1
|
Legchenko E, Chouvarine P, Qadri F, Specker E, Nazaré M, Wesolowski R, Matthes S, Bader M, Hansmann G. Novel Tryptophan Hydroxylase Inhibitor TPT-001 Reverses PAH, Vascular Remodeling, and Proliferative-Proinflammatory Gene Expression. JACC Basic Transl Sci 2024; 9:890-902. [PMID: 39170954 PMCID: PMC11334415 DOI: 10.1016/j.jacbts.2024.04.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 04/09/2024] [Accepted: 04/10/2024] [Indexed: 08/23/2024]
Abstract
The serotonin pathway has long been proposed as a promising target for pulmonary arterial hypertension (PAH)-a progressive and uncurable disease. We developed a highly specific inhibitor of the serotonin synthesizing enzyme tryptophan hydroxylase 1 (TPH1), TPT-001 (TPHi). In this study, the authors sought to treat severe PAH in the Sugen/hypoxia (SuHx) rat model with the oral TPHi TPT-001. Male Sprague Dawley rats were divided into 3 groups: 1) ConNx, control animals; 2) SuHx, injected subcutaneously with SU5416 and exposed to chronic hypoxia for 3 weeks, followed by 6 weeks in room air; and 3) SuHx+TPHi, SuHx animals treated orally with TPHi for 5 weeks. Closed-chest right- and left heart catheterization and echocardiography were performed. Lungs were subject to histologic and mRNA sequencing analyses. Compared with SuHx-exposed rats, which developed severe PAH and right ventricular (RV) dysfunction, TPHi-treated SuHx rats had greatly lowered RV systolic (mean ± SEM: 41 ± 2.3 mm Hg vs 86 ± 6.5 mm Hg; P < 0.001) and end-diastolic (mean ± SEM: 4 ± 0.7 mm Hg vs 14 ± 1.7 mm Hg; P < 0.001) pressures, decreased RV hypertrophy and dilation (all not significantly different from control rats), and reversed pulmonary vascular remodeling. We identified perivascular infiltration of CD3+ T cells and proinflammatory F4/80+ and CD68+ macrophages and proliferating cell nuclear antigen-positive alveolar epithelial cells all suppressed by TPHi treatment. Whole-lung mRNA sequencing in SuHx rats showed distinct gene expression patterns related to pulmonary arterial smooth muscle cell proliferation (Rpph1, Lgals3, Gata4), reactive oxygen species, inflammation (Tnfsrf17, iNOS), and vasodilation (Pde1b, Kng1), which reversed expression with TPHi treatment. Inhibition of TPH1 with a new class of drugs (here, TPT-001) has the potential to attenuate or even reverse severe PAH and associated RV dysfunction in vivo by blocking the serotonin pathway.
Collapse
Affiliation(s)
- Ekaterina Legchenko
- Department of Pediatric Cardiology and Critical Care, Hannover Medical School, Hannover, Germany
| | - Philippe Chouvarine
- Department of Pediatric Cardiology and Critical Care, Hannover Medical School, Hannover, Germany
| | | | - Edgar Specker
- Chemical Biology Platform, Leibniz-Forschungsinstitut für Molekulare Pharmakologie, Berlin-Buch, Germany
- Trypto Therapeutics GmbH, Berlin, Germany
| | - Marc Nazaré
- Chemical Biology Platform, Leibniz-Forschungsinstitut für Molekulare Pharmakologie, Berlin-Buch, Germany
| | - Radoslaw Wesolowski
- Max-Delbrück-Center for Molecular Medicine, Berlin, Germany
- Trypto Therapeutics GmbH, Berlin, Germany
| | - Susann Matthes
- Max-Delbrück-Center for Molecular Medicine, Berlin, Germany
| | - Michael Bader
- Max-Delbrück-Center for Molecular Medicine, Berlin, Germany
- Trypto Therapeutics GmbH, Berlin, Germany
- German Center for Cardiovascular Research, Partner Site Berlin, Berlin, Germany
- Charité Universitätsmedizin Berlin, Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Institute for Biology, University of Lübeck, Lübeck, Germany
| | - Georg Hansmann
- Department of Pediatric Cardiology and Critical Care, Hannover Medical School, Hannover, Germany
- Department of Pediatric Cardiology, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany
| |
Collapse
|
2
|
Edmonston D, Isakova T, Wolf M. Plasma Serotonin and Cardiovascular Outcomes in Chronic Kidney Disease. J Am Heart Assoc 2023; 12:e029785. [PMID: 37609990 PMCID: PMC10547345 DOI: 10.1161/jaha.123.029785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 07/11/2023] [Indexed: 08/24/2023]
Abstract
Background Platelet-poor plasma serotonin levels are associated with adverse cardiovascular outcomes. Although plasma serotonin levels increase in chronic kidney disease, the cardiovascular implications remain unknown. Methods and Results In 1114 participants from the prospective CRIC (Chronic Renal Insufficiency Cohort) Study, we evaluated the association between plasma serotonin, categorized as undetectable, intermediate, and high (≥20 ng/mL) levels, and cross-sectional findings on echocardiography, including left ventricular hypertrophy, left ventricular ejection fraction, and pulmonary hypertension. We also analyzed whether serotonin was associated with time-to-event cardiovascular outcomes, including heart failure hospitalization and atherosclerotic cardiovascular disease (ASCVD) events, in addition to mortality. Because selective serotonin reuptake inhibitors decrease plasma serotonin levels, we specifically evaluated the influence of selective serotonin reuptake inhibitor use in the relationship between serotonin and outcomes. Plasma serotonin level inversely correlated with estimated glomerular filtration rate and directly correlated with blood pressure. High plasma serotonin was associated with left ventricular hypertrophy (adjusted odds ratio, 2.74 [95% CI, 1.11-7.41]). In contrast, undetectable plasma serotonin level was associated with the highest risk of heart failure (adjusted hazard ratio [HR], 2.26 [95% CI, 1.40-3.66]) and ASCVD events (adjusted HR, 1.96 [95% CI, 1.15-3.32]). Conclusions In a large chronic kidney disease cohort, plasma serotonin levels correlated with blood pressure, and elevated serotonin levels were associated with left ventricular hypertrophy. In contrast, undetectable plasma serotonin was associated with the highest risk of heart failure and ASCVD events.
Collapse
Affiliation(s)
- Daniel Edmonston
- Division of Nephrology, Department of MedicineDuke University School of MedicineDurhamNC
- Duke Clinical Research InstituteDuke University School of MedicineDurhamNC
| | - Tamara Isakova
- Division of Nephrology and Hypertension, Department of Medicine, and Center for Translational Metabolism and Health, Institute for Public Health and MedicineNorthwestern University Feinberg School of MedicineChicagoIL
| | - Myles Wolf
- Division of Nephrology, Department of MedicineDuke University School of MedicineDurhamNC
- Duke Clinical Research InstituteDuke University School of MedicineDurhamNC
| |
Collapse
|
3
|
Bender AM, Parr LC, Livingston WB, Lindsley CW, Merryman WD. 2B Determined: The Future of the Serotonin Receptor 2B in Drug Discovery. J Med Chem 2023; 66:11027-11039. [PMID: 37584406 PMCID: PMC11073569 DOI: 10.1021/acs.jmedchem.3c01178] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/17/2023]
Abstract
The cardiotoxicity associated with des-ethyl-dexfenfluramine (norDF) and related agonists of the serotonin receptor 2B (5-HT2B) has solidified the receptor's place as an "antitarget" in drug discovery. Conversely, a growing body of evidence has highlighted the utility of 5-HT2B antagonists for the treatment of pulmonary arterial hypertension (PAH), valvular heart disease (VHD), and related cardiopathies. In this Perspective, we summarize the link between the clinical failure of fenfluramine-phentermine (fen-phen) and the subsequent research on the role of 5-HT2B in disease progression, as well as the development of drug-like and receptor subtype-selective 5-HT2B antagonists. Such agents represent a promising class for the treatment of PAH and VHD, but their utility has been historically understudied due to the clinical disasters associated with 5-HT2B. Herein, it is our aim to examine the current state of 5-HT2B drug discovery, with an emphasis on the receptor's role in the central nervous system (CNS) versus the periphery.
Collapse
Affiliation(s)
- Aaron M Bender
- Warren Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, Tennessee 37232, United States
- Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, United States
| | - Lauren C Parr
- Warren Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, Tennessee 37232, United States
- Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, United States
| | - William B Livingston
- Department of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee 37240, United States
| | - Craig W Lindsley
- Warren Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, Tennessee 37232, United States
- Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, United States
- Department of Chemistry, Vanderbilt University, Nashville, Tennessee 37232, United States
- Vanderbilt Institute of Chemical Biology, Vanderbilt University, Nashville, Tennessee 37232, United States
- Department of Biochemistry, Vanderbilt University, Nashville, Tennessee 37232, United States
| | - W David Merryman
- Department of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee 37240, United States
| |
Collapse
|
4
|
MacLean MR, Fanburg B, Hill N, Lazarus HM, Pack TF, Palacios M, Penumatsa KC, Wring SA. Serotonin and Pulmonary Hypertension; Sex and Drugs and ROCK and Rho. Compr Physiol 2022; 12:4103-4118. [PMID: 36036567 DOI: 10.1002/cphy.c220004] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Serotonin is often referred to as a "happy hormone" as it maintains good mood, well-being, and happiness. It is involved in communication between nerve cells and plays a role in sleeping and digestion. However, too much serotonin can have pathogenic effects and serotonin synthesis is elevated in pulmonary artery endothelial cells from patients with pulmonary arterial hypertension (PAH). PAH is characterized by elevated pulmonary pressures, right ventricular failure, inflammation, and pulmonary vascular remodeling; serotonin has been shown to be associated with these pathologies. The rate-limiting enzyme in the synthesis of serotonin in the periphery of the body is tryptophan hydroxylase 1 (TPH1). TPH1 expression and serotonin synthesis are elevated in pulmonary artery endothelial cells in patients with PAH. The serotonin synthesized in the pulmonary arterial endothelium can act on the adjacent pulmonary arterial smooth muscle cells (PASMCs), adventitial macrophages, and fibroblasts, in a paracrine fashion. In humans, serotonin enters PASMCs cells via the serotonin transporter (SERT) and it can cooperate with the 5-HT1B receptor on the plasma membrane; this activates both contractile and proliferative signaling pathways. The "serotonin hypothesis of pulmonary hypertension" arose when serotonin was associated with PAH induced by diet pills such as fenfluramine, aminorex, and chlorphentermine; these act as indirect serotonergic agonists causing the release of serotonin from platelets and cells through the SERT. Here the role of serotonin in PAH is reviewed. Targeting serotonin synthesis or signaling is a promising novel alternative approach which may lead to novel therapies for PAH. © 2022 American Physiological Society. Compr Physiol 12: 1-16, 2022.
Collapse
Affiliation(s)
- Margaret R MacLean
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, Scotland
| | - Barry Fanburg
- Pulmonary, Critical Care and Sleep Division, Department of Medicine, Tufts Medical Center, Boston, Massachusetts, USA
| | - Nicolas Hill
- Pulmonary, Critical Care and Sleep Division, Department of Medicine, Tufts Medical Center, Boston, Massachusetts, USA
| | | | | | | | - Krishna C Penumatsa
- Pulmonary, Critical Care and Sleep Division, Department of Medicine, Tufts Medical Center, Boston, Massachusetts, USA
| | | |
Collapse
|
5
|
Immune Cells in Pulmonary Arterial Hypertension. Heart Lung Circ 2022; 31:934-943. [PMID: 35361533 DOI: 10.1016/j.hlc.2022.02.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 01/24/2022] [Accepted: 02/13/2022] [Indexed: 12/11/2022]
Abstract
Pulmonary arterial hypertension (PAH) is a complex and serious cardiopulmonary disease; it is characterised by increased pulmonary arterial pressure and pulmonary vascular remodelling accompanied by disordered endothelial and smooth muscle cell proliferation within pulmonary arterioles and arteries. Although recent reports have suggested that dysregulated immunity and inflammation are key players in PAH pathogenesis, their roles in PAH progression remain unclear. Intriguingly, altered host immune cell distribution, number, and polarisation within the lung arterial vasculature have been linked to disease development. This review mainly focusses on the roles of different immune cells in PAH and discusses the underlying mechanisms.
Collapse
|
6
|
Abstract
Pulmonary hypertension (PH) describes heterogeneous population of patients with a mean pulmonary arterial pressure >20 mm Hg. Rarely, PH presents as a primary disorder but is more commonly part of a complex phenotype associated with comorbidities. Regardless of the cause, PH reduces life expectancy and impacts quality of life. The current clinical classification divides PH into 1 of 5 diagnostic groups to assign treatment. There are currently no pharmacological cures for any form of PH. Animal models are essential to help decipher the molecular mechanisms underlying the disease, to assign genotype-phenotype relationships to help identify new therapeutic targets, and for clinical translation to assess the mechanism of action and putative efficacy of new therapies. However, limitations inherent of all animal models of disease limit the ability of any single model to fully recapitulate complex human disease. Within the PH community, we are often critical of animal models due to the perceived low success upon clinical translation of new drugs. In this review, we describe the characteristics, advantages, and disadvantages of existing animal models developed to gain insight into the molecular and pathological mechanisms and test new therapeutics, focusing on adult forms of PH from groups 1 to 3. We also discuss areas of improvement for animal models with approaches combining several hits to better reflect the clinical situation and elevate their translational value.
Collapse
Affiliation(s)
- Olivier Boucherat
- Pulmonary Hypertension Research Group, Centre de Recherche de l’Institut Universitaire de Cardiologie et de Pneumologie de Québec, Québec, QC, Canada
- Department of Medicine, Université Laval, Québec, QC, Canada
| | - Vineet Agrawal
- Division of Cardiovascular Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Allan Lawrie
- Dept of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, UK & Insigneo institute for in silico medicine, Sheffield, UK
| | - Sebastien Bonnet
- Pulmonary Hypertension Research Group, Centre de Recherche de l’Institut Universitaire de Cardiologie et de Pneumologie de Québec, Québec, QC, Canada
- Department of Medicine, Université Laval, Québec, QC, Canada
| |
Collapse
|
7
|
New Insights into Pulmonary Hypertension: A Role for Connexin-Mediated Signalling. Int J Mol Sci 2021; 23:ijms23010379. [PMID: 35008804 PMCID: PMC8745497 DOI: 10.3390/ijms23010379] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 12/23/2021] [Accepted: 12/28/2021] [Indexed: 12/20/2022] Open
Abstract
Pulmonary hypertension is a serious clinical condition characterised by increased pulmonary arterial pressure. This can lead to right ventricular failure which can be fatal. Connexins are gap junction-forming membrane proteins which serve to exchange small molecules of less than 1 kD between cells. Connexins can also form hemi-channels connecting the intracellular and extracellular environments. Hemi-channels can mediate adenosine triphosphate release and are involved in autocrine and paracrine signalling. Recently, our group and others have identified evidence that connexin-mediated signalling may be involved in the pathogenesis of pulmonary hypertension. In this review, we discuss the evidence that dysregulated connexin-mediated signalling is associated with pulmonary hypertension.
Collapse
|
8
|
Abstract
Pulmonary arterial hypertension (PAH) occurs in women more than men whereas survival in men is worse than in women. In recent years, much research has been carried out to understand these sex differences in PAH. This article discusses clinical and preclinical studies that have investigated the influences of sex, serotonin, obesity, estrogen, estrogen synthesis, and estrogen metabolism on bone morphogenetic protein receptor type II signaling, the pulmonary circulation and right ventricle in both heritable and idiopathic pulmonary hypertension.
Collapse
Affiliation(s)
- Hannah Morris
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow G4 0RE, Scotland; Institute of Cardiovascular and Medical Sciences, College of Medical Veterinary and Life Sciences, University of Glasgow, Scotland
| | - Nina Denver
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow G4 0RE, Scotland
| | - Rosemary Gaw
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow G4 0RE, Scotland
| | - Hicham Labazi
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow G4 0RE, Scotland
| | - Kirsty Mair
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow G4 0RE, Scotland
| | - Margaret R MacLean
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow G4 0RE, Scotland.
| |
Collapse
|
9
|
Sodimu A, Bartolome S, Igenoza OP, Chin KM. Hemodynamic effects of fluoxetine in pulmonary arterial hypertension: an open label pilot study. Pulm Circ 2020; 10:2045894020971954. [PMID: 33282204 PMCID: PMC7691907 DOI: 10.1177/2045894020971954] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Accepted: 10/12/2020] [Indexed: 11/17/2022] Open
Abstract
In order to evaluate the therapeutic potential of fluoxetine in pulmonary arterial
hypertension, 13 patients with pulmonary arterial hypertension underwent catheterization
before and after 12 (N = 5) or 24 (N = 8) weeks fluoxetine therapy. No change was seen in
the primary endpoint of pulmonary vascular resistance, other hemodynamic values, or any
secondary endpoints.
Collapse
Affiliation(s)
- Adetoun Sodimu
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, UT Southwestern Medical Center, Dallas, TX, USA
| | - Sonja Bartolome
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, UT Southwestern Medical Center, Dallas, TX, USA
| | - Oluwatosin P Igenoza
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, UT Southwestern Medical Center, Dallas, TX, USA
| | - Kelly M Chin
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, UT Southwestern Medical Center, Dallas, TX, USA
| |
Collapse
|
10
|
Discovery and biological characterization of a novel scaffold for potent inhibitors of peripheral serotonin synthesis. Future Med Chem 2020; 12:1461-1474. [DOI: 10.4155/fmc-2020-0127] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Aim: Tryptophan hydroxylase 1 (TPH1) catalyzes serotonin synthesis in peripheral tissues. Selective TPH1 inhibitors may be useful for treating disorders related to serotonin dysregulation. Results & methodology: Screening using a thermal shift assay for TPH1 binders yielded Compound 1 (2-(4-methylphenyl)-1,2-benzisothiazol-3(2 H)-one), which showed high potency (50% inhibition at 98 ± 30 nM) and selectivity for inhibiting TPH over related aromatic amino acid hydroxylases in enzyme activity assays. Structure–activity relationships studies revealed several analogs of 1 showing comparable potency. Kinetic studies suggested a noncompetitive mode of action of 1, with regards to tryptophan and tetrahydrobiopterin. Computational docking studies and live cell assays were also performed. Conclusion: This TPH1 inhibitor scaffold may be useful for developing new therapeutics for treating elevated peripheral serotonin.
Collapse
|
11
|
|
12
|
Abstract
The rate-limiting enzyme in serotonin synthesis is tryptophan hydroxylase (TPH). There are two independent serotonin systems in the body characterized by two isoforms of TPH, TPH1 and TPH2. While TPH2 synthesizes serotonin in the brain, TPH1 is expressed in the gut and in other peripheral tissues and supplies platelets in the circulation with serotonin. This duality of the serotonin system is enforced by the blood-brain barrier which is impermeable for serotonin. In the brain serotonin acts as neurotransmitter and is a main target for the treatment of psychiatric disorders. In the periphery it is released by platelets at the site of activation and elicits numerous physiological effects. TPH1 deficient mice were shown to be protected from diverse diseases including hemostatic, inflammatory, fibrotic, gastrointestinal, and metabolic disorders and therefore serotonin synthesis inhibition emerged as a reasonable therapeutic paradigm. Recently the first TPH inhibitor, telotristat ethyl, came on the market for the treatment of carcinoid syndrome. This review summarizes the state of development and the therapeutic opportunities of such compounds.
Collapse
Affiliation(s)
- Michael Bader
- Max-Delbrück Center for Molecular Medicine (MDC), Robert-Rössle-Str. 10, 13125 Berlin-Buch, Germany; University of Lübeck, Institute for Biology, Ratzeburger Allee 160, 23562 Lübeck, Germany; Charité University Medicine, Charitéplatz 1, 10117 Berlin, Germany; German Center for Cardiovascular Research (DZHK), Partner Site, Berlin, Germany.
| |
Collapse
|
13
|
Abstract
Pulmonary hypertension (PH) and its severe subtype pulmonary arterial hypertension (PAH) encompass a set of multifactorial diseases defined by sustained elevation of pulmonary arterial pressure and pulmonary vascular resistance leading to right ventricular failure and subsequent death. Pulmonary hypertension is characterized by vascular remodeling in association with smooth muscle cell proliferation of the arterioles, medial thickening, and plexiform lesion formation. Despite our recent advances in understanding its pathogenesis and related therapeutic discoveries, PH still remains a progressive disease without a cure. Nevertheless, development of drugs that specifically target molecular pathways involved in disease pathogenesis has led to improvement in life quality and clinical outcomes in patients with PAH. There are presently more than 12 Food and Drug Administration-approved vasodilator drugs in the United States for the treatment of PAH; however, mortality with contemporary therapies remains high. More recently, there have been exuberant efforts to develop new pharmacologic therapies that target the fundamental origins of PH and thus could represent disease-modifying opportunities. This review aims to summarize recent developments on key signaling pathways and molecular targets that drive PH disease progression, with emphasis on new therapeutic options under development.
Collapse
Affiliation(s)
- Chen-Shan Chen Woodcock
- Division of Cardiology, Department of Medicine, Center for Pulmonary Vascular Biology and Medicine, Pittsburgh Heart, Lung, Blood, and Vascular Medicine Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Stephen Y. Chan
- Division of Cardiology, Department of Medicine, Center for Pulmonary Vascular Biology and Medicine, Pittsburgh Heart, Lung, Blood, and Vascular Medicine Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| |
Collapse
|
14
|
Kwapiszewska G, Johansen AKZ, Gomez-Arroyo J, Voelkel NF. Role of the Aryl Hydrocarbon Receptor/ARNT/Cytochrome P450 System in Pulmonary Vascular Diseases. Circ Res 2019; 125:356-366. [PMID: 31242807 DOI: 10.1161/circresaha.119.315054] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
RATIONALE CYPs (cytochrome p450) are critically involved in the metabolism of xenobiotics and toxins. Given that pulmonary hypertension is strongly associated with environmental exposure, we hypothesize that CYPs play a role in the development and maintenance of pathological vascular remodeling. OBJECTIVE We sought to identify key CYPs that could link drug or hormone metabolism to the development of pulmonary hypertension. METHODS AND RESULTS We searched in Medline (PubMed) database, as well as http://www.clinicaltrials.gov, for CYPs associated with many key aspects of pulmonary arterial hypertension including, but not limited to, severe pulmonary hypertension, estrogen metabolism, inflammation mechanisms, quasi-malignant cell growth, drug susceptibility, and metabolism of the pulmonary arterial hypertension-specific drugs. CONCLUSIONS We postulate a hypothesis where the AhR (aryl hydrocarbon receptor) mediates aberrant cell growth via expression of different CYPs associated with estrogen metabolism and inflammation.
Collapse
Affiliation(s)
- Grazyna Kwapiszewska
- From the Ludwig Boltzmann Institute for Lung Vascular Research, Medical University of Graz, Austria (G.K.)
| | - Anne Katrine Z Johansen
- Department of Pediatrics, Cincinnati Children's Hospital Medical Center, University of Cincinnati, OH (A.K.Z.J.)
| | - Jose Gomez-Arroyo
- Division of Pulmonary and Critical Care Medicine, University of Cincinnati College of Medicine, OH (J.G.-A.)
- Division of Pulmonary Biology, Perinatal Institute of Cincinnati Children's Hospital Research Foundation, OH (J.G.-A.)
| | - Norbert F Voelkel
- Department of Pulmonary Medicine, Amsterdam University Medical Centers, the Netherlands (N.F.V.)
| |
Collapse
|
15
|
The role of platelets in the development and progression of pulmonary arterial hypertension. Adv Med Sci 2018; 63:312-316. [PMID: 29885631 DOI: 10.1016/j.advms.2018.04.013] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Revised: 04/26/2018] [Accepted: 04/27/2018] [Indexed: 12/19/2022]
Abstract
Pulmonary arterial hypertension is a multifactorial disease characterized by vasoconstriction, vascular remodeling, inflammation and thrombosis. Although an increasing number of research confirmed that pulmonary artery endothelial cells, pulmonary artery smooth muscle cells as well as platelets have a role in the pulmonary arterial hypertension pathogenesis, it is still unclear what integrates these factors. In this paper, we review the evidence that platelets through releasing a large variety of chemokines could actively impact the pulmonary arterial hypertension pathogenesis and development. A recent publication revealed that not only an excess of platelet derived cytokines, but also a deficiency may be associated with pulmonary arterial hypertension development and progression. Hence, a simple platelet blockade may not be a correct action to treat pulmonary arterial hypertension. Our review aims to analyse the interactions between the platelets and different types of cells involved in pulmonary arterial hypertension pathogenesis. This knowledge could help to find novel therapeutic options and improve prognosis in this devastating disease.
Collapse
|
16
|
Matthes S, Bader M. Peripheral Serotonin Synthesis as a New Drug Target. Trends Pharmacol Sci 2018; 39:560-572. [PMID: 29628275 DOI: 10.1016/j.tips.2018.03.004] [Citation(s) in RCA: 70] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Revised: 03/13/2018] [Accepted: 03/14/2018] [Indexed: 12/19/2022]
Abstract
The first step in serotonin (5-HT) biosynthesis is catalyzed by tryptophan hydroxylase (TPH). There are two independent sources of the monoamine that have distinct functions: first, the TPH1-expressing enterochromaffin cells (ECs) of the gut; second, TPH2-expressing serotonergic neurons. TPH1-deficient mice revealed that peripheral 5-HT plays important roles in platelet function and in inflammatory and fibrotic diseases of gut, pancreas, lung, and liver. Therefore, TPH inhibitors were developed which cannot pass the blood-brain barrier to specifically block peripheral 5-HT synthesis. They showed therapeutic efficacy in several rodent disease models, and telotristat ethyl is the first TPH inhibitor to be approved for the treatment of carcinoid syndrome. We review this development and discuss further therapeutic options for these compounds.
Collapse
Affiliation(s)
- Susann Matthes
- Max-Delbrück Center for Molecular Medicine (MDC), Robert-Rössle-Straße 10, 13125 Berlin-Buch, Germany; University of Lübeck, Institute for Biology, Ratzeburger Allee 160, 23562 Lübeck, Germany
| | - Michael Bader
- Max-Delbrück Center for Molecular Medicine (MDC), Robert-Rössle-Straße 10, 13125 Berlin-Buch, Germany; University of Lübeck, Institute for Biology, Ratzeburger Allee 160, 23562 Lübeck, Germany; Berlin Institute of Health (BIH), Anna-Louisa-Karsch-Straße 2, 10178 Berlin, Germany; Charité University Medicine, Charitéplatz 1, 10117 Berlin, Germany; German Center for Cardiovascular Research (DZHK), Partner Site Berlin, Berlin, Germany.
| |
Collapse
|
17
|
MacLean MMR. The serotonin hypothesis in pulmonary hypertension revisited: targets for novel therapies (2017 Grover Conference Series). Pulm Circ 2018; 8:2045894018759125. [PMID: 29468941 PMCID: PMC5826007 DOI: 10.1177/2045894018759125] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Increased synthesis of serotonin and/or activity of serotonin in pulmonary arteries has been implicated in the pathobiology of pulmonary arterial hypertension (PAH). The incidence of PAH associated with diet pills such as aminorex, fenfluramine, and chlorphentermine initially led to the “serotonin hypothesis of pulmonary hypertension.” Over the last couple of decades there has been an accumulation of convincing evidence that targeting serotonin synthesis or signaling is a novel and promising approach to the development of novel therapies for PAH. Pulmonary endothelial serotonin synthesis via tryptophan hydroxlase 1 (TPH1) is increased in patients with PAH and serotonin can act in a paracrine fashion on underlying pulmonary arterial smooth muscle cells (PASMCs), In humans, serotonin can enter PASMCs via the serotonin transporter (SERT) or activate the 5-HT1B receptor; 5-HT1B activation and SERT activity cooperate to induce PASMC contraction and proliferation via activation of downstream proliferative and contractile signaling pathways. Here we will review the current status of the serotonin hypothesis and discuss potential and novel therapeutic targets.
Collapse
Affiliation(s)
- Margaret Mandy R MacLean
- Research Institute of Cardiovascular and Medical Sciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| |
Collapse
|
18
|
Abstract
Following its initial description over a century ago, pulmonary arterial hypertension (PAH) continues to challenge researchers committed to understanding its pathobiology and finding a cure. The last two decades have seen major developments in our understanding of the genetics and molecular basis of PAH that drive cells within the pulmonary vascular wall to produce obstructive vascular lesions; presently, the field of PAH research has taken numerous approaches to dissect the complex amalgam of genetic, molecular and inflammatory pathways that interact to initiate and drive disease progression. In this review, we discuss the current understanding of PAH pathology and the role that genetic factors and environmental influences share in the development of vascular lesions and abnormal cell function. We also discuss how animal models can assist in elucidating gene function and the study of novel therapeutics, while at the same time addressing the limitations of the most commonly used rodent models. Novel experimental approaches based on application of next generation sequencing, bioinformatics and epigenetics research are also discussed as these are now being actively used to facilitate the discovery of novel gene mutations and mechanisms that regulate gene expression in PAH. Finally, we touch on recent discoveries concerning the role of inflammation and immunity in PAH pathobiology and how they are being targeted with immunomodulatory agents. We conclude that the field of PAH research is actively expanding and the major challenge in the coming years is to develop a unified theory that incorporates genetic and mechanistic data to address viable areas for disease modifying drugs that can target key processes that regulate the evolution of vascular pathology of PAH.
Collapse
|
19
|
Orcholski ME, Yuan K, Rajasingh C, Tsai H, Shamskhou EA, Dhillon NK, Voelkel NF, Zamanian RT, de Jesus Perez VA. Drug-induced pulmonary arterial hypertension: a primer for clinicians and scientists. Am J Physiol Lung Cell Mol Physiol 2018; 314:L967-L983. [PMID: 29417823 DOI: 10.1152/ajplung.00553.2017] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Drug-induced pulmonary arterial hypertension (D-PAH) is a form of World Health Organization Group 1 pulmonary hypertension (PH) defined by severe small vessel loss and obstructive vasculopathy, which leads to progressive right heart failure and death. To date, 16 different compounds have been associated with D-PAH, including anorexigens, recreational stimulants, and more recently, several Food and Drug Administration-approved medications. Although the clinical manifestation, pathology, and hemodynamic profile of D-PAH are indistinguishable from other forms of pulmonary arterial hypertension, its clinical course can be unpredictable and to some degree dependent on removal of the offending agent. Because only a subset of individuals develop D-PAH, it is probable that genetic susceptibilities play a role in the pathogenesis, but the characterization of the genetic factors responsible for these susceptibilities remains rudimentary. Besides aggressive treatment with PH-specific therapies, the major challenge in the management of D-PAH remains the early identification of compounds capable of injuring the pulmonary circulation in susceptible individuals. The implementation of pharmacovigilance, precision medicine strategies, and global warning systems will help facilitate the identification of high-risk drugs and incentivize regulatory strategies to prevent further outbreaks of D-PAH. The goal for this review is to inform clinicians and scientists of the prevalence of D-PAH and to highlight the growing number of common drugs that have been associated with the disease.
Collapse
Affiliation(s)
- Mark E Orcholski
- Division of Pulmonary and Critical Care Medicine, Stanford University Medical Center , Stanford, California.,The Vera Moulton Wall Center for Pulmonary Vascular Medicine, Stanford University Medical Center , Stanford, California.,Stanford Cardiovascular Institute, Stanford University Medical Center , Stanford, California
| | - Ke Yuan
- Division of Pulmonary and Critical Care Medicine, Stanford University Medical Center , Stanford, California.,The Vera Moulton Wall Center for Pulmonary Vascular Medicine, Stanford University Medical Center , Stanford, California.,Stanford Cardiovascular Institute, Stanford University Medical Center , Stanford, California
| | | | - Halley Tsai
- Division of Pulmonary and Critical Care Medicine, Stanford University Medical Center , Stanford, California
| | - Elya A Shamskhou
- Division of Pulmonary and Critical Care Medicine, Stanford University Medical Center , Stanford, California.,The Vera Moulton Wall Center for Pulmonary Vascular Medicine, Stanford University Medical Center , Stanford, California.,Stanford Cardiovascular Institute, Stanford University Medical Center , Stanford, California
| | | | - Norbert F Voelkel
- School of Pharmacy, Virginia Commonwealth University , Richmond, Virginia
| | - Roham T Zamanian
- Division of Pulmonary and Critical Care Medicine, Stanford University Medical Center , Stanford, California.,The Vera Moulton Wall Center for Pulmonary Vascular Medicine, Stanford University Medical Center , Stanford, California.,Stanford Cardiovascular Institute, Stanford University Medical Center , Stanford, California
| | - Vinicio A de Jesus Perez
- Division of Pulmonary and Critical Care Medicine, Stanford University Medical Center , Stanford, California.,The Vera Moulton Wall Center for Pulmonary Vascular Medicine, Stanford University Medical Center , Stanford, California.,Stanford Cardiovascular Institute, Stanford University Medical Center , Stanford, California
| |
Collapse
|
20
|
Sphingosine Kinase 1: A Potential Therapeutic Target in Pulmonary Arterial Hypertension? Trends Mol Med 2017; 23:786-798. [DOI: 10.1016/j.molmed.2017.07.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Revised: 07/04/2017] [Accepted: 07/10/2017] [Indexed: 12/22/2022]
|
21
|
Chen X, Austin ED, Talati M, Fessel JP, Farber-Eger EH, Brittain EL, Hemnes AR, Loyd JE, West J. Oestrogen inhibition reverses pulmonary arterial hypertension and associated metabolic defects. Eur Respir J 2017; 50:50/2/1602337. [PMID: 28775043 DOI: 10.1183/13993003.02337-2016] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2016] [Accepted: 04/15/2017] [Indexed: 12/11/2022]
Abstract
Increased oestrogen is a strong epidemiological risk factor for development of pulmonary arterial hypertension (PAH) in patients, associated with metabolic defects. In addition, oestrogens drive penetrance in mice carrying mutations in bone morphogenetic protein receptor type II (BMPR2), the cause of most heritable PAH. The goal of the present study was to determine whether inhibition of oestrogens was effective in the treatment of PAH in these mice.The oestrogen inhibitors fulvestrant and anastrozole were used in a prevention and treatment paradigm in BMPR2 mutant mice, and tamoxifen was used for treatment. In addition, BMPR2 mutant mice were crossed onto oestrogen receptor (ESR)1 and ESR2 knockout backgrounds to assess receptor specificity. Haemodynamic and metabolic outcomes were measured.Oestrogen inhibition both prevented and treated PAH in BMPR2 mutant mice. This was associated with reduction in metabolic defects including oxidised lipid formation, insulin resistance and rescue of peroxisome proliferator-activated receptor-γ and CD36. The effect was mediated primarily through ESR2, but partially through ESR1.Our data suggest that trials of oestrogen inhibition in human PAH are warranted, and may improve pulmonary vascular disease through amelioration of metabolic defects. Although fulvestrant and anastrozole were more effective than tamoxifen, tamoxifen may be useful in premenopausal females, because of a reduced risk of induction of menopause.
Collapse
Affiliation(s)
- Xinping Chen
- Dept of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Eric D Austin
- Dept of Pediatrics, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Megha Talati
- Dept of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Joshua P Fessel
- Dept of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA.,Dept of Pharmacology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Eric H Farber-Eger
- Center for Human Genetics Research, Vanderbilt University, Nashville, TN, USA.,Vanderbilt Translational and Clinical Cardiovascular Center, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Evan L Brittain
- Dept of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA.,Vanderbilt Translational and Clinical Cardiovascular Center, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Anna R Hemnes
- Dept of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - James E Loyd
- Dept of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - James West
- Dept of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| |
Collapse
|
22
|
Waløen K, Kleppe R, Martinez A, Haavik J. Tyrosine and tryptophan hydroxylases as therapeutic targets in human disease. Expert Opin Ther Targets 2016; 21:167-180. [PMID: 27973928 DOI: 10.1080/14728222.2017.1272581] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
INTRODUCTION The ancient and ubiquitous monoamine signalling molecules serotonin, dopamine, norepinephrine, and epinephrine are involved in multiple physiological functions. The aromatic amino acid hydroxylases tyrosine hydroxylase (TH), tryptophan hydroxylase 1 (TPH1), and tryptophan hydroxylase 2 (TPH2) catalyse the rate-limiting steps in the biosynthesis of these monoamines. Genetic variants of TH, TPH1, and TPH2 genes are associated with neuropsychiatric disorders. The interest in these enzymes as therapeutic targets is increasing as new roles of these monoamines have been discovered, not only in brain function and disease, but also in development, cardiovascular function, energy and bone homeostasis, gastrointestinal motility, hemostasis, and liver function. Areas covered: Physiological roles of TH, TPH1, and TPH2. Enzyme structures, catalytic and regulatory mechanisms, animal models, and associated diseases. Interactions with inhibitors, pharmacological chaperones, and regulatory proteins relevant for drug development. Expert opinion: Established inhibitors of these enzymes mainly target their amino acid substrate binding site, while tetrahydrobiopterin analogues, iron chelators, and allosteric ligands are less studied. New insights into monoamine biology and 3D-structural information and new computational/experimental tools have triggered the development of a new generation of more selective inhibitors and pharmacological chaperones. The enzyme complexes with their regulatory 14-3-3 proteins are also emerging as therapeutic targets.
Collapse
Affiliation(s)
- Kai Waløen
- a Department of Biomedicine and K.G. Jebsen Centre for Neuropsychiatric Disorders , University of Bergen , Bergen , Norway
| | - Rune Kleppe
- b Computational Biology Unit, Department of Informatics , University of Bergen , Bergen , Norway
| | - Aurora Martinez
- a Department of Biomedicine and K.G. Jebsen Centre for Neuropsychiatric Disorders , University of Bergen , Bergen , Norway
| | - Jan Haavik
- a Department of Biomedicine and K.G. Jebsen Centre for Neuropsychiatric Disorders , University of Bergen , Bergen , Norway
| |
Collapse
|
23
|
Schiavone S, Neri M, Mhillaj E, Morgese MG, Cantatore S, Bove M, Riezzo I, Tucci P, Pomara C, Turillazzi E, Cuomo V, Trabace L. The NADPH oxidase NOX2 as a novel biomarker for suicidality: evidence from human post mortem brain samples. Transl Psychiatry 2016; 6:e813. [PMID: 27187235 PMCID: PMC5070044 DOI: 10.1038/tp.2016.76] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/10/2015] [Revised: 02/26/2016] [Accepted: 03/17/2016] [Indexed: 12/13/2022] Open
Abstract
Recent evidence points towards a role of oxidative stress in suicidality. However, few studies were carried out on the sources of reactive oxygen species (ROS) in subjects with suicidal behaviour. We have previously demonstrated that the NADPH oxidase NOX2-derived oxidative stress has a major role in the development of neuropathological alterations observed in an animal model of psychosis. Here, we investigated the possible increase in NOX2 in post mortem brain samples of subjects who died by asphyctic suicide (AS) compared with controls (CTRL) and subjects who died by non-suicidal asphyxia (NSA). We found that NOX2 expression was significantly higher in the cortex of AS subjects than in the other two experimental groups. NOX2 immunostaining was mainly detected in GABAergic neurons, with a minor presence of NOX2-positive-stained cells in glutamatergic and dopaminergic neurons, as well as astrocytes and microglia. A sustained increase in the expression of 8-hydroxy-2'-deoxyguanosine, an indirect marker of oxidative stress, was also detected in the cortex of AS subjects, compared with CTRL and NSA subjects. A significant elevation in cortical interleukin-6 immunoreactivity in AS subjects suggested an involvement of cytokine-associated molecular pathways in NOX2 elevations. Our results suggest that the increase in NOX2-derived oxidative stress in the brain might be involved in the neuropathological pathways leading to suicidal behaviour. These results may open innovative insights in the identification of new pathogenetic and necroscopic biomarkers, predictive for suicidality and potentially useful for suicide prevention.
Collapse
Affiliation(s)
- S Schiavone
- Department of Clinical and Experimental Medicine, University of Foggia, Foggia, Italy,Department of Clinical and Experimental Medicine, University of Foggia, Via Napoli, 20, Foggia 71122, Italy. E-mail:
| | - M Neri
- Department of Clinical and Experimental Medicine, University of Foggia, Foggia, Italy
| | - E Mhillaj
- Department of Physiology and Pharmacology, 'Sapienza' University of Rome, Rome, Italy
| | - M G Morgese
- Department of Clinical and Experimental Medicine, University of Foggia, Foggia, Italy
| | - S Cantatore
- Department of Clinical and Experimental Medicine, University of Foggia, Foggia, Italy
| | - M Bove
- Department of Physiology and Pharmacology, 'Sapienza' University of Rome, Rome, Italy
| | - I Riezzo
- Department of Clinical and Experimental Medicine, University of Foggia, Foggia, Italy
| | - P Tucci
- Department of Clinical and Experimental Medicine, University of Foggia, Foggia, Italy
| | - C Pomara
- Department of Clinical and Experimental Medicine, University of Foggia, Foggia, Italy
| | - E Turillazzi
- Department of Clinical and Experimental Medicine, University of Foggia, Foggia, Italy
| | - V Cuomo
- Department of Physiology and Pharmacology, 'Sapienza' University of Rome, Rome, Italy
| | - L Trabace
- Department of Clinical and Experimental Medicine, University of Foggia, Foggia, Italy
| |
Collapse
|
24
|
MacRitchie N, Volpert G, Al Washih M, Watson DG, Futerman AH, Kennedy S, Pyne S, Pyne NJ. Effect of the sphingosine kinase 1 selective inhibitor, PF-543 on arterial and cardiac remodelling in a hypoxic model of pulmonary arterial hypertension. Cell Signal 2016; 28:946-55. [PMID: 27063355 PMCID: PMC4913619 DOI: 10.1016/j.cellsig.2016.03.014] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Revised: 03/29/2016] [Accepted: 03/29/2016] [Indexed: 12/20/2022]
Abstract
Recent studies have demonstrated that the expression of sphingosine kinase 1, the enzyme that catalyses formation of the bioactive lipid, sphingosine 1-phosphate, is increased in lungs from patients with pulmonary arterial hypertension. In addition, Sk1−/− mice are protected from hypoxic-induced pulmonary arterial hypertension. Therefore, we assessed the effect of the sphingosine kinase 1 selective inhibitor, PF-543 and a sphingosine kinase 1/ceramide synthase inhibitor, RB-005 on pulmonary and cardiac remodelling in a mouse hypoxic model of pulmonary arterial hypertension. Administration of the potent sphingosine kinase 1 inhibitor, PF-543 in a mouse hypoxic model of pulmonary hypertension had no effect on vascular remodelling but reduced right ventricular hypertrophy. The latter was associated with a significant reduction in cardiomyocyte death. The protection involves a reduction in the expression of p53 (that promotes cardiomyocyte death) and an increase in the expression of anti-oxidant nuclear factor (erythroid-derived 2)-like 2 (Nrf-2). In contrast, RB-005 lacked effects on right ventricular hypertrophy, suggesting that sphingosine kinase 1 inhibition might be nullified by concurrent inhibition of ceramide synthase. Therefore, our findings with PF-543 suggest an important role for sphingosine kinase 1 in the development of hypertrophy in pulmonary arterial hypertension. PF-543, a sphingosine kinase 1 inhibitor reduces cardiac hypertrophy in a mouse pulmonary arterial hypertension (PAH) model This results in reduced cardiomyocyte apoptosis PF-543 reduces PARP processing and p53 expression and increases Nrf-2 expression in the right ventricle of mice with PAH
Collapse
Affiliation(s)
- Neil MacRitchie
- Strathclyde Institute of Pharmacy and Biomedical Science, University of Strathclyde, Glasgow G4 0RE, UK
| | - Giora Volpert
- Department of Biological Chemistry, Weizmann Insitute of Science, Rehovot 76100, Israel
| | - Mohammed Al Washih
- Strathclyde Institute of Pharmacy and Biomedical Science, University of Strathclyde, Glasgow G4 0RE, UK
| | - David G Watson
- Strathclyde Institute of Pharmacy and Biomedical Science, University of Strathclyde, Glasgow G4 0RE, UK
| | - Anthony H Futerman
- Department of Biological Chemistry, Weizmann Insitute of Science, Rehovot 76100, Israel
| | - Simon Kennedy
- Institute of Cardiovascular and Medical Sciences, College of Medical, Veterinary & Life Sciences, University of Glasgow, G12 8QQ, UK
| | - Susan Pyne
- Strathclyde Institute of Pharmacy and Biomedical Science, University of Strathclyde, Glasgow G4 0RE, UK
| | - Nigel J Pyne
- Strathclyde Institute of Pharmacy and Biomedical Science, University of Strathclyde, Glasgow G4 0RE, UK.
| |
Collapse
|
25
|
Sardana M, Moll M, Farber HW. Novel investigational therapies for treating pulmonary arterial hypertension. Expert Opin Investig Drugs 2015; 24:1571-96. [DOI: 10.1517/13543784.2015.1098616] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
26
|
Sehgal PB, Yang YM, Miller EJ. Hypothesis: Neuroendocrine Mechanisms (Hypothalamus-Growth Hormone-STAT5 Axis) Contribute to Sex Bias in Pulmonary Hypertension. Mol Med 2015; 21:688-701. [PMID: 26252185 PMCID: PMC4749490 DOI: 10.2119/molmed.2015.00122] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2015] [Accepted: 07/30/2015] [Indexed: 12/12/2022] Open
Abstract
Pulmonary hypertension (PH) is a disease with high morbidity and mortality. The prevalence of idiopathic pulmonary arterial hypertension (IPAH) and hereditary pulmonary arterial hypertension (HPAH) is approximately two- to four-fold higher in women than in men. Paradoxically, there is an opposite male bias in typical rodent models of PH (chronic hypoxia or monocrotaline); in these models, administration of estrogenic compounds (for example, estradiol-17β [E2]) is protective. Further complexities are observed in humans ingesting anorexigens (female bias) and in rodent models, such as after hypoxia plus SU5416/Sugen (little sex bias) or involving serotonin transporter overexpression or dexfenfluramine administration (female bias). These complexities in sex bias in PH remain incompletely understood. We recently discovered that conditional deletion of signal transducer and activator of transcription 5a/b (STAT5a/b) in vascular smooth muscle cells abrogated the male bias in PH in hypoxic mice and that late-stage obliterative lesions in patients of both sexes with IPAH and HPAH showed reduced STAT5a/b, reduced Tyr-P-STAT5 and reduced B-cell lymphoma 6 protein (BCL6). In trying to understand the significance of these observations, we realized that there existed a well-characterized E2-sensitive central neuroendocrine mechanism of sex bias, studied over the last 40 years, that, at its peripheral end, culminated in species-specific male ("pulsatile") versus female ("more continuous") temporal patterns of circulating growth hormone (GH) levels leading to male versus female patterned activation of STAT5a/b in peripheral tissues and thus sex-biased expression of hundreds of genes. In this report, we consider the contribution of this neuroendocrine mechanism (hypothalamus-GH-STAT5) in the generation of sex bias in different PH situations.
Collapse
Affiliation(s)
- Pravin B Sehgal
- Department of Cell Biology and Anatomy, New York Medical College, Valhalla, New York, United States of America
- Department of Medicine, New York Medical College, Valhalla, New York, United States of America
| | - Yang-Ming Yang
- Department of Cell Biology and Anatomy, New York Medical College, Valhalla, New York, United States of America
| | - Edmund J Miller
- Center for Heart and Lung Research, The Feinstein Institute for Medical Research, Manhasset, New York, United States of America
| |
Collapse
|
27
|
Sehgal PB, Yang YM, Yuan H, Miller EJ. STAT5a/b contribute to sex bias in vascular disease: A neuroendocrine perspective. JAKSTAT 2015; 4:1-20. [PMID: 27141328 DOI: 10.1080/21623996.2015.1090658] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2015] [Revised: 08/25/2015] [Accepted: 08/27/2015] [Indexed: 12/24/2022] Open
Abstract
Previous studies have elucidated a neuroendocrine mechanism consisting of the hypothalamus (growth hormone releasing hormone, GHRH) - pituitary (growth hormone, GH) - STAT5a/b axis that underlies sex-biased gene expression in the liver. It is now established that male vs female patterned secretion of GHRH, and thus of circulating GH levels ("pulsatile" vs "more continuous" respectively), leading to differently patterned activation of PY-STAT5a/b in hepatocytes results in sex-biased gene expression of cohorts of hundreds of downstream genes. This review outlines new data in support of a STAT5a/b-based mechanism of sex bias in the vascular disease pulmonary hypertension (PH). Puzzling observations in PH include its 2-4-fold higher prevalence in women but a male-dominance in many rodent models, and, paradoxically, inhibition of PH development by estrogens in such models. We observed that conditional deletion of STAT5a/b in vascular smooth muscle cells (SMC) in mice converted the male-dominant model of chronic hypoxia-induced PH into a female-dominant phenotype. In human idiopathic PH, there was reduced STAT5a/b and PY-STAT5 in cells in late-stage obliterative pulmonary arterial lesions in both men and women. A juxtaposition of the prior liver data with the newer PH-related data drew attention to the hypothalamus-GH-STAT5 axis, which is the major target of estrogens at the level of the hypothalamus. This hypothesis explains many of the puzzling aspects of sex bias in PH in humans and rodent models. The extension of STAT5-anchored mechanisms of sex bias to vascular disease emphasizes the contribution of central neuroendocrine processes in generating sexual dimorphism in different tissues and cell types.
Collapse
Affiliation(s)
- Pravin B Sehgal
- Departments of Cell Biology & Anatomy; New York Medical College; Valhalla, NY USA; Department of Medicine; New York Medical College; Valhalla, NY USA
| | - Yang-Ming Yang
- Departments of Cell Biology & Anatomy; New York Medical College ; Valhalla, NY USA
| | - Huijuan Yuan
- Departments of Cell Biology & Anatomy; New York Medical College ; Valhalla, NY USA
| | - Edmund J Miller
- Center for Heart and Lung Research; The Feinstein Institute for Medical Research ; Manhasset, NY USA
| |
Collapse
|
28
|
Mair KM, Yang XD, Long L, White K, Wallace E, Ewart MA, Docherty CK, Morrell NW, MacLean MR. Sex affects bone morphogenetic protein type II receptor signaling in pulmonary artery smooth muscle cells. Am J Respir Crit Care Med 2015; 191:693-703. [PMID: 25608111 DOI: 10.1164/rccm.201410-1802oc] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
RATIONALE Major pulmonary arterial hypertension (PAH) registries report a greater incidence of PAH in women; mutations in the bone morphogenic protein type II receptor (BMPR-II) occur in approximately 80% of patients with heritable PAH (hPAH). OBJECTIVES We addressed the hypothesis that women may be predisposed to PAH due to normally reduced basal BMPR-II signaling in human pulmonary artery smooth muscle cells (hPASMCs). METHODS We examined the BMPR-II signaling pathway in hPASMCs derived from men and women with no underlying cardiovascular disease (non-PAH hPASMCs). We also determined the development of pulmonary hypertension in male and female mice deficient in Smad1. MEASUREMENTS AND MAIN RESULTS Platelet-derived growth factor, estrogen, and serotonin induced proliferation only in non-PAH female hPASMCs. Female non-PAH hPASMCs exhibited reduced messenger RNA and protein expression of BMPR-II, the signaling intermediary Smad1, and the downstream genes, inhibitors of DNA binding proteins, Id1 and Id3. Induction of phospho-Smad1/5/8 and Id protein by BMP4 was also reduced in female hPASMCs. BMP4 induced proliferation in female, but not male, hPASMCs. However, small interfering RNA silencing of Smad1 invoked proliferative responses to BMP4 in male hPASMCs. In male hPASMCs, estrogen decreased messenger RNA and protein expression of Id genes. The estrogen metabolite 4-hydroxyestradiol decreased phospho-Smad1/5/8 and Id expression in female hPASMCs while increasing these in males commensurate with a decreased proliferative effect in male hPASMCs. Female Smad1(+/-) mice developed pulmonary hypertension (reversed by ovariectomy). CONCLUSIONS We conclude that estrogen-driven suppression of BMPR-II signaling in non-PAH hPASMCs derived from women contributes to a pro-proliferative phenotype in hPASMCs that may predispose women to PAH.
Collapse
Affiliation(s)
- Kirsty M Mair
- 1 College of Medical and Veterinary Science, University of Glasgow, Glasgow, United Kingdom; and
| | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Mair KM, Wright AF, Duggan N, Rowlands DJ, Hussey MJ, Roberts S, Fullerton J, Nilsen M, Loughlin L, Thomas M, MacLean MR. Sex-dependent influence of endogenous estrogen in pulmonary hypertension. Am J Respir Crit Care Med 2014; 190:456-67. [PMID: 24956156 DOI: 10.1164/rccm.201403-0483oc] [Citation(s) in RCA: 111] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
RATIONALE The incidence of pulmonary arterial hypertension is greater in women, suggesting estrogens may play a role in the disease pathogenesis. Experimentally, in males, exogenously administered estrogen can protect against pulmonary hypertension (PH). However, in models that display female susceptibility, estrogens may play a causative role. OBJECTIVES To clarify the influence of endogenous estrogen and sex in PH and assess the therapeutic potential of a clinically available aromatase inhibitor. METHODS We interrogated the effect of reduced endogenous estrogen in males and females using the aromatase inhibitor, anastrozole, in two models of PH: the hypoxic mouse and Sugen 5416/hypoxic rat. We also determined the effects of sex on pulmonary expression of aromatase in these models and in lungs from patients with pulmonary arterial hypertension. MEASUREMENTS AND MAIN RESULTS Anastrozole attenuated PH in both models studied, but only in females. To verify this effect was caused by reduced estrogenic activity we confirmed that in hypoxic mice inhibition of estrogen receptor α also has a therapeutic effect specifically in females. Female rodent lung displays increased aromatase and decreased bone morphogenetic protein receptor 2 and Id1 expression compared with male. Anastrozole treatment reversed the impaired bone morphogenetic protein receptor 2 pathway in females. Increased aromatase expression was also detected in female human pulmonary artery smooth muscle cells compared with male. CONCLUSIONS The unique phenotype of female pulmonary arteries facilitates the therapeutic effects of anastrozole in experimental PH confirming a role for endogenous estrogen in the disease pathogenesis in females and suggests aromatase inhibitors may have therapeutic potential.
Collapse
Affiliation(s)
- Kirsty M Mair
- 1 Institute of Cardiovascular and Medical Sciences, College of Medical and Veterinary Science, University of Glasgow, Glasgow, United Kingdom; and
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Wu Y, O'Callaghan DS, Humbert M. An update on medical therapy for pulmonary arterial hypertension. Curr Hypertens Rep 2014; 15:614-22. [PMID: 24122306 DOI: 10.1007/s11906-013-0394-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Over the past 20 years, great progress has been made in the treatment of pulmonary arterial hypertension (PAH). Available therapies target one of three principal pathways: the endothelin (ET), nitric oxide (NO) or the prostacyclin (PGI2) pathway. Evidence shows that current drugs, used either as monotherapy or in different combinations, can improve exercise capacity, clinical symptoms, hemodynamics and even survival in PAH. Unfortunately, the disease remains incurable and the prognosis of the disease is still poor. However, existing and novel potent antiproliferative therapies are being explored, and new agents targeting different and/or additional pathways are likely to become available to clinicians in the near future. Promising candidates include tyrosine kinase antagonists (e.g. imatinib); soluble guanylate cyclase stimulators (riociguat); an oral analog of prostacyclin (selexipag); and a tissue targeting endothelin receptor antagonist (macitentan). Phase II or III trials have either been completed or are underway to evaluate the safety and efficacy of these various therapies.
Collapse
|
31
|
Olschewski A, Papp R, Nagaraj C, Olschewski H. Ion channels and transporters as therapeutic targets in the pulmonary circulation. Pharmacol Ther 2014; 144:349-68. [PMID: 25108211 DOI: 10.1016/j.pharmthera.2014.08.001] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2014] [Accepted: 07/22/2014] [Indexed: 10/24/2022]
Abstract
Pulmonary circulation is a low pressure, low resistance, high flow system. The low resting vascular tone is maintained by the concerted action of ion channels, exchangers and pumps. Under physiological as well as pathophysiological conditions, they are targets of locally secreted or circulating vasodilators and/or vasoconstrictors, leading to changes in expression or to posttranslational modifications. Both structural changes in the pulmonary arteries and a sustained increase in pulmonary vascular tone result in pulmonary vascular remodeling contributing to morbidity and mortality in pediatric and adult patients. There is increasing evidence demonstrating the pivotal role of ion channels such as K(+) and Cl(-) or transient receptor potential channels in different cell types which are thought to play a key role in vasoconstrictive remodeling. This review focuses on ion channels, exchangers and pumps in the pulmonary circulation and summarizes their putative pathophysiological as well as therapeutic role in pulmonary vascular remodeling. A better understanding of the mechanisms of their actions may allow for the development of new options for attenuating acute and chronic pulmonary vasoconstriction and remodeling treating the devastating disease pulmonary hypertension.
Collapse
Affiliation(s)
- Andrea Olschewski
- Ludwig Boltzmann Institute for Lung Vascular Research, Graz, Austria; Experimental Anesthesiology, Department of Anesthesia and Intensive Care Medicine, Medical University of Graz, Austria.
| | - Rita Papp
- Ludwig Boltzmann Institute for Lung Vascular Research, Graz, Austria
| | - Chandran Nagaraj
- Ludwig Boltzmann Institute for Lung Vascular Research, Graz, Austria
| | - Horst Olschewski
- Ludwig Boltzmann Institute for Lung Vascular Research, Graz, Austria; Department of Internal Medicine, Division of Pulmonology, Medical University of Graz, Austria
| |
Collapse
|
32
|
Karch SB, Defraia B, Messerini L, Mari F, Vaiano F, Bertol E. Aminorex associated with possible idiopathic pulmonary hypertension in a cocaine user. Forensic Sci Int 2014; 240:e7-10. [DOI: 10.1016/j.forsciint.2014.03.028] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2014] [Accepted: 03/28/2014] [Indexed: 11/29/2022]
|
33
|
Yang CJ, Tan HP, Du YJ. The developmental disruptions of serotonin signaling may involved in autism during early brain development. Neuroscience 2014; 267:1-10. [PMID: 24583042 DOI: 10.1016/j.neuroscience.2014.02.021] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2013] [Revised: 01/13/2014] [Accepted: 02/08/2014] [Indexed: 12/31/2022]
Abstract
Autism is a developmental disorder defined by the presence of a triad of communication, social and stereo typical behavioral characteristics with onset before 3years of age. In spite of the fact that there are potential environmental factors for autistic behavior, the dysfunction of serotonin during early development of the brain could be playing a role in this prevalence rise. Serotonin can modulate a number of developmental events, including cell division, neuronal migration, cell differentiation and synaptogenesis. Hyperserotonemia during fetal development results in the loss of serotonin terminals through negative feedback. The increased serotonin causes a decrease of oxytocin in the paraventricular nucleus of the hypothalamus and an increase in calcitonin gene-related peptide (CGRP) in the central nucleus of the amygdale, which are associated with social interactions and vital in autism. However, hyposerotonemia may be also relevant to the development of sensory as well as motor and cognitive faculties. And the paucity of placenta-derived serotonin should have potential importance when the pathogenesis of autism is considered. This review briefly summarized the developmental disruptions of serotonin signaling involved in the pathogenesis of autism during early development of the brain.
Collapse
Affiliation(s)
- C-J Yang
- School of Preschool & Special Education, East China Normal University, Shanghai, China.
| | - H-P Tan
- School of Preschool & Special Education, East China Normal University, Shanghai, China
| | - Y-J Du
- Department of Integrative Medicine, Huashan Hospital, Fudan University, Shanghai, China.
| |
Collapse
|
34
|
Troponin release after newborns ergot poisoning: Heart, lung or circulation? Int J Cardiol 2014; 171:e56. [DOI: 10.1016/j.ijcard.2013.11.110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2013] [Accepted: 11/30/2013] [Indexed: 11/20/2022]
|
35
|
Dempsie Y, Maclean MR. Role of the serotonin transporter in pulmonary arterial hypertension. Expert Rev Clin Pharmacol 2014; 1:749-57. [PMID: 24410605 DOI: 10.1586/17512433.1.6.749] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Pulmonary arterial hypertension is a disease in which pulmonary arterial pressure is raised, leading to right heart failure. Survival is poor despite current therapeutic strategies. The 'serotonin hypothesis of pulmonary arterial hypertension' arose in the 1960s following an 'epidemic' of pulmonary arterial hypertension in women taking the indirect serotinergic agonist aminorex as an anorexigen. In the 1980s, the hypothesis was revisited following the occurrence of pulmonary arterial hypertension associated with the use of fenfluramines as anorexigens; these are also indirect serotinergic agents. Research has identified changes in serotonin synthesis, serotonin receptor activation and serotonin uptake via the serotonin transporter in experimental and clinical pulmonary arterial hypertension. This review will discuss our current understanding of this serotonin hypothesis with particular reference to the role of the serotonin transporter.
Collapse
Affiliation(s)
- Yvonne Dempsie
- Integrative and Systems Biology, Faculty of Biomedical and Life Sciences, University of Glasgow, Glasgow, G12 8QQ, UK.
| | | |
Collapse
|
36
|
El Chami H, Hassoun PM. Inflammatory mechanisms in the pathogenesis of pulmonary arterial hypertension. Compr Physiol 2013; 1:1929-41. [PMID: 23733693 DOI: 10.1002/cphy.c100028] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Inflammation is a prominent feature of human and experimental pulmonary hypertension (PH) as suggested by infiltration of various inflammatory cells and increased expression of certain cytokines in remodeled pulmonary vessels. Macrophages, T and B lymphocytes, and dendritic cells are found in the vascular lesions of idiopathic pulmonary arterial hypertension (PAH) as well as in PAH associated with connective tissue diseases or infectious etiologies such as HIV. In addition, PAH is often characterized by the presence of circulating chemokines and cytokines, increased expression of growth (such as VEGF and PDGF) and transcriptional (e.g., nuclear factor of activated T cells or NFAT) factors, and viral protein components (e.g., HIV-1 Nef), which directly contribute to further recruitment of inflammatory cells and the pulmonary vascular remodeling process. These inflammatory pathways may thus serve as potential specific therapeutic targets. This article provides an overview of inflammatory pathways involving chemokines and cytokines as well as growth factors, highlighting their potential role in pulmonary vascular remodeling and the possibility of future targeted therapy.
Collapse
Affiliation(s)
- Hala El Chami
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Johns Hopkins University, Baltimore, Maryland, USA
| | | |
Collapse
|
37
|
Abstract
Pulmonary hypertension in human patients can result from increased pulmonary vascular tone, pressure transferred from the systemic circulation, dropout of small pulmonary vessels, occlusion of vessels with thrombi or intimal lesions, or some combination of all of these. Different animal models have been designed to reflect these different mechanistic origins of disease. Pulmonary hypertension models may be roughly grouped into tone-related models, inflammation-related models, and genetic models with unusual or mixed mechanism. Models of tone generally use hypoxia as a base, and then modify this with either genetic modifications (SOD, NOS, and caveolin) or with drugs (Sugen), although some genetic modifications of tone-related pathways can result in spontaneous pulmonary hypertension (Hph-1). Inflammation-related models can use either toxic chemicals (monocrotaline, bleomycin), live pathogens (stachybotrys, schistosomiasis), or genetic modifications (IL-6, VIP). Additional genetic models rely on alterations in metabolism (adiponectin), cell migration (S100A4), the serotonin pathway, or the BMP pathway. While each of these shares molecular and pathologic symptoms with different classes of human pulmonary hypertension, in most cases the molecular etiology of human pulmonary hypertension is unknown, and so the relationship between any model and human disease is unclear. There is thus no best animal model of pulmonary hypertension; instead, investigators must select the model most related to the specific pathology they are studying.
Collapse
Affiliation(s)
- James West
- Vanderbilt University Medical Center, Nashville, Tennessee, USA.
| | | |
Collapse
|
38
|
Dempsie Y, MacRitchie NA, White K, Morecroft I, Wright AF, Nilsen M, Loughlin L, Mair KM, MacLean MR. Dexfenfluramine and the oestrogen-metabolizing enzyme CYP1B1 in the development of pulmonary arterial hypertension. Cardiovasc Res 2013; 99:24-34. [PMID: 23519266 PMCID: PMC3687748 DOI: 10.1093/cvr/cvt064] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2012] [Revised: 02/13/2013] [Accepted: 03/11/2013] [Indexed: 12/20/2022] Open
Abstract
AIMS Pulmonary arterial hypertension (PAH) occurs more frequently in women than men. Oestrogen and the oestrogen-metabolising enzyme cytochrome P450 1B1 (CYP1B1) play a role in the development of PAH. Anorectic drugs such as dexfenfluramine (Dfen) have been associated with the development of PAH. Dfen mediates PAH via a serotonergic mechanism and we have shown serotonin to up-regulate expression of CYP1B1 in human pulmonary artery smooth muscle cells (PASMCs). Thus here we assess the role of CYP1B1 in the development of Dfen-induced PAH. METHODS AND RESULTS Dfen (5 mg kg(-1) day(-1) PO for 28 days) increased right ventricular pressure and pulmonary vascular remodelling in female mice only. Mice dosed with Dfen showed increased whole lung expression of CYP1B1 and Dfen-induced PAH was ablated in CYP1B1(-/-) mice. In line with this, Dfen up-regulated expression of CYP1B1 in PASMCs from PAH patients (PAH-PASMCs) and Dfen-mediated proliferation of PAH-PASMCs was ablated by pharmacological inhibition of CYP1B1. Dfen increased expression of tryptophan hydroxylase 1 (Tph1; the rate-limiting enzyme in the synthesis of serotonin) in PAH-PASMCs and both Dfen-induced proliferation and Dfen-induced up-regulation of CYP1B1 were ablated by inhibition of Tph1. 17β-Oestradiol increased expression of both Tph1 and CYP1B1 in PAH-PASMCs, and Dfen and 17β-oestradiol had synergistic effects on proliferation of PAH-PASMCs. Finally, ovariectomy protected against Dfen-induced PAH in female mice. CONCLUSION CYP1B1 is critical in the development of Dfen-induced PAH in mice in vivo and proliferation of PAH-PASMCs in vitro. CYP1B1 may provide a novel therapeutic target for PAH.
Collapse
MESH Headings
- Animals
- Arterial Pressure
- Aryl Hydrocarbon Hydroxylases/antagonists & inhibitors
- Aryl Hydrocarbon Hydroxylases/deficiency
- Aryl Hydrocarbon Hydroxylases/genetics
- Aryl Hydrocarbon Hydroxylases/metabolism
- Cell Proliferation
- Cells, Cultured
- Cytochrome P-450 CYP1B1
- Dexfenfluramine
- Disease Models, Animal
- Dose-Response Relationship, Drug
- Enzyme Inhibitors/pharmacology
- Estradiol/pharmacology
- Familial Primary Pulmonary Hypertension
- Female
- Hypertension, Pulmonary/chemically induced
- Hypertension, Pulmonary/enzymology
- Hypertension, Pulmonary/genetics
- Hypertension, Pulmonary/pathology
- Hypertension, Pulmonary/physiopathology
- Hypertension, Pulmonary/prevention & control
- Male
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Muscle, Smooth, Vascular/drug effects
- Muscle, Smooth, Vascular/enzymology
- Muscle, Smooth, Vascular/pathology
- Muscle, Smooth, Vascular/physiopathology
- Myocytes, Smooth Muscle/drug effects
- Myocytes, Smooth Muscle/enzymology
- Myocytes, Smooth Muscle/pathology
- Norfenfluramine/toxicity
- Ovariectomy
- Pulmonary Artery/enzymology
- Pulmonary Artery/physiopathology
- Serotonin/metabolism
- Sex Factors
- Tryptophan Hydroxylase/metabolism
- Ventricular Function, Right
- Ventricular Pressure
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Margaret R. MacLean
- Institute of Cardiovascular and Medical Sciences, College of Medical, Veterinary and Life Sciences, Glasgow University, West Medical Building, Glasgow G12 8QQ, UK
| |
Collapse
|
39
|
Dempsie Y, MacLean MR. The influence of gender on the development of pulmonary arterial hypertension. Exp Physiol 2013; 98:1257-61. [PMID: 23625955 DOI: 10.1113/expphysiol.2012.069120] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Pulmonary arterial hypertension (PAH) is a progressive disease in which increased pulmonary arterial pressure and remodelling eventually lead to right heart failure and death. Idiopathic and familial PAH occur far more frequently in women than in men. Historically, investigations into this gender bias have been impeded because female gender and oestrogens paradoxically protect against PAH in commonly used rodent models. However, recent descriptions of female gender-specific murine models of PAH have led to an increased understanding of the role of oestrogens in disease development. Specifically, oestrogen metabolism has been highlighted as playing an important role in disease development, and the oestrogen-metabolizing enzyme CYP1B1 may represent a novel therapeutic target. In addition, emerging evidence suggests that sex hormones may have direct effects on the right ventricle independent of haemodynamic effects. This review discusses our current understanding of the role of sex hormones in the development of PAH.
Collapse
Affiliation(s)
- Yvonne Dempsie
- School of Health & Life Sciences, Charles Oakley Laboratories, Glasgow Caledonian University, Glasgow G4 0BA, UK.
| | | |
Collapse
|
40
|
Delaney C, Gien J, Roe G, Isenberg N, Kailey J, Abman SH. Serotonin contributes to high pulmonary vascular tone in a sheep model of persistent pulmonary hypertension of the newborn. Am J Physiol Lung Cell Mol Physiol 2013; 304:L894-901. [PMID: 23605003 DOI: 10.1152/ajplung.00043.2013] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Although past studies demonstrate that altered serotonin (5-HT) signaling is present in adults with idiopathic pulmonary arterial hypertension, whether serotonin contributes to the pathogenesis of persistent pulmonary hypertension of the newborn (PPHN) is unknown. We hypothesized that 5-HT contributes to increased pulmonary vascular resistance (PVR) in a sheep model of PPHN and that selective 5-HT reuptake inhibitor (SSRI) treatment increases PVR in this model. We studied the hemodynamic effects of 5-HT, ketanserin (5-HT2A receptor antagonist), and sertraline, an SSRI, on pulmonary hemodynamics of the late gestation fetal sheep with PPHN caused by prolonged constriction of the ductus arteriosis. Brief intrapulmonary infusions of 5-HT increased PVR from 1.0 ± 0.07 (baseline) to 1.4 ± 0.22 mmHg/ml per minute of treatment (P < 0.05). Ketanserin decreased PVR from 1.1 ± 0.15 (baseline) to 0.82 ± 0.09 mmHg/ml per minute of treatment (P < 0.05). Sertraline increased PVR from 1.1 ± 0.17 (baseline) to 1.4 ± 0.17 mmHg/ml per minute of treatment (P = 0.01). In addition, we studied 5-HT production and activity in vitro in experimental PPHN. Compared with controls, pulmonary artery endothelial cells from fetal sheep with PPHN exhibited increased expression of tryptophan hydroxylase 1 and 5-HT production by twofold and 56%, respectively. Compared with controls, 5-HT2A R expression was increased in lung homogenates and pulmonary artery smooth muscle cell lysates by 35% and 32%, respectively. We concluded that increased 5-HT contributes to high PVR in experimental PPHN through activation of the 5-HT2A receptor and that SSRI infusion further increases PVR in this model.
Collapse
Affiliation(s)
- Cassidy Delaney
- Pediatric Heart Lung Center, Section of Neonatology, University of Colorado Denver, Aurora, CO 80045, USA.
| | | | | | | | | | | |
Collapse
|
41
|
Austin ED, Lahm T, West J, Tofovic SP, Johansen AK, MacLean MR, Alzoubi A, Oka M. Gender, sex hormones and pulmonary hypertension. Pulm Circ 2013; 3:294-314. [PMID: 24015330 PMCID: PMC3757824 DOI: 10.4103/2045-8932.114756] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Most subtypes of pulmonary arterial hypertension (PAH) are characterized by a greater susceptibility to disease among females, although females with PAH appear to live longer after diagnosis. While this "estrogen paradoxȍ of enhanced female survival despite increased female susceptibility remains a mystery, recent progress has begun to shed light upon the interplay of sex hormones, the pathogenesis of pulmonary hypertension, and the right ventricular response to stress. For example, emerging data in humans and experimental models suggest that estrogens or differential sex hormone metabolism may modify disease risk among susceptible subjects, and that estrogens may interact with additional local factors such as serotonin to enhance the potentially damaging chronic effects of estrogens on the pulmonary vasculature. Regardless, it remains unclear why not all estrogenic compounds behave equally, nor why estrogens appear to be protective in certain settings but detrimental in others. The contribution of androgens and other compounds, such as dehydroepiandrosterone, to pathogenesis and possibly treatment must be considered as well. In this review, we will discuss the recent understandings on how estrogens, estrogen metabolism, dehydroepiandrosterone, and additional susceptibility factors may all contribute to the pathogenesis or potentially to the treatment of pulmonary hypertension, by evaluating current human, cell-based, and experimental model data.
Collapse
Affiliation(s)
- Eric D. Austin
- Department of Pediatrics, Division of Allergy, Immunology, and Pulmonary Medicine, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - Tim Lahm
- Division of Pulmonary, Allergy, Critical Care, Occupational, and Sleep Medicine and Richard L. Roudebush Veterans Affairs Medical Center, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - James West
- Department of Medicine, Division of Allergy, Immunology, and Pulmonary Medicine, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - Stevan P. Tofovic
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, Vascular Medicine Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Anne Katrine Johansen
- Institute of Cardiovascular and Medical Sciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, Scotland, USA
| | - Margaret R. MacLean
- Institute of Cardiovascular and Medical Sciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, Scotland, USA
| | - Abdallah Alzoubi
- Department of Medicine and Pharmacology and Center for Lung Biology, University of South Alabama, Mobile, Alabama, USA
| | - Masahiko Oka
- Department of Medicine and Pharmacology and Center for Lung Biology, University of South Alabama, Mobile, Alabama, USA
| |
Collapse
|
42
|
Thomas M, Ciuclan L, Hussey MJ, Press NJ. Targeting the serotonin pathway for the treatment of pulmonary arterial hypertension. Pharmacol Ther 2013; 138:409-17. [PMID: 23416102 DOI: 10.1016/j.pharmthera.2013.02.002] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2013] [Accepted: 01/07/2013] [Indexed: 01/22/2023]
Abstract
As we uncover the complex pathophysiology underlying idiopathic and familial pulmonary arterial hypertension, multiple disease associated pathways, cell types and processes reveal links to elements of the serotonin system. Beyond the original 'serotonin hypothesis' observed with anorexigens, and the latterly demonstrated association with vascular tone and pulmonary artery smooth muscle cell proliferation, recent studies suggest links to BMPR2, PDGF and RhoK pathways, as well as an impact upon more complex lesion formation and pathologic bone marrow progenitor mobilization. Clinical experience with antagonists targeting the various elements of the serotonin pathway has been unsatisfactory, yet perhaps this is less than surprising given our expanding knowledge around serotonin production and signaling biology, which indicate opportunities for novel therapeutic options.
Collapse
Affiliation(s)
- Matthew Thomas
- Respiratory Disease Area, Novartis Institutes for BioMedical Research, Wimblehurst Road, Horsham, West Sussex, RH12 5AB, United Kingdom.
| | | | | | | |
Collapse
|
43
|
Platelet serotonin promotes the recruitment of neutrophils to sites of acute inflammation in mice. Blood 2012; 121:1008-15. [PMID: 23243271 DOI: 10.1182/blood-2012-06-437392] [Citation(s) in RCA: 301] [Impact Index Per Article: 23.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The majority of peripheral serotonin is stored in platelets, which secrete it on activation. Serotonin releases Weibel-Palade bodies (WPBs) and we asked whether absence of platelet serotonin affects neutrophil recruitment in inflammatory responses. Tryptophan hydroxylase (Tph)1–deficient mice, lacking non-neuronal serotonin, showed mild leukocytosis compared with wild-type (WT), primarily driven by an elevated neutrophil count. Despite this, 50% fewer leukocytes rolled on unstimulated mesenteric venous endothelium of Tph1(-/-) mice. The velocity of rolling leukocytes was higher in Tph1(-/-) mice, indicating fewer selectin-mediated interactions with endothelium. Stimulation of endothelium with histamine, a secretagogue of WPBs, or injection of serotonin normalized the rolling in Tph1(-/-) mice. Diminished rolling in Tph1(-/-) mice resulted in reduced firm adhesion of leukocytes after lipopolysaccharide treatment. Blocking platelet serotonin uptake with fluoxetine in WT mice reduced serum serotonin by > 80% and similarly reduced leukocyte rolling and adhesion. Four hours after inflammatory stimulation, neutrophil extravasation into lung, peritoneum, and skin wounds was reduced in Tph1(-/-) mice, whereas in vitro neutrophil chemotaxis was independent of serotonin. Survival of lipopolysaccharide-induced endotoxic shock was improved in Tph1(-/-) mice. In conclusion, platelet serotonin promotes the recruitment of neutrophils in acute inflammation, supporting an important role for platelet serotonin in innate immunity.
Collapse
|
44
|
Abstract
Altered immunity and inflammation are increasingly recognized features of pulmonary arterial hypertension (PAH). This is suggested by infiltration of various inflammatory cells (e.g., macrophages, T and B lymphocytes), increased cytokine and growth factor (e.g., VEGF and PDGF) expression in remodeled pulmonary vessels, and the presence of circulating chemokines and cytokines. In certain diseases associated with PAH, increased expression of growth and transcriptional (e.g., nuclear factor of activated T cells or NFAT) factors, and viral protein components (e.g., HIV-1 Nef), appear to contribute directly to recruitment of inflammatory cells in remodeled vessels, and may potentially serve as specific therapeutic targets. This section provides an overview of inflammatory pathways highlighting their potential role in pulmonary vascular remodeling in PAH and the possibility of future targeted therapy.
Collapse
Affiliation(s)
- Hala El Chami
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Johns Hopkins University, Baltimore, MD 21205, USA
| | | |
Collapse
|
45
|
Abstract
Recent clinical and experimental studies are redefining the cellular and molecular bases of pulmonary arterial hypertension (PAH). The genetic abnormalities first identified in association with the idiopathic form of PAH--together with a vast increase in our understanding of cell signaling, cell transformation, and cell-cell interactions; gene expression; microRNA processing; and mitochondrial and ion channel function--have helped explain the abnormal response of vascular cells to injury. Experimental and clinical studies now converge on the intersection and interactions between a genetic predisposition involving the BMPR2 signaling pathway and an impaired metabolic and chronic inflammatory state in the vessel wall. These deranged processes culminate in an exuberant proliferative response that occludes the pulmonary arterial (PA) lumen and obliterates the most distal intraacinar vessels. Here, we describe emerging therapies based on preclinical studies that address these converging pathways.
Collapse
Affiliation(s)
- Marlene Rabinovitch
- Stanford University School of Medicine, Stanford, California 94305-5162, USA.
| |
Collapse
|
46
|
[Pulmonary hypertension: from molecular pathophysiology to haemodynamic abnormalities]. Rev Mal Respir 2012; 29:956-70. [PMID: 23101638 DOI: 10.1016/j.rmr.2012.03.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2010] [Accepted: 03/12/2012] [Indexed: 12/18/2022]
Abstract
Pulmonary hypertension (PH) is a complex disorder resulting from many etiologies that cause disturbances of normal pulmonary haemodynamics. Recent breakthroughs have led to a better understanding of the pathophysiology of the disease. In PH, haemodynamic disturbances are closely linked to structural changes and excessive remodeling of pulmonary vessels, leading to progressive narrowing of the pulmonary vascular lumen. Imbalances between pulmonary vasoconstrictors and vasodilators on the one hand, and factors favoring cell proliferation and apoptosis on the other hand, probably account for most cases of PH. This review aims to update readers with the current knowledge on the molecular physiopathology of PH and how this can progress the therapeutic of this disorder.
Collapse
|
47
|
Pleym H, Greiff G, Mjorndal T, Stenseth R, Wahba A, Spigset O. Effect of serotonin reuptake inhibitors on pulmonary hemodynamics in humans. J Clin Med Res 2012; 3:230-8. [PMID: 22383910 PMCID: PMC3279484 DOI: 10.4021/jocmr654w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/04/2011] [Indexed: 11/10/2022] Open
Abstract
Background Serotonin promotes pulmonary arterial vasoconstriction and pulmonary arterial smooth muscle cell proliferation, thereby having the potential to increase pulmonary arterial blood pressure. Although serotonin reuptake inhibitors (SRIs) might inhibit further deterioration in patients with manifest pulmonary arterial hypertension, they may induce pulmonary hypertension in healthy newborns after fetal exposure. As it is unclear whether treatment with SRIs affects pulmonary hemodynamics in adults without pulmonary hypertension, the aim of the present study was to investigate the effect of SRIs on pulmonary hemodynamics in such subjects. Methods Sixteen patients with stable angina pectoris scheduled for first time coronary artery bypass grafting were included in the study. Of these 8 were currently treated with an SRI (the SRI group) and 8 were not (the control group). Pulmonary arterial pressures were measured before induction of anesthesia by means of a pulmonary artery catheter. Serotonin transporter and 5-HT2A receptor gene polymorphisms and platelet 5-HT2A receptor expression were studied to elucidate their possible role as modifying factors. Results No patients in any of the groups had pulmonary arterial hypertension. Mean pulmonary artery pressure was 15.0 mmHg in the SRI group and 14.5 mmHg in the control group (P = 0.50; 95% confidence interval for the difference, -2.9 to +3.9 mmHg). Neither were there any significant differences between the groups for any of the other hemodynamic variables studied. The various gene polymorphisms and the extent of platelet 5-HT2A receptor expression did not influence the hemodynamic variables. Conclusions SRI treatment did not significantly influence pulmonary hemodynamics in patients without pulmonary hypertension. Keywords Serotonin; Selective serotonin reuptake inhibitors; Pulmonary hemodynamics; Pulmonary hypertension
Collapse
Affiliation(s)
- Hilde Pleym
- Department of Cardiothoracic Anesthesia and Intensive Care, St. Olav University Hospital, Trondheim, Norway
| | | | | | | | | | | |
Collapse
|
48
|
Gomez-Arroyo J, Saleem SJ, Mizuno S, Syed AA, Bogaard HJ, Abbate A, Taraseviciene-Stewart L, Sung Y, Kraskauskas D, Farkas D, Conrad DH, Nicolls MR, Voelkel NF. A brief overview of mouse models of pulmonary arterial hypertension: problems and prospects. Am J Physiol Lung Cell Mol Physiol 2012; 302:L977-91. [PMID: 22307907 DOI: 10.1152/ajplung.00362.2011] [Citation(s) in RCA: 149] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Many chronic pulmonary diseases are associated with pulmonary hypertension (PH) and pulmonary vascular remodeling, which is a term that continues to be used to describe a wide spectrum of vascular abnormalities. Pulmonary vascular structural changes frequently increase pulmonary vascular resistance, causing PH and right heart failure. Although rat models had been standard models of PH research, in more recent years the availability of genetically engineered mice has made this species attractive for many investigators. Here we review a large amount of data derived from experimental PH reports published since 1996. These studies using wild-type and genetically designed mice illustrate the challenges and opportunities provided by these models. Hemodynamic measurements are difficult to obtain in mice, and right heart failure has not been investigated in mice. Anatomical, cellular, and genetic differences distinguish mice and rats, and pharmacogenomics may explain the degree of PH and the particular mode of pulmonary vascular adaptation and also the response of the right ventricle.
Collapse
Affiliation(s)
- Jose Gomez-Arroyo
- Victoria Johnson Center for Obstructive Lung Disease Research, Virginia Commonwealth University, 1220 E. Broad St., Richmond, VA 23298, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Dempsie Y, Nilsen M, White K, Mair KM, Loughlin L, Ambartsumian N, Rabinovitch M, Maclean MR. Development of pulmonary arterial hypertension in mice over-expressing S100A4/Mts1 is specific to females. Respir Res 2011; 12:159. [PMID: 22185646 PMCID: PMC3276452 DOI: 10.1186/1465-9921-12-159] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2011] [Accepted: 12/20/2011] [Indexed: 01/29/2023] Open
Abstract
BACKGROUND Idiopathic and familial forms of pulmonary arterial hypertension (PAH) occur more frequently in women than men. However, the reason for this remains unknown. Both the calcium binding protein S100A4/Mts1 (Mts1) and its endogenous receptor (receptor for advanced glycosylation end products; RAGE) have been implicated in the development of PAH. We wished to investigate if the Mts1/RAGE pathway may play a role in the gender bias associated with PAH. METHODS We investigated the effects of gender on development of PAH in mice over-expressing Mts1 (Mts1+ mice) via measurement of pulmonary arterial remodeling, systolic right ventricular pressure (sRVP) and right ventricular hypertrophy (RVH). Gender differences in pulmonary arterial Mts1 and RAGE expression were assessed by qRT-PCR and immunohistochemistry. Western blotting and cell counts were used to investigate interactions between 17β-estradiol, Mts1 and RAGE on proliferation of human pulmonary artery smooth muscle cells (hPASMCs). Statistical analysis was by one-way analysis of variance with Dunnetts post test or two-way analysis of variance with Bonferronis post test, as appropriate. RESULTS Female Mts1+ mice developed increased sRVP and pulmonary vascular remodeling, whereas male Mts1+ mice remained unaffected. The development of plexiform-like lesions in Mts1+ mice was specific to females. These lesions stained positive for both Mts1 and RAGE in the endothelial and adventitial layers. Expression of pulmonary arterial Mts1 was greater in female than male Mts1+ mice, and was localised to the medial and adventitial layers in non plexiform-like pulmonary arteries. RAGE gene expression and immunoreactivity were similar between male and female Mts1+ mice and RAGE staining was localised to the endothelial layer in non plexiform-like pulmonary arteries adjacent to airways. In non-plexiform like pulmonary arteries not associated with airways RAGE staining was present in the medial and adventitial layers. Physiological concentrations of 17β-estradiol increased Mts1 expression in hPASMCs. 17β-estradiol-induced hPASMC proliferation was inhibited by soluble RAGE, which antagonises the membrane bound form of RAGE. CONCLUSIONS Mts1 over-expression combined with female gender is permissive to the development of experimental PAH in mice. Up-regulation of Mts1 and subsequent activation of RAGE may contribute to 17β-estradiol-induced proliferation of hPASMCs.
Collapse
Affiliation(s)
- Yvonne Dempsie
- College of Medical, Veterinary and Life Sciences, Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, UK
| | | | | | | | | | | | | | | |
Collapse
|
50
|
Goyal R, Papamatheakis DG, Loftin M, Vrancken K, Dawson AS, Osman NJ, Blood AB, Pearce WJ, Longo LD, Wilson SM. Long-term maternal hypoxia: the role of extracellular Ca2+ entry during serotonin-mediated contractility in fetal ovine pulmonary arteries. Reprod Sci 2011; 18:948-62. [PMID: 21960509 PMCID: PMC3343111 DOI: 10.1177/1933719111401660] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Antenatal maternal long-term hypoxia (LTH) can alter serotonin (5-HT) and calcium (Ca(2+)) signaling in fetal pulmonary arteries (PAs) and is associated with persistent pulmonary hypertension of the newborn (PPHN). In humans, the antenatal maternal hypoxia can be secondary to smoking, anemia, and chronic obstructive pulmonary disorders. However, the mechanisms of antenatal maternal hypoxia-related PPHN are unresolved. Because both LTH and 5-HT are associated with PPHN, we tested the hypothesis that antenatal maternal LTH can increase 5-HT-mediated PA contraction and associated extracellular Ca(2+) influx through L-type Ca(2+) channels (Ca(L)), nonselective cation channels (NSCCs), and reverse-mode sodium-calcium exchanger (NCX) in the near-term fetus. We performed wire myography and confocal-Ca(2+) imaging approaches on fetal lamb PA (∼ 140 days of gestation) from normoxic ewes or those acclimatized to high-altitude LTH (3801 m) for ∼110 days. Long-term hypoxia reduced the potency but not the efficacy of 5-HT-induced PA contraction. Ketanserin (100 nmol/L), a 5-HT(2A) antagonist, shifted 5-HT potency irrespective of LTH, while GR-55562 (1 µmol/L), a 5-HT(1B/D) inhibitor, antagonized 5-HT-induced contraction in normoxic fetuses only. Various inhibitors for Ca(L), NSCC, and reverse-mode NCX were used in contraction studies. Contraction was reliant on extracellular Ca(2+) regardless of maternal hypoxia, NSCC was more important to contraction than Ca(L), and reverse-mode NCX had little or no role in contraction. Long-term hypoxia also attenuated the effects of 2-APB and flufenamic acid and reduced Ca(2+) responses observed by imaging studies. Overall, LTH reduced 5HT(1B/D) function and increased NSCC-related Ca(2+)-dependent contraction in ovine fetuses, which may compromise pulmonary vascular function in the newborn.
Collapse
Affiliation(s)
- Ravi Goyal
- Department of Physiology and Pharmacology and Center for Perinatal Biology, School of Medicine, Loma Linda University, Loma Linda, CA, USA
| | - Demosthenes G. Papamatheakis
- Department of Medicine, Division of Pulmonary and Critical Care, Loma Linda University Medical Center, Loma Linda, CA, USA
| | - Matthew Loftin
- Department of Pharmacology, School of Pharmacy and Research Institute of Pharmaceutical Sciences, University of Mississippi, University, MS, USA
| | - Kurt Vrancken
- Department of Physiology and Pharmacology and Center for Perinatal Biology, School of Medicine, Loma Linda University, Loma Linda, CA, USA
- Department of Pediatrics, Division of Neonatology, School of Medicine, Loma Linda University, Loma Linda, CA, USA
| | - Antoinette S. Dawson
- Department of Pharmacology, School of Pharmacy and Research Institute of Pharmaceutical Sciences, University of Mississippi, University, MS, USA
- Light Microscopy Core, University of Mississippi, University, MS, USA
| | - Noah J. Osman
- Department of Pharmacology, School of Pharmacy and Research Institute of Pharmaceutical Sciences, University of Mississippi, University, MS, USA
- Light Microscopy Core, University of Mississippi, University, MS, USA
| | - Arlin B. Blood
- Department of Physiology and Pharmacology and Center for Perinatal Biology, School of Medicine, Loma Linda University, Loma Linda, CA, USA
- Department of Pediatrics, Division of Neonatology, School of Medicine, Loma Linda University, Loma Linda, CA, USA
| | - William J. Pearce
- Department of Physiology and Pharmacology and Center for Perinatal Biology, School of Medicine, Loma Linda University, Loma Linda, CA, USA
| | - Lawrence D. Longo
- Department of Physiology and Pharmacology and Center for Perinatal Biology, School of Medicine, Loma Linda University, Loma Linda, CA, USA
| | - Sean M. Wilson
- Department of Physiology and Pharmacology and Center for Perinatal Biology, School of Medicine, Loma Linda University, Loma Linda, CA, USA
- Department of Medicine, Division of Pulmonary and Critical Care, Loma Linda University Medical Center, Loma Linda, CA, USA
| |
Collapse
|