1
|
Guan ZH, Yang D, Wang Y, Ma JB, Wang GN. Ectodysplasin-A2 receptor (EDA2R) knockdown alleviates myocardial ischemia/reperfusion injury through inhibiting the activation of the NF-κB signaling pathway. Exp Anim 2024; 73:376-389. [PMID: 38797667 DOI: 10.1538/expanim.24-0020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/29/2024] Open
Abstract
Ischemia/reperfusion (I/R) is a pathological process that occurs in numerous organs and is often associated with severe cellular damage and death. Ectodysplasin-A2 receptor (EDA2R) is a member of the TNF receptor family that has anti-inflammatory and antioxidant effects. However, to the best of our knowledge, its role in the progression of myocardial I/R injury remains unclear. The present study aimed to investigate the role of EDA2R during myocardial I/R injury and the molecular mechanisms involved. In vitro, dexmedetomidine (DEX) exhibited a protective effect on hypoxia/reoxygenation (H/R)-induced cardiomyocyte injury and downregulated EDA2R expression. Subsequently, EDA2R silencing enhanced cell viability and reduced the apoptosis of cardiomyocytes. Furthermore, knockdown of EDA2R led to an elevated mitochondrial membrane potential (MMP), repressed the release of Cytochrome C and upregulated Bcl-2 expression. EDA2R knockdown also resulted in downregulated expression of Bax, and decreased activity of Caspase-3 and Caspase-9 in cardiomyocytes, reversing the effects of H/R on mitochondria-mediated apoptosis. In addition, knockdown of EDA2R suppressed H/R-induced oxidative stress. Mechanistically, EDA2R knockdown inactivated the NF-κB signaling pathway. Additionally, downregulation of EDA2R weakened myocardial I/R injury in mice, as reflected by improved left ventricular function and reduced infarct size, as well as suppressed apoptosis and oxidative stress. Additionally, EDA2R knockdown repressed the activation of NF-κB signal in vivo. Collectively, knockdown of EDA2R exerted anti-apoptotic and antioxidant effects against I/R injury in vivo and in vitro by suppressing the NF-κB signaling pathway.
Collapse
Affiliation(s)
- Zhi-Hui Guan
- Department of Anesthesiology, the Fourth Affiliated Hospital of Harbin Medical University, No. 37, Yiyuan Street, Harbin, 150001, P.R. China
| | - Di Yang
- Department of Anesthesiology, Heilongjiang Hospital, Beijing Children's Hospital, Capital Medical University, No. 57, Youyi Road, Harbin, 150028, P.R. China
| | - Yi Wang
- Department of Anesthesiology, the Fourth Affiliated Hospital of Harbin Medical University, No. 37, Yiyuan Street, Harbin, 150001, P.R. China
| | - Jia-Bin Ma
- Department of Medical Service, Heilongjiang Province Healthcare Security Administration, No. 68, Zhongshan Road, Harbin, 150036, P.R. China
| | - Guo-Nian Wang
- Department of Anesthesiology, the Fourth Affiliated Hospital of Harbin Medical University, No. 37, Yiyuan Street, Harbin, 150001, P.R. China
| |
Collapse
|
2
|
Burda R, Křemen R, Némethová M, Burda J. Clinical usage of ischemic tolerance-where are its limits? Asian J Surg 2024:S1015-9584(24)01058-3. [PMID: 38824026 DOI: 10.1016/j.asjsur.2024.05.167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 05/24/2024] [Indexed: 06/03/2024] Open
Abstract
Ischemic tolerance is a robust internal defense mechanism of all living organisms. The effectiveness of this mechanism has been repeatedly demonstrated in experiments, but a comprehensive review of the clinical applicability of this phenomenon in practice has not yet been published. The results in clinical practice sound ambiguous and unconvincing in comparison with the results of experimental studies. Also, in many localities, the effect of ischemic tolerance was not clinically proven. For the reasons mentioned, the authors analyze the possible causes of the mentioned discrepancies and provide a comprehensive insight into the possible relevant clinical use of this phenomenon in practice for different groups of patients.
Collapse
Affiliation(s)
- Rastislav Burda
- Department of Trauma Surgery, Faculty of Medicine, Pavol Jozef Šafárik University in Košice, Rastislavova 43, 040 01, Košice, Slovakia; Department of Trauma Surgery, Louis Pasteur University Hospital, Rastislavova 43, 040 01, Košice, Slovakia.
| | - Róbert Křemen
- Department of Trauma Surgery, Faculty of Medicine, Pavol Jozef Šafárik University in Košice, Rastislavova 43, 040 01, Košice, Slovakia; Department of Trauma Surgery, Louis Pasteur University Hospital, Rastislavova 43, 040 01, Košice, Slovakia
| | - Miroslava Némethová
- Institute of Neurobiology of Biomedical Research Center, Slovak Academy of Sciences, 040 01, Košice, Slovakia
| | - Jozef Burda
- Institute of Neurobiology of Biomedical Research Center, Slovak Academy of Sciences, 040 01, Košice, Slovakia
| |
Collapse
|
3
|
Wang G, Luo Y, Gao X, Liang Y, Yang F, Wu J, Fang D, Luo M. MicroRNA regulation of phenotypic transformations in vascular smooth muscle: relevance to vascular remodeling. Cell Mol Life Sci 2023; 80:144. [PMID: 37165163 PMCID: PMC11071847 DOI: 10.1007/s00018-023-04793-w] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 04/10/2023] [Accepted: 04/27/2023] [Indexed: 05/12/2023]
Abstract
Alterations in the vascular smooth muscle cells (VSMC) phenotype play a critical role in the pathogenesis of several cardiovascular diseases, including hypertension, atherosclerosis, and restenosis after angioplasty. MicroRNAs (miRNAs) are a class of endogenous noncoding RNAs (approximately 19-25 nucleotides in length) that function as regulators in various physiological and pathophysiological events. Recent studies have suggested that aberrant miRNAs' expression might underlie VSMC phenotypic transformation, appearing to regulate the phenotypic transformations of VSMCs by targeting specific genes that either participate in the maintenance of the contractile phenotype or contribute to the transformation to alternate phenotypes, and affecting atherosclerosis, hypertension, and coronary artery disease by altering VSMC proliferation, migration, differentiation, inflammation, calcification, oxidative stress, and apoptosis, suggesting an important regulatory role in vascular remodeling for maintaining vascular homeostasis. This review outlines recent progress in the discovery of miRNAs and elucidation of their mechanisms of action and functions in VSMC phenotypic regulation. Importantly, as the literature supports roles for miRNAs in modulating vascular remodeling and for maintaining vascular homeostasis, this area of research will likely provide new insights into clinical diagnosis and prognosis and ultimately facilitate the identification of novel therapeutic targets.
Collapse
Affiliation(s)
- Gang Wang
- Key Laboratory of Medical Electrophysiology, Ministry of Education, Drug Discovery Research Center, Southwest Medical University, Longmatan District, No. 1, Section 1, Xianglin Road, Luzhou, Sichuan, China
- Laboratory for Cardiovascular Pharmacology of Department of Pharmacology, the School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China
- School of Pharmacy, Chongqing Medical University, Chongqing, China
| | - Yulin Luo
- GCP Center, Affiliated Hospital (Traditional Chinese Medicine) of Southwest Medical University, Luzhou, China
| | - Xiaojun Gao
- Key Laboratory of Medical Electrophysiology, Ministry of Education, Drug Discovery Research Center, Southwest Medical University, Longmatan District, No. 1, Section 1, Xianglin Road, Luzhou, Sichuan, China
- Laboratory for Cardiovascular Pharmacology of Department of Pharmacology, the School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China
| | - Yu Liang
- Integrated Traditional Chinese and Western Medicine, Affiliated Hospital of Traditional Chinese Medicine, Southwest Medical University, Luzhou, Sichuan, China
| | - Feifei Yang
- School of Pharmacy, Chongqing Medical University, Chongqing, China
| | - Jianbo Wu
- Key Laboratory of Medical Electrophysiology, Ministry of Education, Drug Discovery Research Center, Southwest Medical University, Longmatan District, No. 1, Section 1, Xianglin Road, Luzhou, Sichuan, China
- Laboratory for Cardiovascular Pharmacology of Department of Pharmacology, the School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China
| | - Dan Fang
- Key Laboratory of Medical Electrophysiology, Ministry of Education, Drug Discovery Research Center, Southwest Medical University, Longmatan District, No. 1, Section 1, Xianglin Road, Luzhou, Sichuan, China.
- Laboratory for Cardiovascular Pharmacology of Department of Pharmacology, the School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China.
| | - Mao Luo
- Key Laboratory of Medical Electrophysiology, Ministry of Education, Drug Discovery Research Center, Southwest Medical University, Longmatan District, No. 1, Section 1, Xianglin Road, Luzhou, Sichuan, China.
- Laboratory for Cardiovascular Pharmacology of Department of Pharmacology, the School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China.
- Integrated Traditional Chinese and Western Medicine, Affiliated Hospital of Traditional Chinese Medicine, Southwest Medical University, Luzhou, Sichuan, China.
| |
Collapse
|
4
|
Vargas I, Grabau RP, Chen J, Weinheimer C, Kovacs A, Dominguez-Viqueira W, Mitchell A, Wickline SA, Pan H. Simultaneous Inhibition of Thrombosis and Inflammation Is Beneficial in Treating Acute Myocardial Infarction. Int J Mol Sci 2023; 24:7333. [PMID: 37108494 PMCID: PMC10138953 DOI: 10.3390/ijms24087333] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 03/28/2023] [Accepted: 04/11/2023] [Indexed: 04/29/2023] Open
Abstract
Myocardial ischemia reperfusion injury (IRI) in acute coronary syndromes is a condition in which ischemic/hypoxic injury to cells subtended by the occluded vessel continues despite successful resolution of the thrombotic obstruction. For decades, most efforts to attenuate IRI have focused on interdicting singular molecular targets or pathways, but none have successfully transitioned to clinical use. In this work, we investigate a nanoparticle-based therapeutic strategy for profound but local thrombin inhibition that may simultaneously mitigate both thrombosis and inflammatory signaling pathways to limit myocardial IRI. Perfluorocarbon nanoparticles (PFC NP) were covalently coupled with an irreversible thrombin inhibitor, PPACK (Phe[D]-Pro-Arg-Chloromethylketone), and delivered intravenously to animals in a single dose prior to ischemia reperfusion injury. Fluorescent microscopy of tissue sections and 19F magnetic resonance images of whole hearts ex vivo demonstrated abundant delivery of PFC NP to the area at risk. Echocardiography at 24 h after reperfusion demonstrated preserved ventricular structure and improved function. Treatment reduced thrombin deposition, suppressed endothelial activation, inhibited inflammasome signaling pathways, and limited microvascular injury and vascular pruning in infarct border zones. Accordingly, thrombin inhibition with an extraordinarily potent but locally acting agent suggested a critical role for thrombin and a promising therapeutic strategy in cardiac IRI.
Collapse
Affiliation(s)
- Ian Vargas
- University of South Florida Heart Institute, University of South Florida, Tampa, FL 33602, USA
| | - Ryan P. Grabau
- University of South Florida Heart Institute, University of South Florida, Tampa, FL 33602, USA
| | - Junjie Chen
- Consortium for Translational Research in Advanced Imaging and Nanomedicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Carla Weinheimer
- Cardiovascular Division, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Attila Kovacs
- Cardiovascular Division, Washington University School of Medicine, St. Louis, MO 63110, USA
| | | | - Adam Mitchell
- Division of Rheumatology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Samuel A. Wickline
- University of South Florida Heart Institute, University of South Florida, Tampa, FL 33602, USA
| | - Hua Pan
- Division of Rheumatology, Washington University School of Medicine, St. Louis, MO 63110, USA
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, MO 63105, USA
| |
Collapse
|
5
|
Burda R, Burda J, Morochovič R. Ischemic Tolerance—A Way to Reduce the Extent of Ischemia–Reperfusion Damage. Cells 2023; 12:cells12060884. [PMID: 36980225 PMCID: PMC10047660 DOI: 10.3390/cells12060884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 03/08/2023] [Accepted: 03/11/2023] [Indexed: 03/14/2023] Open
Abstract
Individual tissues have significantly different resistance to ischemia–reperfusion damage. There is still no adequate treatment for the consequences of ischemia–reperfusion damage. By utilizing ischemic tolerance, it is possible to achieve a significant reduction in the extent of the cell damage due to ischemia–reperfusion injury. Since ischemia–reperfusion damage usually occurs unexpectedly, the use of preconditioning is extremely limited. In contrast, postconditioning has wider possibilities for use in practice. In both cases, the activation of ischemic tolerance can also be achieved by the application of sublethal stress on a remote organ. Despite very encouraging and successful results in animal experiments, the clinical results have been disappointing so far. To avoid the factors that prevent the activation of ischemic tolerance, the solution has been to use blood plasma containing tolerance effectors. This plasma is taken from healthy donors in which, after exposure to two sublethal stresses within 48 h, effectors of ischemic tolerance occur in the plasma. Application of this activated plasma to recipient animals after the end of lethal ischemia prevents cell death and significantly reduces the consequences of ischemia–reperfusion damage. Until there is a clear chemical identification of the end products of ischemic tolerance, the simplest way of enhancing ischemic tolerance will be the preparation of activated plasma from young healthy donors with the possibility of its immediate use in recipients during the initial treatment.
Collapse
Affiliation(s)
- Rastislav Burda
- Department of Trauma Surgery, Faculty of Medicine, Pavol Jozef Šafárik University in Košice, Rastislavova 43, 040 01 Košice, Slovakia
- Department of Trauma Surgery, Louis Pasteur University Hospital, Rastislavova 43, 040 01 Košice, Slovakia
- Correspondence:
| | - Jozef Burda
- Institute of Neurobiology, Slovak Academy of Sciences, 040 01 Košice, Slovakia
| | - Radoslav Morochovič
- Department of Trauma Surgery, Faculty of Medicine, Pavol Jozef Šafárik University in Košice, Rastislavova 43, 040 01 Košice, Slovakia
- Department of Trauma Surgery, Louis Pasteur University Hospital, Rastislavova 43, 040 01 Košice, Slovakia
| |
Collapse
|
6
|
He L, Chu Y, Yang J, He J, Hua Y, Chen Y, Benavides G, Rowe GC, Zhou L, Ballinger S, Darley-Usmar V, Young ME, Prabhu SD, Sethu P, Zhou Y, Zhang C, Xie M. Activation of Autophagic Flux Maintains Mitochondrial Homeostasis during Cardiac Ischemia/Reperfusion Injury. Cells 2022; 11:2111. [PMID: 35805195 PMCID: PMC9265292 DOI: 10.3390/cells11132111] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 06/10/2022] [Accepted: 06/29/2022] [Indexed: 02/05/2023] Open
Abstract
Reperfusion injury after extended ischemia accounts for approximately 50% of myocardial infarct size, and there is no standard therapy. HDAC inhibition reduces infarct size and enhances cardiomyocyte autophagy and PGC1α-mediated mitochondrial biogenesis when administered at the time of reperfusion. Furthermore, a specific autophagy-inducing peptide, Tat-Beclin 1 (TB), reduces infarct size when administered at the time of reperfusion. However, since SAHA affects multiple pathways in addition to inducing autophagy, whether autophagic flux induced by TB maintains mitochondrial homeostasis during ischemia/reperfusion (I/R) injury is unknown. We tested whether the augmentation of autophagic flux by TB has cardioprotection by preserving mitochondrial homeostasis both in vitro and in vivo. Wild-type mice were randomized into two groups: Tat-Scrambled (TS) peptide as the control and TB as the experimental group. Mice were subjected to I/R surgery (45 min coronary ligation, 24 h reperfusion). Autophagic flux, mitochondrial DNA (mtDNA), mitochondrial morphology, and mitochondrial dynamic genes were assayed. Cultured neonatal rat ventricular myocytes (NRVMs) were treated with a simulated I/R injury to verify cardiomyocyte specificity. The essential autophagy gene, ATG7, conditional cardiomyocyte-specific knockout (ATG7 cKO) mice, and isolated adult mouse ventricular myocytes (AMVMs) were used to evaluate the dependency of autophagy in adult cardiomyocytes. In NRVMs subjected to I/R, TB increased autophagic flux, mtDNA content, mitochondrial function, reduced reactive oxygen species (ROS), and mtDNA damage. Similarly, in the infarct border zone of the mouse heart, TB induced autophagy, increased mitochondrial size and mtDNA content, and promoted the expression of PGC1α and mitochondrial dynamic genes. Conversely, loss of ATG7 in AMVMs and in the myocardium of ATG7 cKO mice abolished the beneficial effects of TB on mitochondrial homeostasis. Thus, autophagic flux is a sufficient and essential process to mitigate myocardial reperfusion injury by maintaining mitochondrial homeostasis and partly by inducing PGC1α-mediated mitochondrial biogenesis.
Collapse
Affiliation(s)
- Lihao He
- Department of Medicine, Division of Cardiovascular Disease, University of Alabama at Birmingham, Birmingham, AL 35233, USA; (L.H.); (Y.C.); (J.Y.); (J.H.); (Y.H.); (Y.C.); (G.C.R.); (L.Z.); (M.E.Y.); (S.D.P.); (P.S.)
- Department of Cardiology, Guangdong Provincial People’s Hospital, Affiliated with South China University of Technology, Guangzhou 510080, China;
| | - Yuxin Chu
- Department of Medicine, Division of Cardiovascular Disease, University of Alabama at Birmingham, Birmingham, AL 35233, USA; (L.H.); (Y.C.); (J.Y.); (J.H.); (Y.H.); (Y.C.); (G.C.R.); (L.Z.); (M.E.Y.); (S.D.P.); (P.S.)
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital of Shandong University, 107 Wenhuaxi Road, Jinan 250012, China;
| | - Jing Yang
- Department of Medicine, Division of Cardiovascular Disease, University of Alabama at Birmingham, Birmingham, AL 35233, USA; (L.H.); (Y.C.); (J.Y.); (J.H.); (Y.H.); (Y.C.); (G.C.R.); (L.Z.); (M.E.Y.); (S.D.P.); (P.S.)
| | - Jin He
- Department of Medicine, Division of Cardiovascular Disease, University of Alabama at Birmingham, Birmingham, AL 35233, USA; (L.H.); (Y.C.); (J.Y.); (J.H.); (Y.H.); (Y.C.); (G.C.R.); (L.Z.); (M.E.Y.); (S.D.P.); (P.S.)
| | - Yutao Hua
- Department of Medicine, Division of Cardiovascular Disease, University of Alabama at Birmingham, Birmingham, AL 35233, USA; (L.H.); (Y.C.); (J.Y.); (J.H.); (Y.H.); (Y.C.); (G.C.R.); (L.Z.); (M.E.Y.); (S.D.P.); (P.S.)
| | - Yunxi Chen
- Department of Medicine, Division of Cardiovascular Disease, University of Alabama at Birmingham, Birmingham, AL 35233, USA; (L.H.); (Y.C.); (J.Y.); (J.H.); (Y.H.); (Y.C.); (G.C.R.); (L.Z.); (M.E.Y.); (S.D.P.); (P.S.)
| | - Gloria Benavides
- Department of Pathology, Division of Molecular and Cellular Pathology, University of Alabama at Birmingham, Birmingham, AL 35233, USA; (G.B.); (S.B.); (V.D.-U.)
| | - Glenn C. Rowe
- Department of Medicine, Division of Cardiovascular Disease, University of Alabama at Birmingham, Birmingham, AL 35233, USA; (L.H.); (Y.C.); (J.Y.); (J.H.); (Y.H.); (Y.C.); (G.C.R.); (L.Z.); (M.E.Y.); (S.D.P.); (P.S.)
| | - Lufang Zhou
- Department of Medicine, Division of Cardiovascular Disease, University of Alabama at Birmingham, Birmingham, AL 35233, USA; (L.H.); (Y.C.); (J.Y.); (J.H.); (Y.H.); (Y.C.); (G.C.R.); (L.Z.); (M.E.Y.); (S.D.P.); (P.S.)
| | - Scott Ballinger
- Department of Pathology, Division of Molecular and Cellular Pathology, University of Alabama at Birmingham, Birmingham, AL 35233, USA; (G.B.); (S.B.); (V.D.-U.)
| | - Victor Darley-Usmar
- Department of Pathology, Division of Molecular and Cellular Pathology, University of Alabama at Birmingham, Birmingham, AL 35233, USA; (G.B.); (S.B.); (V.D.-U.)
| | - Martin E. Young
- Department of Medicine, Division of Cardiovascular Disease, University of Alabama at Birmingham, Birmingham, AL 35233, USA; (L.H.); (Y.C.); (J.Y.); (J.H.); (Y.H.); (Y.C.); (G.C.R.); (L.Z.); (M.E.Y.); (S.D.P.); (P.S.)
| | - Sumanth D. Prabhu
- Department of Medicine, Division of Cardiovascular Disease, University of Alabama at Birmingham, Birmingham, AL 35233, USA; (L.H.); (Y.C.); (J.Y.); (J.H.); (Y.H.); (Y.C.); (G.C.R.); (L.Z.); (M.E.Y.); (S.D.P.); (P.S.)
- Department of Medicine, Division of Cardiology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Palaniappan Sethu
- Department of Medicine, Division of Cardiovascular Disease, University of Alabama at Birmingham, Birmingham, AL 35233, USA; (L.H.); (Y.C.); (J.Y.); (J.H.); (Y.H.); (Y.C.); (G.C.R.); (L.Z.); (M.E.Y.); (S.D.P.); (P.S.)
| | - Yingling Zhou
- Department of Cardiology, Guangdong Provincial People’s Hospital, Affiliated with South China University of Technology, Guangzhou 510080, China;
| | - Cheng Zhang
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital of Shandong University, 107 Wenhuaxi Road, Jinan 250012, China;
| | - Min Xie
- Department of Medicine, Division of Cardiovascular Disease, University of Alabama at Birmingham, Birmingham, AL 35233, USA; (L.H.); (Y.C.); (J.Y.); (J.H.); (Y.H.); (Y.C.); (G.C.R.); (L.Z.); (M.E.Y.); (S.D.P.); (P.S.)
| |
Collapse
|
7
|
Fischesser DM, Bo B, Benton RP, Su H, Jahanpanah N, Haworth KJ. Controlling Reperfusion Injury With Controlled Reperfusion: Historical Perspectives and New Paradigms. J Cardiovasc Pharmacol Ther 2021; 26:504-523. [PMID: 34534022 DOI: 10.1177/10742484211046674] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Cardiac reperfusion injury is a well-established outcome following treatment of acute myocardial infarction and other types of ischemic heart conditions. Numerous cardioprotection protocols and therapies have been pursued with success in pre-clinical models. Unfortunately, there has been lack of successful large-scale clinical translation, perhaps in part due to the multiple pathways that reperfusion can contribute to cell death. The search continues for new cardioprotection protocols based on what has been learned from past results. One class of cardioprotection protocols that remain under active investigation is that of controlled reperfusion. This class consists of those approaches that modify, in a controlled manner, the content of the reperfusate or the mechanical properties of the reperfusate (e.g., pressure and flow). This review article first provides a basic overview of the primary pathways to cell death that have the potential to be addressed by various forms of controlled reperfusion, including no-reflow phenomenon, ion imbalances (particularly calcium overload), and oxidative stress. Descriptions of various controlled reperfusion approaches are described, along with summaries of both mechanistic and outcome-oriented studies at the pre-clinical and clinical phases. This review will constrain itself to approaches that modify endogenously-occurring blood components. These approaches include ischemic postconditioning, gentle reperfusion, controlled hypoxic reperfusion, controlled hyperoxic reperfusion, controlled acidotic reperfusion, and controlled ionic reperfusion. This review concludes with a discussion of the limitations of past approaches and how they point to potential directions of investigation for the future.
Collapse
Affiliation(s)
- Demetria M Fischesser
- Division of Cardiovascular Health and Disease, Department of Internal Medicine, College of Medicine, 2514University of Cincinnati, Cincinnati, OH, USA
| | - Bin Bo
- Division of Cardiovascular Health and Disease, Department of Internal Medicine, College of Medicine, 2514University of Cincinnati, Cincinnati, OH, USA
| | - Rachel P Benton
- Division of Cardiovascular Health and Disease, Department of Internal Medicine, College of Medicine, 2514University of Cincinnati, Cincinnati, OH, USA
| | - Haili Su
- Division of Cardiovascular Health and Disease, Department of Internal Medicine, College of Medicine, 2514University of Cincinnati, Cincinnati, OH, USA
| | - Newsha Jahanpanah
- Division of Cardiovascular Health and Disease, Department of Internal Medicine, College of Medicine, 2514University of Cincinnati, Cincinnati, OH, USA
| | - Kevin J Haworth
- Division of Cardiovascular Health and Disease, Department of Internal Medicine, College of Medicine, 2514University of Cincinnati, Cincinnati, OH, USA
| |
Collapse
|
8
|
Lecour S, Andreadou I, Bøtker HE, Davidson SM, Heusch G, Ruiz-Meana M, Schulz R, Zuurbier CJ, Ferdinandy P, Hausenloy DJ. IMproving Preclinical Assessment of Cardioprotective Therapies (IMPACT) criteria: guidelines of the EU-CARDIOPROTECTION COST Action. Basic Res Cardiol 2021; 116:52. [PMID: 34515837 PMCID: PMC8437922 DOI: 10.1007/s00395-021-00893-5] [Citation(s) in RCA: 85] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 09/05/2021] [Accepted: 09/06/2021] [Indexed: 12/28/2022]
Abstract
Acute myocardial infarction (AMI) and the heart failure (HF) which may follow are among the leading causes of death and disability worldwide. As such, new therapeutic interventions are still needed to protect the heart against acute ischemia/reperfusion injury to reduce myocardial infarct size and prevent the onset of HF in patients presenting with AMI. However, the clinical translation of cardioprotective interventions that have proven to be beneficial in preclinical animal studies, has been challenging. One likely major reason for this failure to translate cardioprotection into patient benefit is the lack of rigorous and systematic in vivo preclinical assessment of the efficacy of promising cardioprotective interventions prior to their clinical evaluation. To address this, we propose an in vivo set of step-by-step criteria for IMproving Preclinical Assessment of Cardioprotective Therapies ('IMPACT'), for investigators to consider adopting before embarking on clinical studies, the aim of which is to improve the likelihood of translating novel cardioprotective interventions into the clinical setting for patient benefit.
Collapse
Affiliation(s)
- Sandrine Lecour
- Department of Medicine, Hatter Institute for Cardiovascular Research in Africa, University of Cape Town, Cape Town, South Africa
| | - Ioanna Andreadou
- Laboratory of Pharmacology, Faculty of Pharmacy, National and Kapodistrian University of Athens, Athens, Greece
| | - Hans Erik Bøtker
- Department of Cardiology, Aarhus University Hospital, Aarhus N, Denmark
| | - Sean M Davidson
- The Hatter Cardiovascular Institute, University College London, London, UK
| | - Gerd Heusch
- Institute for Pathophysiology, West German Heart and Vascular Center, University of Duisburg-Essen, Essen, Germany
| | - Marisol Ruiz-Meana
- Cardiovascular Diseases Research Group, Vall d'Hebron Institut de Recerca (VHIR), Vall d'Hebron Hospital Universitari, Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain
| | - Rainer Schulz
- Institute for Physiology, Justus-Liebig University Giessen, Giessen, Germany
| | - Coert J Zuurbier
- Laboratory of Experimental Intensive Care Anesthesiology, Department Anesthesiology, Amsterdam Cardiovascular Sciences, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Péter Ferdinandy
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary
- Pharmahungary Group, Szeged, Hungary
| | - Derek J Hausenloy
- The Hatter Cardiovascular Institute, University College London, London, UK.
- Cardiovascular & Metabolic Disorders Program, Duke-National University of Singapore Medical School, 8 College Road, Singapore, 169857, Singapore.
- National Heart Research Institute Singapore, National Heart Centre, Singapore, Singapore.
- Yong Loo Lin School of Medicine, National University Singapore, Singapore, Singapore.
- Cardiovascular Research Center, College of Medical and Health Sciences, Asia University, Taichung, Taiwan.
| |
Collapse
|
9
|
Bolli R. CAESAR's legacy: a new era of rigor in preclinical studies of cardioprotection. Basic Res Cardiol 2021; 116:33. [PMID: 34018051 PMCID: PMC8137617 DOI: 10.1007/s00395-021-00874-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Accepted: 04/23/2021] [Indexed: 11/29/2022]
Affiliation(s)
- Roberto Bolli
- Institute of Molecular Cardiology, University of Louisville, 550 S. Jackson Street, 3rd Floor, ACB, Louisville, KY, 40202, USA.
| |
Collapse
|
10
|
Tejedor S, Dolz‐Pérez I, Decker CG, Hernándiz A, Diez JL, Álvarez R, Castellano D, García NA, Ontoria‐Oviedo I, Nebot VJ, González‐King H, Igual B, Sepúlveda P, Vicent MJ. Polymer Conjugation of Docosahexaenoic Acid Potentiates Cardioprotective Therapy in Preclinical Models of Myocardial Ischemia/Reperfusion Injury. Adv Healthc Mater 2021; 10:e2002121. [PMID: 33720548 DOI: 10.1002/adhm.202002121] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 02/16/2021] [Indexed: 01/16/2023]
Abstract
While coronary angioplasty represents an effective treatment option following acute myocardial infarction, the reperfusion of the occluded coronary artery can prompt ischemia-reperfusion (I/R) injury that significantly impacts patient outcomes. As ω-3 polyunsaturated fatty acids (PUFAs) have proven, yet limited cardioprotective abilities, an optimized polymer-conjugation approach is reported that improves PUFAs bioavailability to enhance cardioprotection and recovery in animal models of I/R-induced injury. Poly-l-glutamic acid (PGA) conjugation improves the solubility and stability of di-docosahexaenoic acid (diDHA) under physiological conditions and protects rat neonatal ventricular myocytes from I/R injury by reducing apoptosis, attenuating autophagy, inhibiting reactive oxygen species generation, and restoring mitochondrial membrane potential. Enhanced protective abilities are associated with optimized diDHA loading and evidence is provided for the inherent cardioprotective potential of PGA itself. Pretreatment with PGA-diDHA before reperfusion in a small animal I/R model provides for cardioprotection and limits area at risk (AAR). Furthermore, the preliminary findings suggest that PGA-diDHA administration in a swine I/R model may provide cardioprotection, limit edema and decrease AAR. Overall, the evaluation of PGA-diDHA in relevant preclinical models provides evidence for the potential of polymer-conjugated PUFAs in the mitigation of I/R injury associated with coronary angioplasty.
Collapse
Affiliation(s)
- Sandra Tejedor
- Regenerative Medicine and Heart Transplantation Unit Instituto de Investigación Sanitaria La Fe Avda. Fernando Abril Martorell 106 Valencia 46026 Spain
| | - Irene Dolz‐Pérez
- Polymer Therapeutics Laboratory Centro de Investigación Príncipe Felipe Av. Eduardo Primo Yúfera 3 Valencia E‐46012 Spain
| | - Caitlin G. Decker
- Polymer Therapeutics Laboratory Centro de Investigación Príncipe Felipe Av. Eduardo Primo Yúfera 3 Valencia E‐46012 Spain
| | - Amparo Hernándiz
- Regenerative Medicine and Heart Transplantation Unit Instituto de Investigación Sanitaria La Fe Avda. Fernando Abril Martorell 106 Valencia 46026 Spain
| | - Jose L. Diez
- Regenerative Medicine and Heart Transplantation Unit Instituto de Investigación Sanitaria La Fe Avda. Fernando Abril Martorell 106 Valencia 46026 Spain
| | - Raquel Álvarez
- Regenerative Medicine and Heart Transplantation Unit Instituto de Investigación Sanitaria La Fe Avda. Fernando Abril Martorell 106 Valencia 46026 Spain
| | - Delia Castellano
- Regenerative Medicine and Heart Transplantation Unit Instituto de Investigación Sanitaria La Fe Avda. Fernando Abril Martorell 106 Valencia 46026 Spain
| | - Nahuel A. García
- Regenerative Medicine and Heart Transplantation Unit Instituto de Investigación Sanitaria La Fe Avda. Fernando Abril Martorell 106 Valencia 46026 Spain
| | - Imelda Ontoria‐Oviedo
- Regenerative Medicine and Heart Transplantation Unit Instituto de Investigación Sanitaria La Fe Avda. Fernando Abril Martorell 106 Valencia 46026 Spain
| | - Vicent J. Nebot
- Polypeptide Therapeutic Solutions S.L. Av. Benjamin Franklin 19, Paterna Valencia 46980 Spain
| | - Hernán González‐King
- Regenerative Medicine and Heart Transplantation Unit Instituto de Investigación Sanitaria La Fe Avda. Fernando Abril Martorell 106 Valencia 46026 Spain
| | - Begoña Igual
- Regenerative Medicine and Heart Transplantation Unit Instituto de Investigación Sanitaria La Fe Avda. Fernando Abril Martorell 106 Valencia 46026 Spain
| | - Pilar Sepúlveda
- Regenerative Medicine and Heart Transplantation Unit Instituto de Investigación Sanitaria La Fe Avda. Fernando Abril Martorell 106 Valencia 46026 Spain
| | - María J. Vicent
- Polymer Therapeutics Laboratory Centro de Investigación Príncipe Felipe Av. Eduardo Primo Yúfera 3 Valencia E‐46012 Spain
| |
Collapse
|
11
|
Nandi SS, Katsurada K, Sharma NM, Anderson DR, Mahata SK, Patel KP. MMP9 inhibition increases autophagic flux in chronic heart failure. Am J Physiol Heart Circ Physiol 2020; 319:H1414-H1437. [PMID: 33064567 DOI: 10.1152/ajpheart.00032.2020] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Increased matrix metalloprotease 9 (MMP9) after myocardial infarction (MI) exacerbates ischemia-induced chronic heart failure (CHF). Autophagy is cardioprotective during CHF; however, whether increased MMP9 suppresses autophagic activity in CHF is unknown. This study aimed to determine whether increased MMP9 suppressed autophagic flux and MMP9 inhibition increased autophagic flux in the heart of rats with post-MI CHF. Sprague-Dawley rats underwent either sham surgery or coronary artery ligation 6-8 wk before being treated with MMP9 inhibitor for 7 days, followed by cardiac autophagic flux measurement with lysosomal inhibitor bafilomycin A1. Furthermore, autophagic flux was measured in vitro by treating H9c2 cardiomyocytes with two independent pharmacological MMP9 inhibitors, salvianolic acid B (SalB) and MMP9 inhibitor-I, and CRISPR/cas9-mediated MMP9 genetic ablation. CHF rats showed cardiac infarct, significantly increased left ventricular end-diastolic pressure (LVEDP), and increased MMP9 activity and fibrosis in the peri-infarct areas of left ventricular myocardium. Measurement of the autophagic markers LC3B-II and p62 with lysosomal inhibition showed decreased autophagic flux in the peri-infarct myocardium. Treatment with SalB for 7 days in CHF rats decreased MMP9 activity and cardiac fibrosis but increased autophagic flux in the peri-infarct myocardium. As an in vitro corollary study, measurement of autophagic flux in H9c2 cardiomyocytes and fibroblasts showed that pharmacological inhibition or genetic ablation of MMP9 upregulates autophagic flux. These data are consistent with our observations that MMP9 inhibition upregulates autophagic flux in the heart of rats with CHF. In conclusion, the results in this study suggest that the beneficial outcome of MMP9 inhibition in pathological cardiac remodeling is in part mediated by improved autophagic flux.NEW & NOTEWORTHY This study elucidates that the improved cardiac extracellular matrix (ECM) remodeling and cardioprotective effect of matrix metalloprotease 9 (MMP9) inhibition in chronic heart failure (CHF) are via increased autophagic flux. Autophagy is cardioprotective; however, the mechanism of autophagy suppression in CHF is unknown. We for the first time demonstrated here that increased MMP9 suppressed cardiac autophagy and ablation of MMP9 increased cardiac autophagic flux in CHF rats. Restoring the physiological level of autophagy in the failing heart is a challenge, and our study addressed this challenge. The novelty and highlights of this report are as follows: 1) MMP9 regulates cardiomyocyte and fibroblast autophagy, 2) MMP9 inhibition protects CHF after myocardial infarction (MI) via increased cardiac autophagic flux, 3) MMP9 inhibition increased cardiac autophagy via activation of AMP-activated protein kinase (AMPK)α, Beclin-1, Atg7 pathway and suppressed mechanistic target of rapamycin (mTOR) pathway.
Collapse
Affiliation(s)
- Shyam S Nandi
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, Nebraska
| | - Kenichi Katsurada
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, Nebraska
| | - Neeru M Sharma
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, Nebraska
| | - Daniel R Anderson
- Department of Cardiology, University of Nebraska Medical Center, Omaha, Nebraska
| | - Sushil K Mahata
- Department of Medicine, Metabolic Physiology and Ultrastructural Biology Laboratory, University of California, San Diego, California.,Department of Veterans Affairs San Diego Healthcare System, San Diego, California
| | - Kaushik P Patel
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, Nebraska
| |
Collapse
|
12
|
Han X, Jeong MH, Won J, Kim Y, Kim MC, Sim DS, Hong YJ, Kim JH, Ahn Y. Impact of Previous Angina on Clinical Outcomes in ST-Elevation Myocardial Infarction Underwent Percutaneous Coronary Intervention. Chonnam Med J 2020; 56:136-143. [PMID: 32509561 PMCID: PMC7250664 DOI: 10.4068/cmj.2020.56.2.136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 01/09/2020] [Accepted: 01/20/2020] [Indexed: 11/06/2022] Open
Abstract
The present study sought to assess the impact of previous angina symptoms on real world clinical outcomes in patients with ST-elevation myocardial infarction (STEMI) who had undergone successful percutaneous coronary interventions using drug-eluting stents (DES). Patients were selected from 13,650 consecutive patients enrolled in the Korea Acute Myocardial Infarction-National Institute of Health (KAMIR-NIH) registry. A total of 5167 STEMI patients were divided into a previous-angina group (n=1129) and a control group (n=4038). Major adverse cardiac and cerebrovascular events (MACCEs) that included all-cause death, recurrent myocardial infarction (re-MI), repeat PCI, coronary artery bypass graft (CABG), cerebrovascular accident (CVA). Among the 5167 patients with STEMI, MACCEs had occurred in 168 patients in the previous-angina group (14.9%) and 726 patients in the control group (18.0%) (HR, 0.76, 95% CI, 0.60-0.96, p=0.019) at the two-year (800-day) for clinical outcomes. Previous angina was associated with better clinical outcomes with respect to all-cause death (HR, 0.65, 95% CI, 0.44-0.96, p=0.029) and cardiac death (HR, 0.52, 95% CI, 0.31-0.84, p=0.008). Previous angina was a negative risk factor for adverse cardiac events. A previous history of angina predisposes a patient to a favorable outcome after acute myocardial infarction (AMI) in patients with DES implantation.
Collapse
Affiliation(s)
- Xiongyi Han
- The Heart Center and Cardiovascular Convergence Research Center of Chonnam National University Hospital, Gwangju, Korea
| | - Myung Ho Jeong
- The Heart Center and Cardiovascular Convergence Research Center of Chonnam National University Hospital, Gwangju, Korea
| | - Jumin Won
- The Heart Center and Cardiovascular Convergence Research Center of Chonnam National University Hospital, Gwangju, Korea
| | - Yongcheol Kim
- The Heart Center and Cardiovascular Convergence Research Center of Chonnam National University Hospital, Gwangju, Korea
| | - Min Chul Kim
- The Heart Center and Cardiovascular Convergence Research Center of Chonnam National University Hospital, Gwangju, Korea
| | - Doo Sun Sim
- The Heart Center and Cardiovascular Convergence Research Center of Chonnam National University Hospital, Gwangju, Korea
| | - Young Joon Hong
- The Heart Center and Cardiovascular Convergence Research Center of Chonnam National University Hospital, Gwangju, Korea
| | - Ju Han Kim
- The Heart Center and Cardiovascular Convergence Research Center of Chonnam National University Hospital, Gwangju, Korea
| | - Youngkeun Ahn
- The Heart Center and Cardiovascular Convergence Research Center of Chonnam National University Hospital, Gwangju, Korea
| |
Collapse
|
13
|
Somberg J, Molnar J. What is New in Pharmacologic Therapy for Cardiac Resuscitation? Cardiol Res 2020; 11:141-144. [PMID: 32494323 PMCID: PMC7239592 DOI: 10.14740/cr1058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Accepted: 04/09/2020] [Indexed: 11/23/2022] Open
Abstract
Antiarrhythmic therapy can be a critical component of cardiac resuscitation. Therapies in this area have seen little advance in the last decade. Bretylium, a very old drug, has been reintroduced for ventricular tachycardia/ventricular fibrillation (VT/VF) therapy. There are still important questions to be addressed with bretylium: when to administer (first- or second-line) and at which dose. These questions and the development of newer agents will be areas of future research.
Collapse
Affiliation(s)
- John Somberg
- American Institute of Therapeutics, Lake Bluff, IL, USA
| | - Janos Molnar
- Roslyn Franklin University of Health Sciences, Chicago, IL, USA
| |
Collapse
|
14
|
Lv P, Li C, Wang M, Ren J, Zhang Y, Fu G. TANK-binding kinase 1 alleviates myocardial ischemia/reperfusion injury through regulating apoptotic pathway. Biochem Biophys Res Commun 2020; 528:574-579. [PMID: 32505355 DOI: 10.1016/j.bbrc.2020.05.143] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Accepted: 05/20/2020] [Indexed: 11/25/2022]
Abstract
Myocardial ischemia/reperfusion (MI/R) injury, a complicated pathophysiological process, is regulated by lots of signaling pathways. Here in our present study, we identified TANK-binding kinase 1 (TBK1), an IKK-related serine/threonine kinase, as a protective regulator in MI/R injury. Our results indicated that TBK1 was decreased in MI/R injury in mice. However, after overexpressing TBK1 through an intramyocardial injection of TBK1 adenovirus, TBK1 overexpression improved cardiac function detected by echocardiography, decreased infarct size detected by Evans Blue and TTC staining, reduced cardiomyocyte apoptosis measured by TUNEL staining and alleviated disruption of mitochondria and cardiac muscle fibers detected by TEM in response to MI/R injury. Consistently, TBK1 overexpression ameliorated mitochondrial oxygen consumption rate (OCR) in neonatal rat cardiomyocytes (NRCMs) in response to hypoxia/reoxygenation (H/R) injury. Mechanistically, TBK1 overexpression upregulated Bcl-2 (an anti-apoptotic protein) but downregulated Bax (a pro-apoptotic protein) in vivo and in vitro. Collectively, our findings uncovered a pivotal function of TBK1 in MI/R injury through regulating the levels of apoptotic proteins for the first time, which might represent a promising target in treating MI/R patients in the future.
Collapse
Affiliation(s)
- Ping Lv
- Department of Cardiology, Sir Run Run Shaw Hospital, Medical School of Zhejiang University, 310020, Hangzhou, Zhejiang, China; Key Laboratory of Cardiovascular Intervention and Regenerative Medicine of Zhejiang Province, Hangzhou, Zhejiang, China; Shanghai Institute of Cardiovascular Diseases, Shanghai, China
| | - Congye Li
- Department of Cardiology, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Meihui Wang
- Department of Cardiology, Sir Run Run Shaw Hospital, Medical School of Zhejiang University, 310020, Hangzhou, Zhejiang, China; Key Laboratory of Cardiovascular Intervention and Regenerative Medicine of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Jun Ren
- Department of Cardiology, Zhongshan Hospital, Fudan University, 200032, Shanghai, China; Shanghai Institute of Cardiovascular Diseases, Shanghai, China; Center for Cardiovascular Research and Alternative Medicine, University of Wyoming College of Health Sciences, Laramie, WY, 82071, USA
| | - Yingmei Zhang
- Department of Cardiology, Zhongshan Hospital, Fudan University, 200032, Shanghai, China; Shanghai Institute of Cardiovascular Diseases, Shanghai, China.
| | - Guosheng Fu
- Department of Cardiology, Sir Run Run Shaw Hospital, Medical School of Zhejiang University, 310020, Hangzhou, Zhejiang, China; Key Laboratory of Cardiovascular Intervention and Regenerative Medicine of Zhejiang Province, Hangzhou, Zhejiang, China.
| |
Collapse
|
15
|
Pisano A, Torella M, Yavorovskiy A, Landoni G. The Impact of Anesthetic Regimen on Outcomes in Adult Cardiac Surgery: A Narrative Review. J Cardiothorac Vasc Anesth 2020; 35:711-729. [PMID: 32434720 DOI: 10.1053/j.jvca.2020.03.054] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Revised: 03/18/2020] [Accepted: 03/29/2020] [Indexed: 11/11/2022]
Abstract
Despite improvements in surgical techniques and perioperative care, cardiac surgery still is burdened by relatively high mortality and frequent major postoperative complications, including myocardial dysfunction, pulmonary complications, neurologic injury, and acute kidney injury. Although the surgeon's skills and volume and patient- and procedure-related risk factors play a major role in the success of cardiac surgery, there is growing evidence that also optimizing perioperative care may improve outcomes significantly. The present review focuses on the aspects of perioperative care that are strictly related to the anesthesia regimen, with special reference to volatile anesthetics and neuraxial anesthesia, whose effect on outcome in adult cardiac surgery has been investigated extensively.
Collapse
Affiliation(s)
- Antonio Pisano
- Department of Critical Care, Cardiac Anesthesia and Intensive Care Unit, AORN Dei Colli, Monaldi Hospital, Naples, Italy
| | - Michele Torella
- Department of Translational Medical Sciences, University of Campania "Luigi Vanvitelli," Naples, Italy
| | - Andrey Yavorovskiy
- Department of Anesthesiology and Intensive Care, First Moscow State Medical University, Moscow, Russia
| | - Giovanni Landoni
- Vita-Salute San Raffaele University, Milan, Italy; Department of Anesthesia and Intensive Care, IRCCS San Raffaele Scientific Institute, Milan, Italy.
| |
Collapse
|
16
|
Tartuce LP, Pacheco Brandt F, Dos Santos Pedroso G, Rezende Farias H, Barros Fernandes B, da Costa Pereira B, Gonçalves Machado A, Feuser PE, Lock Silveira PC, Tiscoski Nesi R, da Silva Paula MM, Andrades M, de Pinho RA. 2-methoxy-isobutyl-isonitrile-conjugated gold nanoparticles improves redox and inflammatory profile in infarcted rats. Colloids Surf B Biointerfaces 2020; 192:111012. [PMID: 32388028 DOI: 10.1016/j.colsurfb.2020.111012] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Revised: 04/01/2020] [Accepted: 04/01/2020] [Indexed: 11/20/2022]
Abstract
The tissue response to acute myocardial infarction (AMI) is key to avoiding heart complications due to inflammation, mitochondrial dysfunction, and oxidative stress. Antioxidant and anti-inflammatory agents can minimize the effects of AMI. This study investigated the role of 2-methoxy-isobutyl-isonitrile (MIBI)-associated gold nanoparticles (AuNP) on reperfusion injury after ischemia and its effect on cardiac remodeling in an experimental AMI model. Three-month-old Wistar rats were subjected to a temporary blockade of the anterior descending artery for 30 min followed by reperfusion after 24 h and 7 days by intraventricularly administering 0.4, 1.3, and 3 mg/kg AuNP-MIBI. The cardiac toxicity and renal and hepatic function levels were determined, and the infarct and peri-infarct regions were surgically removed for histopathology, analysis of inflammation from oxidative stress, and echocardiography. MIBI-conjugated AuNP promoted changes in oxidative stress and inflammation depending on the concentrations used, suggesting promising applicability for therapeutic purposes.
Collapse
Affiliation(s)
| | | | - Giulia Dos Santos Pedroso
- Laboratory of Experimental Pathophysiology, Graduate Program in Health Sciences, Health Sciences Unit, Universidade do Extremo Sul Catarinense, Criciúma, SC, Brazil
| | - Hemelin Rezende Farias
- Laboratory of Experimental Pathophysiology, Graduate Program in Health Sciences, Health Sciences Unit, Universidade do Extremo Sul Catarinense, Criciúma, SC, Brazil
| | - Bruna Barros Fernandes
- Laboratory of Experimental Pathophysiology, Graduate Program in Health Sciences, Health Sciences Unit, Universidade do Extremo Sul Catarinense, Criciúma, SC, Brazil
| | - Bárbara da Costa Pereira
- Laboratory of Experimental Pathophysiology, Graduate Program in Health Sciences, Health Sciences Unit, Universidade do Extremo Sul Catarinense, Criciúma, SC, Brazil
| | | | - Paulo Emílio Feuser
- Laboratory of Experimental Pathophysiology, Graduate Program in Health Sciences, Health Sciences Unit, Universidade do Extremo Sul Catarinense, Criciúma, SC, Brazil
| | - Paulo Cesar Lock Silveira
- Laboratory of Experimental Pathophysiology, Graduate Program in Health Sciences, Health Sciences Unit, Universidade do Extremo Sul Catarinense, Criciúma, SC, Brazil
| | - Renata Tiscoski Nesi
- Laboratory of Exercise Biochemistry in Health, Graduate Program in Health Sciences, School of Medicine, Pontifícia Universidade Católica do Paraná, Curitiba, PR, Brazil
| | | | - Michael Andrades
- Experimental Research Center, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, Brazil.
| | - Ricardo Aurino de Pinho
- Laboratory of Exercise Biochemistry in Health, Graduate Program in Health Sciences, School of Medicine, Pontifícia Universidade Católica do Paraná, Curitiba, PR, Brazil
| |
Collapse
|
17
|
Abstract
Adult cardiomyocytes are postmitotic cells that undergo very limited cell division. Thus, cardiomyocyte death as occurs during myocardial infarction has very detrimental consequences for the heart. Mitochondria have emerged as an important regulator of cardiovascular health and disease. Mitochondria are well established as bioenergetic hubs for generating ATP but have also been shown to regulate cell death pathways. Indeed many of the same signals used to regulate metabolism and ATP production, such as calcium and reactive oxygen species, are also key regulators of mitochondrial cell death pathways. It is widely hypothesized that an increase in calcium and reactive oxygen species activate a large conductance channel in the inner mitochondrial membrane known as the PTP (permeability transition pore) and that opening of this pore leads to necroptosis, a regulated form of necrotic cell death. Strategies to reduce PTP opening either by inhibition of PTP or inhibiting the rise in mitochondrial calcium or reactive oxygen species that activate PTP have been proposed. A major limitation of inhibiting the PTP is the lack of knowledge about the identity of the protein(s) that form the PTP and how they are activated by calcium and reactive oxygen species. This review will critically evaluate the candidates for the pore-forming unit of the PTP and discuss recent data suggesting that assumption that the PTP is formed by a single molecular identity may need to be reconsidered.
Collapse
Affiliation(s)
- Tyler M Bauer
- Laboratory of Cardiac Physiology, National Heart, Lung and Blood Institute, Bethesda, MD
| | - Elizabeth Murphy
- Laboratory of Cardiac Physiology, National Heart, Lung and Blood Institute, Bethesda, MD
| |
Collapse
|
18
|
Ghotbi AA, Clemmensen A, Kyhl K, Follin B, Hasbak P, Engstrøm T, Ripa RS, Kjaer A. Rubidium-82 PET imaging is feasible in a rat myocardial infarction model. J Nucl Cardiol 2019; 26:798-809. [PMID: 28721647 PMCID: PMC6517336 DOI: 10.1007/s12350-017-0994-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Revised: 06/29/2017] [Indexed: 12/01/2022]
Abstract
BACKGROUND Small-animal myocardial infarct models are frequently used in the assessment of new cardioprotective strategies. A validated quantification of perfusion using a non-cyclotron-dependent PET tracer would be of importance in monitoring response to therapy. We tested whether myocardial PET perfusion imaging is feasible with Rubidium-82 (82Rb) in a small-animal scanner using a rat myocardial infarct model. METHODS 18 Sprague-Dawley rats underwent permanent coronary artery ligation (infarct group), and 11 rats underwent ischemia-reperfusion (reperfusion group) procedure. 82Rb-PET and magnetic resonance imaging (MRI) were conducted before and after the intervention. Perfusion was compared to both left ventricle ejection fraction (LVEF) and infarct size assessed by MRI. RESULTS Follow-up global 82Rb-uptake correlated significantly with infarct size (infarct group: r = -0.81, P < 0.001 and reperfusion group: r = -0.61, P = 0.04). Only 82Rb-uptake in the infarct group correlated with LVEF. At follow-up, a higher segmental 82Rb-uptake in the infarct group was associated with better wall motion (β = 0.034, CI [0.028;0.039], P < 0.001, R2 = 0.30), and inversely associated with scar transmurality (β = -2.4 [-2.6; -2.2], P < 0.001, R2 = 0.59). The associations were similar for the reperfusion group. CONCLUSION 82Rb-PET is feasible in small animal scanners despite the long positron range and enables fast and time-efficient myocardial perfusion imaging in rat models.
Collapse
Affiliation(s)
- Adam Ali Ghotbi
- Department of Clinical Physiology, Nuclear Medicine & PET and Cluster for Molecular Imaging, Rigshospitalet and University of Copenhagen, Blegdamsvej 9, 2100, Copenhagen, Denmark.
| | - Andreas Clemmensen
- Department of Clinical Physiology, Nuclear Medicine & PET and Cluster for Molecular Imaging, Rigshospitalet and University of Copenhagen, Blegdamsvej 9, 2100, Copenhagen, Denmark
| | - Kasper Kyhl
- Department of Cardiology, The Heart Center, Rigshospitalet and University of Copenhagen, Copenhagen, Denmark
| | - Bjarke Follin
- Department of Clinical Physiology, Nuclear Medicine & PET and Cluster for Molecular Imaging, Rigshospitalet and University of Copenhagen, Blegdamsvej 9, 2100, Copenhagen, Denmark
- Cardiology Stem Cell Center, The Heart Center, Rigshospitalet and University of Copenhagen, Blegdamsvej 9, 2100, Copenhagen, Denmark
| | - Philip Hasbak
- Department of Clinical Physiology, Nuclear Medicine & PET and Cluster for Molecular Imaging, Rigshospitalet and University of Copenhagen, Blegdamsvej 9, 2100, Copenhagen, Denmark
| | - Thomas Engstrøm
- Department of Cardiology, The Heart Center, Rigshospitalet and University of Copenhagen, Copenhagen, Denmark
| | - Rasmus Sejersten Ripa
- Department of Clinical Physiology, Nuclear Medicine & PET and Cluster for Molecular Imaging, Rigshospitalet and University of Copenhagen, Blegdamsvej 9, 2100, Copenhagen, Denmark
| | - Andreas Kjaer
- Department of Clinical Physiology, Nuclear Medicine & PET and Cluster for Molecular Imaging, Rigshospitalet and University of Copenhagen, Blegdamsvej 9, 2100, Copenhagen, Denmark
| |
Collapse
|
19
|
Montisci R, Ruscazio M, Tona F, Corbetti F, Sarais C, Marchetti MF, Cacciavillani L, Iliceto S, Perazzolo Marra M, Meloni L. Coronary flow reserve is related to the extension and transmurality of myocardial necrosis and predicts functional recovery after acute myocardial infarction. Echocardiography 2019; 36:844-853. [PMID: 31002185 DOI: 10.1111/echo.14337] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Revised: 03/06/2019] [Accepted: 03/21/2019] [Indexed: 01/23/2023] Open
Abstract
BACKGROUND Few studies have examined the effect of transmurality of myocardial necrosis on coronary microcirculation. The aim of this study was to examine the influence of cardiac magnetic resonance-derived (GE-MRI) structural determinants of coronary flow reserve (CFR) after anterior myocardial infarction (STEMI), and their predictive value on regional functional recovery. METHODS Noninvasive CFR and GE-MRI were studied in 37 anterior STEMI patients after primary coronary angioplasty. The wall motion score index in the left descending anterior coronary artery territory (A-WMSI) was calculated at admission and follow-up (FU). Recovery of regional left ventricular (LV) function was defined as the difference in A-WMSI at admission and FU. The necrosis score index (NSI) and transmurality score index (TSI) by GE-MRI were calculated in the risk area. Baseline (BMR) and hyperemic (HMR) microvascular resistance, arteriolar resistance index (ARI), and coronary resistance reserve (CRR) were calculated at the Doppler echocardiography. RESULTS Bivariate analysis indicated that the CPK and troponin I peak, heart rate, NSI, TSI, BMR, the ARI, and CRR were related to CFR. Multivariable analysis revealed that TSI was the only independent determinant of CFR. The CFR value of >2.27, identified as optimal by ROC analysis, was 77% specific and 73% sensitive with accuracy of 76% in identifying patients with functional recovery. CONCLUSIONS Preservation of microvascular function after AMI is related to the extent of transmurality of myocardial necrosis, is an important factor influencing regional LV recovery, and can be monitored by noninvasive CFR.
Collapse
Affiliation(s)
- Roberta Montisci
- Clinical Cardiology, Department of Medical Science and Public Health, University of Cagliari, Cagliari, Italy
| | - Massimo Ruscazio
- Clinical Cardiology, Department of Medical Science and Public Health, University of Cagliari, Cagliari, Italy
| | - Francesco Tona
- Clinical Cardiology, Department of Cardiac, Thoracic and Vascular Sciences, University of Padova, Padova, Italy
| | | | - Cristiano Sarais
- Clinical Cardiology, Department of Cardiac, Thoracic and Vascular Sciences, University of Padova, Padova, Italy
| | - Maria Francesca Marchetti
- Clinical Cardiology, Department of Medical Science and Public Health, University of Cagliari, Cagliari, Italy
| | - Luisa Cacciavillani
- Clinical Cardiology, Department of Cardiac, Thoracic and Vascular Sciences, University of Padova, Padova, Italy
| | - Sabino Iliceto
- Clinical Cardiology, Department of Cardiac, Thoracic and Vascular Sciences, University of Padova, Padova, Italy
| | - Martina Perazzolo Marra
- Clinical Cardiology, Department of Cardiac, Thoracic and Vascular Sciences, University of Padova, Padova, Italy
| | - Luigi Meloni
- Clinical Cardiology, Department of Medical Science and Public Health, University of Cagliari, Cagliari, Italy
| |
Collapse
|
20
|
Houang EM, Bartos J, Hackel BJ, Lodge TP, Yannopoulos D, Bates FS, Metzger JM. Cardiac Muscle Membrane Stabilization in Myocardial Reperfusion Injury. JACC Basic Transl Sci 2019; 4:275-287. [PMID: 31061929 PMCID: PMC6488758 DOI: 10.1016/j.jacbts.2019.01.009] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Revised: 01/11/2019] [Accepted: 01/26/2019] [Indexed: 12/11/2022]
Abstract
The phospholipid bilayer membrane that surrounds each cell in the body represents the first and last line of defense for preserving overall cell viability. In several forms of cardiac and skeletal muscle disease, deficits in the integrity of the muscle membrane play a central role in disease pathogenesis. In Duchenne muscular dystrophy, an inherited and uniformly fatal disease of progressive muscle deterioration, muscle membrane instability is the primary cause of disease, including significant heart disease, for which there is no cure or highly effective treatment. Further, in multiple clinical forms of myocardial ischemia-reperfusion injury, the cardiac sarcolemma is damaged and this plays a key role in disease etiology. In this review, cardiac muscle membrane stability is addressed, with a focus on synthetic block copolymers as a unique chemical-based approach to stabilize damaged muscle membranes. Recent advances using clinically relevant small and large animal models of heart disease are discussed. In addition, mechanistic insights into the copolymer-muscle membrane interface, featuring atomistic, molecular, and physiological structure-function approaches are highlighted. Collectively, muscle membrane instability contributes significantly to morbidity and mortality in prominent acquired and inherited heart diseases. In this context, chemical-based muscle membrane stabilizers provide a novel therapeutic approach for a myriad of heart diseases wherein the integrity of the cardiac muscle membrane is at risk.
Collapse
Affiliation(s)
- Evelyne M. Houang
- Department of Integrative Biology and Physiology, University of Minnesota Medical School, Minneapolis, Minnesota
| | - Jason Bartos
- Department of Medicine-Cardiovascular Division, University of Minnesota Medical School, Minneapolis, Minnesota
| | - Benjamin J. Hackel
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, Minnesota
| | - Timothy P. Lodge
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, Minnesota
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota
| | - Demetris Yannopoulos
- Department of Medicine-Cardiovascular Division, University of Minnesota Medical School, Minneapolis, Minnesota
| | - Frank S. Bates
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, Minnesota
| | - Joseph M. Metzger
- Department of Integrative Biology and Physiology, University of Minnesota Medical School, Minneapolis, Minnesota
| |
Collapse
|
21
|
Yang J, He J, Ismail M, Tweeten S, Zeng F, Gao L, Ballinger S, Young M, Prabhu SD, Rowe GC, Zhang J, Zhou L, Xie M. HDAC inhibition induces autophagy and mitochondrial biogenesis to maintain mitochondrial homeostasis during cardiac ischemia/reperfusion injury. J Mol Cell Cardiol 2019; 130:36-48. [PMID: 30880250 PMCID: PMC6502701 DOI: 10.1016/j.yjmcc.2019.03.008] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Revised: 02/03/2019] [Accepted: 03/11/2019] [Indexed: 12/25/2022]
Abstract
AIMS The FDA-approved histone deacetylase (HDAC) inhibitor, suberoylanilide hydroxamic acid (SAHA, Vorinostat) has been shown to induce cardiomyocyte autophagy and blunt ischemia/reperfusion (I/R) injury when administered at the time of reperfusion. However, the precise mechanisms underlying the cardioprotective activity of SAHA are unknown. Mitochondrial dysfunction and oxidative damage are major contributors to myocardial apoptosis during I/R injury. We hypothesize that SAHA protects the myocardium by maintaining mitochondrial homeostasis and reducing reactive oxygen species (ROS) production during I/R injury. METHODS Mouse and cultured cardiomyocytes (neonatal rat ventricular myocytes and human embryonic stem cell-derived cardiomyocytes) I/R models were used to investigate the effects of SAHA on mitochondria. ATG7 knockout mice, ATG7 knockdown by siRNA and PGC-1α knockdown by adenovirus in cardiomyocytes were used to test the dependency of autophagy and PGC-1α-mediated mitochondrial biogenesis respectively. RESULTS Intact and total mitochondrial DNA (mtDNA) content and mitochondrial mass were significantly increased in cardiomyocytes by SAHA pretreatment before simulated I/R. In vivo, I/R induced >50% loss of mtDNA content in the border zones of mouse hearts, but SAHA pretreatment and reperfusion treatment alone reverted mtDNA content and mitochondrial mass to control levels. Moreover, pretreatment of cardiomyocytes with SAHA resulted in a 4-fold decrease in I/R-induced loss of mitochondrial membrane potential and a 25%-40% reduction in cytosolic ROS levels. However, loss-of-function of ATG7 in cardiomyocytes or mouse myocardium abolished the protective effects of SAHA on ROS levels, mitochondrial membrane potential, mtDNA levels, and mitochondrial mass. Lastly, PGC-1α gene expression was induced by SAHA in NRVMs and mouse heart subjected to I/R, and loss of PGC-1α abrogated SAHA's mitochondrial protective effects in cardiomyocytes. CONCLUSIONS SAHA prevents I/R induced-mitochondrial dysfunction and loss, and reduces myocardial ROS production when given before or after the ischemia. The protective effects of SAHA on mitochondria are dependent on autophagy and PGC-1α-mediated mitochondrial biogenesis.
Collapse
Affiliation(s)
- Jing Yang
- Dept. of Medicine, Division of Cardiovascular Disease, University of Alabama at Birmingham, Birmingham, AL 35233, United States of America
| | - Jin He
- Dept. of Medicine, Division of Cardiovascular Disease, University of Alabama at Birmingham, Birmingham, AL 35233, United States of America
| | - Mahmoud Ismail
- Dept. of Medicine, Division of Cardiovascular Disease, University of Alabama at Birmingham, Birmingham, AL 35233, United States of America
| | - Sonja Tweeten
- Dept. of Medicine, Division of Cardiovascular Disease, University of Alabama at Birmingham, Birmingham, AL 35233, United States of America
| | - Fanfang Zeng
- Dept. of Cardiovascular Disease, Shenzhen Sun Yat-Sen Cardiovascular Hospital, 518020, China
| | - Ling Gao
- Dept. of Biomedical Engineering, University of Alabama at Birmingham, Birmingham, AL 35233, United States of America
| | - Scott Ballinger
- Dept. of Pathology, Division of Molecular and Cellular Pathology, University of Alabama at Birmingham, Birmingham, AL 35233, United States of America
| | - Martin Young
- Dept. of Medicine, Division of Cardiovascular Disease, University of Alabama at Birmingham, Birmingham, AL 35233, United States of America
| | - Sumanth D Prabhu
- Dept. of Medicine, Division of Cardiovascular Disease, University of Alabama at Birmingham, Birmingham, AL 35233, United States of America
| | - Glenn C Rowe
- Dept. of Medicine, Division of Cardiovascular Disease, University of Alabama at Birmingham, Birmingham, AL 35233, United States of America
| | - Jianyi Zhang
- Dept. of Biomedical Engineering, University of Alabama at Birmingham, Birmingham, AL 35233, United States of America
| | - Lufang Zhou
- Dept. of Medicine, Division of Cardiovascular Disease, University of Alabama at Birmingham, Birmingham, AL 35233, United States of America
| | - Min Xie
- Dept. of Medicine, Division of Cardiovascular Disease, University of Alabama at Birmingham, Birmingham, AL 35233, United States of America.
| |
Collapse
|
22
|
Xie M, Tang Y, Hill JA. HDAC inhibition as a therapeutic strategy in myocardial ischemia/reperfusion injury. J Mol Cell Cardiol 2019; 129:188-192. [PMID: 30825484 PMCID: PMC6486856 DOI: 10.1016/j.yjmcc.2019.02.013] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Revised: 02/01/2019] [Accepted: 02/25/2019] [Indexed: 02/07/2023]
Abstract
Reperfusion injury during myocardial infarction accounts for approximately half of final infarct size. Whereas this has been known for decades, efficacious therapy targeting reperfusion injury remains elusive. Many proteins are subject to reversible acetylation, and drugs targeting enzymes that govern these events have emerged in oncology. Among these, small molecules targeting protein deacetylating enzymes, so-called histone deacetylases (HDACs), are approved for human use in rare cancers. Now, work emerging from multiple laboratories, and in both mice and large animals, has documented that HDAC inhibition using compounds approved for clinical use confers robust cardioprotection when delivered at the time of myocardial reperfusion. Here, we summarize the key underpinnings of this science, discuss potential mechanisms, and provide a framework for a first-in-human clinical trial.
Collapse
Affiliation(s)
- Min Xie
- Department of Medicine, Division of Cardiovascular Disease, The University of Alabam at Birmingham, Birmingham, AL 35233, United States of America.
| | - Yida Tang
- Department of Internal Medicine, Fuwai Hospital, Chinese Academy for Medical Science, National Center of Cardiovascular Disease, Beijing 100037, China
| | - Joseph A Hill
- Department of Internal Medicine, Division of Cardiology, UT Southwestern Medical Center, 6000 Harry Hines Blvd. NB11.200, Dallas, United States of America; Department of Molecular Biology, UT Southwestern Medical Center, 6000 Harry Hines Blvd. NB11.200, Dallas, United States of America
| |
Collapse
|
23
|
Borlotti A, Jerosch-Herold M, Liu D, Viliani D, Bracco A, Alkhalil M, De Maria GL, Channon KM, Banning AP, Choudhury RP, Neubauer S, Kharbanda RK, Dall'Armellina E. Acute Microvascular Impairment Post-Reperfused STEMI Is Reversible and Has Additional Clinical Predictive Value: A CMR OxAMI Study. JACC Cardiovasc Imaging 2019; 12:1783-1793. [PMID: 30660541 PMCID: PMC6718360 DOI: 10.1016/j.jcmg.2018.10.028] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Revised: 10/23/2018] [Accepted: 10/23/2018] [Indexed: 12/21/2022]
Abstract
Objectives This study sought to investigate the clinical utility and the predictive relevance of absolute rest myocardial blood flow (MBF) by cardiac magnetic resonance (CMR) in acute myocardial infarction. Background Microvascular obstruction (MVO) remains one of the worst prognostic factors in patients with reperfused ST-segment elevation myocardial infarction (STEMI). Clinical trials have focused on cardioprotective strategies to maintain microvascular functionality, but there is a need for a noninvasive test to determine their efficacy. Methods A total of 64 STEMI patients post–primary percutaneous coronary intervention underwent 3-T CMR scans acutely and at 6 months (6M). The protocol included cine function, T2-weighted edema imaging, pre-contrast T1 mapping, rest first-pass perfusion, and late gadolinium enhancement imaging. Segmental MBF, corrected for rate pressure product (MBFcor), was quantified in remote, edematous, and infarcted myocardium. Results Acute MBFcor was significantly reduced in infarcted myocardium compared with remote MBF (MBFinfarct 0.76 ± 0.20 ml/min/g vs. MBFremote 1.02 ± 0.21 ml/min/g, p < 0.001), but it significantly increased at 6M (MBFinfarct 0.76 ± 0.20 ml/min/g acute vs. 0.85 ± 0.22 ml/min/g at 6M, p < 0.001). On a segmental basis, acute MBFcor had incremental prognostic value for infarct size at 6M (odds of no LGE at 6M increased by 1.4:1 [p < 0.001] for each 0.1 ml/min/g increase of acute MBFcor) and functional recovery (odds of wall thickening >45% at 6M increased by 1.38:1 [p < 0.001] for each 0.1 ml/min/g increase of acute MBFcor). In subjects with coronary flow reserve >2 or index of myocardial resistance <40, acute MBF was associated with long-term functional recovery and was an independent predictor of infarct size reduction. Conclusions Acute MBF by CMR could represent a novel quantitative imaging biomarker of microvascular reversibility, and it could be used to identify patients who may benefit from more intensive or novel therapies.
Collapse
Affiliation(s)
- Alessandra Borlotti
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, John Radcliffe Hospital, University of Oxford, Oxford, United Kingdom
| | - Michael Jerosch-Herold
- Department of Radiology, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts
| | - Dan Liu
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, John Radcliffe Hospital, University of Oxford, Oxford, United Kingdom
| | - Dafne Viliani
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, John Radcliffe Hospital, University of Oxford, Oxford, United Kingdom
| | - Alessia Bracco
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, John Radcliffe Hospital, University of Oxford, Oxford, United Kingdom
| | - Mohammad Alkhalil
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, John Radcliffe Hospital, University of Oxford, Oxford, United Kingdom
| | - Giovanni Luigi De Maria
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, John Radcliffe Hospital, University of Oxford, Oxford, United Kingdom
| | | | - Keith M Channon
- Oxford Heart Centre, John Radcliffe Hospital, Oxford, United Kingdom
| | - Adrian P Banning
- Oxford Heart Centre, John Radcliffe Hospital, Oxford, United Kingdom
| | - Robin P Choudhury
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, John Radcliffe Hospital, University of Oxford, Oxford, United Kingdom
| | - Stefan Neubauer
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, John Radcliffe Hospital, University of Oxford, Oxford, United Kingdom
| | | | - Erica Dall'Armellina
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, John Radcliffe Hospital, University of Oxford, Oxford, United Kingdom.
| |
Collapse
|
24
|
Song L, Yan H, Zhou P, Zhao H, Liu C, Sheng Z, Tan Y, Yi C, Li J, Zhou J. Effect of comprehensive remote ischemic conditioning in anterior ST-elevation myocardial infarction undergoing primary percutaneous coronary intervention: Design and rationale of the CORIC-MI randomized trial. Clin Cardiol 2018; 41:997-1003. [PMID: 29726013 DOI: 10.1002/clc.22973] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Revised: 04/27/2018] [Accepted: 04/29/2018] [Indexed: 12/27/2022] Open
Abstract
Remote ischemic conditioning (RIC) applied during or after ST-segment elevation myocardial infarction (STEMI) is currently the most promising adjuvant therapy to reduce reperfusion injury. Recent animal studies showed that RIC may help the myocardium recover if applied daily during the month after STEMI. The Comprehensive Remote Ischemic Conditioning in Myocardial Infarction (CORIC-MI) trial is a single-center randomized controlled study in which 200 patients undergoing primary percutaneous coronary intervention (PPCI) for anterior STEMI will be randomized in a 1:1 ratio into comprehensive RIC (CORIC) or no intervention (control) groups. CORIC consists of per-RIC (5 cycles of 5-minute ischemia and 5-minute reperfusion of the lower limb immediately after randomization and before reperfusion), post-RIC (5 cycles of 5-minute ischemia and 5-minute reperfusion of the lower limb immediately post-PPCI), and delayed RIC (5 cycles of 5-minute ischemia and 5-minute reperfusion of the lower limb once daily on 2-28 days). Primary endpoint is left ventricular ejection fraction assessed by cardiac magnetic resonance imaging at 30 days. Major secondary endpoints include infarct size and left ventricular volume assessed by cardiac magnetic resonance imaging at 30 days, left ventricular ejection fraction assessed by echocardiography, and major adverse cardiovascular events up to 12 months. This report presents the baseline characteristics of 93 patients (CORIC group, n = 49; control group, n = 44) enrolled into the study as of March 31, 2018. The CORIC-MI trial aims to test the hypothesis that CORIC will improve cardiac function and remodeling in patients with anterior STEMI undergoing PPCI.
Collapse
Affiliation(s)
- Li Song
- Fu Wai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Hongbing Yan
- Fu Wai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Peng Zhou
- Fu Wai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Hanjun Zhao
- Fu Wai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Chen Liu
- Fu Wai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Zhaoxue Sheng
- Fu Wai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Yu Tan
- Fu Wai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Chen Yi
- Fu Wai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Jiannan Li
- Fu Wai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Jinying Zhou
- Fu Wai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| |
Collapse
|
25
|
Rocca C, Boukhzar L, Granieri MC, Alsharif I, Mazza R, Lefranc B, Tota B, Leprince J, Cerra MC, Anouar Y, Angelone T. A selenoprotein T-derived peptide protects the heart against ischaemia/reperfusion injury through inhibition of apoptosis and oxidative stress. Acta Physiol (Oxf) 2018; 223:e13067. [PMID: 29575758 DOI: 10.1111/apha.13067] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2017] [Revised: 03/13/2018] [Accepted: 03/19/2018] [Indexed: 12/13/2022]
Abstract
AIM Selenoprotein T (SelT or SELENOT) is a novel thioredoxin-like enzyme whose genetic ablation in mice results in early embryonic lethality. SelT exerts an essential cytoprotective action during development and after injury through its redox-active catalytic site. This study aimed to determine the expression and regulation of SelT in the mammalian heart in normal and pathological conditions and to evaluate the cardioprotective effect of a SelT-derived peptide, SelT43-52(PSELT) encompassing the redox motif which is key to its function, against ischaemia/reperfusion(I/R) injury. METHODS We used the isolated Langendorff rat heart model and different analyses by immunohistochemistry, Western blot and ELISA. RESULTS We found that SelT expression is very abundant in embryo but is undetectable in adult heart. However, SelT expression was tremendously increased after I/R. PSELT (5 nmol/L) was able to induce pharmacological post-conditioning cardioprotection as evidenced by a significant recovery of contractility (dLVP) and reduction of infarct size (IS), without changes in cardiac contracture (LVEDP). In contrast, a control peptide lacking the redox site did not confer cardioprotection. Immunoblot analysis showed that PSELT-dependent cardioprotection is accompanied by a significant increase in phosphorylated Akt, Erk-1/2 and Gsk3α-β, and a decrement of p38MAPK. PSELT inhibited the pro-apoptotic factors Bax, caspase 3 and cytochrome c and stimulated the anti-apoptotic factor Bcl-2. Furthermore, PSELT significantly reduced several markers of I/R-induced oxidative and nitrosative stress. CONCLUSION These results unravel the role of SelT as a cardiac modulator and identify PSELT as an effective pharmacological post-conditioning agent able to protect the heart after ischaemic injury.
Collapse
Affiliation(s)
- C. Rocca
- Laboratory of Cellular and Molecular Cardiovascular Physiology; Department of Biology, Ecology and E.S.; University of Calabria; Rende Italy
- Laboratoire de Différenciation et Communication Neuronale et Neuroendocrine; Institut de Recherche et d'Innovation Biomédicale de Normandie and Centre Universitaire de Recherche et D'Innovation en Biologie; Normandie University, UNIROUEN, INSERM; Rouen France
| | - L. Boukhzar
- Laboratoire de Différenciation et Communication Neuronale et Neuroendocrine; Institut de Recherche et d'Innovation Biomédicale de Normandie and Centre Universitaire de Recherche et D'Innovation en Biologie; Normandie University, UNIROUEN, INSERM; Rouen France
| | - M. C. Granieri
- Laboratory of Cellular and Molecular Cardiovascular Physiology; Department of Biology, Ecology and E.S.; University of Calabria; Rende Italy
| | - I. Alsharif
- Laboratoire de Différenciation et Communication Neuronale et Neuroendocrine; Institut de Recherche et d'Innovation Biomédicale de Normandie and Centre Universitaire de Recherche et D'Innovation en Biologie; Normandie University, UNIROUEN, INSERM; Rouen France
| | - R. Mazza
- Laboratory of Cellular and Molecular Cardiovascular Physiology; Department of Biology, Ecology and E.S.; University of Calabria; Rende Italy
| | - B. Lefranc
- Laboratoire de Différenciation et Communication Neuronale et Neuroendocrine; Institut de Recherche et d'Innovation Biomédicale de Normandie and Centre Universitaire de Recherche et D'Innovation en Biologie; Normandie University, UNIROUEN, INSERM; Rouen France
| | - B. Tota
- Laboratory of Cellular and Molecular Cardiovascular Physiology; Department of Biology, Ecology and E.S.; University of Calabria; Rende Italy
- National Institute of Cardiovascular Research (INRC); Bologna Italy
| | - J. Leprince
- Laboratoire de Différenciation et Communication Neuronale et Neuroendocrine; Institut de Recherche et d'Innovation Biomédicale de Normandie and Centre Universitaire de Recherche et D'Innovation en Biologie; Normandie University, UNIROUEN, INSERM; Rouen France
| | - M. C. Cerra
- Laboratory of Cellular and Molecular Cardiovascular Physiology; Department of Biology, Ecology and E.S.; University of Calabria; Rende Italy
- National Institute of Cardiovascular Research (INRC); Bologna Italy
| | - Y. Anouar
- Laboratoire de Différenciation et Communication Neuronale et Neuroendocrine; Institut de Recherche et d'Innovation Biomédicale de Normandie and Centre Universitaire de Recherche et D'Innovation en Biologie; Normandie University, UNIROUEN, INSERM; Rouen France
| | - T. Angelone
- Laboratory of Cellular and Molecular Cardiovascular Physiology; Department of Biology, Ecology and E.S.; University of Calabria; Rende Italy
- National Institute of Cardiovascular Research (INRC); Bologna Italy
| |
Collapse
|
26
|
Reperfusing the myocardium - a damocles Sword. Indian Heart J 2018; 70:433-438. [PMID: 29961464 PMCID: PMC6034085 DOI: 10.1016/j.ihj.2017.11.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Revised: 10/03/2017] [Accepted: 11/07/2017] [Indexed: 12/11/2022] Open
Abstract
Return of blood flow after periodic ischemia is often accompanied by myocardial injury, commonly known as lethal reperfusion injury (RI). Experimental studies have shown that 50% of muscle die of ischemia and another 50% die because of reperfusion. It is characterized by myocardial, vascular, or electrophysiological dysfunction that is induced by the restoration of blood flow to previously ischemic tissue. This phenomenon reduces the efficiency of the present modalities used to combat the ischemic myocardium. Moreover, despite an improved understanding of the pathophysiology of this process and encouraging preclinical trials of multiple agents, most of the clinical trials to prevent RI have been disappointing and leaves us at ground zero to explore newer approaches.
Collapse
|
27
|
Symons R, Pontone G, Schwitter J, Francone M, Iglesias JF, Barison A, Zalewski J, de Luca L, Degrauwe S, Claus P, Guglielmo M, Nessler J, Carbone I, Ferro G, Durak M, Magistrelli P, Lo Presti A, Aquaro GD, Eeckhout E, Roguelov C, Andreini D, Vogt P, Guaricci AI, Mushtaq S, Lorenzoni V, Muller O, Desmet W, Agati L, Janssens S, Bogaert J, Masci PG. Long-Term Incremental Prognostic Value of Cardiovascular Magnetic Resonance After ST-Segment Elevation Myocardial Infarction. JACC Cardiovasc Imaging 2018; 11:813-825. [DOI: 10.1016/j.jcmg.2017.05.023] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Revised: 05/08/2017] [Accepted: 05/24/2017] [Indexed: 02/07/2023]
|
28
|
Ghotbi AA, Kjaer A, Nepper-Christensen L, Ahtarovski KA, Lønborg JT, Vejlstrup N, Kyhl K, Christensen TE, Engstrøm T, Kelbæk H, Holmvang L, Bang LE, Ripa RS, Hasbak P. Subacute cardiac rubidium-82 positron emission tomography ( 82Rb-PET) to assess myocardial area at risk, final infarct size, and myocardial salvage after STEMI. J Nucl Cardiol 2018; 25:970-981. [PMID: 27743299 PMCID: PMC5966489 DOI: 10.1007/s12350-016-0694-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2016] [Accepted: 09/14/2016] [Indexed: 01/08/2023]
Abstract
BACKGROUND Determining infarct size and myocardial salvage in patients with ST-segment elevation myocardial infarction (STEMI) is important when assessing the efficacy of new reperfusion strategies. We investigated whether rest 82Rb-PET myocardial perfusion imaging can estimate area at risk, final infarct size, and myocardial salvage index when compared to cardiac SPECT and magnetic resonance (CMR). METHODS Twelve STEMI patients were injected with 99mTc-Sestamibi intravenously immediate prior to reperfusion. SPECT, 82Rb-PET, and CMR imaging were performed post-reperfusion and at a 3-month follow-up. An automated algorithm determined area at risk, final infarct size, and hence myocardial salvage index. RESULTS SPECT, CMR, and PET were performed 2.2 ± 0.5, 34 ± 8.5, and 32 ± 24.4 h after reperfusion, respectively. Mean (± SD) area at risk were 35.2 ± 16.6%, 34.7 ± 11.3%, and 28.1 ± 16.1% of the left ventricle (LV) in SPECT, CMR, and PET, respectively, P = 0.04 for difference. Mean final infarct size estimates were 12.3 ± 15.4%, 13.7 ± 10.4%, and 11.9 ± 14.6% of the LV in SPECT, CMR, and PET imaging, respectively, P = .72. Myocardial salvage indices were 0.64 ± 0.33 (SPECT), 0.65 ± 0.20 (CMR), and 0.63 ± 0.28 (PET), (P = .78). CONCLUSIONS 82Rb-PET underestimates area at risk in patients with STEMI when compared to SPECT and CMR. However, our findings suggest that PET imaging seems feasible when assessing the clinical important parameters of final infarct size and myocardial salvage index, although with great variability, in a selected STEMI population with large infarcts. These findings should be confirmed in a larger population.
Collapse
Affiliation(s)
- Adam Ali Ghotbi
- Department of Clinical Physiology, Nuclear Medicine & PET and Cluster for Molecular Imaging, Rigshospitalet and University of Copenhagen, Copenhagen, Denmark.
- Department of Cardiology, The Heart Center, Rigshospitalet Copenhagen University Hospital, Blegdamsvej 9, 2100, Copenhagen, Denmark.
| | - Andreas Kjaer
- Department of Clinical Physiology, Nuclear Medicine & PET and Cluster for Molecular Imaging, Rigshospitalet and University of Copenhagen, Copenhagen, Denmark
| | - Lars Nepper-Christensen
- Department of Cardiology, The Heart Center, Rigshospitalet Copenhagen University Hospital, Blegdamsvej 9, 2100, Copenhagen, Denmark
| | - Kiril Aleksov Ahtarovski
- Department of Cardiology, The Heart Center, Rigshospitalet Copenhagen University Hospital, Blegdamsvej 9, 2100, Copenhagen, Denmark
| | - Jacob Thomsen Lønborg
- Department of Cardiology, The Heart Center, Rigshospitalet Copenhagen University Hospital, Blegdamsvej 9, 2100, Copenhagen, Denmark
| | - Niels Vejlstrup
- Department of Cardiology, The Heart Center, Rigshospitalet Copenhagen University Hospital, Blegdamsvej 9, 2100, Copenhagen, Denmark
| | - Kasper Kyhl
- Department of Cardiology, The Heart Center, Rigshospitalet Copenhagen University Hospital, Blegdamsvej 9, 2100, Copenhagen, Denmark
| | - Thomas Emil Christensen
- Department of Clinical Physiology, Nuclear Medicine & PET and Cluster for Molecular Imaging, Rigshospitalet and University of Copenhagen, Copenhagen, Denmark
| | - Thomas Engstrøm
- Department of Cardiology, The Heart Center, Rigshospitalet Copenhagen University Hospital, Blegdamsvej 9, 2100, Copenhagen, Denmark
| | - Henning Kelbæk
- Department of Cardiology, The Heart Center, Rigshospitalet Copenhagen University Hospital, Blegdamsvej 9, 2100, Copenhagen, Denmark
| | - Lene Holmvang
- Department of Cardiology, The Heart Center, Rigshospitalet Copenhagen University Hospital, Blegdamsvej 9, 2100, Copenhagen, Denmark
| | - Lia E Bang
- Department of Cardiology, The Heart Center, Rigshospitalet Copenhagen University Hospital, Blegdamsvej 9, 2100, Copenhagen, Denmark
| | - Rasmus Sejersten Ripa
- Department of Clinical Physiology, Nuclear Medicine & PET and Cluster for Molecular Imaging, Rigshospitalet and University of Copenhagen, Copenhagen, Denmark
| | - Philip Hasbak
- Department of Clinical Physiology, Nuclear Medicine & PET and Cluster for Molecular Imaging, Rigshospitalet and University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
29
|
Abstract
Despite considerable advances in medicine, cardiovascular disease is still rising, with ischemic heart disease being the leading cause of death and disability worldwide. Thus extensive efforts are continuing to establish effective therapeutic modalities that would improve both quality of life and survival in this patient population. Novel therapies are being investigated not only to protect the myocardium against ischemia-reperfusion injury but also to regenerate the heart. Stem cell therapy, such as potential use of human mesenchymal stem cells and induced pluripotent stem cells and their exosomes, will make it possible not only to address molecular mechanisms of cardiac conditioning, but also to develop new therapies for ischemic heart disease. Despite the studies and progress made over the last 15 years on the use of stem cell therapy for cardiovascular disease, the efforts are still in their infancy. Even though the expectations have been high, the findings indicate that most of the clinical trials generally have been small and the results inconclusive. Because of many negative findings, there is certain pessimism that cardiac cell therapy is likely to yield any meaningful results over the next decade or so. Similar to other new technologies, early failures are not unusual and they may be followed by impressive success. Nevertheless, there has been considerable attention to safety by the clinical investigators because the adverse events of stem cell therapy have been impressively rare. In summary, although regenerative biology might not help the cardiovascular patient in the near term, it is destined to do so over the next several decades.
Collapse
Affiliation(s)
- Maia Terashvili
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI
| | - Zeljko J Bosnjak
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI.
| |
Collapse
|
30
|
Hausenloy DJ, Garcia-Dorado D, Bøtker HE, Davidson SM, Downey J, Engel FB, Jennings R, Lecour S, Leor J, Madonna R, Ovize M, Perrino C, Prunier F, Schulz R, Sluijter JPG, Van Laake LW, Vinten-Johansen J, Yellon DM, Ytrehus K, Heusch G, Ferdinandy P. Novel targets and future strategies for acute cardioprotection: Position Paper of the European Society of Cardiology Working Group on Cellular Biology of the Heart. Cardiovasc Res 2018; 113:564-585. [PMID: 28453734 DOI: 10.1093/cvr/cvx049] [Citation(s) in RCA: 243] [Impact Index Per Article: 40.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2016] [Accepted: 03/15/2017] [Indexed: 02/06/2023] Open
Abstract
Ischaemic heart disease and the heart failure that often results, remain the leading causes of death and disability in Europe and worldwide. As such, in order to prevent heart failure and improve clinical outcomes in patients presenting with an acute ST-segment elevation myocardial infarction and patients undergoing coronary artery bypass graft surgery, novel therapies are required to protect the heart against the detrimental effects of acute ischaemia/reperfusion injury (IRI). During the last three decades, a wide variety of ischaemic conditioning strategies and pharmacological treatments have been tested in the clinic-however, their translation from experimental to clinical studies for improving patient outcomes has been both challenging and disappointing. Therefore, in this Position Paper of the European Society of Cardiology Working Group on Cellular Biology of the Heart, we critically analyse the current state of ischaemic conditioning in both the experimental and clinical settings, provide recommendations for improving its translation into the clinical setting, and highlight novel therapeutic targets and new treatment strategies for reducing acute myocardial IRI.
Collapse
Affiliation(s)
- Derek J Hausenloy
- The Hatter Cardiovascular Institute, University College London, 67 Chenies Mews, London WC1E 6HX, UK; The National Institute of Health Research University College London Hospitals Biomedical Research Centre, 149 Tottenham Court Road London, W1T 7DN, UK; Cardiovascular and Metabolic Disorders Program, Duke-National University of Singapore, 8 College Road, Singapore 169857; National Heart Research Institute Singapore, National Heart Centre Singapore, 5 Hospital Dr, Singapore 169609, Singapore; Yong Loo Lin School of Medicine, National University Singapore, Singapore; Barts Heart Centre, St Bartholomew's Hospital, London, UK
| | - David Garcia-Dorado
- Department of Cardiology, Vall d Hebron University Hospital and Research Institute. Universitat Autònoma, Passeig de la Vall d'Hebron, 119-129, 08035 Barcelona, Spain
| | - Hans Erik Bøtker
- Department of Cardiology, Aarhus University Hospital Skejby, Palle Juul-Jensens Boulevard 99, 8200 Aarhus N, Denmark
| | - Sean M Davidson
- The Hatter Cardiovascular Institute, University College London, 67 Chenies Mews, London WC1E 6HX, UK
| | - James Downey
- Department of Physiology and Cell Biology, College of Medicine, University of South Alabama, 5851 USA Dr. N., MSB 3074, Mobile, AL 36688, USA
| | - Felix B Engel
- Experimental Renal and Cardiovascular Research, Department of Nephropathology, Institute of Pathology, Friedrich-Alexander-Universität Erlangen-Nßrnberg, Schloßplatz 4, 91054 Erlangen, Germany
| | - Robert Jennings
- Department of Cardiology, Duke University, Durham, NC 27708, USA
| | - Sandrine Lecour
- Department of Medicine, Hatter Institute for Cardiovascular Research in Africa and South African Medical Research Council Inter-University Cape Heart Group, Faculty of Health Sciences, University of Cape Town, Chris Barnard Building, Anzio Road, Observatory, 7925, Cape Town, Western Cape, South Africa
| | - Jonathan Leor
- Tamman Cardiovascular Research Institute, Sheba Medical Center, Tel Hashomer, Israel; Neufeld Cardiac Research Institute, Tel-Aviv University, Sheba Medical Center, Tel Hashomer, 5265601, Israel; Sheba Center for Regenerative Medicine, Stem Cell, and Tissue Engineering, Tel Hashomer, 5265601, Israel
| | - Rosalinda Madonna
- Center of Aging Sciences and Translational Medicine - CESI-MeT, "G. d'Annunzio" University, Chieti, Italy; Institute of Cardiology, Department of Neurosciences, Imaging, and Clinical Sciences, "G. d'Annunzio University, Chieti, Italy; Texas Heart Institute and University of Texas Medical School in Houston, Department of Internal Medicine, 6770 Bertner Avenue, Houston, Texas 77030 USA
| | - Michel Ovize
- Explorations Fonctionnelles Cardiovasculaires, Hôpital Louis Pradel, 28 Avenue du Doyen Jean Lépine, 69500 Bron, France; UMR 1060 (CarMeN), Université Claude Bernard Lyon, 43 Boulevard du 11 Novembre 1918, 69100 Villeurbanne, France
| | - Cinzia Perrino
- Department of Advanced Biomedical Sciences, Division of Cardiology, Federico II University Corso Umberto I, 40, 80138 Napoli, Italy
| | - Fabrice Prunier
- Department of Cardiology, University of Angers, University Hospital of Angers, 4 Rue Larrey, 49100 Angers, France
| | - Rainer Schulz
- Institute of Physiology, Justus-Liebig, University of Giessen, Ludwigstraße 23, 35390 Gießen, Germany
| | - Joost P G Sluijter
- Cardiology and UMC Utrecht Regenerative Medicine Center, University Medical Center Utrecht, Heidelberglaan 100, 3584 CX Utrecht, Netherlands
| | - Linda W Van Laake
- Division Heart and Lungs, University Medical Center Utrecht, Heidelberglaan 100, 3584 CX Utrecht, Netherlands
| | - Jakob Vinten-Johansen
- Division of Cardiothoracic Surgery, Department of Surgery, Emory University, 201 Dowman Dr, Atlanta, GA 30322, USA
| | - Derek M Yellon
- The Hatter Cardiovascular Institute, University College London, 67 Chenies Mews, London WC1E 6HX, UK; The National Institute of Health Research University College London Hospitals Biomedical Research Centre, 149 Tottenham Court Road London, W1T 7DN, UK
| | - Kirsti Ytrehus
- Cardiovascular Research Group, Department of Medical Biology, UiT The Arctic University of Norway, Hansine Hansens veg 18, 9019 Tromsø, Norway
| | - Gerd Heusch
- Institute for Pathophysiology, West-German Heart and Vascular Center, University Hospital Essen, Hufelandstrasse 55, 45147 Essen, Germany
| | - Péter Ferdinandy
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Nagyvárad tér 4, 1089 Hungary; Pharmahungary Group, Graphisoft Park, 7 Záhony street, Budapest, H-1031, Hungary
| |
Collapse
|
31
|
Heusch G, Gersh BJ. The pathophysiology of acute myocardial infarction and strategies of protection beyond reperfusion: a continual challenge. Eur Heart J 2018; 38:774-784. [PMID: 27354052 DOI: 10.1093/eurheartj/ehw224] [Citation(s) in RCA: 273] [Impact Index Per Article: 45.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2016] [Accepted: 05/12/2016] [Indexed: 12/15/2022] Open
Abstract
The incidence of ST segment elevation myocardial infarction (STEMI) has decreased over the last two decades in developed countries, but mortality from STEMI despite widespread access to reperfusion therapy is still substantial as is the development of heart failure, particularly among an expanding older population. In developing countries, the incidence of STEMI is increasing and interventional reperfusion is often not available. We here review the pathophysiology of acute myocardial infarction and reperfusion, notably the temporal and spatial evolution of ischaemic and reperfusion injury, the different modes of cell death, and the resulting coronary microvascular dysfunction. We then go on to briefly characterize the cardioprotective phenomena of ischaemic preconditioning, ischaemic postconditioning, and remote ischaemic conditioning and their underlying signal transduction pathways. We discuss in detail the attempts to translate conditioning strategies and drug therapy into the clinical setting. Most attempts have failed so far to reduce infarct size and improve clinical outcomes in STEMI patients, and we discuss potential reasons for such failure. Currently, it appears that remote ischaemic conditioning and a few drugs (atrial natriuretic peptide, exenatide, metoprolol, and esmolol) reduce infarct size, but studies with clinical outcome as primary endpoint are still underway.
Collapse
Affiliation(s)
- Gerd Heusch
- Institute for Pathophysiology, West German Heart and Vascular Center, University of Essen Medical School, Hufelandstr. 55, 45122 Essen, Germany
| | - Bernard J Gersh
- Division of Cardiovascular Diseases, Mayo Clinic and Mayo Clinic College of Medicine, Rochester, MN, USA
| |
Collapse
|
32
|
Huang C, Liu Y, Beenken A, Jiang L, Gao X, Huang Z, Hsu A, Gross GJ, Wang YG, Mohammadi M, Schultz JEJ. A novel fibroblast growth factor-1 ligand with reduced heparin binding protects the heart against ischemia-reperfusion injury in the presence of heparin co-administration. Cardiovasc Res 2017; 113:1585-1602. [PMID: 29016740 PMCID: PMC5852627 DOI: 10.1093/cvr/cvx165] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Revised: 03/20/2017] [Accepted: 08/10/2017] [Indexed: 12/12/2022] Open
Abstract
AIMS Fibroblast growth factor 1 (FGF1), a heparin/heparan sulfate-binding growth factor, is a potent cardioprotective agent against myocardial infarction (MI). The impact of heparin, the standard of care for MI patients entering the emergency room, on cardioprotective effects of FGF1 is unknown, however. METHODS AND RESULTS To address this, a rat model of MI was employed to compare cardioprotective potentials (lower infarct size and improve post-ischemic function) of native FGF1 and an engineered FGF1 (FGF1ΔHBS) with reduced heparin-binding affinity when given at the onset of reperfusion in the absence or presence of heparin. FGF1 and FGF1ΔHBS did not alter heparin's anticoagulant properties. Treatment with heparin alone or native FGF1 significantly reduced infarct size compared to saline (P < 0.05). Surprisingly, treatment with FGF1ΔHBS markedly lowered infarct size compared to FGF1 (P < 0.05). Both native and modified FGF1 restored contractile and relaxation function (P < 0.05 versus saline or heparin). Furthermore, FGF1ΔHBS had greater improvement in cardiac function compared to FGF1 (P < 0.05). Heparin negatively impacted the cardioprotective effects (infarct size, post-ischemic recovery of function) of FGF1 (P < 0.05) but not of FGF1ΔHBS. Heparin also reduced the biodistribution of FGF1, but not FGF1ΔHBS, to the left ventricle. FGF1 and FGF1ΔHBS bound and triggered FGFR1-induced downstream activation of ERK1/2 (P < 0.05); yet, heparin co-treatment decreased FGF1-produced ERK1/2 activation, but not that activated by FGF1ΔHBS. CONCLUSION These findings demonstrate that modification of the heparin-binding region of FGF1 significantly improves the cardioprotective efficacy, even in the presence of heparin, identifying a novel FGF ligand available for therapeutic use in ischemic heart disease.
Collapse
Affiliation(s)
- Chahua Huang
- Department of Pharmacology and Cell Biophysics, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
- Department of Cardiology, Second Affiliated Hospital, Nanchang University, Nanchang 330006, China
| | - Yang Liu
- Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, NY 10016, USA
| | - Andrew Beenken
- Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, NY 10016, USA
| | - Lin Jiang
- Department of Pathology and Laboratory Medicine, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
| | - Xiang Gao
- Department of Pathology and Laboratory Medicine, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
| | - Zhifeng Huang
- School of Pharmacy and Center for Structural Biology, Wenzhou Medical University, Zhejiang 325035, China
| | - Anna Hsu
- Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Garrett J. Gross
- Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Yi-Gang Wang
- Department of Pathology and Laboratory Medicine, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
| | - Moosa Mohammadi
- Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, NY 10016, USA
| | - Jo El J. Schultz
- Department of Pharmacology and Cell Biophysics, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
| |
Collapse
|
33
|
Arai AE. Time-Varying Edema Requires Cautious Interpretation of Myocardium at Risk and Infarct Size by All Imaging Methods. Circulation 2017; 136:1301-1303. [PMID: 28972062 DOI: 10.1161/circulationaha.117.030134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Andrew E Arai
- From Advanced Cardiovascular Imaging Laboratory, National Institutes of Health, National Heart, Lung, and Blood Institute, Bethesda, MD.
| |
Collapse
|
34
|
Stokfisz K, Ledakowicz-Polak A, Zagorski M, Zielinska M. Ischaemic preconditioning - Current knowledge and potential future applications after 30 years of experience. Adv Med Sci 2017; 62:307-316. [PMID: 28511069 DOI: 10.1016/j.advms.2016.11.006] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2016] [Revised: 10/19/2016] [Accepted: 11/29/2016] [Indexed: 12/16/2022]
Abstract
Ischaemic preconditioning (IPC) phenomenon has been known for thirty years. During that time several studies showed that IPC provided by brief ischaemic and reperfusion episodes prior to longer ischaemia can bestow a protective effect to both preconditioned and also remote organs. IPC affecting remote organs is called remote ischaemic preconditioning. Initially, most IPC studies were focused on enhancing myocardial resistance to subsequent ischaemia and reperfusion injury. However, preconditioning was found to be a universal phenomenon and was observed in various organs and tissues including the heart, liver, brain, retina, kidney, skeletal muscles and intestine. Currently, there are a lot of simultaneous studies are underway aiming at finding out whether IPC can be helpful in protecting these organs. The mechanism of local and remote IPC is complex and not well known. Several triggers, intracellular pathways and effectors, humoral, neural and induced by genetic changes may be considered potential pathways in the protective activity of local and remote IPC. Local and remote IPC mechanism may potentially serve as heart protection during cardiac surgery and may limit the infarct size of the myocardium, can be a strategy for preventing the development of acute kidney injury development and liver damage during transplantation, may protect the brain against ischaemic injury. In addition, the method is safe, non-invasive, cheap and easily applicable. The main purpose of this review article is to present new advances which would help to understand the potential mechanism of IPC. It also discusses both its potential applications and utility in clinical settings.
Collapse
Affiliation(s)
- Karolina Stokfisz
- Intensive Cardiac Therapy Clinic, Department of Invasive Cardiology and Electrocardiology, Medical University, Lodz, Poland.
| | - Anna Ledakowicz-Polak
- Intensive Cardiac Therapy Clinic, Department of Invasive Cardiology and Electrocardiology, Medical University, Lodz, Poland
| | - Maciej Zagorski
- Cardiosurgery Clinic, Department of Cardiology and Cardiosurgery, Medical University, Lodz, Poland
| | - Marzenna Zielinska
- Intensive Cardiac Therapy Clinic, Department of Invasive Cardiology and Electrocardiology, Medical University, Lodz, Poland
| |
Collapse
|
35
|
Abstract
The translation from numerous successful animal experiments on cardioprotection beyond that by reperfusion to clinical practice has to date been disappointing. Animal experiments often use reductionist approaches and are mostly performed in young and healthy animals which lack the risk factors, comorbidities, and comedications which are characteristics of patients suffering an acute myocardial infarction or undergoing cardiovascular surgery. Conceptually, it is still unclear by how much the time window for successful reperfusion is extended by preconditioning, and how long the duration of ischemia can be so that adjunct cardioprotection by postconditioning at reperfusion still protects. Experimental studies addressing long-term effects of adjunct cardioprotection beyond infarct size reduction, that is, on repair, remodeling, and mortality, are lacking. Technically, reproducibility and robustness of experimental studies are often limited. Grave faults in design and conduct of clinical trials have also substantially contributed to the failure of translation of cardioprotection to clinical practice. Cardiovascular surgery with ischemic cardioplegic arrest is only a surrogate of acute myocardial infarction and confounded by the choice of anesthesia, hypothermia, cardioplegia, and traumatic myocardial injury. Trials in patients with acute myocardial infarction have been performed on agents/interventions with no or inconsistent previous animal data and in patients who had either some reperfusion already at admission or were reperfused too late to expect any myocardial salvage. Of greatest concern is the lack of adequate phase II dosing and timing studies when rushing from promising proof-of-concept trials with surrogate end points such as infarct size to larger clinical outcome trials. Future trials must focus on interventions/agents with robust preclinical evidence, have solid phase II dosing and timing data, and recruit patients who have truly a chance to benefit from adjunct cardioprotection.
Collapse
Affiliation(s)
- Gerd Heusch
- From the Institute for Pathophysiology, West German Heart and Vascular Center, University of Essen Medical School, Germany.
| |
Collapse
|
36
|
Chun N, Haddadin AS, Liu J, Hou Y, Wong KA, Lee D, Rushbrook JI, Gulaya K, Hines R, Hollis T, Nistal Nuno B, Mangi AA, Hashim S, Pekna M, Catalfamo A, Chin HY, Patel F, Rayala S, Shevde K, Heeger PS, Zhang M. Activation of complement factor B contributes to murine and human myocardial ischemia/reperfusion injury. PLoS One 2017; 12:e0179450. [PMID: 28662037 PMCID: PMC5491012 DOI: 10.1371/journal.pone.0179450] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2017] [Accepted: 05/29/2017] [Indexed: 12/28/2022] Open
Abstract
The pathophysiology of myocardial injury that results from cardiac ischemia and reperfusion (I/R) is incompletely understood. Experimental evidence from murine models indicates that innate immune mechanisms including complement activation via the classical and lectin pathways are crucial. Whether factor B (fB), a component of the alternative complement pathway required for amplification of complement cascade activation, participates in the pathophysiology of myocardial I/R injury has not been addressed. We induced regional myocardial I/R injury by transient coronary ligation in WT C57BL/6 mice, a manipulation that resulted in marked myocardial necrosis associated with activation of fB protein and myocardial deposition of C3 activation products. In contrast, in fB-/- mice, the same procedure resulted in significantly reduced myocardial necrosis (% ventricular tissue necrotic; fB-/- mice, 20 ± 4%; WT mice, 45 ± 3%; P < 0.05) and diminished deposition of C3 activation products in the myocardial tissue (fB-/- mice, 0 ± 0%; WT mice, 31 ± 6%; P<0.05). Reconstitution of fB-/- mice with WT serum followed by cardiac I/R restored the myocardial necrosis and activated C3 deposition in the myocardium. In translational human studies we measured levels of activated fB (Bb) in intracoronary blood samples obtained during cardio-pulmonary bypass surgery before and after aortic cross clamping (AXCL), during which global heart ischemia was induced. Intracoronary Bb increased immediately after AXCL, and the levels were directly correlated with peripheral blood levels of cardiac troponin I, an established biomarker of myocardial necrosis (Spearman coefficient = 0.465, P < 0.01). Taken together, our results support the conclusion that circulating fB is a crucial pathophysiological amplifier of I/R-induced, complement-dependent myocardial necrosis and identify fB as a potential therapeutic target for prevention of human myocardial I/R injury.
Collapse
Affiliation(s)
- Nicholas Chun
- Nephrology Division, Department of Medicine and Translational Transplant Research Center, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
| | - Ala S. Haddadin
- Department of Anesthesiology, Yale University School of Medicine, New Haven, Connecticut, United States of America
| | - Junying Liu
- Department of Anesthesiology, College of Medicine, SUNY Downstate Medical Center, Brooklyn, New York, United States of America
| | - Yunfang Hou
- Department of Anesthesiology, College of Medicine, SUNY Downstate Medical Center, Brooklyn, New York, United States of America
| | - Karen A. Wong
- Department of Anesthesiology, College of Medicine, SUNY Downstate Medical Center, Brooklyn, New York, United States of America
| | - Daniel Lee
- Department of Surgery, College of Medicine, SUNY Downstate Medical Center, Brooklyn, New York, United States of America
| | - Julie I. Rushbrook
- Department of Anesthesiology, College of Medicine, SUNY Downstate Medical Center, Brooklyn, New York, United States of America
| | - Karan Gulaya
- Department of Anesthesiology, College of Medicine, SUNY Downstate Medical Center, Brooklyn, New York, United States of America
| | - Roberta Hines
- Department of Anesthesiology, Yale University School of Medicine, New Haven, Connecticut, United States of America
| | - Tamika Hollis
- Department of Anesthesiology, Yale University School of Medicine, New Haven, Connecticut, United States of America
| | - Beatriz Nistal Nuno
- Department of Anesthesiology, Yale University School of Medicine, New Haven, Connecticut, United States of America
| | - Abeel A. Mangi
- Department of Surgery, Yale University School of Medicine, New Haven, Connecticut, United States of America
| | - Sabet Hashim
- Department of Surgery, Yale University School of Medicine, New Haven, Connecticut, United States of America
| | - Marcela Pekna
- Department of Medical Chemistry and Cell Biology, Göteborg University, Göteborg, Sweden
| | - Amy Catalfamo
- Department of Anesthesiology, College of Medicine, SUNY Downstate Medical Center, Brooklyn, New York, United States of America
| | - Hsiao-ying Chin
- Department of Anesthesiology, College of Medicine, SUNY Downstate Medical Center, Brooklyn, New York, United States of America
| | - Foramben Patel
- Department of Biomedical Sciences, Long Island University, Brookville, New York, United States of America
| | - Sravani Rayala
- Department of Biomedical Sciences, Long Island University, Brookville, New York, United States of America
| | - Ketan Shevde
- Department of Anesthesiology, College of Medicine, SUNY Downstate Medical Center, Brooklyn, New York, United States of America
| | - Peter S. Heeger
- Nephrology Division, Department of Medicine and Translational Transplant Research Center, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
| | - Ming Zhang
- Department of Anesthesiology, College of Medicine, SUNY Downstate Medical Center, Brooklyn, New York, United States of America
- Department of Cell Biology, College of Medicine, SUNY Downstate Medical Center, Brooklyn, New York, United States of America
| |
Collapse
|
37
|
Yu J, Zhang X, Zhang Y. Astragaloside attenuates myocardial injury in a rat model of acute myocardial infarction by upregulating hypoxia inducible factor‑1α and Notch1/Jagged1 signaling. Mol Med Rep 2017; 15:4015-4020. [PMID: 28487976 PMCID: PMC5436283 DOI: 10.3892/mmr.2017.6522] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2016] [Accepted: 02/16/2017] [Indexed: 12/12/2022] Open
Abstract
The present study aimed to investigate the mechanisms underlying the cardioprotective effect of Astragaloside against myocardial injury following myocardial infarction (MI) in a rat model. Male Wistar rats were subjected to left anterior descending branch ligation. The rats that survived 24 h (n=18) were randomly and equally assigned to three groups: MI model group, and 2.5 and 10 mg/kg/day Astragaloside group. A further six rats underwent identical surgical procedures without artery ligation, serving as sham controls. Following 28 days of treatment, the left ventricle was harvested for morphological analysis, and mRNA and protein expression levels of hypoxia inducible factor‑1α (HIF‑1α), Notch1 and Jagged1 were measured. Treatment with Astragaloside attenuated pathological changes in the myocardium. Compared with untreated MI rats, rats treated with Astragaloside exhibited significantly increased mRNA expression levels of HIF‑1α, Notch1 and Jagged1 (all P<0.01). HIF‑1α demonstrated a dose‑dependent effect (P<0.05). Astragaloside (10 mg/kg/day) significantly increased HIF‑1α (P<0.05), Notch1 (P<0.01) and Jagged1 (P<0.01) protein expression levels. Additionally, 2.5 mg/kg Astragaloside significantly increased Jagged1 protein expression levels compared with untreated MI rats. Furthermore, there was a dose‑dependent effect of Astragaloside treatment (P<0.01). These findings suggested that the cardioprotective effects of Astragaloside against myocardial injury following MI may involve upregulation of HIF‑α, Notch1 and Jagged1 signaling, implicating these molecules as therapeutic targets for the treatment of MI.
Collapse
Affiliation(s)
- Junmin Yu
- Department of Geriatrics, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China
| | - Xiaobo Zhang
- Department of Geriatrics, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China
| | - Yina Zhang
- Department of Geriatrics, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150086, P.R. China
| |
Collapse
|
38
|
McDougal AD, Dewey CF. Modeling oxygen requirements in ischemic cardiomyocytes. J Biol Chem 2017; 292:11760-11776. [PMID: 28487363 DOI: 10.1074/jbc.m116.751826] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2016] [Revised: 05/01/2017] [Indexed: 11/06/2022] Open
Abstract
Heart disease remains the leading cause of death globally. Although reperfusion following myocardial ischemia can prevent death by restoring nutrient flow, ischemia/reperfusion injury can cause significant heart damage. The mechanisms that drive ischemia/reperfusion injury are not well understood; currently, few methods can predict the state of the cardiac muscle cell and its metabolic conditions during ischemia. Here, we explored the energetic sustainability of cardiomyocytes, using a model for cellular metabolism to predict the levels of ATP following hypoxia. We modeled glycolytic metabolism with a system of coupled ordinary differential equations describing the individual metabolic reactions within the cardiomyocyte over time. Reduced oxygen levels and ATP consumption rates were simulated to characterize metabolite responses to ischemia. By tracking biochemical species within the cell, our model enables prediction of the cell's condition up to the moment of reperfusion. The simulations revealed a distinct transition between energetically sustainable and unsustainable ATP concentrations for various energetic demands. Our model illustrates how even low oxygen concentrations allow the cell to perform essential functions. We found that the oxygen level required for a sustainable level of ATP increases roughly linearly with the ATP consumption rate. An extracellular O2 concentration of ∼0.007 mm could supply basic energy needs in non-beating cardiomyocytes, suggesting that increased collateral circulation may provide an important source of oxygen to sustain the cardiomyocyte during extended ischemia. Our model provides a time-dependent framework for studying various intervention strategies to change the outcome of reperfusion.
Collapse
Affiliation(s)
- Anthony D McDougal
- Departments of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139
| | - C Forbes Dewey
- Departments of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139; Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139.
| |
Collapse
|
39
|
Chen WR, Chen YD, Tian F, Yang N, Cheng LQ, Hu SY, Wang J, Yang JJ, Wang SF, Gu XF. Effects of Liraglutide on Reperfusion Injury in Patients With ST-Segment-Elevation Myocardial Infarction. Circ Cardiovasc Imaging 2017; 9:CIRCIMAGING.116.005146. [PMID: 27940956 DOI: 10.1161/circimaging.116.005146] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Accepted: 09/06/2016] [Indexed: 12/29/2022]
Abstract
BACKGROUND Liraglutide, a glucagon-like peptide-1 analog, was reported to reduce reperfusion injury in mice. We planned to evaluate the effects of liraglutide on reperfusion injury in patients with acute ST-segment-elevation myocardial infarction treated with primary percutaneous coronary intervention. METHODS AND RESULTS A total of 96 patients with ST-segment-elevation myocardial infarction undergoing emergency primary percutaneous coronary intervention were randomized to receive either subcutaneous liraglutide or placebo. Study treatment was commenced 30 minutes before intervention (1.8 mg) and maintained for 7 days after the procedure (0.6 mg for 2 days, 1.2 mg for 2 days, followed by 1.8 mg for 3 days). The salvage index was calculated from myocardial area at risk, measured during the index admission (35±12 hours), and final infarct size measured at 91±5 days after primary percutaneous coronary intervention by cardiac magnetic resonance. At 3 months, the primary end point, a higher salvage index was found in the liraglutide group than in the placebo group in 77 patients evaluated with cardiac magnetic resonance (0.66±0.14 versus 0.55±0.15; P=0.001). The final infarct size was lower in the liraglutide group than that in the placebo group (15±12 versus 21±15 g; P=0.05). Serum high-sensitivity C-reactive protein level was lower in the liraglutide group (P<0.001). During a 6-month follow-up period, no difference was observed in the incidence of major adverse cardiovascular event. Safety and tolerability were similar among the 2 groups. CONCLUSIONS Our study provides evidence that liraglutide improves myocardial salvage and infarct size after ST-segment-elevation myocardial infarction, possibly by reducing reperfusion injury, making it a promising treatment for evaluation in larger trials. CLINICAL TRIAL REGISTRATION URL: https://www.clinicaltrials.gov. Unique identifier: NCT02001363.
Collapse
Affiliation(s)
- Wei Ren Chen
- From the Department of Cardiology (W.R.C., Y.D.C., F.T., S.Y.H., J.W., J.J.Y., S.F.W., X.F.G.) and Division of MRI, Department of Radiology (N.Y., L.Q.C.), PLA General Hospital at Beijing, China
| | - Yun Dai Chen
- From the Department of Cardiology (W.R.C., Y.D.C., F.T., S.Y.H., J.W., J.J.Y., S.F.W., X.F.G.) and Division of MRI, Department of Radiology (N.Y., L.Q.C.), PLA General Hospital at Beijing, China.
| | - Feng Tian
- From the Department of Cardiology (W.R.C., Y.D.C., F.T., S.Y.H., J.W., J.J.Y., S.F.W., X.F.G.) and Division of MRI, Department of Radiology (N.Y., L.Q.C.), PLA General Hospital at Beijing, China
| | - Na Yang
- From the Department of Cardiology (W.R.C., Y.D.C., F.T., S.Y.H., J.W., J.J.Y., S.F.W., X.F.G.) and Division of MRI, Department of Radiology (N.Y., L.Q.C.), PLA General Hospital at Beijing, China
| | - Liu Quan Cheng
- From the Department of Cardiology (W.R.C., Y.D.C., F.T., S.Y.H., J.W., J.J.Y., S.F.W., X.F.G.) and Division of MRI, Department of Radiology (N.Y., L.Q.C.), PLA General Hospital at Beijing, China
| | - Shun Ying Hu
- From the Department of Cardiology (W.R.C., Y.D.C., F.T., S.Y.H., J.W., J.J.Y., S.F.W., X.F.G.) and Division of MRI, Department of Radiology (N.Y., L.Q.C.), PLA General Hospital at Beijing, China
| | - Jing Wang
- From the Department of Cardiology (W.R.C., Y.D.C., F.T., S.Y.H., J.W., J.J.Y., S.F.W., X.F.G.) and Division of MRI, Department of Radiology (N.Y., L.Q.C.), PLA General Hospital at Beijing, China
| | - Jun Jie Yang
- From the Department of Cardiology (W.R.C., Y.D.C., F.T., S.Y.H., J.W., J.J.Y., S.F.W., X.F.G.) and Division of MRI, Department of Radiology (N.Y., L.Q.C.), PLA General Hospital at Beijing, China
| | - Shi Feng Wang
- From the Department of Cardiology (W.R.C., Y.D.C., F.T., S.Y.H., J.W., J.J.Y., S.F.W., X.F.G.) and Division of MRI, Department of Radiology (N.Y., L.Q.C.), PLA General Hospital at Beijing, China
| | - Xiao Fang Gu
- From the Department of Cardiology (W.R.C., Y.D.C., F.T., S.Y.H., J.W., J.J.Y., S.F.W., X.F.G.) and Division of MRI, Department of Radiology (N.Y., L.Q.C.), PLA General Hospital at Beijing, China
| |
Collapse
|
40
|
Abstract
The atherosclerotic coronary vasculature is not only the culprit but also a victim of myocardial ischemia/reperfusion injury. Manifestations of such injury are increased vascular permeability and edema, endothelial dysfunction and impaired vasomotion, microembolization of atherothrombotic debris, stasis with intravascular cell aggregates, and finally, in its most severe form, capillary destruction with hemorrhage. In animal experiments, local and remote ischemic pre- and postconditioning not only reduce infarct size but also these manifestations of coronary vascular injury, as do drugs which recruit signal transduction steps of conditioning. Clinically, no-reflow is frequently seen after interventional reperfusion, and it carries an adverse prognosis. The translation of cardioprotective interventions to clinical practice has been difficult to date. Only 4 drugs (brain natriuretic peptide, exenatide, metoprolol, and esmolol) stand unchallenged to date in reducing infarct size in patients with reperfused acute myocardial infarction; unfortunately, for these drugs, no information on their impact on the ischemic/reperfused coronary circulation is available.
Collapse
Affiliation(s)
- Gerd Heusch
- From the Institute for Pathophysiology, West German Heart and Vascular Center, University of Essen Medical School, University of Essen, Essen, Germany.
| |
Collapse
|
41
|
Datta T, Przyklenk K, Datta NS. Parathyroid Hormone-Related Peptide: A Novel Endocrine Cardioprotective "Conditioning Mimetic". J Cardiovasc Pharmacol Ther 2017; 22:529-537. [PMID: 28403647 DOI: 10.1177/1074248417702976] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
An as-yet limited body of evidence suggests that calcium-regulating endocrine hormones-in particular, parathyroid hormone-related peptide (PTHrP)-may have unappreciated cardioprotective effects. The current review focuses on the concept that PTHrP may, via modulation of classic cardioprotective signaling pathways, provide a novel strategy to attenuate myocardial ischemia-reperfusion injury.
Collapse
Affiliation(s)
- Tanuka Datta
- 1 Department of Internal Medicine, George Washington University, Washington, DC, USA
| | - Karin Przyklenk
- 2 Cardiovascular Research Institute, Wayne State University School of Medicine, Detroit, MI, USA.,3 Department of Physiology, Wayne State University School of Medicine, Detroit, MI, USA.,4 Department of Emergency Medicine, Wayne State University School of Medicine, Detroit, MI, USA
| | - Nabanita S Datta
- 2 Cardiovascular Research Institute, Wayne State University School of Medicine, Detroit, MI, USA.,5 Department of Internal Medicine, Wayne State University School of Medicine, Detroit, MI, USA
| |
Collapse
|
42
|
Abstract
The size of the myocardial infarction remains an important therapeutic target, because heart attack size correlates with mortality and heart failure. In this era, myocardial infarct size is reduced primarily by timely reperfusion of the infarct related coronary artery. Whereas numerous pre-clinical studies have shown that certain pharmacologic agents and therapeutic maneuvers reduce myocardial infarction size greater than reperfusion alone, very few of these therapies have translated to successful clinical trials or standard clinical use. In this review we discuss both the recent successes as well as recent disappointments, and describe some of the newer potential therapies from the preclinical literature that have not yet been tested in clinical trials.
Collapse
|
43
|
García-Ruiz JM, Galán-Arriola C, Fernández-Jiménez R, Aguero J, Sánchez-González J, García-Alvarez A, Nuno-Ayala M, Dubé GP, Zafirelis Z, López-Martín GJ, Bernal JA, Lara-Pezzi E, Fuster V, Ibáñez B. Bloodless reperfusion with the oxygen carrier HBOC-201 in acute myocardial infarction: a novel platform for cardioprotective probes delivery. Basic Res Cardiol 2017; 112:17. [PMID: 28188434 DOI: 10.1007/s00395-017-0605-6] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2016] [Accepted: 01/23/2017] [Indexed: 02/08/2023]
Abstract
Reperfusion, despite being required for myocardial salvage, is associated with additional injury. We hypothesize that infarct size (IS) will be reduced by a period of bloodless reperfusion with hemoglobin-based oxygen carriers (HBOC) before blood-flow restoration. In the pig model, we first characterized the impact of intracoronary perfusion with a fixed volume (600 ml) of a pre-oxygenated acellular HBOC, HBOC-201, on the healthy myocardium. HBOC-201 was administered through the lumen of the angioplasty balloon (i.e., distal to the occlusion site) immediately after onset of coronary occlusion at 1, 0.7, 0.4, or 0.2 ml/kg/min for 12, 17, 30, and 60 min, respectively, followed by blood-flow restoration. Outcome measures were systemic hemodynamics and LV performance assessed by the state-of-the-art cardiac magnetic resonance (CMR) imaging. The best performing HBOC-201 perfusion strategies were then tested for their impact on LV performance during myocardial infarction, in pigs subjected to 45 min mid-left anterior descending (LAD) coronary occlusion. At the end of the ischemia duration, pigs were randomized to regular reperfusion (blood-only reperfusion) vs. bloodless reperfusion (perfusion with pre-oxygenated HBOC-201 distal to the occlusion site), followed by blood-flow restoration. Hemodynamics and CMR-measured LV performance were assessed at 7- and 45-day follow-up. In modifications of the HBOC-201 procedure, glucose and insulin were included to support cardiac metabolism. A total of 66 pigs were included in this study. Twenty healthy pigs (5 per infusion protocol) were used in the study of healthy myocardium. Intracoronary administration of HBOC-201 (600 ml) at varying rates, including a flow of 0.4 ml/kg/min (corresponding to a maximum perfusion time of 30 min), did not damage the healthy myocardium. Slower perfusion (longer infusion time) was associated with permanent LV dysfunction and myocardial necrosis. A total of 46 pigs underwent MI induction. Compared with regular reperfusion, bloodless reperfusion with pre-oxygenated HBOC-201 alone increased IS. This effect was reversed by enrichment of pre-oxygenated HBOC-201 solution with glucose and insulin, resulting in no increase in IS or worsening of long-term ventricular function despite further delaying restoration of blood flow in the LAD. Bloodless reperfusion with a pre-oxygenated HBOC-201 solution supplemented with glucose and insulin is feasible and safe, but did not reduce infarct size. This strategy could be, however, used to deliver agents to the myocardium to treat or prevent ischemia/reperfusion injury before blood-flow restoration.
Collapse
Affiliation(s)
- Jose M García-Ruiz
- Myocardial Pathophysiology Area, Translational Laboratory for Cardiovascular Imaging and Therapy, Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Melchor Fernández Almagro, 3, 28029, Madrid, Spain.,CIBER de Enfermedades CardioVasculares (CIBERCV), Madrid, Spain.,Hospital Universitario Central de Asturias, Oviedo, Spain
| | - Carlos Galán-Arriola
- Myocardial Pathophysiology Area, Translational Laboratory for Cardiovascular Imaging and Therapy, Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Melchor Fernández Almagro, 3, 28029, Madrid, Spain.,CIBER de Enfermedades CardioVasculares (CIBERCV), Madrid, Spain
| | - Rodrigo Fernández-Jiménez
- Myocardial Pathophysiology Area, Translational Laboratory for Cardiovascular Imaging and Therapy, Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Melchor Fernández Almagro, 3, 28029, Madrid, Spain.,CIBER de Enfermedades CardioVasculares (CIBERCV), Madrid, Spain.,The Zena and Michael A. Wiener Cardiovascular Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Jaume Aguero
- Myocardial Pathophysiology Area, Translational Laboratory for Cardiovascular Imaging and Therapy, Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Melchor Fernández Almagro, 3, 28029, Madrid, Spain.,CIBER de Enfermedades CardioVasculares (CIBERCV), Madrid, Spain
| | | | - Ana García-Alvarez
- Myocardial Pathophysiology Area, Translational Laboratory for Cardiovascular Imaging and Therapy, Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Melchor Fernández Almagro, 3, 28029, Madrid, Spain.,Hospital Clinic, Barcelona, Spain
| | - Mario Nuno-Ayala
- Myocardial Pathophysiology Area, Translational Laboratory for Cardiovascular Imaging and Therapy, Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Melchor Fernández Almagro, 3, 28029, Madrid, Spain
| | | | | | - Gonzalo J López-Martín
- Myocardial Pathophysiology Area, Translational Laboratory for Cardiovascular Imaging and Therapy, Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Melchor Fernández Almagro, 3, 28029, Madrid, Spain
| | - Juan A Bernal
- Myocardial Pathophysiology Area, Translational Laboratory for Cardiovascular Imaging and Therapy, Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Melchor Fernández Almagro, 3, 28029, Madrid, Spain
| | - Enrique Lara-Pezzi
- Myocardial Pathophysiology Area, Translational Laboratory for Cardiovascular Imaging and Therapy, Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Melchor Fernández Almagro, 3, 28029, Madrid, Spain.,CIBER de Enfermedades CardioVasculares (CIBERCV), Madrid, Spain
| | - Valentín Fuster
- Myocardial Pathophysiology Area, Translational Laboratory for Cardiovascular Imaging and Therapy, Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Melchor Fernández Almagro, 3, 28029, Madrid, Spain.,The Zena and Michael A. Wiener Cardiovascular Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Borja Ibáñez
- Myocardial Pathophysiology Area, Translational Laboratory for Cardiovascular Imaging and Therapy, Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Melchor Fernández Almagro, 3, 28029, Madrid, Spain. .,CIBER de Enfermedades CardioVasculares (CIBERCV), Madrid, Spain. .,Department of Cardiology, Instituto de Investigación Sanitaria, Fundación Jiménez Díaz, Madrid, Spain.
| |
Collapse
|
44
|
Pan D, Li D. At the crossroads from bench to bedside: luteolin is a promising pharmacological agent against myocardial ischemia reperfusion injury. ANNALS OF TRANSLATIONAL MEDICINE 2017; 4:475. [PMID: 28090531 DOI: 10.21037/atm.2016.11.56] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Affiliation(s)
- Defeng Pan
- The First Clinical College, Nanjing Traditional Chinese Medicine University, Nanjing, China
| | - Dongye Li
- The First Clinical College, Nanjing Traditional Chinese Medicine University, Nanjing, China;; Institute of cardiovascular diseases, Xuzhou Medical University, Xuzhou, China
| |
Collapse
|
45
|
Abstract
A core feature of ischemic heart disease is injury to cardiomyocytes (CMC). Ischemic CMC manifest the molecular mechanisms to undergo the major forms of cell injury and death, namely, oncotic necrosis, necroptosis, apoptosis and unregulated autophagy. Important modulators of ischemic injury are reperfusion and conditioning. Mitochondria have a major role in mediating the injury to CMC through membrane protein complexes referred to as death channels. Apoptosis is mediated by activation of a channel regulated by the Bcl-2 protein family leading to mitochondrial outer membrane permeabilization (MOMP). Oncotic type injury is mediated by opening of the mitochondrial permeability transition pore (mPTP). Mitochondria also have a reperfusion salvage kinase pathway (RISK). With cyclosporine A serving as a prototype, ongoing research is aimed at developing pharmacological approaches to condition and preserve mitochondrial integrity in order to promote CMC survival during episodes of myocardial ischemia.
Collapse
|
46
|
Rossello X, Yellon DM. A critical review on the translational journey of cardioprotective therapies! Int J Cardiol 2016; 220:176-84. [DOI: 10.1016/j.ijcard.2016.06.131] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2016] [Revised: 06/03/2016] [Accepted: 06/23/2016] [Indexed: 01/08/2023]
|
47
|
Yang Y, Yang Y, Wang X, Du J, Hou J, Feng J, Tian Y, He L, Li X, Pei H. Does growth differentiation factor 11 protect against myocardial ischaemia/reperfusion injury? A hypothesis. J Int Med Res 2016; 45:1629-1635. [PMID: 27565745 PMCID: PMC5805180 DOI: 10.1177/0300060516658984] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The pathogenesis of myocardial ischaemia/reperfusion injury is multifactorial. Understanding the mechanisms of myocardial ischaemia/reperfusion will benefit patients with ischaemic heart disease. Growth differentiation factor 11 (GDF11), a member of the secreted transforming growth factor-β superfamily, has been found to reverse age-related hypertrophy, revealing the important role of GDF11 in cardiovascular disease. However, the functions of GDF11 in myocardial ischaemia/reperfusion have not been elucidated yet. A number of signalling molecules are known to occur downstream of GDF11, including mothers against decapentaplegic homolog 3 (SMAD3) and forkhead box O3a (FOXO3a). A hypothesis is presented that GDF11 has protective effects in acute myocardial ischaemia/reperfusion injury through suppression of oxidative stress, prevention of calcium ion overload and promotion of the elimination of abnormal mitochondria via both canonical (SMAD3) and non-canonical (FOXO3a) pathways. Since circulating GDF11 may mainly derive from the spleen, the lack of a spleen may make the myocardium susceptible to damaging insults. Administration of GDF11 may be an efficacious therapy to protect against cardiovascular diseases in splenectomized patients.
Collapse
Affiliation(s)
- Yongjian Yang
- 1 Department of Cardiology, Chengdu Military General Hospital, Chengdu, China
| | - Yi Yang
- 1 Department of Cardiology, Chengdu Military General Hospital, Chengdu, China
| | - Xiong Wang
- 2 Department of Cardiology, Fourth Military Medical University, Xi'an, China
| | - Jin Du
- 1 Department of Cardiology, Chengdu Military General Hospital, Chengdu, China
| | - Juanni Hou
- 1 Department of Cardiology, Chengdu Military General Hospital, Chengdu, China
| | - Juan Feng
- 1 Department of Cardiology, Chengdu Military General Hospital, Chengdu, China
| | - Yue Tian
- 1 Department of Cardiology, Chengdu Military General Hospital, Chengdu, China
| | - Lei He
- 1 Department of Cardiology, Chengdu Military General Hospital, Chengdu, China
| | - Xiuchuan Li
- 1 Department of Cardiology, Chengdu Military General Hospital, Chengdu, China
| | - Haifeng Pei
- 1 Department of Cardiology, Chengdu Military General Hospital, Chengdu, China
| |
Collapse
|
48
|
Singh VK, Thrall KD, Hauer-Jensen M. Minipigs as models in drug discovery. Expert Opin Drug Discov 2016; 11:1131-1134. [DOI: 10.1080/17460441.2016.1223039] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
49
|
Abstract
The mortality from acute myocardial infarction (AMI) remains significant, and the prevalence of post-myocardial infarction heart failure is increasing. Therefore, cardioprotection beyond timely reperfusion is needed. Conditioning procedures are the most powerful cardioprotective interventions in animal experiments. However, ischemic preconditioning cannot be used to reduce infarct size in patients with AMI because its occurrence is not predictable; several studies in patients undergoing surgical coronary revascularization report reduced release of creatine kinase and troponin. Ischemic postconditioning reduces infarct size in most, but not all, studies in patients undergoing interventional reperfusion of AMI, but may require direct stenting and exclusion of patients with >6 hours of symptom onset to protect. Remote ischemic conditioning reduces infarct size in patients undergoing interventional reperfusion of AMI, elective percutaneous or surgical coronary revascularization, and other cardiovascular surgery in many, but not in all, studies. Adequate dose-finding phase II studies do not exist. There are only 2 phase III trials, both on remote ischemic conditioning in patients undergoing cardiovascular surgery, both with neutral results in terms of infarct size and clinical outcome, but also both with major problems in trial design. We discuss the difficulties in translation of cardioprotection from animal experiments and proof-of-concept trials to clinical practice. Given that most studies on ischemic postconditioning and all studies on remote ischemic preconditioning in patients with AMI reported reduced infarct size, it would be premature to give up on cardioprotection.
Collapse
Affiliation(s)
- Gerd Heusch
- From the Institute for Pathophysiology (G.H.) and Clinic for Cardiology (T.R.), West German Heart and Vascular Center, University School of Medicine Essen, Essen, Germany
| | - Tienush Rassaf
- From the Institute for Pathophysiology (G.H.) and Clinic for Cardiology (T.R.), West German Heart and Vascular Center, University School of Medicine Essen, Essen, Germany
| |
Collapse
|
50
|
Relationship Between Infarct Size and Outcomes Following Primary PCI: Patient-Level Analysis From 10 Randomized Trials. J Am Coll Cardiol 2016; 67:1674-83. [PMID: 27056772 DOI: 10.1016/j.jacc.2016.01.069] [Citation(s) in RCA: 448] [Impact Index Per Article: 56.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2016] [Accepted: 01/27/2016] [Indexed: 02/06/2023]
Abstract
BACKGROUND Prompt reperfusion in patients with ST-segment elevation myocardial infarction (STEMI) reduces infarct size and improves survival. However, the intuitive link between infarct size and prognosis has not been convincingly demonstrated in the contemporary era. OBJECTIVES This study sought to determine the strength of the relationship between infarct size assessed early after primary percutaneous coronary intervention (PCI) in STEMI and subsequent all-cause mortality, reinfarction, and hospitalization for heart failure. METHODS We performed a pooled patient-level analysis from 10 randomized primary PCI trials (total 2,632 patients) in which infarct size was assessed within 1 month after randomization by either cardiac magnetic resonance (CMR) imaging or technetium-99m sestamibi single-photon emission computed tomography (SPECT), with clinical follow-up for ≥ 6 months. RESULTS Infarct size was assessed by CMR in 1,889 patients (71.8%) and by SPECT in 743 patients (28.2%). Median (25th, 75th percentile) time to infarct size measurement was 4 days (3, 10 days) after STEMI. Median infarct size (% left ventricular myocardial mass) was 17.9% (8.0%, 29.8%), and median duration of clinical follow-up was 352 days (185, 371 days). The Kaplan-Meier estimated 1-year rates of all-cause mortality, reinfarction, and HF hospitalization were 2.2%, 2.5%, and 2.6%, respectively. A strong graded response was present between infarct size (per 5% increase) and subsequent mortality (Cox-adjusted hazard ratio: 1.19 [95% confidence interval: 1.18 to 1.20]; p < 0.0001) and hospitalization for heart failure (adjusted hazard ratio: 1.20 [95% confidence interval: 1.19 to 1.21]; p < 0.0001), independent of age, sex, diabetes, hypertension, hyperlipidemia, current smoking, left anterior descending versus non-left anterior descending infarct vessel, symptom-to-first device time, and baseline TIMI (Thrombolysis In Myocardial Infarction) flow 0/1 versus 2/3. Infarct size was not significantly related to subsequent reinfarction. CONCLUSIONS Infarct size, measured by CMR or technetium-99m sestamibi SPECT within 1 month after primary PCI, is strongly associated with all-cause mortality and hospitalization for HF within 1 year. Infarct size may, therefore, be useful as an endpoint in clinical trials and as an important prognostic measure when caring for patients with STEMI.
Collapse
|