1
|
An Z, Sun Y, Yang X, Zhou J, Yu Y, Zhang B, Xu Z, Zhu Y, Wang G. Enhanced expression of miR-20a driven by nanog exacerbated the degradation of extracellular matrix in thoracic aortic dissection. Noncoding RNA Res 2024; 9:1040-1049. [PMID: 39022686 PMCID: PMC11254500 DOI: 10.1016/j.ncrna.2024.05.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 05/09/2024] [Accepted: 05/19/2024] [Indexed: 07/20/2024] Open
Abstract
Thoracic aortic dissection (TAD) is a life-threatening vascular disease manifested as intramural bleeding in the medial layers of the thoracic aorta. The key histopathologic feature of TAD is medial degeneration, characterized by depletion of vascular smooth muscle cells (VSMCs) and degradation of extracellular matrix (ECM). MicroRNA, as essential epigenetic regulators, can inhibit the protein expression of target genes without modifying the sequences. This study aimed to elucidate the role and underlying mechanism of miR-20a, a member of the miR-17-92 cluster, in regulating ECM degradation during the pathogenesis of TAD. The expression of the miR-17-92 cluster was significantly increased in synthetic VSMCs derived from TAD lesions compared to contractile VSMCs isolated from normal thoracic aortas. Notably, the expression of miR-20a was increased in VSMCs in response to serum exposure and various stimuli. In TAD lesions, the expression of miR-20a was significantly negatively correlated with that of elastin. Elevated expression of miR-20a was also observed in thoracic aortas of TAD mice induced by β-aminopropionitrile fumarate and angiotensin II. Overexpression of miR-20a via mimic transfection enhanced the growth and invasive capabilities of VSMCs, with no significant impact on their migratory activity or the expression of phenotypic markers (α-SMA, SM22, and OPN). Silencing of miR-20a with inhibitor transfection mitigated the hyperactivation of MMP2 in VSMCs stimulated by PDGF-bb, as evidenced by reduced levels of active-MMP2 and increased levels of pro-MMP2. Subsequently, TIMP2 was identified as a novel target gene of miR-20a. The role of miR-20a in promoting the activation of MMP2 was mediated by the suppression of TIMP2 expression in VSMCs. In addition, the elevated expression of miR-20a was found to be directly driven by Nanog in VSMCs. Collectively, these findings indicate that miR-20a plays a crucial role in maintaining the homeostasis of the thoracic aortic wall during TAD pathogenesis and may represent a potential therapeutic target for TAD.
Collapse
Affiliation(s)
- Zhao An
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
- Department of Cardiovascular Surgery, Changhai Hospital, Naval Medical University, Shanghai, 200433, China
| | - Yangyong Sun
- Department of Cardiovascular Surgery, Changhai Hospital, Naval Medical University, Shanghai, 200433, China
- Department of Cardiothoracic Surgery, Affiliated People's Hospital of Jiangsu University, Zhenjiang, China
| | - Xiaodong Yang
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Jingwen Zhou
- Department of Cardiovascular Surgery, Changhai Hospital, Naval Medical University, Shanghai, 200433, China
| | - Yongchao Yu
- Department of Cardiovascular Surgery, Changhai Hospital, Naval Medical University, Shanghai, 200433, China
| | - Boyao Zhang
- Department of Cardiovascular Surgery, Changhai Hospital, Naval Medical University, Shanghai, 200433, China
| | - Zhiyun Xu
- Department of Cardiovascular Surgery, Changhai Hospital, Naval Medical University, Shanghai, 200433, China
| | - Yuming Zhu
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Guokun Wang
- Department of Cardiovascular Surgery, Changhai Hospital, Naval Medical University, Shanghai, 200433, China
| |
Collapse
|
2
|
Snelders M, Yildirim M, Danser AHJ, van der Pluijm I, Essers J. The Extracellular Matrix and Cardiac Pressure Overload: Focus on Novel Treatment Targets. Cells 2024; 13:1685. [PMID: 39451203 PMCID: PMC11505996 DOI: 10.3390/cells13201685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 10/07/2024] [Accepted: 10/10/2024] [Indexed: 10/26/2024] Open
Abstract
Heart failure is a significant health issue in developed countries, often stemming from conditions like hypertension, which imposes a pressure overload on the heart. Despite various treatment strategies for heart failure, many lack long-term effectiveness. A critical aspect of cardiac disease is the remodeling of the heart, where compensatory changes in the extracellular matrix exacerbate disease progression. This review explores the processes and changes occurring in the pressure-overloaded heart with respect to the extracellular matrix. It further summarizes current treatment strategies, and then focuses on novel treatment targets for maladaptive cardiac remodeling, derived from transverse aortic constriction-induced pressure overload animal models.
Collapse
Affiliation(s)
- Matthijs Snelders
- Department of Molecular Genetics, Erasmus University Medical Center, 3015 GD Rotterdam, The Netherlands
| | - Meltem Yildirim
- Department of Molecular Genetics, Erasmus University Medical Center, 3015 GD Rotterdam, The Netherlands
| | - A. H. Jan Danser
- Division of Pharmacology, Department of Internal Medicine, Erasmus University Medical Center, 3015 GD Rotterdam, The Netherlands;
| | - Ingrid van der Pluijm
- Department of Molecular Genetics, Erasmus University Medical Center, 3015 GD Rotterdam, The Netherlands
- Department of Vascular Surgery, Cardiovascular Institute, Erasmus University Medical Center, 3015 GD Rotterdam, The Netherlands
| | - Jeroen Essers
- Department of Molecular Genetics, Erasmus University Medical Center, 3015 GD Rotterdam, The Netherlands
- Department of Vascular Surgery, Cardiovascular Institute, Erasmus University Medical Center, 3015 GD Rotterdam, The Netherlands
- Department of Radiotherapy, Erasmus University Medical Center, 3015 GD Rotterdam, The Netherlands
| |
Collapse
|
3
|
Jiang C, Tan M, Lai L, Wang Y, Chen Z, Xie Q, Li Y. Inhibiting glycosphingolipids alleviates cardiac hypertrophy by reducing reactive oxygen species and restoring autophagic homeostasis. Front Pharmacol 2024; 15:1409625. [PMID: 39411072 PMCID: PMC11474036 DOI: 10.3389/fphar.2024.1409625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Accepted: 09/20/2024] [Indexed: 10/19/2024] Open
Abstract
Introduction Cardiac hypertrophy is a compensatory stress response produced by a variety of factors, and pathologic hypertrophy can lead to irreversible, severe cardiac disease. Glycosphingolipids (GSLs) are vital constituents of cells, and changes in their content and composition are important factors causing mitochondrial dysfunction in diabetic cardiomyopathy; however, the relationship between GSLs expression and cardiac hypertrophy and specific mechanisms associated with it are not clear. Methods Here, using male C57BL/6 mice, we performed aortic arch reduction surgery to establish an animal model of pressure overload cardiac hypertrophy. In addition, phenylephrine was used in vitro to induce H9c2 cells and neonatal rat left ventricular myocytes (NRVMs) to establish a cellular hypertrophy model. Results Mass spectrometry revealed that the composition of GSLs was altered in pressure overload-induced hypertrophied mouse hearts and in stimulated hypertrophied cardiomyocyte cell lines. Specifically, in both cases, the proportion of endogenous lactosylceramide (LacCer) was significantly higher than in controls. Inhibition of GSL synthesis with Genz-123346 in NRVMs reduced cell hypertrophy, as well as fibrosis and apoptosis. By Western blotting, we detected decreased intracellular expression of Sirt3 and elevated phosphorylation of JNK after phenylephrine stimulation, but this was reversed in cells pretreated with Genz-123346. Additionally, increased protein expression of FoxO3a and Parkin, along with a decreased LC3-II/I protein ratio in phenylephrine-stimulated cells (compared with unstimulated cells), indicated that the mitochondrial autophagy process was disrupted; again, pretreatment with Genz-123346 reversed that. Discussion Our results revealed that changes in GSLs in cardiomyocytes, especially an increase of LacCer, may be a factor causing cellular hypertrophy, which can be alleviated by inhibition of GSLs synthesis. A possible mechanism is that GSLs inhibition increases the expression of Sirt3 protein, scavenges intracellular reactive oxygen species, and restores mitochondrial autophagy homeostasis, thereby lessening cardiomyocyte hypertrophy. In all, these results provide a new perspective for developing drugs for cardiac hypertrophy.
Collapse
Affiliation(s)
- Chunxin Jiang
- Jiangsu Key Laboratory of Infection and Immunity, Institutes of Biology and Medical Sciences, Suzhou Medical College of Soochow University, Soochow University, Suzhou, China
| | - Menglei Tan
- Jiangsu Key Laboratory of Infection and Immunity, Institutes of Biology and Medical Sciences, Suzhou Medical College of Soochow University, Soochow University, Suzhou, China
| | - Lunmeng Lai
- Jiangsu Key Laboratory of Infection and Immunity, Institutes of Biology and Medical Sciences, Suzhou Medical College of Soochow University, Soochow University, Suzhou, China
| | - Yanping Wang
- Jiangsu Key Laboratory of Infection and Immunity, Institutes of Biology and Medical Sciences, Suzhou Medical College of Soochow University, Soochow University, Suzhou, China
| | - Zijun Chen
- College of traditional Chinese medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Qing Xie
- Jiangsu Key Laboratory of Infection and Immunity, Institutes of Biology and Medical Sciences, Suzhou Medical College of Soochow University, Soochow University, Suzhou, China
| | - Yunsen Li
- Jiangsu Key Laboratory of Infection and Immunity, Institutes of Biology and Medical Sciences, Suzhou Medical College of Soochow University, Soochow University, Suzhou, China
| |
Collapse
|
4
|
Gentile A, Albu M, Xu Y, Mortazavi N, Ribeiro da Silva A, Stainier DYR, Gunawan F. Mechanical forces remodel the cardiac extracellular matrix during zebrafish development. Development 2024; 151:dev202310. [PMID: 38984541 PMCID: PMC11266798 DOI: 10.1242/dev.202310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 05/07/2024] [Indexed: 07/11/2024]
Abstract
The cardiac extracellular matrix (cECM) is fundamental for organ morphogenesis and maturation, during which time it undergoes remodeling, yet little is known about whether mechanical forces generated by the heartbeat regulate this remodeling process. Using zebrafish as a model and focusing on stages when cardiac valves and trabeculae form, we found that altering cardiac contraction impairs cECM remodeling. Longitudinal volumetric quantifications in wild-type animals revealed region-specific dynamics: cECM volume decreases in the atrium but not in the ventricle or atrioventricular canal. Reducing cardiac contraction resulted in opposite effects on the ventricular and atrial ECM, whereas increasing the heart rate affected the ventricular ECM but had no effect on the atrial ECM, together indicating that mechanical forces regulate the cECM in a chamber-specific manner. Among the ECM remodelers highly expressed during cardiac morphogenesis, we found one that was upregulated in non-contractile hearts, namely tissue inhibitor of matrix metalloproteinase 2 (timp2). Loss- and gain-of-function analyses of timp2 revealed its crucial role in cECM remodeling. Altogether, our results indicate that mechanical forces control cECM remodeling in part through timp2 downregulation.
Collapse
Affiliation(s)
- Alessandra Gentile
- Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, Bad Nauheim 61231, Germany
| | - Marga Albu
- Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, Bad Nauheim 61231, Germany
| | - Yanli Xu
- Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, Bad Nauheim 61231, Germany
| | - Newsha Mortazavi
- Institute of Cell Biology, Faculty of Medicine, University of Münster, Münster 48149, Germany
| | - Agatha Ribeiro da Silva
- Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, Bad Nauheim 61231, Germany
| | - Didier Y. R. Stainier
- Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, Bad Nauheim 61231, Germany
| | - Felix Gunawan
- Institute of Cell Biology, Faculty of Medicine, University of Münster, Münster 48149, Germany
| |
Collapse
|
5
|
Kopańko M, Zabłudowska M, Pawlak D, Sieklucka B, Krupa A, Sokołowska K, Ziemińska M, Pawlak K. The Possible Effect of β-Blocker Use on the Circulating MMP-2/TIMP-2 System in Patients with Chronic Kidney Disease on Conservative Treatment. J Clin Med 2024; 13:1847. [PMID: 38610612 PMCID: PMC11012263 DOI: 10.3390/jcm13071847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 03/16/2024] [Accepted: 03/21/2024] [Indexed: 04/14/2024] Open
Abstract
Background: The purpose of the study was to determine whether the use of β-adrenoceptor antagonists (β-blockers) can affect metalloproteinase 2 (MMP-2) and its tissue inhibitor (TIMP-2) in patients with chronic kidney disease (CKD) on conservative treatment. Methods: The circulating MMP-2/TIMP-2 system, proinflammatory cytokines (tumor necrosis factor-alpha (TNF-α) and interleukin-6 (IL-6), and the marker of oxidative stress-Cu/Zn superoxide dismutase (Cu/Zn SOD)-were measured in 23 CKD patients treated with β-blockers [β-blockers (+)] and in 27 CKD patients not receiving the above medication [β-blockers (-)]. Results: The levels of MMP-2, TIMP-2, and IL-6 were significantly lower in the β-blockers (+) than in the β-blockers (-) group, whereas Cu/Zn SOD concentrations were not affected by β-blocker use. There was a strong, independent association between MMP-2 and TIMP-2 in both analyzed patient groups. In the β-blockers (+) group, MMP-2 levels were indirectly related to the signs of inflammation, whereas in the β-blockers (-) group, the alterations in the MMP-2/TIMP-2 system were associated with the oxidative stress marker and CKD etiology. Conclusions: This study is the first to suggest that the use of β-blockers was associated with the reduction in IL-6 and the MMP-2/TIMP-2 system in CKD, providing a pharmacological rationale for the use of β-blockers to reduce inflammation and abnormal vascular remodeling in CKD.
Collapse
Affiliation(s)
- Magdalena Kopańko
- Department of Monitored Pharmacotherapy, Medical University of Bialystok, Mickiewicza 2C, 15-222 Bialystok, Poland; (M.K.); (M.Z.); (B.S.); (K.S.); (M.Z.)
| | - Magdalena Zabłudowska
- Department of Monitored Pharmacotherapy, Medical University of Bialystok, Mickiewicza 2C, 15-222 Bialystok, Poland; (M.K.); (M.Z.); (B.S.); (K.S.); (M.Z.)
| | - Dariusz Pawlak
- Department of Pharmacodynamics, Medical University of Bialystok, Mickiewicza 2C, 15-222 Bialystok, Poland;
| | - Beata Sieklucka
- Department of Monitored Pharmacotherapy, Medical University of Bialystok, Mickiewicza 2C, 15-222 Bialystok, Poland; (M.K.); (M.Z.); (B.S.); (K.S.); (M.Z.)
| | - Anna Krupa
- Department of Internal Medicine and Metabolic Diseases, Medical University of Bialystok, M. Sklodowskiej-Curie 24A, 15-276 Bialystok, Poland;
| | - Katarzyna Sokołowska
- Department of Monitored Pharmacotherapy, Medical University of Bialystok, Mickiewicza 2C, 15-222 Bialystok, Poland; (M.K.); (M.Z.); (B.S.); (K.S.); (M.Z.)
| | - Marta Ziemińska
- Department of Monitored Pharmacotherapy, Medical University of Bialystok, Mickiewicza 2C, 15-222 Bialystok, Poland; (M.K.); (M.Z.); (B.S.); (K.S.); (M.Z.)
| | - Krystyna Pawlak
- Department of Monitored Pharmacotherapy, Medical University of Bialystok, Mickiewicza 2C, 15-222 Bialystok, Poland; (M.K.); (M.Z.); (B.S.); (K.S.); (M.Z.)
| |
Collapse
|
6
|
Ferreira AC, Hemmer BM, Philippi SM, Grau-Perales AB, Rosenstadt JL, Liu H, Zhu JD, Kareva T, Ahfeldt T, Varghese M, Hof PR, Castellano JM. Neuronal TIMP2 regulates hippocampus-dependent plasticity and extracellular matrix complexity. Mol Psychiatry 2023; 28:3943-3954. [PMID: 37914840 PMCID: PMC10730400 DOI: 10.1038/s41380-023-02296-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 09/27/2023] [Accepted: 10/06/2023] [Indexed: 11/03/2023]
Abstract
Functional output of the hippocampus, a brain region subserving memory function, depends on highly orchestrated cellular and molecular processes that regulate synaptic plasticity throughout life. The structural requirements of such plasticity and molecular events involved in this regulation are poorly understood. Specific molecules, including tissue inhibitor of metalloproteinases-2 (TIMP2) have been implicated in plasticity processes in the hippocampus, a role that decreases with brain aging as expression is lost. Here, we report that TIMP2 is highly expressed by neurons within the hippocampus and its loss drives changes in cellular programs related to adult neurogenesis and dendritic spine turnover with corresponding impairments in hippocampus-dependent memory. Consistent with the accumulation of extracellular matrix (ECM) in the hippocampus we observe with aging, we find that TIMP2 acts to reduce accumulation of ECM around synapses in the hippocampus. Moreover, its deletion results in hindrance of newborn neuron migration through a denser ECM network. A novel conditional TIMP2 knockout (KO) model reveals that neuronal TIMP2 regulates adult neurogenesis, accumulation of ECM, and ultimately hippocampus-dependent memory. Our results define a mechanism whereby hippocampus-dependent function is regulated by TIMP2 and its interactions with the ECM to regulate diverse processes associated with synaptic plasticity.
Collapse
Affiliation(s)
- Ana Catarina Ferreira
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Ronald M. Loeb Center for Alzheimer's Disease, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Brittany M Hemmer
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Ronald M. Loeb Center for Alzheimer's Disease, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Sarah M Philippi
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Ronald M. Loeb Center for Alzheimer's Disease, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Alejandro B Grau-Perales
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Ronald M. Loeb Center for Alzheimer's Disease, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Jacob L Rosenstadt
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Ronald M. Loeb Center for Alzheimer's Disease, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Hanxiao Liu
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Ronald M. Loeb Center for Alzheimer's Disease, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Jeffrey D Zhu
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Ronald M. Loeb Center for Alzheimer's Disease, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Tatyana Kareva
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Ronald M. Loeb Center for Alzheimer's Disease, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Tim Ahfeldt
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Ronald M. Loeb Center for Alzheimer's Disease, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Merina Varghese
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Patrick R Hof
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Ronald M. Loeb Center for Alzheimer's Disease, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Joseph M Castellano
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Ronald M. Loeb Center for Alzheimer's Disease, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| |
Collapse
|
7
|
Hung MJ, Yeh CT, Kounis NG, Koniari I, Hu P, Hung MY. Coronary Artery Spasm-Related Heart Failure Syndrome: Literature Review. Int J Mol Sci 2023; 24:ijms24087530. [PMID: 37108691 PMCID: PMC10145866 DOI: 10.3390/ijms24087530] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Revised: 04/04/2023] [Accepted: 04/11/2023] [Indexed: 04/29/2023] Open
Abstract
Although heart failure (HF) is a clinical syndrome that becomes worse over time, certain cases can be reversed with appropriate treatments. While coronary artery spasm (CAS) is still underappreciated and may be misdiagnosed, ischemia due to coronary artery disease and CAS is becoming the single most frequent cause of HF worldwide. CAS could lead to syncope, HF, arrhythmias, and myocardial ischemic syndromes such as asymptomatic ischemia, rest and/or effort angina, myocardial infarction, and sudden death. Albeit the clinical significance of asymptomatic CAS has been undervalued, affected individuals compared with those with classic Heberden's angina pectoris are at higher risk of syncope, life-threatening arrhythmias, and sudden death. As a result, a prompt diagnosis implements appropriate treatment strategies, which have significant life-changing consequences to prevent CAS-related complications, such as HF. Although an accurate diagnosis depends mainly on coronary angiography and provocative testing, clinical characteristics may help decision-making. Because the majority of CAS-related HF (CASHF) patients present with less severe phenotypes than overt HF, it underscores the importance of understanding risk factors correlated with CAS to prevent the future burden of HF. This narrative literature review summarises and discusses separately the epidemiology, clinical features, pathophysiology, and management of patients with CASHF.
Collapse
Affiliation(s)
- Ming-Jui Hung
- Division of Cardiology, Department of Internal Medicine, Chang Gung Memorial Hospital Keelung, Chang Gung University College of Medicine, Keelung City 24201, Taiwan
| | - Chi-Tai Yeh
- Department of Medical Research and Education, Shuang Ho Hospital, Taipei Medical University, New Taipei City 23561, Taiwan
- Continuing Education Program of Food Biotechnology Applications, College of Science and Engineering, National Taitung University, Taitung 95092, Taiwan
| | - Nicholas G Kounis
- Department of Cardiology, University of Patras Medical School, 26221 Patras, Greece
| | - Ioanna Koniari
- Cardiology Department, Liverpool Heart and Chest Hospital, Liverpool L14 3PE, UK
| | - Patrick Hu
- Department of Internal Medicine, School of Medicine, University of California, Riverside, Riverside, CA 92521, USA
- Department of Cardiology, Riverside Medical Clinic, Riverside, CA 92506, USA
| | - Ming-Yow Hung
- Division of Cardiology, Department of Internal Medicine, Shuang Ho Hospital, Taipei Medical University, No.291, Zhongzheng Rd., Zhonghe District, New Taipei City 23561, Taiwan
- Taipei Heart Institute, Taipei Medical University, Taipei City 110301, Taiwan
- Division of Cardiology, Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, New Taipei City 23561, Taiwan
| |
Collapse
|
8
|
Huang P, Xu J, Xie L, Gao G, Chen S, Gong Z, Lao X, Shan Z, Shi J, Zhou Z, Chen Z, Cao Y, Wang Y, Chen Z. Improving hard metal implant and soft tissue integration by modulating the “inflammatory-fibrous complex” response. Bioact Mater 2023; 20:42-52. [PMID: 35633873 PMCID: PMC9127122 DOI: 10.1016/j.bioactmat.2022.05.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 04/23/2022] [Accepted: 05/08/2022] [Indexed: 11/29/2022] Open
|
9
|
Aujla PK, Hu M, Hartley B, Kranrod JW, Viveiros A, Kilic T, Owen CA, Oudit GY, Seubert JM, Julien O, Kassiri Z. Loss of ADAM15 Exacerbates Transition to Decompensated Myocardial Hypertrophy and Dilation Through Activation of the Calcineurin Pathway. Hypertension 2023; 80:97-110. [PMID: 36330793 DOI: 10.1161/hypertensionaha.122.19411] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
BACKGROUND Myocardial hypertrophy and dilation are key features of cardiomyopathies and involve several cellular and molecular events. ADAMs (a disintegrin and metalloproteinases) are membrane-bound proteinases with diverse functions whose role in heart disease remains underexplored. ADAM15 is expressed in the heart and is downregulated in the failing human heart. We investigated the role ADAM15 in pressure overload cardiomyopathy. METHODS We assessed ADAM15 levels in myocardial specimens from patients. Its direct role in pressure overload was investigated by subjecting wildtype and Adam15-deficient mice to transverse aortic constriction (TAC). RESULTS ADAM15 levels did not change in patients with concentric hypertrophy, but markedly decreased in eccentric hypertrophy and heart failure. Loss of ADAM15 alone did not cause cardiomyopathy in mice (1 year old). After TAC, Adam15-/- mice exhibited worsened eccentric hypertrophy and dilation with greater increase in hypertrophy markers (pJNK, pERK1/2; Nppb, Nppa, Myh7, Acta1) compared with wildtype-TAC. Expression of integrin-α7 (but not integrin β1) increased significantly more in Adam15-/--TAC hearts, while the interaction of these integrins with basement membrane (laminin), decreased consistent with worsened left ventricle dilation. In vitro, ADAM15 knockdown increased cardiomyocyte hypertrophy in response to mechanical stretch. Adam15-/--TAC hearts exhibited increased calcineurin activity and de-phosphorylation of nuclear factor of activated T cells. Calcineurin inhibition (cyclosporin-A) blocked the excess hypertrophy and dilation in Adam15-/--TAC mice. Proteome profiling demonstrated the increased abundance of the key proteins linked to worsened DCM in Adam15-/--TAC. CONCLUSION This is the first report demonstrating that ADAM15 can suppress hypertrophy through regulating the integrin-laminin interaction and the calcineurin pathway.
Collapse
Affiliation(s)
- Preetinder K Aujla
- Department of Physiology, Cardiovascular Research Center, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada (P.K.A., M.H., A.V., T.K., G.Y.O., Z.K.)
| | - Mei Hu
- Department of Physiology, Cardiovascular Research Center, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada (P.K.A., M.H., A.V., T.K., G.Y.O., Z.K.)
| | - Bridgette Hartley
- Department of Biochemistry, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada (B.H., O.J.)
| | - Joshua W Kranrod
- Department of Pharmacology, Faculty of Medicine and Dentistry; Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Canada (J.W.K., J.M.S.)
| | - Anissa Viveiros
- Department of Physiology, Cardiovascular Research Center, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada (P.K.A., M.H., A.V., T.K., G.Y.O., Z.K.)
| | - Tolga Kilic
- Department of Physiology, Cardiovascular Research Center, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada (P.K.A., M.H., A.V., T.K., G.Y.O., Z.K.)
| | - Caroline A Owen
- Brigham and Women's Hospital/Harvard Medical School, Boston, MA (C.A.O.)
| | - Gavin Y Oudit
- Department of Physiology, Cardiovascular Research Center, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada (P.K.A., M.H., A.V., T.K., G.Y.O., Z.K.).,Department of Medicine, Cardiovascular Research Center, Division of Cardiology, Mazankowski Alberta Heart Institute, Edmonton, AB, Canada (G.Y.O.)
| | - John M Seubert
- Department of Pharmacology, Faculty of Medicine and Dentistry; Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Canada (J.W.K., J.M.S.)
| | - Olivier Julien
- Department of Biochemistry, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada (B.H., O.J.)
| | - Zamaneh Kassiri
- Department of Physiology, Cardiovascular Research Center, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada (P.K.A., M.H., A.V., T.K., G.Y.O., Z.K.)
| |
Collapse
|
10
|
Sarohi V, Chakraborty S, Basak T. Exploring the cardiac ECM during fibrosis: A new era with next-gen proteomics. Front Mol Biosci 2022; 9:1030226. [PMID: 36483540 PMCID: PMC9722982 DOI: 10.3389/fmolb.2022.1030226] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Accepted: 10/31/2022] [Indexed: 10/24/2023] Open
Abstract
Extracellular matrix (ECM) plays a critical role in maintaining elasticity in cardiac tissues. Elasticity is required in the heart for properly pumping blood to the whole body. Dysregulated ECM remodeling causes fibrosis in the cardiac tissues. Cardiac fibrosis leads to stiffness in the heart tissues, resulting in heart failure. During cardiac fibrosis, ECM proteins get excessively deposited in the cardiac tissues. In the ECM, cardiac fibroblast proliferates into myofibroblast upon various kinds of stimulations. Fibroblast activation (myofibroblast) contributes majorly toward cardiac fibrosis. Other than cardiac fibroblasts, cardiomyocytes, epithelial/endothelial cells, and immune system cells can also contribute to cardiac fibrosis. Alteration in the expression of the ECM core and ECM-modifier proteins causes different types of cardiac fibrosis. These different components of ECM culminated into different pathways inducing transdifferentiation of cardiac fibroblast into myofibroblast. In this review, we summarize the role of different ECM components during cardiac fibrosis progression leading to heart failure. Furthermore, we highlight the importance of applying mass-spectrometry-based proteomics to understand the key changes occurring in the ECM during fibrotic progression. Next-gen proteomics studies will broaden the potential to identify key targets to combat cardiac fibrosis in order to achieve precise medicine-development in the future.
Collapse
Affiliation(s)
- Vivek Sarohi
- School of Biosciences and Bioengineering, Indian Institute of Technology (IIT)- Mandi, Himachal Pradesh, India
- BioX Center, Indian Institute of Technology (IIT)- Mandi, Himachal Pradesh, India
| | - Sanchari Chakraborty
- School of Biosciences and Bioengineering, Indian Institute of Technology (IIT)- Mandi, Himachal Pradesh, India
- BioX Center, Indian Institute of Technology (IIT)- Mandi, Himachal Pradesh, India
| | - Trayambak Basak
- School of Biosciences and Bioengineering, Indian Institute of Technology (IIT)- Mandi, Himachal Pradesh, India
- BioX Center, Indian Institute of Technology (IIT)- Mandi, Himachal Pradesh, India
| |
Collapse
|
11
|
Fan D, Kassiri Z. Modulation of Cardiac Fibrosis in and Beyond Cells. Front Mol Biosci 2021; 8:750626. [PMID: 34778374 PMCID: PMC8578679 DOI: 10.3389/fmolb.2021.750626] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 10/13/2021] [Indexed: 11/13/2022] Open
Abstract
The extracellular matrix (ECM) plays important roles in maintaining physiological structure and functions of various tissues and organs. Cardiac fibrosis is the excess deposition of ECM, including both fibrillar (collagens I and III) and non-fibrillar proteins. Characteristics of fibrosis can vary depending on the pathology, with focal fibrosis occurring following myocardial infarction (MI), and diffuse interstitial and perivascular fibrosis mainly in non-ischemic heart diseases. Compliance of the fibrotic tissue is significantly lower than the normal myocardium, and this can compromise the diastolic, as well as systolic dysfunction. Therefore, strategies to combat cardiac fibrosis have been investigated. Upon injury or inflammation, activated cardiac fibroblasts (myofibroblasts) produce more ECM proteins and cause fibrosis. The activation could be inhibited or the myofibroblasts could be ablated by targeting their specific expressed proteins. Modulation of tissue inhibitors of metalloproteinases (TIMPs) and moderate exercise can also suppress cardiac fibrosis. More recently, sex differences in cardiac fibrosis have come to light with differential fibrotic response in heart diseases as well as in fibroblast functions in vitro. This mini-review discusses recent progress in cardiac fibroblasts, TIMPs, sex differences and exercise in modulation of cardiac fibrosis.
Collapse
Affiliation(s)
- Dong Fan
- Department of Pathology, Zhuhai Campus of Zunyi Medical University, Zhuhai, China
| | - Zamaneh Kassiri
- Department of Physiology, Cardiovascular Research Center, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
12
|
Tan W, Li X, Zheng S, Li X, Zhang X, Pyle WG, Chen H, Wu J, Sun H, Zou Y, Backx PH, Yang FH. A Porcine Model of Heart Failure With Preserved Ejection Fraction Induced by Chronic Pressure Overload Characterized by Cardiac Fibrosis and Remodeling. Front Cardiovasc Med 2021; 8:677727. [PMID: 34150870 PMCID: PMC8206269 DOI: 10.3389/fcvm.2021.677727] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Accepted: 05/10/2021] [Indexed: 12/17/2022] Open
Abstract
Heart failure is induced by multiple pathological mechanisms, and current therapies are ineffective against heart failure with preserved ejection fraction (HFpEF). As there are limited animal models of HFpEF, its underlying mechanisms have not yet been elucidated. Here, we employed the descending aortic constriction (DAC) technique to induce chronic pressure overload in the left ventricles of Tibetan minipigs for 12 weeks. Cardiac function, pathological and cellular changes, fibrotic signaling activation, and gene expression profiles were explored. The left ventricles developed concentric hypertrophy from weeks 4 to 6 and transition to dilation starting in week 10. Notably, the left ventricular ejection fraction was maintained at >50% in the DAC group during the 12-week period. Pathological examination, biochemical analyses, and gene profile analysis revealed evidence of inflammation, fibrosis, cell death, and myofilament dephosphorylation in the myocardium of HFpEF model animals, together with gene expression shifts promoting cardiac remodeling and downregulating metabolic pathways. Furthermore, we noted the activation of several signaling proteins that impact cardiac fibrosis and remodeling, including transforming growth factor-β/SMAD family members 2/3, type I/III/V collagens, phosphatidylinositol 3-kinase, extracellular signal-regulated kinase, matrix metalloproteinases 2 and 9, tissue inhibitor of metalloproteinases 1 and 2, interleukins 6 and 1β, and inhibitor of κBα/nuclear factor-κB. Our findings demonstrate that this chronic pressure overload-induced porcine HFpEF model is a powerful tool to elucidate the mechanisms of this disease and translate preclinical findings.
Collapse
Affiliation(s)
- Weijiang Tan
- Guangdong Provincial Key Laboratory of Laboratory Animals, Guangdong Laboratory Animals Monitoring Institute, Guangzhou, China
| | - Xiang Li
- Guangdong Provincial Key Laboratory of Laboratory Animals, Guangdong Laboratory Animals Monitoring Institute, Guangzhou, China
| | - Shuang Zheng
- Guangdong Provincial Key Laboratory of Laboratory Animals, Guangdong Laboratory Animals Monitoring Institute, Guangzhou, China
| | - Xiaohui Li
- Department of Cardiovascular Surgery, The First Affiliated Hospital, Jinan University, Guangzhou, China
| | - Xiaoshen Zhang
- Department of Cardiovascular Surgery, The First Affiliated Hospital, Jinan University, Guangzhou, China
| | - W. Glen Pyle
- Department of Biomedical Sciences, University of Guelph, Guelph, ON, Canada
| | - Honghua Chen
- Guangdong Provincial Key Laboratory of Laboratory Animals, Guangdong Laboratory Animals Monitoring Institute, Guangzhou, China
| | - Jian Wu
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital and Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Huan Sun
- Cardiology Department, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Yunzeng Zou
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital and Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Peter H. Backx
- Department of Biology, York University, Toronto, ON, Canada
- Department of Physiology, University of Toronto, Toronto, ON, Canada
| | - Feng Hua Yang
- Guangdong Provincial Key Laboratory of Laboratory Animals, Guangdong Laboratory Animals Monitoring Institute, Guangzhou, China
- Department of Cardiovascular Surgery, The First Affiliated Hospital, Jinan University, Guangzhou, China
| |
Collapse
|
13
|
Liu D, Liu F, Li Z, Pan S, Xie J, Zhao Z, Liu Z, Zhang J, Liu Z. HNRNPA1-mediated exosomal sorting of miR-483-5p out of renal tubular epithelial cells promotes the progression of diabetic nephropathy-induced renal interstitial fibrosis. Cell Death Dis 2021; 12:255. [PMID: 33692334 PMCID: PMC7946926 DOI: 10.1038/s41419-021-03460-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Revised: 01/19/2021] [Accepted: 01/21/2021] [Indexed: 02/07/2023]
Abstract
Diabetic nephropathy (DN) is a serious complication in type 1 and type 2 diabetes, and renal interstitial fibrosis plays a key role in DN progression. Here, we aimed to probe into the role and potential mechanism of miR-483-5p in DN-induced renal interstitial fibrosis. In this study, we corroborated that miR-483-5p expression was lessened in type 1 and type 2 diabetic mice kidney tissues and high glucose (HG)-stimulated tubular epithelial cells (TECs), and raised in the exosomes derived from renal tissues in type 1 and type 2 diabetic mice. miR-483-5p restrained the expressions of fibrosis-related genes in vitro and renal interstitial fibrosis in vivo. Mechanistically, miR-483-5p bound both TIMP2 and MAPK1, and TIMP2 and MAPK1 were bound up with the regulation of miR-483-5p on renal TECs under HG conditions. Importantly, HNRNPA1-mediated exosomal sorting transported cellular miR-483-5p out of TECs into the urine. Our results expounded that HNRNPA1-mediated exosomal sorting transported cellular miR-483-5p out of TECs into the urine, thus lessening the restraint of cellular miR-483-5p on MAPK1 and TIMP2 mRNAs, and ultimately boosting extracellular matrix deposition and the progression of DN-induced renal interstitial fibrosis.
Collapse
Affiliation(s)
- DongWei Liu
- Department of Nephrology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, PR China
- Research Institute of Nephrology, Zhengzhou University, Zhengzhou, 450052, PR China
- Research Center for Kidney Disease, Zhengzhou, Henan, 450052, PR China
- Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou, 450052, PR China
- Core Unit of National Clinical Medical Research Center of Kidney Disease, Zhengzhou, 450052, PR China
| | - FengXun Liu
- Department of Nephrology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, PR China
- Research Institute of Nephrology, Zhengzhou University, Zhengzhou, 450052, PR China
- Research Center for Kidney Disease, Zhengzhou, Henan, 450052, PR China
- Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou, 450052, PR China
- Core Unit of National Clinical Medical Research Center of Kidney Disease, Zhengzhou, 450052, PR China
| | - ZhengYong Li
- Department of Nephrology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, PR China
- Research Institute of Nephrology, Zhengzhou University, Zhengzhou, 450052, PR China
- Research Center for Kidney Disease, Zhengzhou, Henan, 450052, PR China
- Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou, 450052, PR China
- Core Unit of National Clinical Medical Research Center of Kidney Disease, Zhengzhou, 450052, PR China
| | - ShaoKang Pan
- Department of Nephrology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, PR China
- Research Institute of Nephrology, Zhengzhou University, Zhengzhou, 450052, PR China
- Research Center for Kidney Disease, Zhengzhou, Henan, 450052, PR China
- Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou, 450052, PR China
- Core Unit of National Clinical Medical Research Center of Kidney Disease, Zhengzhou, 450052, PR China
| | - JunWei Xie
- Department of Nephrology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, PR China
- Research Institute of Nephrology, Zhengzhou University, Zhengzhou, 450052, PR China
- Research Center for Kidney Disease, Zhengzhou, Henan, 450052, PR China
- Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou, 450052, PR China
- Core Unit of National Clinical Medical Research Center of Kidney Disease, Zhengzhou, 450052, PR China
| | - ZiHao Zhao
- Department of Nephrology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, PR China
- Research Institute of Nephrology, Zhengzhou University, Zhengzhou, 450052, PR China
- Research Center for Kidney Disease, Zhengzhou, Henan, 450052, PR China
- Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou, 450052, PR China
- Core Unit of National Clinical Medical Research Center of Kidney Disease, Zhengzhou, 450052, PR China
| | - ZhenJie Liu
- Department of Nephrology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, PR China
- Research Institute of Nephrology, Zhengzhou University, Zhengzhou, 450052, PR China
- Research Center for Kidney Disease, Zhengzhou, Henan, 450052, PR China
- Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou, 450052, PR China
- Core Unit of National Clinical Medical Research Center of Kidney Disease, Zhengzhou, 450052, PR China
| | - JiaHui Zhang
- Department of Nephrology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, PR China
- Research Institute of Nephrology, Zhengzhou University, Zhengzhou, 450052, PR China
- Research Center for Kidney Disease, Zhengzhou, Henan, 450052, PR China
- Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou, 450052, PR China
- Core Unit of National Clinical Medical Research Center of Kidney Disease, Zhengzhou, 450052, PR China
| | - ZhangSuo Liu
- Department of Nephrology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, PR China.
- Research Institute of Nephrology, Zhengzhou University, Zhengzhou, 450052, PR China.
- Research Center for Kidney Disease, Zhengzhou, Henan, 450052, PR China.
- Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou, 450052, PR China.
- Core Unit of National Clinical Medical Research Center of Kidney Disease, Zhengzhou, 450052, PR China.
| |
Collapse
|
14
|
Iop L. Toward the Effective Bioengineering of a Pathological Tissue for Cardiovascular Disease Modeling: Old Strategies and New Frontiers for Prevention, Diagnosis, and Therapy. Front Cardiovasc Med 2021; 7:591583. [PMID: 33748193 PMCID: PMC7969521 DOI: 10.3389/fcvm.2020.591583] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Accepted: 12/08/2020] [Indexed: 12/18/2022] Open
Abstract
Cardiovascular diseases (CVDs) still represent the primary cause of mortality worldwide. Preclinical modeling by recapitulating human pathophysiology is fundamental to advance the comprehension of these diseases and propose effective strategies for their prevention, diagnosis, and treatment. In silico, in vivo, and in vitro models have been applied to dissect many cardiovascular pathologies. Computational and bioinformatic simulations allow developing algorithmic disease models considering all known variables and severity degrees of disease. In vivo studies based on small or large animals have a long tradition and largely contribute to the current treatment and management of CVDs. In vitro investigation with two-dimensional cell culture demonstrates its suitability to analyze the behavior of single, diseased cellular types. The introduction of induced pluripotent stem cell technology and the application of bioengineering principles raised the bar toward in vitro three-dimensional modeling by enabling the development of pathological tissue equivalents. This review article intends to describe the advantages and disadvantages of past and present modeling approaches applied to provide insights on some of the most relevant congenital and acquired CVDs, such as rhythm disturbances, bicuspid aortic valve, cardiac infections and autoimmunity, cardiovascular fibrosis, atherosclerosis, and calcific aortic valve stenosis.
Collapse
Affiliation(s)
- Laura Iop
- Department of Cardiac Thoracic Vascular Sciences, and Public Health, University of Padua Medical School, Padua, Italy
| |
Collapse
|
15
|
Zhang H, Viveiros A, Nikhanj A, Nguyen Q, Wang K, Wang W, Freed DH, Mullen JC, MacArthur R, Kim DH, Tymchak W, Sergi CM, Kassiri Z, Wang S, Oudit GY. The Human Explanted Heart Program: A translational bridge for cardiovascular medicine. Biochim Biophys Acta Mol Basis Dis 2021; 1867:165995. [PMID: 33141063 PMCID: PMC7581399 DOI: 10.1016/j.bbadis.2020.165995] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 10/12/2020] [Accepted: 10/15/2020] [Indexed: 12/17/2022]
Abstract
The progression of cardiovascular research is often impeded by the lack of reliable disease models that fully recapitulate the pathogenesis in humans. These limitations apply to both in vitro models such as cell-based cultures and in vivo animal models which invariably are limited to simulate the complexity of cardiovascular disease in humans. Implementing human heart tissue in cardiovascular research complements our research strategy using preclinical models. We established the Human Explanted Heart Program (HELP) which integrates clinical, tissue and molecular phenotyping thereby providing a comprehensive evaluation into human heart disease. Our collection and storage of biospecimens allow them to retain key pathogenic findings while providing novel insights into human heart failure. The use of human non-failing control explanted hearts provides a valuable comparison group for the diseased explanted hearts. Using HELP we have been able to create a tissue repository which have been used for genetic, molecular, cellular, and histological studies. This review describes the process of collection and use of explanted human heart specimens encompassing a spectrum of pediatric and adult heart diseases, while highlighting the role of these invaluable specimens in translational research. Furthermore, we highlight the efficient procurement and bio-preservation approaches ensuring analytical quality of heart specimens acquired in the context of heart donation and transplantation.
Collapse
Affiliation(s)
- Hao Zhang
- Division of Cardiology, Department of Medicine, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada; Mazankowski Alberta Heart Institute, University of Alberta, Edmonton, Alberta, Canada
| | - Anissa Viveiros
- Mazankowski Alberta Heart Institute, University of Alberta, Edmonton, Alberta, Canada; Department of Physiology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - Anish Nikhanj
- Division of Cardiology, Department of Medicine, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada; Mazankowski Alberta Heart Institute, University of Alberta, Edmonton, Alberta, Canada
| | - Quynh Nguyen
- Division of Cardiology, Department of Medicine, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada; Mazankowski Alberta Heart Institute, University of Alberta, Edmonton, Alberta, Canada
| | - Kaiming Wang
- Division of Cardiology, Department of Medicine, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada; Mazankowski Alberta Heart Institute, University of Alberta, Edmonton, Alberta, Canada
| | - Wei Wang
- Mazankowski Alberta Heart Institute, University of Alberta, Edmonton, Alberta, Canada; Division of Cardiac Surgery, Department of Surgery, Faculty of Medicine & Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - Darren H Freed
- Mazankowski Alberta Heart Institute, University of Alberta, Edmonton, Alberta, Canada; Division of Cardiac Surgery, Department of Surgery, Faculty of Medicine & Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - John C Mullen
- Mazankowski Alberta Heart Institute, University of Alberta, Edmonton, Alberta, Canada; Division of Cardiac Surgery, Department of Surgery, Faculty of Medicine & Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - Roderick MacArthur
- Mazankowski Alberta Heart Institute, University of Alberta, Edmonton, Alberta, Canada; Division of Cardiac Surgery, Department of Surgery, Faculty of Medicine & Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - Daniel H Kim
- Division of Cardiology, Department of Medicine, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada; Mazankowski Alberta Heart Institute, University of Alberta, Edmonton, Alberta, Canada
| | - Wayne Tymchak
- Division of Cardiology, Department of Medicine, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada; Mazankowski Alberta Heart Institute, University of Alberta, Edmonton, Alberta, Canada
| | - Consolato M Sergi
- Mazankowski Alberta Heart Institute, University of Alberta, Edmonton, Alberta, Canada; Division of Anatomical Pathology, Department of Laboratory Medicine & Pathology, Faculty of Medicine & Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - Zamaneh Kassiri
- Mazankowski Alberta Heart Institute, University of Alberta, Edmonton, Alberta, Canada; Department of Physiology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - Shaohua Wang
- Mazankowski Alberta Heart Institute, University of Alberta, Edmonton, Alberta, Canada; Division of Cardiac Surgery, Department of Surgery, Faculty of Medicine & Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - Gavin Y Oudit
- Division of Cardiology, Department of Medicine, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada; Mazankowski Alberta Heart Institute, University of Alberta, Edmonton, Alberta, Canada.
| |
Collapse
|
16
|
Oh Y, Yang S, Liu X, Jana S, Izaddoustdar F, Gao X, Debi R, Kim DK, Kim KH, Yang P, Kassiri Z, Lakin R, Backx PH. Transcriptomic Bioinformatic Analyses of Atria Uncover Involvement of Pathways Related to Strain and Post-translational Modification of Collagen in Increased Atrial Fibrillation Vulnerability in Intensely Exercised Mice. Front Physiol 2020; 11:605671. [PMID: 33424629 PMCID: PMC7793719 DOI: 10.3389/fphys.2020.605671] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2020] [Accepted: 11/26/2020] [Indexed: 02/06/2023] Open
Abstract
Atrial Fibrillation (AF) is the most common supraventricular tachyarrhythmia that is typically associated with cardiovascular disease (CVD) and poor cardiovascular health. Paradoxically, endurance athletes are also at risk for AF. While it is well-established that persistent AF is associated with atrial fibrosis, hypertrophy and inflammation, intensely exercised mice showed similar adverse atrial changes and increased AF vulnerability, which required tumor necrosis factor (TNF) signaling, even though ventricular structure and function improved. To identify some of the molecular factors underlying the chamber-specific and TNF-dependent atrial changes induced by exercise, we performed transcriptome analyses of hearts from wild-type and TNF-knockout mice following exercise for 2 days, 2 or 6 weeks of exercise. Consistent with the central role of atrial stretch arising from elevated venous pressure in AF promotion, all 3 time points were associated with differential regulation of genes in atria linked to mechanosensing (focal adhesion kinase, integrins and cell-cell communications), extracellular matrix (ECM) and TNF pathways, with TNF appearing to play a permissive, rather than causal, role in gene changes. Importantly, mechanosensing/ECM genes were only enriched, along with tubulin- and hypertrophy-related genes after 2 days of exercise while being downregulated at 2 and 6 weeks, suggesting that early reactive strain-dependent remodeling with exercise yields to compensatory adjustments. Moreover, at the later time points, there was also downregulation of both collagen genes and genes involved in collagen turnover, a pattern mirroring aging-related fibrosis. By comparison, twofold fewer genes were differentially regulated in ventricles vs. atria, independently of TNF. Our findings reveal that exercise promotes TNF-dependent atrial transcriptome remodeling of ECM/mechanosensing pathways, consistent with increased preload and atrial stretch seen with exercise. We propose that similar preload-dependent mechanisms are responsible for atrial changes and AF in both CVD patients and athletes.
Collapse
Affiliation(s)
- Yena Oh
- Department of Biology, York University, Toronto, ON, Canada.,Department of Physiology, University of Toronto, Toronto, ON, Canada.,Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada.,University of Ottawa Heart Institute, Ottawa, ON, Canada
| | - Sibao Yang
- Department of Biology, York University, Toronto, ON, Canada.,Department of Cardiology, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Xueyan Liu
- Department of Biology, York University, Toronto, ON, Canada.,Department of Cardiology, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Sayantan Jana
- Department of Physiology, Cardiovascular Research Center, University of Alberta, Edmonton, AB, Canada
| | | | - Xiaodong Gao
- Department of Biology, York University, Toronto, ON, Canada
| | - Ryan Debi
- Department of Biology, York University, Toronto, ON, Canada
| | - Dae-Kyum Kim
- Donnelly Centre, University of Toronto, Toronto, ON, Canada.,Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, ON, Canada
| | - Kyoung-Han Kim
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada.,University of Ottawa Heart Institute, Ottawa, ON, Canada
| | - Ping Yang
- Department of Cardiology, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Zamaneh Kassiri
- Department of Physiology, Cardiovascular Research Center, University of Alberta, Edmonton, AB, Canada
| | - Robert Lakin
- Department of Biology, York University, Toronto, ON, Canada
| | - Peter H Backx
- Department of Biology, York University, Toronto, ON, Canada.,Department of Physiology, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
17
|
Girão H. A new predictive marker of ventricular remodeling associated with aortic stenosis. Rev Port Cardiol 2020; 39:389-390. [PMID: 32680653 DOI: 10.1016/j.repc.2020.06.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
Affiliation(s)
- Henrique Girão
- Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, University of Coimbra, Coimbra, Portugal; Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, Portugal; Clinical Academic Centre of Coimbra, CACC, Coimbra, Portugal.
| |
Collapse
|
18
|
Girão H. A new predictive marker of ventricular remodeling associated with aortic stenosis. REVISTA PORTUGUESA DE CARDIOLOGIA (ENGLISH EDITION) 2020. [DOI: 10.1016/j.repce.2020.11.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|
19
|
Abstract
Vascular smooth muscle cells (VSMCs) shift from a physiological contractile phenotype to an adverse proliferative or synthetic state, which is a major event leading to aortic disease. VSMCs are exposed to multiple mechanical signals from their microenvironment including vascular extracellular matrix (ECM) stiffness and stretch which regulate VSMC contraction. How ECM stiffness regulates the function and phenotype of VSMCs is not well understood. In this study, we introduce in vitro and in vivo models to evaluate the impact of ECM stiffnesses on VSMC function. Through unbiased transcriptome sequencing analysis, we detected upregulation of synthetic phenotype-related genes including osteopontin, matrix metalloproteinases, and inflammatory cytokines in VSMCs cultured using soft matrix hydrogels in vitro, suggesting VSMC dedifferentiation toward a synthetic phenotype upon ECM softening. For the in vivo model, the lysyl oxidase inhibitor β-aminopropionitrile monofumarate (BAPN) was administrated to disrupt the cross-linking of collagen to induce ECM softening. Consistently, decreased ECM stiffnesses promoted VSMC phenotypic switching to a synthetic phenotype as evidenced by upregulation of synthetic phenotype-related genes in the aortas of mice following BAPN treatment. Finally, BAPN-treated mice showed severe expansion and developed aortic dissection. Our study reveals the pivotal role of ECM softening in regulating the VSMC phenotype switch and provides a potential target for treating VSMC dysfunction and aortic dissection disease.
Collapse
|
20
|
Turner D, Rieger AC, Balkan W, Hare JM. Clinical-based Cell Therapies for Heart Disease-Current and Future State. Rambam Maimonides Med J 2020; 11:RMMJ.10401. [PMID: 32374254 PMCID: PMC7202446 DOI: 10.5041/rmmj.10401] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Patients have an ongoing unmet need for effective therapies that reverse the cellular and functional damage associated with heart damage and disease. The discovery that ~1%-2% of adult cardiomyocytes turn over per year provided the impetus for treatments that stimulate endogenous repair mechanisms that augment this rate. Preclinical and clinical studies provide evidence that cell-based therapy meets these therapeutic criteria. Recent and ongoing studies are focused on determining which cell type(s) works best for specific patient population(s) and the mechanism(s) by which these cells promote repair. Here we review clinical and preclinical stem cell studies and anticipate future directions of regenerative medicine for heart disease.
Collapse
Affiliation(s)
- Darren Turner
- Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Angela C. Rieger
- Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Wayne Balkan
- Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, Miami, Florida, USA
- Department of Medicine, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Joshua M. Hare
- Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, Miami, Florida, USA
- Department of Medicine, University of Miami Miller School of Medicine, Miami, Florida, USA
- To whom correspondence should be addressed. E-mail:
| |
Collapse
|
21
|
Russo I, Cavalera M, Huang S, Su Y, Hanna A, Chen B, Shinde AV, Conway SJ, Graff J, Frangogiannis NG. Protective Effects of Activated Myofibroblasts in the Pressure-Overloaded Myocardium Are Mediated Through Smad-Dependent Activation of a Matrix-Preserving Program. Circ Res 2020; 124:1214-1227. [PMID: 30686120 DOI: 10.1161/circresaha.118.314438] [Citation(s) in RCA: 94] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
RATIONALE The heart contains abundant interstitial and perivascular fibroblasts. Traditional views suggest that, under conditions of mechanical stress, cytokines, growth factors, and neurohumoral mediators stimulate fibroblast activation, inducing ECM (extracellular matrix) protein synthesis and promoting fibrosis and diastolic dysfunction. Members of the TGF (transforming growth factor)-β family are upregulated and activated in the remodeling myocardium and modulate phenotype and function of all myocardial cell types through activation of intracellular effector molecules, the Smads (small mothers against decapentaplegic), and through Smad-independent pathways. OBJECTIVES To examine the role of fibroblast-specific TGF-β/Smad3 signaling in the remodeling pressure-overloaded myocardium. METHODS AND RESULTS We examined the effects of cell-specific Smad3 loss in activated periostin-expressing myofibroblasts using a mouse model of cardiac pressure overload, induced through transverse aortic constriction. Surprisingly, FS3KO (myofibroblast-specific Smad3 knockout) mice exhibited accelerated systolic dysfunction after pressure overload, evidenced by an early 40% reduction in ejection fraction after 7 days of transverse aortic constriction. Accelerated systolic dysfunction in pressure-overloaded FS3KO mice was associated with accentuated matrix degradation and generation of collagen-derived matrikines, accompanied by cardiomyocyte myofibrillar loss and apoptosis, and by enhanced macrophage-driven inflammation. In vitro, TGF-β1, TGF-β2, and TGF-β3 stimulated a Smad3-dependent matrix-preserving phenotype in cardiac fibroblasts, suppressing MMP (matrix metalloproteinase)-3 and MMP-8 synthesis and inducing TIMP (tissue inhibitor of metalloproteinases)-1. In vivo, administration of an MMP-8 inhibitor attenuated early systolic dysfunction in pressure-overloaded FS3KO mice, suggesting that the protective effects of activated cardiac myofibroblasts in the pressure-overloaded myocardium are, at least in part, because of suppression of MMPs and activation of a matrix-preserving program. MMP-8 stimulation induces a proinflammatory phenotype in isolated macrophages. CONCLUSIONS In the pressure-overloaded myocardium, TGF-β/Smad3-activated cardiac fibroblasts play an important protective role, preserving the ECM network, suppressing macrophage-driven inflammation, and attenuating cardiomyocyte injury. The protective actions of the myofibroblasts are mediated, at least in part, through Smad-dependent suppression of matrix-degrading proteases.
Collapse
Affiliation(s)
- Ilaria Russo
- From the Division of Cardiology, Department of Medicine, Wilf Family Cardiovascular Research Institute, Albert Einstein College of Medicine, Bronx, NY (I.R., M.C., S.H., Y.S., A.H., B.C., A.V.S., N.G.F.)
| | - Michele Cavalera
- From the Division of Cardiology, Department of Medicine, Wilf Family Cardiovascular Research Institute, Albert Einstein College of Medicine, Bronx, NY (I.R., M.C., S.H., Y.S., A.H., B.C., A.V.S., N.G.F.)
| | - Shuaibo Huang
- From the Division of Cardiology, Department of Medicine, Wilf Family Cardiovascular Research Institute, Albert Einstein College of Medicine, Bronx, NY (I.R., M.C., S.H., Y.S., A.H., B.C., A.V.S., N.G.F.)
| | - Ya Su
- From the Division of Cardiology, Department of Medicine, Wilf Family Cardiovascular Research Institute, Albert Einstein College of Medicine, Bronx, NY (I.R., M.C., S.H., Y.S., A.H., B.C., A.V.S., N.G.F.)
| | - Anis Hanna
- From the Division of Cardiology, Department of Medicine, Wilf Family Cardiovascular Research Institute, Albert Einstein College of Medicine, Bronx, NY (I.R., M.C., S.H., Y.S., A.H., B.C., A.V.S., N.G.F.)
| | - Bijun Chen
- From the Division of Cardiology, Department of Medicine, Wilf Family Cardiovascular Research Institute, Albert Einstein College of Medicine, Bronx, NY (I.R., M.C., S.H., Y.S., A.H., B.C., A.V.S., N.G.F.)
| | - Arti V Shinde
- From the Division of Cardiology, Department of Medicine, Wilf Family Cardiovascular Research Institute, Albert Einstein College of Medicine, Bronx, NY (I.R., M.C., S.H., Y.S., A.H., B.C., A.V.S., N.G.F.)
| | - Simon J Conway
- Department of Pediatrics, Indiana University, Indianapolis (S.J.C.)
| | - Jonathan Graff
- Department of Developmental Biology, University of Texas Southwestern, Dallas (J.G.)
| | - Nikolaos G Frangogiannis
- From the Division of Cardiology, Department of Medicine, Wilf Family Cardiovascular Research Institute, Albert Einstein College of Medicine, Bronx, NY (I.R., M.C., S.H., Y.S., A.H., B.C., A.V.S., N.G.F.)
| |
Collapse
|
22
|
Li Y, Li L. Prognostic values and prospective pathway signaling of MicroRNA-182 in ovarian cancer: a study based on gene expression omnibus (GEO) and bioinformatics analysis. J Ovarian Res 2019; 12:106. [PMID: 31703725 PMCID: PMC6839211 DOI: 10.1186/s13048-019-0580-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Accepted: 10/10/2019] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Ovarian carcinoma (OC) is a common cause of death among women with gynecological cancer. MicroRNAs (miRNAs) are believed to have vital roles in tumorigenesis of OC. Although miRNAs are broadly recognized in OC, the role of has-miR-182-5p (miR-182) in OC is still not fully elucidated. METHODS We evaluated the significance of miR-182 expression in OC by using analysis of a public dataset from the Gene Expression Omnibus (GEO) database and a literature review. Furthermore, we downloaded three mRNA datasets of OC and normal ovarian tissues (NOTs), GSE14407, GSE18520 and GSE36668, from GEO to identify differentially expressed genes (DEGs). Then the targeted genes of hsa-miR-182-5p (TG_miRNA-182-5p) were predicted using miRWALK3.0. Subsequently, we analyzed the gene overlaps integrated between DEGs in OC and predicted target genes of miR-182 by Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis. STRING and Cytoscape were used to construct a protein-protein interaction (PPI) network and the prognostic effects of the hub genes were analyzed. RESULTS A common pattern of up-regulation for miR-182 in OC was found in our review of the literature. A total of 268 DEGs, both OC-related and miR-182-related, were identified, of which 133 genes were discovered from the PPI network. A number of DEGs were enriched in extracellular matrix organization, pathways in cancer, focal adhesion, and ECM-receptor interaction. Two hub genes, MCM3 and GINS2, were significantly associated with worse overall survival of patients with OC. Furthermore, we identified covert miR-182-related genes that might participate in OC by network analysis, such as DCN, AKT3, and TIMP2. The expressions of these genes were all down-regulated and negatively correlated with miR-182 in OC. CONCLUSIONS Our study suggests that miR-182 is essential for the biological progression of OC.
Collapse
Affiliation(s)
- Yaowei Li
- Department of Gynecologic Oncology, Affiliated Tumor Hospital of Guangxi Medical University, Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor, Ministry of Education, Nanning, Guangxi, China.,Department of Gynecology and obstetrics, Shangyu People's Hospital, Shangyu, Zhejiang, China
| | - Li Li
- Department of Gynecologic Oncology, Affiliated Tumor Hospital of Guangxi Medical University, Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor, Ministry of Education, Nanning, Guangxi, China.
| |
Collapse
|
23
|
Banerjee MN, Bolli R, Hare JM. Clinical Studies of Cell Therapy in Cardiovascular Medicine: Recent Developments and Future Directions. Circ Res 2019; 123:266-287. [PMID: 29976692 DOI: 10.1161/circresaha.118.311217] [Citation(s) in RCA: 116] [Impact Index Per Article: 23.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Given the rising prevalence of cardiovascular disease worldwide and the limited therapeutic options for severe heart failure, novel technologies that harness the regenerative capacity of the heart are sorely needed. The therapeutic use of stem cells has the potential to reverse myocardial injury and improve cardiac function, in contrast to most current medical therapies that only mitigate heart failure symptoms. Nearly 2 decades and >200 trials for cardiovascular disease have revealed that most cell types are safe; however, their efficacy remains controversial, limiting the transition of this therapy from investigation to practice. Lessons learned from these initial studies are driving the design of new clinical trials; higher fidelity of cell isolation techniques, standardization of conditions, more consistent use of state of the art measurement techniques, and assessment of multiple end points to garner insights into the efficacy of stem cells. Translation to clinical trials has almost outpaced our mechanistic understanding, and individual patient factors likely play a large role in stem cell efficacy. Therefore, careful analysis of dosing, delivery methods, and the ideal patient populations is necessary to translate cell therapy from research to practice. We are at a pivotal stage in the field in which information from many relatively small clinical trials must guide carefully executed efficacy trials. Larger efficacy trials are being launched to answer questions about older, first-generation stem cell therapeutics, while novel, second-generation products are being introduced into the clinical realm. This review critically examines the current state of clinical research on cell-based therapies for cardiovascular disease, highlighting the controversies in the field, improvements in clinical trial design, and the application of exciting new cell products.
Collapse
Affiliation(s)
- Monisha N Banerjee
- From the Interdisciplinary Stem Cell Institute (M.N.B., J.M.H.).,Department of Surgery (M.N.B)
| | - Roberto Bolli
- University of Miami Miller School of Medicine, FL; and Institute of Molecular Cardiology, University of Louisville, KY (R.B.)
| | - Joshua M Hare
- From the Interdisciplinary Stem Cell Institute (M.N.B., J.M.H.) .,Department of Medicine (J.M.H.)
| |
Collapse
|
24
|
Exosomes Derived from TIMP2-Modified Human Umbilical Cord Mesenchymal Stem Cells Enhance the Repair Effect in Rat Model with Myocardial Infarction Possibly by the Akt/Sfrp2 Pathway. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:1958941. [PMID: 31182988 PMCID: PMC6512021 DOI: 10.1155/2019/1958941] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Accepted: 03/11/2019] [Indexed: 01/08/2023]
Abstract
Exosomes derived from human umbilical cord mesenchymal stem cells (hucMSCs) are a promising new therapeutic option for myocardial infarction (MI). The tissue matrix metalloproteinase inhibitor 2, also known as TIMP2, is a member of the tissue inhibitor family of metalloproteinases. Since TIMP2-mediated inhibition of matrix metalloproteinases (MMPs) is a key determinant of post-MI remodeling, we analyzed the therapeutic effects of exosomes derived from TIMP2-overexpressing hucMSCs (huc-exoTIMP2) on the MI rat model. The huc-exoTIMP2 significantly improved in vivo cardiac function as measured by echocardiography and promoted angiogenesis in MI injury. It also restricted extracellular matrix (ECM) remodeling, as indicated by the reduced collagen deposition. In addition, huc-exoTIMP2 administration increased the in situ expression of the antiapoptotic Bcl-2 and decreased that of the proapoptotic Bax and pro-caspase-9 in the infracted myocardium. Meanwhile, huc-exoTIMP2 upregulated superoxide dismutase (SOD) as well as glutathione (GSH) and decreased the malondialdehyde (MDA) level in MI models. In vitro huc-exoTIMP2 pretreatment could inhibit H2O2-mediated H9C2-cardiomyocyte apoptosis and promote human umbilical vein endothelial cell (HUVEC) proliferation, migration, and tube formation, as well as decrease TGFβ-induced MMP2, MMP9, and α-SMA secretion by cardiac fibroblasts (CFs). Besides that, huc-exoTIMP2 pretreatment also increased the expression of Akt phosphorylation in the infarcted myocardium, which may relate to a high level of secreted frizzled-related protein 2 (Sfrp2) in huc-exoTIMP2, indicating a mechanistic basis of its action. Importantly, Sfrp2 knockdown in huc-exoTIMP2 abrogated the protective effects. Taken together, huc-exoTIMP2 improved cardiac function by alleviating MI-induced oxidative stress and ECM remodeling, partly via the Akt/Sfrp2 pathway.
Collapse
|
25
|
Recent advances in understanding the roles of T cells in pressure overload-induced cardiac hypertrophy and remodeling. J Mol Cell Cardiol 2019; 129:293-302. [DOI: 10.1016/j.yjmcc.2019.01.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Revised: 01/08/2019] [Accepted: 01/09/2019] [Indexed: 12/15/2022]
|
26
|
Bing R, Cavalcante JL, Everett RJ, Clavel MA, Newby DE, Dweck MR. Imaging and Impact of Myocardial Fibrosis in Aortic Stenosis. JACC Cardiovasc Imaging 2019; 12:283-296. [PMID: 30732723 PMCID: PMC6361867 DOI: 10.1016/j.jcmg.2018.11.026] [Citation(s) in RCA: 151] [Impact Index Per Article: 30.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Revised: 10/16/2018] [Accepted: 11/07/2018] [Indexed: 02/07/2023]
Abstract
Aortic stenosis is characterized both by progressive valve narrowing and the left ventricular remodeling response that ensues. The only effective treatment is aortic valve replacement, which is usually recommended in patients with severe stenosis and evidence of left ventricular decompensation. At present, left ventricular decompensation is most frequently identified by the development of typical symptoms or a marked reduction in left ventricular ejection fraction <50%. However, there is growing interest in using the assessment of myocardial fibrosis as an earlier and more objective marker of left ventricular decompensation, particularly in asymptomatic patients, where guidelines currently rely on nonrandomized data and expert consensus. Myocardial fibrosis has major functional consequences, is the key pathological process driving left ventricular decompensation, and can be divided into 2 categories. Replacement fibrosis is irreversible and identified using late gadolinium enhancement on cardiac magnetic resonance, while diffuse fibrosis occurs earlier, is potentially reversible, and can be quantified with cardiac magnetic resonance T1 mapping techniques. There is a substantial body of observational data in this field, but there is now a need for randomized clinical trials of myocardial imaging in aortic stenosis to optimize patient management. This review will discuss the role that myocardial fibrosis plays in aortic stenosis, how it can be imaged, and how these approaches might be used to track myocardial health and improve the timing of aortic valve replacement.
Collapse
Affiliation(s)
- Rong Bing
- British Heart Foundation Centre for Cardiovascular Science, University of Edinburgh, Edinburgh, United Kingdom
| | - João L Cavalcante
- Division of Cardiovascular Diseases, Department of Medicine, UPMC Heart & Vascular Institute, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Russell J Everett
- British Heart Foundation Centre for Cardiovascular Science, University of Edinburgh, Edinburgh, United Kingdom
| | - Marie-Annick Clavel
- Quebec Heart & Lung Institute, Laval University, Quebec City, Quebec, Canada
| | - David E Newby
- British Heart Foundation Centre for Cardiovascular Science, University of Edinburgh, Edinburgh, United Kingdom
| | - Marc R Dweck
- British Heart Foundation Centre for Cardiovascular Science, University of Edinburgh, Edinburgh, United Kingdom.
| |
Collapse
|
27
|
Hardy E, Hardy-Sosa A, Fernandez-Patron C. MMP-2: is too low as bad as too high in the cardiovascular system? Am J Physiol Heart Circ Physiol 2018; 315:H1332-H1340. [DOI: 10.1152/ajpheart.00198.2018] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Matrix metalloproteinase (MMP)-2 cleaves a broad spectrum of substrates, including extracellular matrix components (responsible for normal tissue remodeling) and cytokines (modulators of the inflammatory response to physiological insults such as tissue damage). MMP-2 expression is elevated in many cardiovascular pathologies (e.g., myocardial infarction, hypertensive heart disease) where tissue remodeling and inflammatory responses are perturbed. Thus, it has generally been assumed that blockade of MMP-2 activity will yield therapeutic effects. Here, we provide a counterargument to this dogma based on 1) preclinical studies on Mmp2-null ( Mmp2−/−) mice and 2) clinical studies on patients with inactivating MMP2 gene mutations. Furthermore, we put forward the hypothesis that, when MMP-2 activity falls below baseline, the bioavailability of proinflammatory cytokines normally cleaved and inactivated by MMP-2 increases, leading to the production of cytokines and cardiac secretion of phospholipase A2activity into the circulation, which stimulate systemic inflammation that perturbs lipid metabolism in target organs. Finally, we suggest that insufficient understanding of the consequences of MMP-2 deficiency remains a major factor in the failure of MMP-2 inhibitor-based therapeutic approaches. This paucity of knowledge precludes our ability to effectively intervene in cardiovascular and noncardiovascular pathologies at the level of MMP-2.
Collapse
Affiliation(s)
- Eugenio Hardy
- Biotechnology Laboratory, Study Center for Research and Biological Evaluations, Institute of Pharmacy and Foods, University of Havana, Havana, Cuba
| | | | - Carlos Fernandez-Patron
- Department of Biochemistry, Cardiovascular Research Centre, Mazankowski Alberta Heart Institute, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
28
|
Zhabyeyev P, Das SK, Basu R, Shen M, Patel VB, Kassiri Z, Oudit GY. TIMP3 deficiency exacerbates iron overload-mediated cardiomyopathy and liver disease. Am J Physiol Heart Circ Physiol 2018; 314:H978-H990. [PMID: 29373036 DOI: 10.1152/ajpheart.00597.2017] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Chronic iron overload results in heart and liver diseases and is a common cause of morbidity and mortality in patients with genetic hemochromatosis and secondary iron overload. We investigated the role of tissue inhibitor of metalloproteinase 3 (TIMP3) in iron overload-mediated tissue injury by subjecting male mice lacking Timp3 ( Timp3-/-) and wild-type (WT) mice to 12 wk of chronic iron overload. Whereas WT mice with iron overload developed diastolic dysfunction, iron-overloaded Timp3-/- mice showed worsened cardiac dysfunction coupled with systolic dysfunction. In the heart, loss of Timp3 was associated with increased myocardial fibrosis, greater Timp1, matrix metalloproteinase ( Mmp) 2, and Mmp9 expression, increased active MMP-2 levels, and gelatinase activity. Iron overload in Timp3-/- mice showed twofold higher iron accumulation in the liver compared with WT mice because of constituently lower levels of ferroportin. Loss of Timp3 enhanced the hepatic inflammatory response to iron overload, leading to greater neutrophil and macrophage infiltration and increased hepatic fibrosis. Expression of inflammation-related MMPs (MMP-12 and MMP-13) and inflammatory cytokines (IL-1β and monocyte chemoattractant protein-1) was elevated to a greater extent in iron-overloaded Timp3-/- livers. Gelatin zymography demonstrated equivalent increases in MMP-2 and MMP-9 levels in WT and Timp3-/- iron-overloaded livers. Loss of Timp3 enhanced the susceptibility to iron overload-mediated heart and liver injury, suggesting that Timp3 is a key protective molecule against iron-mediated pathology. NEW & NOTEWORTHY In mice, loss of tissue inhibitor of metalloproteinase 3 ( Timp3) was associated with systolic and diastolic dysfunctions, twofold higher hepatic iron accumulation (attributable to constituently lower levels of ferroportin), and increased hepatic inflammation. Loss of Timp3 enhanced the susceptibility to iron overload-mediated injury, suggesting that Timp3 plays a key protective role against iron-mediated pathology.
Collapse
Affiliation(s)
- Pavel Zhabyeyev
- Division of Cardiology, Department of Medicine, University of Alberta , Edmonton, Alberta , Canada.,Mazankowski Alberta Heart Institute, University of Alberta , Edmonton, Alberta , Canada
| | - Subhash K Das
- Division of Cardiology, Department of Medicine, University of Alberta , Edmonton, Alberta , Canada.,Mazankowski Alberta Heart Institute, University of Alberta , Edmonton, Alberta , Canada
| | - Ratnadeep Basu
- Division of Cardiology, Department of Medicine, University of Alberta , Edmonton, Alberta , Canada.,Mazankowski Alberta Heart Institute, University of Alberta , Edmonton, Alberta , Canada
| | - Mengcheng Shen
- Department of Physiology, University of Alberta , Edmonton, Alberta , Canada
| | - Vaibhav B Patel
- Division of Cardiology, Department of Medicine, University of Alberta , Edmonton, Alberta , Canada.,Mazankowski Alberta Heart Institute, University of Alberta , Edmonton, Alberta , Canada
| | - Zamaneh Kassiri
- Mazankowski Alberta Heart Institute, University of Alberta , Edmonton, Alberta , Canada.,Department of Physiology, University of Alberta , Edmonton, Alberta , Canada
| | - Gavin Y Oudit
- Division of Cardiology, Department of Medicine, University of Alberta , Edmonton, Alberta , Canada.,Mazankowski Alberta Heart Institute, University of Alberta , Edmonton, Alberta , Canada
| |
Collapse
|
29
|
Lindsey ML, Kassiri Z, Virag JAI, de Castro Brás LE, Scherrer-Crosbie M. Guidelines for measuring cardiac physiology in mice. Am J Physiol Heart Circ Physiol 2018; 314:H733-H752. [PMID: 29351456 PMCID: PMC5966769 DOI: 10.1152/ajpheart.00339.2017] [Citation(s) in RCA: 230] [Impact Index Per Article: 38.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Cardiovascular disease is a leading cause of death, and translational research is needed to understand better mechanisms whereby the left ventricle responds to injury. Mouse models of heart disease have provided valuable insights into mechanisms that occur during cardiac aging and in response to a variety of pathologies. The assessment of cardiovascular physiological responses to injury or insult is an important and necessary component of this research. With increasing consideration for rigor and reproducibility, the goal of this guidelines review is to provide best-practice information regarding how to measure accurately cardiac physiology in animal models. In this article, we define guidelines for the measurement of cardiac physiology in mice, as the most commonly used animal model in cardiovascular research. Listen to this article’s corresponding podcast at http://ajpheart.podbean.com/e/guidelines-for-measuring-cardiac-physiology-in-mice/.
Collapse
Affiliation(s)
- Merry L Lindsey
- Department of Physiology and Biophysics, Mississippi Center for Heart Research, University of Mississippi Medical Center , Jackson, Mississippi.,Research Service, G.V. (Sonny) Montgomery Veterans Affairs Medical Center , Jackson, Mississippi
| | - Zamaneh Kassiri
- Department of Physiology, Cardiovascular Research Centre, Mazankowski Alberta Heart Institute, University of Alberta , Edmonton, Alberta , Canada
| | - Jitka A I Virag
- Department of Physiology, Brody School of Medicine, East Carolina University , Greenville, North Carolina
| | - Lisandra E de Castro Brás
- Department of Physiology, Brody School of Medicine, East Carolina University , Greenville, North Carolina
| | | |
Collapse
|
30
|
Hacker TA. Animal Models and Cardiac Extracellular Matrix Research. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1098:45-58. [DOI: 10.1007/978-3-319-97421-7_3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
31
|
Yim J, Cho H, Rabkin SW. Gene expression and gene associations during the development of heart failure with preserved ejection fraction in the Dahl salt sensitive model of hypertension. Clin Exp Hypertens 2017; 40:155-166. [DOI: 10.1080/10641963.2017.1346113] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Jeffrey Yim
- Department of Medicine (Cardiology), University of British Columbia, Vancouver, BC, Canada
| | - Hyokeun Cho
- Department of Medicine (Cardiology), University of British Columbia, Vancouver, BC, Canada
| | - Simon W. Rabkin
- Department of Medicine (Cardiology), University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
32
|
Zhang Y, Fan F, Zeng G, Zhou L, Zhang Y, Zhang J, Jiao H, Zhang T, Su D, Yang C, Wang X, Xiao K, Li H, Zhong Z. Temporal analysis of blood-brain barrier disruption and cerebrospinal fluid matrix metalloproteinases in rhesus monkeys subjected to transient ischemic stroke. J Cereb Blood Flow Metab 2017; 37:2963-2974. [PMID: 27885100 PMCID: PMC5536803 DOI: 10.1177/0271678x16680221] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Blood-brain barrier (BBB) disruption plays an important role in pathophysiological progress of ischemic stroke. However, our knowledge of the dynamic change of BBB permeability and its mechanism remains limited. In the current study, we used a non-human primate (NHP) MCAO model and a serial CSF sampling method that allowed us to determine the dynamic change of BBB permeability by calculating the CSF/serum albumin ratio (AR). We showed that AR increased rapidly and significantly after ischemia, and the fold increase of AR is highly correlated with the infarction size during the subacute phase. Moreover, we determined the temporal change of MMP-1, MMP-2, MMP-3, MMP-9, MMP-10, MMP-13, TIMP-1, and TIMP-2 in CSF and serum. Each MMP and TIMP showed different change patterns when comparing their values in CSF and serum. Based on the longitudinal dataset, we showed that the fold increase of MMP-9 in serum and CSF are both correlated to infarction size. Among the measured MMPs and TIMPs, only MMP-2, MMP-13, and TIMP-2 in CSF correlated with AR to some extent. Our data suggest there is no single MMP or TIMP fully responsible for BBB breakdown, which is regulated by a much more complicated signal network and further investigations of the mechanisms are needed.
Collapse
Affiliation(s)
- Yingqian Zhang
- 1 Laboratory of Nonhuman Primate Disease Modeling Research, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Feng Fan
- 2 Department of Neurointervention, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Guojun Zeng
- 3 Department of General Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Linlin Zhou
- 4 Department of Medical Microbiology, West China School of Preclinical and Forensic Medicine, Sichuan University, China
| | - Yinbing Zhang
- 5 Sichuan Kangcheng Biotech Co., Inc., Chengdu, China
| | - Jie Zhang
- 5 Sichuan Kangcheng Biotech Co., Inc., Chengdu, China
| | - He Jiao
- 6 Department of Interventional therapy, West China Hospital, Sichuan University, Chengdu, China
| | - Ting Zhang
- 1 Laboratory of Nonhuman Primate Disease Modeling Research, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Dan Su
- 1 Laboratory of Nonhuman Primate Disease Modeling Research, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Cheng Yang
- 7 Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, Sichuan University, Chengdu, China
| | - Xin Wang
- 5 Sichuan Kangcheng Biotech Co., Inc., Chengdu, China
| | - Kai Xiao
- 5 Sichuan Kangcheng Biotech Co., Inc., Chengdu, China
| | - Hongxia Li
- 8 National Chengdu Center for Safety Evaluation of Drugs, State Key Lab of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Zhihui Zhong
- 1 Laboratory of Nonhuman Primate Disease Modeling Research, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China.,5 Sichuan Kangcheng Biotech Co., Inc., Chengdu, China
| |
Collapse
|
33
|
A Review of the Molecular Mechanisms Underlying the Development and Progression of Cardiac Remodeling. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2017; 2017:3920195. [PMID: 28751931 PMCID: PMC5511646 DOI: 10.1155/2017/3920195] [Citation(s) in RCA: 271] [Impact Index Per Article: 38.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Accepted: 05/30/2017] [Indexed: 02/07/2023]
Abstract
Pathological molecular mechanisms involved in myocardial remodeling contribute to alter the existing structure of the heart, leading to cardiac dysfunction. Among the complex signaling network that characterizes myocardial remodeling, the distinct processes are myocyte loss, cardiac hypertrophy, alteration of extracellular matrix homeostasis, fibrosis, defective autophagy, metabolic abnormalities, and mitochondrial dysfunction. Several pathophysiological stimuli, such as pressure and volume overload, trigger the remodeling cascade, a process that initially confers protection to the heart as a compensatory mechanism. Yet chronic inflammation after myocardial infarction also leads to cardiac remodeling that, when prolonged, leads to heart failure progression. Here, we review the molecular pathways involved in cardiac remodeling, with particular emphasis on those associated with myocardial infarction. A better understanding of cell signaling involved in cardiac remodeling may support the development of new therapeutic strategies towards the treatment of heart failure and reduction of cardiac complications. We will also discuss data derived from gene therapy approaches for modulating key mediators of cardiac remodeling.
Collapse
|
34
|
Yi X, Guo J, Guo J, Sun S, Yang P, Wang J, Li Y, Xie L, Cai J, Wang Z. EZH2-mediated epigenetic silencing of TIMP2 promotes ovarian cancer migration and invasion. Sci Rep 2017; 7:3568. [PMID: 28620234 PMCID: PMC5472630 DOI: 10.1038/s41598-017-03362-z] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Accepted: 04/28/2017] [Indexed: 12/27/2022] Open
Abstract
Enhancer of zeste homolog 2 (EZH2) is often increased in malignant tumors and is involved in metastasis. EZH2 silences gene expression by tri-methylating the lysine 27 residue of histone H3 (H3K27me3). However, the mechanism underlying EZH2 promotion of ovarian cancer metastasis remains elusive. Here, we showed that EZH2 is up-regulated in ovarian cancer and is associated with tumor metastasis and poor survival by mRNA sequencing and microarray results from databases. Tissue microarray and immunohistochemistry results revealed that EZH2 was negatively correlated with the expression of tissue inhibitor of metalloproteinases 2 (TIMP2). EZH2 overexpression inhibited TIMP2 expression and promoted proteolytic activities of matrix metalloproteinases 2 and 9 and vice versa. EZH2 promoted ovarian cancer invasion and migration, which could be largely reversed by TIMP2 down-regulation in vitro and in vivo. Both H3K27me3 inhibition and demethylation could reduce methylation of the TIMP2 promoter and finally reactivate TIMP2 transcription. The presence of EZH2 and H3K27me3 at the TIMP2 promoter was confirmed by chromatin immunoprecipitation. H3K27me3 and DNA methyltransferases at the promoter were significantly increased by EZH2 overexpression. These results suggest that EZH2 inhibits TIMP2 expression via H3K27me3 and DNA methylation, which relieve the repression of MMP and facilitate ovarian cancer invasion and migration.
Collapse
Affiliation(s)
- Xiaoqing Yi
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Jianfeng Guo
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Jing Guo
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Si Sun
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Ping Yang
- Department of Obstetrics and Gynecology, First Affiliated Hospital, School of Medicine, Shihezi University, Shihezi, 832008, China
| | - Junjie Wang
- Department of Obstetrics and Gynecology, Renhe Hospital, Three Gorges University, Yichang, 443001, China
| | - Yuan Li
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Lisha Xie
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Jing Cai
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| | - Zehua Wang
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| |
Collapse
|
35
|
Takawale A, Zhang P, Azad A, Wang W, Wang X, Murray AG, Kassiri Z. Myocardial overexpression of TIMP3 after myocardial infarction exerts beneficial effects by promoting angiogenesis and suppressing early proteolysis. Am J Physiol Heart Circ Physiol 2017; 313:H224-H236. [PMID: 28550172 DOI: 10.1152/ajpheart.00108.2017] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Revised: 05/19/2017] [Accepted: 05/23/2017] [Indexed: 01/19/2023]
Abstract
Myocardial infarction (MI) results in loss of cardiomyocytes, adverse extracellular matrix (ECM) and structural remodeling, and left ventricular (LV) dilation and dysfunction. Tissue inhibitors of metalloproteinase (TIMPs) inhibit matrix metalloproteinases (MMPs), the main regulators of ECM turnover. TIMPs also have MMP-independent functions. TIMP3 levels are reduced in the heart within 24 h of MI in mice. We investigated if overexpression of TIMP3 post-MI limits adverse remodeling and LV dilation and dysfunction. MI was induced by left anterior descending coronary artery ligation in 10- to 12-wk-old male C57BL/6J mice, and adenoviral constructs expressing human (h)TIMP3 (Ad-hTIMP3) or no TIMP (Ad-Null) were injected in the peri-infarct zone (5.4 × 107 plaque-forming units/heart, 5 injections/heart). Cardiac function assessed by echocardiography showed improved LV physiology and reduced LV dilation after TIMP3 overexpression compared with the Ad-Null-MI group. Post-MI adverse remodeling was attenuated in the Ad-hTIMP3-MI group, as assessed by greater cardiomyocyte density, less infarct expansion, and ECM disruption. TIMP3 overexpression blunted the early rise in proteolytic activities post-MI. A higher density of coronary arteries and a greater number of proliferating endothelial cells were detected in the infarct and peri-infarct regions in the Ad-hTIMP3-MI group compared with the Ad-Null-MI group. In vitro three-dimensional angiogenesis assay confirmed that recombinant TIMP3 promotes angiogenesis in human endothelial cells, although biphasically and in a dose-dependent manner. Intriguingly, overexpression of Ad-hTIMP3 at 10-fold higher concentration had no beneficial effects, consistent with antiangiogenic effects of TIMP3 at higher doses. In conclusion, optimal overexpression of TIMP3 can be a promising therapeutic approach to limit adverse post-MI remodeling by dually inhibiting early proteolysis and promoting angiogenesis.NEW & NOTEWORTHY Here, we report that tissue inhibitor of metalloproteinase 3 overexpression after myocardial infarction improves myocardial structural remodeling and function by promoting angiogenesis and inhibiting early proteolysis. This demonstrates the therapeutic potential of preserving the local balance of tissue inhibitor of metalloproteinase 3 in the heart given its diverse functions in modulating different processes involved in the adverse postmyocardial infarction remodeling.
Collapse
Affiliation(s)
- Abhijit Takawale
- Department of Physiology, University of Alberta, Edmonton, Alberta, Canada.,Mazankowski Alberta Heart Institute, University of Alberta, Edmonton, Alberta, Canada
| | - Pu Zhang
- Department of Physiology, University of Alberta, Edmonton, Alberta, Canada.,Mazankowski Alberta Heart Institute, University of Alberta, Edmonton, Alberta, Canada
| | - Abul Azad
- Faculty of Medicine and Dentistry, Department of Medicine, University of Alberta, Edmonton, Alberta, Canada; and
| | - Wang Wang
- Department of Physiology, University of Alberta, Edmonton, Alberta, Canada.,Mazankowski Alberta Heart Institute, University of Alberta, Edmonton, Alberta, Canada
| | - Xiuhua Wang
- Department of Physiology, University of Alberta, Edmonton, Alberta, Canada.,Mazankowski Alberta Heart Institute, University of Alberta, Edmonton, Alberta, Canada
| | - Allan G Murray
- Faculty of Medicine and Dentistry, Department of Medicine, University of Alberta, Edmonton, Alberta, Canada; and
| | - Zamaneh Kassiri
- Department of Physiology, University of Alberta, Edmonton, Alberta, Canada; .,Mazankowski Alberta Heart Institute, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
36
|
Takawale A, Zhang P, Patel VB, Wang X, Oudit G, Kassiri Z. Tissue Inhibitor of Matrix Metalloproteinase-1 Promotes Myocardial Fibrosis by Mediating CD63-Integrin β1 Interaction. Hypertension 2017; 69:1092-1103. [PMID: 28373589 DOI: 10.1161/hypertensionaha.117.09045] [Citation(s) in RCA: 111] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2017] [Revised: 01/17/2017] [Accepted: 03/03/2017] [Indexed: 12/28/2022]
Abstract
Myocardial fibrosis is excess accumulation of the extracellular matrix fibrillar collagens. Fibrosis is a key feature of various cardiomyopathies and compromises cardiac systolic and diastolic performance. TIMP1 (tissue inhibitor of metalloproteinase-1) is consistently upregulated in myocardial fibrosis and is used as a marker of fibrosis. However, it remains to be determined whether TIMP1 promotes tissue fibrosis by inhibiting extracellular matrix degradation by matrix metalloproteinases or via an matrix metalloproteinase-independent pathway. We examined the function of TIMP1 in myocardial fibrosis using Timp1-deficient mice and 2 in vivo models of myocardial fibrosis (angiotensin II infusion and cardiac pressure overload), in vitro analysis of adult cardiac fibroblasts, and fibrotic myocardium from patients with dilated cardiomyopathy (DCM). Timp1 deficiency significantly reduced myocardial fibrosis in both in vivo models of cardiomyopathy. We identified a novel mechanism for TIMP1 action whereby, independent from its matrix metalloproteinase-inhibitory function, it mediates an association between CD63 (cell surface receptor for TIMP1) and integrin β1 on cardiac fibroblasts, initiates activation and nuclear translocation of Smad2/3 and β-catenin, leading to de novo collagen synthesis. This mechanism was consistently observed in vivo, in cultured cardiac fibroblasts, and in human fibrotic myocardium. In addition, after long-term pressure overload, Timp1 deficiency persistently reduced myocardial fibrosis and ameliorated diastolic dysfunction. This study defines a novel matrix metalloproteinase-independent function of TIMP1 in promoting myocardial fibrosis. As such targeting TIMP1 could prove to be a valuable approach in developing antifibrosis therapies.
Collapse
Affiliation(s)
- Abhijit Takawale
- From the Department of Physiology (A.T., P.Z., X.W., G.O., Z.K.), Department of Medicine/Division of Cardiology (V.B.P., G.O.), and Cardiovascular Research Center, Mazankowski Alberta Heart Institute (A.T., P.Z., V.B.P., X.W., G.O., Z.K.), University of Alberta, Edmonton, Canada
| | - Pu Zhang
- From the Department of Physiology (A.T., P.Z., X.W., G.O., Z.K.), Department of Medicine/Division of Cardiology (V.B.P., G.O.), and Cardiovascular Research Center, Mazankowski Alberta Heart Institute (A.T., P.Z., V.B.P., X.W., G.O., Z.K.), University of Alberta, Edmonton, Canada
| | - Vaibhav B Patel
- From the Department of Physiology (A.T., P.Z., X.W., G.O., Z.K.), Department of Medicine/Division of Cardiology (V.B.P., G.O.), and Cardiovascular Research Center, Mazankowski Alberta Heart Institute (A.T., P.Z., V.B.P., X.W., G.O., Z.K.), University of Alberta, Edmonton, Canada
| | - Xiuhua Wang
- From the Department of Physiology (A.T., P.Z., X.W., G.O., Z.K.), Department of Medicine/Division of Cardiology (V.B.P., G.O.), and Cardiovascular Research Center, Mazankowski Alberta Heart Institute (A.T., P.Z., V.B.P., X.W., G.O., Z.K.), University of Alberta, Edmonton, Canada
| | - Gavin Oudit
- From the Department of Physiology (A.T., P.Z., X.W., G.O., Z.K.), Department of Medicine/Division of Cardiology (V.B.P., G.O.), and Cardiovascular Research Center, Mazankowski Alberta Heart Institute (A.T., P.Z., V.B.P., X.W., G.O., Z.K.), University of Alberta, Edmonton, Canada
| | - Zamaneh Kassiri
- From the Department of Physiology (A.T., P.Z., X.W., G.O., Z.K.), Department of Medicine/Division of Cardiology (V.B.P., G.O.), and Cardiovascular Research Center, Mazankowski Alberta Heart Institute (A.T., P.Z., V.B.P., X.W., G.O., Z.K.), University of Alberta, Edmonton, Canada.
| |
Collapse
|
37
|
Sabbatini AR, Barbaro NR, de Faria AP, Modolo R, Ritter AMV, Pinho C, Amorim RFB, Fontana V, Moreno H. Increased Circulating Tissue Inhibitor of Metalloproteinase-2 Is Associated With Resistant Hypertension. J Clin Hypertens (Greenwich) 2016; 18:969-975. [PMID: 27412873 PMCID: PMC8031610 DOI: 10.1111/jch.12865] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2016] [Revised: 04/08/2016] [Accepted: 04/10/2016] [Indexed: 11/29/2022]
Abstract
Resistant hypertension (RH) is associated with organ damage and cardiovascular risk. Evidence suggests the involvement of matrix metalloproteinase 2 (MMP-2) and tissue inhibitor of metalloproteinase 2 (TIMP-2) in hypertension and in cardiovascular remodeling. The aim of this study was to assess the levels of MMP-2 and TIMP-2 in RH and its relation with organ damage, including arterial stiffness and cardiac hypertrophy. MMP-2 and TIMP-2 levels were compared among 19 patients with normotension (NT), 116 with nonresistant hypertension (HTN) and 116 patients with resistant HTN (RH). MMP-2 levels showed no differences among NT, HTN, and RH groups, while TIMP-2 levels were higher in RH compared with HTN and NT groups (90.0 [76.1-107.3] vs 70.1 [57.7-88.3] vs 54.7 [40.9-58.1] ng/mL, P<.01), respectively. MMP-2/TIMP-2 ratio was reduced in the RH group compared with the HTN and NT groups (2.7 [1.9-3.4] vs 3.3 [2.6-4.2] vs 4.9 [4.5-5.3], P<.01), respectively. No associations were found between MMP-2 levels, TIMP-2, and MMP-2/TIMP-2 ratio with cardiac hypertrophy and arterial stiffness in the RH and HTN groups. Finally, in a regression analysis, reduced MMP-2/TIMP-2 ratio and increased TIMP-2 levels were independently associated with RH. The present findings provide evidence that TIMP-2 is associated with RH and might be a possible biomarker for screening RH patients.
Collapse
Affiliation(s)
- Andrea R Sabbatini
- Laboratory of Cardiovascular Pharmacology, Faculty of Medical Sciences and Teaching Hospital, University of Campinas (Unicamp), Campinas, Sao Paulo, Brazil
| | - Natalia R Barbaro
- Laboratory of Cardiovascular Pharmacology, Faculty of Medical Sciences and Teaching Hospital, University of Campinas (Unicamp), Campinas, Sao Paulo, Brazil
| | - Ana Paula de Faria
- Laboratory of Cardiovascular Pharmacology, Faculty of Medical Sciences and Teaching Hospital, University of Campinas (Unicamp), Campinas, Sao Paulo, Brazil
| | - Rodrigo Modolo
- Laboratory of Cardiovascular Pharmacology, Faculty of Medical Sciences and Teaching Hospital, University of Campinas (Unicamp), Campinas, Sao Paulo, Brazil
| | - Alessandra Mileni V Ritter
- Laboratory of Cardiovascular Pharmacology, Faculty of Medical Sciences and Teaching Hospital, University of Campinas (Unicamp), Campinas, Sao Paulo, Brazil
| | - Claudio Pinho
- Faculty of Medicine, Pontifical Catholic University of Campinas (Puccamp), Campinas, Sao Paulo, Brazil
| | - Rivadavio Fernandes Batista Amorim
- Laboratory of Neuromodulation & Center for Clinical Research Learning, Department of Physical Medicine and Rehabilitation (PM&R), Spaulding Rehabilitation Hospital, Harvard Medical School, Boston, MA
| | - Vanessa Fontana
- Laboratory of Cardiovascular Pharmacology, Faculty of Medical Sciences and Teaching Hospital, University of Campinas (Unicamp), Campinas, Sao Paulo, Brazil
| | - Heitor Moreno
- Laboratory of Cardiovascular Pharmacology, Faculty of Medical Sciences and Teaching Hospital, University of Campinas (Unicamp), Campinas, Sao Paulo, Brazil. ,
| |
Collapse
|
38
|
Barallobre-Barreiro J, Lynch M, Yin X, Mayr M. Systems biology-opportunities and challenges: the application of proteomics to study the cardiovascular extracellular matrix. Cardiovasc Res 2016; 112:626-636. [PMID: 27635058 PMCID: PMC5157133 DOI: 10.1093/cvr/cvw206] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Revised: 08/31/2016] [Accepted: 09/09/2016] [Indexed: 12/29/2022] Open
Abstract
Systems biology approaches including proteomics are becoming more widely used in cardiovascular research. In this review article, we focus on the application of proteomics to the cardiac extracellular matrix (ECM). ECM remodelling is a hallmark of many cardiovascular diseases. Proteomic techniques using mass spectrometry (MS) provide a platform for the comprehensive analysis of ECM proteins without a priori assumptions. Proteomics overcomes various constraints inherent to conventional antibody detection. On the other hand, studies that use whole tissue lysates for proteomic analysis mask the identification of the less abundant ECM constituents. In this review, we first discuss decellularization-based methods that enrich for ECM proteins in cardiac tissue, and how targeted MS allows for accurate protein quantification. The second part of the review will focus on post-translational modifications including hydroxylation and glycosylation and on the release of matrix fragments with biological activity (matrikines), all of which can be interrogated by proteomic techniques.
Collapse
Affiliation(s)
| | - Marc Lynch
- King's British Heart Foundation Centre, King's College London, 125 Coldharbour Lane, London SE5 9NU, UK
| | - Xiaoke Yin
- King's British Heart Foundation Centre, King's College London, 125 Coldharbour Lane, London SE5 9NU, UK
| | - Manuel Mayr
- King's British Heart Foundation Centre, King's College London, 125 Coldharbour Lane, London SE5 9NU, UK
| |
Collapse
|
39
|
Toll-like receptor-2 has a critical role in periodontal pathogen-induced myocardial fibrosis in the pressure-overloaded murine hearts. Hypertens Res 2016; 40:110-116. [DOI: 10.1038/hr.2016.117] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2015] [Revised: 07/13/2016] [Accepted: 07/21/2016] [Indexed: 12/15/2022]
|
40
|
Fan D, Takawale A, Shen M, Samokhvalov V, Basu R, Patel V, Wang X, Fernandez-Patron C, Seubert JM, Oudit GY, Kassiri Z. A Disintegrin and Metalloprotease-17 Regulates Pressure Overload-Induced Myocardial Hypertrophy and Dysfunction Through Proteolytic Processing of Integrin β1. Hypertension 2016; 68:937-48. [PMID: 27550917 DOI: 10.1161/hypertensionaha.116.07566] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Accepted: 08/02/2016] [Indexed: 12/28/2022]
Abstract
A disintegrin and metalloprotease-17 (ADAM17) belongs to a family of transmembrane enzymes, and it can mediate ectodomain shedding of several membrane-bound molecules. ADAM17 levels are elevated in patients with hypertrophic and dilated cardiomyopathy; however, its direct role in hypertrophic cardiomyopathy is unknown. Cardiomyocyte-specific ADAM17 knockdown mice (ADAM17(flox/flox)/αMHC-Cre; ADAM17(f/f)/Cre) and littermates with intact ADAM17 levels (ADAM17(f/f)) were subjected to cardiac pressure-overload by transverse aortic constriction. Cardiac function/architecture was assessed by echocardiography at 2 and 5 weeks post transverse aortic constriction. ADAM17 knockdown enhanced myocardial hypertrophy, fibrosis, more severe left ventricular dilation, and systolic dysfunction at 5 weeks post transverse aortic constriction. Pressure overload-induced upregulation of integrin β1 was much greater with ADAM17 knockdown, concomitant with the greater activation of the focal adhesion kinase pathway, suggesting that integrin β1 could be a substrate for ADAM17. ADAM17 knockdown did not alter other cardiomyocyte integrins, integrin α5 or α7, and HB-EGF (heparin-bound epidermal growth factor), another potential substrate for ADAM17, remained unaltered after pressure overload. ADAM17-mediated cleavage of integrin β1 was confirmed by an in vitro assay. Intriguingly, ADAM17 knockdown did not affect the myocardial hypertrophy induced by a subpressor dose of angiotensin II, which occurs independent from the integrin β1-mediated pathway. ADAM17-knockdown enhanced the hypertrophic response to cyclic mechanical stretching in neonatal rat cardiomyocytes. This study reports a novel cardioprotective function for ADAM17 in pressure overload cardiomyopathy, where loss of ADAM17 promotes hypertrophy by reducing the cleavage of cardiac integrin β1, a novel substrate for ADAM17. This function of ADAM17 is selective for pressure overload-induced myocardial hypertrophy and dysfunction, and not agonist-induced hypertrophy.
Collapse
Affiliation(s)
- Dong Fan
- From the Departments of Physiology (D.F., A.T., M.S., X.W., Z.K.), Biochemistry (C.F.-P.), Medicine, Faculty of Medicine and Dentistry (R.B., V.P., G.Y.O.), and Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Canada (V.S., J.M.S.); and Cardiovascular Research Centre, Mazankowski Alberta Heart Institute, Edmonton, Canada (D.F., A.T., M.S., V.S., R.B., V.P., X.W., C.F.-P., J.M.S., G.Y.O., Z.K.)
| | - Abhijit Takawale
- From the Departments of Physiology (D.F., A.T., M.S., X.W., Z.K.), Biochemistry (C.F.-P.), Medicine, Faculty of Medicine and Dentistry (R.B., V.P., G.Y.O.), and Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Canada (V.S., J.M.S.); and Cardiovascular Research Centre, Mazankowski Alberta Heart Institute, Edmonton, Canada (D.F., A.T., M.S., V.S., R.B., V.P., X.W., C.F.-P., J.M.S., G.Y.O., Z.K.)
| | - Mengcheng Shen
- From the Departments of Physiology (D.F., A.T., M.S., X.W., Z.K.), Biochemistry (C.F.-P.), Medicine, Faculty of Medicine and Dentistry (R.B., V.P., G.Y.O.), and Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Canada (V.S., J.M.S.); and Cardiovascular Research Centre, Mazankowski Alberta Heart Institute, Edmonton, Canada (D.F., A.T., M.S., V.S., R.B., V.P., X.W., C.F.-P., J.M.S., G.Y.O., Z.K.)
| | - Victor Samokhvalov
- From the Departments of Physiology (D.F., A.T., M.S., X.W., Z.K.), Biochemistry (C.F.-P.), Medicine, Faculty of Medicine and Dentistry (R.B., V.P., G.Y.O.), and Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Canada (V.S., J.M.S.); and Cardiovascular Research Centre, Mazankowski Alberta Heart Institute, Edmonton, Canada (D.F., A.T., M.S., V.S., R.B., V.P., X.W., C.F.-P., J.M.S., G.Y.O., Z.K.)
| | - Ratnadeep Basu
- From the Departments of Physiology (D.F., A.T., M.S., X.W., Z.K.), Biochemistry (C.F.-P.), Medicine, Faculty of Medicine and Dentistry (R.B., V.P., G.Y.O.), and Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Canada (V.S., J.M.S.); and Cardiovascular Research Centre, Mazankowski Alberta Heart Institute, Edmonton, Canada (D.F., A.T., M.S., V.S., R.B., V.P., X.W., C.F.-P., J.M.S., G.Y.O., Z.K.)
| | - Vaibhav Patel
- From the Departments of Physiology (D.F., A.T., M.S., X.W., Z.K.), Biochemistry (C.F.-P.), Medicine, Faculty of Medicine and Dentistry (R.B., V.P., G.Y.O.), and Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Canada (V.S., J.M.S.); and Cardiovascular Research Centre, Mazankowski Alberta Heart Institute, Edmonton, Canada (D.F., A.T., M.S., V.S., R.B., V.P., X.W., C.F.-P., J.M.S., G.Y.O., Z.K.)
| | - Xiuhua Wang
- From the Departments of Physiology (D.F., A.T., M.S., X.W., Z.K.), Biochemistry (C.F.-P.), Medicine, Faculty of Medicine and Dentistry (R.B., V.P., G.Y.O.), and Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Canada (V.S., J.M.S.); and Cardiovascular Research Centre, Mazankowski Alberta Heart Institute, Edmonton, Canada (D.F., A.T., M.S., V.S., R.B., V.P., X.W., C.F.-P., J.M.S., G.Y.O., Z.K.)
| | - Carlos Fernandez-Patron
- From the Departments of Physiology (D.F., A.T., M.S., X.W., Z.K.), Biochemistry (C.F.-P.), Medicine, Faculty of Medicine and Dentistry (R.B., V.P., G.Y.O.), and Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Canada (V.S., J.M.S.); and Cardiovascular Research Centre, Mazankowski Alberta Heart Institute, Edmonton, Canada (D.F., A.T., M.S., V.S., R.B., V.P., X.W., C.F.-P., J.M.S., G.Y.O., Z.K.)
| | - John M Seubert
- From the Departments of Physiology (D.F., A.T., M.S., X.W., Z.K.), Biochemistry (C.F.-P.), Medicine, Faculty of Medicine and Dentistry (R.B., V.P., G.Y.O.), and Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Canada (V.S., J.M.S.); and Cardiovascular Research Centre, Mazankowski Alberta Heart Institute, Edmonton, Canada (D.F., A.T., M.S., V.S., R.B., V.P., X.W., C.F.-P., J.M.S., G.Y.O., Z.K.)
| | - Gavin Y Oudit
- From the Departments of Physiology (D.F., A.T., M.S., X.W., Z.K.), Biochemistry (C.F.-P.), Medicine, Faculty of Medicine and Dentistry (R.B., V.P., G.Y.O.), and Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Canada (V.S., J.M.S.); and Cardiovascular Research Centre, Mazankowski Alberta Heart Institute, Edmonton, Canada (D.F., A.T., M.S., V.S., R.B., V.P., X.W., C.F.-P., J.M.S., G.Y.O., Z.K.)
| | - Zamaneh Kassiri
- From the Departments of Physiology (D.F., A.T., M.S., X.W., Z.K.), Biochemistry (C.F.-P.), Medicine, Faculty of Medicine and Dentistry (R.B., V.P., G.Y.O.), and Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Canada (V.S., J.M.S.); and Cardiovascular Research Centre, Mazankowski Alberta Heart Institute, Edmonton, Canada (D.F., A.T., M.S., V.S., R.B., V.P., X.W., C.F.-P., J.M.S., G.Y.O., Z.K.).
| |
Collapse
|
41
|
Sakamuri SSVP, Takawale A, Basu R, Fedak PWM, Freed D, Sergi C, Oudit GY, Kassiri Z. Differential impact of mechanical unloading on structural and nonstructural components of the extracellular matrix in advanced human heart failure. Transl Res 2016; 172:30-44. [PMID: 26963743 DOI: 10.1016/j.trsl.2016.02.006] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2015] [Revised: 01/05/2016] [Accepted: 02/05/2016] [Indexed: 10/22/2022]
Abstract
Adverse remodeling of the extracellular matrix (ECM) is a significant characteristic of heart failure. Reverse remodeling of the fibrillar ECM secondary to mechanical unloading of the left ventricle (LV) by left ventricular assist device (LVAD) has been subject of intense investigation; however, little is known about the impacts on nonfibrillar ECM and matricellular proteins that also contribute to disease progression. Explanted failing hearts were procured from patients with nonischemic dilated cardiomyopathy (DCM) with or without LVAD support, and compared to nonfailing control hearts. LV free wall specimens were formalin-fixed, flash-frozen or optimum cutting temperature-mount frozen. Histologic and biochemical assessment of fibrillar ECM showed that LVAD support was associated with lower levels of insoluble collagen, collagen type I mRNA, and collagen I/III ratio compared with no-LVAD hearts. A disintegrin and Metalloproteinase with Thrombospondin Motifs-2 (ADAM-TS2), a procollagen endopeptidase, was reduced in no-LVAD but not in LVAD hearts. The rise in ECM proteolytic activities was significantly lower in LVAD hearts. Matrix metalloproteinases (MMP1, MMP2, MMP8, MMP13, and MT1-MMP/MMP14) were comparable between DCM hearts. Tissue inhibitor of metalloproteinase (TIMP)3 and TIMP4 messenger RNA and protein showed the greatest reduction in no-LVAD hearts. Basement membrane proteins exhibited less severe disarray of laminin and fibronectin-1 in LVAD-supported hearts. The rise in matricellular protein, osteopontin, was suppressed in LVAD hearts, whereas secreted protein, acidic, cysteine-rich (SPARC) levels was unaffected by LVAD. Mechanical unloading of the failing DCM hearts can restore the fibrillar ECM and the basement membrane, contributing toward improved clinical outcomes. However, persistent elevation of matricellular proteins such as SPARC could contribute to the relapse of failing hearts on removal of LVAD support.
Collapse
Affiliation(s)
- Siva S V P Sakamuri
- Department of Physiology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta
| | - Abhijit Takawale
- Department of Physiology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta
| | - Ratnadeep Basu
- Department of Medicine, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta
| | - Paul W M Fedak
- Section of Cardiac Surgery, Department of Cardiac Sciences, University of Calgary, Libin Cardiovascular Institute of Alberta, C880, 1403 29 Street NW, Calgary, Alberta
| | - Darren Freed
- Department of Cardiovascular Surgery, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta
| | - Consolato Sergi
- Department of Laboratory Medicine and Pathology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta
| | - Gavin Y Oudit
- Department of Medicine, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta
| | - Zamaneh Kassiri
- Department of Physiology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta.
| |
Collapse
|
42
|
Berezin AE, Kremzer AA. Predictive value of circulating osteonectin in patients with ischemic symptomatic chronic heart failure. Biomed J 2016; 38:523-30. [PMID: 27013452 PMCID: PMC6138259 DOI: 10.1016/j.bj.2015.08.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2014] [Accepted: 08/13/2015] [Indexed: 11/30/2022] Open
Abstract
Background Osteonectin (OSN) plays a pivotal role in cardiac remodeling, but predictive value for OSN in ischemic chronic heart failure (CHF) has not been defined. The aim of the study was to evaluate the prognostic value of OSN for cumulative survival and hospitalization among patients with ischemic-induced CHF. Methods A total of 154 patients with ischemic symptomatic moderate-to-severe CHF were enrolled in the study at discharge from the hospital. Observation period was up to 3 years (156 weeks). Blood samples for biomarkers measurements were collected at baseline prior to study entry. ELISA methods for measurements of circulating level of OSN were used. Results During a median follow-up of 2.18 years, 21 participants died and 106 subjects were re-admitted. Medians of circulating levels of OSN in survival and died patient cohorts were 670.96 ng/mL (95% confidence interval [CI] = 636.53–705.35 ng/mL) and 907.84 ng/mL (95% CI = 878.02–937.60 ng/mL). Receiver operation characteristic curve analysis has shown that cut off point of OSN concentration for cumulative survival function was 845.15 ng/mL. It has been found a significant divergence of Kaplan–Meier survival curves in patients with high (>845.15 ng/mL) and low (<845.15 ng/mL) concentrations of OSN. Circulating OSN independently predicted all-cause mortality (odds ratio [OR] = 1.23; 95% CI = 1.10–1.36; p < 0.001), CHF-related death (OR = 1.46; 95% CI = 1.22–1.80; p < 0.001), and also CHF-related re-admission (OR = 1.92; 95% CI = 1.77–2.45; p < 0.001) within 3 years of observation period. Conclusion Increased circulating secreted protein acidic and rich in cysteine family member OSN associates with increased 3-year CHF-related death, all-cause mortality, and risk for recurrent hospitalization due to CHF.
Collapse
Affiliation(s)
- Alexander E Berezin
- Department of Internal Medicine, State Medical University, Zaporozhye, Ukraine.
| | - Alexander A Kremzer
- Department of Clinical Pharmacology, State Medical University, Zaporozhye, Ukraine
| |
Collapse
|
43
|
Fan D, Takawale A, Shen M, Wang W, Wang X, Basu R, Oudit GY, Kassiri Z. Cardiomyocyte A Disintegrin And Metalloproteinase 17 (ADAM17) Is Essential in Post-Myocardial Infarction Repair by Regulating Angiogenesis. Circ Heart Fail 2015; 8:970-9. [PMID: 26136458 DOI: 10.1161/circheartfailure.114.002029] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/24/2014] [Accepted: 06/17/2015] [Indexed: 12/24/2022]
Abstract
BACKGROUND A disintegrin and metalloproteinase 17 (ADAM17) is a membrane-bound enzyme that mediates shedding of many membrane-bound molecules, thereby regulating multiple cellular responses. We investigated the role of cardiomyocyte ADAM17 in myocardial infarction (MI). METHODS AND RESULTS Cardiomyocyte-specific ADAM17 knockdown mice (ADAM17(flox/flox)/α-MHC-Cre; f/f/Cre) and parallel controls (ADAM17(flox/flox); f/f) were subjected to MI by ligation of the left anterior descending artery. Post MI, f/f/Cre mice showed compromised survival, higher rates of cardiac rupture, more severe left ventricular dilation, and suppressed ejection fraction compared with parallel f/f-MI mice. Ex vivo ischemic injury (isolated hearts) resulted in comparable recovery in both genotypes. Myocardial vascular density (fluorescent-labeled lectin perfusion and CD31 immunofluorescence staining) was significantly lower in the infarct areas of f/f/Cre-MI compared with f/f-MI mice. Activation of vascular endothelial growth factor receptor 2 (VEGFR2), its mRNA, and total protein levels were reduced in infarcted myocardium in ADAM17 knockdown mice. Transcriptional regulation of VEGFR2 by ADAM17 was confirmed in cocultured cardiomyocyte-fibroblast as ischemia-induced VEGFR2 expression was blocked by ADAM17-siRNA. Meanwhile, ADAM17-siRNA did not alter VEGFA bioavailability in the conditioned media. ADAM17 knockdown mice (f/f/Cre-MI) exhibited reduced nuclear factor-κB activation (DNA binding) in the infarcted myocardium, which could underlie the suppressed VEGFR2 expression in these hearts. Post MI, inflammatory response was not altered by ADAM17 downregulation. CONCLUSIONS This study highlights the key role of cardiomyocyte ADAM17 in post-MI recovery by regulating VEGFR2 transcription and angiogenesis, thereby limiting left ventricular dilation and dysfunction. Therefore, ADAM17 upregulation, within the physiological range, could provide protective effects in ischemic cardiomyopathy.
Collapse
Affiliation(s)
- Dong Fan
- From the Department of Physiology (D.F., A.T., M.S., X.W., Z.K.), Division of Cardiology, Department of Medicine (W.W., R.B., G.Y.O.), Cardiovascular Research Center (D.F., A.T., M.S., X.W., Z.K., W.W., R.B.), Mazankowski Alberta Heart Institute, University of Alberta, Edmonton, Alberta, Canada
| | - Abhijit Takawale
- From the Department of Physiology (D.F., A.T., M.S., X.W., Z.K.), Division of Cardiology, Department of Medicine (W.W., R.B., G.Y.O.), Cardiovascular Research Center (D.F., A.T., M.S., X.W., Z.K., W.W., R.B.), Mazankowski Alberta Heart Institute, University of Alberta, Edmonton, Alberta, Canada
| | - Mengcheng Shen
- From the Department of Physiology (D.F., A.T., M.S., X.W., Z.K.), Division of Cardiology, Department of Medicine (W.W., R.B., G.Y.O.), Cardiovascular Research Center (D.F., A.T., M.S., X.W., Z.K., W.W., R.B.), Mazankowski Alberta Heart Institute, University of Alberta, Edmonton, Alberta, Canada
| | - Wang Wang
- From the Department of Physiology (D.F., A.T., M.S., X.W., Z.K.), Division of Cardiology, Department of Medicine (W.W., R.B., G.Y.O.), Cardiovascular Research Center (D.F., A.T., M.S., X.W., Z.K., W.W., R.B.), Mazankowski Alberta Heart Institute, University of Alberta, Edmonton, Alberta, Canada
| | - Xiuhua Wang
- From the Department of Physiology (D.F., A.T., M.S., X.W., Z.K.), Division of Cardiology, Department of Medicine (W.W., R.B., G.Y.O.), Cardiovascular Research Center (D.F., A.T., M.S., X.W., Z.K., W.W., R.B.), Mazankowski Alberta Heart Institute, University of Alberta, Edmonton, Alberta, Canada
| | - Ratnadeep Basu
- From the Department of Physiology (D.F., A.T., M.S., X.W., Z.K.), Division of Cardiology, Department of Medicine (W.W., R.B., G.Y.O.), Cardiovascular Research Center (D.F., A.T., M.S., X.W., Z.K., W.W., R.B.), Mazankowski Alberta Heart Institute, University of Alberta, Edmonton, Alberta, Canada
| | - Gavin Y Oudit
- From the Department of Physiology (D.F., A.T., M.S., X.W., Z.K.), Division of Cardiology, Department of Medicine (W.W., R.B., G.Y.O.), Cardiovascular Research Center (D.F., A.T., M.S., X.W., Z.K., W.W., R.B.), Mazankowski Alberta Heart Institute, University of Alberta, Edmonton, Alberta, Canada
| | - Zamaneh Kassiri
- From the Department of Physiology (D.F., A.T., M.S., X.W., Z.K.), Division of Cardiology, Department of Medicine (W.W., R.B., G.Y.O.), Cardiovascular Research Center (D.F., A.T., M.S., X.W., Z.K., W.W., R.B.), Mazankowski Alberta Heart Institute, University of Alberta, Edmonton, Alberta, Canada.
| |
Collapse
|
44
|
Torina AG, Reichert K, Lima F, de Souza Vilarinho KA, de Oliveira PPM, do Carmo HRP, de Carvalho DD, Saad MJA, Sposito AC, Petrucci O. Diacerein improves left ventricular remodeling and cardiac function by reducing the inflammatory response after myocardial infarction. PLoS One 2015; 10:e0121842. [PMID: 25816098 PMCID: PMC4376692 DOI: 10.1371/journal.pone.0121842] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2014] [Accepted: 02/19/2015] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND The inflammatory response has been implicated in the pathogenesis of left ventricular (LV) remodeling after myocardial infarction (MI). An anthraquinone compound with anti-inflammatory properties, diacerein inhibits the synthesis and activity of pro-inflammatory cytokines, such as tumor necrosis factor and interleukins 1 and 6. The purpose of this study was to investigate the effects of diacerein on ventricular remodeling in vivo. METHODS AND RESULTS Ligation of the left anterior descending artery was used to induce MI in an experimental rat model. Rats were divided into two groups: a control group that received saline solution (n = 16) and a group that received diacerein (80 mg/kg) daily (n = 10). After 4 weeks, the LV volume, cellular signaling, caspase 3 activity, and nuclear factor kappa B (NF-κB) transcription were compared between the two groups. After 4 weeks, end-diastolic and end-systolic LV volumes were reduced in the treatment group compared to the control group (p < .01 and p < .01, respectively). Compared to control rats, diacerein-treated rats exhibited less fibrosis in the LV (14.65%± 7.27% vs. 22.57%± 8.94%; p < .01), lower levels of caspase-3 activity, and lower levels of NF-κB p65 transcription. CONCLUSIONS Treatment with diacerein once a day for 4 weeks after MI improved ventricular remodeling by promoting lower end-systolic and end-diastolic LV volumes. Diacerein also reduced fibrosis in the LV. These effects might be associated with partial blockage of the NF-κB pathway.
Collapse
Affiliation(s)
- Anali Galluce Torina
- Laboratory of Myocardial Ischemia/Reperfusion, Faculty of Medical Science, State University of Campinas—UNICAMP, Campinas, SP, Brazil
| | - Karla Reichert
- Laboratory of Myocardial Ischemia/Reperfusion, Faculty of Medical Science, State University of Campinas—UNICAMP, Campinas, SP, Brazil
| | - Fany Lima
- Laboratory of Myocardial Ischemia/Reperfusion, Faculty of Medical Science, State University of Campinas—UNICAMP, Campinas, SP, Brazil
| | | | - Pedro Paulo Martins de Oliveira
- Department of Surgery, Discipline of Cardiac Surgery, Faculty of Medical Science, State University of Campinas—UNICAMP, Campinas, SP, Brazil
| | - Helison Rafael Pereira do Carmo
- Laboratory of Myocardial Ischemia/Reperfusion, Faculty of Medical Science, State University of Campinas—UNICAMP, Campinas, SP, Brazil
| | - Daniela Diógenes de Carvalho
- Laboratory of Myocardial Ischemia/Reperfusion, Faculty of Medical Science, State University of Campinas—UNICAMP, Campinas, SP, Brazil
| | - Mário José Abdalla Saad
- Department of Internal Medicine, Faculty of Medical Science, State University of Campinas—UNICAMP, Campinas, SP, Brazil
| | - Andrei Carvalho Sposito
- Department of Internal Medicine, Faculty of Medical Science, State University of Campinas—UNICAMP, Campinas, SP, Brazil
| | - Orlando Petrucci
- Laboratory of Myocardial Ischemia/Reperfusion, Faculty of Medical Science, State University of Campinas—UNICAMP, Campinas, SP, Brazil
- Department of Surgery, Discipline of Cardiac Surgery, Faculty of Medical Science, State University of Campinas—UNICAMP, Campinas, SP, Brazil
- * E-mail:
| |
Collapse
|
45
|
Arpino V, Brock M, Gill SE. The role of TIMPs in regulation of extracellular matrix proteolysis. Matrix Biol 2015; 44-46:247-54. [PMID: 25805621 DOI: 10.1016/j.matbio.2015.03.005] [Citation(s) in RCA: 461] [Impact Index Per Article: 51.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2014] [Revised: 03/09/2015] [Accepted: 03/11/2015] [Indexed: 12/21/2022]
Abstract
Tissue inhibitors of metalloproteinases (TIMPs), which inhibit matrix metalloproteinases (MMPs) as well as the closely related, a disintegrin and metalloproteinases (ADAMs) and ADAMs with thrombospondin motifs (ADAMTSs), were traditionally thought to control extracellular matrix (ECM) proteolysis through direct inhibition of MMP-dependent ECM proteolysis. This classical role for TIMPs suggests that increased TIMP levels results in ECM accumulation (or fibrosis), whereas loss of TIMPs leads to enhanced matrix proteolysis. Mice lacking TIMP family members have provided support for such a role; however, studies with these TIMP deficient mice have also demonstrated that loss of TIMPs can often be associated with an accumulation of ECM. Collectively, these studies suggest that the divergent roles of TIMPs in matrix accumulation and proteolysis, which together can be referred to as ECM turnover, are dependent on the TIMP, specific tissue, and local tissue environment (i.e. health vs. injury/disease). Ultimately, these combined factors dictate the specific metalloproteinases being regulated by a given TIMP, and it is likely the diversity of metalloproteinases and their physiological substrates that determines whether TIMPs inhibit matrix proteolysis or accumulation. In this review, we discuss the evidence for the dichotomous roles of TIMPs in ECM turnover highlighting some of the common findings between different TIMP family members. Importantly, while we now have a better understanding of the role of TIMPs in regulating ECM turnover, much remains to be determined. Data on the specific metalloproteinases inhibited by different TIMPs in vivo remains limited and must be the focus of future studies.
Collapse
Affiliation(s)
- Valerie Arpino
- Centre for Critical Illness Research, Lawson Health Research Institute, London Health Sciences Center, London, Ontario, Canada; Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada
| | - Michael Brock
- Centre for Critical Illness Research, Lawson Health Research Institute, London Health Sciences Center, London, Ontario, Canada; Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada
| | - Sean E Gill
- Centre for Critical Illness Research, Lawson Health Research Institute, London Health Sciences Center, London, Ontario, Canada; Division of Respirology, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada; Department of Medicine, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada; Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada.
| |
Collapse
|
46
|
Takawale A, Sakamuri SS, Kassiri Z. Extracellular Matrix Communication and Turnover in Cardiac Physiology and Pathology. Compr Physiol 2015; 5:687-719. [DOI: 10.1002/cphy.c140045] [Citation(s) in RCA: 83] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
47
|
Wang GL, Xiao Y, Voorhees A, Qi YX, Jiang ZL, Han HC. Artery Remodeling Under Axial Twist in Three Days Organ Culture. Ann Biomed Eng 2014; 43:1738-47. [PMID: 25503524 DOI: 10.1007/s10439-014-1215-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2014] [Accepted: 12/04/2014] [Indexed: 11/28/2022]
Abstract
Arteries often endure axial twist due to body movement and surgical procedures, but how arteries remodel under axial twist remains unclear. The objective of this study was to investigate early stage arterial wall remodeling under axial twist. Porcine carotid arteries were twisted axially and maintained for three days in ex vivo organ culture systems while the pressure and flow remained the same as untwisted controls. Cell proliferation, internal elastic lamina (IEL) fenestrae shape and size, endothelial cell (EC) morphology and orientation, as well as the expression of matrix metalloproteinases (MMPs), MMP-2 and MMP-9, and tissue inhibitor of metalloproteinase-2 (TIMP-2) were quantified using immunohistochemistry staining and immunoblotting. Our results demonstrated that cell proliferation in both the intima and media were significantly higher in the twisted arteries compared to the controls. The cell proliferation in the intima increased from 1.33 ± 0.21% to 7.63 ± 1.89%, and in the media from 1.93 ± 0.84% to 8.27 ± 2.92% (p < 0.05). IEL fenestrae total area decreased from 26.07 ± 2.13% to 14.74 ± 0.61% and average size decreased from 169.03 ± 18.85 μm(2) to 80.14 ± 1.96 μm(2) (p < 0.01), but aspect ratio increased in the twist group from 2.39 ± 0.15 to 2.83 ± 0.29 (p < 0.05). MMP-2 expression significantly increased (p < 0.05) while MMP-9 and TIMP-2 showed no significant difference in the twist group. The ECs in the twisted arteries were significantly elongated compared to the controls after three days. The angle between the major axis of the ECs and blood flow direction under twist was 7.46 ± 2.44 degrees after 3 days organ culture, a decrease from the initial 15.58 ± 1.29 degrees. These results demonstrate that axial twist can stimulate artery remodeling. These findings complement our understanding of arterial wall remodeling under mechanical stress resulting from pressure and flow variations.
Collapse
Affiliation(s)
- Guo-Liang Wang
- Institute of Mechanobiology and Medical Engineering, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | | | | | | | | | | |
Collapse
|
48
|
Parthasarathy A, Gopi V, Devi KM S, Balaji N, Vellaichamy E. Aminoguanidine inhibits ventricular fibrosis and remodeling process in isoproterenol-induced hypertrophied rat hearts by suppressing ROS and MMPs. Life Sci 2014; 118:15-26. [DOI: 10.1016/j.lfs.2014.09.030] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2014] [Revised: 09/24/2014] [Accepted: 09/30/2014] [Indexed: 12/11/2022]
|
49
|
Yarbrough WM, Baicu C, Mukherjee R, Van Laer A, Rivers WT, McKinney RA, Prescott CB, Stroud RE, Freels PD, Zellars KN, Zile MR, Spinale FG. Cardiac-restricted overexpression or deletion of tissue inhibitor of matrix metalloproteinase-4: differential effects on left ventricular structure and function following pressure overload-induced hypertrophy. Am J Physiol Heart Circ Physiol 2014; 307:H752-61. [PMID: 24993046 PMCID: PMC4187400 DOI: 10.1152/ajpheart.00063.2014] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2014] [Accepted: 06/16/2014] [Indexed: 11/22/2022]
Abstract
Historically, the tissue inhibitors of matrix metalloproteinases (TIMPs) were considered monochromatic in function. However, differential TIMP profiles more recently observed with left ventricular (LV) dysfunction and matrix remodeling suggest more diverse biological roles for individual TIMPs. This study tested the hypothesis that cardiac-specific overexpression (TIMP-4OE) or deletion (knockout; TIMP-4KO) would differentially affect LV function and structure following pressure overload (LVPO). LVPO (transverse aortic constriction) was induced in mice (3.5 ± 0.1 mo of age, equal sex distribution) with TIMP-4OE (n = 38), TIMP-4KO (n = 24), as well as age/strain-matched wild type (WT, n = 25), whereby indexes of LV remodeling and function such as LV mass and ejection fraction (LVEF) were determined at 28 days following LVPO. Following LVPO, both early (7 days) and late (28 days) survival was ~25% lower in the TIMP-4KO group (P < 0.05). While LVPO increased LV mass in all groups, the relative hypertrophic response was attenuated with TIMP-4OE. With LVPO, LVEF was similar between WT and TIMP-4KO (48 ± 2% and 45 ± 3%, respectively) but was higher with TIMP-4OE (57 ± 2%, P < 0.05). With LVPO, LV myocardial collagen expression (type I, III) increased by threefold in all groups (P < 0.05), but surprisingly this response was most robust in the TIMP-4KO group. These unique findings suggest that increased myocardial TIMP-4 in the context of a LVPO stimulus may actually provide protective effects with respect to survival, LV function, and extracellular matrix (ECM) remodeling. These findings challenge the canonical belief that increased levels of specific myocardial TIMPs, such as TIMP-4 in and of themselves, contribute to adverse ECM accumulation following a pathological stimulus, such as LVPO.
Collapse
Affiliation(s)
| | - Catalin Baicu
- Division of Cardiothoracic Surgery and Adult Cardiology, Medical University of South Carolina, Ralph H. Johnson Veterans Affairs Medical Center, Charleston, South Carolina; and
| | - Rupak Mukherjee
- Division of Cardiothoracic Surgery and Adult Cardiology, Medical University of South Carolina, Ralph H. Johnson Veterans Affairs Medical Center, Charleston, South Carolina; and
| | - An Van Laer
- Division of Cardiothoracic Surgery and Adult Cardiology, Medical University of South Carolina, Ralph H. Johnson Veterans Affairs Medical Center, Charleston, South Carolina; and
| | - William T Rivers
- Division of Cardiothoracic Surgery and Adult Cardiology, Medical University of South Carolina, Ralph H. Johnson Veterans Affairs Medical Center, Charleston, South Carolina; and
| | - Richard A McKinney
- Division of Cardiothoracic Surgery and Adult Cardiology, Medical University of South Carolina, Ralph H. Johnson Veterans Affairs Medical Center, Charleston, South Carolina; and
| | - Corey B Prescott
- Division of Cardiothoracic Surgery and Adult Cardiology, Medical University of South Carolina, Ralph H. Johnson Veterans Affairs Medical Center, Charleston, South Carolina; and
| | - Robert E Stroud
- Division of Cardiothoracic Surgery and Adult Cardiology, Medical University of South Carolina, Ralph H. Johnson Veterans Affairs Medical Center, Charleston, South Carolina; and
| | - Parker D Freels
- University of South Carolina School of Medicine, WJB Dorn Veterans Affairs Medical Center, Columbia, South Carolina
| | - Kia N Zellars
- University of South Carolina School of Medicine, WJB Dorn Veterans Affairs Medical Center, Columbia, South Carolina
| | - Michael R Zile
- Division of Cardiothoracic Surgery and Adult Cardiology, Medical University of South Carolina, Ralph H. Johnson Veterans Affairs Medical Center, Charleston, South Carolina; and
| | - Francis G Spinale
- University of South Carolina School of Medicine, WJB Dorn Veterans Affairs Medical Center, Columbia, South Carolina;
| |
Collapse
|
50
|
Takawale A, Fan D, Basu R, Shen M, Parajuli N, Wang W, Wang X, Oudit GY, Kassiri Z. Myocardial recovery from ischemia-reperfusion is compromised in the absence of tissue inhibitor of metalloproteinase 4. Circ Heart Fail 2014; 7:652-62. [PMID: 24842912 DOI: 10.1161/circheartfailure.114.001113] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND Myocardial reperfusion after ischemia (I/R), although an effective approach in rescuing the ischemic myocardium, can itself trigger several adverse effects including aberrant remodeling of the myocardium and its extracellular matrix. Tissue inhibitor of metalloproteinases (TIMPs) protect the extracellular matrix against excess degradation by matrix metalloproteinases (MMPs). TIMP4 levels are reduced in myocardial infarction; however, its causal role in progression of post-I/R injury has not been explored. METHODS AND RESULTS In vivo I/R (20-minute ischemia, 1-week reperfusion) resulted in more severe systolic and diastolic dysfunction in TIMP4(-/-) mice with enhanced inflammation, oxidative stress (1 day post-I/R), hypertrophy, and interstitial fibrosis (1 week). After an initial increase in TIMP4 (1 day post-I/R), TIMP4 mRNA and protein decreased in the ischemic myocardium from wild-type mice by 1 week post-I/R and in tissue samples from patients with myocardial infarction, which correlated with enhanced activity of membrane-bound MMP, membrane-type 1 MMP. By 4 weeks post-I/R, wild-type mice showed no cardiac dysfunction, elevated TIMP4 levels (to baseline), and normalized membrane-type 1 MMP activity. TIMP4-deficient mice, however, showed exacerbated diastolic dysfunction, sustained elevation of membrane-type 1 MMP activity, and worsened myocardial hypertrophy and fibrosis. Ex vivo I/R (20- or 30-minute ischemia, 45-minute reperfusion) resulted in comparable cardiac dysfunction in wild-type and TIMP4(-/-) mice. CONCLUSIONS TIMP4 is essential for recovery from myocardial I/R in vivo, primarily because of its membrane-type 1 MMP inhibitory function. TIMP4 deficiency does not increase susceptibility to ex vivo I/R injury. Replenishment of myocardial TIMP4 could serve as an effective therapy in post-I/R recovery for patients with reduced TIMP4.
Collapse
Affiliation(s)
- Abhijit Takawale
- From the Department of Physiology (A.T., D.F., R.B., M.S., W.W., X.W., G.Y.O., Z.K.) and Department of Medicine/Division of Cardiology (N.P., G.Y.O.), University of Alberta, Edmonton, Alberta, Canada; and Mazankowski Alberta Heart Institute, Edmonton, Alberta, Canada (A.T., D.F., R.B., M.S., N.P., W.W., X.W., G.Y.O., Z.K.)
| | - Dong Fan
- From the Department of Physiology (A.T., D.F., R.B., M.S., W.W., X.W., G.Y.O., Z.K.) and Department of Medicine/Division of Cardiology (N.P., G.Y.O.), University of Alberta, Edmonton, Alberta, Canada; and Mazankowski Alberta Heart Institute, Edmonton, Alberta, Canada (A.T., D.F., R.B., M.S., N.P., W.W., X.W., G.Y.O., Z.K.)
| | - Ratnadeep Basu
- From the Department of Physiology (A.T., D.F., R.B., M.S., W.W., X.W., G.Y.O., Z.K.) and Department of Medicine/Division of Cardiology (N.P., G.Y.O.), University of Alberta, Edmonton, Alberta, Canada; and Mazankowski Alberta Heart Institute, Edmonton, Alberta, Canada (A.T., D.F., R.B., M.S., N.P., W.W., X.W., G.Y.O., Z.K.)
| | - Mengcheng Shen
- From the Department of Physiology (A.T., D.F., R.B., M.S., W.W., X.W., G.Y.O., Z.K.) and Department of Medicine/Division of Cardiology (N.P., G.Y.O.), University of Alberta, Edmonton, Alberta, Canada; and Mazankowski Alberta Heart Institute, Edmonton, Alberta, Canada (A.T., D.F., R.B., M.S., N.P., W.W., X.W., G.Y.O., Z.K.)
| | - Nirmal Parajuli
- From the Department of Physiology (A.T., D.F., R.B., M.S., W.W., X.W., G.Y.O., Z.K.) and Department of Medicine/Division of Cardiology (N.P., G.Y.O.), University of Alberta, Edmonton, Alberta, Canada; and Mazankowski Alberta Heart Institute, Edmonton, Alberta, Canada (A.T., D.F., R.B., M.S., N.P., W.W., X.W., G.Y.O., Z.K.)
| | - Wang Wang
- From the Department of Physiology (A.T., D.F., R.B., M.S., W.W., X.W., G.Y.O., Z.K.) and Department of Medicine/Division of Cardiology (N.P., G.Y.O.), University of Alberta, Edmonton, Alberta, Canada; and Mazankowski Alberta Heart Institute, Edmonton, Alberta, Canada (A.T., D.F., R.B., M.S., N.P., W.W., X.W., G.Y.O., Z.K.)
| | - Xiuhua Wang
- From the Department of Physiology (A.T., D.F., R.B., M.S., W.W., X.W., G.Y.O., Z.K.) and Department of Medicine/Division of Cardiology (N.P., G.Y.O.), University of Alberta, Edmonton, Alberta, Canada; and Mazankowski Alberta Heart Institute, Edmonton, Alberta, Canada (A.T., D.F., R.B., M.S., N.P., W.W., X.W., G.Y.O., Z.K.)
| | - Gavin Y Oudit
- From the Department of Physiology (A.T., D.F., R.B., M.S., W.W., X.W., G.Y.O., Z.K.) and Department of Medicine/Division of Cardiology (N.P., G.Y.O.), University of Alberta, Edmonton, Alberta, Canada; and Mazankowski Alberta Heart Institute, Edmonton, Alberta, Canada (A.T., D.F., R.B., M.S., N.P., W.W., X.W., G.Y.O., Z.K.)
| | - Zamaneh Kassiri
- From the Department of Physiology (A.T., D.F., R.B., M.S., W.W., X.W., G.Y.O., Z.K.) and Department of Medicine/Division of Cardiology (N.P., G.Y.O.), University of Alberta, Edmonton, Alberta, Canada; and Mazankowski Alberta Heart Institute, Edmonton, Alberta, Canada (A.T., D.F., R.B., M.S., N.P., W.W., X.W., G.Y.O., Z.K.).
| |
Collapse
|