1
|
Murphy TW, Cueto RJ, Zhu J, Milling J, Sauter J, Oli M, Griffin IT, Midathala G, Tyndall JA, Spiess B, Wang KKW, Kobeissy FH, Becker TK. Dodecafluoropentane improves neuro-behavioral outcomes and return of spontaneous circulation rate in a swine model of cardiac arrest. Brain Inj 2024:1-9. [PMID: 39568378 DOI: 10.1080/02699052.2024.2427803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Revised: 10/28/2024] [Accepted: 11/05/2024] [Indexed: 11/22/2024]
Abstract
INTRODUCTION Dodecafluoropentane emulsion (DDFPe) administration has previously demonstrated improved gas exchange in single-organ perfusion models. This could translate to prevention of brain injury in cardiac arrest. METHODS We induced cardiac arrest in 12 pigs, performing CPR after 5-minute downtime. Pigs were randomly assigned to DDFPe (n = 7) or saline placebo (n = 5) groups. Neurologic injury biomarkers were measured at baseline, after return of spontaneous circulation (ROSC), and every 24 hours in survivors. Blinded Neurological Alertness Score, Neurological Dysfunction Score, and Overall Performance Score was performed in addition to histopathological scoring of parietal and hippocampal sections. RESULTS One placebo and four DDFPe pigs survived the 96-hour observation period. The odds ratio for ROSC was 7.2 (p = 0.22). Survival odds ratio was 4.6 (p = 0.29). All surviving animals had impaired motor responses that recovered by 72 hours. DDFPe animals showed better neuro-behavioral scores than placebo. CONCLUSION The findings of this novel study provide a proof of concept and early signal toward efficacy of intravenous DDFPe in cardiac arrest. The trend toward improved ROSC and functional survival may reflect improved microcirculatory gas exchange in DDFPe animals. Improving gas exchange in brain microcirculation during resuscitation from cardiac arrest may provide a significant therapeutic benefit.
Collapse
Affiliation(s)
- Travis W Murphy
- Division of Critical Care Medicine, Department of Emergency Medicine, University of Florida, Gainesville, Florida, USA
- Cardiothoracic Critical Care, Miami Transplant Institute, University of Miami, Miami, Florida, USA
- Department of Emergency Medicine, University of Florida, Gainesville, Florida, USA
| | - Robert J Cueto
- College of Medicine, University of Florida, Gainesville, Florida, USA
| | - Jiepei Zhu
- Center for Neurotrauma, MultiOmics & Biomarkers, Department of Neurobiology, Morehouse School of Medicine, Atlanta, Georgia, USA
| | - Jacob Milling
- Department of Emergency Medicine, University of Florida, Gainesville, Florida, USA
| | - Justin Sauter
- Department of Emergency Medicine, University of Florida, Gainesville, Florida, USA
| | - Muna Oli
- Department of Anesthesiology, University of Florida, Gainesville, Florida, USA
| | - Ian T Griffin
- College of Medicine, University of Florida, Gainesville, Florida, USA
| | - Gagan Midathala
- College of Medicine, University of South Florida Morsani, Tampa, Florida, USA
| | - J Adrian Tyndall
- Center for Neurotrauma, MultiOmics & Biomarkers, Department of Neurobiology, Morehouse School of Medicine, Atlanta, Georgia, USA
| | - Bruce Spiess
- Department of Anesthesiology, University of Florida, Gainesville, Florida, USA
| | - Kevin K W Wang
- Center for Neurotrauma, MultiOmics & Biomarkers, Department of Neurobiology, Morehouse School of Medicine, Atlanta, Georgia, USA
| | - Firas H Kobeissy
- Center for Neurotrauma, MultiOmics & Biomarkers, Department of Neurobiology, Morehouse School of Medicine, Atlanta, Georgia, USA
| | - Torben K Becker
- Division of Critical Care Medicine, Department of Emergency Medicine, University of Florida, Gainesville, Florida, USA
- Department of Emergency Medicine, University of Florida, Gainesville, Florida, USA
| |
Collapse
|
2
|
Abi Zeid Daou Y, Watanabe N, Lidouren F, Bois A, Faucher E, Huet H, Hutin A, Jendoubi A, Surenaud M, Hue S, Nadeau M, Perrotto S, Libardi M, Ghaleh B, Micheau P, Bruneval P, Cariou A, Kohlhauer M, Tissier R. Ultrafast Cooling With Total Liquid Ventilation Mitigates Early Inflammatory Response and Offers Neuroprotection in a Porcine Model of Cardiac Arrest. J Am Heart Assoc 2024; 13:e035617. [PMID: 39158568 DOI: 10.1161/jaha.124.035617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Accepted: 07/16/2024] [Indexed: 08/20/2024]
Abstract
BACKGROUND Brain injury is one of the most serious complications after cardiac arrest (CA). To prevent this phenomenon, rapid cooling with total liquid ventilation (TLV) has been proposed in small animal models of CA (rabbits and piglets). Here, we aimed to determine whether hypothermic TLV can also offer neuroprotection and mitigate cerebral inflammatory response in large animals. METHODS AND RESULTS Anesthetized pigs were subjected to 14 minutes of ventricular fibrillation followed by cardiopulmonary resuscitation. After return of spontaneous circulation, animals were randomly subjected to normothermia (control group, n=8) or ultrafast cooling with TLV (TLV group, n=8). In the latter group, TLV was initiated within a window of 15 minutes after return of spontaneous circulation and allowed to reduce tympanic, esophageal, and bladder temperature to the 32 to 34 °C range within 30 minutes. After 45 minutes of TLV, gas ventilation was resumed, and hypothermia was maintained externally until 3 hours after CA, before rewarming using heat pads (0.5 °C-1 °C/h). After an additional period of progressive rewarming for 3 hours, animals were euthanized for brain withdrawal and histological analysis. At the end of the follow-up (ie, 6 hours after CA), histology showed reduced brain injury as witnessed by the reduced number of Fluroro-Jade C-positive cerebral degenerating neurons in TLV versus control. IL (interleukin)-1ra and IL-8 levels were also significantly reduced in the cerebrospinal fluid in TLV versus control along with cerebral infiltration by CD3+ cells. Conversely, circulating levels of cytokines were not different among groups, suggesting a discrepancy between local and systemic inflammatory levels. CONCLUSIONS Ultrafast cooling with TLV mitigates neuroinflammation and attenuates acute brain lesions in the early phase following resuscitation in large animals subjected to CA.
Collapse
Affiliation(s)
- Yara Abi Zeid Daou
- Univ Paris Est Créteil, INSERM, IMRB Créteil France
- Ecole Nationale Vétérinaire d'Alfort, IMRB, AfterROSC Network Maisons-Alfort France
| | - Naoto Watanabe
- Univ Paris Est Créteil, INSERM, IMRB Créteil France
- Ecole Nationale Vétérinaire d'Alfort, IMRB, AfterROSC Network Maisons-Alfort France
| | - Fanny Lidouren
- Univ Paris Est Créteil, INSERM, IMRB Créteil France
- Ecole Nationale Vétérinaire d'Alfort, IMRB, AfterROSC Network Maisons-Alfort France
| | - Antoine Bois
- Univ Paris Est Créteil, INSERM, IMRB Créteil France
- Ecole Nationale Vétérinaire d'Alfort, IMRB, AfterROSC Network Maisons-Alfort France
- Service de Médecine Intensive-Réanimation Hôpitaux Universitaires Paris Centre, Hopital Cochin Paris France
| | - Estelle Faucher
- Univ Paris Est Créteil, INSERM, IMRB Créteil France
- Ecole Nationale Vétérinaire d'Alfort, IMRB, AfterROSC Network Maisons-Alfort France
| | - Hélène Huet
- Ecole Nationale Vétérinaire d'Alfort, IMRB, AfterROSC Network Maisons-Alfort France
| | - Alice Hutin
- Univ Paris Est Créteil, INSERM, IMRB Créteil France
- Ecole Nationale Vétérinaire d'Alfort, IMRB, AfterROSC Network Maisons-Alfort France
- SAMU de Paris-ICU, Necker University Hospital, Assistance Publique-Hôpitaux de Paris, Université de Paris Paris France
| | - Ali Jendoubi
- Univ Paris Est Créteil, INSERM, IMRB Créteil France
- Ecole Nationale Vétérinaire d'Alfort, IMRB, AfterROSC Network Maisons-Alfort France
| | - Mathieu Surenaud
- Univ Paris Est Créteil, INSERM, IMRB Créteil France
- Vaccine Research Institute, Univ Paris Est-Creteil Creteil France
| | - Sophie Hue
- Univ Paris Est Créteil, INSERM, IMRB Créteil France
- Vaccine Research Institute, Univ Paris Est-Creteil Creteil France
| | | | | | | | - Bijan Ghaleh
- Univ Paris Est Créteil, INSERM, IMRB Créteil France
- Ecole Nationale Vétérinaire d'Alfort, IMRB, AfterROSC Network Maisons-Alfort France
| | | | | | - Alain Cariou
- Service de Médecine Intensive-Réanimation Hôpitaux Universitaires Paris Centre, Hopital Cochin Paris France
| | - Matthias Kohlhauer
- Univ Paris Est Créteil, INSERM, IMRB Créteil France
- Ecole Nationale Vétérinaire d'Alfort, IMRB, AfterROSC Network Maisons-Alfort France
| | - Renaud Tissier
- Univ Paris Est Créteil, INSERM, IMRB Créteil France
- Ecole Nationale Vétérinaire d'Alfort, IMRB, AfterROSC Network Maisons-Alfort France
| |
Collapse
|
3
|
Cheng J, Yang H, Chen F, Qiu L, Chen F, Du Y, Meng X. The ACE2/Ang-(1-7)/MasR axis alleviates brain injury after cardiopulmonary resuscitation in rabbits by activating PI3K/Akt signaling. Transl Neurosci 2024; 15:20220334. [PMID: 38623573 PMCID: PMC11017183 DOI: 10.1515/tnsci-2022-0334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 12/12/2023] [Accepted: 01/03/2024] [Indexed: 04/17/2024] Open
Abstract
Background Death among resuscitated patients is mainly caused by brain injury after cardiac arrest/cardiopulmonary resuscitation (CA/CPR). The angiotensin converting enzyme 2 (ACE2)/angiotensin (Ang)-(1-7)/Mas receptor (MasR) axis has beneficial effects on brain injury. Therefore, we examined the roles of the ACE2/Ang-(1-7)/MasR axis in brain injury after CA/CPR. Method We used a total of 76 male New Zealand rabbits, among which 10 rabbits underwent sham operation and 66 rabbits received CA/CPR. Neurological functions were determined by assessing serum levels of neuron-specific enolase and S100 calcium-binding protein B and neurological deficit scores. Brain water content was estimated. Neuronal apoptosis in the hippocampus was assessed by terminal deoxynucleotidyl transferase dUTP nick end labeling assays. The expression levels of various genes were measured by enzyme-linked immunosorbent assay and western blotting. Results Ang-(1-7) (MasR activator) alleviated CA/CPR-induced neurological deficits, brain edema, and neuronal damage, and A779 (MasR antagonist) had the opposite functions. The stimulation of ACE2/Ang-(1-7)/MasR inactivated the ACE/Ang II/AT1R axis and activated PI3K/Akt signaling. Inhibiting PI3K/Akt signaling inhibited Ang-(1-7)-mediated protection against brain damage after CA/CPR. Conclusion Collectively, the ACE2/Ang-(1-7)/MasR axis alleviates CA/CPR-induced brain injury through attenuating hippocampal neuronal apoptosis by activating PI3K/Akt signaling.
Collapse
Affiliation(s)
- Jing Cheng
- Department of Emergency, Wuhan Fourth Hospital, Wuhan430030, China
| | - Hong Yang
- Department of Emergency, Wuhan Fourth Hospital, Wuhan430030, China
| | - Fang Chen
- Department of Emergency, Wuhan Fourth Hospital, Wuhan430030, China
| | - Li Qiu
- Department of Emergency, Wuhan Fourth Hospital, Wuhan430030, China
| | - Fang Chen
- Department of Emergency, Wuhan Fourth Hospital, Wuhan430030, China
| | - Yanhua Du
- General Practice Ward, Wuhan Fourth Hospital, No. 473 Hanzheng Street, Qiaokou District, Wuhan430030, Hubei, China
| | - Xiangping Meng
- General Practice Ward, Wuhan Fourth Hospital, No. 473 Hanzheng Street, Qiaokou District, Wuhan430030, Hubei, China
| |
Collapse
|
4
|
Zhang Y, Feng Y, Chen F, Yu J, Liu X, Liu Y, Ouyang J, Liang M, Zhu Y, Zou L. Insight into the mechanisms of therapeutic hypothermia for asphyxia cardiac arrest using a comprehensive approach of GC-MS/MS and UPLC-Q-TOF-MS/MS based on serum metabolomics. Heliyon 2023; 9:e16247. [PMID: 37274716 PMCID: PMC10238693 DOI: 10.1016/j.heliyon.2023.e16247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 05/08/2023] [Accepted: 05/10/2023] [Indexed: 06/06/2023] Open
Abstract
Cardiac arrest (CA) is a severe worldwide health problem. Therapeutic hypothermia is widely used to reduce the cardiac injury and improve the neurological outcomes after CA. However, a few studies have reported the changes of serum metabolic characteristics after CA. The healthy male New Zealand Rabbits successfully resuscitated from 10-min asphyxia-induced CA were divided randomly into the normothermia (NT) group and mild therapeutic hypothermia (HT) group. The sham group underwent sham-operation. Survival was recorded and neurological deficit score (NDS) was assessed. The serum non-targeted metabolomics were detected using ultra-high-performance liquid chromatography-quadrupole time-of-flight tandem mass spectrometry (UPLC-Q-TOF-MS/MS) and gas chromatography tandem mass spectrometry (GC-MS/MS) at 15 min, 3 h, 6 h and 24 h after return of spontaneous circulation (ROSC). Our study showed that the heart rate (HR) significantly slowed down during 0.5-6 h post ROSC, consistent with the decreasing trend of body temperature in the HT group. Compared with the NT group, the levels of Lac and PCO2 at 24 h post ROSC were lower, while a significant increase in PO2 level at 24 h post ROSC was observed in the HT group. The survival rate of the HT group was significantly higher than that of the NT group, and NDS scores were remarkably increased at 24 h post ROSC in the NT group. Significant differences in metabolic profiles at 15 min, 3 h, 6 h and 24 h post ROSC were observed among the Sham, NT and HT groups. The differential metabolites detected by UPLC-Q-TOF-MS/MS and GC-MS/MS were screened for further study between every two groups (NT vs sham, HT vs sham and HT vs NT) at 15 min, 3 h, 6 h and 24 h post ROSC. Phenylalanine metabolism, alanine, aspartate and glutamate metabolism and tricarboxylic acid (TCA) cycle were enriched in NT vs sham, HT vs sham and HT vs NT respectively. Our study demonstrated that therapeutic hypothermia improves the survival and neurological outcomes in rabbit model of cardiac arrest, and firstly represents the dynamic metabolic changes in the hypothermia therapy for CA by comprehensive UPLC-Q-TOF-MS/MS- and GC-MS/MS-based metabolomics.
Collapse
Affiliation(s)
- Yiyuan Zhang
- The First Affiliated Hospital of Hunan Normal University, Hunan Provincial Key Laboratory of Molecular Epidemiology, Changsha, Hunan, China
| | - Yang Feng
- The First Affiliated Hospital of Hunan Normal University, Hunan Provincial Key Laboratory of Molecular Epidemiology, Changsha, Hunan, China
- Department of Emergency Medicine, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, Hunan, China
| | - Fang Chen
- Hunan Provincial People's Hospital, Hunan Provincial Key Laboratory of Emergency and Critical Care Metabolomics,Changsha, Hunan, China
| | - Jiang Yu
- Hunan Provincial People's Hospital, Hunan Provincial Key Laboratory of Emergency and Critical Care Metabolomics,Changsha, Hunan, China
| | - Xiehong Liu
- Hunan Provincial People's Hospital, Hunan Provincial Key Laboratory of Emergency and Critical Care Metabolomics,Changsha, Hunan, China
| | - Yanjuan Liu
- Hunan Provincial People's Hospital, Hunan Provincial Key Laboratory of Emergency and Critical Care Metabolomics,Changsha, Hunan, China
| | - Jielin Ouyang
- The First Affiliated Hospital of Hunan Normal University, Hunan Provincial Key Laboratory of Molecular Epidemiology, Changsha, Hunan, China
- Department of Emergency Medicine, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, Hunan, China
| | - Mingyu Liang
- The First Affiliated Hospital of Hunan Normal University, Hunan Provincial Key Laboratory of Molecular Epidemiology, Changsha, Hunan, China
- Department of Emergency Medicine, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, Hunan, China
| | - Yiming Zhu
- Hunan Provincial People's Hospital, Hunan Provincial Key Laboratory of Emergency and Critical Care Metabolomics,Changsha, Hunan, China
| | - Lianhong Zou
- The First Affiliated Hospital of Hunan Normal University, Hunan Provincial Key Laboratory of Molecular Epidemiology, Changsha, Hunan, China
| |
Collapse
|
5
|
Boissady E, Abi Zeid Daou Y, Faucher E, Kohlhauer M, Lidouren F, El Hedjaj C, Chateau‐Joubert S, Hocini H, Hue S, Ghaleh B, Tissier R. High-Mobility Group Box 1-Signaling Inhibition With Glycyrrhizin Prevents Cerebral T-Cell Infiltration After Cardiac Arrest. J Am Heart Assoc 2023; 12:e027749. [PMID: 36734353 PMCID: PMC9973651 DOI: 10.1161/jaha.122.027749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Background High-mobility group box 1 (HMGB1) is a major promotor of ischemic injuries and aseptic inflammatory responses. We tested its inhibition on neurological outcome and systemic immune response after cardiac arrest (CA) in rabbits. Methods and Results After 10 minutes of ventricular fibrillation, rabbits were resuscitated and received saline (control) or the HMGB1 inhibitor glycyrrhizin. A sham group underwent a similar procedure without CA. After resuscitation, glycyrrhizin blunted the successive rises in HMGB1, interleukin-6, and interleukin-10 blood levels as compared with control. Blood counts of the different immune cell populations were not different in glycyrrhizin versus control. After animal awakening, neurological outcome was improved by glycyrrhizin versus control, regarding both clinical recovery and histopathological damages. This was associated with reduced cerebral CD4+ and CD8+ T-cell infiltration beginning 2 hours after CA. Conversely, granulocytes' attraction or loss of microglial cells or cerebral monocytes were not modified by glycyrrhizin after CA. These modifications were not related to the blood-brain barrier preservation with glycyrrhizin versus control. Interestingly, the specific blockade of the HMGB1 receptor for advanced glycation end products by FPS-ZM1 recapitulated the neuroprotective effects of glycyrrhizin. Conclusions Our findings support that the early inhibition of HMGB1-signaling pathway prevents cerebral chemoattraction of T cells and neurological sequelae after CA. Glycyrrhizin could become a clinically relevant therapeutic target in this situation.
Collapse
Affiliation(s)
- Emilie Boissady
- Université Paris Est‐Créteil, INSERM, IMRBCréteilFrance,Ecole Nationale Vétérinaire d’Alfort, IMRB, After ROSC NetworkMaisons‐AlfortFrance
| | - Yara Abi Zeid Daou
- Université Paris Est‐Créteil, INSERM, IMRBCréteilFrance,Ecole Nationale Vétérinaire d’Alfort, IMRB, After ROSC NetworkMaisons‐AlfortFrance
| | - Estelle Faucher
- Université Paris Est‐Créteil, INSERM, IMRBCréteilFrance,Ecole Nationale Vétérinaire d’Alfort, IMRB, After ROSC NetworkMaisons‐AlfortFrance
| | - Matthias Kohlhauer
- Université Paris Est‐Créteil, INSERM, IMRBCréteilFrance,Ecole Nationale Vétérinaire d’Alfort, IMRB, After ROSC NetworkMaisons‐AlfortFrance
| | - Fanny Lidouren
- Université Paris Est‐Créteil, INSERM, IMRBCréteilFrance,Ecole Nationale Vétérinaire d’Alfort, IMRB, After ROSC NetworkMaisons‐AlfortFrance
| | - Cynthia El Hedjaj
- Université Paris Est‐Créteil, INSERM, IMRBCréteilFrance,Ecole Nationale Vétérinaire d’Alfort, IMRB, After ROSC NetworkMaisons‐AlfortFrance
| | | | - Hakim Hocini
- Université Paris Est‐Créteil, INSERM, IMRBCréteilFrance,Vaccine Research InstituteUniversité Paris Est‐CréteilCréteilFrance
| | - Sophie Hue
- Université Paris Est‐Créteil, INSERM, IMRBCréteilFrance,Vaccine Research InstituteUniversité Paris Est‐CréteilCréteilFrance
| | - Bijan Ghaleh
- Université Paris Est‐Créteil, INSERM, IMRBCréteilFrance,Ecole Nationale Vétérinaire d’Alfort, IMRB, After ROSC NetworkMaisons‐AlfortFrance
| | - Renaud Tissier
- Université Paris Est‐Créteil, INSERM, IMRBCréteilFrance,Ecole Nationale Vétérinaire d’Alfort, IMRB, After ROSC NetworkMaisons‐AlfortFrance
| |
Collapse
|
6
|
Jahandiez V, Pillot B, Bidaux G, Bolbos R, Stevic N, Wiart M, Ovize M, Argaud L, Cour M. Reassessment of mitochondrial cyclophilin D as a target for improving cardiac arrest outcomes in the era of therapeutic hypothermia. Transl Res 2022; 249:37-48. [PMID: 35691543 DOI: 10.1016/j.trsl.2022.06.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 05/31/2022] [Accepted: 06/03/2022] [Indexed: 10/31/2022]
Abstract
Uncertainty exists regarding whether cyclophilin D (CypD), a mitochondrial matrix protein that plays a key role in ischemia-reperfusion injury, can be a pharmacological target for improving outcomes after cardiac arrest (CA), especially when therapeutic hypothermia is used. Using CypD knockout mice (CypD-/-), we investigated the effects of loss of CypD on short-term and medium-term outcomes after CA. CypD-/- mice or their wild-type (WT) littermates underwent either 5 minute CA followed by resuscitation with and/or without hypothermia at 33°C-34°C (targeted temperature reached within minutes after resuscitation), or a sham procedure. Brain and cardiac injury were assessed using echocardiography, neurological scores, MRI and biomarkers. Seven day survival was compared using Kaplan-Meier estimates. The rate of restoration of spontaneous circulation was significantly higher in CypD-/- mice (with shorter cardiac massage duration) than in WT mice (P < 0.05). Loss of CypD significantly attenuated CA-induced release of troponin and S100ß protein, and limited myocardial dysfunction at 150 minutes after CA. Loss of CypD combined with hypothermia led to the best neurological and MRI scores at 24 hours and highest survival rates at 7 days compared to other groups (P < 0.05). In animals successfully resuscitated, loss of CypD had no benefits on day 7 survival while hypothermia was highly protective. Pharmacological inhibition of CypD with cyclosporine A combined with hypothermia provided similar day 7 survival than loss of CypD combined with hypothermia. CypD is a viable target to improve success of cardiopulmonary resuscitation but its inhibition is unlikely to improve long-term outcomes, unless therapeutic hypothermia is associated.
Collapse
Affiliation(s)
- Vincent Jahandiez
- Hospices Civils de Lyon, Hôpital Edouard Herriot, Service de Médecine Intensive, Réanimation, Lyon, France; Université de Lyon, Université Claude Bernard Lyon 1, Faculté de médecine Lyon-Est, Lyon, France; INSERM UMR 1060, CarMeN, IRIS, Lyon, France
| | | | | | - Radu Bolbos
- CNRS-UMS3453, CERMEP, Imagerie du Vivant, Département ANIMAGE, Bron, France
| | - Neven Stevic
- Hospices Civils de Lyon, Hôpital Edouard Herriot, Service de Médecine Intensive, Réanimation, Lyon, France; Université de Lyon, Université Claude Bernard Lyon 1, Faculté de médecine Lyon-Est, Lyon, France; INSERM UMR 1060, CarMeN, IRIS, Lyon, France
| | | | | | - Laurent Argaud
- Hospices Civils de Lyon, Hôpital Edouard Herriot, Service de Médecine Intensive, Réanimation, Lyon, France; Université de Lyon, Université Claude Bernard Lyon 1, Faculté de médecine Lyon-Est, Lyon, France; INSERM UMR 1060, CarMeN, IRIS, Lyon, France
| | - Martin Cour
- Hospices Civils de Lyon, Hôpital Edouard Herriot, Service de Médecine Intensive, Réanimation, Lyon, France; Université de Lyon, Université Claude Bernard Lyon 1, Faculté de médecine Lyon-Est, Lyon, France; INSERM UMR 1060, CarMeN, IRIS, Lyon, France.
| |
Collapse
|
7
|
Gong X, Fan X, Yin X, Xu T, Li J, Guo J, Zhao X, Wei S, Yuan Q, Wang J, Han X, Chen Y. Hydrogen therapy after resuscitation improves myocardial injury involving inhibition of autophagy in an asphyxial rat model of cardiac arrest. Exp Ther Med 2022; 23:376. [PMID: 35495584 PMCID: PMC9019777 DOI: 10.3892/etm.2022.11302] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Accepted: 03/21/2022] [Indexed: 11/15/2022] Open
Abstract
Hydrogen (H2) therapy is a therapeutic strategy using molecular H2. Due to its ability to regulate cell homeostasis, H2 therapy has exhibited marked therapeutic effects on a number of oxidative stress-associated diseases. The present study investigated the effectiveness of H2 therapy in protecting against myocardial injury in a rat model of asphyxial cardiac arrest and cardiopulmonary resuscitation. Rats underwent 10-min asphyxia-induced cardiac arrest (CA) and cardiopulmonary resuscitation (CPR), and were randomly divided into control and H2 therapy groups. After resuscitation, the H2 therapy group was administered room air mixed with 2% H2 gas for respiration. During CA/CPR, the arterial pressure and heart rate were measured every minute. Survival rate, cardiac function, myocardial injury biomarkers creatine kinase-MB and cardiac troponin-T, and histopathological changes were evaluated to determine the protective effects of H2 therapy in CA/CPR. Immunohistochemistry and western blot analysis were used to determine the expression levels of autophagy-associated proteins. In vitro, H9C2 cells were subjected to hypoxia/reoxygenation and H2-rich medium was used in H2 treatment groups. Western blotting and immunofluorescence were used to observe the expression levels of autophagy-associated proteins. Moreover, an adenovirus-monomeric red fluorescent protein-green fluorescent protein-LC3 construct was used to explore the dynamics of autophagy in the H9C2 cells. The results showed that H2 therapy significantly improved post-resuscitation survival and cardiac function. H2 therapy also improved mitochondrial mass and decreased autophagosome numbers in cardiomyocytes after resuscitation. The treatment inhibited autophagy activation, with lower expression levels of autophagy-associated proteins and decreased autophagosome formation in vivo and vitro. In conclusion, H2 gas inhalation after return of spontaneous circulation improved cardiac function via the inhibition of autophagy.
Collapse
Affiliation(s)
- Xiaohui Gong
- Department of Emergency Medicine, Qilu Hospital of Shandong University, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, P.R. China
| | - Xinhui Fan
- Department of Emergency Medicine, Qilu Hospital of Shandong University, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, P.R. China
| | - Xinxin Yin
- Department of Emergency Medicine, Qilu Hospital of Shandong University, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, P.R. China
| | - Tonghui Xu
- Department of Emergency Medicine, Qilu Hospital of Shandong University, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, P.R. China
| | - Jiaxin Li
- Department of Emergency Medicine, Qilu Hospital of Shandong University, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, P.R. China
| | - Jialin Guo
- Department of Emergency Medicine, Qilu Hospital of Shandong University, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, P.R. China
| | - Xiangkai Zhao
- Department of Emergency Medicine, Qilu Hospital of Shandong University, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, P.R. China
| | - Shujian Wei
- Department of Emergency Medicine, Qilu Hospital of Shandong University, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, P.R. China
| | - Qiuhuan Yuan
- Department of Emergency Medicine, Qilu Hospital of Shandong University, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, P.R. China
| | - Jiali Wang
- Department of Emergency Medicine, Qilu Hospital of Shandong University, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, P.R. China
| | - Xuchen Han
- Department of Emergency Medicine, Affiliated Hospital of Chifeng University, Chifeng, Inner Mongolia Autonomous Region 024005, P.R. China
| | - Yuguo Chen
- Department of Emergency Medicine, Qilu Hospital of Shandong University, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, P.R. China
| |
Collapse
|
8
|
Bauer K, Janke T, Schwarze R. Oxygen transport during liquid ventilation: an in vitro study. Sci Rep 2022; 12:1244. [PMID: 35075158 PMCID: PMC8786849 DOI: 10.1038/s41598-022-05105-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Accepted: 01/06/2022] [Indexed: 11/10/2022] Open
Abstract
An in vitro experiment on the dissolved oxygen transport during liquid ventilation by means of measuring global oxygen concentration fields is presented within this work. We consider the flow in an idealized four generation model of the human airways in a range of peak Reynolds numbers of \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$Re = 500$$\end{document}Re=500–3400 and Womersley numbers of \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\alpha = 3$$\end{document}α=3–5. Fluorescence quenching measurements were employed in order to visualize and quantify the oxygen distribution with high temporal and spatial resolution during the breathing cycle. Measurements with varying tidal volumes and oscillating frequencies reveal short living times of characteristic concentration patterns for all parameter variations. Similarities to typical velocity patterns in similar lung models persist only in early phases during each cycle. Concentration gradients are quickly homogenized by secondary motions within the lung model. A strong dependency of peak oxygen concentration on tidal volume is observed with considerably higher relative concentrations for higher tidal volumes.
Collapse
Affiliation(s)
- Katrin Bauer
- Institute of Mechanics and Fluid Dynamics, TU Bergakademie Freiberg, Freiberg, Germany.
| | | | - Rüdiger Schwarze
- Institute of Mechanics and Fluid Dynamics, TU Bergakademie Freiberg, Freiberg, Germany
| |
Collapse
|
9
|
Liquid Ventilation in the Management of Preterm Infants. CURRENT STEM CELL REPORTS 2021. [DOI: 10.1007/s40778-021-00192-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
10
|
Boissady E, Kohlhauer M, Lidouren F, Hocini H, Lefebvre C, Chateau‐Jouber S, Mongardon N, Deye N, Cariou A, Micheau P, Ghaleh B, Tissier R. Ultrafast Hypothermia Selectively Mitigates the Early Humoral Response After Cardiac Arrest. J Am Heart Assoc 2020; 9:e017413. [PMID: 33198571 PMCID: PMC7763769 DOI: 10.1161/jaha.120.017413] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Accepted: 09/18/2020] [Indexed: 12/17/2022]
Abstract
Background Total liquid ventilation (TLV) has been shown to prevent neurological damage though ultrafast cooling in animal models of cardiac arrest. We investigated whether its neuroprotective effect could be explained by mitigation of early inflammatory events. Methods and Results Rabbits were submitted to 10 minutes of ventricular fibrillation. After resuscitation, they underwent normothermic follow-up (control) or ultrafast cooling by TLV and hypothermia maintenance for 3 hours (TLV). Immune response, survival, and neurological dysfunction were assessed for 3 days. TLV improved neurological recovery and reduced cerebral lesions and leukocyte infiltration as compared with control (eg, neurological dysfunction score=34±6 versus 66±6% at day 1, respectively). TLV also significantly reduced interleukin-6 blood levels during the hypothermic episode (298±303 versus 991±471 pg/mL in TLV versus control at 3 hours after resuscitation, respectively), but not after rewarming (752±563 versus 741±219 pg/mL in TLV versus control at 6 hours after resuscitation, respectively). In vitro assays confirmed the high temperature sensitivity of interleukin-6 secretion. Conversely, TLV did not modify circulating high-mobility group box 1 levels or immune cell recruitment into the peripheral circulation. The link between interleukin-6 early transcripts (<8 hours) and neurological outcome in a subpopulation of the previously described Epo-ACR-02 (High Dose of Erythropoietin Analogue After Cardiac Arrest) trial confirmed the importance of this cytokine at the early stages as compared with delayed stages (>8 hours). Conclusions The neuroprotective effect of hypothermic TLV was associated with a mitigation of humoral interleukin-6 response. A temperature-dependent attenuation of immune cell reactivity during the early phase of the post-cardiac arrest syndrome could explain the potent effect of rapid hypothermia. Registration URL: https://www.clinicaltrials.gov; Unique identifier: NCT00999583.
Collapse
Affiliation(s)
- Emilie Boissady
- INSERMIMRBEcole Nationale Vétérinaire d’AlfortUniv Paris Est CreteilCreteilFrance
| | - Matthias Kohlhauer
- INSERMIMRBEcole Nationale Vétérinaire d’AlfortUniv Paris Est CreteilCreteilFrance
| | - Fanny Lidouren
- INSERMIMRBEcole Nationale Vétérinaire d’AlfortUniv Paris Est CreteilCreteilFrance
| | - Hakim Hocini
- INSERMIMRBEcole Nationale Vétérinaire d’AlfortUniv Paris Est CreteilCreteilFrance
- Vaccine Research InstituteUniv Paris Est‐CreteilCreteilFrance
| | - Cécile Lefebvre
- INSERMIMRBEcole Nationale Vétérinaire d’AlfortUniv Paris Est CreteilCreteilFrance
- Vaccine Research InstituteUniv Paris Est‐CreteilCreteilFrance
| | | | - Nicolas Mongardon
- INSERMIMRBEcole Nationale Vétérinaire d’AlfortUniv Paris Est CreteilCreteilFrance
- Service d’anesthésie‐Réanimation ChirurgicaleDMU CAREAPHPHôpitaux Universitaires Henri MondorCréteilFrance
| | - Nicolas Deye
- Medical ICUInserm U942Lariboisiere HospitalAPHPParisFrance
| | - Alain Cariou
- Service de Réanimation MédicaleHôpitaux Universitaires Paris CentreHopital CochinParisFrance
| | | | - Bijan Ghaleh
- INSERMIMRBEcole Nationale Vétérinaire d’AlfortUniv Paris Est CreteilCreteilFrance
| | - Renaud Tissier
- INSERMIMRBEcole Nationale Vétérinaire d’AlfortUniv Paris Est CreteilCreteilFrance
| |
Collapse
|
11
|
Xu J, Jin X, Chen Q, Wu C, Li Z, Zhou G, Xu Y, Qian A, Li Y, Zhang M. Faster Hypothermia Induced by Esophageal Cooling Improves Early Markers of Cardiac and Neurological Injury After Cardiac Arrest in Swine. J Am Heart Assoc 2019; 7:e010283. [PMID: 30608213 PMCID: PMC6404192 DOI: 10.1161/jaha.118.010283] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Background After cardiopulmonary resuscitation, the protective effects of therapeutic hypothermia induced by conventional cooling are limited. Recently, esophageal cooling (EC) has been shown to be an effective, easily performed approach to induce therapeutic hypothermia. In this study we investigated the efficacy of EC and its effects on early markers of postresuscitation cardiac and neurological injury in a porcine model of cardiac arrest. Methods and Results Thirty‐two male domestic swine were randomized into 4 groups: sham control, normothermia, surface cooling, and EC. Sham animals underwent the surgical preparation only. Ventricular fibrillation was induced and untreated for 8 minutes while defibrillation was attempted after 5 minutes of cardiopulmonary resuscitation. At 5 minutes after resuscitation, therapeutic hypothermia was induced by either EC or surface cooling to reach a target temperature of 33°C until 24 hours postresuscitation, followed by a rewarming rate of 1°C/h for 5 hours. The temperature was normally maintained in the control and normothermia groups. After resuscitation, a significantly faster decrease in blood temperature was observed in the EC group than in the surface cooling group (2.8±0.7°C/h versus 1.5±0.4°C/h; P<0.05). During the maintenance and rewarming phases the temperature was maintained at an even level between the 2 groups. Postresuscitation cardiac and neurological damage was significantly improved in the 2 hypothermic groups compared with the normothermia group; however, the protective effects were significantly greater in the EC group. Conclusions In a porcine model of cardiac arrest, faster hypothermia successfully induced by EC was significantly better than conventional cooling in improving early markers of postresuscitation cardiac and neurological injury.
Collapse
Affiliation(s)
- Jiefeng Xu
- 1 Department of Emergency Medicine Second Affiliated Hospital Zhejiang University School of Medicine Hangzhou China.,2 Institute of Emergency Medicine Zhejiang University Hangzhou China.,3 Department of Emergency Medicine Yuyao People's Hospital Medical School of Ningbo University Ningbo China
| | - Xiaohong Jin
- 1 Department of Emergency Medicine Second Affiliated Hospital Zhejiang University School of Medicine Hangzhou China.,2 Institute of Emergency Medicine Zhejiang University Hangzhou China.,4 Department of Emergency Medicine The First People's Hospital of Wenling Taizhou China
| | - Qijiang Chen
- 1 Department of Emergency Medicine Second Affiliated Hospital Zhejiang University School of Medicine Hangzhou China.,2 Institute of Emergency Medicine Zhejiang University Hangzhou China.,5 Department of Intensive Care Medicine The First Hospital of Ninghai Ningbo China
| | - Chunshuang Wu
- 1 Department of Emergency Medicine Second Affiliated Hospital Zhejiang University School of Medicine Hangzhou China.,2 Institute of Emergency Medicine Zhejiang University Hangzhou China
| | - Zilong Li
- 3 Department of Emergency Medicine Yuyao People's Hospital Medical School of Ningbo University Ningbo China
| | - Guangju Zhou
- 1 Department of Emergency Medicine Second Affiliated Hospital Zhejiang University School of Medicine Hangzhou China.,2 Institute of Emergency Medicine Zhejiang University Hangzhou China
| | - Yongan Xu
- 1 Department of Emergency Medicine Second Affiliated Hospital Zhejiang University School of Medicine Hangzhou China.,2 Institute of Emergency Medicine Zhejiang University Hangzhou China
| | - Anyu Qian
- 1 Department of Emergency Medicine Second Affiliated Hospital Zhejiang University School of Medicine Hangzhou China.,2 Institute of Emergency Medicine Zhejiang University Hangzhou China
| | - Yulin Li
- 1 Department of Emergency Medicine Second Affiliated Hospital Zhejiang University School of Medicine Hangzhou China.,2 Institute of Emergency Medicine Zhejiang University Hangzhou China
| | - Mao Zhang
- 1 Department of Emergency Medicine Second Affiliated Hospital Zhejiang University School of Medicine Hangzhou China.,2 Institute of Emergency Medicine Zhejiang University Hangzhou China
| |
Collapse
|
12
|
Adler C, Schregel F, Heller T, Hellmich M, Adler J, Reuter H. Malignant Arrhythmias During Induction of Target Temperature Management After Cardiac Arrest. Ther Hypothermia Temp Manag 2019; 10:229-236. [PMID: 31560612 DOI: 10.1089/ther.2019.0025] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The aim of this study was to evaluate the incidence and determinants of malignant arrhythmias (MA) in patients with shock following out-of-hospital cardiac arrest (OHCA) treated with targeted temperature management. Risk factors for the development of MA were prospectively analyzed in patients after OHCA. MA were defined as ventricular tachycardia or fibrillation with a duration >30 seconds, which had to be terminated by defibrillation. All patients were treated with therapeutic hypothermia for 24 hours. Demographics, OHCA details, interventions, and intensive care unit (ICU) treatment were recorded. A total of 55 patients were included, 11 (20%) of whom developed MA during the ICU stay. All MA occurred within the first 18 hours after admission. Patients who developed MA showed a stronger decrease in body temperature (Δ -2.4°C ± 0.8°C vs. Δ -1.3°C ± 1.3°C; p = 0.016) and in serum potassium levels (Δ -0.9 ± 1 mmol/L vs. Δ -0.3 ± 0.6 mmol/L; p = 0.037) during the cooling period compared with patients without MA. In the multivariable analysis, fast temperature decline as well as lower potassium levels were associated with MA. In addition, higher number of shocks during resuscitation and higher ICU epinephrine use were independent predictors of MA in patients with OHCA. The use of epinephrine as well as hypokalemia in context with intense cooling may increase the incidence of MA in patients with shock after cardiac arrest. Therefore, these therapeutic strategies should be applied with caution in this vulnerable group of patients.
Collapse
Affiliation(s)
- Christoph Adler
- Department of Internal Medicine III, Division of Cardiology, Pneumology, Angiology and Intensive Care, University of Cologne, Cologne, Germany
| | - Felix Schregel
- Department of Anesthesiology and Intensive Care Medicine, University Hospital of Cologne, Cologne, Germany
| | - Tobias Heller
- Department of Cardiothoracic Surgery, Heart Center of the University of Cologne, Cologne, Germany
| | - Martin Hellmich
- Institute of Medical Statistics Epidemiology, University of Cologne, Cologne, Germany
| | - Joana Adler
- Department of Internal Medicine III, Division of Cardiology, Pneumology, Angiology and Intensive Care, University of Cologne, Cologne, Germany
| | - Hannes Reuter
- Department of Internal Medicine III, Division of Cardiology, Pneumology, Angiology and Intensive Care, University of Cologne, Cologne, Germany.,Department of Internal Medicine and Cardiology, Ev. Klinikum Köln-Weyertal, Cologne, Germany
| |
Collapse
|
13
|
A new paradigm for lung-conservative total liquid ventilation. EBioMedicine 2019; 52:102365. [PMID: 31447395 PMCID: PMC7033528 DOI: 10.1016/j.ebiom.2019.08.026] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Revised: 08/06/2019] [Accepted: 08/12/2019] [Indexed: 12/23/2022] Open
Abstract
Background Total liquid ventilation (TLV) of the lungs could provide radically new benefits in critically ill patients requiring lung lavage or ultra-fast cooling after cardiac arrest. It consists in an initial filling of the lungs with perfluorocarbons and subsequent tidal ventilation using a dedicated liquid ventilator. Here, we propose a new paradigm for a lung-conservative TLV using pulmonary volumes of perfluorocarbons below functional residual capacity (FRC). Methods and findings Using a dedicated technology, we showed that perfluorocarbon end-expiratory volumes could be maintained below expected FRC and lead to better respiratory recovery, preserved lung structure and accelerated evaporation of liquid residues as compared to complete lung filling in piglets. Such TLV below FRC prevented volutrauma through preservation of alveolar recruitment reserve. When used with temperature-controlled perfluorocarbons, this lung-conservative approach provided neuroprotective ultra-fast cooling in a model of hypoxic-ischemic encephalopathy. The scale-up and automating of the technology confirmed that incomplete initial lung filling during TLV was beneficial in human adult-sized pigs, despite larger size and maturity of the lungs. Our results were confirmed in aged non-human primates, confirming the safety of this lung-conservative approach. Interpretation This study demonstrated that TLV with an accurate control of perfluorocarbon volume below FRC could provide the full potential of TLV in an innovative and safe manner. This constitutes a new paradigm through the tidal liquid ventilation of incompletely filled lungs, which strongly differs from the previously known TLV approach, opening promising perspectives for a safer clinical translation. Fund ANR (COOLIVENT), FRM (DBS20140930781), SATT IdfInnov (project 273).
Collapse
|
14
|
Therapeutic Hypothermia After Cardiac Arrest: Involvement of the Risk Pathway in Mitochondrial PTP-Mediated Neuroprotection. Shock 2019; 52:224-229. [DOI: 10.1097/shk.0000000000001234] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
15
|
Demené C, Maresca D, Kohlhauer M, Lidouren F, Micheau P, Ghaleh B, Pernot M, Tissier R, Tanter M. Multi-parametric functional ultrasound imaging of cerebral hemodynamics in a cardiopulmonary resuscitation model. Sci Rep 2018; 8:16436. [PMID: 30401816 PMCID: PMC6219610 DOI: 10.1038/s41598-018-34307-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2018] [Accepted: 10/11/2018] [Indexed: 01/11/2023] Open
Abstract
Patient mortality at one year reaches 90% after out-of-hospital cardiac arrest and resuscitation. Temperature management is one of the main strategies proposed to improve patient outcome after resuscitation and preclinical studies have shown neuroprotective effects when hypothermia is achieved rapidly, although the underlying mechanisms have not yet been elucidated. State-of-the-art brain imaging technologies can bring new insights into the early cerebral events taking place post cardiac arrest and resuscitation. In this paper, we characterized cerebral hemodynamics in a post-cardiac arrest rabbit model using functional ultrasound imaging. Ultrasound datasets were processed to map the dynamic changes in cerebral blood flow and cerebral vascular resistivity with a 10 second repetition rate while animals underwent cardiac arrest and a cardiopulmonary resuscitation. We report that a severe transient hyperemia takes place in the brain within the first twenty minutes post resuscitation, emphasizing the need for fast post-cardiac arrest care. Furthermore, we observed that this early hyperemic event is not spatially homogeneous and that maximal cerebral hyperemia happens in the hippocampus. Finally, we show that rapid cooling induced by total liquid ventilation reduces early cerebral hyperemia, which could explain the improved neurological outcome reported in preclinical studies.
Collapse
Affiliation(s)
- Charlie Demené
- Institut Langevin, ESPCI ParisTech, Paris Sciences & Lettres Research University, CNRS UMR7587, INSERM U979, Paris, France.
| | - David Maresca
- Institut Langevin, ESPCI ParisTech, Paris Sciences & Lettres Research University, CNRS UMR7587, INSERM U979, Paris, France
| | - Matthias Kohlhauer
- Inserm, U955, Equipe 03, Créteil, France
- UMR_S955, UPEC, Ecole Nationale Vétérinaire d'Alfort, 94700, Maisons-Alfort, France
| | - Fanny Lidouren
- Inserm, U955, Equipe 03, Créteil, France
- UMR_S955, UPEC, Ecole Nationale Vétérinaire d'Alfort, 94700, Maisons-Alfort, France
| | - Philippe Micheau
- Mechanical Engineering Dpt, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Bijan Ghaleh
- Inserm, U955, Equipe 03, Créteil, France
- UMR_S955, UPEC, Ecole Nationale Vétérinaire d'Alfort, 94700, Maisons-Alfort, France
| | - Mathieu Pernot
- Institut Langevin, ESPCI ParisTech, Paris Sciences & Lettres Research University, CNRS UMR7587, INSERM U979, Paris, France
| | - Renaud Tissier
- Inserm, U955, Equipe 03, Créteil, France
- UMR_S955, UPEC, Ecole Nationale Vétérinaire d'Alfort, 94700, Maisons-Alfort, France
| | - Mickaël Tanter
- Institut Langevin, ESPCI ParisTech, Paris Sciences & Lettres Research University, CNRS UMR7587, INSERM U979, Paris, France
| |
Collapse
|
16
|
Mongardon N, Kohlhauer M, Lidouren F, Barretto M, Micheau P, Adam C, Dhonneur G, Ghaleh B, Tissier R. Targeted Temperature Management With Total Liquid Ventilation After Ischemic Spinal Cord Injury. Ann Thorac Surg 2018; 106:1797-1803. [PMID: 30120942 DOI: 10.1016/j.athoracsur.2018.06.073] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Revised: 06/08/2018] [Accepted: 06/25/2018] [Indexed: 10/28/2022]
Abstract
BACKGROUND Ischemic spinal cord injury is a devastating condition after aortic surgery. We determined whether ultrafast and short whole-body hypothermia provided by total liquid ventilation (TLV) attenuated lower limb paralysis after aortic cross-clamping with a targeted temperature management at 33°C versus 36°C. METHODS Anesthetized rabbits were submitted to infrarenal aortic cross-clamping during 15 min. A control group (n = 7) was maintained at normothermia (38°C to 38.5°C) with conventional mechanical ventilation. In TLV groups, TLV was started after reperfusion and maintained during 30 min with a target temperature at either 33°C or 36°C (TLV-33°C and TLV-36°C, respectively; n = 7 in each condition). After TLV, animals were resumed to conventional ventilation. Hypothermia was maintained during 120 min, before rewarming and awakening. Hind limb motor function was assessed with modified Tarlov score at day 2 and infarct size in the spinal cord was determined using triphenyltetrazolium chloride staining. RESULTS Target temperature was achieved within 20 minutes in the two TLV groups. At day 2, the modified Tarlov score was significantly lower in the control group, as compared with TLV-33°C and TLV-36°C groups (0.0 ± 0.0 versus 3.1 ± 0.7 and 2.6 ± 0.6, respectively). The infarct size of the spinal cord was also significantly higher in the control group compared with TLV-33°C and TLV-36°C groups (75% ± 10% versus 32% ± 7% and 28% ± 10%, respectively). Neither motor function nor infarct size differed significantly between TLV-33°C and TLV-36°C groups. CONCLUSIONS Ultrafast hypothermic TLV attenuates spinal cord injury when applied after ischemic insult. Neurological outcome was similar with targeted temperature management at either 33°C or 36°C.
Collapse
Affiliation(s)
- Nicolas Mongardon
- Inserm, U955, Equipe 3, Créteil, France; Université Paris Est, UMR_S955, UPEC, DHU A-TVB, Créteil, France; Ecole Nationale Vétérinaire d'Alfort, Maisons-Alfort, France; Service d'Anesthésie-Réanimation, DHU A-TVB, Hôpitaux Universitaires Henri Mondor, Assistance Publique des Hôpitaux de Paris, Créteil, France
| | - Matthias Kohlhauer
- Inserm, U955, Equipe 3, Créteil, France; Université Paris Est, UMR_S955, UPEC, DHU A-TVB, Créteil, France; Ecole Nationale Vétérinaire d'Alfort, Maisons-Alfort, France
| | - Fanny Lidouren
- Inserm, U955, Equipe 3, Créteil, France; Université Paris Est, UMR_S955, UPEC, DHU A-TVB, Créteil, France; Ecole Nationale Vétérinaire d'Alfort, Maisons-Alfort, France
| | - Mariana Barretto
- Inserm, U955, Equipe 3, Créteil, France; Université Paris Est, UMR_S955, UPEC, DHU A-TVB, Créteil, France; Ecole Nationale Vétérinaire d'Alfort, Maisons-Alfort, France
| | | | - Clovis Adam
- Service d'Anatomo-pathologie, Hôpital Bicêtre, Assistance Publique des Hôpitaux de Paris, Le Kremlin-Bicêtre, France
| | - Gilles Dhonneur
- Service d'Anesthésie-Réanimation, DHU A-TVB, Hôpitaux Universitaires Henri Mondor, Assistance Publique des Hôpitaux de Paris, Créteil, France
| | - Bijan Ghaleh
- Inserm, U955, Equipe 3, Créteil, France; Université Paris Est, UMR_S955, UPEC, DHU A-TVB, Créteil, France; Ecole Nationale Vétérinaire d'Alfort, Maisons-Alfort, France
| | - Renaud Tissier
- Inserm, U955, Equipe 3, Créteil, France; Université Paris Est, UMR_S955, UPEC, DHU A-TVB, Créteil, France; Ecole Nationale Vétérinaire d'Alfort, Maisons-Alfort, France.
| |
Collapse
|
17
|
Yao Y, Johnson NJ, Perman SM, Ramjee V, Grossestreuer AV, Gaieski DF. Myocardial dysfunction after out-of-hospital cardiac arrest: predictors and prognostic implications. Intern Emerg Med 2018; 13:765-772. [PMID: 28983759 PMCID: PMC5967989 DOI: 10.1007/s11739-017-1756-z] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Accepted: 09/21/2017] [Indexed: 12/14/2022]
Abstract
We aim to determine the incidence of early myocardial dysfunction after out-of-hospital cardiac arrest, risk factors associated with its development, and association with outcome. A retrospective chart review was performed among consecutive out-of-hospital cardiac arrest (OHCA) patients who underwent echocardiography within 24 h of return of spontaneous circulation at three urban teaching hospitals. Our primary outcome is early myocardial dysfunction, defined as a left ventricular ejection fraction < 40% on initial echocardiogram. We also determine risk factors associated with myocardial dysfunction using multivariate analysis, and examine its association with survival and neurologic outcome. A total of 190 patients achieved ROSC and underwent echocardiography within 24 h. Of these, 83 (44%) patients had myocardial dysfunction. A total of 37 (45%) patients with myocardial dysfunction survived to discharge, 39% with intact neurologic status. History of congestive heart failure (OR 6.21; 95% CI 2.54-15.19), male gender (OR 2.27; 95% CI 1.08-4.78), witnessed arrest (OR 4.20; 95% CI 1.78-9.93), more than three doses of epinephrine (OR 6.10; 95% CI 1.12-33.14), more than four defibrillations (OR 4.7; 95% CI 1.35-16.43), longer duration of resuscitation (OR 1.06; 95% CI 1.01-1.10), and therapeutic hypothermia (OR 3.93; 95% CI 1.32-11.75) were associated with myocardial dysfunction. Cardiopulmonary resuscitation immediately initiated by healthcare personnel was associated with lower odds of myocardial dysfunction (OR 0.40; 95% CI 0.17-0.97). There was no association between early myocardial dysfunction and mortality or neurological outcome. Nearly half of OHCA patients have myocardial dysfunction. A number of clinical factors are associated with myocardial dysfunction, and may aid providers in anticipating which patients need early diagnostic evaluation and specific treatments. Early myocardial dysfunction is not associated with neurologically intact survival.
Collapse
Affiliation(s)
- Yuan Yao
- Grand Strand Health, Myrtle Beach, USA
| | - Nicholas James Johnson
- Department of Emergency Medicine, Harborview Medical Center, University of Washington, 325 9th Avenue, Box 359702, Seattle, WA, 98104, USA.
| | | | - Vimal Ramjee
- The Chattanooga Heart Institute, Chattanooga, USA
| | | | - David Foster Gaieski
- Department of Emergency Medicine, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, USA
| |
Collapse
|
18
|
Park Y, Tae HJ, Cho JH, Kim IS, Ohk TG, Park CW, Moon JB, Shin MC, Lee TK, Lee JC, Park JH, Ahn JH, Kang SH, Won MH, Cho JH. The relationship between low survival and acute increase of tumor necrosis factor α expression in the lung in a rat model of asphyxial cardiac arrest. Anat Cell Biol 2018; 51:128-135. [PMID: 29984058 PMCID: PMC6026820 DOI: 10.5115/acb.2018.51.2.128] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Revised: 05/02/2018] [Accepted: 05/12/2018] [Indexed: 01/17/2023] Open
Abstract
Cardiac arrest (CA) is sudden loss of heart function and abrupt stop in effective blood flow to the body. The patients who initially achieve return of spontaneous circulation (RoSC) after CA have low survival rate. It has been known that multiorgan dysfunctions after RoSC are associated with high morbidity and mortality. Most previous studies have focused on the heart and brain in RoSC after CA. Therefore, the aim of this research was to perform serological, physiological, and histopathology study in the lung and to determine whether or how pulmonary dysfunction is associated with low survival rate after CA. Experimental animals were divided into sham-operated group (n=14 at each point in time), which was not subjected to CA operation, and CA-operated group (n=14 at each point in time), which was subjected to CA. The rats in each group were sacrificed at 6 hours, 12 hours, 24 hours, and 2 days, respectively, after RoSC. Then, pathological changes of the lungs were analyzed by hematoxylin and eosin staining, Western blot and immunohistochemistry for tumor necrosis factor α (TNF-α). The survival rate after CA was decreased with time past. We found that histopathological score and TNF-α immunoreactivity were significantly increased in the lung after CA. These results indicate that inflammation triggered by ischemia-reperfusion damage after CA leads to pulmonary injury/dysfunctions and contributes to low survival rate. In addition, the finding of increase in TNF-α via inflammation in the lung after CA would be able to utilize therapeutic or diagnostic measures in the future.
Collapse
Affiliation(s)
- Yoonsoo Park
- Department of Emergency Medicine and Institute of Medical Sciences, Kangwon National University Hospital, Kangwon National University School of Medicine, Chuncheon, Korea
| | - Hyun-Jin Tae
- Bio Safety Research Institute, College of Veterinary Medicine, Chonbuk National University, Iksan, Korea
| | - Jeong Hwi Cho
- Bio Safety Research Institute, College of Veterinary Medicine, Chonbuk National University, Iksan, Korea
| | - In-Shik Kim
- Bio Safety Research Institute, College of Veterinary Medicine, Chonbuk National University, Iksan, Korea
| | - Taek Geun Ohk
- Department of Emergency Medicine and Institute of Medical Sciences, Kangwon National University Hospital, Kangwon National University School of Medicine, Chuncheon, Korea
| | - Chan Woo Park
- Department of Emergency Medicine and Institute of Medical Sciences, Kangwon National University Hospital, Kangwon National University School of Medicine, Chuncheon, Korea
| | - Joong Bum Moon
- Department of Emergency Medicine and Institute of Medical Sciences, Kangwon National University Hospital, Kangwon National University School of Medicine, Chuncheon, Korea
| | - Myoung Cheol Shin
- Department of Emergency Medicine and Institute of Medical Sciences, Kangwon National University Hospital, Kangwon National University School of Medicine, Chuncheon, Korea
| | - Tae-Kyeong Lee
- Department of Neurobiology, Kangwon National University School of Medicine, Chuncheon, Korea
| | - Jae-Chul Lee
- Department of Neurobiology, Kangwon National University School of Medicine, Chuncheon, Korea
| | - Joon Ha Park
- Department of Biomedical Science and Research Institute for Bioscience and Biotechnology, Hallym University, Chuncheon, Korea
| | - Ji Hyeon Ahn
- Department of Biomedical Science and Research Institute for Bioscience and Biotechnology, Hallym University, Chuncheon, Korea
| | - Seok Hoon Kang
- Department of Medical Education, Kangwon National University School of Medicine, Chuncheon, Korea
| | - Moo-Ho Won
- Department of Neurobiology, Kangwon National University School of Medicine, Chuncheon, Korea
| | - Jun Hwi Cho
- Department of Emergency Medicine and Institute of Medical Sciences, Kangwon National University Hospital, Kangwon National University School of Medicine, Chuncheon, Korea
| |
Collapse
|
19
|
Rambaud J, Lidouren F, Sage M, Kohlhauer M, Nadeau M, Fortin-Pellerin É, Micheau P, Zilberstein L, Mongardon N, Ricard JD, Terada M, Bruneval P, Berdeaux A, Ghaleh B, Walti H, Tissier R. Hypothermic total liquid ventilation after experimental aspiration-associated acute respiratory distress syndrome. Ann Intensive Care 2018; 8:57. [PMID: 29721820 PMCID: PMC5931951 DOI: 10.1186/s13613-018-0404-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2017] [Accepted: 04/23/2018] [Indexed: 12/20/2022] Open
Abstract
Background Ultrafast cooling by total liquid ventilation (TLV) provides potent cardio- and neuroprotection after experimental cardiac arrest. However, this was evaluated in animals with no initial lung injury, whereas out-of-hospital cardiac arrest is frequently associated with early-onset pneumonia, which may lead to acute respiratory distress syndrome (ARDS). Here, our objective was to determine whether hypothermic TLV could be safe or even beneficial in an aspiration-associated ARDS animal model. Methods ARDS was induced in anesthetized rabbits through a two-hits model including the intra-tracheal administration of a pH = 1 solution mimicking gastric content and subsequent gaseous non-protective ventilation during 90 min (tidal volume [Vt] = 10 ml/kg with positive end-expiration pressure [PEEP] = 0 cmH2O). After this initial period, animals either received lung protective gas ventilation (LPV; Vt = 8 ml/kg and PEEP = 5 cmH2O) under normothermic conditions, or hypothermic TLV (TLV; Vt = 8 ml/kg and end-expiratory volume = 15 ml/kg). Both strategies were applied for 120 min with a continuous monitoring of respiratory and cardiovascular parameters. Animals were then euthanized for pulmonary histological analyses. Results Eight rabbits were included in each group. Before randomization, all animals elicited ARDS with arterial oxygen partial pressure over inhaled oxygen fraction ratios (PaO2/FiO2) below 100 mmHg, as well as decreased lung compliance. After randomization, body temperature rapidly decreased in TLV versus LPV group (32.6 ± 0.6 vs. 38.2 ± 0.4 °C after 15 min). Static lung compliance and gas exchanges were not significantly different in the TLV versus LPV group (PaO2/FiO2 = 62 ± 4 vs. 52 ± 8 mmHg at the end of the procedure, respectively). Mean arterial pressure and arterial bicarbonates levels were significantly higher in TLV versus LPV. Histological analysis also showed significantly lower inflammation in TLV versus LPV group (median histological score = 3 vs. 4.5/5, respectively; p = 0.03). Conclusion Hypothermic TLV can be safely induced in rabbits during aspiration-associated ARDS. It modified neither gas exchanges nor respiratory mechanics but reduced lung inflammation and hemodynamic failure in comparison with LPV. Since hypothermic TLV was previously shown to provide neuro- and cardio protective effects after cardiac arrest, these findings suggest a possible use of TLV in the settings of cardiac arrest-associated ARDS.
Collapse
Affiliation(s)
- Jérôme Rambaud
- U955 - IMRB, Inserm, UPEC, Ecole Nationale Vétérinaire d'Alfort, 7 avenue du Général de Gaulle, 94700, Maisons-Alfort, France.,Paediatric and Neonatal Intensive Care Unit, Armand-Trousseau Hospital, UPMC, APHP, Paris, France
| | - Fanny Lidouren
- U955 - IMRB, Inserm, UPEC, Ecole Nationale Vétérinaire d'Alfort, 7 avenue du Général de Gaulle, 94700, Maisons-Alfort, France
| | - Michaël Sage
- Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Matthias Kohlhauer
- U955 - IMRB, Inserm, UPEC, Ecole Nationale Vétérinaire d'Alfort, 7 avenue du Général de Gaulle, 94700, Maisons-Alfort, France
| | | | | | | | - Luca Zilberstein
- U955 - IMRB, Inserm, UPEC, Ecole Nationale Vétérinaire d'Alfort, 7 avenue du Général de Gaulle, 94700, Maisons-Alfort, France
| | - Nicolas Mongardon
- U955 - IMRB, Inserm, UPEC, Ecole Nationale Vétérinaire d'Alfort, 7 avenue du Général de Gaulle, 94700, Maisons-Alfort, France.,Service d'Anesthésie et des Réanimations Chirurgicales, DHU A-TVB, Hôpitaux Universitaires Henri Mondor, Assistance Publique des Hôpitaux de Paris, Créteil, France
| | - Jean-Damien Ricard
- UMR 1137, Inserm, Université Paris Diderot, Hôpital Louis Mourier, Réanimation Médico-chirurgicale, APHP, Colombes, France
| | - Megumi Terada
- UMR 970, Inserm, Paris Cardiovascular Research Center, Hôpital Européen Georges Pompidou, Paris, France
| | - Patrick Bruneval
- UMR 970, Inserm, Paris Cardiovascular Research Center, Hôpital Européen Georges Pompidou, Paris, France
| | - Alain Berdeaux
- U955 - IMRB, Inserm, UPEC, Ecole Nationale Vétérinaire d'Alfort, 7 avenue du Général de Gaulle, 94700, Maisons-Alfort, France
| | - Bijan Ghaleh
- U955 - IMRB, Inserm, UPEC, Ecole Nationale Vétérinaire d'Alfort, 7 avenue du Général de Gaulle, 94700, Maisons-Alfort, France
| | - Hervé Walti
- U955 - IMRB, Inserm, UPEC, Ecole Nationale Vétérinaire d'Alfort, 7 avenue du Général de Gaulle, 94700, Maisons-Alfort, France
| | - Renaud Tissier
- U955 - IMRB, Inserm, UPEC, Ecole Nationale Vétérinaire d'Alfort, 7 avenue du Général de Gaulle, 94700, Maisons-Alfort, France.
| |
Collapse
|
20
|
Baicalein Rescues Delayed Cooling via Preservation of Akt Activation and Akt-Mediated Phospholamban Phosphorylation. Int J Mol Sci 2018; 19:ijms19040973. [PMID: 29587364 PMCID: PMC5979521 DOI: 10.3390/ijms19040973] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Revised: 03/20/2018] [Accepted: 03/22/2018] [Indexed: 12/26/2022] Open
Abstract
Cooling reduces the ischemia/reperfusion (I/R) injury seen in sudden cardiac arrest (SCA) by decreasing the burst of reactive oxygen species (ROS). Its cardioprotection is diminished when delay in reaching the target temperature occurs. Baicalein, a flavonoid derived from the root of Scutellaria baicalensis Georgi, possesses antioxidant properties. Therefore, we hypothesized that baicalein can rescue cooling cardioprotection when cooling is delayed. Two murine cardiomyocyte models, an I/R model (90 min ischemia/3 h reperfusion) and stunning model (30 min ischemia/90 min reperfusion), were used to assess cell survival and contractility, respectively. Cooling (32 °C) was initiated either during ischemia or during reperfusion. Cell viability and ROS generation were measured. Cell contractility was evaluated by real-time phase-contrast imaging. Our results showed that cooling reduced cell death and ROS generation, and this effect was diminished when cooling was delayed. Baicalein (25 µM), given either at the start of reperfusion or start of cooling, resulted in a comparable reduction of cell death and ROS production. Baicalein improved phospholamban phosphorylation, contractility recovery, and cell survival. These effects were Akt-dependent. In addition, no synergistic effect was observed with the combined treatments of cooling and baicalein. Our data suggest that baicalein may serve as a novel adjunct therapeutic strategy for SCA resuscitation.
Collapse
|
21
|
Jahandiez V, Cour M, Bochaton T, Abrial M, Loufouat J, Gharib A, Varennes A, Ovize M, Argaud L. Fast therapeutic hypothermia prevents post-cardiac arrest syndrome through cyclophilin D-mediated mitochondrial permeability transition inhibition. Basic Res Cardiol 2017; 112:35. [PMID: 28492973 DOI: 10.1007/s00395-017-0624-3] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Accepted: 05/02/2017] [Indexed: 03/14/2023]
Abstract
The opening of the mitochondrial permeability transition pore (PTP), which is regulated by the matrix protein cyclophilin D (CypD), plays a key role in the pathophysiology of post-cardiac arrest (CA) syndrome. We hypothesized that therapeutic hypothermia could prevent post-CA syndrome through a CypD-mediated PTP inhibition in both heart and brain. In addition, we investigated whether specific pharmacological PTP inhibition would confer additive protection to cooling. Adult male New Zealand White rabbits underwent 15 min of CA followed by 120 min of reperfusion. Five groups (n = 10-15/group) were studied: control group (CA only), hypothermia group (HT, hypothermia at 32-34 °C induced by external cooling at reperfusion), NIM group (injection at reperfusion of 2.5 mg/kg NIM811, a specific CypD inhibitor), HT + NIM, and sham group. The following measurements were taken: hemodynamics, echocardiography, and cellular damage markers (including S100β protein and troponin Ic). Oxidative phosphorylation and PTP opening were assessed on mitochondria isolated from both brain and heart. Acetylation of CypD was measured by immunoprecipitation in both the cerebral cortex and myocardium. Hypothermia and NIM811 significantly prevented cardiovascular dysfunction, pupillary areflexia, and early tissue damage. Hypothermia and NIM811 preserved oxidative phosphorylation, limited PTP opening in both brain and heart mitochondria and prevented increase in CypD acetylation in brain. There were no additive beneficial effects in the combination of NIM811 and therapeutic hypothermia. In conclusion, therapeutic hypothermia limited post-CA syndrome by preventing mitochondrial permeability transition mainly through a CypD-dependent mechanism.
Collapse
Affiliation(s)
- Vincent Jahandiez
- Hospices Civils de Lyon, Hôpital Edouard Herriot, Service de Réanimation Médicale, 5 Place d'Arsonval, 69437, Lyon Cedex 03, France
- Université de Lyon, Université Claude Bernard Lyon 1, Faculté de médecine Lyon-Est, 69373, Lyon, France
- INSERM UMR 1060, CarMeN, Equipe 5 "Cardioprotection", 69373, Lyon, France
| | - Martin Cour
- Hospices Civils de Lyon, Hôpital Edouard Herriot, Service de Réanimation Médicale, 5 Place d'Arsonval, 69437, Lyon Cedex 03, France
- Université de Lyon, Université Claude Bernard Lyon 1, Faculté de médecine Lyon-Est, 69373, Lyon, France
- INSERM UMR 1060, CarMeN, Equipe 5 "Cardioprotection", 69373, Lyon, France
| | - Thomas Bochaton
- INSERM UMR 1060, CarMeN, Equipe 5 "Cardioprotection", 69373, Lyon, France
| | - Maryline Abrial
- INSERM UMR 1060, CarMeN, Equipe 5 "Cardioprotection", 69373, Lyon, France
| | - Joseph Loufouat
- INSERM UMR 1060, CarMeN, Equipe 5 "Cardioprotection", 69373, Lyon, France
| | - Abdallah Gharib
- INSERM UMR 1060, CarMeN, Equipe 5 "Cardioprotection", 69373, Lyon, France
| | - Annie Varennes
- Hospices Civils de Lyon, Groupement Hospitalier Edouard Herriot, Laboratoire de Biochimie, 69437, Lyon, France
| | - Michel Ovize
- INSERM UMR 1060, CarMeN, Equipe 5 "Cardioprotection", 69373, Lyon, France
| | - Laurent Argaud
- Hospices Civils de Lyon, Hôpital Edouard Herriot, Service de Réanimation Médicale, 5 Place d'Arsonval, 69437, Lyon Cedex 03, France.
- Université de Lyon, Université Claude Bernard Lyon 1, Faculté de médecine Lyon-Est, 69373, Lyon, France.
- INSERM UMR 1060, CarMeN, Equipe 5 "Cardioprotection", 69373, Lyon, France.
| |
Collapse
|
22
|
Mongardon N, Kohlhauer M, Lidouren F, Hauet T, Giraud S, Hutin A, Costes B, Barau C, Bruneval P, Micheau P, Cariou A, Dhonneur G, Berdeaux A, Ghaleh B, Tissier R. A Brief Period of Hypothermia Induced by Total Liquid Ventilation Decreases End-Organ Damage and Multiorgan Failure Induced by Aortic Cross-Clamping. Anesth Analg 2017; 123:659-69. [PMID: 27482772 DOI: 10.1213/ane.0000000000001432] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
BACKGROUND In animal models, whole-body cooling reduces end-organ injury after cardiac arrest and other hypoperfusion states. The benefits of cooling in humans, however, are uncertain, possibly because detrimental effects of prolonged cooling may offset any potential benefit. Total liquid ventilation (TLV) provides both ultrafast cooling and rewarming. In previous reports, ultrafast cooling with TLV potently reduced neurological injury after experimental cardiac arrest in animals. We hypothesized that a brief period of rapid cooling and rewarming via TLV could also mitigate multiorgan failure (MOF) after ischemia-reperfusion induced by aortic cross-clamping. METHODS Anesthetized rabbits were submitted to 30 minutes of supraceliac aortic cross-clamping followed by 300 minutes of reperfusion. They were allocated either to a normothermic procedure with conventional ventilation (control group) or to hypothermic TLV (33°C) before, during, and after cross-clamping (pre-clamp, per-clamp, and post-clamp groups, respectively). In all TLV groups, hypothermia was maintained for 75 minutes and switched to a rewarming mode before resumption to conventional mechanical ventilation. End points included cardiovascular, renal, liver, and inflammatory parameters measured 300 minutes after reperfusion. RESULTS In the normothermic (control) group, ischemia-reperfusion injury produced evidence of MOF including severe vasoplegia, low cardiac output, acute kidney injury, and liver failure. In the TLV group, we observed gradual improvements in cardiac output in post-clamp, per-clamp, and pre-clamp groups versus control (53 ± 8, 64 ± 12, and 90 ± 24 vs 36 ± 23 mL/min/kg after 300 minutes of reperfusion, respectively). Liver biomarker levels were also lower in pre-clamp and per-clamp groups versus control. However, acute kidney injury was prevented in pre-clamp, and to a limited extent in per-clamp groups, but not in the post-clamp group. For instance, creatinine clearance was 4.8 ± 3.1 and 0.5 ± 0.6 mL/kg/min at the end of the follow-up in pre-clamp versus control animals (P = .0004). Histological examinations of the heart, kidney, liver, and jejunum in TLV and control groups also demonstrated reduced injury with TLV. CONCLUSIONS A brief period of ultrafast cooling with TLV followed by rapid rewarming attenuated biochemical and histological markers of MOF after aortic cross-clamping. Cardiovascular and liver dysfunctions were limited by a brief period of hypothermic TLV, even when started after reperfusion. Conversely, acute kidney injury was limited only when hypothermia was started before reperfusion. Further work is needed to determine the clinical significance of our results and to identify the optimal duration and timing of TLV-induced hypothermia for end-organ protection in hypoperfusion states.
Collapse
Affiliation(s)
- Nicolas Mongardon
- From the *Inserm, U955, Equipe 3, Créteil, France; †Université Paris Est, UMR_S 955, UPEC, DHU A-TVB, Créteil, France; ‡Université Paris Est, Ecole Nationale Vétérinaire Alfort, Maisons Alfort, France; §Service d' Anesthésie et des Réanimations Chirurgicales, DHU A-TVB, Hôpitaux Universitaires Henri Mondor, Assistance Publique - Hôpitaux de Paris, Créteil, France; ‖Inserm, U1082, Poitiers, France; ¶Université de Poitiers, Faculté de Médecine et de Pharmacie, Poitiers, France; #CHU de Poitiers, Service de Biochimie, Poitiers, France; **Inserm, UMR 970, Paris Cardiovascular Research Center, Paris, France; ††Université de Sherbrooke, Sherbrooke, Canada; and ‡‡Service de Réanimation Médicale, Hôpitaux Universitaires Paris Centre, Hôpital Cochin, Paris, France
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Nadeau M, Sage M, Kohlhauer M, Mousseau J, Vandamme J, Fortin-Pellerin E, Praud JP, Tissier R, Walti H, Micheau P. Optimal Control of Inspired Perfluorocarbon Temperature for Ultrafast Hypothermia Induction by Total Liquid Ventilation in an Adult Patient Model. IEEE Trans Biomed Eng 2017; 64:2760-2770. [PMID: 28237918 DOI: 10.1109/tbme.2017.2671741] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
GOAL Recent preclinical studies have shown that therapeutic hypothermia induced in less than 30 min by total liquid ventilation (TLV) strongly improves the survival rate after cardiac arrest. When the lung is ventilated with a breathable perfluorocarbon liquid, the inspired perfluorocarbon allows us to control efficiently the cooling process of the organs. While TLV can rapidly cool animals, the cooling speed in humans remains unknown. The objective is to predict the efficiency and safety of ultrafast cooling by TLV in adult humans. METHODS It is based on a previously published thermal model of ovines in TLV and the design of a direct optimal controller to compute the inspired perfluorocarbon temperature profile. The experimental results in an adult sheep are presented. The thermal model of sheep is subsequently projected to a human model to simulate the optimal hypothermia induction and its sensitivity to physiological parameter uncertainties. RESULTS The results in the sheep showed that the computed inspired perfluorocarbon temperature command can avoid arterial temperature undershoot. The projection to humans revealed that mild hypothermia should be ultrafast (reached in fewer than 3 min (-72 °C/h) for the brain and 20 min (-10 °C/h) for the entire body). CONCLUSION The projection to human model allows concluding that therapeutic hypothermia induction by TLV can be ultrafast and safe. SIGNIFICANCE This study is the first to simulate ultrafast cooling by TLV in a human model and is a strong motivation to translate TLV to humans to improve the quality of life of postcardiac arrest patients.
Collapse
|
24
|
Vognsen M, Fabian-Jessing BK, Secher N, Løfgren B, Dezfulian C, Andersen LW, Granfeldt A. Contemporary animal models of cardiac arrest: A systematic review. Resuscitation 2017; 113:115-123. [PMID: 28214538 DOI: 10.1016/j.resuscitation.2017.01.024] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2016] [Revised: 01/21/2017] [Accepted: 01/25/2017] [Indexed: 01/01/2023]
Abstract
AIM OF THE STUDY Animal models are widely used in cardiac arrest research. This systematic review aimed to provide an overview of contemporary animal models of cardiac arrest. METHODS Using a comprehensive research strategy, we searched PubMed and EMBASE from March 8, 2011 to March 8, 2016 for cardiac arrest animal models. Two investigators reviewed titles and abstracts for full text inclusion from which data were extracted according to pre-defined definitions. RESULTS Search criteria yielded 1741 unique titles and abstracts of which 490 full articles were included. The most common animals used were pigs (52%) followed by rats (35%) and mice (6%). Studies favored males (52%) over females (16%); 17% of studies included both sexes, while 14% omitted to report on sex. The most common methods for induction of cardiac arrest were either electrically-induced ventricular fibrillation (54%), asphyxia (25%), or potassium (8%). The median no-flow time was 8min (quartiles: 5, 8, range: 0-37min). The majority of studies used adrenaline during resuscitation (64%), while bicarbonate (17%), vasopressin (8%) and other drugs were used less prevalently. In 53% of the studies, the post-cardiac arrest observation time was ≥24h. Neurological function was an outcome in 48% of studies while 43% included assessment of a cardiac outcome. CONCLUSIONS Multiple animal models of cardiac arrest exist. The great heterogeneity of these models along with great variability in definitions and reporting make comparisons between studies difficult. There is a need for standardization of animal cardiac arrest research and reporting.
Collapse
Affiliation(s)
- Mikael Vognsen
- Research Center for Emergency Medicine, Aarhus University Hospital, Aarhus, Denmark
| | | | - Niels Secher
- Department of Anaesthesiology and Intensive Care Medicine, Aarhus University Hospital, Aarhus, Denmark
| | - Bo Løfgren
- Research Center for Emergency Medicine, Aarhus University Hospital, Aarhus, Denmark; Institute of Clinical Medicine, Aarhus University, Aarhus, Denmark; Department of Internal Medicine, Regional Hospital of Randers, Randers, Denmark
| | - Cameron Dezfulian
- Safar Center for Resuscitation Research, Vascular Medicine Institute and Critical Care Medicine Department, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Lars W Andersen
- Research Center for Emergency Medicine, Aarhus University Hospital, Aarhus, Denmark
| | - Asger Granfeldt
- Department of Anaesthesiology and Intensive Care Medicine, Aarhus University Hospital, Aarhus, Denmark; Institute of Clinical Medicine, Aarhus University, Aarhus, Denmark.
| |
Collapse
|
25
|
Nakajima Y. Controversies in the temperature management of critically ill patients. J Anesth 2016; 30:873-83. [PMID: 27351982 DOI: 10.1007/s00540-016-2200-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2015] [Accepted: 06/04/2016] [Indexed: 11/30/2022]
Abstract
Although body temperature is a classic primary vital sign, its value has received little attention compared with the others (blood pressure, heart rate, and respiratory rate). This may result from the fact that unlike the other primary vital signs, aging and diseases rarely affect the thermoregulatory system. Despite this, when humans are exposed to various anesthetics and analgesics and acute etiologies of non-infectious and infectious diseases in perioperative and intensive care settings, abnormalities may occur that shift body temperature up and down. A recent upsurge in clinical evidence in the perioperative and critical care field resulted in many clinical trials in temperature management. The results of these clinical trials suggest that aggressive body temperature modifications in comatose survivors after resuscitation from shockable rhythm, and permissive fever in critically ill patients, are carried out in critical care settings to improve patient outcomes; however, its efficacy remains to be elucidated. A recent, large multicenter randomized controlled trial demonstrated contradictory results, which may disrupt the trends in clinical practice. Thus, updated information concerning thermoregulatory interventions is essential for anesthesiologists and intensivists. Here, recent controversies in therapeutic hypothermia and fever management are summarized, and their relevance to the physiology of human thermoregulation is discussed.
Collapse
Affiliation(s)
- Yasufumi Nakajima
- Department of Anesthesiology and Intensive Care, Kansai Medical University, Shinmachi 2-3-1, Hirakata, Osaka, 573-1191, Japan.
| |
Collapse
|
26
|
Guo J, Wu MJ, Kang Y. Letter by Guo et al Regarding Article, "Endovascular Versus External Targeted Temperature Management for Patients With Out-of-Hospital Cardiac Arrest: A Randomized, Controlled Study". Circulation 2016; 133:e412. [PMID: 26903024 DOI: 10.1161/circulationaha.115.019384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Jun Guo
- Department of Critical Care Medicine, West China Hospital Sichuan University, Chengdu, Sichuan, China
| | - Meng-Jun Wu
- Department of Anesthesiology, West China Hospital Sichuan University, Chengdu, Sichuan, China
| | - Yan Kang
- Department of Critical Care Medicine, West China Hospital Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
27
|
Kohlhauer M, Berdeaux A, Kerber RE, Micheau P, Ghaleh B, Tissier R. Liquid Ventilation for the Induction of Ultrafast Hypothermia in Resuscitation Sciences: A Review. Ther Hypothermia Temp Manag 2016; 6:63-70. [DOI: 10.1089/ther.2015.0024] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Matthias Kohlhauer
- Inserm, Unité 955, Equipe 03, Créteil, France
- Université Paris Est, UMR_S955, DHU A-TVB, UPEC, Créteil, France
- Université Paris Est, École Nationale Vétérinaire d'Alfort, Maisons-Alfort Cedex, France
| | - Alain Berdeaux
- Inserm, Unité 955, Equipe 03, Créteil, France
- Université Paris Est, UMR_S955, DHU A-TVB, UPEC, Créteil, France
- Université Paris Est, École Nationale Vétérinaire d'Alfort, Maisons-Alfort Cedex, France
| | - Richard E. Kerber
- Department of Internal Medicine, Division of Cardiovascular Medicine, University of Iowa Hospitals and Clinics, Iowa City, Iowa
| | - Philippe Micheau
- Department of Mechanical Engineering, Université de Sherbrooke, Sherbrooke, Canada
| | - Bijan Ghaleh
- Inserm, Unité 955, Equipe 03, Créteil, France
- Université Paris Est, UMR_S955, DHU A-TVB, UPEC, Créteil, France
- Université Paris Est, École Nationale Vétérinaire d'Alfort, Maisons-Alfort Cedex, France
| | - Renaud Tissier
- Inserm, Unité 955, Equipe 03, Créteil, France
- Université Paris Est, UMR_S955, DHU A-TVB, UPEC, Créteil, France
- Université Paris Est, École Nationale Vétérinaire d'Alfort, Maisons-Alfort Cedex, France
| |
Collapse
|
28
|
Geri G, Cariou A. Syndrome post-arrêt cardiaque. MEDECINE INTENSIVE REANIMATION 2016. [DOI: 10.1007/s13546-016-1191-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
29
|
Hypothermic Total Liquid Ventilation Is Highly Protective Through Cerebral Hemodynamic Preservation and Sepsis-Like Mitigation After Asphyxial Cardiac Arrest. Crit Care Med 2015; 43:e420-30. [PMID: 26110489 DOI: 10.1097/ccm.0000000000001160] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
OBJECTIVES Total liquid ventilation provides ultrafast and potently neuro- and cardioprotective cooling after shockable cardiac arrest and myocardial infarction in animals. Our goal was to decipher the effect of hypothermic total liquid ventilation on the systemic and cerebral response to asphyxial cardiac arrest using an original pressure- and volume-controlled ventilation strategy in rabbits. DESIGN Randomized animal study. SETTING Academic research laboratory. SUBJECTS New Zealand Rabbits. INTERVENTIONS Thirty-six rabbits were submitted to 13 minutes of asphyxia, leading to cardiac arrest. After resumption of spontaneous circulation, they underwent either normothermic life support (control group, n = 12) or hypothermia induced by either 30 minutes of total liquid ventilation (total liquid ventilation group, n = 12) or IV cold saline (conventional cooling group, n = 12). MEASUREMENTS AND MAIN RESULTS Ultrafast cooling with total liquid ventilation (32 °C within 5 min in the esophagus) dramatically attenuated the post-cardiac arrest syndrome regarding survival, neurologic dysfunction, and histologic lesions (brain, heart, kidneys, liver, and lungs). Final survival rate achieved 58% versus 0% and 8% in total liquid ventilation, control, and conventional cooling groups (p < 0.05), respectively. This was accompanied by an early preservation of the blood-brain barrier integrity and cerebral hemodynamics as well as reduction in the immediate reactive oxygen species production in the brain, heart, and kidneys after cardiac arrest. Later on, total liquid ventilation also mitigated the systemic inflammatory response through alteration of monocyte chemoattractant protein-1, interleukin-1β, and interleukin-8 transcripts levels compared with control. In the conventional cooling group, cooling was achieved more slowly (32 °C within 90-120 min in the esophagus), providing none of the above-mentioned systemic or organ protection. CONCLUSIONS Ultrafast cooling by total liquid ventilation limits the post-cardiac arrest syndrome after asphyxial cardiac arrest in rabbits. This protection involves an early limitation in reactive oxidative species production, blood-brain barrier disruption, and delayed preservation against the systemic inflammatory response.
Collapse
|
30
|
Wu MJ, Zhang YJ, Yu H. Letter by Wu et al Regarding Article, "Hydrogen Inhalation During Normoxic Resuscitation Improves Neurological Outcome in a Rat Model of Cardiac Arrest Independently of Targeted Temperature Management". Circulation 2015; 132:e147. [PMID: 26371241 DOI: 10.1161/circulationaha.115.015456] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Meng-Jun Wu
- Department of Anesthesiology and Translational Neuroscience Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Ya-Jie Zhang
- Department of Anesthesiology and Translational Neuroscience Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Hai Yu
- Department of Anesthesiology and Translational Neuroscience Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
31
|
Prearrest hypothermia improved defibrillation and cardiac function in a rabbit ventricular fibrillation model. Am J Emerg Med 2015; 33:1385-90. [PMID: 26298048 DOI: 10.1016/j.ajem.2015.07.017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2015] [Revised: 06/11/2015] [Accepted: 07/07/2015] [Indexed: 11/21/2022] Open
Abstract
BACKGROUND Hypothermia when cardiopulmonary resuscitation begins may help achieve defibrillation and return of spontaneous circulation (ROSC), but few data are available. OBJECTIVE The objective of this study was to determine whether prearrest hypothermia improved defibrillation and cardiac function in a rabbit ventricular fibrillation (VF) model. RESULTS Thirty-six New Zealand rabbits were randomized equally to receive normothermia (Norm) (~39°C), post-ROSC hypothermia (~33°C), or prearrest hypothermia (~33°C). Ventricular fibrillation was induced by alternating current. After 4 minutes of VF, rabbits were defibrillated and given cardiopulmonary resuscitation until ROSC or no response (≥30 minutes). Hemodynamics and electrocardiogram were monitored; N-terminal pro-brain natriuretic peptideand troponin I were determined by enzyme-linked immunosorbent assay. Myocardial histology and echocardiographic data were evaluated. First-shock achievement of perfusion rhythm was more frequent in prearrest than normothermic animals (7/12 vs 1/12; P=.027). After ROSC, dp/dtmax was higher in prearrest than normothermic animals (P<.001). Left ventricular end-systolic pressure was higher in prearrest than normothermic animals (P=.001). At 240 minutes after ROSC, troponin I and N-terminal pro-brain natriuretic peptide were lower in prearrest than normothermic animals (15.74±2.26 vs 25.09±1.85 ng/mL and 426±23 vs 284±45 pg/mL, respectively), the left ventricular ejection fraction and cardiac output were lower in the Norm group than other 2 groups (P<.01). Myocardial histology was more disturbed in normothermic than post-ROSC and prearrest animals, but was not different in the latter 2 groups. CONCLUSIONS Induction of hypothermia before VF led to improved cardiac function in a rabbit VF model through improving achievement of perfusing rhythm by first-shock defibrillation and facilitating resuscitation.
Collapse
|
32
|
Effects of mild and moderate hypothemia therapy on expression of cerebral neuron apoptosis related proteins and glial fiber acidic protein after rat cardio-pulmonary resuscitation. Cell Biochem Biophys 2015; 70:1519-25. [PMID: 25108738 DOI: 10.1007/s12013-014-0087-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
To explore the effects of different degrees of hypothermia on brain tissue apoptosis after cardio-pulmonary resuscitation (CPR). Cardiac arrest for 5 min induced by asphyxia method was used to create CPR model. 30 SD rats were randomly divided into control group (normothermia), 33 °C hypothermia group and 30 °C hypothermia group with ten rats in each. Rats in control group received routine treatment at 25 °C room temperature after CPR; Rats in mild hypothermia and moderate hypothermia groups were given hypothermia treatment 0.5 h after CPR. Brain tissue in all groups was taken 24 h after CPR, and immunohistochemistry was used to detect the caspase-3 in cerebral cortex and glial fiber acidic protein (GFAP) expression in astrocyte. Western blotting was used to detect Bcl-2 and Bax protein expression, and histopathological change was observed in brain tissue. Compare to the control group, caspase-3 expression in cerebral neurons in hypothermia group was significantly decreased (p<0.01), which was significantly lower in 30 °C group than that in 33 °C group (p > 0.05); GFAP level in hypothermia groups was significantly increased (p < 0.01), which was higher in 30 °C hypothermia group than that in 33 °C hypothermia group (p < 0.05); Bcl-2 expression level in hypothermia group was significantly increased (p < 0.01), which was higher in 30 °C hypothermia group than that in 33 °C hypothermia group (p < 0.05); The level of Bax had no significant difference among the three groups. Hypothermia-regulated GFAP expression by decreasing caspase-3 expression and increasing Bcl-2 expression to promote brain cell signaling transduction, and further inhibited cell apoptosis and reduced brain injury. Moderate hypothermia therapy is more effective than mild hypothermia in preventing brain injure.
Collapse
|
33
|
Hutin A, Lidouren F, Kohlhauer M, Lotteau L, Seemann A, Mongardon N, Renaud B, Isabey D, Carli P, Vivien B, Ricard JD, Hauet T, Kerber RE, Berdeaux A, Ghaleh B, Tissier R. Total liquid ventilation offers ultra-fast and whole-body cooling in large animals in physiological conditions and during cardiac arrest. Resuscitation 2015; 93:69-73. [PMID: 26070832 DOI: 10.1016/j.resuscitation.2015.05.020] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2015] [Revised: 04/19/2015] [Accepted: 05/21/2015] [Indexed: 10/23/2022]
Abstract
INTRODUCTION Total liquid ventilation (TLV) can cool down the entire body within 10-15 min in small animals. Our goal was to determine whether it could also induce ultra-fast and whole-body cooling in large animals using a specifically dedicated liquid ventilator. Cooling efficiency was evaluated under physiological conditions (beating-heart) and during cardiac arrest with automated chest compressions (CC, intra-arrest). METHODS In a first set of experiments, beating-heart pigs were randomly submitted to conventional mechanical ventilation or hypothermic TLV with perfluoro-N-octane (between 15 and 32 °C). In a second set of experiments, pigs were submitted to ventricular fibrillation and CC. One group underwent continuous CC with asynchronous conventional ventilation (Control group). The other group was switched to TLV while pursuing CC for the investigation of cooling capacities and potential effects on cardiac massage efficiency. RESULTS Under physiological conditions, TLV significantly decreased the entire body temperatures below 34 °C within only 10 min. As examples, cooling rates averaged 0.54 and 0.94 °C/min in rectum and esophageous, respectively. During cardiac arrest, TLV did not alter CC efficiency and cooled the entire body below 34 °C within 20 min, the low-flow period slowing cooling during CC. CONCLUSION Using a specifically designed liquid ventilator, TLV induced a very rapid cooling of the entire body in large animals. This was confirmed in both physiological conditions and during cardiac arrest with CC. TLV could be relevant for ultra-rapid cooling independently of body weight.
Collapse
Affiliation(s)
- Alice Hutin
- Inserm, U955, Equipe 03, F-94000 Créteil, France; Université Paris Est, UMR_S955, DHU A-TVB, UPEC, F-94000 Créteil, France; Université Paris Est, Ecole Nationale Vétérinaire d'Alfort, F-94700 Maisons-Alfort, France; Hôpitaux Universitaires Paris Centre, Cochin Hôtel-Dieu, Université Paris Descartes - Paris V , F-75014 Paris France
| | - Fanny Lidouren
- Inserm, U955, Equipe 03, F-94000 Créteil, France; Université Paris Est, UMR_S955, DHU A-TVB, UPEC, F-94000 Créteil, France; Université Paris Est, Ecole Nationale Vétérinaire d'Alfort, F-94700 Maisons-Alfort, France
| | - Matthias Kohlhauer
- Inserm, U955, Equipe 03, F-94000 Créteil, France; Université Paris Est, UMR_S955, DHU A-TVB, UPEC, F-94000 Créteil, France; Université Paris Est, Ecole Nationale Vétérinaire d'Alfort, F-94700 Maisons-Alfort, France
| | - Luc Lotteau
- Bertin Technologies, Montigny le Bretonneux F-78180, France
| | - Aurélien Seemann
- Inserm, U955, Equipe 03, F-94000 Créteil, France; Université Paris Est, UMR_S955, DHU A-TVB, UPEC, F-94000 Créteil, France; Université Paris Est, Ecole Nationale Vétérinaire d'Alfort, F-94700 Maisons-Alfort, France
| | - Nicolas Mongardon
- Inserm, U955, Equipe 03, F-94000 Créteil, France; Université Paris Est, UMR_S955, DHU A-TVB, UPEC, F-94000 Créteil, France; Université Paris Est, Ecole Nationale Vétérinaire d'Alfort, F-94700 Maisons-Alfort, France
| | - Bertrand Renaud
- Hôpitaux Universitaires Paris Centre, Cochin Hôtel-Dieu, Université Paris Descartes - Paris V , F-75014 Paris France
| | - Daniel Isabey
- Université Paris Est, UMR_S955, DHU A-TVB, UPEC, F-94000 Créteil, France; Inserm, U955, Equipe 13, F-94000 Créteil, France
| | - Pierre Carli
- SAMU de Paris, Département d'Anesthésie Réanimation, Hôpital Universitaire Necker-Enfants Malades, Université Paris Descartes - Paris V, F-75015 Paris, France
| | - Benoit Vivien
- SAMU de Paris, Département d'Anesthésie Réanimation, Hôpital Universitaire Necker-Enfants Malades, Université Paris Descartes - Paris V, F-75015 Paris, France
| | - Jean-Damien Ricard
- Inserm, IAME, 1137, Univ Paris Diderot, Sorbonne Paris Cité, F-75018 Paris, France; Assistance Publique - Hôpitaux de Paris, Hôpital Louis Mourier, Service de Réanimation Médico-chirurgicale, F-92700 Colombes, France
| | | | - Richard E Kerber
- Department of Internal Medicine, Division of Cardiovascular Medicine, University of Iowa Hospitals and Clinics, Iowa City, IA 52242, USA
| | - Alain Berdeaux
- Inserm, U955, Equipe 03, F-94000 Créteil, France; Université Paris Est, UMR_S955, DHU A-TVB, UPEC, F-94000 Créteil, France; Université Paris Est, Ecole Nationale Vétérinaire d'Alfort, F-94700 Maisons-Alfort, France
| | - Bijan Ghaleh
- Inserm, U955, Equipe 03, F-94000 Créteil, France; Université Paris Est, UMR_S955, DHU A-TVB, UPEC, F-94000 Créteil, France; Université Paris Est, Ecole Nationale Vétérinaire d'Alfort, F-94700 Maisons-Alfort, France
| | - Renaud Tissier
- Inserm, U955, Equipe 03, F-94000 Créteil, France; Université Paris Est, UMR_S955, DHU A-TVB, UPEC, F-94000 Créteil, France; Université Paris Est, Ecole Nationale Vétérinaire d'Alfort, F-94700 Maisons-Alfort, France.
| |
Collapse
|
34
|
ABYSS: Therapeutic hypothermia by total liquid ventilation following cardiac arrest and resuscitation. Ing Rech Biomed 2015. [DOI: 10.1016/j.irbm.2015.01.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
35
|
Nadeau M, Micheau P, Robert R, Avoine O, Tissier R, Germim PS, Vandamme J, Praud JP, Walti H. Core Body Temperature Control by Total Liquid Ventilation Using a Virtual Lung Temperature Sensor. IEEE Trans Biomed Eng 2014; 61:2859-68. [DOI: 10.1109/tbme.2014.2332293] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
36
|
Uribarri A, Bueno H, Pérez-Castellanos A, Loughlin G, Sousa I, Viana-Tejedor A, Fernández-Avilés F. Impact of time to cooling initiation and time to target temperature in patients treated with hypothermia after cardiac arrest. EUROPEAN HEART JOURNAL-ACUTE CARDIOVASCULAR CARE 2014; 4:365-72. [PMID: 25344490 DOI: 10.1177/2048872614557241] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2014] [Accepted: 10/07/2014] [Indexed: 01/21/2023]
Abstract
PURPOSE Little is known about the role of time to initiation of therapeutic hypothermia and time to target temperature (TTT) in the prognosis of patients resuscitated from cardiac arrest. METHODS A retrospective analysis was performed in 145 survivors of cardiac arrest who underwent therapeutic hypothermia between January 2003 and January 2013. The objective was to identify predictors of survival free from significant neurological sequelae (Cerebral Performance Categories Scale (CPC): >2) six months after cardiac arrest. We evaluated the effect of faster and earlier cooling. RESULTS Overall survival at six months was 42.1% (61 patients); 59 of these were considered to have a good neurological status (CPC ≤ 2), and in whom therapeutic hypothermia was initiated earlier (87 ± 17 min vs. 111 ± 14 min; p=0.042), and the target temperature was reached at an earlier time (TTT: 316 ± 30 min vs. 365 ± 27 min; p=0.017). Multivariate analysis selected longer duration of cardiac arrest (odds ratio (OR) = 1.06 per min), a non-shockable initial rhythm (OR=13.8), severe acidosis (OR=0.009 per 0.01 unit), older age (OR=1.04 per year) and longer TTT (OR=1.005 per min) as associated with poor prognosis. CONCLUSION The most important prognostic factors for death or lack of neurological recovery in patients with cardiac arrest treated with therapeutic hypothermia are initial-rhythm, time from cardiac arrest to return of spontaneous circulation and arterial-pH at admission. Although the speed of cooling initiation and the time to reach target temperature may play a role, its influence on prognosis seems to be less important.
Collapse
Affiliation(s)
- Aitor Uribarri
- Cardiology Department, Hospital General Universitario 'Gregorio Marañón', Madrid, Spain
| | - Héctor Bueno
- Cardiology Department, Hospital General Universitario 'Gregorio Marañón', Madrid, Spain
| | | | - Gerard Loughlin
- Cardiology Department, Hospital General Universitario 'Gregorio Marañón', Madrid, Spain
| | - Iago Sousa
- Cardiology Department, Hospital General Universitario 'Gregorio Marañón', Madrid, Spain
| | - Ana Viana-Tejedor
- Cardiology Department, Hospital General Universitario 'Gregorio Marañón', Madrid, Spain
| | | |
Collapse
|
37
|
Chenoune M, De Rochefort L, Bruneval P, Lidouren F, Kohlhauer M, Seemann A, Ghaleh B, Korn M, Dubuisson RM, Ben Yahmed A, Maître X, Isabey D, Ricard JD, Kerber RE, Darrasse L, Berdeaux A, Tissier R. Evaluation of lung recovery after static administration of three different perfluorocarbons in pigs. BMC Pharmacol Toxicol 2014; 15:53. [PMID: 25253660 PMCID: PMC4177717 DOI: 10.1186/2050-6511-15-53] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2014] [Accepted: 09/18/2014] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The respiratory properties of perfluorocarbons (PFC) have been widely studied for liquid ventilation in humans and animals. Several PFC were tested but their tolerance may depend on the species. Here, the effects of a single administration of liquid PFC into pig lungs were assessed and compared. Three different PFC having distinct evaporative and spreading coefficient properties were evaluated (Perfluorooctyl bromide [PFOB], perfluorodecalin [PFD] and perfluoro-N-octane [PFOC]). METHODS Pigs were anesthetized and submitted to mechanical ventilation. They randomly received an intra-tracheal administration of 15 ml/kg of either PFOB, PFD or PFOC with 12 h of mechanical ventilation before awakening and weaning from ventilation. A Control group was submitted to mechanical ventilation with no PFC administration. All animals were followed during 4 days after the initial PFC administration to investigate gas exchanges and clinical recovery. They were ultimately euthanized for histological analyses and assessment of PFC residual concentrations within the lungs using dual nuclei fluorine and hydrogen Magnetic Resonance Imaging (MRI). Sixteen animals were included (4/group). RESULTS In the PFD group, animals tended to be hypoxemic after awakening. In PFOB and PFOC groups, blood gases were not significantly different from the Control group after awakening. The poor tolerance of PFD was likely related to a large amount of residual PFC, as observed using MRI in all lung samples (≈10% of lung volume). This percentage was lower in the PFOB group (≈1%) but remained significantly greater than in the Control group. In the PFOC group, the percentage of residual PFC was not significantly different from that of the Control group (≈0.1%). Histologically, the most striking feature was an alveolar infiltration with foam macrophages, especially in the groups treated by PFD or PFOB. CONCLUSIONS Of the three tested perfluorocarbons, PFOC offered the best tolerance in terms of lung function, gas exchanges and residuum in the lung. PFOC was rapidly cleared from the lungs and virtually disappeared after 4 days whereas PFOB persisted at significant levels and led to foam macrophage infiltration. PFOC could be relevant for short term total liquid ventilation with a rapid weaning.
Collapse
|
38
|
Briot R, Maignan M, Debaty G. Hypothermie thérapeutique. Le contrôle thermique est aussi important que la baisse de température. ANNALES FRANCAISES DE MEDECINE D URGENCE 2014. [DOI: 10.1007/s13341-014-0453-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
39
|
Kidney protection by hypothermic total liquid ventilation after cardiac arrest in rabbits. Anesthesiology 2014; 120:861-9. [PMID: 24185488 DOI: 10.1097/aln.0000000000000048] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND Total liquid ventilation (TLV) with perfluorocarbons has been shown to induce rapid protective cooling in animal models of myocardial ischemia and cardiac arrest, with improved neurological and cardiovascular outcomes after resuscitation. In this study, the authors hypothesized that hypothermic TLV can also limit kidney injury after cardiac arrest. METHODS Anesthetized rabbits were submitted to 15 min of untreated ventricular fibrillation. After resuscitation, three groups of eight rabbits each were studied such as (1) life support plus hypothermia (32°-33 °C) induced by cold TLV (TLV group), (2) life support without hypothermia (control group), and (3) Sham group (no cardiac arrest). Life support was continued for 6 h before euthanasia and kidney removal. RESULTS Time to target esophageal temperature was less than 5 min in the TLV group. Hypothermia was accompanied by preserved renal function in the TLV group as compared with control group regarding numerous markers including creatinine blood levels (12 ± 1 vs. 16 ± 2 mg/l, respectively; mean ± SEM), urinary N-acetyl-β-(D)-glucosaminidase (1.70 ± 0.11 vs. 3.07 ± 0.10 U/mol of creatinine), γ-glutamyltransferase (8.36 ± 0.29 vs. 12.96 ± 0.44 U/mol of creatinine), or β2-microglobulin (0.44 ± 0.01 vs. 1.12 ± 0.04 U/mol of creatinine). Kidney lesions evaluated by electron microscopy and conventional histology were also attenuated in TLV versus control groups. The renal-protective effect of TLV was not related to differences in delayed inflammatory or immune renal responses because transcriptions of, for example, interferon-γ, tumor necrosis factor-α, interleukin-1β, monocyte chemoattractant protein-1, toll-like receptor-2, toll-like receptor-4, and vascular endothelial growth factor were similarly altered in TLV and control versus Sham. CONCLUSION Ultrafast cooling with TLV is renal protective after cardiac arrest and resuscitation, which could increase kidney availability for organ donation.
Collapse
|
40
|
Claret PG, Dumas F, Rerbal D, Rayeh-Pelardy F, Perrier C. Actualités en médecine d’urgence. ANNALES FRANCAISES DE MEDECINE D URGENCE 2014. [DOI: 10.1007/s13341-014-0435-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
41
|
Bougouin W, Cariou A. Dysfonction myocardique post-arrêt cardiaque. MEDECINE INTENSIVE REANIMATION 2014. [DOI: 10.1007/s13546-014-0849-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
42
|
Hypothermic liquid ventilation prevents early hemodynamic dysfunction and cardiovascular mortality after coronary artery occlusion complicated by cardiac arrest in rabbits. Crit Care Med 2014; 41:e457-65. [PMID: 24126441 DOI: 10.1097/ccm.0b013e3182a63b5d] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVES Ultrafast and whole-body cooling can be induced by total liquid ventilation with temperature-controlled perfluorocarbons. Our goal was to determine whether this can afford maximal cardio- and neuroprotections through cooling rapidity when coronary occlusion is complicated by cardiac arrest. DESIGN Prospective, randomized animal study. SETTING Academic research laboratory. SUBJECTS Male New Zealand rabbits. INTERVENTIONS Chronically instrumented rabbits were submitted to coronary artery occlusion and ventricular fibrillation. After 8 minutes of cardiac arrest, animals were resuscitated and submitted to a normothermic follow-up (control group) or to 3 hours of mild hypothermia induced by total liquid ventilation (total liquid ventilation group) or by combination of cold saline infusion and cold blankets application (saline group). Coronary reperfusion was permitted 40 minutes after the onset of occlusion. After awakening, rabbits were followed up during 7 days. MEASUREMENTS AND MAIN RESULTS Ten animals were resuscitated in each group. In the control group, all animals secondarily died of cardiac/respiratory failure (8 of 10) or neurological dysfunction (2 of 10). In the saline group, the target temperature of 32°C was achieved within 30-45 minutes after cooling initiation. This slightly reduced infarct size versus control (41% ± 16% vs 54% ± 8% of risk zone, respectively; p < 0.05) but failed to significantly improve cardiac output, neurological recovery, and survival rate (three survivors, six death from cardiac/respiratory failure, and one from neurological dysfunction). Conversely, the 32°C temperature was achieved within 5-10 minutes in the total liquid ventilation group. This led to a dramatic reduction in infarct size (13% ± 4%; p < 0.05 vs other groups) and improvements in cardiac output, neurological recovery, and survival (eight survivors, two deaths from cardiac/respiratory failure). CONCLUSIONS Achieving hypothermia rapidly is critical to improve the cardiovascular outcome after cardiac arrest with underlying myocardial infarction.
Collapse
|
43
|
Jha MK, Seo M, Kim JH, Kim BG, Cho JY, Suk K. The secretome signature of reactive glial cells and its pathological implications. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2013; 1834:2418-28. [PMID: 23269363 DOI: 10.1016/j.bbapap.2012.12.006] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2012] [Revised: 11/23/2012] [Accepted: 12/12/2012] [Indexed: 12/12/2022]
|
44
|
Mongardon N, Bouglé A, Geri G, Daviaud F, Morichau-Beauchant T, Tissier R, Dumas F, Cariou A. Syndrome post-arrêt cardiaque : aspects physiopathologiques, cliniques et thérapeutiques. ACTA ACUST UNITED AC 2013; 32:779-86. [DOI: 10.1016/j.annfar.2013.07.818] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2013] [Accepted: 07/27/2013] [Indexed: 12/12/2022]
|
45
|
Rungatscher A, Linardi D, Giacomazzi A, Tessari M, Menon T, Mazzucco A, Faggian G. Cardioprotective effect of δ-opioid receptor agonist vs mild therapeutic hypothermia in a rat model of cardiac arrest with extracorporeal life support. Resuscitation 2013; 84:244-8. [DOI: 10.1016/j.resuscitation.2012.06.016] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2012] [Revised: 06/11/2012] [Accepted: 06/20/2012] [Indexed: 12/22/2022]
|
46
|
Predictors of external cooling failure after cardiac arrest. Intensive Care Med 2013; 39:620-8. [DOI: 10.1007/s00134-012-2794-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2012] [Accepted: 10/18/2012] [Indexed: 10/27/2022]
|
47
|
Nadeau M, Micheau P, Robert R, Avoine O, Tissier R, Germim PS, Walti H. Control of rapid hypothermia induction by total liquid ventilation: preliminary results. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2013; 2013:3757-3760. [PMID: 24110548 DOI: 10.1109/embc.2013.6610361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Mild therapeutic hypothermia (MTH) consists in cooling the body temperature of a patient to between 32 and 34 °C. This technique helps to preserve tissues and neurological functions in multi-organ failure by preventing ischemic injury. Total liquid ventilation (TLV) ensures gas exchange in the lungs with a liquid, typically perfluorocarbon (PFC). A liquid ventilator is responsible for ensuring cyclic renewal of tidal volume of oxygenated and temperature-controlled PFC. Hence, TLV using the lung as a heat exchanger and PFC as a heat carrier allows ultra fast cooling of the whole body which can help improve outcome after ischemic injuries. The present study was aimed to evaluate the control performance and safety of automated ultrarapid MTH induction by TLV. Experimentation was conducted using the Inolivent-5.0 liquid ventilator equipped with a PFC treatment unit that allows PFC cooling and heating from the flow of energy carrier water inside a double wall installed on an oxygenator. A water circulating bath is used to manage water temperature. A feedback controller was developed to modulate inspired PFC temperature and control body temperature. Such a controller is important since, with MTH induction, heart temperature should not reach 28 °C because of a high risk of fibrillation. The in vivo experimental protocol was conducted on a male newborn lamb of 4.7 kg which, after anesthetization, was submitted to conventional gas ventilation and instrumented with temperature sensors at the femoral artery, oesophagus, right ear drum and rectum. After stabilization, TLV was initiated with fast automated MTH induction to 33.5 °C until stabilization of all temperatures. MTH could be reached safely in 3 minutes at the femoral artery, in 3.6 minutes at the esophagus, in 7.7 minutes at the eardrum and in 15 minutes at the rectum. All temperatures were stable at 33.5 ± 0.5 °C within 15 minutes. The present results reveal that ultra-fast MTH induction by TLV with Inolivent-5.0 is safe for the heart while maintaining esophageal and arterial temperature over 32.6 °C.
Collapse
|
48
|
Schwartz BG, Kloner RA, Thomas JL, Bui Q, Mayeda GS, Burstein S, Hale SL, Economides C, French WJ. Therapeutic hypothermia for acute myocardial infarction and cardiac arrest. Am J Cardiol 2012; 110:461-6. [PMID: 22541421 DOI: 10.1016/j.amjcard.2012.03.048] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2012] [Revised: 03/17/2012] [Accepted: 03/17/2012] [Indexed: 10/28/2022]
Abstract
This report focuses on cardioprotection and describes the advantages and disadvantages of various methods of inducing therapeutic hypothermia (TH) with regard to neuroprotection and cardioprotection for patients with cardiac arrest and ST-segment elevation myocardial infarction (STEMI). TH is recommended in cardiac arrest guidelines. For patients resuscitated after out-of-hospital cardiac arrest, improvements in survival and neurologic outcomes were observed with relatively slow induction of TH. More rapid induction of TH in patients with cardiac arrest might have a mild to modest incremental impact on neurologic outcomes. TH drastically reduces infarct size in animal models, but achievement of target temperature before reperfusion is essential. Rapid initiation of TH in patients with STEMI is challenging but attainable, and marked infarct size reductions are possible. To induce TH, a variety of devices have recently been developed that require additional study. Of particular interest is transcoronary induction of TH using a catheter or wire lumen, which enables hypothermic reperfusion in the absence of total-body hypothermia. At present, the main methods of inducing and maintaining TH are surface cooling, endovascular heat-exchange catheters, and intravenous infusion of cold fluids. Surface cooling or endovascular catheters may be sufficient for induction of TH in patients resuscitated after out-of-hospital cardiac arrest. For patients with STEMI, intravenous infusion of cold fluids achieves target temperature very rapidly but might worsen left ventricular function. More widespread use of TH would improve survival and quality of life for patients with out-of-hospital cardiac arrest; larger studies with more rapid induction of TH are needed in the STEMI population.
Collapse
|
49
|
Tissier R, Chenoune M, Pons S, Zini R, Darbera L, Lidouren F, Ghaleh B, Berdeaux A, Morin D. Mild hypothermia reduces per-ischemic reactive oxygen species production and preserves mitochondrial respiratory complexes. Resuscitation 2012; 84:249-55. [PMID: 22796545 DOI: 10.1016/j.resuscitation.2012.06.030] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2012] [Revised: 06/21/2012] [Accepted: 06/23/2012] [Indexed: 11/18/2022]
Abstract
BACKGROUND Mitochondrial dysfunction is critical following ischemic disorders. Our goal was to determine whether mild hypothermia could limit this dysfunction through per-ischemic inhibition of reactive oxygen species (ROS) generation. METHODS First, ROS production was evaluated during simulated ischemia in an vitro model of isolated rat cardiomyocytes at hypothermic (32°C) vs. normothermic (38°C) temperatures. Second, we deciphered the direct effect of hypothermia on mitochondrial respiration and ROS production in oxygenated mitochondria isolated from rabbit hearts. Third, we investigated these parameters in cardiac mitochondria extracted after 30-min of coronary artery occlusion (CAO) under normothermic conditions (CAO-N) or with hypothermia induced by liquid ventilation (CAO-H; target temperature: 32°C). RESULTS In isolated rat cardiomyocytes, per-ischemic ROS generation was dramatically decreased at 32 vs. 38°C (e.g., -55±8% after 140min of hypoxia). In oxygenated mitochondria isolated from intact rabbit hearts, hypothermia also improved respiratory control ratio (+22±3%) and reduced H2O2 production (-41±1%). Decreased oxidative stress was further observed in rabbit hearts submitted to hypothermic vs. normothermic ischemia (CAO-H vs. CAO-N), using thiobarbituric acid-reactive substances as a marker. This was accompanied by a preservation of the respiratory control ratio as well as the activity of complexes I, II and III in cardiac mitochondria. CONCLUSION The cardioprotective effect of mild hypothermia involves a direct effect on per-ischemic ROS generation and results in preservation of mitochondrial function. This might explain why the benefit afforded by hypothermia during regional myocardial ischemia depends on how fast it is instituted during the ischemic process.
Collapse
|
50
|
Brummel NE, Pugh ME, Fessel JP. Outcomes in elderly intensive care unit patients, pulmonary hypertension in sickle cell disease, and total liquid ventilation for therapeutic hypothermia after cardiac arrest in rabbits. Am J Respir Crit Care Med 2012; 185:453-4. [PMID: 22336678 DOI: 10.1164/rccm.201109-1608rr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Affiliation(s)
- Nathan E Brummel
- Division of Allergy, Pulmonary, and Critical Care Medicine, Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN 37232-2650, USA
| | | | | |
Collapse
|