- Drug Discovery & Development Research Group, College of Pharmacy and Nutrition, 104 Clinic Place, Health Sciences Building, University of Saskatchewan, Saskatoon, Saskatchewan (SK), S7N 2Z4, Canada.
| | - Jane Alcorn
- Drug Discovery & Development Research Group, College of Pharmacy and Nutrition, 104 Clinic Place, Health Sciences Building, University of Saskatchewan, Saskatoon, Saskatchewan (SK), S7N 2Z4, Canada.
| |
Collapse
|
29
|
Cheng Y, Chang Y, Feng Y, Jian H, Wu X, Zheng R, Xu K, Zhang H. Bismuth Sulfide Nanorods with Retractable Zinc Protoporphyrin Molecules for Suppressing Innate Antioxidant Defense System and Strengthening Phototherapeutic Effects. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2019; 31:e1806808. [PMID: 30633400 DOI: 10.1002/adma.201806808] [Citation(s) in RCA: 73] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2018] [Revised: 12/14/2018] [Indexed: 05/11/2023]
Abstract
Bismuth (Bi)-based nanomaterials (NMs) are widely used for computed tomography (CT) imaging guided photothermal therapy, however, the photodynamic property is hardly exhibited by these NMs due to the fast electron-hole recombination within their narrow bandgap. Herein, a sophisticated nanosystem is designed to endow bismuth sulfide (Bi2 S3 ) nanorods (NRs) with potent photodynamic property. Zinc protoporphyrin IX (ZP) is linked to Bi2 S3 NRs through a thermoresponsive polymer to form BPZP nanosystems. The stretching ZP could prebind to the active site of heme oxygenase-1 overexpressed in cancer cells, suppressing the cellular antioxidant defense capability. Upon NIR laser irradiation, the heat released from Bi2 S3 NRs could retract the polymer and drive ZP to the proximity of Bi2 S3 NRs, facilitating an efficient electron-hole separation in ZP and Bi2 S3 NRs, and leading to reactive oxygen species generation. In vitro and in vivo studies demonstrate the promising photodynamic property of BPZP, together with their photothermal and CT imaging performance.
Collapse
Affiliation(s)
- Yan Cheng
- Laboratory of Chemical Biology, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, Jilin, China
| | - Yun Chang
- Laboratory of Chemical Biology, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, Jilin, China
- University of Chinese Academy of Sciences, Beijing, 100039, China
| | - Yanlin Feng
- Laboratory of Chemical Biology, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, Jilin, China
- University of Science and Technology of China, Hefei, 230026, Anhui, China
| | - Hui Jian
- Laboratory of Chemical Biology, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, Jilin, China
| | - Xiaqing Wu
- Laboratory of Chemical Biology, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, Jilin, China
- University of Science and Technology of China, Hefei, 230026, Anhui, China
| | - Runxiao Zheng
- Laboratory of Chemical Biology, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, Jilin, China
- University of Science and Technology of China, Hefei, 230026, Anhui, China
| | - Keqiang Xu
- Laboratory of Chemical Biology, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, Jilin, China
- University of Science and Technology of China, Hefei, 230026, Anhui, China
| | - Haiyuan Zhang
- Laboratory of Chemical Biology, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, Jilin, China
- University of Science and Technology of China, Hefei, 230026, Anhui, China
| |
Collapse
|
30
|
Donegan RK, Moore CM, Hanna DA, Reddi AR. Handling heme: The mechanisms underlying the movement of heme within and between cells. Free Radic Biol Med 2019; 133:88-100. [PMID: 30092350 PMCID: PMC6363905 DOI: 10.1016/j.freeradbiomed.2018.08.005] [Citation(s) in RCA: 90] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2018] [Revised: 07/31/2018] [Accepted: 08/01/2018] [Indexed: 02/02/2023]
Abstract
Heme is an essential cofactor and signaling molecule required for virtually all aerobic life. However, excess heme is cytotoxic. Therefore, heme must be safely transported and trafficked from the site of synthesis in the mitochondria or uptake at the cell surface, to hemoproteins in most subcellular compartments. While heme synthesis and degradation are relatively well characterized, little is known about how heme is trafficked and transported throughout the cell. Herein, we review eukaryotic heme transport, trafficking, and mobilization, with a focus on factors that regulate bioavailable heme. We also highlight the role of gasotransmitters and small molecules in heme mobilization and bioavailability, and heme trafficking at the host-pathogen interface.
Collapse
Affiliation(s)
- Rebecca K Donegan
- School of Chemistry & Biochemistry, Georgia Institute of Technology, Atlanta, GA 30332, United States
| | - Courtney M Moore
- School of Chemistry & Biochemistry, Georgia Institute of Technology, Atlanta, GA 30332, United States
| | - David A Hanna
- School of Chemistry & Biochemistry, Georgia Institute of Technology, Atlanta, GA 30332, United States
| | - Amit R Reddi
- School of Chemistry & Biochemistry, Georgia Institute of Technology, Atlanta, GA 30332, United States; School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA 30332, United States; Parker Petit Institute for Bioengineering & Biosciences, Georgia Institute of Technology, Atlanta, GA 30332, United States.
| |
Collapse
|
31
|
Maamoun H, Benameur T, Pintus G, Munusamy S, Agouni A. Crosstalk Between Oxidative Stress and Endoplasmic Reticulum (ER) Stress in Endothelial Dysfunction and Aberrant Angiogenesis Associated With Diabetes: A Focus on the Protective Roles of Heme Oxygenase (HO)-1. Front Physiol 2019; 10:70. [PMID: 30804804 PMCID: PMC6378556 DOI: 10.3389/fphys.2019.00070] [Citation(s) in RCA: 85] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Accepted: 01/21/2019] [Indexed: 12/17/2022] Open
Abstract
Type-2 diabetes prevalence is continuing to rise worldwide due to physical inactivity and obesity epidemic. Diabetes and fluctuations of blood sugar are related to multiple micro- and macrovascular complications, that are attributed to oxidative stress, endoplasmic reticulum (ER) activation and inflammatory processes, which lead to endothelial dysfunction characterized, among other features, by reduced availability of nitric oxide (NO) and aberrant angiogenic capacity. Several enzymatic anti-oxidant and anti-inflammatory agents have been found to play protective roles against oxidative stress and its downstream signaling pathways. Of particular interest, heme oxygenase (HO) isoforms, specifically HO-1, have attracted much attention as major cytoprotective players in conditions associated with inflammation and oxidative stress. HO operates as a key rate-limiting enzyme in the process of degradation of the iron-containing molecule, heme, yielding the following byproducts: carbon monoxide (CO), iron, and biliverdin. Because HO-1 induction was linked to pro-oxidant states, it has been regarded as a marker of oxidative stress; however, accumulating evidence has established multiple cytoprotective roles of the enzyme in metabolic and cardiovascular disorders. The cytoprotective effects of HO-1 depend on several cellular mechanisms including the generation of bilirubin, an anti-oxidant molecule, from the degradation of heme; the induction of ferritin, a strong chelator of free iron; and the release of CO, that displays multiple anti-inflammatory and anti-apoptotic actions. The current review article describes the major molecular mechanisms contributing to endothelial dysfunction and altered angiogenesis in diabetes with a special focus on the interplay between oxidative stress and ER stress response. The review summarizes the key cytoprotective roles of HO-1 against hyperglycemia-induced endothelial dysfunction and aberrant angiogenesis and discusses the major underlying cellular mechanisms associated with its protective effects.
Collapse
Affiliation(s)
- Hatem Maamoun
- Department of Medical Biochemistry and Molecular Biology, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - Tarek Benameur
- College of Medicine, King Faisal University, Al-Ahsa, Saudi Arabia
| | - Gianfranco Pintus
- Department of Biomedical Sciences, College of Health Sciences, Qatar University, Doha, Qatar
| | - Shankar Munusamy
- Department of Pharmaceutical and Administrative Sciences, College of Pharmacy and Health Sciences, Drake University, Des Moines, IA, United States
| | - Abdelali Agouni
- Department of Pharmaceutical Sciences, College of Pharmacy, Qatar University, Doha, Qatar
| |
Collapse
|
32
|
Jujo K, Hagiwara N. Alternative Exercise Intervention for Patients With Severe Peripheral Artery Disease ― Akt1-Induced Blood Flow Recovery ―. Circ J 2018; 82:2705-2706. [DOI: 10.1253/circj.cj-18-1061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Kentaro Jujo
- Department of Cardiology, Tokyo Women’s Medical University
| | | |
Collapse
|
33
|
Oxidative stress - chronic kidney disease - cardiovascular disease: A vicious circle. Life Sci 2018; 210:125-131. [PMID: 30172705 DOI: 10.1016/j.lfs.2018.08.067] [Citation(s) in RCA: 72] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Revised: 08/22/2018] [Accepted: 08/30/2018] [Indexed: 12/11/2022]
Abstract
Chronic kidney disease patient's progression to end-stage renal disease as well as their high mortality are linked to cardiovascular disease. However, the high incidence rate of cardiovascular morbidity and mortality in these patients is not fully accounted for by traditional cardiovascular risk factors such as diabetes, hypertension and obesity. Renal disease and CVD are associated with endothelial dysfunction, inflammation and oxidative stress and in this review we will examine what is known regarding their similar roles in both CVD and chronic kidney disease, specifically focusing on the interconnections between oxidative stress, inflammation and endothelial dysfunction. These interconnections are best visualized as a vicious circle wherein these entities coexist and communicate with each other, thereby exacerbating the processes underpinning these different entities with the end result of the high morbidity and mortality that characterize CKD patients. By exploring this vicious circle i.e. the mode and extent of the interrelationships as well as some of the underlying mechanisms involved, this review aims at outlining our current understanding as well as highlighting future avenues for research and potential targets for therapeutic intervention.
Collapse
|
34
|
Bondonno NP, Bondonno CP, Blekkenhorst LC, Considine MJ, Maghzal G, Stocker R, Woodman RJ, Ward NC, Hodgson JM, Croft KD. Flavonoid-Rich Apple Improves Endothelial Function in Individuals at Risk for Cardiovascular Disease: A Randomized Controlled Clinical Trial. Mol Nutr Food Res 2017; 62. [PMID: 29086478 DOI: 10.1002/mnfr.201700674] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Revised: 09/22/2017] [Indexed: 12/25/2022]
Abstract
SCOPE The cardioprotective effects of apples are primarily attributed to flavonoids, found predominantly in the skin. This study aimed to determine if acute and/or chronic (4 weeks) ingestion of flavonoid-rich apples improves endothelial function, blood pressure (BP), and arterial stiffness in individuals at risk for cardiovascular diseases (CVD). METHODS AND RESULTS In this randomized, controlled cross-over trial, acute and 4 week intake of apple with skin (high flavonoid apple, HFA) is compared to intake of apple flesh only (low flavonoid apple, LFA) in 30 participants. The primary outcome is endothelial function assessed using flow-mediated dilation (FMD) of the brachial artery, while main secondary outcomes are 24 h ambulatory BP and arterial stiffness. Other outcomes include fasting serum glucose and lipoprotein profile, plasma heme oxygenase-1 (Hmox-1), F2 -isoprostanes, flavonoid metabolites, and plasma and salivary nitrate (NO3- ) and nitrite (NO2- ) concentrations. Compared to LFA control, the HFA results in a significant increase in FMD acutely (0.8%, p < 0.001) and after 4 weeks chronic intake (0.5%, p < 0.001), and in plasma flavonoid metabolites (p < 0.0001). Other outcomes are not altered significantly. CONCLUSION A lower risk of CVD with higher apple consumption could be mediated by the beneficial effect of apple skin on endothelial function, both acutely and chronically.
Collapse
Affiliation(s)
- Nicola P Bondonno
- School of Medicine, University of Western Australia, Royal Perth Hospital, Perth, Western Australia, Australia
| | - Catherine P Bondonno
- School of Medicine, University of Western Australia, Royal Perth Hospital, Perth, Western Australia, Australia.,School of Medical and Health Sciences, Edith Cowan University, Perth, Western Australia, Australia
| | - Lauren C Blekkenhorst
- School of Medicine, University of Western Australia, Royal Perth Hospital, Perth, Western Australia, Australia
| | - Michael J Considine
- School of Molecular Sciences, and the School of Agriculture and Environment, University of Western Australia, Perth, Australia.,The UWA Institute of Agriculture, University of Western Australia, Perth, Australia.,Irrigated Agriculture Division, Department of Primary Industries and Regional Development, South Perth, Australia
| | - Ghassan Maghzal
- Vascular Biology Division, Victor Chang Cardiac Research Institute, Sydney, New South Wales, Australia.,St Vincent's Clinical School, Faculty of Medicine, University of New South Wales, NSW, Australia
| | - Roland Stocker
- Vascular Biology Division, Victor Chang Cardiac Research Institute, Sydney, New South Wales, Australia.,St Vincent's Clinical School, Faculty of Medicine, University of New South Wales, NSW, Australia
| | - Richard J Woodman
- Centre for Epidemiology and Biostatistics, School of Public Health, Flinders University of South Australia, Adelaide, South Australia, Australia
| | - Natalie C Ward
- School of Medicine, University of Western Australia, Royal Perth Hospital, Perth, Western Australia, Australia.,School of Biomedical Sciences and Curtin Health Innovation Research Institute, Curtin University, Perth, Western Australia, Australia
| | - Jonathan M Hodgson
- School of Medicine, University of Western Australia, Royal Perth Hospital, Perth, Western Australia, Australia.,School of Medical and Health Sciences, Edith Cowan University, Perth, Western Australia, Australia
| | - Kevin D Croft
- School of Medicine, University of Western Australia, Royal Perth Hospital, Perth, Western Australia, Australia
| |
Collapse
|
35
|
Croft KD, Zhang D, Jiang R, Ayer A, Shengule S, Payne RJ, Ward NC, Stocker R. Structural requirements of flavonoids to induce heme oxygenase-1 expression. Free Radic Biol Med 2017; 113:165-175. [PMID: 28970059 DOI: 10.1016/j.freeradbiomed.2017.09.030] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Revised: 09/24/2017] [Accepted: 09/28/2017] [Indexed: 02/07/2023]
Abstract
Population studies suggest cardiovascular health benefits of consuming fruits and vegetables rich in polyphenolic compounds such as flavonoids. We reported previously that the flavonoid quercetin protects arteries from oxidant-induced endothelial dysfunction and attenuates atherosclerosis in apolipoprotein E gene knockout mice, with induction of heme oxygenase-1 (Hmox1) playing a critical role. The present study investigated the structural requirements of flavonoids to induce Hmox1 in human aortic endothelial cells (HAEC). We identified ortho-dihydroxyl groups and an α,β-unsaturated system attached to a catechol as the key structural requirements for Hmox1 induction. Active but not inactive flavonoids had a low oxidation potential and prevented ascorbate autoxidation, suggesting that Hmox1 inducers readily undergo oxidation and that oxidized, rather than reduced, flavonoids may be the biological inducer of Hmox1. To test this hypothesis, we synthesized stable derivatives of caffeic acid (3-(3,4-dihyroxyphenyl)-2-propenoic acid) containing either ortho-dihydroxy or ortho-dioxo groups. Compared with the dihydroxy compound, the quinone analog induced Hmox1 more potently in HAEC and also provided enhanced protection to arteries of wild type animals against oxidant-induced endothelial dysfunction. In contrast, the quinone analog failed to provide protection against oxidant-induced endothelial dysfunction in arteries of Hmox1-/- mice, establishing a key role for Hmox1 in vascular protection. These results suggest that oxidized forms of dietary polyphenols are the likely inducers of Hmox1 and may explain in part the protective cardiovascular effects of diets rich in these compounds.
Collapse
Affiliation(s)
- K D Croft
- School of Biomedical Science, University of Western Australia, Perth, Western Australia, Australia.
| | - D Zhang
- Vascular Biology Division, Victor Chang Cardiac Research Institute, Sydney, New South Wales, Australia
| | - R Jiang
- School of Biomedical Science, University of Western Australia, Perth, Western Australia, Australia
| | - A Ayer
- Vascular Biology Division, Victor Chang Cardiac Research Institute, Sydney, New South Wales, Australia
| | - S Shengule
- Vascular Biology Division, Victor Chang Cardiac Research Institute, Sydney, New South Wales, Australia
| | - R J Payne
- School of Chemistry, The University of Sydney, Sydney, New South Wales, Australia
| | - N C Ward
- School of Biomedical Science, University of Western Australia, Perth, Western Australia, Australia; School of Biomedical Sciences and Curtin Health Innovation Research Institute, Curtin, Western Australia, Australia
| | - R Stocker
- Vascular Biology Division, Victor Chang Cardiac Research Institute, Sydney, New South Wales, Australia; St Vincent's Clinical School, University of New South Wales, Sydney, New South Wales, Australia.
| |
Collapse
|
36
|
Münzel T, Camici GG, Maack C, Bonetti NR, Fuster V, Kovacic JC. Impact of Oxidative Stress on the Heart and Vasculature: Part 2 of a 3-Part Series. J Am Coll Cardiol 2017; 70:212-229. [PMID: 28683969 DOI: 10.1016/j.jacc.2017.05.035] [Citation(s) in RCA: 340] [Impact Index Per Article: 48.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2017] [Revised: 04/25/2017] [Accepted: 05/10/2017] [Indexed: 02/07/2023]
Abstract
Vascular disease and heart failure impart an enormous burden in terms of global morbidity and mortality. Although there are many different causes of cardiac and vascular disease, most causes share an important pathological mechanism: oxidative stress. In the failing heart, oxidative stress occurs in the myocardium and correlates with left ventricular dysfunction. Reactive oxygen species (ROS) negatively affect myocardial calcium handling, cause arrhythmia, and contribute to cardiac remodeling by inducing hypertrophic signaling, apoptosis, and necrosis. Similarly, oxidative balance in the vasculature is tightly regulated by a wealth of pro- and antioxidant systems that orchestrate region-specific ROS production and removal. Reactive oxygen species also regulate multiple vascular cell functions, including endothelial and smooth muscle cell growth, proliferation, and migration; angiogenesis; apoptosis; vascular tone; host defenses; and genomic stability. However, excessive levels of ROS promote vascular disease through direct and irreversible oxidative damage to macromolecules, as well as disruption of redox-dependent vascular wall signaling processes.
Collapse
Affiliation(s)
- Thomas Münzel
- Center for Cardiology Mainz, Cardiology I, University Medical Center Mainz, Johannes Gutenberg University, Mainz, Germany.
| | - Giovanni G Camici
- Center for Molecular Cardiology, University of Zurich, Schlieren, Switzerland.
| | - Christoph Maack
- Klinik für Innere Medizin III, Universitätsklinikum des Saarlandes, Homburg, Germany
| | - Nicole R Bonetti
- Center for Molecular Cardiology, University of Zurich, Schlieren, Switzerland
| | - Valentin Fuster
- The Zena and Michael A. Wiener Cardiovascular Institute, Icahn School of Medicine at Mount Sinai, New York, New York; Marie-Josée and Henry R. Kravis Cardiovascular Health Center, Icahn School of Medicine at Mount Sinai, New York, New York; Centro Nacional de Investigaciones Cardiovasculares, Madrid, Spain
| | - Jason C Kovacic
- The Zena and Michael A. Wiener Cardiovascular Institute, Icahn School of Medicine at Mount Sinai, New York, New York.
| |
Collapse
|
37
|
Filipek A, Czerwińska ME, Kiss AK, Polański JA, Naruszewicz M. Oleacein may inhibit destabilization of carotid plaques from hypertensive patients. Impact on high mobility group protein-1. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2017; 32:68-73. [PMID: 28732809 DOI: 10.1016/j.phymed.2017.06.004] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2016] [Revised: 01/20/2017] [Accepted: 06/09/2017] [Indexed: 06/07/2023]
Abstract
BACKGROUND In patients with hypertension the haemorrhage into carotid atherosclerotic plaque increases risk of plaque destabilization and rupture. Our previous study showed that oleacein, a secoiridoid present in extra virgin olive oil, enhanced uptake of haemoglobin-haptoglobin complex and change macrophage phenotype from pro-inflammatory M1 to anti-inflammatory M2. PURPOSE The aim this study was to investigate a potential role of oleacein in attenuation of carotid plaque destabilisation ex vivo. METHODS Samples of atherosclerotic plaque were harvested from 20 patients with hypertension /11 women and 9 men/, who underwent carotid endarterectomy after transient ischemic attacks. Matching pieces of each plaque were incubated with increased concentration of pure oleacein /range 0-20 µM/ for 24 h. HMGB1, MMP-9, MMP-9/NGAL, TF and IL-10, as well as HO-1 secretion from plaque was measured by enzyme-linked immunosorbent assay /ELISA/. Statistical significance was set at P < 0.05 and P < 0.001. RESULTS Oleacein at the concentrations of 10 and 20 µM significantly (P < 0.001) decreased secretion of HMGB1 (up 90%), MMP-9 (up to 80%), MMP-9/NGAL complex (up to 80%) and TF (more than 90%) from the treated plaque, as compared to control. At the same time IL-10 and HO-1 release increased by more than 80% (P < 0.001). CONCLUSION Our results indicate that oleacein possess ability to attenuate the destabilization of carotid plaque and could be potentially useful in the reduction of ischemic stroke risk.
Collapse
Affiliation(s)
- Agnieszka Filipek
- Department of Pharmacognosy and Molecular Basis of Phytotherapy, Faculty of Pharmacy, Medical University of Warsaw, Banacha 1, 02-097 Warsaw, Poland
| | - Monika E Czerwińska
- Department of Pharmacognosy and Molecular Basis of Phytotherapy, Faculty of Pharmacy, Medical University of Warsaw, Banacha 1, 02-097 Warsaw, Poland
| | - Anna K Kiss
- Department of Pharmacognosy and Molecular Basis of Phytotherapy, Faculty of Pharmacy, Medical University of Warsaw, Banacha 1, 02-097 Warsaw, Poland
| | - Jerzy A Polański
- Chair and Department of General, Vascular and Oncologic Surgery, Medical University of Warsaw, Żwirki i Wigury 61, 02-091 Warsaw, Poland
| | - Marek Naruszewicz
- Department of Pharmacognosy and Molecular Basis of Phytotherapy, Faculty of Pharmacy, Medical University of Warsaw, Banacha 1, 02-097 Warsaw, Poland.
| |
Collapse
|
38
|
Cho S, Namkoong K, Shin M, Park J, Yang E, Ihm J, Thu VT, Kim HK, Han J. Cardiovascular Protective Effects and Clinical Applications of Resveratrol. J Med Food 2017; 20:323-334. [PMID: 28346848 DOI: 10.1089/jmf.2016.3856] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Resveratrol is a naturally occurring phenol that is generated by plant species following injury or attack by bacterial and fungal pathogens. This compound was first described as the French Paradox in 1992. Later in 2003, resveratrol was reported to activate sirtuins in yeast cells. Recent experimental studies have found that resveratrol offers a variety of benefits that include both anticarcinogenic and anti-inflammatory effects in addition to the ability to reverse obesity, attenuate hyperglycemia and hyperinsulinemia, protect heart and endothelial function, and increase the life span. Multiple molecular targets are associated with the cardioprotective capabilities of resveratrol, and therefore, resveratrol has potential for a wide range of new therapeutic strategies for atherosclerosis, ischemia/reperfusion, metabolic syndrome, cardiac failure, and inflammatory alterations during aging. Expectations for application in human patients, however, suffer from a lack of sufficient clinical evidence in support of these beneficial effects. This article reviews recently reported basic research results that describe the beneficial effects of resveratrol in an attempt to condense the evidence observed in clinical trials and provide support for the future development of novel clinical therapeutics in patients with cardiovascular diseases.
Collapse
Affiliation(s)
- Sanghyun Cho
- 1 National Research Laboratory for Mitochondrial Signaling, Cardiovascular and Metabolic Disease Center, Department of Health Sciences and Technology, BK21 Project Team, Department of Physiology, College of Medicine, Inje University , Busan, Korea
| | - Kyung Namkoong
- 1 National Research Laboratory for Mitochondrial Signaling, Cardiovascular and Metabolic Disease Center, Department of Health Sciences and Technology, BK21 Project Team, Department of Physiology, College of Medicine, Inje University , Busan, Korea
| | - Minji Shin
- 1 National Research Laboratory for Mitochondrial Signaling, Cardiovascular and Metabolic Disease Center, Department of Health Sciences and Technology, BK21 Project Team, Department of Physiology, College of Medicine, Inje University , Busan, Korea
| | - Jueun Park
- 1 National Research Laboratory for Mitochondrial Signaling, Cardiovascular and Metabolic Disease Center, Department of Health Sciences and Technology, BK21 Project Team, Department of Physiology, College of Medicine, Inje University , Busan, Korea
| | - Eunyeong Yang
- 1 National Research Laboratory for Mitochondrial Signaling, Cardiovascular and Metabolic Disease Center, Department of Health Sciences and Technology, BK21 Project Team, Department of Physiology, College of Medicine, Inje University , Busan, Korea
| | - Jinsoo Ihm
- 1 National Research Laboratory for Mitochondrial Signaling, Cardiovascular and Metabolic Disease Center, Department of Health Sciences and Technology, BK21 Project Team, Department of Physiology, College of Medicine, Inje University , Busan, Korea
| | - Vu Thi Thu
- 1 National Research Laboratory for Mitochondrial Signaling, Cardiovascular and Metabolic Disease Center, Department of Health Sciences and Technology, BK21 Project Team, Department of Physiology, College of Medicine, Inje University , Busan, Korea.,2 Key Laboratory of Enzyme and Protein Technology, Faculty of Biology, VNU University of Science , Hanoi, Vietnam
| | - Hyoung Kyu Kim
- 1 National Research Laboratory for Mitochondrial Signaling, Cardiovascular and Metabolic Disease Center, Department of Health Sciences and Technology, BK21 Project Team, Department of Physiology, College of Medicine, Inje University , Busan, Korea.,3 Department of Integrated Biomedical Science, College of Medicine, Inje University , Busan, Korea
| | - Jin Han
- 1 National Research Laboratory for Mitochondrial Signaling, Cardiovascular and Metabolic Disease Center, Department of Health Sciences and Technology, BK21 Project Team, Department of Physiology, College of Medicine, Inje University , Busan, Korea
| |
Collapse
|
39
|
Tulsulkar J, Ward A, Shah ZA. HO1 and Wnt expression is independently regulated in female mice brains following permanent ischemic brain injury. Brain Res 2017; 1662:1-6. [PMID: 28219651 DOI: 10.1016/j.brainres.2017.02.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Revised: 01/26/2017] [Accepted: 02/08/2017] [Indexed: 12/11/2022]
Abstract
A gender difference in stroke is observed throughout epidemiologic studies, pathophysiology, treatment and outcomes. We investigated the neuroprotective role of hemeoxygenase (HO) enzyme, which catabolizes free heme to bilirubin, carbon monoxide and biliverdin in the female brain after permanent ischemia. We have previously reported in male mice that genetic deletion of HO1 exacerbates the brain damage after permanent ischemia, and the mechanism of neuroprotection is dependent on the HO1/Wnt pathway; however, the role of HO1/Wnt mediated neuroprotection in the female brain is yet to be investigated. We subjected ovary intact female mice, HO1-/- intact, HO1 inhibitor tin mesoporphyrin (SnMP) treated intact and/or ovariectomized female mice to permanent ischemia (pMCAO), and the animals were sacrificed after 7days. The SnMP treatment for 7days significantly reduced the HO1 enzyme activity as compared to that of vehicle treated group. Infarct volume analysis showed significantly lower infarct in intact, HO1-/- intact, and SnMP treated group as compared to the OVX group, suggesting the role of estrogen in neuroprotection. However, there were no differences in infarct volume observed between the intact, HO1-/- and SnMP treated group, suggesting a sexually dimorphic role of HO1 neuroprotection. Western blot analysis on intact and SnMP-treated groups subjected to pMCAO suggested no significant differences in Wnt expression. Together, these results suggest that HO1 neuroprotection is sexually dimorphic and Wnt expression is independently regulated in the female brain following permanent ischemia.
Collapse
Affiliation(s)
- Jatin Tulsulkar
- Department of Medicinal and Biological Chemistry, University of Toledo, 3000 Arlington Avenue, Toledo, OH 43614, United States
| | - Alicia Ward
- Department of Medicinal and Biological Chemistry, University of Toledo, 3000 Arlington Avenue, Toledo, OH 43614, United States
| | - Zahoor A Shah
- Department of Medicinal and Biological Chemistry, University of Toledo, 3000 Arlington Avenue, Toledo, OH 43614, United States; Department of Pharmacology and Experimental Therapeutics, University of Toledo, 3000 Arlington Avenue, Toledo, OH 43614, United States.
| |
Collapse
|
40
|
Zhang L, Zhang H, Li X, Jia B, Yang Y, Zhou P, Li P, Chen J. Miltirone protects human EA.hy926 endothelial cells from oxidized low-density lipoprotein-derived oxidative stress via a heme oxygenase-1 and MAPK/Nrf2 dependent pathway. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2016; 23:1806-1813. [PMID: 27912883 DOI: 10.1016/j.phymed.2016.11.003] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2016] [Revised: 10/25/2016] [Accepted: 11/03/2016] [Indexed: 06/06/2023]
Abstract
BACKGROUND Oxidized low-density lipoprotein (ox-LDL) is an underlying cause of endothelial dysfunction, which is an early event in the pathogenesis of atherosclerosis. In our previous study, we established an ARE-driven luciferase reporter system and screened out several potential Nrf2 activators from Salvia miltiorrhiza Bunge. PURPOSE Since miltirone showed the most potent ARE-driven luciferase activity, the aim of this study was to test the protective role of miltirone against oxidative stress in endothelial cell and to investigate the underlying mechanistic signaling pathways. STUDY DESIGN/METHOD In the present study, miltirone increased the expression of nuclear translocation and transcriptional activities of NF-E2-related factor 2 (Nrf2), which led to augmented expression of antioxidant-response element (ARE)-dependent heme oxygenase-1 (HO-1) and NAD(P)H-quinone oxidoreductase 1 (NQO1). Inhibition of Nrf2/HO-1 by RNA interference abolished miltirone-induced cytoprotective effects against ox-LDL, which suggested that Nrf2 and the downstream expression of HO-1 are required for the functional effects of miltirone. Ox-LDL-stimulated mitogen-activated protein kinase activation, ROS production, and miltirone dramatically inhibited synthesis of ROS, as well as decreased SOD and glutathione S-transferase (GST) in human EA.hy926 endothelial cells. RESULTS Miltirone-induced Nrf2 and HO-1 expression was related to mitogen-activated protein kinase (MAPK) pathways. The activation of MAPK was partially dependent on the phosphorylation of the c-Jun NH2-terminal kinase (JNK) and extracellular signal-regulated kinase (ERK) pathways, but not P38 MAPK signaling. However, miltirone-induced Nrf2/HO-1 expression can only be effectively blocked by JNK inhibitor SP600125. CONCLUSION Our findings reveal that miltirone exerts protective functions on endothelial cells in response to ox-LDL-induced oxidative stress, and does so via Nrf2/HO-1, which provides novel insights into the antioxidant capacity of miltirone.
Collapse
Affiliation(s)
- Liu Zhang
- State Key Laboratory of Natural Medicines (China Pharmaceutical University), No. 24 Tongjia Lane, Nanjing 210009, China
| | - Hui Zhang
- State Key Laboratory of Natural Medicines (China Pharmaceutical University), No. 24 Tongjia Lane, Nanjing 210009, China
| | - Xueyan Li
- State Key Laboratory of Natural Medicines (China Pharmaceutical University), No. 24 Tongjia Lane, Nanjing 210009, China
| | - Bingjie Jia
- State Key Laboratory of Natural Medicines (China Pharmaceutical University), No. 24 Tongjia Lane, Nanjing 210009, China
| | - Yuyu Yang
- State Key Laboratory of Natural Medicines (China Pharmaceutical University), No. 24 Tongjia Lane, Nanjing 210009, China
| | - Ping Zhou
- State Key Laboratory of Natural Medicines (China Pharmaceutical University), No. 24 Tongjia Lane, Nanjing 210009, China
| | - Ping Li
- State Key Laboratory of Natural Medicines (China Pharmaceutical University), No. 24 Tongjia Lane, Nanjing 210009, China.
| | - Jun Chen
- State Key Laboratory of Natural Medicines (China Pharmaceutical University), No. 24 Tongjia Lane, Nanjing 210009, China; State key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China.
| |
Collapse
|
41
|
Gasparova I, Kubatka P, Opatrilova R, Caprnda M, Filipova S, Rodrigo L, Malan L, Mozos I, Rabajdova M, Nosal V, Kobyliak N, Valentova V, Petrovic D, Adamek M, Kruzliak P. Perspectives and challenges of antioxidant therapy for atrial fibrillation. Naunyn Schmiedebergs Arch Pharmacol 2016; 390:1-14. [PMID: 27900409 DOI: 10.1007/s00210-016-1320-9] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2016] [Accepted: 11/18/2016] [Indexed: 12/26/2022]
Abstract
Atrial fibrillation (AF) is the most common sustained arrhythmia associated with significant morbidity and mortality. The mechanisms underlying the pathogenesis of AF are poorly understood, although electrophysiological remodeling has been described as an important initiating step. There is growing evidence that oxidative stress is involved in the pathogenesis of AF. Many known triggers of oxidative stress, such as age, diabetes, smoking, and inflammation, are linked with an increased risk of arrhythmia. Numerous preclinical studies and clinical trials reported the importance of antioxidant therapy in the prevention of AF, using vitamins C and E, polyunsaturated fatty acids, statins, or nitric oxide donors. The aim of our work is to give a current overview and analysis of opportunities, challenges, and benefits of antioxidant therapy in AF.
Collapse
Affiliation(s)
- Iveta Gasparova
- Institute of Biology, Genetics and Medical Genetics, Faculty of Medicine, Comenius University and University Hospital, Bratislava, Slovak Republic, Slovakia
| | - Peter Kubatka
- Department of Medical Biology, Jessenius Faculty of Medicine, Comenius University in Bratislava, Martin, Slovak Republic, Slovakia
| | - Radka Opatrilova
- Department of Chemical Drugs, Faculty of Pharmacy, University of Veterinary and Pharmaceutical Sciences, Brno, Czech Republic
| | - Martin Caprnda
- 2nd Department of Internal Medicine, Faculty of Medicine, Comenius University, Bratislava, Slovakia
| | - Slavomira Filipova
- Department of Cardiology, National Institute of Cardiovascular Diseases, Bratislava, Slovakia
| | - Luis Rodrigo
- Faculty of Medicine, University of Oviedo, Central University of Asturias (HUCA), Oviedo, Spain
| | - Leone Malan
- Hypertension in Africa Research Team (HART), North-West University, Potchefstroom Campus, Potchefstroom, South Africa
| | - Ioana Mozos
- Department of Functional Sciences, Victor Babes University of Medicine and Pharmacy, Timisoara, Romania
| | - Miroslava Rabajdova
- Department of Medical and Clinical Biochemistry, Faculty of Medicine, Pavol Jozef Safarik University, Kosice, Slovakia
| | - Vladimir Nosal
- Clinic of Neurology, Jessenius Faculty of Medicine, Comenius University and University Hospital in Martin, Martin, Slovak Republic
| | - Nazarii Kobyliak
- Department of Endocrinology, Bogomolets National Medical University, Kyiv, Ukraine
| | - Vanda Valentova
- Department of Medical Biology, Jessenius Faculty of Medicine, Comenius University in Bratislava, Martin, Slovak Republic, Slovakia
| | - Daniel Petrovic
- Institute of Histology and Embryology, Faculty of Medicine, University of Ljublana, Ljublana, Slovenia
| | - Mariusz Adamek
- Department of Thoracic Surgery, Medical University of Silesia, Zabrze, Poland
| | - Peter Kruzliak
- Department of Chemical Drugs, Faculty of Pharmacy, University of Veterinary and Pharmaceutical Sciences, Brno, Czech Republic. .,2nd Department of Surgery, Faculty of Medicine, Masaryk University, Brno, Czech Republic.
| |
Collapse
|
42
|
Flemmig J, Schlorke D, Kühne FW, Arnhold J. Inhibition of the heme-induced hemolysis of red blood cells by the chlorite-based drug WF10. Free Radic Res 2016; 50:1386-1395. [DOI: 10.1080/10715762.2016.1252838] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- J. Flemmig
- Institute for Medical Physics and Biophysics, University of Leipzig, Leipzig, Germany
| | - D. Schlorke
- Institute for Medical Physics and Biophysics, University of Leipzig, Leipzig, Germany
| | - F.-W. Kühne
- OXO Chemie (Thailand) Co., Ltd, Bangkok, Thailand
| | - J. Arnhold
- Institute for Medical Physics and Biophysics, University of Leipzig, Leipzig, Germany
| |
Collapse
|
43
|
Abstract
Heme oxygenases are composed of two isozymes, Hmox1 and Hmox2, that catalyze the degradation of heme to carbon monoxide (CO), ferrous iron, and biliverdin, the latter of which is subsequently converted to bilirubin. While initially considered to be waste products, CO and biliverdin/bilirubin have been shown over the last 20 years to modulate key cellular processes, such as inflammation, cell proliferation, and apoptosis, as well as antioxidant defense. This shift in paradigm has led to the importance of heme oxygenases and their products in cell physiology now being well accepted. The identification of the two human cases thus far of heme oxygenase deficiency and the generation of mice deficient in Hmox1 or Hmox2 have reiterated a role for these enzymes in both normal cell function and disease pathogenesis, especially in the context of cardiovascular disease. This review covers the current knowledge on the function of both Hmox1 and Hmox2 at both a cellular and tissue level in the cardiovascular system. Initially, the roles of heme oxygenases in vascular health and the regulation of processes central to vascular diseases are outlined, followed by an evaluation of the role(s) of Hmox1 and Hmox2 in various diseases such as atherosclerosis, intimal hyperplasia, myocardial infarction, and angiogenesis. Finally, the therapeutic potential of heme oxygenases and their products are examined in a cardiovascular disease context, with a focus on how the knowledge we have gained on these enzymes may be capitalized in future clinical studies.
Collapse
Affiliation(s)
- Anita Ayer
- Vascular Biology Division, Victor Chang Cardiac Research Institute, Darlinghurst, Australia; and Nephrology Research and Training Center, University of Alabama at Birmingham, Birmingham Veterans Administration Medical Center, Birmingham, Alabama
| | - Abolfazl Zarjou
- Vascular Biology Division, Victor Chang Cardiac Research Institute, Darlinghurst, Australia; and Nephrology Research and Training Center, University of Alabama at Birmingham, Birmingham Veterans Administration Medical Center, Birmingham, Alabama
| | - Anupam Agarwal
- Vascular Biology Division, Victor Chang Cardiac Research Institute, Darlinghurst, Australia; and Nephrology Research and Training Center, University of Alabama at Birmingham, Birmingham Veterans Administration Medical Center, Birmingham, Alabama
| | - Roland Stocker
- Vascular Biology Division, Victor Chang Cardiac Research Institute, Darlinghurst, Australia; and Nephrology Research and Training Center, University of Alabama at Birmingham, Birmingham Veterans Administration Medical Center, Birmingham, Alabama
| |
Collapse
|
44
|
Bakker JR, Bondonno NP, Gaspari TA, Kemp-Harper BK, McCashney AJ, Hodgson JM, Croft KD, Ward NC. Low dose dietary nitrate improves endothelial dysfunction and plaque stability in the ApoE -/- mouse fed a high fat diet. Free Radic Biol Med 2016; 99:189-198. [PMID: 27519268 DOI: 10.1016/j.freeradbiomed.2016.08.009] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Revised: 08/03/2016] [Accepted: 08/08/2016] [Indexed: 12/11/2022]
Abstract
BACKGROUND Nitric oxide (NO) is an important vascular signalling molecule. NO is synthesised endogenously by endothelial nitric oxide synthase (eNOS). An alternate pathway is exogenous dietary nitrate, which can be converted to nitrite and then stored or further converted to NO and used immediately. Atherosclerosis is associated with endothelial dysfunction and subsequent lesion formation. This is thought to arise due to a reduction in the bioavailability and/or bioactivity of endogenous NO. AIM To determine if dietary nitrate can protect against endothelial dysfunction and lesion formation in the ApoE-/- mouse fed a high fat diet (HFD). METHODS AND RESULTS ApoE-/- fed a HFD were randomized to receive (i) high nitrate (10mmol/kg/day, n=12), (ii) moderate nitrate (1mmol/kg/day, n=8), (iii) low nitrate (0.1mmol/kg/day, n=8), or (iv) sodium chloride supplemented drinking water (control, n=10) for 10 weeks. A group of C57BL6 mice (n=6) received regular water and served as a healthy reference group. At 10 weeks, ACh-induced vessel relaxation was significantly impaired in ApoE-/- mice versus C57BL6. Mice supplemented with low or moderate nitrate showed significant improvements in ACh-induced vessel relaxation compared to ApoE-/- mice given the high nitrate or sodium chloride. Plaque collagen expression was increased and lipid deposition reduced following supplementation with low or moderate nitrate compared to sodium chloride, reflecting increased plaque stability with nitrate supplementation. Plasma nitrate and nitrite levels were significantly increased in all three groups fed the nitrate-supplemented water. CONCLUSION Low and moderate dose nitrate significantly improved endothelial function and atherosclerotic plaque composition in ApoE-/- mice fed a HFD.
Collapse
MESH Headings
- Acetylcholine/pharmacology
- Animals
- Aorta/drug effects
- Aorta/metabolism
- Aorta/pathology
- Apolipoproteins E/deficiency
- Apolipoproteins E/genetics
- Atherosclerosis/diet therapy
- Atherosclerosis/etiology
- Atherosclerosis/genetics
- Atherosclerosis/pathology
- Collagen/genetics
- Collagen/metabolism
- Diet, High-Fat/adverse effects
- Dietary Supplements
- Endothelium, Vascular/drug effects
- Endothelium, Vascular/metabolism
- Endothelium, Vascular/pathology
- Gene Expression
- Male
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Nitrates/administration & dosage
- Nitrates/blood
- Nitric Oxide/metabolism
- Nitric Oxide Synthase Type III/genetics
- Nitric Oxide Synthase Type III/metabolism
- Oxidative Stress
- Plaque, Atherosclerotic/diet therapy
- Plaque, Atherosclerotic/etiology
- Plaque, Atherosclerotic/genetics
- Plaque, Atherosclerotic/pathology
- Tissue Culture Techniques
- Vasodilation/drug effects
Collapse
Affiliation(s)
- J R Bakker
- School of Medicine & Pharmacology, University of Western Australia, Perth, Australia
| | - N P Bondonno
- School of Medicine & Pharmacology, University of Western Australia, Perth, Australia
| | - T A Gaspari
- Cardiovascular Disease Program, Biomedicine Discovery Institute, Department of Pharmacology, Monash University, Melbourne, Australia
| | - B K Kemp-Harper
- Cardiovascular Disease Program, Biomedicine Discovery Institute, Department of Pharmacology, Monash University, Melbourne, Australia
| | - A J McCashney
- Cardiovascular Disease Program, Biomedicine Discovery Institute, Department of Pharmacology, Monash University, Melbourne, Australia
| | - J M Hodgson
- School of Medicine & Pharmacology, University of Western Australia, Perth, Australia; School of Medical and Health Sciences, Edith Cowan University, Perth, Australia
| | - K D Croft
- School of Medicine & Pharmacology, University of Western Australia, Perth, Australia
| | - N C Ward
- School of Medicine & Pharmacology, University of Western Australia, Perth, Australia; School of Biomedical Sciences & Curtin Health Innovation Research Institute, Curtin University, Perth, Australia.
| |
Collapse
|
45
|
Mason JC. Cytoprotective pathways in the vascular endothelium. Do they represent a viable therapeutic target? Vascul Pharmacol 2016; 86:41-52. [PMID: 27520362 DOI: 10.1016/j.vph.2016.08.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2016] [Accepted: 08/08/2016] [Indexed: 12/28/2022]
Abstract
The vascular endothelium is a critical interface, which separates the organs from the blood and its contents. The endothelium has a wide variety of functions and maintenance of endothelial homeostasis is a multi-dimensional active process, disruption of which has potentially deleterious consequences if not reversed. Vascular injury predisposes to endothelial apoptosis, dysfunction and development of atherosclerosis. Endothelial dysfunction is an end-point, a central feature of which is increased ROS generation, a reduction in endothelial nitric oxide synthase and increased nitric oxide consumption. A dysfunctional endothelium is a common feature of diseases including rheumatoid arthritis, systemic lupus erythematosus, diabetes mellitus and chronic renal impairment. The endothelium is endowed with a variety of constitutive and inducible mechanisms that act to minimise injury and facilitate repair. Endothelial cytoprotection can be enhanced by exogenous factors such as vascular endothelial growth factor, prostacyclin and laminar shear stress. Target genes include endothelial nitric oxide synthase, heme oxygenase-1, A20 and anti-apoptotic members of the B cell lymphoma protein-2 family. In light of the importance of endothelial function, and the link between its disruption and the risk of atherothrombosis, interest has focused on therapeutic conditioning and reversal of endothelial dysfunction. A detailed understanding of cytoprotective signalling pathways, their regulation and target genes is now required to identify novel therapeutic targets. The ultimate aim is to add vasculoprotection to current therapeutic strategies for systemic inflammatory diseases, in an attempt to reduce vascular injury and prevent or retard atherogenesis.
Collapse
Affiliation(s)
- Justin C Mason
- Vascular Science, Imperial Centre for Translational and Experimental Medicine, National Heart and Lung Institute, Imperial College London, Hammersmith Hospital, London, UK.
| |
Collapse
|
46
|
Chang CC, Hsu CY, Huang PH, Chiang CH, Huang SS, Leu HB, Huang CC, Chen JW, Lin SJ. Association of Serum Bilirubin with SYNTAX Score and Future Cardiovascular Events in Patients Undergoing Coronary Intervention. ACTA CARDIOLOGICA SINICA 2016; 32:412-9. [PMID: 27471354 DOI: 10.6515/acs20150708c] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
BACKGROUND Bilirubin has emerged as an important endogenous antioxidant molecule, and increasing evidence shows that bilirubin may protect against atherosclerosis. The SYNTAX score has been developed to assess the severity and complexity of coronary artery disease. The aim of this study was to evaluate whether serum bilirubin levels are associated with SYNTAX scores and whether they could be used to predict future cardiovascular events in patients undergoing coronary intervention. METHODS Serum bilirubin levels and other blood parameters in patients with at least 12-h fasting states were determined. The primary endpoint was any composite cardiovascular event within 1 year, including death, nonfatal myocardial infarction, and target-vessel revascularization. RESULTS In total, 250 consecutive patients with stable coronary artery disease (mean age 70 ± 13) who had received coronary intervention were enrolled. All study subjects were divided into two groups: group 1 was defined as high SYNTAX score (> 22), and group 2 was defined as low SYNTAX score (≤ 22). Total bilirubin levels were significantly lower in the high SYNTAX score group than in the low SYNTAX score group (0.51 ± 0.22 vs. 0.72 ± 0.29 mg/dl, p < 0.001). By multivariate analysis, serum total bilirubin levels were identified as an independent predictor for high SYNTAX score (adjusted odds ratio: 0.28, 95% confidence interval 0.04-0.42; p = 0.004). Use of the Kaplan-Meier analysis demonstrated a significant difference in 1-year cardiovascular events between high (> 0.8 mg/dl), medium (> 0.5, ≤ 0.8 mg/dl), and low (≤ 0.5 mg/dl) bilirubin levels (log-rank test p = 0.011). CONCLUSIONS Serum bilirubin level is associated with SYNTAX score and predicts future cardiovascular events in patients undergoing coronary intervention.
Collapse
Affiliation(s)
- Chun-Chin Chang
- Division of Cardiology, Department of Medicine; ; Cardiovascular Research Center
| | - Chien-Yi Hsu
- Cardiovascular Research Center; ; Institute of Clinical Medicine, National Yang-Ming University, Taipei; ; Department of Medicine, Taipei Veterans General Hospital Yuli Branch, Hualien, Taiwan
| | - Po-Hsun Huang
- Division of Cardiology, Department of Medicine; ; Cardiovascular Research Center; ; Institute of Clinical Medicine, National Yang-Ming University, Taipei
| | - Chia-Hung Chiang
- Cardiovascular Research Center; ; Institute of Clinical Medicine, National Yang-Ming University, Taipei
| | - Shao-Sung Huang
- Division of Cardiology, Department of Medicine; ; Healthcare and Management Center, Taipei Veterans General Hospital; ; Cardiovascular Research Center; ; Institute of Clinical Medicine, National Yang-Ming University, Taipei
| | - Hsin-Bang Leu
- Division of Cardiology, Department of Medicine; ; Healthcare and Management Center, Taipei Veterans General Hospital; ; Cardiovascular Research Center; ; Institute of Clinical Medicine, National Yang-Ming University, Taipei
| | - Chin-Chou Huang
- Division of Cardiology, Department of Medicine; ; Department of Medical Education; ; Cardiovascular Research Center; ; Institute of Pharmacology
| | - Jaw-Wen Chen
- Division of Cardiology, Department of Medicine; ; Division of Clinical Research; ; Cardiovascular Research Center; ; Institute of Pharmacology
| | - Shing-Jong Lin
- Division of Cardiology, Department of Medicine; ; Department of Medical Research; ; Cardiovascular Research Center; ; Institute of Clinical Medicine, National Yang-Ming University, Taipei
| |
Collapse
|
47
|
Abstract
Abdominal aortic aneurysm (AAA) is a significant cause of mortality in older adults. A key mechanism implicated in AAA pathogenesis is inflammation and the associated production of reactive oxygen species (ROS) and oxidative stress. These have been suggested to promote degradation of the extracellular matrix (ECM) and vascular smooth muscle apoptosis. Experimental and human association studies suggest that ROS can be favourably modified to limit AAA formation and progression. In the present review, we discuss mechanisms potentially linking ROS to AAA pathogenesis and highlight potential treatment strategies targeting ROS. Currently, none of these strategies has been shown to be effective in clinical practice.
Collapse
|
48
|
Zhuang S, Cheng TH, Shih NL, Liu JC, Chen JJ, Hong HJ, Chan P. Tanshinone IIA Induces Heme Oxygenase 1 Expression and Inhibits Cyclic Strain-Induced Interleukin 8 Expression in Vascular Endothelial Cells. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2016; 44:377-88. [PMID: 27080946 DOI: 10.1142/s0192415x1650021x] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Tanshinone IIA is the main effective component of Salvia miltiorrhiza, known as “Danshen,” which has been used in many therapeutic remedies in traditional Chinese medicine. However, the direct effects of tanshinone IIA on vascular endothelial cells have not yet been fully described. In the present study, we demonstrated that tanshinone IIA increased heme oxygenase-1 (HO-1) expression in human umbilical vein endothelial cells. Western blot analyses and experiments with specific inhibitors indicated tanshinone IIA enhanced HO-1 expression through the activation of phosphoinositide 3-kinase (PI3K)/Akt and the subsequent induction of nuclear factor erythroid 2-related factor 2 (Nrf2) nuclear translocation. In addition, tanshinone IIA inhibited cyclic strain induced interleukin-8 (IL-8) expression. HO-1 silencing significantly abrogated the repressive effects of tanshinone IIA on strain-induced IL-8 expression, which suggests HO-1 has a role in mediating the effects of tanshinone IIA. This study reports for the first time that tanshinone IIA inhibits cyclic strain-induced IL-8 expression via the induction of HO-1 in endothelial cells, providing valuable new insight into the molecular pathways that may contribute to the effects of tanshinone IIA.
Collapse
Affiliation(s)
| | - Tzu-Hurng Cheng
- Department of Biochemistry, School of Medicine, College of Medicine
| | - Nang-Lang Shih
- Department of Life Sciences, National University of Kaohsiung, Kaohsiung, Taiwan, R.O.C
| | - Ju-Chi Liu
- Division of Cardiology, Department of Internal Medicine, Shuang Ho Hospital Taipei Medical University, New Taipei City, Taiwan, R.O.C
| | - Jin-Jer Chen
- Graduate Institute of Clinical Medicine, College of Medicine, China Medical University Hospital, Taiwan, R.O.C
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan, R.O.C
| | - Hong-Jye Hong
- School of Chinese Medicine, College of Chinese Medicine, China Medical University, Taichung, Taiwan, R.O.C
| | - Paul Chan
- Shanghai East Taiwanese Hospital, Tongji University, Shanghai, P.R. China
- Deparment of Cardiology, Taipei Medical University-Wan Fang Hospital, Taipei, Taiwan, R.O.C
| |
Collapse
|
49
|
Dietary polyphenols: Antioxidants or not? Arch Biochem Biophys 2016; 595:120-4. [DOI: 10.1016/j.abb.2015.11.014] [Citation(s) in RCA: 80] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2015] [Revised: 06/13/2015] [Accepted: 09/18/2015] [Indexed: 01/20/2023]
|
50
|
Miranda B, Barrabés JA, Figueras J, Pineda V, Rodríguez-Palomares J, Lidón RM, Sambola A, Bañeras J, Otaegui I, García-Dorado D. Plasma bilirubin values on admission and ventricular remodeling after a first anterior ST-segment elevation acute myocardial infarction. Ann Med 2016; 48:1-9. [PMID: 26631587 DOI: 10.3109/07853890.2015.1112027] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
INTRODUCTION Bilirubin may elicit cardiovascular protection and heme oxygenase-1 overexpression attenuated post-infarction ventricular remodeling in experimental animals, but the association between bilirubin levels and post-infarction remodeling is unknown. MATERIALS AND METHODS In 145 patients with a first anterior ST-segment elevation acute myocardial infarction (STEMI), we assessed whether plasma bilirubin on admission predicted adverse remodeling (left ventricular end-diastolic volume [LVEDV] increase ≥20% between discharge and 6 months, estimated by magnetic resonance imaging). RESULTS Patients' baseline characteristics and management were comparable among bilirubin tertiles. LVEDV increased at 6 months (P < 0.001) with respect to the initial exam, but the magnitude of this increase was similar across increasing bilirubin tertiles (10.8 [30.2], 10.1 [22.9], and 12.7 [24.3]%, P = 0.500). Median (25-75 percentile) bilirubin values in patients with and without adverse remodeling were 0.75 (0.60-0.93) and 0.73 (0.60-0.92) mg/dL (P = 0.693). Absence of final TIMI flow grade 3 (odds ratio 3.92, 95% CI 1.12-13.66) and a history of hypertension (2.04, 0.93-4.50), but not admission bilirubin, were independently associated with adverse remodeling. Bilirubin also did not predict the increase in ejection fraction at 6 months. CONCLUSIONS Admission bilirubin values are not related to LVEDV or ejection fraction progression after a first anterior STEMI and do not predict adverse ventricular remodeling. Key messages Bilirubin levels are inversely related to cardiovascular disease, and overexpression of heme oxygenase-1 (the enzyme that determines bilirubin production) has prevented post-infarction ventricular remodeling in experimental animals, but the association between bilirubin levels and the progression of ventricular volumes and function in patients with acute myocardial infarction remained unexplored. In this cohort of patients with a first acute anterior ST-segment elevation myocardial infarction receiving contemporary management, bilirubin levels on admission were not predictive of the changes in left ventricular volumes or ejection fraction at 6 months measured by serial cardiac magnetic resonance imaging. The data are contrary to a significant protective effect of bilirubin against post-infarction ventricular remodeling.
Collapse
Affiliation(s)
- Berta Miranda
- a Servicio de Cardiología, Hospital Universitari Vall d'Hebron, VHIR, Universitat Autònoma de Barcelona , Barcelona , Spain
| | - José A Barrabés
- a Servicio de Cardiología, Hospital Universitari Vall d'Hebron, VHIR, Universitat Autònoma de Barcelona , Barcelona , Spain
| | - Jaume Figueras
- a Servicio de Cardiología, Hospital Universitari Vall d'Hebron, VHIR, Universitat Autònoma de Barcelona , Barcelona , Spain
| | - Victor Pineda
- b Servicio de Radiología, Hospital Universitari Vall d'Hebron, VHIR, Universitat Autònoma de Barcelona , Barcelona , Spain
| | - José Rodríguez-Palomares
- a Servicio de Cardiología, Hospital Universitari Vall d'Hebron, VHIR, Universitat Autònoma de Barcelona , Barcelona , Spain
| | - Rosa-Maria Lidón
- a Servicio de Cardiología, Hospital Universitari Vall d'Hebron, VHIR, Universitat Autònoma de Barcelona , Barcelona , Spain
| | - Antonia Sambola
- a Servicio de Cardiología, Hospital Universitari Vall d'Hebron, VHIR, Universitat Autònoma de Barcelona , Barcelona , Spain
| | - Jordi Bañeras
- a Servicio de Cardiología, Hospital Universitari Vall d'Hebron, VHIR, Universitat Autònoma de Barcelona , Barcelona , Spain
| | - Imanol Otaegui
- a Servicio de Cardiología, Hospital Universitari Vall d'Hebron, VHIR, Universitat Autònoma de Barcelona , Barcelona , Spain
| | - David García-Dorado
- a Servicio de Cardiología, Hospital Universitari Vall d'Hebron, VHIR, Universitat Autònoma de Barcelona , Barcelona , Spain
| |
Collapse
|