1
|
Su Y, Huang J, Sun S, He T, Wang T, Fan M, Yu H, Yan J, Yao L, Xia Y, Zhang M, Zheng Y, Luo X, Zhang Y, Lu M, Zou M, Liu C, Chen Y. Restoring the Autonomic Balance in an Atrial Fibrillation Rat Model by Electroacupuncture at the Neiguan Point. Neuromodulation 2024; 27:1196-1207. [PMID: 36522251 DOI: 10.1016/j.neurom.2022.11.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 10/26/2022] [Accepted: 11/01/2022] [Indexed: 12/15/2022]
Abstract
OBJECTIVES Autonomic nervous activity imbalance plays an important role in atrial fibrillation (AF). AF can be treated by acupuncture at the Neiguan point (PC6), but the mechanism remains elusive. Here, we investigated autonomic nervous system activity in electroacupuncture (EA) at PC6 in a rat AF model. MATERIAL AND METHODS In this study, we established a rat AF model via tail vein injection with ACh-CaCl2 for ten consecutive days with or without EA at PC6. AF inducibility and heart rate variability (HRV) were assessed by electrocardiogram. Next, we completed in vivo recording of the activity of cervical sympathetic and vagal nerves, respectively. Finally, the activities of brain regions related to autonomic nerve regulation were assessed by c-Fos immunofluorescence and multichannel recording. RESULTS EA at PC6 decreased AF inducibility and prevented changes in HRV caused by ACh-CaCl2 injection. Meanwhile, EA at PC6 reversed the increased sympathetic and decreased vagal nerve activity in AF rats. Furthermore, EA treatment downregulated increased c-Fos expression in brain regions, including paraventricular nucleus, rostral ventrolateral medulla, and dorsal motor nucleus of the vagus in AF, while c-Fos expression in nucleus ambiguus was upregulated with EA. CONCLUSION The protective effect of EA at PC6 on AF is associated with balance between sympathetic and vagal nerve activities.
Collapse
Affiliation(s)
- Yang Su
- South China Research Center for Acupuncture and Moxibustion, Medical College of Acu-Moxi and Rehabilitation, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Jing Huang
- South China Research Center for Acupuncture and Moxibustion, Medical College of Acu-Moxi and Rehabilitation, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Shengxuan Sun
- South China Research Center for Acupuncture and Moxibustion, Medical College of Acu-Moxi and Rehabilitation, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Teng He
- Research Institute of Acupuncture and Moxibustion, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Taiyi Wang
- Research Institute of Acupuncture and Moxibustion, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Mengyue Fan
- Research Institute of Acupuncture and Moxibustion, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Huanhuan Yu
- Research Institute of Acupuncture and Moxibustion, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Jinglan Yan
- Research Institute of Acupuncture and Moxibustion, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Lin Yao
- Research Institute of Acupuncture and Moxibustion, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Yucen Xia
- Research Institute of Acupuncture and Moxibustion, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Meng Zhang
- Research Institute of Acupuncture and Moxibustion, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Yuanjia Zheng
- Research Institute of Acupuncture and Moxibustion, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Xiaoyan Luo
- South China Research Center for Acupuncture and Moxibustion, Medical College of Acu-Moxi and Rehabilitation, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yuewen Zhang
- South China Research Center for Acupuncture and Moxibustion, Medical College of Acu-Moxi and Rehabilitation, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Manqi Lu
- South China Research Center for Acupuncture and Moxibustion, Medical College of Acu-Moxi and Rehabilitation, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Meixia Zou
- South China Research Center for Acupuncture and Moxibustion, Medical College of Acu-Moxi and Rehabilitation, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Cunzhi Liu
- International Acupuncture and Moxibustion Innovation Institute, School of Acupuncture-Moxibustion and Tuina, Beijing University of Chinese Medicine, Chaoyang District, Beijing, China
| | - Yongjun Chen
- South China Research Center for Acupuncture and Moxibustion, Medical College of Acu-Moxi and Rehabilitation, Guangzhou University of Chinese Medicine, Guangzhou, China; Research Institute of Acupuncture and Moxibustion, Shandong University of Traditional Chinese Medicine, Jinan, China; Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Guangzhou, China.
| |
Collapse
|
2
|
Herring N, Ajijola OA, Foreman RD, Gourine AV, Green AL, Osborn J, Paterson DJ, Paton JFR, Ripplinger CM, Smith C, Vrabec TL, Wang HJ, Zucker IH, Ardell JL. Neurocardiology: translational advancements and potential. J Physiol 2024. [PMID: 39340173 DOI: 10.1113/jp284740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 09/03/2024] [Indexed: 09/30/2024] Open
Abstract
In our original white paper published in the The Journal of Physiology in 2016, we set out our knowledge of the structural and functional organization of cardiac autonomic control, how it remodels during disease, and approaches to exploit such knowledge for autonomic regulation therapy. The aim of this update is to build on this original blueprint, highlighting the significant progress which has been made in the field since and major challenges and opportunities that exist with regard to translation. Imbalances in autonomic responses, while beneficial in the short term, ultimately contribute to the evolution of cardiac pathology. As our understanding emerges of where and how to target in terms of actuators (including the heart and intracardiac nervous system (ICNS), stellate ganglia, dorsal root ganglia (DRG), vagus nerve, brainstem, and even higher centres), there is also a need to develop sensor technology to respond to appropriate biomarkers (electrophysiological, mechanical, and molecular) such that closed-loop autonomic regulation therapies can evolve. The goal is to work with endogenous control systems, rather than in opposition to them, to improve outcomes.
Collapse
Affiliation(s)
- N Herring
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK
| | - O A Ajijola
- UCLA Neurocardiology Research Center of Excellence, David Geffen School of Medicine, Los Angeles, CA, USA
| | - R D Foreman
- Department of Biochemistry and Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - A V Gourine
- Centre for Cardiovascular and Metabolic Neuroscience, University College London, London, UK
| | - A L Green
- Nuffield Department of Surgical Sciences, University of Oxford, Oxford, UK
| | - J Osborn
- Department of Surgery, University of Minnesota, Minneapolis, MN, USA
| | - D J Paterson
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK
| | - J F R Paton
- Manaaki Manawa - The Centre for Heart Research, Department of Physiology, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - C M Ripplinger
- Department of Pharmacology, University of California Davis, Davis, CA, USA
| | - C Smith
- Department of Physiology and Biophysics, Case Western Reserve University, Cleveland, OH, USA
| | - T L Vrabec
- Department of Physical Medicine and Rehabilitation, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - H J Wang
- Department of Anesthesiology, University of Nebraska Medical Center, Omaha, NE, USA
| | - I H Zucker
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, NE, USA
| | - J L Ardell
- UCLA Neurocardiology Research Center of Excellence, David Geffen School of Medicine, Los Angeles, CA, USA
| |
Collapse
|
3
|
Giannino G, Nocera L, Andolfatto M, Braia V, Giacobbe F, Bruno F, Saglietto A, Angelini F, De Filippo O, D'Ascenzo F, De Ferrari GM, Dusi V. Vagal nerve stimulation in myocardial ischemia/reperfusion injury: from bench to bedside. Bioelectron Med 2024; 10:22. [PMID: 39267134 PMCID: PMC11395864 DOI: 10.1186/s42234-024-00153-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Accepted: 07/31/2024] [Indexed: 09/14/2024] Open
Abstract
The identification of acute cardioprotective strategies against myocardial ischemia/reperfusion (I/R) injury that can be applied in the catheterization room is currently an unmet clinical need and several interventions evaluated in the past at the pre-clinical level have failed in translation. Autonomic imbalance, sustained by an abnormal afferent signalling, is a key component of I/R injury. Accordingly, there is a strong rationale for neuromodulation strategies, aimed at reducing sympathetic activity and/or increasing vagal tone, in this setting. In this review we focus on cervical vagal nerve stimulation (cVNS) and on transcutaneous auricular vagus nerve stimulation (taVNS); the latest has the potential to overcome several of the issues of invasive cVNS, including the possibility of being used in an acute setting, while retaining its beneficial effects. First, we discuss the pathophysiology of I/R injury, that is mostly a consequence of the overproduction of reactive oxygen species. Second, we describe the functional anatomy of the parasympathetic branch of the autonomic nervous system and the most relevant principles of bioelectronic medicine applied to electrical vagal modulation, with a particular focus on taVNS. Then, we provide a detailed and comprehensive summary of the most relevant pre-clinical studies of invasive and non-invasive VNS that support its strong cardioprotective effect whenever there is an acute or chronic cardiac injury and specifically in the setting of myocardial I/R injury. The potential benefit in the emerging field of post cardiac arrest syndrome (PCAS) is also mentioned. Indeed, electrical cVNS has a strong anti-adrenergic, anti-inflammatory, antioxidants, anti-apoptotic and pro-angiogenic effect; most of the involved molecular pathways were already directly confirmed to take place at the cardiac level for taVNS. Pre-clinical data clearly show that the sooner VNS is applied, the better the outcome, with the possibility of a marked infarct size reduction and almost complete left ventricular reverse remodelling when VNS is applied immediately before and during reperfusion. Finally, we describe in detail the limited but very promising clinical experience of taVNS in I/R injury available so far.
Collapse
Affiliation(s)
- Giuseppe Giannino
- Cardiology, Department of Medical Sciences, University of Turin, Torino, Italy
- Division of Cardiology, Cardiovascular and Thoracic Department, 'Città della Salute e della Scienza' Hospital, Corso Bramante 88, Turin, 10126, Italy
| | - Lorenzo Nocera
- Cardiology, Department of Medical Sciences, University of Turin, Torino, Italy
- Division of Cardiology, Cardiovascular and Thoracic Department, 'Città della Salute e della Scienza' Hospital, Corso Bramante 88, Turin, 10126, Italy
| | - Maria Andolfatto
- Cardiology, Department of Medical Sciences, University of Turin, Torino, Italy
- Division of Cardiology, Cardiovascular and Thoracic Department, 'Città della Salute e della Scienza' Hospital, Corso Bramante 88, Turin, 10126, Italy
| | - Valentina Braia
- Cardiology, Department of Medical Sciences, University of Turin, Torino, Italy
- Division of Cardiology, Cardiovascular and Thoracic Department, 'Città della Salute e della Scienza' Hospital, Corso Bramante 88, Turin, 10126, Italy
| | - Federico Giacobbe
- Cardiology, Department of Medical Sciences, University of Turin, Torino, Italy
- Division of Cardiology, Cardiovascular and Thoracic Department, 'Città della Salute e della Scienza' Hospital, Corso Bramante 88, Turin, 10126, Italy
| | - Francesco Bruno
- Cardiology, Department of Medical Sciences, University of Turin, Torino, Italy
| | - Andrea Saglietto
- Cardiology, Department of Medical Sciences, University of Turin, Torino, Italy
| | - Filippo Angelini
- Cardiology, Department of Medical Sciences, University of Turin, Torino, Italy
| | - Ovidio De Filippo
- Cardiology, Department of Medical Sciences, University of Turin, Torino, Italy
| | - Fabrizio D'Ascenzo
- Cardiology, Department of Medical Sciences, University of Turin, Torino, Italy
- Division of Cardiology, Cardiovascular and Thoracic Department, 'Città della Salute e della Scienza' Hospital, Corso Bramante 88, Turin, 10126, Italy
| | - Gaetano Maria De Ferrari
- Cardiology, Department of Medical Sciences, University of Turin, Torino, Italy
- Division of Cardiology, Cardiovascular and Thoracic Department, 'Città della Salute e della Scienza' Hospital, Corso Bramante 88, Turin, 10126, Italy
| | - Veronica Dusi
- Cardiology, Department of Medical Sciences, University of Turin, Torino, Italy.
- Division of Cardiology, Cardiovascular and Thoracic Department, 'Città della Salute e della Scienza' Hospital, Corso Bramante 88, Turin, 10126, Italy.
| |
Collapse
|
4
|
Sarkar A, Ajijola OA. Pathophysiologic Mechanisms in Cardiac Autonomic Nervous System and Arrhythmias. Card Electrophysiol Clin 2024; 16:261-269. [PMID: 39084719 DOI: 10.1016/j.ccep.2023.11.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/02/2024]
Abstract
The autonomic nervous system, including the central nervous system and the cardiac plexus, maintains cardiac physiology. In diseased states, autonomic changes through neuronal remodeling generate electrical mechanisms of arrhythmia such as triggered activity or increased automaticity. This article will focus on the pathophysiological mechanisms of arrhythmia to highlight the role of the autonomic nervous system in disease and the related therapeutic interventions.
Collapse
Affiliation(s)
- Abdullah Sarkar
- UCLA Cardiac Arrhythmia Center and Neurocardiology Research program of Excellence, Los Angeles, CA, USA
| | - Olujimi A Ajijola
- UCLA Cardiac Arrhythmia Center and Neurocardiology Research program of Excellence, Los Angeles, CA, USA.
| |
Collapse
|
5
|
Zuhair M, Keene D, Kanagaratnam P, Lim PB. Percutaneous Neuromodulation for Atrial Fibrillation. Card Electrophysiol Clin 2024; 16:281-296. [PMID: 39084721 DOI: 10.1016/j.ccep.2023.09.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/02/2024]
Abstract
Percutaneous neuromodulation is emerging as a promising therapeutic approach for atrial fibrillation (AF). This article explores techniques such as ganglionated plexi (GP) ablation, and vagus nerve stimulation, pinpointing their potential in modulating AF triggers and maintenance. Noninvasive methods, such as transcutaneous low-level tragus stimulation, offer innovative treatment pathways, with early trials indicating a significant reduction in AF burden. GP ablation may address autonomic triggers, and the potential for GP ablation in neuromodulation is discussed. The article stresses the necessity for more rigorous clinical trials to validate the safety, reproducibility, and efficacy of these neuromodulation techniques in AF treatment.
Collapse
Affiliation(s)
- Mohamed Zuhair
- National Heart and Lung Institute, Imperial College London, Du Cane Road, London W12, UK.
| | - Daniel Keene
- National Heart and Lung Institute, Imperial College London, Du Cane Road, London W12, UK
| | - Prapa Kanagaratnam
- National Heart and Lung Institute, Imperial College London, Du Cane Road, London W12, UK
| | - Phang Boon Lim
- National Heart and Lung Institute, Imperial College London, Du Cane Road, London W12, UK
| |
Collapse
|
6
|
Honarbakhsh S, Roney C, Horrach CV, Lambiase PD, Hunter RJ. Autonomic modulation impacts conduction velocity dynamics and wavefront propagation in the left atrium. Europace 2024; 26:euae219. [PMID: 39230049 PMCID: PMC11372476 DOI: 10.1093/europace/euae219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Accepted: 08/12/2024] [Indexed: 09/05/2024] Open
Abstract
AIMS Atrial fibrosis and autonomic remodelling are proposed pathophysiological mechanisms in atrial fibrillation (AF). Their impact on conduction velocity (CV) dynamics and wavefront propagation was evaluated. METHODS AND RESULTS Local activation times (LATs), voltage, and geometry data were obtained from patients undergoing ablation for persistent AF. LATs were obtained at three pacing intervals (PIs) in sinus rhythm (SR). LATs were used to determine CV dynamics and their relationship to local voltage amplitude. The impact of autonomic modulation- pharmacologically and with ganglionated plexi (GP) stimulation, on CV dynamics, wavefront propagation, and pivot points (change in wavefront propagation of ≥90°) was determined in SR. Fifty-four patients were included. Voltage impacted CV dynamics whereby at non-low voltage zones (LVZs) (≥0.5 mV) the CV restitution curves are steeper [0.03 ± 0.03 m/s ΔCV PI 600-400 ms (PI1), 0.54 ± 0.09 m/s ΔCV PI 400-250 ms (PI2)], broader at LVZ (0.2-0.49 mV) (0.17 ± 0.09 m/s ΔCV PI1, 0.25 ± 0.11 m/s ΔCV PI2), and flat at very LVZ (<0.2 mV) (0.03 ± 0.01 m/s ΔCV PI1, 0.04 ± 0.02 m/s ΔCV PI2). Atropine did not change CV dynamics, while isoprenaline and GP stimulation resulted in greater CV slowing with rate. Isoprenaline (2.7 ± 1.1 increase/patient) and GP stimulation (2.8 ± 1.3 increase/patient) promoted CV heterogeneity, i.e. rate-dependent CV (RDCV) slowing sites. Most pivot points co-located to RDCV slowing sites (80.2%). Isoprenaline (1.3 ± 1.1 pivot increase/patient) and GP stimulation (1.5 ± 1.1 increase/patient) also enhanced the number of pivot points identified. CONCLUSION Atrial CV dynamics is affected by fibrosis burden and influenced by autonomic modulation which enhances CV heterogeneity and distribution of pivot points. This study provides further insight into the impact of autonomic remodelling in AF.
Collapse
Affiliation(s)
- Shohreh Honarbakhsh
- Queen Mary University of London, London, UK
- Electrophysiology Department, Barts Heart Centre, Barts Health NHS Trust, W Smithfield, London EC1A 7BE, UK
| | | | | | - Pier D Lambiase
- Electrophysiology Department, Barts Heart Centre, Barts Health NHS Trust, W Smithfield, London EC1A 7BE, UK
| | - Ross J Hunter
- Electrophysiology Department, Barts Heart Centre, Barts Health NHS Trust, W Smithfield, London EC1A 7BE, UK
| |
Collapse
|
7
|
Cao LL, Liu HR, Ji YJ, Zhang YT, Wang BQ, Xue XH, Wang P, Luo ZH, Wu HG. Research Progress of Vagal Nerve Regulation Mechanism in Acupuncture Treatment of Atrial Fibrillation. Chin J Integr Med 2024:10.1007/s11655-024-3660-5. [PMID: 38990478 DOI: 10.1007/s11655-024-3660-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/08/2023] [Indexed: 07/12/2024]
Abstract
Atrial fibrillation (AF) is the most common arrhythmia in clinical practice. It has a high prevalence and poor prognosis. The application of antiarrhythmic drugs and even surgery cannot completely treat the disease, and there are many sequelae. AF can be classified into the category of "palpitation" in Chinese medicine according to its symptoms. Acupuncture has a significant effect on AF. The authors find that an important mechanism of acupuncture in AF treatment is to regulate the cardiac vagus nerve. Therefore, this article intends to review the distribution and function of vagus nerve in the heart, the application and the regulatroy effect for the treatment of AF.
Collapse
Affiliation(s)
- Lu-Lu Cao
- Immunology Laboratory, Shanghai Research Institute of Acupuncture and Meridian, Shanghai, 200232, China
| | - Hui-Rong Liu
- Immunology Laboratory, Shanghai Research Institute of Acupuncture and Meridian, Shanghai, 200232, China
| | - Ya-Jie Ji
- Breast Disease Department, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200437, China
| | - Yin-Tao Zhang
- Graduate College, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Bing-Quan Wang
- Department of Acupuncture and Moxibusion Tuina Traumatology, Shanghai Sixth People's Hospital, Shanghai, 200233, China
| | - Xiao-Hong Xue
- Breast Disease Department, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200437, China
| | - Pei Wang
- Graduate College, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Zhi-Hui Luo
- Graduate College, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Huan-Gan Wu
- Immunology Laboratory, Shanghai Research Institute of Acupuncture and Meridian, Shanghai, 200232, China.
| |
Collapse
|
8
|
Oh S. Neuromodulation for Atrial Fibrillation Control. Korean Circ J 2024; 54:223-232. [PMID: 38654454 PMCID: PMC11109834 DOI: 10.4070/kcj.2024.0050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 02/13/2024] [Indexed: 04/26/2024] Open
Abstract
Trigger and functional substrate are related to the tone of autonomic nervous system, and the role of the autonomic nerve is more significant in paroxysmal atrial fibrillation (AF) compared to non-paroxysmal AF. We have several options for neuromodulation to help to manage patients with AF. Neuromodulation targets can be divided into efferent and afferent pathways. On the efferent side, block would be an intuitive approach. However, permanent block is hard to achieve due to completeness of the procedure and reinnervation issues. Temporary block such as botulinum toxin injection into ganglionated plexi would be a possible option for post-cardiac surgery AF. Low-level subthreshold stimulation could also prevent AF, but the invasiveness of the procedure is the barrier for the general use. On the afferent side, block is also an option. Various renal denervation approaches are currently under investigation. Auditory vagus nerve stimulation is one of the representative low-level afferent stimulation methods. This technique is noninvasive and easy to apply, so it has the potential to be widely utilized if its efficacy is confirmed.
Collapse
Affiliation(s)
- Seil Oh
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Korea.
| |
Collapse
|
9
|
Tonko JB, Lambiase PD. The proarrhythmogenic role of autonomics and emerging neuromodulation approaches to prevent sudden death in cardiac ion channelopathies. Cardiovasc Res 2024; 120:114-131. [PMID: 38195920 PMCID: PMC10936753 DOI: 10.1093/cvr/cvae009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 11/06/2023] [Accepted: 11/30/2023] [Indexed: 01/11/2024] Open
Abstract
Ventricular arrhythmias in cardiac channelopathies are linked to autonomic triggers, which are sub-optimally targeted in current management strategies. Improved molecular understanding of cardiac channelopathies and cellular autonomic signalling could refine autonomic therapies to target the specific signalling pathways relevant to the specific aetiologies as well as the central nervous system centres involved in the cardiac autonomic regulation. This review summarizes key anatomical and physiological aspects of the cardiac autonomic nervous system and its impact on ventricular arrhythmias in primary inherited arrhythmia syndromes. Proarrhythmogenic autonomic effects and potential therapeutic targets in defined conditions including the Brugada syndrome, early repolarization syndrome, long QT syndrome, and catecholaminergic polymorphic ventricular tachycardia will be examined. Pharmacological and interventional neuromodulation options for these cardiac channelopathies are discussed. Promising new targets for cardiac neuromodulation include inhibitory and excitatory G-protein coupled receptors, neuropeptides, chemorepellents/attractants as well as the vagal and sympathetic nuclei in the central nervous system. Novel therapeutic strategies utilizing invasive and non-invasive deep brain/brain stem stimulation as well as the rapidly growing field of chemo-, opto-, or sonogenetics allowing cell-specific targeting to reduce ventricular arrhythmias are presented.
Collapse
Affiliation(s)
- Johanna B Tonko
- Institute of Cardiovascular Science, University College London, 5 University Street, London WC1E 6JF, London, UK
| | - Pier D Lambiase
- Institute of Cardiovascular Science, University College London, 5 University Street, London WC1E 6JF, London, UK
- Department for Cardiology, Bart’s Heart Centre, West Smithfield EC1A 7BE, London, UK
| |
Collapse
|
10
|
Li XY, Liu JQ, Wang Y, Chen Y, Hu WH, Lv YX, Wu Y, Lv J, Tang JM, Kong D. VNS improves VSMC metabolism and arteriogenesis in infarcted hearts through m/n-AChR-Akt-SDF-1α in adult male rats. J Mol Histol 2024; 55:51-67. [PMID: 38165566 PMCID: PMC10830782 DOI: 10.1007/s10735-023-10171-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Accepted: 10/21/2023] [Indexed: 01/04/2024]
Abstract
Vagal nerve stimulation (VNS) provides a novel therapeutic strategy for injured hearts by activating cholinergic anti-inflammatory pathways. However, little information is available on the metabolic pattern and arteriogenesis of VSMCs after MI. VNS has been shown to stimulate the expression of CPT1α, CPT1β, Glut1, Glut4 and SDF-1α in coronary VSMCs, decreasing the number of CD68-positive macrophages while increasing CD206-positive macrophages in the infarcted hearts, leading to a decrease in TNF-α and IL-1β accompanied by a reduced ratio of CD68- and CD206-positive cells, which were dramatically abolished by atropine and mecamylamine in vivo. Knockdown of SDF-1α substantially abrogated the effect of VNS on macrophagecell alteration and inflammatory factors in infarcted hearts. Mechanistically, ACh induced SDF-1α expression in VSMCs in a dose-dependent manner. Conversely, atropine, mecamylamine, and a PI3K/Akt inhibitor completely eliminated the effect of ACh on SDF-1α expression. Functionally, VNS promoted arteriogenesis and improved left ventricular performance, which could be abolished by Ad-shSDF-1α. Thus, VNS altered the VSMC metabolism pattern and arteriogenesis to repair the infarcted heart by inducing SDF-1α expression, which was associated with the m/nAChR-Akt signaling pathway.
Collapse
Affiliation(s)
- Xing-Yuan Li
- Department of Physiology, Faculty of Basic Medical Sciences, Zunyi Medicical University, Zunyi, 563006, Guizhou, People's Republic of China
- Hubei Key Laboratory of Embryonic Stem Cell Research, Faculty of Basic Medical Sciences, Hubei University of Medicine, Shiyan, 442000, Hubei, People's Republic of China
| | - Jia-Qi Liu
- Nursing College, Hubei Province Chinese Medicine Hospital, Hubei University of Traditional Chinese Medicine, Wuhan, 430065, Hubei, People's Republic of China
| | - Yan Wang
- Department of Physiology, Faculty of Basic Medical Sciences, Zunyi Medicical University, Zunyi, 563006, Guizhou, People's Republic of China
| | - Yan Chen
- Department of Physiology, Faculty of Basic Medical Sciences, Zunyi Medicical University, Zunyi, 563006, Guizhou, People's Republic of China
| | - Wen-Hui Hu
- Department of Physiology, Faculty of Basic Medical Sciences, Zunyi Medicical University, Zunyi, 563006, Guizhou, People's Republic of China
| | - Yan-Xia Lv
- Hubei Key Laboratory of Embryonic Stem Cell Research, Faculty of Basic Medical Sciences, Hubei University of Medicine, Shiyan, 442000, Hubei, People's Republic of China
- Department of Physiology, Faculty of Basic Medical Sciences, Hubei University of Medicine, Shiyan, 442000, Hubei, People's Republic of China
| | - Yan Wu
- Hubei Key Laboratory of Embryonic Stem Cell Research, Faculty of Basic Medical Sciences, Hubei University of Medicine, Shiyan, 442000, Hubei, People's Republic of China
- Department of Physiology, Faculty of Basic Medical Sciences, Hubei University of Medicine, Shiyan, 442000, Hubei, People's Republic of China
| | - Jing Lv
- Institute of Basic Medical Sciences, Institute of Biomedicine, Hubei University of Medicine, Hubei, 442000, People's Republic of China.
| | - Jun-Ming Tang
- Hubei Key Laboratory of Embryonic Stem Cell Research, Faculty of Basic Medical Sciences, Hubei University of Medicine, Shiyan, 442000, Hubei, People's Republic of China.
- Department of Physiology, Faculty of Basic Medical Sciences, Hubei University of Medicine, Shiyan, 442000, Hubei, People's Republic of China.
- Institute of Basic Medical Sciences, Institute of Biomedicine, Hubei University of Medicine, Hubei, 442000, People's Republic of China.
| | - Deying Kong
- Department of Physiology, Faculty of Basic Medical Sciences, Zunyi Medicical University, Zunyi, 563006, Guizhou, People's Republic of China.
| |
Collapse
|
11
|
Zhang S, Zhao D, Yang Z, Wang F, Yang S, Wang C. Circulating mitochondria promoted endothelial cGAS-derived neuroinflammation in subfornical organ to aggravate sympathetic overdrive in heart failure mice. J Neuroinflammation 2024; 21:27. [PMID: 38243316 PMCID: PMC10799549 DOI: 10.1186/s12974-024-03013-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 01/03/2024] [Indexed: 01/21/2024] Open
Abstract
BACKGROUND Sympathoexcitation contributes to myocardial remodeling in heart failure (HF). Increased circulating pro-inflammatory mediators directly act on the Subfornical organ (SFO), the cardiovascular autonomic center, to increase sympathetic outflow. Circulating mitochondria (C-Mito) are the novel discovered mediators for inter-organ communication. Cyclic GMP-AMP synthase (cGAS) is the pro-inflammatory sensor of damaged mitochondria. OBJECTIVES This study aimed to assess the sympathoexcitation effect of C-Mito in HF mice via promoting endothelial cGAS-derived neuroinflammation in the SFO. METHODS C-Mito were isolated from HF mice established by isoprenaline (0.0125 mg/kg) infusion via osmotic mini-pumps for 2 weeks. Structural and functional analyses of C-Mito were conducted. Pre-stained C-Mito were intravenously injected every day for 2 weeks. Specific cGAS knockdown (cGAS KD) in the SFO endothelial cells (ECs) was achieved via the administration of AAV9-TIE-shRNA (cGAS) into the SFO. The activation of cGAS in the SFO ECs was assessed. The expression of the mitochondrial redox regulator Dihydroorotate dehydrogenase (DHODH) and its interaction with cGAS were also explored. Neuroinflammation and neuronal activation in the SFO were evaluated. Sympathetic activity, myocardial remodeling, and cardiac systolic dysfunction were measured. RESULTS C-Mito were successfully isolated, which showed typical structural characteristics of mitochondria with double-membrane and inner crista. Further analysis showed impaired respiratory complexes activities of C-Mito from HF mice (C-MitoHF) accompanied by oxidative damage. C-Mito entered ECs, instead of glial cells and neurons in the SFO of HF mice. C-MitoHF increased the level of ROS and cytosolic free double-strand DNA (dsDNA), and activated cGAS in cultured brain endothelial cells. Furthermore, C-MitoHF highly expressed DHODH, which interacted with cGAS to facilitate endothelial cGAS activation. C-MitoHF aggravated endothelial inflammation, microglial/astroglial activation, and neuronal sensitization in the SFO of HF mice, which could be ameliorated by cGAS KD in the ECs of the SFO. Further analysis showed C-MitoHF failed to exacerbate sympathoexcitation and myocardial sympathetic hyperinnervation in cGAS KD HF mice. C-MitoHF promoted myocardial fibrosis and hypertrophy, and cardiac systolic dysfunction in HF mice, which could be ameliorated by cGAS KD. CONCLUSION Collectively, we demonstrated that damaged C-MitoHF highly expressed DHODH, which promoted endothelial cGAS activation in the SFO, hence aggravating the sympathoexcitation and myocardial injury in HF mice, suggesting that C-Mito might be the novel therapeutic target for sympathoexcitation in HF.
Collapse
Affiliation(s)
- Shutian Zhang
- Department of Cardiac Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
- Shanghai Institute of Cardiovascular Diseases, Shanghai, 200032, China
| | - Dajun Zhao
- Department of Cardiac Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
- Shanghai Institute of Cardiovascular Diseases, Shanghai, 200032, China
| | - Zhaohua Yang
- Department of Cardiac Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
- Shanghai Institute of Cardiovascular Diseases, Shanghai, 200032, China
| | - Fanshun Wang
- Department of Cardiac Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
- Shanghai Institute of Cardiovascular Diseases, Shanghai, 200032, China
| | - Shouguo Yang
- Department of Cardiac Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200032, China.
- Shanghai Institute of Cardiovascular Diseases, Shanghai, 200032, China.
| | - Chunsheng Wang
- Department of Cardiac Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200032, China.
- Shanghai Institute of Cardiovascular Diseases, Shanghai, 200032, China.
| |
Collapse
|
12
|
Chakraborty P, Farhat K, Morris L, Whyte S, Yu X, Stavrakis S. Non-invasive Vagus Nerve Simulation in Postural Orthostatic Tachycardia Syndrome. Arrhythm Electrophysiol Rev 2023; 12:e31. [PMID: 38173801 PMCID: PMC10762669 DOI: 10.15420/aer.2023.20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 10/23/2023] [Indexed: 01/05/2024] Open
Abstract
Postural orthostatic tachycardia syndrome (POTS) is a chronic debilitating condition of orthostatic intolerance, predominantly affecting young females. Other than postural tachycardia, symptoms of POTS include a spectrum of non-cardiac, systemic and neuropsychiatric features. Despite the availability of widespread pharmacological and non-pharmacological therapeutic options, the management of POTS remains challenging. Exaggerated parasympathetic withdrawal and sympathetic overdrive during postural stress are principal mechanisms of postural tachycardia in POTS. Non-invasive, transcutaneous, vagus nerve stimulation (tVNS) is known to restore sympathovagal balance and is emerging as a novel therapeutic strategy in cardiovascular conditions including arrhythmias and heart failure. Furthermore, tVNS also exerts immunomodulatory and anti-inflammatory effects. This review explores the effects of tVNS on the pathophysiology of POTS and its potential as an alternative non-pharmacological option in this condition.
Collapse
Affiliation(s)
- Praloy Chakraborty
- Heart Rhythm Institute, University of Oklahoma Health and Sciences Center Oklahoma City, OK, US
| | - Kassem Farhat
- Heart Rhythm Institute, University of Oklahoma Health and Sciences Center Oklahoma City, OK, US
| | - Lynsie Morris
- Heart Rhythm Institute, University of Oklahoma Health and Sciences Center Oklahoma City, OK, US
| | - Seabrook Whyte
- Heart Rhythm Institute, University of Oklahoma Health and Sciences Center Oklahoma City, OK, US
| | - Xichun Yu
- Heart Rhythm Institute, University of Oklahoma Health and Sciences Center Oklahoma City, OK, US
| | - Stavros Stavrakis
- Heart Rhythm Institute, University of Oklahoma Health and Sciences Center Oklahoma City, OK, US
| |
Collapse
|
13
|
Dasari TW, Chakraborty P, Mukli P, Akhtar K, Yabluchanskiy A, Cunningham MW, Csiszar A, Po SS. Noninvasive low-level tragus stimulation attenuates inflammation and oxidative stress in acute heart failure. Clin Auton Res 2023; 33:767-775. [PMID: 37943335 DOI: 10.1007/s10286-023-00997-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 10/24/2023] [Indexed: 11/10/2023]
Abstract
PURPOSE Acute decompensated heart failure (ADHF) is associated with inflammation, oxidative stress, and excess sympathetic drive. It is unknown whether neuromodulation would improve inflammation and oxidative stress in acute heart failure. We, therefore, performed this proof-of-concept study to evaluate the effects of neuromodulation using noninvasive low-level tragus stimulation on inflammation and oxidative stress in ADHF. METHODS Nineteen patients with ejection fraction < 40% were randomized to neuromodulation 4 h twice daily (6-10 a.m. and 6-10 p.m.) (n = 8) or sham stimulation (n = 11) during hospital admission. All patients received standard-of-care treatment. Blood samples were collected at admission and discharge. Serum cytokines were assayed using standard immunosorbent techniques. Reactive oxygen species inducibility from cultured coronary endothelial cells exposed to patient sera was determined using a dihydrodichlorofluorescein probe test (expressed as fluorescein units). RESULTS Compared to sham stimulation, neuromodulation was associated with a significant reduction of circulating serum interleukin-6 levels (-78% vs. -9%; p = 0.012). Similarly, neuromodulation led to a reduction of endothelial cell oxidative stress in the neuromodulation group (1363 units to 978 units, p = 0.003) compared to sham stimulation (1146 units to 1083 units, p = 0.094). No significant differences in heart rate, blood pressure, or renal function were noted between the two groups. CONCLUSION In this proof-of-concept pilot study, in acute decompensated heart failure, neuromodulation was feasible and safe and was associated with a reduction in systemic inflammation and attenuation of coronary endothelial cellular oxidative stress. CLINICAL TRIAL REGISTRATION NCT02898181.
Collapse
Affiliation(s)
- Tarun W Dasari
- Cardiovascular Section, Department of Internal Medicine, Heart Rhythm Institute, University of Oklahoma Health Sciences Center, 800 SL Young Blvd, COM 5400, Oklahoma City, OK, 73104, USA.
| | - Praloy Chakraborty
- Cardiovascular Section, Department of Internal Medicine, Heart Rhythm Institute, University of Oklahoma Health Sciences Center, 800 SL Young Blvd, COM 5400, Oklahoma City, OK, 73104, USA
| | - Peter Mukli
- Department of Neurosurgery, University of Oklahoma HSC, Oklahoma City, OK, USA
| | - Khawaja Akhtar
- Cardiovascular Section, Department of Internal Medicine, Heart Rhythm Institute, University of Oklahoma Health Sciences Center, 800 SL Young Blvd, COM 5400, Oklahoma City, OK, 73104, USA
| | | | - Madeleine W Cunningham
- Department of Microbiology and Immunology, University of Oklahoma HSC, Oklahoma City, OK, USA
| | - Anna Csiszar
- Department of Neurosurgery, University of Oklahoma HSC, Oklahoma City, OK, USA
| | - Sunny S Po
- Cardiovascular Section, Department of Internal Medicine, Heart Rhythm Institute, University of Oklahoma Health Sciences Center, 800 SL Young Blvd, COM 5400, Oklahoma City, OK, 73104, USA
| |
Collapse
|
14
|
Wang Y, Liu Y, Li X, Yao L, Mbadhi M, Chen S, Lv Y, Bao X, Chen L, Chen S, Zhang J, Wu Y, Lv J, Shi L, Tang J. Vagus nerve stimulation-induced stromal cell-derived factor-l alpha participates in angiogenesis and repair of infarcted hearts. ESC Heart Fail 2023; 10:3311-3329. [PMID: 37641543 PMCID: PMC10682864 DOI: 10.1002/ehf2.14475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 06/02/2023] [Accepted: 07/02/2023] [Indexed: 08/31/2023] Open
Abstract
AIMS We aim to explore the role and mechanism of vagus nerve stimulation (VNS) in coronary endothelial cells and angiogenesis in infarcted hearts. METHODS AND RESULTS Seven days after rat myocardial infarction (MI) was prepared by ligation of the left anterior descending coronary artery, the left cervical vagus nerve was treated with electrical stimulation 1 h after intraperitoneal administration of the α7-nicotinic acetylcholine inhibitor mecamylamine or the mAChR inhibitor atropine or 3 days after local injection of Ad-shSDF-1α into the infarcted heart. Cardiac tissue acetylcholine (ACh) and serum ACh, tumour necrosis factor α (TNF-α), interleukin 1β (IL-1β) and interleukin 6 (IL-6) levels were detected by ELISA to determine whether VNS was successful. An inflammatory injury model in human coronary artery endothelial cells (HCAECs) was established by lipopolysaccharide and identified by evaluating TNF-α, IL-1β and IL-6 levels and tube formation. Immunohistochemistry staining was performed to evaluate CD31-positive vessel density and stromal cell-derived factor-l alpha (SDF-1α) expression in the MI heart in vivo and the expression and distribution of SDF-1α, C-X-C motif chemokine receptor 4 and CXCR7 in HCAECs in vitro. Western blotting was used to detect the levels of SDF-1α, V-akt murine thymoma viral oncogene homolog (AKT), phosphorylated AKT (pAKT), specificity protein 1 (Sp1) and phosphorylation of Sp1 in HCAECs. Left ventricular performance, including left ventricular systolic pressure, left ventricular end-diastolic pressure and rate of the rise and fall of ventricular pressure, should be evaluated 28 days after VNS treatment. VNS was successfully established for MI therapy with decreases in serum TNF-α, IL-1β and IL-6 levels and increases in cardiac tissue and serum ACh levels, leading to increased SDF-1α expression in coronary endothelial cells of MI hearts, triggering angiogenesis of MI hearts with increased CD31-positive vessel density, which was abolished by the m/nAChR inhibitors mecamylamine and atropine or knockdown of SDF-1α by shRNA. ACh promoted SDF-1α expression and its distribution along with the branch of the formed tube in HCAECs, resulting in an increase in the number of tubes formed in HCAECs. ACh increased the levels of pAKT and phosphorylation of Sp1 in HCAECs, resulting in inducing SDF-1α expression, and the specific effects could be abolished by mecamylamine, atropine, the PI3K/AKT blocker wortmannin or the Sp1 blocker mithramycin. Functionally, VNS improved left ventricular performance, which could be abolished by Ad-shSDF-1α. CONCLUSIONS VNS promoted angiogenesis to repair the infarcted heart by inducing SDF-1α expression and redistribution along new branches during angiogenesis, which was associated with the m/nAChR-AKT-Sp1 signalling pathway.
Collapse
Affiliation(s)
- Yan Wang
- Department of Physiology, Faculty of Basic Medical Sciences, Hubei Key Laboratory of Embryonic Stem Cell ResearchHubei University of MedicineShiyanPR China
- Department of Pathology, Renmin HospitalHubei University of MedicineShiyanPR China
| | - Yun Liu
- Department of Physiology, Faculty of Basic Medical Sciences, Hubei Key Laboratory of Embryonic Stem Cell ResearchHubei University of MedicineShiyanPR China
| | - Xing‐yuan Li
- Department of Physiology, Faculty of Basic Medical Sciences, Hubei Key Laboratory of Embryonic Stem Cell ResearchHubei University of MedicineShiyanPR China
| | - Lu‐yuan Yao
- Department of Physiology, Faculty of Basic Medical Sciences, Hubei Key Laboratory of Embryonic Stem Cell ResearchHubei University of MedicineShiyanPR China
- Department of Anesthesiology, Institute of Anesthesiology, Taihe HospitalHubei University of MedicineShiyanPR China
| | - MagdaleenaNaemi Mbadhi
- Department of Physiology, Faculty of Basic Medical Sciences, Hubei Key Laboratory of Embryonic Stem Cell ResearchHubei University of MedicineShiyanPR China
| | - Shao‐Juan Chen
- Department of Physiology, Faculty of Basic Medical Sciences, Hubei Key Laboratory of Embryonic Stem Cell ResearchHubei University of MedicineShiyanPR China
- Department of Stomatology, Taihe HospitalHubei University of MedicineShiyanPR China
| | - Yan‐xia Lv
- Department of Physiology, Faculty of Basic Medical Sciences, Hubei Key Laboratory of Embryonic Stem Cell ResearchHubei University of MedicineShiyanPR China
| | - Xin Bao
- Department of Physiology, Faculty of Basic Medical Sciences, Hubei Key Laboratory of Embryonic Stem Cell ResearchHubei University of MedicineShiyanPR China
- Experimental Medical Center, Guoyao‐Dong Feng HospitalHubei University of MedicineShiyanPR China
| | - Long Chen
- Experimental Medical Center, Guoyao‐Dong Feng HospitalHubei University of MedicineShiyanPR China
| | - Shi‐You Chen
- Department of SurgeryUniversity of MissouriColumbiaMissouriUSA
| | - Jing‐xuan Zhang
- Department of Physiology, Faculty of Basic Medical Sciences, Hubei Key Laboratory of Embryonic Stem Cell ResearchHubei University of MedicineShiyanPR China
- Institute of Basic Medical Sciences, Institute of BiomedicineHubei University of MedicineShiyanPR China
| | - Yan Wu
- Department of Physiology, Faculty of Basic Medical Sciences, Hubei Key Laboratory of Embryonic Stem Cell ResearchHubei University of MedicineShiyanPR China
- Institute of Basic Medical Sciences, Institute of BiomedicineHubei University of MedicineShiyanPR China
| | - Jing Lv
- Department of Anesthesiology, Institute of Anesthesiology, Taihe HospitalHubei University of MedicineShiyanPR China
| | - Liu‐liu Shi
- Department of Physiology, Faculty of Basic Medical Sciences, Hubei Key Laboratory of Embryonic Stem Cell ResearchHubei University of MedicineShiyanPR China
- Institute of Basic Medical Sciences, Institute of BiomedicineHubei University of MedicineShiyanPR China
| | - Jun‐ming Tang
- Department of Physiology, Faculty of Basic Medical Sciences, Hubei Key Laboratory of Embryonic Stem Cell ResearchHubei University of MedicineShiyanPR China
- Institute of Basic Medical Sciences, Institute of BiomedicineHubei University of MedicineShiyanPR China
| |
Collapse
|
15
|
Huang J, Wu B, Qin P, Cheng Y, Zhang Z, Chen Y. Research on atrial fibrillation mechanisms and prediction of therapeutic prospects: focus on the autonomic nervous system upstream pathways. Front Cardiovasc Med 2023; 10:1270452. [PMID: 38028487 PMCID: PMC10663310 DOI: 10.3389/fcvm.2023.1270452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 10/25/2023] [Indexed: 12/01/2023] Open
Abstract
Atrial fibrillation (AF) is the most common clinical arrhythmia disorder. It can easily lead to complications such as thromboembolism, palpitations, dizziness, angina, heart failure, and stroke. The disability and mortality rates associated with AF are extremely high, significantly affecting the quality of life and work of patients. With the deepening of research into the brain-heart connection, the link between AF and stroke has become increasingly evident. AF is now categorized as either Known Atrial Fibrillation (KAF) or Atrial Fibrillation Detected After Stroke (AFDAS), with stroke as the baseline. This article, through a literature review, briefly summarizes the current pathogenesis of KAF and AFDAS, as well as the status of their clinical pharmacological and non-pharmacological treatments. It has been found that the existing treatments for KAF and AFDAS have limited efficacy and are often associated with significant adverse reactions and a risk of recurrence. Moreover, most drugs and treatment methods tend to focus on a single mechanism pathway. For example, drugs targeting ion channels primarily modulate ion channels and have relatively limited impact on other pathways. This limitation underscores the need to break away from the "one disease, one target, one drug/measurement" dogma for the development of innovative treatments, promoting both drug and non-drug therapies and significantly improving the quality of clinical treatment. With the increasing refinement of the overall mechanisms of KAF and AFDAS, a deeper exploration of physiological pathology, and comprehensive research on the brain-heart relationship, it is imperative to shift from long-term symptom management to more precise and optimized treatment methods that are effective for almost all patients. We anticipate that drugs or non-drug therapies targeting the central nervous system and upstream pathways can guide the simultaneous treatment of multiple downstream pathways in AF, thereby becoming a new breakthrough in AF treatment research.
Collapse
Affiliation(s)
- Jingjie Huang
- Postgraduate School, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Bangqi Wu
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Peng Qin
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yupei Cheng
- Postgraduate School, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Ziyi Zhang
- Postgraduate School, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yameng Chen
- Postgraduate School, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| |
Collapse
|
16
|
Pahuja M, Akhtar KH, Krishan S, Nasir YM, Généreux P, Stavrakis S, Dasari TW. Neuromodulation Therapies in Heart Failure: A State-of-the-Art Review. JOURNAL OF THE SOCIETY FOR CARDIOVASCULAR ANGIOGRAPHY & INTERVENTIONS 2023; 2:101199. [PMID: 39131073 PMCID: PMC11307467 DOI: 10.1016/j.jscai.2023.101199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 09/26/2023] [Accepted: 09/27/2023] [Indexed: 08/13/2024]
Abstract
Heart failure (HF) continues to impact the population globally with increasing prevalence. While the pathophysiology of HF is quite complex, the dysregulation of the autonomic nervous system, as evident in heightened sympathetic activity, serves as an attractive pathophysiological target for newer therapies and HF. The degree of neurohormonal activation has been found to correlate to the severity of symptoms, decline in functional capacity, and mortality. Neuromodulation of the autonomic nervous system aims to restore the balance between sympathetic nervous system and the parasympathetic nervous system. Given that autonomic dysregulation plays a major role in the development and progression of HF, restoring this balance may potentially have an impact on the core pathophysiological mechanisms and various HF syndromes. Autonomic modulation has been proposed as a potential therapeutic strategy aimed at reduction of systemic inflammation. Such therapies, complementary to drug and device-based therapies may lead to improved patient outcomes and reduce disease burden. Most professional societies currently do not provide a clear recommendation on the use of neuromodulation techniques in HF. These include direct and indirect vagal nerve stimulation, spinal cord stimulation, baroreflex activation therapy, carotid sinus stimulation, aortic arch stimulation, splanchnic nerve modulation, cardiopulmonary nerve stimulation, and renal sympathetic nerve denervation. In this review, we provide a comprehensive overview of neuromodulation in HF.
Collapse
Affiliation(s)
- Mohit Pahuja
- Department of Medicine, Section of Cardiovascular Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| | - Khawaja Hassan Akhtar
- Department of Medicine, Section of Cardiovascular Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| | - Satyam Krishan
- Department of Medicine, Section of Cardiovascular Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| | - Yusra Minahil Nasir
- Department of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| | - Philippe Généreux
- Department of Medicine, Section of Cardiovascular Medicine, Morristown Medical Center, Morristown, New Jersey
| | - Stavros Stavrakis
- Department of Medicine, Section of Cardiovascular Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
- Heart Rhythm Institute, Department of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| | - Tarun W. Dasari
- Department of Medicine, Section of Cardiovascular Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
- Heart Rhythm Institute, Department of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| |
Collapse
|
17
|
Wang Y, Zhao ZG, Chai Z, Fang JC, Chen M. Electromagnetic field and cardiovascular diseases: A state-of-the-art review of diagnostic, therapeutic, and predictive values. FASEB J 2023; 37:e23142. [PMID: 37650634 DOI: 10.1096/fj.202300201rr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Revised: 07/20/2023] [Accepted: 08/02/2023] [Indexed: 09/01/2023]
Abstract
Despite encouraging advances in early diagnosis and treatment, cardiovascular diseases (CVDs) remained a leading cause of morbidity and mortality worldwide. Increasing evidence has shown that the electromagnetic field (EMF) influences many biological processes, which has attracted much attention for its potential therapeutic and diagnostic modalities in multiple diseases, such as musculoskeletal disorders and neurodegenerative diseases. Nonionizing EMF has been studied as a therapeutic or diagnostic tool in CVDs. In this review, we summarize the current literature ranging from in vitro to clinical studies focusing on the therapeutic potential (external EMF) and diagnostic potential (internal EMF generated from the heart) of EMF in CVDs. First, we provided an overview of the therapeutic potential of EMF and associated mechanisms in the context of CVDs, including cardiac arrhythmia, myocardial ischemia, atherosclerosis, and hypertension. Furthermore, we investigated the diagnostic and predictive value of magnetocardiography in CVDs. Finally, we discussed the critical steps necessary to translate this promising approach into clinical practice.
Collapse
Affiliation(s)
- Yan Wang
- Laboratory of Heart Valve Disease, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Department of Cardiology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Zhen-Gang Zhao
- Laboratory of Heart Valve Disease, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Department of Cardiology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Zheng Chai
- Laboratory of Heart Valve Disease, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Department of Cardiology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Jian-Cheng Fang
- School of Instrumentation Science and Opto-Electronics Engineering, Beihang University, Beijing, China
| | - Mao Chen
- Laboratory of Heart Valve Disease, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Department of Cardiology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
18
|
Tsai W, Hung TC, Kusayama T, Han S, Fishbein MC, Chen LS, Chen PS. Autonomic Modulation of Atrial Fibrillation. JACC Basic Transl Sci 2023; 8:1398-1410. [PMID: 38094692 PMCID: PMC10714180 DOI: 10.1016/j.jacbts.2023.03.019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 03/14/2023] [Accepted: 03/14/2023] [Indexed: 01/13/2024]
Abstract
The autonomic nervous system plays a vital role in cardiac arrhythmias, including atrial fibrillation (AF). Therefore, reducing the sympathetic tone via neuromodulation methods may be helpful in AF control. Myocardial ischemia is associated with increased sympathetic tone and incidence of AF. It is an excellent disease model to understand the neural mechanisms of AF and the effects of neuromodulation. This review summarizes the relationship between autonomic nervous system and AF and reviews methods and mechanisms of neuromodulation. This review proposes that noninvasive or minimally invasive neuromodulation methods will be most useful in the future management of AF.
Collapse
Affiliation(s)
- Wei–Chung Tsai
- Division of Cardiology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Tien-Chi Hung
- Division of Cardiology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Takashi Kusayama
- Department of Cardiovascular Medicine, Kanazawa University Graduate School of Medical Sciences Kanazawa, Kanazawa, Japan
| | - Seongwook Han
- Department of Cardiology, Keimyung University Dongsan Medical Center, Daegu, Korea
| | - Michael C. Fishbein
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine at University of California-Los Angeles, Los Angeles, California, USA
| | - Lan S. Chen
- Department of Cardiology, Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Peng-Sheng Chen
- Department of Cardiology, Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, California, USA
| |
Collapse
|
19
|
Kaplan A, Lakkis B, El-Samadi L, Karaayvaz EB, Booz GW, Zouein FA. Cooling Down Inflammation in the Cardiovascular System via the Nicotinic Acetylcholine Receptor. J Cardiovasc Pharmacol 2023; 82:241-265. [PMID: 37539950 DOI: 10.1097/fjc.0000000000001455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 07/06/2023] [Indexed: 08/05/2023]
Abstract
ABSTRACT Inflammation is a major player in many cardiovascular diseases including hypertension, atherosclerosis, myocardial infarction, and heart failure. In many individuals, these conditions coexist and mutually exacerbate each other's progression. The pathophysiology of these diseases entails the active involvement of both innate and adaptive immune cells. Immune cells that possess the α7 subunit of the nicotinic acetylcholine receptor on their surface have the potential to be targeted through both pharmacological and electrical stimulation of the cholinergic system. The cholinergic system regulates the inflammatory response to various stressors in different organ systems by systematically suppressing spleen-derived monocytes and chemokines and locally improving immune cell function. Research on the cardiovascular system has demonstrated the potential for atheroma plaque stabilization and regression as favorable outcomes. Smaller infarct size and reduced fibrosis have been associated with improved cardiac function and a decrease in adverse cardiac remodeling. Furthermore, enhanced electrical stability of the myocardium can lead to a reduction in the incidence of ventricular tachyarrhythmia. In addition, improving mitochondrial dysfunction and decreasing oxidative stress can result in less myocardial tissue damage caused by reperfusion injury. Restoring baroreflex activity and reduction in renal damage can promote blood pressure regulation and help counteract hypertension. Thus, the present review highlights the potential of nicotinic acetylcholine receptor activation as a natural approach to alleviate the adverse consequences of inflammation in the cardiovascular system.
Collapse
Affiliation(s)
- Abdullah Kaplan
- Department of Pharmacology and Toxicology, Faculty of Medicine, American University of Beirut, Riad El-Solh, Beirut, Lebanon
- Department of Cardiology, Kemer Public Hospital, Kemer, Antalya, Turkey
- The Cardiovascular, Renal, and Metabolic Diseases Research Center of Excellence, American University of Beirut Medical Center, Riad El-Solh, Beirut, Lebanon
| | - Bachir Lakkis
- Department of Pharmacology and Toxicology, Faculty of Medicine, American University of Beirut, Riad El-Solh, Beirut, Lebanon
| | - Lana El-Samadi
- Department of Pharmacology and Toxicology, Faculty of Medicine, American University of Beirut, Riad El-Solh, Beirut, Lebanon
| | - Ekrem Bilal Karaayvaz
- Department of Cardiology, Istanbul Faculty of Medicine, Istanbul University, Istanbul, Turkey
| | - George W Booz
- Department of Pharmacology and Toxicology, School of Medicine, University of Mississippi Medical Center, Jackson, MS; and
| | - Fouad A Zouein
- Department of Pharmacology and Toxicology, Faculty of Medicine, American University of Beirut, Riad El-Solh, Beirut, Lebanon
- The Cardiovascular, Renal, and Metabolic Diseases Research Center of Excellence, American University of Beirut Medical Center, Riad El-Solh, Beirut, Lebanon
- Department of Pharmacology and Toxicology, School of Medicine, University of Mississippi Medical Center, Jackson, MS; and
- Department of Signaling and Cardiovascular Pathophysiology, UMR-S 1180, Inserm, Université Paris-Saclay, France
| |
Collapse
|
20
|
Dasari T, Chakraborty P, Mukli P, Akhtar K, Yabluchanskiy A, Cunningham MW, Csiszar A, Po SS. Noninvasive low-level tragus stimulation attenuates inflammation and oxidative stress in acute heart failure. RESEARCH SQUARE 2023:rs.3.rs-3323086. [PMID: 37790298 PMCID: PMC10543293 DOI: 10.21203/rs.3.rs-3323086/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/05/2023]
Abstract
Purpose Acute decompensated heart failure is associated with inflammation, oxidative stress, and excess sympathetic drive. It is unknown if neuromodulation would improve inflammation and oxidative stress in acute heart failure. We, therefore, performed this proof-of-concept study to evaluate the effects of neuromodulation using noninvasive low-level Tragus stimulation on inflammation and oxidative stress in ADHF. Methods 19 patients with ejection fraction < 40% were randomized to neuromodulation- 4 hours twice daily (6 AM-10 AM and 6 PM-10 PM) (n = 8) or sham stimulation (n = 11) during hospital admission. All patients received standard-of-care treatment. Blood samples were collected at admission and discharge. Serum cytokines were assayed using standard immunosorbent techniques. Reactive oxygen species inducibility from cultured coronary endothelial cells exposed to patient sera was determined using dihydrodichlorofluorescein probe test (expressed as fluorescein units). Results Compared to sham stimulation, neuromodulation was associated with a significant reduction of circulating serum Interleukin-6 levels (-78% vs -9%; p = 0.012). Similarly, neuromodulation led to reduction of endothelial cell oxidative stress, in the neuromodulation group (1363 units to 978 units, p = 0.003) compared to sham stimulation (1146 units to 1083 units, p = 0.094). No significant difference in heart rate, blood pressure or renal function were noted between the two groups. Conclusion In this proof-of-concept pilot study, in acute systolic heart failure, neuromodulation was feasible and safe and was associated with a reduction in systemic inflammation and attenuation of cellular oxidative stress. Clinical trial NCT02898181.
Collapse
Affiliation(s)
- Tarun Dasari
- University of Oklahoma: The University of Oklahoma
| | | | - Peter Mukli
- University of Oklahoma: The University of Oklahoma
| | | | | | | | - Anna Csiszar
- University of Oklahoma: The University of Oklahoma
| | - Sunny S Po
- University of Oklahoma: The University of Oklahoma
| |
Collapse
|
21
|
Shaffer C, Barrett LF, Quigley KS. Signal processing in the vagus nerve: Hypotheses based on new genetic and anatomical evidence. Biol Psychol 2023; 182:108626. [PMID: 37419401 PMCID: PMC10563766 DOI: 10.1016/j.biopsycho.2023.108626] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 06/25/2023] [Accepted: 07/03/2023] [Indexed: 07/09/2023]
Abstract
Each organism must regulate its internal state in a metabolically efficient way as it interacts in space and time with an ever-changing and only partly predictable world. Success in this endeavor is largely determined by the ongoing communication between brain and body, and the vagus nerve is a crucial structure in that dialogue. In this review, we introduce the novel hypothesis that the afferent vagus nerve is engaged in signal processing rather than just signal relay. New genetic and structural evidence of vagal afferent fiber anatomy motivates two hypotheses: (1) that sensory signals informing on the physiological state of the body compute both spatial and temporal viscerosensory features as they ascend the vagus nerve, following patterns found in other sensory architectures, such as the visual and olfactory systems; and (2) that ascending and descending signals modulate one another, calling into question the strict segregation of sensory and motor signals, respectively. Finally, we discuss several implications of our two hypotheses for understanding the role of viscerosensory signal processing in predictive energy regulation (i.e., allostasis) as well as the role of metabolic signals in memory and in disorders of prediction (e.g., mood disorders).
Collapse
Affiliation(s)
- Clare Shaffer
- Department of Psychology, College of Science, Northeastern University, Boston, MA, USA.
| | - Lisa Feldman Barrett
- Department of Psychology, College of Science, Northeastern University, Boston, MA, USA; Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA
| | - Karen S Quigley
- Department of Psychology, College of Science, Northeastern University, Boston, MA, USA.
| |
Collapse
|
22
|
Wu Z, Liao J, Liu Q, Zhou S, Chen M. Chronic vagus nerve stimulation in patients with heart failure: challenge or failed translation? Front Cardiovasc Med 2023; 10:1052471. [PMID: 37534273 PMCID: PMC10390725 DOI: 10.3389/fcvm.2023.1052471] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Accepted: 05/31/2023] [Indexed: 08/04/2023] Open
Abstract
Autonomic imbalance between the sympathetic and parasympathetic nervous systems contributes to the progression of chronic heart failure (HF). Preclinical studies have demonstrated that various neuromodulation strategies may exert beneficial cardioprotective effects in preclinical models of HF. Based on these encouraging experimental data, vagus nerve stimulation (VNS) has been assessed in patients with HF with a reduced ejection fraction. Nevertheless, the main trials conducted thus far have yielded conflicting findings, questioning the clinical efficacy of VNS in this context. This review will therefore focus on the role of the autonomic nervous system in HF pathophysiology and VNS therapy, highlighting the potential reasons behind the discrepancy between preclinical and clinical studies.
Collapse
Affiliation(s)
- Zhihong Wu
- Department of Cardiovascular, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Jiaying Liao
- Department of Nephrology, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Qiming Liu
- Department of Cardiovascular, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Shenghua Zhou
- Department of Cardiovascular, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Mingxian Chen
- Department of Cardiovascular, The Second Xiangya Hospital of Central South University, Changsha, China
| |
Collapse
|
23
|
Saleeb-Mousa J, Nathanael D, Coney AM, Kalla M, Brain KL, Holmes AP. Mechanisms of Atrial Fibrillation in Obstructive Sleep Apnoea. Cells 2023; 12:1661. [PMID: 37371131 DOI: 10.3390/cells12121661] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 06/12/2023] [Accepted: 06/14/2023] [Indexed: 06/29/2023] Open
Abstract
Obstructive sleep apnoea (OSA) is a strong independent risk factor for atrial fibrillation (AF). Emerging clinical data cite adverse effects of OSA on AF induction, maintenance, disease severity, and responsiveness to treatment. Prevention using continuous positive airway pressure (CPAP) is effective in some groups but is limited by its poor compliance. Thus, an improved understanding of the underlying arrhythmogenic mechanisms will facilitate the development of novel therapies and/or better selection of those currently available to complement CPAP in alleviating the burden of AF in OSA. Arrhythmogenesis in OSA is a multifactorial process characterised by a combination of acute atrial stimulation on a background of chronic electrical, structural, and autonomic remodelling. Chronic intermittent hypoxia (CIH), a key feature of OSA, is associated with long-term adaptive changes in myocyte ion channel currents, sensitising the atria to episodic bursts of autonomic reflex activity. CIH is also a potent driver of inflammatory and hypoxic stress, leading to fibrosis, connexin downregulation, and conduction slowing. Atrial stretch is brought about by negative thoracic pressure (NTP) swings during apnoea, promoting further chronic structural remodelling, as well as acutely dysregulating calcium handling and electrical function. Here, we provide an up-to-date review of these topical mechanistic insights and their roles in arrhythmia.
Collapse
Affiliation(s)
- James Saleeb-Mousa
- School of Biomedical Sciences, Institute of Clinical Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
- School of Biomedical Sciences, Institute of Cardiovascular Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | - Demitris Nathanael
- School of Biomedical Sciences, Institute of Clinical Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | - Andrew M Coney
- School of Biomedical Sciences, Institute of Clinical Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
- School of Biomedical Sciences, Institute of Cardiovascular Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | - Manish Kalla
- School of Biomedical Sciences, Institute of Cardiovascular Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
- Queen Elizabeth Hospital, Birmingham B15 2GW, UK
| | - Keith L Brain
- School of Biomedical Sciences, Institute of Clinical Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
- School of Biomedical Sciences, Institute of Cardiovascular Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | - Andrew P Holmes
- School of Biomedical Sciences, Institute of Clinical Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
- School of Biomedical Sciences, Institute of Cardiovascular Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| |
Collapse
|
24
|
Chung WH, Lin YN, Wu MY, Chang KC. Sympathetic Modulation in Cardiac Arrhythmias: Where We Stand and Where We Go. J Pers Med 2023; 13:786. [PMID: 37240956 PMCID: PMC10221179 DOI: 10.3390/jpm13050786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Revised: 04/27/2023] [Accepted: 04/29/2023] [Indexed: 05/28/2023] Open
Abstract
The nuance of autonomic cardiac control has been studied for more than 400 years, yet little is understood. This review aimed to provide a comprehensive overview of the current understanding, clinical implications, and ongoing studies of cardiac sympathetic modulation and its anti-ventricular arrhythmias' therapeutic potential. Molecular-level studies and clinical studies were reviewed to elucidate the gaps in knowledge and the possible future directions for these strategies to be translated into the clinical setting. Imbalanced sympathoexcitation and parasympathetic withdrawal destabilize cardiac electrophysiology and confer the development of ventricular arrhythmias. Therefore, the current strategy for rebalancing the autonomic system includes attenuating sympathoexcitation and increasing vagal tone. Multilevel targets of the cardiac neuraxis exist, and some have emerged as promising antiarrhythmic strategies. These interventions include pharmacological blockade, permanent cardiac sympathetic denervation, temporal cardiac sympathetic denervation, etc. The gold standard approach, however, has not been known. Although neuromodulatory strategies have been shown to be highly effective in several acute animal studies with very promising results, the individual and interspecies variation between human autonomic systems limits the progress in this young field. There is, however, still much room to refine the current neuromodulation therapy to meet the unmet need for life-threatening ventricular arrhythmias.
Collapse
Affiliation(s)
- Wei-Hsin Chung
- Division of Cardiovascular Medicine, Department of Medicine, China Medical University Hospital, Taichung 40447, Taiwan
- UCLA Cardiac Arrhythmia Center, Ronald Reagan UCLA Medical Center, Los Angeles, CA 90024, USA
| | - Yen-Nien Lin
- Division of Cardiovascular Medicine, Department of Medicine, China Medical University Hospital, Taichung 40447, Taiwan
- School of Medicine, China Medical University, Taichung 404333, Taiwan
| | - Mei-Yao Wu
- School of Post-Baccalaureate Chinese Medicine, China Medical University, Taichung 404333, Taiwan
- Department of Chinese Medicine, China Medical University Hospital, Taichung 40447, Taiwan
| | - Kuan-Cheng Chang
- Division of Cardiovascular Medicine, Department of Medicine, China Medical University Hospital, Taichung 40447, Taiwan
- School of Medicine, China Medical University, Taichung 404333, Taiwan
| |
Collapse
|
25
|
Soltani D, Stavrakis S. Neuromodulation for the Management of Atrial Fibrillation—How to Optimize Patient Selection and the Procedural Approach. CURRENT CARDIOVASCULAR RISK REPORTS 2023. [DOI: 10.1007/s12170-023-00718-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/07/2023]
|
26
|
Chakraborty P, Farhat K, Po SS, Armoundas AA, Stavrakis S. Autonomic Nervous System and Cardiac Metabolism: Links Between Autonomic and Metabolic Remodeling in Atrial Fibrillation. JACC Clin Electrophysiol 2023:S2405-500X(23)00117-2. [PMID: 37086229 DOI: 10.1016/j.jacep.2023.02.019] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 01/27/2023] [Accepted: 02/16/2023] [Indexed: 04/23/2023]
Abstract
Simultaneous activation of the sympathetic and parasympathetic nervous systems is crucial for the initiation of paroxysmal atrial fibrillation (AF). However, unbalanced activation of the sympathetic system is characteristic of autonomic remodeling in long-standing persistent AF. Moreover, the adrenergic activation-induced metabolic derangements provide a milieu for acute AF and promote the transition from the paroxysmal to the persistent phase of AF. On the other hand, cholinergic activation ameliorates the maladaptive metabolic remodeling in the face of metabolic challenges. Selective inhibition of the sympathetic system and restoration of the balance of the cholinergic system by neuromodulation is emerging as a novel nonpharmacologic strategy for managing AF. This review explores the link between cardiac autonomic and metabolic remodeling and the potential roles of different autonomic modulation strategies on atrial metabolic aberrations in AF.
Collapse
Affiliation(s)
- Praloy Chakraborty
- Cardiovascular Section, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| | - Kassem Farhat
- Cardiovascular Section, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| | - Sunny S Po
- Cardiovascular Section, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| | - Antonis A Armoundas
- Cardiovascular Research Center, Massachusetts General Hospital, Boston, Massachusetts, USA; Broad Institute, Massachusetts Institute of Technology, Boston, Massachusetts, USA
| | - Stavros Stavrakis
- Cardiovascular Section, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA.
| |
Collapse
|
27
|
Killu AM, Yang M, Naksuk N, Tri J, Li X, Asirvatham R, Asirvatham SJ, Cha YM. Stellate ganglia stimulation counteracts vagal stimulation by significantly increasing heart rate and blood pressure. J Interv Card Electrophysiol 2023:10.1007/s10840-023-01516-w. [PMID: 36892802 DOI: 10.1007/s10840-023-01516-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 02/16/2023] [Indexed: 03/10/2023]
Abstract
BACKGROUND Vasovagal syncope (VVS) is the leading cause of syncope. The most frequent mechanism is that of a cardioinhibitory response, vasodepressor response, or mixture of both. Neural stimulation that negates or overcomes the effects of vagal tone may be used as a treatment strategy for VVS. METHODS Six male canines were studied. Stimulation (10-Hz, 2 ms pulse duration, 2 min duration) of the cervical vagus (CV), thoracic vagus (TV), and stellate ganglia (SG) was performed using needle electrodes at 3 V, 5 V, and 10 V output. SG stimulation at an output of 10 V overlaying TV stimulation at the same output was performed. Heart rate (HR), blood pressure (BP), and cardiac output (CO) were measured before, during, and after stimulation. RESULTS Right cervical vagal stimulation was associated with significant hemodynamic changes. HR, SBP, and DBP were reduced (107 ± 16 vs. 78 ± 15 bpm [P < 0.0001], 116 ± 24 vs. 107 ± 28 mmHg [P = 0.002] and 71 ± 18 vs. 58 ± 20 mmHg [P < 0.0001]), respectively, while left cervical vagal stimulation had minimal changes. CV stimulation was associated with greater hemodynamic changes than TV stimulation. Left and right SG stimulation significantly increased systolic blood pressure (SBP), diastolic blood pressure (DBP), and HR at 5 V and 10 V, which could be observed within 30 s after stimulation. An output-dependent increase in hemodynamic parameters was seen with both left and right SG stimulation. No difference between left and right SG stimulation was seen. SG stimulation overlay significantly increased HR, BP, and CO from baseline vagal stimulation bilaterally. CONCLUSIONS Stellate ganglia stimulation leads to increased HR and BP despite significant vagal stimulation. This may be exploited therapeutically in the management of vasovagal syncope.
Collapse
Affiliation(s)
- Ammar M Killu
- Department of Cardiovascular Disease, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA
| | - Mei Yang
- Department of Cardiology, Xinhua Hospital, 1665 Kongjiang Rd, Yangpu Qu, Shanghai Shi, 200000, China
| | - Niyada Naksuk
- Department of Cardiovascular Disease, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA
| | - Jason Tri
- Department of Cardiovascular Disease, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA
| | - Xuping Li
- Department of Cardiovascular medicine, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Roshini Asirvatham
- Department of Cardiovascular Disease, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA
| | - Samuel J Asirvatham
- Department of Cardiovascular Disease, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA
| | - Yong-Mei Cha
- Department of Cardiovascular Disease, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA.
| |
Collapse
|
28
|
Scridon A. Autonomic imbalance and atrial ectopic activity-a pathophysiological and clinical view. Front Physiol 2022; 13:1058427. [PMID: 36531175 PMCID: PMC9755506 DOI: 10.3389/fphys.2022.1058427] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 11/22/2022] [Indexed: 09/29/2023] Open
Abstract
The heart is one of the most richly innervated organs and the impact of the complex cardiac autonomic network on atrial electrophysiology and arrhythmogenesis, including on atrial ectopy, is widely recognized. The aim of this review is to discuss the main mechanisms involved in atrial ectopic activity. An overview of the anatomic and physiological aspects of the cardiac autonomic nervous system is provided as well as a discussion of the main pathophysiological pathways linking autonomic imbalance and atrial ectopic activity. The most relevant data on cardiac neuromodulation strategies are emphasized. Unanswered questions and hotspots for future research are also identified.
Collapse
Affiliation(s)
- Alina Scridon
- Physiology Department, Center for Advanced Medical and Pharmaceutical Research, University of Medicine, Pharmacy, Science and Technology “George Emil Palade” of Târgu Mureș, Târgu Mureș, Romania
| |
Collapse
|
29
|
Sridharan A, Bradfield JS, Shivkumar K, Ajijola OA. Autonomic nervous system and arrhythmias in structural heart disease. Auton Neurosci 2022; 243:103037. [DOI: 10.1016/j.autneu.2022.103037] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 09/21/2022] [Accepted: 09/21/2022] [Indexed: 11/28/2022]
|
30
|
Wang X, Qian Y, Yao Y, Wang Y, Zhang Y, Zhang S, Zhao Q. Median nerve stimulation elevates ventricular fibrillation threshold via the cholinergic anti-inflammatory pathway in myocardial infarction canine model. Front Cardiovasc Med 2022; 9:904117. [DOI: 10.3389/fcvm.2022.904117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 11/09/2022] [Indexed: 12/02/2022] Open
Abstract
BackgroundMedian nerve stimulation (MNS) diminishes regional myocardial ischemia and ventricular arrhythmia; however, the underlying mechanism has not been elucidated.MethodsIn this study, we randomly categorized 22 adult mongrel dogs into a control group, MNS group 1, and MNS group 2. After a 4-week experimental myocardial infarction (MI), ventricular electrophysiology was measured in the MNS group 1 before and after 30 min of MNS. The same measurements were performed in the MNS group 2 dogs via bilateral vagotomy. Venous blood and ventricular tissue were collected to detect molecular indicators related to inflammation and cholinergic pathways by enzyme-linked immunosorbent assay (ELISA), immunohistochemistry (IHC), and Western blot (WB).ResultsNo significant changes were reported in the ventricular effective refractory period (ERP) in the MNS group 1 and MNS group 2 dogs before and after MNS. The ventricular fibrillation threshold (VFT) in the MNS group 1 was significantly higher than that in the MNS group 2 (20.3 ± 3.7 V vs. 8.7 ± 2.9 V, P < 0.01). The levels of tumor necrosis factor-alpha (TNF-α), interleukin-6 (IL-6), and nuclear transcription factor-κB (NF-κB) were lower (P < 0.01), whereas the levels of Ach were higher in the peri-infarct zone tissues in the MNS group 1 dogs than those in the MNS group 2 dogs (P < 0.01).ConclusionThis study demonstrated that MNS increases VFT in a canine model with MI. The effects of MNS on VFT are potentially associated with the cholinergic anti-inflammatory pathway.
Collapse
|
31
|
Barthelemy JC, Pichot V, Hupin D, Berger M, Celle S, Mouhli L, Bäck M, Lacour JR, Roche F. Targeting autonomic nervous system as a biomarker of well-ageing in the prevention of stroke. Front Aging Neurosci 2022; 14:969352. [PMID: 36185479 PMCID: PMC9521604 DOI: 10.3389/fnagi.2022.969352] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 08/25/2022] [Indexed: 11/13/2022] Open
Abstract
Stroke prediction is a key health issue for preventive medicine. Atrial fibrillation (AF) detection is well established and the importance of obstructive sleep apneas (OSA) has emerged in recent years. Although autonomic nervous system (ANS) appears strongly implicated in stroke occurrence, this factor is more rarely considered. However, the consequences of decreased parasympathetic activity explored in large cohort studies through measurement of ANS activity indicate that an ability to improve its activity level and equilibrium may prevent stroke. In support of these observations, a compensatory neurostimulation has already proved beneficial on endothelium function. The available data on stroke predictions from ANS is based on many long-term stroke cohorts. These data underline the need of repeated ANS evaluation for the general population, in a medical environment, and remotely by emerging telemedicine digital tools. This would help uncovering the reasons behind the ANS imbalance that would need to be medically adjusted to decrease the risk of stroke. This ANS unbalance help to draw attention on clinical or non-clinical evidence, disclosing the vascular risk, as ANS activity integrates the cumulated risk from many factors of which most are modifiable, such as metabolic inadaptation in diabetes and obesity, sleep ventilatory disorders, hypertension, inflammation, and lack of physical activity. Treating these factors may determine ANS recovery through the appropriate management of these conditions. Natural aging also decreases ANS activity. ANS recovery will decrease global circulating inflammation, which will reinforce endothelial function and thus protect the vessels and the associated organs. ANS is the whistle-blower of vascular risk and the actor of vascular health. Such as, ANS should be regularly checked to help draw attention on vascular risk and help follow the improvements in response to our interventions. While today prediction of stroke relies on classical cardiovascular risk factors, adding autonomic biomarkers as HRV parameters may significantly increase the prediction of stroke.
Collapse
Affiliation(s)
- Jean-Claude Barthelemy
- Physical Exercise and Clinical Physiology Department, CHU Nord, Saint-Étienne, France
- INSERM U1059 Santé Ingénierie Biologie, Université Jean Monnet, Saint-Étienne, France
- *Correspondence: Jean-Claude Barthelemy,
| | - Vincent Pichot
- Physical Exercise and Clinical Physiology Department, CHU Nord, Saint-Étienne, France
- INSERM U1059 Santé Ingénierie Biologie, Université Jean Monnet, Saint-Étienne, France
| | - David Hupin
- Physical Exercise and Clinical Physiology Department, CHU Nord, Saint-Étienne, France
- INSERM U1059 Santé Ingénierie Biologie, Université Jean Monnet, Saint-Étienne, France
- Section of Translational Cardiology, Department of Medicine, Solna, Karolinska Institutet, Stockholm, Sweden
| | - Mathieu Berger
- Physical Exercise and Clinical Physiology Department, CHU Nord, Saint-Étienne, France
- INSERM U1059 Santé Ingénierie Biologie, Université Jean Monnet, Saint-Étienne, France
- Centre d’Investigation et de Recherche sur le Sommeil, Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland
| | - Sébastien Celle
- Physical Exercise and Clinical Physiology Department, CHU Nord, Saint-Étienne, France
- INSERM U1059 Santé Ingénierie Biologie, Université Jean Monnet, Saint-Étienne, France
| | - Lytissia Mouhli
- Physical Exercise and Clinical Physiology Department, CHU Nord, Saint-Étienne, France
- Département de Neurologie, Hôpital Universitaire Nord, Saint-Étienne, France
| | - Magnus Bäck
- Section of Translational Cardiology, Department of Medicine, Solna, Karolinska Institutet, Stockholm, Sweden
- Department of Cardiology, Karolinska University Hospital, Stockholm, Sweden
| | - Jean-René Lacour
- Laboratoire de Physiologie, Faculté de Médecine Lyon-Sud, Oullins, France
| | - Frederic Roche
- Physical Exercise and Clinical Physiology Department, CHU Nord, Saint-Étienne, France
- INSERM U1059 Santé Ingénierie Biologie, Université Jean Monnet, Saint-Étienne, France
| |
Collapse
|
32
|
Li J, Zheng L. The Mechanism of Cardiac Sympathetic Activity Assessment Methods: Current Knowledge. Front Cardiovasc Med 2022; 9:931219. [PMID: 35811701 PMCID: PMC9262089 DOI: 10.3389/fcvm.2022.931219] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 05/20/2022] [Indexed: 01/03/2023] Open
Abstract
This review has summarized the methods currently available for cardiac sympathetic assessment in clinical or under research, with emphasis on the principles behind these methodologies. Heart rate variability (HRV) and other methods based on heart rate pattern analysis can reflect the dominance of sympathetic nerve to sinoatrial node function and indirectly show the average activity level of cardiac sympathetic nerve in a period of time. Sympathetic neurotransmitters play a key role of signal transduction after sympathetic nerve discharges. Plasma or local sympathetic neurotransmitter detection can mediately display sympathetic nerve activity. Given cardiac sympathetic nerve innervation, i.e., the distribution of stellate ganglion and its nerve fibers, stellate ganglion activity can be recorded either directly or subcutaneously, or through the surface of the skin using a neurophysiological approach. Stellate ganglion nerve activity (SGNA), subcutaneous nerve activity (SCNA), and skin sympathetic nerve activity (SKNA) can reflect immediate stellate ganglion discharge activity, i.e., cardiac sympathetic nerve activity. These cardiac sympathetic activity assessment methods are all based on the anatomy and physiology of the heart, especially the sympathetic innervation and the sympathetic regulation of the heart. Technological advances, discipline overlapping, and more understanding of the sympathetic innervation and sympathetic regulation of the heart will promote the development of cardiac sympathetic activity assessment methods.
Collapse
|
33
|
Heart Rate Variability during Auricular Acupressure at Heart Point in Healthy Volunteers: A Pilot Study. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:1019029. [PMID: 35509626 PMCID: PMC9060987 DOI: 10.1155/2022/1019029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 03/14/2022] [Accepted: 03/24/2022] [Indexed: 11/18/2022]
Abstract
Heart rate variability (HRV) is the variation in time between each heartbeat. Increasing HRV may contribute to improving autonomic nervous system dysfunctions. Acupuncture stimulation through the vagus plexus in the ear is considered as a method that can improve HRV. In this pilot study, we examined 114 healthy volunteers at the Faculty of Traditional Medicine, University of Medicine and Pharmacy at Ho Chi Minh City, from January to May 2020. During a 20-minute interval, participants were stimulated two times at the acupoint in the left ear with Semen seed. The heart rate and HRV values were monitored before, during, and after acupressure every 5 minutes. When we compared the experimental group with the control group, HRV significantly increased in the stage of ear-stimulated acupressure compared with the stage before and after the auricular acupressure (p=0.01, p=0.04, p=0.04 and p=0.02) and the difference was not statistically significant compared with the phase of nonstimulated (p=0.15, p=0.28). The changes in other values including SDNN (standard deviation of the average NN), RMSSD (root mean square of successive RR interval differences), LF (low-frequency power), and HF (high-frequency power) in all stages were not statistically significant (p=>0.05) between groups. Based on the results, we can determine the increase in HRV when conducting auricular acupressure with stimulation at the heart acupoint on the left ear. This leads to a direction in further studies for clinical application for patients with autonomic nervous disorder.
Collapse
|
34
|
Choline Protects the Heart from Doxorubicin-Induced Cardiotoxicity through Vagal Activation and Nrf2/HO-1 Pathway. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:4740931. [PMID: 35422894 PMCID: PMC9005275 DOI: 10.1155/2022/4740931] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 03/14/2022] [Indexed: 12/15/2022]
Abstract
Choline is a precursor of the major neurotransmitter acetylcholine and has been demonstrated beneficial in diverse models of cardiovascular disease. Here, we sought to verify that choline protects the heart from DOX-induced cardiotoxicity and the underlying mechanisms. The results showed that DOX treatment decreased left ventricular ejection fraction and fractional shortening and increased serum cardiac markers and myocardial fibrosis, which were alleviated by cotreatment with choline. DOX-induced cardiotoxicity was accompanied by increases in oxidative stress, inflammation, and apoptosis, which were rectified by choline cotreatment. Levels of nuclear factor erythroid 2-related factor 2 (Nrf2) and heme-oxygenase-1 (HO-1), which are antioxidant markers, were lowered by DOX and upregulated by choline. Moreover, DOX significantly decreased serum acetylcholine levels and the high-frequency component of heart rate variability and increased serum norepinephrine levels and the low-frequency component; these effects were rescued by choline administration. Interestingly, the protective effects of choline could be partially reversed by administration of the muscarinic receptor antagonist atropine. This suggests that choline might be a promising adjunct therapeutic agent to alleviate DOX-induced cardiotoxicity.
Collapse
|
35
|
Kharbanda RK, van der Does WFB, van Staveren LN, Taverne YJHJ, Bogers AJJC, de Groot NMS. Vagus Nerve Stimulation and Atrial Fibrillation: Revealing the Paradox. Neuromodulation 2022; 25:356-365. [PMID: 35190246 DOI: 10.1016/j.neurom.2022.01.008] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Revised: 12/28/2021] [Accepted: 01/04/2022] [Indexed: 12/18/2022]
Abstract
BACKGROUND AND OBJECTIVE The cardiac autonomic nervous system (CANS) plays an important role in the pathophysiology of atrial fibrillation (AF). Cardiovascular disease can cause an imbalance within the CANS, which may contribute to the initiation and maintenance of AF. Increased understanding of neuromodulation of the CANS has resulted in novel emerging therapies to treat cardiac arrhythmias by targeting different circuits of the CANS. Regarding AF, neuromodulation therapies targeting the vagus nerve have yielded promising outcomes. However, targeting the vagus nerve can be both pro-arrhythmogenic and anti-arrhythmogenic. Currently, these opposing effects of vagus nerve stimulation (VNS) have not been clearly described. The aim of this review is therefore to discuss both pro-arrhythmogenic and anti-arrhythmogenic effects of VNS and recent advances in clinical practice and to provide future perspectives for VNS to treat AF. MATERIALS AND METHODS A comprehensive review of current literature on VNS and its pro-arrhythmogenic and anti-arrhythmogenic effects on atrial tissue was performed. Both experimental and clinical studies are reviewed and discussed separately. RESULTS VNS exhibits both pro-arrhythmogenic and anti-arrhythmogenic effects. The anatomical site and stimulation settings during VNS play a crucial role in determining its effect on cardiac electrophysiology. Since the last decade, there is accumulating evidence from experimental studies and randomized clinical studies that low-level VNS (LLVNS), below the bradycardia threshold, is an effective treatment for AF. CONCLUSION LLVNS is a promising novel therapeutic modality to treat AF and further research will further elucidate the underlying anti-arrhythmogenic mechanisms, optimal stimulation settings, and site to apply LLVNS.
Collapse
Affiliation(s)
- Rohit K Kharbanda
- Department of Cardiology, Erasmus Medical Center, Rotterdam, The Netherlands; Department of Cardiothoracic Surgery, Erasmus Medical Center, Rotterdam, The Netherlands
| | | | | | - Yannick J H J Taverne
- Department of Cardiothoracic Surgery, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Ad J J C Bogers
- Department of Cardiothoracic Surgery, Erasmus Medical Center, Rotterdam, The Netherlands
| | | |
Collapse
|
36
|
Hoang JD, Yamakawa K, Rajendran PS, Chan CA, Yagishita D, Nakamura K, Lux RL, Vaseghi M. Proarrhythmic Effects of Sympathetic Activation Are Mitigated by Vagal Nerve Stimulation in Infarcted Hearts. JACC Clin Electrophysiol 2022; 8:513-525. [PMID: 35450607 PMCID: PMC9034056 DOI: 10.1016/j.jacep.2022.01.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 01/11/2022] [Accepted: 01/11/2022] [Indexed: 10/18/2022]
Abstract
OBJECTIVES The goal of this study was to evaluate whether intermittent VNS reduces electrical heterogeneities and arrhythmia inducibility during sympathoexcitation. BACKGROUND Sympathoexcitation increases the risk of ventricular tachyarrhythmias (VT). Vagal nerve stimulation (VNS) has been antiarrhythmic in the setting of ischemia-driven arrhythmias, but it is unclear if it can overcome the electrophysiological effects of sympathoexcitation in the setting of chronic myocardial infarction (MI). METHODS In Yorkshire pigs after chronic MI, a sternotomy was performed, a 56-electrode sock was placed over the ventricles (n = 17), and a basket catheter was positioned in the left ventricle (n = 6). Continuous unipolar electrograms from sock and basket arrays were obtained to analyze activation recovery interval (ARI), a surrogate of action potential duration. Bipolar voltage mapping was performed to define scar, border zone, or viable myocardium. Hemodynamic and electrical parameters and VT inducibility were evaluated during sympathoexcitation with bilateral stellate ganglia stimulation (BSS) and during combined BSS with intermittent VNS. RESULTS During BSS, global epicardial ARIs shortened from 384 ± 59 milliseconds to 297 ± 63 milliseconds and endocardial ARIs from 359 ± 36 milliseconds to 318 ± 40 milliseconds. Dispersion in ARIs increased in all regions, with the greatest increase observed in scar and border zone regions. VNS mitigated the effects of BSS on border zone ARIs (from -18.3% ± 6.3% to -2.1% ± 14.7%) and ARI dispersion (from 104 ms2 [1 to 1,108 ms2] to -108 ms2 [IQR: -588 to 30 ms2]). VNS reduced VT inducibility during sympathoexcitation (from 75%-40%; P < 0.05). CONCLUSIONS After chronic MI, VNS overcomes the detrimental effects of sympathoexcitation by reducing electrophysiological heterogeneities exacerbated by sympathetic stimulation, decreasing VT inducibility.
Collapse
Affiliation(s)
- Jonathan D Hoang
- UCLA Cardiac Arrhythmia Center, University of California, Los Angeles, California, USA; UCLA Neurocardiology Program of Excellence, University of California, Los Angeles, California, USA; Molecular, Cellular and Integrative Physiology Interdepartmental Program, University of California, Los Angeles, California, USA
| | - Kentaro Yamakawa
- UCLA Cardiac Arrhythmia Center, University of California, Los Angeles, California, USA
| | - Pradeep S Rajendran
- UCLA Cardiac Arrhythmia Center, University of California, Los Angeles, California, USA; UCLA Neurocardiology Program of Excellence, University of California, Los Angeles, California, USA
| | - Christopher A Chan
- UCLA Cardiac Arrhythmia Center, University of California, Los Angeles, California, USA; UCLA Neurocardiology Program of Excellence, University of California, Los Angeles, California, USA
| | - Daigo Yagishita
- UCLA Cardiac Arrhythmia Center, University of California, Los Angeles, California, USA
| | - Keijiro Nakamura
- UCLA Cardiac Arrhythmia Center, University of California, Los Angeles, California, USA
| | - Robert L Lux
- UCLA Cardiac Arrhythmia Center, University of California, Los Angeles, California, USA
| | - Marmar Vaseghi
- UCLA Cardiac Arrhythmia Center, University of California, Los Angeles, California, USA; UCLA Neurocardiology Program of Excellence, University of California, Los Angeles, California, USA; Molecular, Cellular and Integrative Physiology Interdepartmental Program, University of California, Los Angeles, California, USA.
| |
Collapse
|
37
|
Konwerski M, Gąsecka A, Opolski G, Grabowski M, Mazurek T. Role of Epicardial Adipose Tissue in Cardiovascular Diseases: A Review. BIOLOGY 2022; 11:355. [PMID: 35336728 PMCID: PMC8945130 DOI: 10.3390/biology11030355] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 02/19/2022] [Accepted: 02/21/2022] [Indexed: 02/01/2023]
Abstract
Cardiovascular diseases (CVDs) are the leading causes of death worldwide. Epicardial adipose tissue (EAT) is defined as a fat depot localized between the myocardial surface and the visceral layer of the pericardium and is a type of visceral fat. EAT is one of the most important risk factors for atherosclerosis and cardiovascular events and a promising new therapeutic target in CVDs. In health conditions, EAT has a protective function, including protection against hypothermia or mechanical stress, providing myocardial energy supply from free fatty acid and release of adiponectin. In patients with obesity, metabolic syndrome, or diabetes mellitus, EAT becomes a deleterious tissue promoting the development of CVDs. Previously, we showed an adverse modulation of gene expression in pericoronary adipose tissue in patients with coronary artery disease (CAD). Here, we summarize the currently available evidence regarding the role of EAT in the development of CVDs, including CAD, heart failure, and atrial fibrillation. Due to the rapid development of the COVID-19 pandemic, we also discuss data regarding the association between EAT and the course of COVID-19. Finally, we present the potential therapeutic possibilities aiming at modifying EAT's function. The development of novel therapies specifically targeting EAT could revolutionize the prognosis in CVDs.
Collapse
Affiliation(s)
| | | | | | | | - Tomasz Mazurek
- 1st Chair and Department of Cardiology, Medical University of Warsaw, 02-097 Warszawa, Poland; (M.K.); (A.G.); (G.O.); (M.G.)
| |
Collapse
|
38
|
Rodríguez-Mañero M, Martínez-Sande JL, García-Seara J, González-Ferrero T, González-Juanatey JR, Schurmann P, Tavares L, Valderrábano M. Neuromodulatory Approaches for Atrial Fibrillation Ablation. Eur Cardiol 2022; 16:e53. [PMID: 35024055 PMCID: PMC8728882 DOI: 10.15420/ecr.2021.05] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Accepted: 05/23/2021] [Indexed: 12/01/2022] Open
Abstract
In this review, the authors describe evolving alternative strategies for the management of AF, focusing on non-invasive and percutaneous autonomic modulation. This modulation can be achieved – among other approaches – via tragus stimulation, renal denervation, cardiac afferent denervation, alcohol injection in the vein of Marshall, baroreceptor activation therapy and endocardial ganglionated plexi ablation. Although promising, these therapies are currently under investigation but could play a role in the treatment of AF in combination with conventional pulmonary vein isolation in the near future.
Collapse
Affiliation(s)
- Moisés Rodríguez-Mañero
- Department of Cardiology, University Hospital of Santiago de Compostela, Santiago de Compostela, A Coruña Galicia, Spain.,Institute of Health Research, University of Santiago de Compostela, Santiago de Compostela, A Coruña Galicia, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV) Spain
| | - Jose Luis Martínez-Sande
- Department of Cardiology, University Hospital of Santiago de Compostela, Santiago de Compostela, A Coruña Galicia, Spain.,Institute of Health Research, University of Santiago de Compostela, Santiago de Compostela, A Coruña Galicia, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV) Spain
| | - Javier García-Seara
- Department of Cardiology, University Hospital of Santiago de Compostela, Santiago de Compostela, A Coruña Galicia, Spain.,Institute of Health Research, University of Santiago de Compostela, Santiago de Compostela, A Coruña Galicia, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV) Spain
| | - Teba González-Ferrero
- Department of Cardiology, University Hospital of Santiago de Compostela, Santiago de Compostela, A Coruña Galicia, Spain
| | - José Ramón González-Juanatey
- Department of Cardiology, University Hospital of Santiago de Compostela, Santiago de Compostela, A Coruña Galicia, Spain.,Institute of Health Research, University of Santiago de Compostela, Santiago de Compostela, A Coruña Galicia, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV) Spain
| | - Paul Schurmann
- Methodist DeBakey Heart and Vascular Center and Methodist Hospital Research Institute, The Methodist Hospital Houston, TX, US
| | - Liliana Tavares
- Methodist DeBakey Heart and Vascular Center and Methodist Hospital Research Institute, The Methodist Hospital Houston, TX, US
| | - Miguel Valderrábano
- Methodist DeBakey Heart and Vascular Center and Methodist Hospital Research Institute, The Methodist Hospital Houston, TX, US
| |
Collapse
|
39
|
The cardiac autonomic nervous system: an introduction. Herzschrittmacherther Elektrophysiol 2021; 32:295-301. [PMID: 34389873 DOI: 10.1007/s00399-021-00776-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Accepted: 06/01/2021] [Indexed: 10/20/2022]
Abstract
In recent decades, numerous anatomical and physiological studies of the cardiac autonomic nervous system (ANS) have investigated the complex relationships between the brain and the heart. Autonomic activation not only alters heart rate, conduction, and hemodynamics, but also cellular and subcellular properties of individual myocytes. Moreover, the cardiac ANS plays an essential role in cardiac arrhythmogenesis. There is mounting evidence that neural modulation either by ablation or stimulation can effectively control a wide spectrum of cardiac arrhythmias. This article discusses anatomic aspects of the cardiac ANS, focusing on how autonomic activities influence cardiac electrophysiology. Specific autonomic triggers of various cardiac arrhythmias, in particular atrial fibrillation (AF) and ventricular arrhythmias, are also briefly discussed. Studies with heart-rate variability analysis indicate that, rather than being triggered by either vagal or sympathetic activity, the onset of AF can be associated with simultaneous discharge of both limbs, leading to an imbalance between these two arms of the cardiac ANS. At the same time, sudden cardiac death resulting from ventricular arrhythmias continues to be a significant health and societal burden. These nerve activities of the cardiac ANS can be targeted for the treatment for cardiac arrhythmias, in particular AF and ventricular tachyarrhythmias.
Collapse
|
40
|
Boehmer AA, Georgopoulos S, Nagel J, Rostock T, Bauer A, Ehrlich JR. Acupuncture at the auricular branch of the vagus nerve enhances heart rate variability in humans: An exploratory study. Heart Rhythm O2 2021; 1:215-221. [PMID: 34113874 PMCID: PMC8183808 DOI: 10.1016/j.hroo.2020.06.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
Abstract
BACKGROUND Recent animal and human studies have shown antiarrhythmic effects inhibiting inducibility of atrial fibrillation through low-level transcutaneous electrical stimulation at the auricular branch of the vagus nerve (ABVN). OBJECTIVE The present study investigated effects of acupuncture at the ABVN on the autonomic cardiac nervous system in humans through analysis of heart rate and heart rate variability (HRV) parameters. METHODS We enrolled 24 healthy male volunteers and compared acupuncture at the ABVN to placebo-acupuncture performed at the Ma-35 point (an acupuncture point used in traditional Chinese medicine to treat pain caused by gonarthrosis). An additional measurement without acupuncture served as control. We analyzed the following heart rate and HRV parameters: standard deviation of normal-to-normal intervals (SDNN), root mean square of successive R-R interval differences (RMSSD), high frequency (HF), low frequency (LF), LF/HF ratio. RESULTS In comparison to placebo acupuncture, acupuncture at the ABVN led to a significant reduction in heart rate (approximately 4%-6%, P < .05) and an increase in overall HRV demonstrated by SDNN (approximately 19%, P < .05). RMSSD and power spectral density parameters (HF, LF, LF/HF) showed statistical trends (P < .1) induced by auricular acupuncture in favor of vagal tone. No relevant difference was shown between control and placebo group. CONCLUSION Acupuncture of the region innervated by the ABVN may activate the parasympathetic nervous system, as suggested by reduction in heart rate and increase in SDNN. However, given the lack of clear significant changes in other HRV parameters, this effect seems modest and its evaluation requires further investigation.
Collapse
Affiliation(s)
- Andreas A Boehmer
- Department of Cardiology, St. Josefs-Hospital Wiesbaden, Wiesbaden, Germany
| | | | | | - Thomas Rostock
- Department of Cardiology, Universitätsmedizin Mainz, Mainz, Germany
| | - Axel Bauer
- Department of Cardiology, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Joachim R Ehrlich
- Department of Cardiology, St. Josefs-Hospital Wiesbaden, Wiesbaden, Germany
| |
Collapse
|
41
|
Zhang SJ, Huang CX, Zhao QY, Zhang SD, Dai ZX, Zhao HY, Qian YS, Zhang YJ, Wang YC, He B, Tang YH, Wang T, Wang X. The Role of α7nAChR-Mediated Cholinergic Anti-Inflammatory Pathway in Vagal Nerve Regulated Atrial Fibrillation. Int Heart J 2021; 62:607-615. [PMID: 34054001 DOI: 10.1536/ihj.18-510] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The aim was to investigate the role of the α7nAChR-mediated cholinergic anti-inflammatory pathway in vagal nerve regulated atrial fibrillation (AF).18 beagles (standard dogs for testing) were used in this study, and the effective refractory period (ERP) of atrium and pulmonary veins and AF inducibility were measured hourly during rapid atrial pacing at 800 beats/minute for 6 hours in all beagles. After cessation of 3 hours of RAP, the low-level vagal nerve stimulation (LL-VNS) group (n = 6) was given LL-VNS and injection of salinne (0.5 mL/GP) into four GPs, the methyllycaconitine (MLA, the antagonist of α7nAChR) group (n = 6) was given LL-VNS and injection of MLA into four GPs, and the Control group (n = 6) was given saline into four GPs and the right cervical vagal nerve was exposed without stimulation. Then, the levels of the tumor necrosis factor-alpha (TNF-α), interleukin-6 (IL-6), acetylcholine (ACh), STAT3, and NF-κB proteins were measured. During the first 3 hours of RAP, the ERPs gradually decreased while the dispersion of ERPs (dERPs) and AF inducibility gradually increased in all three groups. During the last 3 hours of 6 hours' RAP in this study, the ERPs in the LL-VNS group were higher, while the dERPs and AF inducibility were significantly lower when compared with the Control and MLA groups at the same time points. The levels of ACh in the serum and atrium in the LL-VNS and MLA groups were higher than in the Control group, and the levels of TNF-α and IL-6 were higher in the Control and MLA groups than in the LL-VNS group. The concentrations of STAT3 in RA and LA tissues were higher in the LL-VNS group while those of NF-κB were lower.In conclusion, the cholinergic anti-inflammatory pathway mediated by α7nACh plays an important role in low-level vagal nerve-regulated AF.
Collapse
Affiliation(s)
- Shu-Juan Zhang
- Department of Cardiology, Renmin Hospital of Wuhan University.,Cardiovascular Research Insititute, Wuhan University.,Hubei Key Laboratory of Cardiology
| | - Cong-Xin Huang
- Department of Cardiology, Renmin Hospital of Wuhan University.,Cardiovascular Research Insititute, Wuhan University.,Hubei Key Laboratory of Cardiology
| | - Qing-Yan Zhao
- Department of Cardiology, Renmin Hospital of Wuhan University.,Cardiovascular Research Insititute, Wuhan University.,Hubei Key Laboratory of Cardiology
| | - Shu-Di Zhang
- Department of Neurosurgery, Renmin Hospital of Wuhan University
| | - Zi-Xuan Dai
- Department of Cardiology, Renmin Hospital of Wuhan University.,Cardiovascular Research Insititute, Wuhan University.,Hubei Key Laboratory of Cardiology
| | - Hong-Yi Zhao
- Department of Cardiology, Renmin Hospital of Wuhan University.,Cardiovascular Research Insititute, Wuhan University.,Hubei Key Laboratory of Cardiology
| | - Yong-Sheng Qian
- Department of Cardiology, Renmin Hospital of Wuhan University.,Cardiovascular Research Insititute, Wuhan University.,Hubei Key Laboratory of Cardiology
| | - You-Jing Zhang
- Department of Cardiology, Renmin Hospital of Wuhan University.,Cardiovascular Research Insititute, Wuhan University.,Hubei Key Laboratory of Cardiology
| | - You-Cheng Wang
- Department of Cardiology, Renmin Hospital of Wuhan University.,Cardiovascular Research Insititute, Wuhan University.,Hubei Key Laboratory of Cardiology
| | - Bo He
- Department of Cardiology, Renmin Hospital of Wuhan University.,Cardiovascular Research Insititute, Wuhan University.,Hubei Key Laboratory of Cardiology
| | - Yan-Hong Tang
- Department of Cardiology, Renmin Hospital of Wuhan University.,Cardiovascular Research Insititute, Wuhan University.,Hubei Key Laboratory of Cardiology
| | - Teng Wang
- Department of Cardiology, Renmin Hospital of Wuhan University.,Cardiovascular Research Insititute, Wuhan University.,Hubei Key Laboratory of Cardiology
| | - Xi Wang
- Department of Cardiology, Renmin Hospital of Wuhan University.,Cardiovascular Research Insititute, Wuhan University.,Hubei Key Laboratory of Cardiology
| |
Collapse
|
42
|
Kulkarni K, Singh JP, Parks KA, Katritsis DG, Stavrakis S, Armoundas AA. Low-Level Tragus Stimulation Modulates Atrial Alternans and Fibrillation Burden in Patients With Paroxysmal Atrial Fibrillation. J Am Heart Assoc 2021; 10:e020865. [PMID: 34075778 PMCID: PMC8477868 DOI: 10.1161/jaha.120.020865] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Background Low‐level tragus stimulation (LLTS) has been shown to significantly reduce atrial fibrillation (AF) burden in patients with paroxysmal AF. P‐wave alternans (PWA) is believed to be generated by the same substrate responsible for AF. Hence, PWA may serve as a marker in guiding LLTS therapy. We investigated the utility of PWA in guiding LLTS therapy in patients with AF. Methods and Results Twenty‐eight patients with AF were randomized to either active LLTS or sham (earlobe stimulation). LLTS was delivered through a transcutaneous electrical nerve stimulation device (pulse width 200 μs, frequency 20 Hz, amplitude 10–50 mA), for 1 hour daily over a 6‐month period. AF burden over 2‐week periods was assessed by noninvasive continuous ECG monitoring at baseline, 3 months, and 6 months. A 5‐minute control ECG for PWA analysis was recorded during all 3 follow‐up visits. Following the control ECG, an additional 5‐minute ECG was recorded during active LLTS in all patients. At baseline, acute LLTS led to a significant rise in PWA burden. However, active patients receiving chronic LLTS demonstrated a significant reduction in both PWA and AF burden after 6 months (P<0.05). Active patients who demonstrated an increase in PWA burden with acute LLTS showed a significant drop in AF burden after 6 months of chronic LLTS. Conclusions Chronic, intermittent LLTS resulted in lower PWA and AF burden than did sham control stimulation. Our results support the use of PWA as a potential marker for guiding LLTS treatment of paroxysmal AF.
Collapse
Affiliation(s)
- Kanchan Kulkarni
- Cardiovascular Research Center Massachusetts General Hospital Boston MA
| | - Jagmeet P Singh
- Cardiology Division Cardiac Arrhythmia Service Massachusetts General Hospital Boston MA
| | | | | | - Stavros Stavrakis
- Heart Rhythm Institute University of Oklahoma Health Sciences Center Oklahoma City OK
| | - Antonis A Armoundas
- Cardiovascular Research Center Massachusetts General Hospital Boston MA.,Institute for Medical Engineering and Science Massachusetts Institute of TechnologyCambridge MA
| |
Collapse
|
43
|
Chatterjee NA, Singh JP. Autonomic modulation and cardiac arrhythmias: old insights and novel strategies. Europace 2021; 23:1708-1721. [PMID: 34050642 DOI: 10.1093/europace/euab118] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Accepted: 04/13/2021] [Indexed: 11/13/2022] Open
Abstract
The autonomic nervous system (ANS) plays a critical role in both health and states of cardiovascular disease. There has been a long-recognized role of the ANS in the pathogenesis of both atrial and ventricular arrhythmias (VAs). This historical understanding has been expanded in the context of evolving insights into the anatomy and physiology of the ANS, including dysfunction of the ANS in cardiovascular disease such as heart failure and myocardial infarction. An expanding armamentarium of therapeutic strategies-both invasive and non-invasive-have brought the potential of ANS modulation to contemporary clinical practice. Here, we summarize the integrative neuro-cardiac anatomy underlying the ANS, review the physiological rationale for autonomic modulation in atrial and VAs, highlight strategies for autonomic modulation, and finally frame future challenges and opportunities for ANS therapeutics.
Collapse
Affiliation(s)
- Neal A Chatterjee
- Electrophysiology Section, Cardiology Division, Department of Medicine, University of Washington, 1959 NE Pacific Street, Seattle, WA 98195, USA
| | - Jagmeet P Singh
- Cardiac Arrhythmia Service, Division of Cardiology, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
44
|
Wang HT, Sun HK, Jin AP, Jiang W, Zhang Y, Su FF, Zheng QS. Anti-arrhythmic and anti-heart failure effects of low-level electrical stimulation on aortic root ventricular ganglionated plexi. PACING AND CLINICAL ELECTROPHYSIOLOGY: PACE 2021; 44:1817-1823. [PMID: 33973650 DOI: 10.1111/pace.14261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Revised: 03/10/2021] [Accepted: 05/02/2021] [Indexed: 12/01/2022]
Abstract
BACKGROUND It remains uncertain whether low-level electrical stimulation (LL-ES) of the ventricular ganglionated plexi (GP) improves heart function. This study investigated the anti-arrhythmic and anti-heart failure effects of LL-ES of the aortic root ventricular GP (ARVGP). METHODS Thirty dogs were divided randomly into control, drug, and LL-ES groups after performing rapid right ventricular pacing to establish a heart failure (HF) model. The inducing rate of arrhythmia; levels of bioactive factors influencing HF, including angiotensin II type I receptor (AT-1R), transforming growth factor-beta (TGF-β), matrix metalloproteinase (MMP), and phosphorylated extracellular signal-regulated kinase (p-ERK1/2); left ventricular stroke volume (LVSV), and left ventricular ejection fraction (LVEF)were measured after treatment with placebo, drugs, and LL-ES. RESULTS The inducing rate of atrial arrhythmia decreased from 60% in the control group to 50% in the drug group and 10% in the LL-ES group (p = .033 vs. drug group) after 1 week of treatment. The ventricular effective refractory period was prolonged from 139 ± 8 ms in the drug group to 166 ± 13 ms in the LL-ES group (p = .001). Compared to the drug group, the expressions of AT-1R, TGF-β, and MMP proteins were down-regulated in the LL-ES group, whereas that of p-ERK1/2 was significantly increased (all p = .001). Moreover, in the LL-ES group, LVSV increased markedly from 13.16 ± 0.22 to 16.86 ± 0.27 mL, relative to that in the drug group (p = .001), and LVEF increased significantly from 38.48% ± 0.53% to 48.94% ± 0.57% during the same time frame (p = .001). CONCLUSION Short-term LL-ES of ARVGP had both anti-arrhythmic and anti-inflammatory effects and contributed to the treatment of tachycardia-induced HF and its associated arrhythmia.
Collapse
Affiliation(s)
- Hong-Tao Wang
- Division of Cardiology, The Second Affiliated Hospital of Xi'an Jiao Tong University, Xi'an, China
| | - Hong-Ke Sun
- Division of Cardiology, The Second Affiliated Hospital of Xi'an Jiao Tong University, Xi'an, China
| | - Ai-Ping Jin
- Division of Geriatric Cardiology, The Second Affiliated Hospital of Xi'an Jiao Tong University, Xi'an, China
| | - Wei Jiang
- Division of Cardiology, The Second Affiliated Hospital of Xi'an Jiao Tong University, Xi'an, China
| | - Yan Zhang
- Division of Cardiology, The Second Affiliated Hospital of Xi'an Jiao Tong University, Xi'an, China
| | - Fei-Fei Su
- Division of Cardiology, Air Force Medical Center, Beijing, China
| | - Qiang-Sun Zheng
- Division of Cardiology, The Second Affiliated Hospital of Xi'an Jiao Tong University, Xi'an, China
| |
Collapse
|
45
|
Sohinki D, Thomas J, Scherlag B, Stavrakis S, Yousif A, Po S, Dasari T. Impact of low-level electromagnetic fields on the inducibility of atrial fibrillation in the electrophysiology laboratory. Heart Rhythm O2 2021; 2:239-246. [PMID: 34337574 PMCID: PMC8322792 DOI: 10.1016/j.hroo.2021.04.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Background Atrial fibrillation (AF) is the most common sustained arrhythmia in adults. Research suggests that autonomic nervous (ANS) system dysfunction contributes to AF pathophysiology. Animal studies have shown that low-level electromagnetic fields (LL-EMF) are potentially capable of AF suppression. This study evaluated the safety and efficacy of LL-EMF in suppressing AF in humans. Objective To investigate the impact of LL-EMF on AF inducibility in humans. Methods Patients presenting for ablation of paroxysmal AF were randomized to a sham protocol or LL-EMF (3.2 × 10-8 G at 0.89 Hz) applied via a Helmholtz coil around the head. AF was induced via atrial pacing, and was cardioverted if duration was greater than 15 minutes. The protocol was then run for 60 minutes, followed by reinduction of AF. The primary endpoint was the duration of pacing-induced AF after protocol completion compared between groups. Results Eighteen patients completed the study protocol (n = 10 sham, n = 8 LL-EMF). Pacing-induced AF duration in the LL-EMF group was 11.0 ± 3.43 minutes shorter than control after protocol completion (CI 3.72–18.28 minutes, P = .03). A smaller proportion of LL-EMF patients experienced spontaneous firing initiating an AF episode (0/7 vs 5/6, P = .0047). A significantly greater proportion of patients in the control group required direct current cardioversion after 1 hour (0.78 vs 0.13, P = .02). Conclusion In patients with paroxysmal AF, LL-EMF stimulation results in shorter episodes of pacing-induced AF and a reduced likelihood of spontaneous firing initiating an episode of AF.
Collapse
Affiliation(s)
- Daniel Sohinki
- Department of Cardiology, Medical College of Georgia at Augusta University, Augusta, Georgia
- Address reprint requests and correspondence: Dr Daniel Sohinki, Medical College of Georgia at Augusta University, 1120 15th St, Augusta, GA 30912.
| | - Joshua Thomas
- Department of Cardiology, Medical College of Georgia at Augusta University, Augusta, Georgia
| | - Benjamin Scherlag
- Department of Cardiology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
- Heart Rhythm Institute, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| | - Stavros Stavrakis
- Department of Cardiology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
- Heart Rhythm Institute, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| | - Ali Yousif
- Department of Cardiology, Baylor Scott and White Health, Prosper, Texas
| | - Sunny Po
- Department of Cardiology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
- Heart Rhythm Institute, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| | - Tarun Dasari
- Department of Cardiology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| |
Collapse
|
46
|
Zhao S, Dai Y, Ning X, Tang M, Zhao Y, Li Z, Zhang S. Vagus Nerve Stimulation in Early Stage of Acute Myocardial Infarction Prevent Ventricular Arrhythmias and Cardiac Remodeling. Front Cardiovasc Med 2021; 8:648910. [PMID: 33981734 PMCID: PMC8107219 DOI: 10.3389/fcvm.2021.648910] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2021] [Accepted: 03/30/2021] [Indexed: 11/17/2022] Open
Abstract
Aims: To evaluate whether low level left vagus nerve stimulation (LLVNS) in early stage of myocardial infarction (MI) could effectively prevent ventricular arrhythmias (VAs) and protect cardiac function, and explore the underlying mechanisms. Methods and Results: After undergoing implantable cardioverter defibrillators (ICD) and left cervical vagal stimulators implantation and MI creation, 16 dogs were randomly divided into three groups: the MI (n = 6), MI+LLVNS (n = 5), and sham operation (n = 5) groups. LLVNS was performed for 3 weeks. VAs, the left ventricular function, the density of the nerve fibers in the infarction area and gene expression profiles were analyzed. Compared with the MI group, dogs in the MI+LLVNS group had a lower VAs incidence (p < 0.05) and better left ventricular function. LLVNS significantly inhibited excessive sympathetic nerve sprouting with the evidences of decreased density of TH, GAP43 and NF positive nerves (p < 0.05). The gene expression profiling found a total of 206 genes differentially expressed between MI+LLVNS and MI dogs, mainly involved in cardiac tissue remodeling, cardiac neural remodeling, immune response and apoptosis. These genes, including 55 up-regulated genes and 151 down-regulated genes, showed more protective expressions under LLVNS. Conclusions: This study suggests that LLVNS was delivered without altering heart rate, contributing to reduced incidences of VAs and improved left ventricular function. The potential mechanisms included suppressing cardiac neuronal sprouting, inhibiting excessive sympathetic nerve sprouting and subduing pro-inflammatory responses by regulating gene expressions from a canine experimental study.
Collapse
Affiliation(s)
- Shuang Zhao
- State Key Laboratory of Cardiovascular Disease, Arrhythmia Center, National Center for Cardiovascular Diseases, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yan Dai
- State Key Laboratory of Cardiovascular Disease, Arrhythmia Center, National Center for Cardiovascular Diseases, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xiaohui Ning
- State Key Laboratory of Cardiovascular Disease, Arrhythmia Center, National Center for Cardiovascular Diseases, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Min Tang
- State Key Laboratory of Cardiovascular Disease, Arrhythmia Center, National Center for Cardiovascular Diseases, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yunzi Zhao
- State Key Laboratory of Cardiovascular Disease, Arrhythmia Center, National Center for Cardiovascular Diseases, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Zeyi Li
- State Key Laboratory of Cardiovascular Disease, Arrhythmia Center, National Center for Cardiovascular Diseases, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Shu Zhang
- State Key Laboratory of Cardiovascular Disease, Arrhythmia Center, National Center for Cardiovascular Diseases, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
47
|
Abdollahpur M, Holmqvist F, Platonov PG, Sandberg F. Respiratory Induced Modulation in f-Wave Characteristics During Atrial Fibrillation. Front Physiol 2021; 12:653492. [PMID: 33897462 PMCID: PMC8060635 DOI: 10.3389/fphys.2021.653492] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Accepted: 03/12/2021] [Indexed: 01/09/2023] Open
Abstract
The autonomic nervous system (ANS) is an important factor in cardiac arrhythmia, and information about ANS activity during atrial fibrillation (AF) may contribute to personalized treatment. In this study we aim to quantify respiratory modulation in the f-wave frequency trend from resting ECG. First, an f-wave signal is extracted from the ECG by QRST cancelation. Second, an f-wave model is fitted to the f-wave signal to obtain a high resolution f-wave frequency trend and an index for signal quality control ( S ). Third, respiratory modulation in the f-wave frequency trend is extracted by applying a narrow band-pass filter. The center frequency of the band-pass filter is determined by the respiration rate. Respiration rate is estimated from a surrogate respiration signal, obtained from the ECG using homomorphic filtering. Peak conditioned spectral averaging, where spectra of sufficient quality from different leads are averaged, is employed to obtain a robust estimate of the respiration rate. The envelope of the filtered f-wave frequency trend is used to quantify the magnitude of respiratory induced f-wave frequency modulation. The proposed methodology is evaluated using simulated f-wave signals obtained using a sinusoidal harmonic model. Results from simulated signals show that the magnitude of the respiratory modulation is accurately estimated, quantified by an error below 0.01 Hz, if the signal quality is sufficient ( S > 0 . 5 ). The proposed method was applied to analyze ECG data from eight pacemaker patients with permanent AF recorded at baseline, during controlled respiration, and during controlled respiration after injection of atropine, respectively. The magnitude of the respiratory induce f-wave frequency modulation was 0.15 ± 0.01, 0.18 ± 0.02, and 0.17 ± 0.03 Hz during baseline, controlled respiration, and post-atropine, respectively. Our results suggest that parasympathetic regulation affects the magnitude of respiratory induced f-wave frequency modulation.
Collapse
Affiliation(s)
| | - Fredrik Holmqvist
- Department of Cardiology, Clinical Sciences, Lund University, Lund, Sweden
| | - Pyotr G Platonov
- Department of Cardiology, Clinical Sciences, Lund University, Lund, Sweden
| | - Frida Sandberg
- Department of Biomedical Engineering, Lund University, Lund, Sweden
| |
Collapse
|
48
|
Kusayama T, Wan J, Yuan Y, Chen PS. Neural Mechanisms and Therapeutic Opportunities for Atrial Fibrillation. Methodist Debakey Cardiovasc J 2021; 17:43-47. [PMID: 34104319 DOI: 10.14797/fvdn2224] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Atrial fibrillation (AF) is the most common cardiac arrhythmia and is associated with an increased risk of all-cause mortality and complications. The autonomic nervous system (ANS) plays a central role in AF, with the heart regulated by both extrinsic and intrinsic properties. In the extrinsic ANS, the sympathetic fibers are derived from the major paravertebral ganglia, especially the stellate ganglion (SG), which is a source of cardiac sympathetic innervation since it connects with multiple intrathoracic nerves and structures. The major intrinsic ANS is a network of axons and ganglionated plexi that contains a variety of sympathetic and parasympathetic neurons, which communicate with the extrinsic ANS. Simultaneous sympathovagal activation contributes to the development of AF because it increases calcium entry and shortens the atrial action potential duration. In animal and human studies, neuromodulation methods such as electrical stimulation and renal denervation have indicated potential benefits in controlling AF in patients as they cause SG remodeling and reduce sympathetic outflow. This review focuses on the neural mechanisms relevant to AF and the recent developments of neuromodulation methods for AF control.
Collapse
Affiliation(s)
- Takashi Kusayama
- Indiana University School of Medicine, Indianapolis, Indiana.,Kanazawa University Graduate School of Medical Sciences, Ishikawa, Japan
| | - Juyi Wan
- Indiana University School of Medicine, Indianapolis, Indiana.,The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan Province, China
| | - Yuan Yuan
- Indiana University School of Medicine, Indianapolis, Indiana.,Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Peng-Sheng Chen
- Indiana University School of Medicine, Indianapolis, Indiana.,Cedars-Sinai Medical Center, Los Angeles, California
| |
Collapse
|
49
|
Effects and Mechanisms of Cutting Upper Thoracic Sympathetic Trunk on Ventricular Rate in Ambulatory Canines with Persistent Atrial Fibrillation. Cardiol Res Pract 2021; 2021:8869264. [PMID: 33623717 PMCID: PMC7872775 DOI: 10.1155/2021/8869264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 12/27/2020] [Accepted: 01/18/2021] [Indexed: 11/17/2022] Open
Abstract
Objective The purpose is to observe the effects and neural mechanism of cutting upper thoracic sympathetic trunk (TST) on the ventricular rate (VR) during persistent atrial fibrillation (AF). Methods Twelve beagle dogs were halving to the control group and experimental group, 6 dogs for each group. Both groups were performed with left atrial rapid pacing (600 beats/min) to induce sustained AF. The experimental group underwent cutting upper TST after a sustained AF model was established, while the control group received thoracotomy without cutting TST. Bilateral stellate ganglion (SG) and left atrial myocardium were harvested for tyrosine-hydroxylase (TH) immunohistochemical staining. Results After cutting upper TST for 30 minutes, the average VR was 121.5 ± 8.7 bpm (95% CI, 114.8 to 128.0) in the experimental group, which was significantly slower than that of the control group (144.5 ± 4.2 bpm (95% CI, 141.5 to 148.0)) (P < 0.001). After cutting upper TST for 1 month, the average VR of the experimental group (106.5 ± 4.9 bpm (95% CI, 102.0 to 110.0)) was also significantly slower versus that of the control group (139.2 ± 5.6 bpm (95% CI, 135.0 to 143.8)) (P < 0.001). Compared with the control group, both left stellate ganglion (LSG) and right stellate ganglion (RSG) of the experimental group caused neural remodeling characterized by decreased ganglionic cell density and reduced TH staining. TH-positive component was significantly decreased in the left atrium of the experimental group compared with the control group. Conclusions Cutting upper TST could reduce fast VR during persistent AF. Cutting upper TST induced bilateral SG neural remodeling and reduced sympathetic nerve density in the left atrium, which could contribute to the underlying mechanism of VR control during AF.
Collapse
|
50
|
Pfenniger A, Geist GE, Arora R. Autonomic Dysfunction and Neurohormonal Disorders in Atrial Fibrillation. Card Electrophysiol Clin 2021; 13:183-190. [PMID: 33516396 DOI: 10.1016/j.ccep.2020.11.012] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Atrial fibrillation (AF) is the most commonly diagnosed arrhythmia and eludes an efficacious cure despite an increasing prevalence and a significant association with morbidity and mortality. In addition to an array of clinical sequelae, the origins and propagation of AF are multifactorial. In recent years, the contribution from the autonomic nervous system has been an area of particular interest. This review highlights the relevant physiology of autonomic and neurohormonal contributions to AF origin and maintenance, the current state of the literature on targeted therapies, and the path forward for clinical interventions.
Collapse
Affiliation(s)
- Anna Pfenniger
- Feinberg Cardiovascular and Renal Research Institute, Northwestern University Feinberg School of Medicine, 251 East Huron, Feinberg 8-503, Chicago, IL 60611, USA
| | - Gail Elizabeth Geist
- Feinberg Cardiovascular and Renal Research Institute, Northwestern University Feinberg School of Medicine, 251 East Huron, Feinberg 8-503, Chicago, IL 60611, USA
| | - Rishi Arora
- Feinberg Cardiovascular and Renal Research Institute, Northwestern University Feinberg School of Medicine, 251 East Huron, Feinberg 8-503, Chicago, IL 60611, USA.
| |
Collapse
|