1
|
Kitasato L, Yamaoka-Tojo M, Suzuki M, Nakahara S, Iwaya T, Ogiso S, Murayama Y, Hashikata T, Misawa N, Kawashima R, Oikawa J, Nakamura M, Tokui Y, Naraba J, Nishii M, Kitasato H, Ako J. Fibroblasts activation by embryonic signal switching: A novel mechanism of placental growth factor-induced cardiac remodeling. Placenta 2024; 154:129-136. [PMID: 38971073 DOI: 10.1016/j.placenta.2024.07.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 05/23/2024] [Accepted: 07/02/2024] [Indexed: 07/08/2024]
Abstract
INTRODUCTION Cardiac remodeling is defined as cellular interstitial changes that lead dysfunction of the heart after injury. Placental growth factor (PlGF), a member of the VEGF family, has been reported to regulate cardiac hypertrophy in hemodynamic state. We therefore analyze the function of PlGF during cardiac remodeling using cardiac cells and fibroblasts, under Angiotensin II (AngII) stimulation. METHODS PlGF overexpressed mouse embryonic fibroblasts derived from C57BL/6 mice, were made by deficient retrovirus vector, designated as C57/PlGF. Only retrovirus vector introduced C57 cells (C57/EV) were used as control. After AngII stimulation, wound scratching assay and MTT proliferation assay with or without p38 MAPK inhibitor, SB205580 were performed in retrovirally-introduced C57 cells. Reactive oxygen species (ROS) production, NF-kB activation, IL-6 and TNF-α production were also measured. Then we assessed AngII-induced cell proliferation of mouse cardiac fibroblasts (CFs) and rat primary cardiomyocytes incubating with C57/PlGF conditioned-medium. RESULTS The PlGF production in C57/PlGF were confirmed by ELISA (1093.48 ± 3.5 pg/ml, ±SE). AngII-induced cell migration, proliferation and H2O2 production were increased in C57/PlGF compared with C57/EV. SB205580 inhibited the AngII-induced cell proliferation in C57/PlGF. In C57/PlGF cells, NF-kB activation was higher, followed by up-regulation of IL-6 and TNF-α production. CFs and cardiomyocytes proliferation increased when stimulated with C57/PlGF conditioned-medium. DISCUSSION The activation of fibroblast is stimulated by PlGF signaling via p38 MAPK/NF-kB pathway accompanied by elevation of ROS and inflammatory response. Furthermore, these signals stimulate the activation of CFs and cardiomyocytes, indicating that high circulating level of PlGF have a potential to regulate cardiac remodeling.
Collapse
Affiliation(s)
- Lisa Kitasato
- Department of Cardiovascular Medicine, Kitasato University School of Medicine, 1-15-1 Kitasato, Minamiku, Sagamihara, Kanagawa, 252-0374 Japan.
| | - Minako Yamaoka-Tojo
- Department of Rehabilitation, Kitasato University School of Allied Health Sciences, 1-15-1 Kitasato, Minamiku, Sagamihara, Kanagawa, 252-0373, Japan
| | - Machika Suzuki
- Department of Cardiovascular Medicine, Kitasato University School of Medicine, 1-15-1 Kitasato, Minamiku, Sagamihara, Kanagawa, 252-0374 Japan
| | - Shohei Nakahara
- Department of Cardiovascular Medicine, Kitasato University School of Medicine, 1-15-1 Kitasato, Minamiku, Sagamihara, Kanagawa, 252-0374 Japan
| | - Toshiyuki Iwaya
- Department of Cardiovascular Medicine, Kitasato University School of Medicine, 1-15-1 Kitasato, Minamiku, Sagamihara, Kanagawa, 252-0374 Japan
| | - Sho Ogiso
- Department of Cardiovascular Medicine, Kitasato University School of Medicine, 1-15-1 Kitasato, Minamiku, Sagamihara, Kanagawa, 252-0374 Japan
| | - Yusuke Murayama
- Department of Cardiovascular Medicine, Kitasato University School of Medicine, 1-15-1 Kitasato, Minamiku, Sagamihara, Kanagawa, 252-0374 Japan
| | - Takehiro Hashikata
- Department of Cardiovascular Medicine, Kitasato University School of Medicine, 1-15-1 Kitasato, Minamiku, Sagamihara, Kanagawa, 252-0374 Japan
| | - Nonoka Misawa
- Department of Regulation Biochemistry, Kitasato University School of Allied Health Sciences, 1-15-1 Kitasato, Minamiku, Sagamihara, Kanagawa, 252-0373, Japan
| | - Rei Kawashima
- Department of Regulation Biochemistry, Kitasato University School of Allied Health Sciences, 1-15-1 Kitasato, Minamiku, Sagamihara, Kanagawa, 252-0373, Japan
| | - Jun Oikawa
- Department of Kitasato Clinical Research Center, Kitasato University School of Medicine, 1-15-1 Kitasato, Minamiku, Sagamihara, Kanagawa, 252-0374 Japan
| | - Masaki Nakamura
- Department of Laboratory Medicine, Kitasato University School of Medicine, 1-15-1 Kitasato, Minamiku, Sagamihara, Kanagawa, 252-0374 Japan
| | - Yumi Tokui
- Department of Microbiology, Kitasato University School of Allied Health Sciences, 1-15-1 Kitasato, Minamiku Sagamihara, Kanagawa, 252-0373, Japan; Department Environmental Microbiology, Kitasato University Graduate School of Medical Science, 1-15-1 Kitasato, Minamiku, Sagamihara, Kanagawa, 252-0373, Japan
| | - Jun Naraba
- Department of Microbiology, Kitasato University School of Allied Health Sciences, 1-15-1 Kitasato, Minamiku Sagamihara, Kanagawa, 252-0373, Japan; Department Environmental Microbiology, Kitasato University Graduate School of Medical Science, 1-15-1 Kitasato, Minamiku, Sagamihara, Kanagawa, 252-0373, Japan
| | - Mototsugu Nishii
- Department of Emergency Medicine, Yokohama City University, School of Medicine, Fukuura, Kanazawa-ku, Yokohama, Kanagawa, 236-0004, Japan
| | - Hidero Kitasato
- Department of Microbiology, Kitasato University School of Allied Health Sciences, 1-15-1 Kitasato, Minamiku Sagamihara, Kanagawa, 252-0373, Japan; Department Environmental Microbiology, Kitasato University Graduate School of Medical Science, 1-15-1 Kitasato, Minamiku, Sagamihara, Kanagawa, 252-0373, Japan; Shibasaburo Kitasato Memorial Museum, 3199 Kitazato, Oguni, Aso, Kumamoto, 869-2505, Japan
| | - Junya Ako
- Department of Cardiovascular Medicine, Kitasato University School of Medicine, 1-15-1 Kitasato, Minamiku, Sagamihara, Kanagawa, 252-0374 Japan
| |
Collapse
|
2
|
Gbotosho OT, Gollamudi J, Hyacinth HI. The Role of Inflammation in The Cellular and Molecular Mechanisms of Cardiopulmonary Complications of Sickle Cell Disease. Biomolecules 2023; 13:381. [PMID: 36830749 PMCID: PMC9953727 DOI: 10.3390/biom13020381] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 02/09/2023] [Accepted: 02/13/2023] [Indexed: 02/19/2023] Open
Abstract
Cardiopulmonary complications remain the major cause of mortality despite newer therapies and improvements in the lifespan of patients with sickle cell disease (SCD). Inflammation has been identified as a major risk modifier in the pathogenesis of SCD-associated cardiopulmonary complications in recent mechanistic and observational studies. In this review, we discuss recent cellular and molecular mechanisms of cardiopulmonary complications in SCD and summarize the most recent evidence from clinical and laboratory studies. We emphasize the role of inflammation in the onset and progression of these complications to better understand the underlying pathobiological processes. We also discuss future basic and translational research in addressing questions about the complex role of inflammation in the development of SCD cardiopulmonary complications, which may lead to promising therapies and reduce morbidity and mortality in this vulnerable population.
Collapse
Affiliation(s)
- Oluwabukola T. Gbotosho
- Department of Neurology and Rehabilitation Medicine, University of Cincinnati, Cincinnati, OH 45267-0525, USA
| | - Jahnavi Gollamudi
- Division of Hematology & Oncology, Department of Internal Medicine, 3125 Eden Avenue, ML 0562, Cincinnati, OH 45219-0562, USA
| | - Hyacinth I. Hyacinth
- Department of Neurology and Rehabilitation Medicine, University of Cincinnati, Cincinnati, OH 45267-0525, USA
| |
Collapse
|
3
|
Wu C, Chen F, Huang S, Zhang Z, Wan J, Zhang W, Liu X. Progress on the role of traditional Chinese medicine in therapeutic angiogenesis of heart failure. JOURNAL OF ETHNOPHARMACOLOGY 2023; 301:115770. [PMID: 36191661 DOI: 10.1016/j.jep.2022.115770] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 09/21/2022] [Accepted: 09/25/2022] [Indexed: 06/16/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Cardiovascular diseases are still the leading cause of death worldwide. Heart failure (HF), as the terminal stage of many cardiovascular diseases, has brought a heavy burden to the global medical system. Microvascular rarefaction (decreased myocardial capillary density) with reduced coronary flow reserve is a hallmark of HF and therapeutic myocardial angiogenesis is now emerging as a promising approach for the prevention and treatment in HF. Traditional Chinese medicine (TCM) has made remarkable achievements in the treatment of many cardiovascular diseases. Growing evidence have shown that their protective effect in HF is closely related to therapeutic angiogenesis. AIM OF THE STUDY This review is to enlighten the therapeutic effect and pro-angiogenic mechanism of TCM in HF, and provide valuable hints for the development of pro-angiogenic drugs for the treatment of HF. MATERIALS AND METHODS The relevant information about cardioprotective TCM was collected from electronic scientific databases such as PubMed, Web of Science, ScienceDirect, and China National Knowledge Infrastructure (CNKI). RESULTS The studies showed that TCM formulas, extracts, and compounds from herbal medicines can provide therapeutic effect in HF with their pro-angiogenic activity. Their actions are achieved mainly by regulating the key angiogenesis factors particularly VEGF, as well as related regulators including signal molecules and pathways, non-coding miRNAs and stem cells. CONCLUSION TCM and their active components might be promising in therapeutic angiogenesis for the treatment of HF.
Collapse
Affiliation(s)
- Chennan Wu
- School of Pharmacy, Second Military Medical University, Shanghai, China.
| | - Fei Chen
- School of Pharmacy, Second Military Medical University, Shanghai, China.
| | - Si Huang
- School of Pharmacy, Second Military Medical University, Shanghai, China.
| | - Zhen Zhang
- School of Pharmacy, Second Military Medical University, Shanghai, China.
| | - Jingjing Wan
- School of Pharmacy, Second Military Medical University, Shanghai, China.
| | - Weidong Zhang
- School of Pharmacy, Second Military Medical University, Shanghai, China; Academy of Interdisciplinary Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai, China.
| | - Xia Liu
- School of Pharmacy, Second Military Medical University, Shanghai, China.
| |
Collapse
|
4
|
Mohanta SK, Peng L, Li Y, Lu S, Sun T, Carnevale L, Perrotta M, Ma Z, Förstera B, Stanic K, Zhang C, Zhang X, Szczepaniak P, Bianchini M, Saeed BR, Carnevale R, Hu D, Nosalski R, Pallante F, Beer M, Santovito D, Ertürk A, Mettenleiter TC, Klupp BG, Megens RTA, Steffens S, Pelisek J, Eckstein HH, Kleemann R, Habenicht L, Mallat Z, Michel JB, Bernhagen J, Dichgans M, D'Agostino G, Guzik TJ, Olofsson PS, Yin C, Weber C, Lembo G, Carnevale D, Habenicht AJR. Neuroimmune cardiovascular interfaces control atherosclerosis. Nature 2022; 605:152-159. [PMID: 35477759 DOI: 10.1038/s41586-022-04673-6] [Citation(s) in RCA: 112] [Impact Index Per Article: 37.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Accepted: 01/31/2022] [Indexed: 02/08/2023]
Abstract
Atherosclerotic plaques develop in the inner intimal layer of arteries and can cause heart attacks and strokes1. As plaques lack innervation, the effects of neuronal control on atherosclerosis remain unclear. However, the immune system responds to plaques by forming leukocyte infiltrates in the outer connective tissue coat of arteries (the adventitia)2-6. Here, because the peripheral nervous system uses the adventitia as its principal conduit to reach distant targets7-9, we postulated that the peripheral nervous system may directly interact with diseased arteries. Unexpectedly, widespread neuroimmune cardiovascular interfaces (NICIs) arose in mouse and human atherosclerosis-diseased adventitia segments showed expanded axon networks, including growth cones at axon endings near immune cells and media smooth muscle cells. Mouse NICIs established a structural artery-brain circuit (ABC): abdominal adventitia nociceptive afferents10-14 entered the central nervous system through spinal cord T6-T13 dorsal root ganglia and were traced to higher brain regions, including the parabrachial and central amygdala neurons; and sympathetic efferent neurons projected from medullary and hypothalamic neurons to the adventitia through spinal intermediolateral neurons and both coeliac and sympathetic chain ganglia. Moreover, ABC peripheral nervous system components were activated: splenic sympathetic and coeliac vagus nerve activities increased in parallel to disease progression, whereas coeliac ganglionectomy led to the disintegration of adventitial NICIs, reduced disease progression and enhanced plaque stability. Thus, the peripheral nervous system uses NICIs to assemble a structural ABC, and therapeutic intervention in the ABC attenuates atherosclerosis.
Collapse
Affiliation(s)
- Sarajo K Mohanta
- Institute for Cardiovascular Prevention, Ludwig-Maximilians-Universität München (LMU), Munich, Germany. .,German Center for Cardiovascular Research (DZHK), Partner Site Munich Heart Alliance, Munich, Germany.
| | - Li Peng
- Department of Cardiovascular Internal Medicine, Second Affiliated Hospital, Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Yuanfang Li
- Institute for Cardiovascular Prevention, Ludwig-Maximilians-Universität München (LMU), Munich, Germany
| | - Shu Lu
- Institute for Cardiovascular Prevention, Ludwig-Maximilians-Universität München (LMU), Munich, Germany
| | - Ting Sun
- Institute for Cardiovascular Prevention, Ludwig-Maximilians-Universität München (LMU), Munich, Germany
| | - Lorenzo Carnevale
- Department of Angiocardioneurology and Translational Medicine, IRCCS Neuromed, Pozzilli, Italy
| | - Marialuisa Perrotta
- Department of Angiocardioneurology and Translational Medicine, IRCCS Neuromed, Pozzilli, Italy.,Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy
| | - Zhe Ma
- Institute for Cardiovascular Prevention, Ludwig-Maximilians-Universität München (LMU), Munich, Germany
| | - Benjamin Förstera
- Institute for Stroke and Dementia Research, Klinikum der Universität München, Ludwig-Maximilians-Universität Munich (LMU), Munich, Germany
| | - Karen Stanic
- Institute for Stroke and Dementia Research, Klinikum der Universität München, Ludwig-Maximilians-Universität Munich (LMU), Munich, Germany
| | - Chuankai Zhang
- Institute for Cardiovascular Prevention, Ludwig-Maximilians-Universität München (LMU), Munich, Germany
| | - Xi Zhang
- Institute for Cardiovascular Prevention, Ludwig-Maximilians-Universität München (LMU), Munich, Germany
| | - Piotr Szczepaniak
- Department of Internal and Agricultural Medicine, Jagiellonian University Collegium Medicum, Krakow, Poland
| | - Mariaelvy Bianchini
- Institute for Cardiovascular Prevention, Ludwig-Maximilians-Universität München (LMU), Munich, Germany
| | - Borhan R Saeed
- Department of Laboratory Medicine, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden
| | - Raimondo Carnevale
- Department of Angiocardioneurology and Translational Medicine, IRCCS Neuromed, Pozzilli, Italy
| | - Desheng Hu
- Helmholtz Zentrum München, Deutsches Forschungszentrum für Gesundheit und Umwelt, Munich, Germany
| | - Ryszard Nosalski
- Institute of Cardiovascular and Medical Sciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - Fabio Pallante
- Department of Angiocardioneurology and Translational Medicine, IRCCS Neuromed, Pozzilli, Italy
| | - Michael Beer
- Department for Information Technology, University of Jena, Jena University Hospital, Jena, Germany
| | - Donato Santovito
- Institute for Cardiovascular Prevention, Ludwig-Maximilians-Universität München (LMU), Munich, Germany.,German Center for Cardiovascular Research (DZHK), Partner Site Munich Heart Alliance, Munich, Germany.,Institute for Genetic and Biomedical Research, Unit of Milan, National Research Council, Milan, Italy
| | - Ali Ertürk
- Institute for Stroke and Dementia Research, Klinikum der Universität München, Ludwig-Maximilians-Universität Munich (LMU), Munich, Germany
| | - Thomas C Mettenleiter
- Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, Greifswald-Insel Riems, Germany
| | - Barbara G Klupp
- Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, Greifswald-Insel Riems, Germany
| | - Remco T A Megens
- Institute for Cardiovascular Prevention, Ludwig-Maximilians-Universität München (LMU), Munich, Germany.,German Center for Cardiovascular Research (DZHK), Partner Site Munich Heart Alliance, Munich, Germany.,Department of Biomedical Engineering, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, The Netherlands
| | - Sabine Steffens
- Institute for Cardiovascular Prevention, Ludwig-Maximilians-Universität München (LMU), Munich, Germany.,German Center for Cardiovascular Research (DZHK), Partner Site Munich Heart Alliance, Munich, Germany
| | - Jaroslav Pelisek
- Department for Vascular and Endovascular Surgery, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany.,Department of Vascular Surgery, University Hospital Zurich, Zurich, Switzerland
| | - Hans-Henning Eckstein
- Department for Vascular and Endovascular Surgery, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Robert Kleemann
- Department of Metabolic Health Research, The Netherlands Organization for Applied Scientific Research (TNO), Leiden, The Netherlands.,Department of Vascular Surgery, Leiden University Medical Center, Leiden, The Netherlands
| | - Livia Habenicht
- II. Medizinische Klinik und Poliklinik, Technische Universität München, Klinikum rechts der Isar, Munich, Germany
| | - Ziad Mallat
- Department of Medicine, Division of Cardiovascular Medicine, University of Cambridge, Cambridge, UK
| | - Jean-Baptiste Michel
- Laboratory for Vascular Translational Science, INSERM UMRS 1148, University Paris Diderot (P7), GH Bichat-Claude Bernard, Paris, France
| | - Jürgen Bernhagen
- German Center for Cardiovascular Research (DZHK), Partner Site Munich Heart Alliance, Munich, Germany.,Institute for Stroke and Dementia Research, Klinikum der Universität München, Ludwig-Maximilians-Universität Munich (LMU), Munich, Germany.,Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Martin Dichgans
- Institute for Stroke and Dementia Research, Klinikum der Universität München, Ludwig-Maximilians-Universität Munich (LMU), Munich, Germany.,Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Giuseppe D'Agostino
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Tomasz J Guzik
- Department of Internal and Agricultural Medicine, Jagiellonian University Collegium Medicum, Krakow, Poland.,Institute of Cardiovascular and Medical Sciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - Peder S Olofsson
- Laboratory of Immunobiology, Center for Bioelectronic Medicine, Department of Medicine, Solna, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Changjun Yin
- Institute for Cardiovascular Prevention, Ludwig-Maximilians-Universität München (LMU), Munich, Germany.,German Center for Cardiovascular Research (DZHK), Partner Site Munich Heart Alliance, Munich, Germany
| | - Christian Weber
- Institute for Cardiovascular Prevention, Ludwig-Maximilians-Universität München (LMU), Munich, Germany.,German Center for Cardiovascular Research (DZHK), Partner Site Munich Heart Alliance, Munich, Germany.,Munich Cluster for Systems Neurology (SyNergy), Munich, Germany.,Department of Biochemistry, Cardiovascular Research Institute Maastricht, Maastricht University, Maastricht, The Netherlands
| | - Giuseppe Lembo
- Department of Angiocardioneurology and Translational Medicine, IRCCS Neuromed, Pozzilli, Italy.,Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy
| | - Daniela Carnevale
- Department of Angiocardioneurology and Translational Medicine, IRCCS Neuromed, Pozzilli, Italy.,Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy
| | - Andreas J R Habenicht
- Institute for Cardiovascular Prevention, Ludwig-Maximilians-Universität München (LMU), Munich, Germany. .,German Center for Cardiovascular Research (DZHK), Partner Site Munich Heart Alliance, Munich, Germany.
| |
Collapse
|
5
|
An Overview of the Molecular Mechanisms Associated with Myocardial Ischemic Injury: State of the Art and Translational Perspectives. Cells 2022; 11:cells11071165. [PMID: 35406729 PMCID: PMC8998015 DOI: 10.3390/cells11071165] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 03/22/2022] [Accepted: 03/24/2022] [Indexed: 02/06/2023] Open
Abstract
Cardiovascular disease is the leading cause of death in western countries. Among cardiovascular diseases, myocardial infarction represents a life-threatening condition predisposing to the development of heart failure. In recent decades, much effort has been invested in studying the molecular mechanisms underlying the development and progression of ischemia/reperfusion (I/R) injury and post-ischemic cardiac remodeling. These mechanisms include metabolic alterations, ROS overproduction, inflammation, autophagy deregulation and mitochondrial dysfunction. This review article discusses the most recent evidence regarding the molecular basis of myocardial ischemic injury and the new potential therapeutic interventions for boosting cardioprotection and attenuating cardiac remodeling.
Collapse
|
6
|
Marfella R, Sardu C, Mansueto G, Napoli C, Paolisso G. Evidence for human diabetic cardiomyopathy. Acta Diabetol 2021; 58:983-988. [PMID: 33791873 PMCID: PMC8272696 DOI: 10.1007/s00592-021-01705-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Accepted: 03/11/2021] [Indexed: 12/12/2022]
Abstract
Growing interest has been accumulated in the definition of worsening effects of diabetes in the cardiovascular system. This is associated with epidemiological data regarding the high incidence of heart failure (HF) in diabetic patients. To investigate the detrimental effects both of hyperglycemia and insulin resistance, a lot of preclinical models were developed. However, the evidence of pathogenic and histological alterations of the so-called diabetic cardiomyopathy (DCM) is still poorly understood in humans. Here, we provide a stringent literature analysis to investigate unique data regarding human DCM. This approach established that lipotoxic-related events might play a central role in the initiation and progression of human DCM. The major limitation in the acquisition of human data is due to the fact of heart specimen availability. Postmortem analysis revealed the end stage of the disease; thus, we need to gain knowledge on the pathogenic events from the early stages until cardiac fibrosis underlying the end-stage HF.
Collapse
Affiliation(s)
- Raffaele Marfella
- Department of Advanced Medical and Surgical Sciences, University of Campania "Luigi Vanvitelli", Piazza Miraglia 2, 80131, Naples, Italy.
| | - Celestino Sardu
- Department of Advanced Medical and Surgical Sciences, University of Campania "Luigi Vanvitelli", Piazza Miraglia 2, 80131, Naples, Italy
| | - Gelsomina Mansueto
- Department of Advanced Medical and Surgical Sciences, University of Campania "Luigi Vanvitelli", Piazza Miraglia 2, 80131, Naples, Italy
| | - Claudio Napoli
- Department of Advanced Medical and Surgical Sciences, University of Campania "Luigi Vanvitelli", Piazza Miraglia 2, 80131, Naples, Italy
| | - Giuseppe Paolisso
- Department of Advanced Medical and Surgical Sciences, University of Campania "Luigi Vanvitelli", Piazza Miraglia 2, 80131, Naples, Italy
| |
Collapse
|
7
|
Gbotosho OT, Kapetanaki MG, Kato GJ. The Worst Things in Life are Free: The Role of Free Heme in Sickle Cell Disease. Front Immunol 2021; 11:561917. [PMID: 33584641 PMCID: PMC7873693 DOI: 10.3389/fimmu.2020.561917] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Accepted: 12/04/2020] [Indexed: 12/15/2022] Open
Abstract
Hemolysis is a pathological feature of several diseases of diverse etiology such as hereditary anemias, malaria, and sepsis. A major complication of hemolysis involves the release of large quantities of hemoglobin into the blood circulation and the subsequent generation of harmful metabolites like labile heme. Protective mechanisms like haptoglobin-hemoglobin and hemopexin-heme binding, and heme oxygenase-1 enzymatic degradation of heme limit the toxicity of the hemolysis-related molecules. The capacity of these protective systems is exceeded in hemolytic diseases, resulting in high residual levels of hemolysis products in the circulation, which pose a great oxidative and proinflammatory risk. Sickle cell disease (SCD) features a prominent hemolytic anemia which impacts the phenotypic variability and disease severity. Not only is circulating heme a potent oxidative molecule, but it can act as an erythrocytic danger-associated molecular pattern (eDAMP) molecule which contributes to a proinflammatory state, promoting sickle complications such as vaso-occlusion and acute lung injury. Exposure to extracellular heme in SCD can also augment the expression of placental growth factor (PlGF) and interleukin-6 (IL-6), with important consequences to enthothelin-1 (ET-1) secretion and pulmonary hypertension, and potentially the development of renal and cardiac dysfunction. This review focuses on heme-induced mechanisms that are implicated in disease pathways, mainly in SCD. A special emphasis is given to heme-induced PlGF and IL-6 related mechanisms and their role in SCD disease progression.
Collapse
Affiliation(s)
- Oluwabukola T. Gbotosho
- Division of Hematology-Oncology, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Maria G. Kapetanaki
- Pittsburgh Heart, Lung, Blood, and Vascular Medicine Institute, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Gregory J. Kato
- Division of Hematology-Oncology, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
- Pittsburgh Heart, Lung, Blood, and Vascular Medicine Institute, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| |
Collapse
|
8
|
Carnevale L, Pallante F, Perrotta M, Iodice D, Perrotta S, Fardella S, Mastroiacovo F, Carnevale D, Lembo G. Celiac Vagus Nerve Stimulation Recapitulates Angiotensin II-Induced Splenic Noradrenergic Activation, Driving Egress of CD8 Effector Cells. Cell Rep 2020; 33:108494. [PMID: 33326772 PMCID: PMC7758159 DOI: 10.1016/j.celrep.2020.108494] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 08/25/2020] [Accepted: 11/16/2020] [Indexed: 12/24/2022] Open
Abstract
Angiotensin II (AngII) is a peptide hormone that affects the cardiovascular system, not only through typical effects on the vasculature, kidneys, and heart, but also through less understood roles mediated by the brain and the immune system. Here, we address the hard-wired neural connections within the autonomic nervous system that modulate splenic immunity. Chronic AngII infusion triggers burst firing of the vagus nerve celiac efferent, an effect correlated with noradrenergic activation in the spleen and T cell egress. Bioelectronic stimulation of the celiac vagus nerve, in the absence of other challenges and independently from afferent signals to the brain, evokes the noradrenergic splenic pathway to promote release of a growth factor mediating neuroimmune crosstalk, placental growth factor (PlGF), and egress of CD8 effector T cells. Our findings also indicate that the neuroimmune interface mediated by PlGF and necessary for transducing the neural signal into an effective immune response is dependent on α-adrenergic receptor signaling. Bioelectronic stimulation of celiac vagus nerve primes a splenic immune response Vagus nerve stimulation selectively drives the egress of CD8+ effector T cells Placental growth factor (PlGF) is a key mediator of the splenic neuroimmune coupling Vagus nerve stimulation induces splenic PlGF through α-adrenergic receptors signaling
Collapse
Affiliation(s)
- Lorenzo Carnevale
- Department of AngioCardioNeurology and Translational Medicine, I.R.C.C.S. INM Neuromed, 86077 Pozzilli (IS), Italy
| | - Fabio Pallante
- Department of AngioCardioNeurology and Translational Medicine, I.R.C.C.S. INM Neuromed, 86077 Pozzilli (IS), Italy
| | - Marialuisa Perrotta
- Department of Molecular Medicine, "Sapienza" University of Rome, 00161 Rome, Italy
| | - Daniele Iodice
- Department of AngioCardioNeurology and Translational Medicine, I.R.C.C.S. INM Neuromed, 86077 Pozzilli (IS), Italy
| | - Sara Perrotta
- Department of Molecular Medicine, "Sapienza" University of Rome, 00161 Rome, Italy
| | - Stefania Fardella
- Department of AngioCardioNeurology and Translational Medicine, I.R.C.C.S. INM Neuromed, 86077 Pozzilli (IS), Italy
| | - Francesco Mastroiacovo
- Department of AngioCardioNeurology and Translational Medicine, I.R.C.C.S. INM Neuromed, 86077 Pozzilli (IS), Italy
| | - Daniela Carnevale
- Department of AngioCardioNeurology and Translational Medicine, I.R.C.C.S. INM Neuromed, 86077 Pozzilli (IS), Italy; Department of Molecular Medicine, "Sapienza" University of Rome, 00161 Rome, Italy
| | - Giuseppe Lembo
- Department of AngioCardioNeurology and Translational Medicine, I.R.C.C.S. INM Neuromed, 86077 Pozzilli (IS), Italy; Department of Molecular Medicine, "Sapienza" University of Rome, 00161 Rome, Italy.
| |
Collapse
|
9
|
Hussein HS, Mady GE, Shawky SM, Omran NA, Teama NM. Effect of atorvastatin on inflammatory markers in hemodialysis patients. THE EGYPTIAN JOURNAL OF INTERNAL MEDICINE 2020. [DOI: 10.1186/s43162-020-00007-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
Cardiovascular disease is the commonest cause of death in patients with end-stage renal disease (ESRD) under maintenance hemodialysis. Dyslipidemia, oxidative stress, and low-grade inflammation with increased circulating cytokines are factors that increase the cardiovascular risk in patients with chronic kidney disease, in addition to traditional risk factors, such as obesity, hypertension, and diabetes. We aimed to investigate the possible anti-inflammatory effects of atorvastatin in prevalent hemodialysis patients. Fifty-three stable adult hemodialysis patients were assigned into two groups (a drug group and a control group). Patients in the drug group received 20 mg of atorvastatin daily for 6 months. Serum levels of highly sensitive C-reactive protein (hs-CRP) and interleukin-6 (IL-6) were measured in both groups at baseline and at the end of the study period.
Results
Atorvastatin therapy caused a statistically significant decrease in levels of hs-CRP but no change in levels of IL-6 after 6 months of therapy.
Conclusions
In addition to its favorable effect on lipid profile parameters, atorvastatin therapy can be considered as an effective and safe modality to overcome the problem of chronic inflammation encountered in end-stage renal disease patients.
Collapse
|
10
|
Exploring Molecular Mechanism of Huangqi in Treating Heart Failure Using Network Pharmacology. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2020; 2020:6473745. [PMID: 32382301 PMCID: PMC7195658 DOI: 10.1155/2020/6473745] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Revised: 12/05/2019] [Accepted: 01/06/2020] [Indexed: 11/17/2022]
Abstract
Heart failure (HF), a clinical syndrome with a high incidence due to various reasons, is the advanced stage of most cardiovascular diseases. Huangqi is an effective treatment for cardiovascular disease, which has multitarget, multipathway functions. Therefore, we used network pharmacology to explore the molecular mechanism of Huangqi in treating HF. In this study, 21 compounds of Huangqi, which involved 407 targets, were obtained and reconfirmed using TCMSP and PubChem databases. Moreover, we used Cytoscape 3.7.1 to construct compound-target network and screened the top 10 compounds. 378 targets related to HF were obtained from CTD and GeneCards databases and HF-target network was constructed by Cytoscape 3.7.1. The 46 overlapping targets of HF and Huangqi were gotten by Draw Venn Diagram. STRING database was used to set up a protein-protein interaction network, and MCODE module and the top 5 targets with the highest degree for overlapping targets were obtained. GO analysis performed by Metascape indicated that the overlapping targets were mainly enriched in blood vessel development, reactive oxygen species metabolic process, response to wounding, blood circulation, and so on. KEGG analysis analyzed by ClueGO revealed that overlapping targets were mainly enriched in AGE-RAGE signaling pathway in diabetic complications, IL-17 signaling pathway, HIF-1 signaling pathway, c-type lectin receptor signaling pathway, relaxin signaling pathway, and so on. Finally, molecular docking showed that top 10 compounds of Huangqi also had good binding activities to important targets compared with digoxin, which was carried out in CB-Dock molecular docking server. In conclusion, Huangqi has potential effect on regulating overlapping targets and GE-RAGE signaling pathway in diabetic complications, IL-17 signaling pathway, HIF-1 signaling pathway, and so on to be a latent multitarget, multipathway treatment for HF.
Collapse
|
11
|
Gogiraju R, Bochenek ML, Schäfer K. Angiogenic Endothelial Cell Signaling in Cardiac Hypertrophy and Heart Failure. Front Cardiovasc Med 2019; 6:20. [PMID: 30895179 PMCID: PMC6415587 DOI: 10.3389/fcvm.2019.00020] [Citation(s) in RCA: 94] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Accepted: 02/14/2019] [Indexed: 12/30/2022] Open
Abstract
Endothelial cells are, by number, one of the most abundant cell types in the heart and active players in cardiac physiology and pathology. Coronary angiogenesis plays a vital role in maintaining cardiac vascularization and perfusion during physiological and pathological hypertrophy. On the other hand, a reduction in cardiac capillary density with subsequent tissue hypoxia, cell death and interstitial fibrosis contributes to the development of contractile dysfunction and heart failure, as suggested by clinical as well as experimental evidence. Although the molecular causes underlying the inadequate (with respect to the increased oxygen and energy demands of the hypertrophied cardiomyocyte) cardiac vascularization developing during pathological hypertrophy are incompletely understood. Research efforts over the past years have discovered interesting mediators and potential candidates involved in this process. In this review article, we will focus on the vascular changes occurring during cardiac hypertrophy and the transition toward heart failure both in human disease and preclinical models. We will summarize recent findings in transgenic mice and experimental models of cardiac hypertrophy on factors expressed and released from cardiomyocytes, pericytes and inflammatory cells involved in the paracrine (dys)regulation of cardiac angiogenesis. Moreover, we will discuss major signaling events of critical angiogenic ligands in endothelial cells and their possible disturbance by hypoxia or oxidative stress. In this regard, we will particularly highlight findings on negative regulators of angiogenesis, including protein tyrosine phosphatase-1B and tumor suppressor p53, and how they link signaling involved in cell growth and metabolic control to cardiac angiogenesis. Besides endothelial cell death, phenotypic conversion and acquisition of myofibroblast-like characteristics may also contribute to the development of cardiac fibrosis, the structural correlate of cardiac dysfunction. Factors secreted by (dysfunctional) endothelial cells and their effects on cardiomyocytes including hypertrophy, contractility and fibrosis, close the vicious circle of reciprocal cell-cell interactions within the heart during pathological hypertrophy remodeling.
Collapse
Affiliation(s)
- Rajinikanth Gogiraju
- Center for Cardiology, Cardiology I, Translational Vascular Biology, University Medical Center Mainz, Mainz, Germany.,Center for Thrombosis and Hemostasis, University Medical Center Mainz, Mainz, Germany.,Center for Translational Vascular Biology, University Medical Center Mainz, Mainz, Germany.,Deutsches Zentrum für Herz-Kreislauf-Forschung e.V., Partner Site RheinMain (Mainz), Mainz, Germany
| | - Magdalena L Bochenek
- Center for Thrombosis and Hemostasis, University Medical Center Mainz, Mainz, Germany.,Center for Translational Vascular Biology, University Medical Center Mainz, Mainz, Germany.,Deutsches Zentrum für Herz-Kreislauf-Forschung e.V., Partner Site RheinMain (Mainz), Mainz, Germany
| | - Katrin Schäfer
- Center for Cardiology, Cardiology I, Translational Vascular Biology, University Medical Center Mainz, Mainz, Germany.,Center for Thrombosis and Hemostasis, University Medical Center Mainz, Mainz, Germany.,Center for Translational Vascular Biology, University Medical Center Mainz, Mainz, Germany.,Deutsches Zentrum für Herz-Kreislauf-Forschung e.V., Partner Site RheinMain (Mainz), Mainz, Germany
| |
Collapse
|
12
|
Han Y, Yang W, Cui W, Yang K, Wang X, Chen Y, Deng L, Zhao Y, Jin W. Retracted Article: Development of functional hydrogels for heart failure. J Mater Chem B 2019; 7:1563-1580. [DOI: 10.1039/c8tb02591f] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Hydrogel-based approaches were reviewed for cardiac tissue engineering and myocardial regeneration in ischemia-induced heart failure, with an emphasis on functional studies, translational status, and clinical advancements.
Collapse
Affiliation(s)
- Yanxin Han
- Department of Cardiology
- Institute of Cardiovascular Diseases
- Ruijin Hospital
- Shanghai Jiao Tong University School of Medicine
- Shanghai 200025
| | - Wenbo Yang
- Department of Cardiology
- Institute of Cardiovascular Diseases
- Ruijin Hospital
- Shanghai Jiao Tong University School of Medicine
- Shanghai 200025
| | - Wenguo Cui
- Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases
- Shanghai Institute of Traumatology and Orthopaedics
- Ruijin Hospital
- Shanghai Jiao Tong University School of Medicine
- Shanghai 200025
| | - Ke Yang
- Department of Cardiology
- Institute of Cardiovascular Diseases
- Ruijin Hospital
- Shanghai Jiao Tong University School of Medicine
- Shanghai 200025
| | - Xiaoqun Wang
- Department of Cardiology
- Institute of Cardiovascular Diseases
- Ruijin Hospital
- Shanghai Jiao Tong University School of Medicine
- Shanghai 200025
| | - Yanjia Chen
- Department of Cardiology
- Institute of Cardiovascular Diseases
- Ruijin Hospital
- Shanghai Jiao Tong University School of Medicine
- Shanghai 200025
| | - Lianfu Deng
- Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases
- Shanghai Institute of Traumatology and Orthopaedics
- Ruijin Hospital
- Shanghai Jiao Tong University School of Medicine
- Shanghai 200025
| | - Yuanjin Zhao
- Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases
- Shanghai Institute of Traumatology and Orthopaedics
- Ruijin Hospital
- Shanghai Jiao Tong University School of Medicine
- Shanghai 200025
| | - Wei Jin
- Department of Cardiology
- Institute of Cardiovascular Diseases
- Ruijin Hospital
- Shanghai Jiao Tong University School of Medicine
- Shanghai 200025
| |
Collapse
|
13
|
Purcell BP, Barlow SC, Perreault PE, Freeburg L, Doviak H, Jacobs J, Hoenes A, Zellars KN, Khakoo AY, Lee T, Burdick JA, Spinale FG. Delivery of a matrix metalloproteinase-responsive hydrogel releasing TIMP-3 after myocardial infarction: effects on left ventricular remodeling. Am J Physiol Heart Circ Physiol 2018; 315:H814-H825. [PMID: 29979624 PMCID: PMC6230910 DOI: 10.1152/ajpheart.00076.2018] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Revised: 05/24/2018] [Accepted: 06/15/2018] [Indexed: 12/11/2022]
Abstract
Although improvements in timing and approach for early reperfusion with acute coronary syndromes have occurred, myocardial injury culminating in a myocardial infarction (MI) remains a common event. Although a multifactorial process, an imbalance between the induction of proteolytic pathways, such as matrix metalloproteinases (MMPs) and endogenous tissue inhibitors of metalloproteinase (TIMPs), has been shown to contribute to this process. In the present study, a full-length TIMP-3 recombinant protein (rTIMP-3) was encapsulated in a specifically formulated hyaluronic acid (HA)-based hydrogel that contained MMP-cleavable peptide cross-links, which influenced the rate of rTIMP-3 release from the HA gel. The effects of localized delivery of this MMP-sensitive HA gel (HAMMPS) alone and containing rTIMP-3 (HAMMPS/rTIMP-3) were examined in terms of the natural history of post-MI remodeling. Pigs were randomized to one of the following three different groups: MI and saline injection (MI/saline group, 100-μl injection at nine injection sites, n = 7), MI and HAMMPS injection (MI/HAMMPS group; 100-μl injection at nine injection sites, n = 7), and MI and HAMMPS/rTIMP-3 injection (MI/HAMMPS/rTIMP-3 group; 20-μg/100-μl injection at nine injection sites, n = 7). Left ventricular (LV) echocardiography was serially performed up to 28 days post-MI. LV dilation, as measured by end-diastolic volume, and the degree of MI wall thinning were reduced by ~50% in the HAMMPS/rTIMP-3 group ( P < 0.05). Furthermore, indexes of heart failure progression post-MI, such as LV filling pressures and left atrial size, were also attenuated to the greatest degree in the HAMMPS/rTIMP-3 group. At 28 days post-MI, HAMMPS/rTIMP-3 caused a relative reduction in the transcriptional profile for myofibroblasts as well as profibrotic pathways, which was confirmed by subsequent histochemistry. In conclusion, these findings suggest that localized delivery of a MMP-sensitive biomaterial that releases a recombinant TIMP holds promise as a means to interrupt adverse post-MI remodeling. NEW & NOTEWORTHY The present study targeted a myocardial matrix proteolytic system, matrix metalloproteinases (MMPs), through the use of a recombinant tissue inhibitor of MMPs incorporated into a MMP-sensitive hydrogel, which was regionally injected using a large animal model of myocardial infarction. Left ventricular geometry and function and indexes of myocardial remodeling were improved with this approach and support the advancement of localized therapeutic strategies that specifically target the myocardial matrix.
Collapse
Affiliation(s)
- Brendan P Purcell
- Department of Bioengineering, University of Pennsylvania , Philadelphia, Pennsylvania
| | - Shayne C Barlow
- Cardiovascular Translational Research Center, University of South Carolina School of Medicine and the WJB Dorn Veteran Affairs Medical Center , Columbia, South Carolina
| | - Paige E Perreault
- Cardiovascular Translational Research Center, University of South Carolina School of Medicine and the WJB Dorn Veteran Affairs Medical Center , Columbia, South Carolina
| | - Lisa Freeburg
- Cardiovascular Translational Research Center, University of South Carolina School of Medicine and the WJB Dorn Veteran Affairs Medical Center , Columbia, South Carolina
| | - Heather Doviak
- Cardiovascular Translational Research Center, University of South Carolina School of Medicine and the WJB Dorn Veteran Affairs Medical Center , Columbia, South Carolina
| | - Julia Jacobs
- Cardiovascular Translational Research Center, University of South Carolina School of Medicine and the WJB Dorn Veteran Affairs Medical Center , Columbia, South Carolina
| | - Abigail Hoenes
- Cardiovascular Translational Research Center, University of South Carolina School of Medicine and the WJB Dorn Veteran Affairs Medical Center , Columbia, South Carolina
| | - Kia N Zellars
- Cardiovascular Translational Research Center, University of South Carolina School of Medicine and the WJB Dorn Veteran Affairs Medical Center , Columbia, South Carolina
| | - Aarif Y Khakoo
- CardioMetabolic Disorders, Amgen, South San Francisco, California
| | - TaeWeon Lee
- CardioMetabolic Disorders, Amgen, South San Francisco, California
| | - Jason A Burdick
- Department of Bioengineering, University of Pennsylvania , Philadelphia, Pennsylvania
| | - Francis G Spinale
- Cardiovascular Translational Research Center, University of South Carolina School of Medicine and the WJB Dorn Veteran Affairs Medical Center , Columbia, South Carolina
| |
Collapse
|
14
|
Maffei A, Lembo G. Fatty acids are the best fuel for overloaded hearts. Cardiovasc Res 2018; 114:1055-1056. [PMID: 29718157 DOI: 10.1093/cvr/cvy106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Angelo Maffei
- Department of AngioCardioNeurology and Translational Medicine, IRCCS Neuromed, 86077 Pozzilli (IS), Italy
| | - Giuseppe Lembo
- Department of AngioCardioNeurology and Translational Medicine, IRCCS Neuromed, 86077 Pozzilli (IS), Italy.,Department of Molecular Medicine, Sapienza University of Rome, Italy
| |
Collapse
|
15
|
Al-Shuhaib MBS, Al-Kafajy FR, Badi MA, AbdulAzeez S, Marimuthu K, Al-Juhaishi HAI, Borgio JF. Highly deleterious variations in COX1, CYTB, SCG5, FK2, PRL and PGF genes are the potential adaptation of the immigrated African ostrich population. Comput Biol Med 2018; 100:17-26. [PMID: 29960146 DOI: 10.1016/j.compbiomed.2018.06.019] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2018] [Revised: 06/13/2018] [Accepted: 06/22/2018] [Indexed: 11/19/2022]
Abstract
Because of variable inconvenient living conditions in some places around the world, it is difficult to collect reliable physiological data for ostriches. Therefore, this study aims to provide a comprehensive in silico insight for the nature of polymorphism of important genetic loci that are related to physiological and reproductive traits. Sixty-nine mature ostriches ranging over half of Iraq were screened. Six exonic genetic loci, including cytochrome c oxidase I (COX1), cytochrome b (CYTB), secretogranin V (SCG5), feather keratin 2-like (FK2), prolactin (PRL) and placenta growth factor (PGF) were genotyped by PCR-single stranded conformation polymorphism (SSCP). Thirty-six novel SNPs, including seventeen nonsynonymous (ns) SNPs, were observed. Several computational software programs were utilized to assess the extent of the nsSNPs on their corresponding proteins structure, function and stability. The results showed several deleterious functional and stability changes in almost all the proteins studied. The total severity of each missense mutation was evaluated and compared with other nsSNPs accumulatively. It is evident from the extensive cumulative in silico computation that both p.E34D and p.E60K in PGF have the highest deleterious effect. The cumulative predictions from the present study are an impressive guide for the genotypes of African ostriches, which bypassed the expensive protocols for wet laboratory screening, to identify the effects of variants. To the best of our knowledge, this is the first investigation of its kind on the analyses and prediction outcome of missense mutations in African ostrich populations. The highly deleterious nsSNPs in the placenta growth factor are possible adaptive mutations which might be associated with adaptation in extreme and new environments. The flow and protocol of the computational predictions can be extended for various wild animals to identify the molecular nature of adaptations.
Collapse
Affiliation(s)
- Mohammed Baqur S Al-Shuhaib
- Department of Animal Production, College of Agriculture, Al-Qasim Green University, Al-Qasim, 51013, Babil, Iraq.
| | - Fadhil R Al-Kafajy
- Department of Animal Production, College of Agriculture, Al-Qasim Green University, Al-Qasim, 51013, Babil, Iraq.
| | - Milad Ali Badi
- Department of Animal Production, College of Agriculture, Al-Qasim Green University, Al-Qasim, 51013, Babil, Iraq.
| | - Sayed AbdulAzeez
- Department of Genetic Research, Institute for Research and Medical Consultation (IRMC), Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia.
| | - Kasi Marimuthu
- Department of Biotechnology, Faculty of Applied Sciences, AIMST University, Bedong, Kedah Darul Aman, Malaysia.
| | | | - J Francis Borgio
- Department of Genetic Research, Institute for Research and Medical Consultation (IRMC), Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia.
| |
Collapse
|
16
|
Targeting Interleukin-1β Protects from Aortic Aneurysms Induced by Disrupted Transforming Growth Factor β Signaling. Immunity 2017; 47:959-973.e9. [DOI: 10.1016/j.immuni.2017.10.016] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Revised: 07/18/2017] [Accepted: 10/26/2017] [Indexed: 01/11/2023]
|
17
|
Frati G, Schirone L, Chimenti I, Yee D, Biondi-Zoccai G, Volpe M, Sciarretta S. An overview of the inflammatory signalling mechanisms in the myocardium underlying the development of diabetic cardiomyopathy. Cardiovasc Res 2017; 113:378-388. [PMID: 28395009 DOI: 10.1093/cvr/cvx011] [Citation(s) in RCA: 164] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2016] [Accepted: 01/20/2017] [Indexed: 02/05/2023] Open
Abstract
Heart failure is a highly morbid and mortal clinical condition that represents the last stage of most cardiovascular disorders. Diabetes is strongly associated with an increased incidence of heart failure and directly promotes cardiac hypertrophy, fibrosis, and apoptosis. These changes, in turn, contribute to the development of ventricular dysfunction. The clinical condition associated with the spectrum of cardiac abnormalities induced by diabetes is termed diabetic cardiomyopathy. Myocardial inflammation has recently emerged as a pathophysiological process contributing to cardiac hypertrophy, fibrosis, and dysfunction in cardiac diseases. Myocardial inflammation is also implicated in the development of diabetic cardiomyopathy. Several molecular mechanisms link diabetes to myocardial inflammation. The NF-κB signalling pathway and the renin-angiotensin-aldosterone system are strongly activated in the diabetic heart, thereby promoting myocardial inflammation. Advanced glycation end-products and damage-associated molecular pattern molecules also represent strong triggers for inflammation. The mediators resulting from this inflammatory process modulate specific intracellular signalling mechanisms in cardiac cells that promote the development of diabetic cardiomyopathy. This review article will provide an overview of the signalling molecular mechanisms linking diabetic cardiomyopathy to myocardial inflammation.
Collapse
Affiliation(s)
- Giacomo Frati
- Department of Medical and Surgical Sciences and Biotechnologies, Sapienza University of Rome, Rome, 04100 Latina (LT), Italy.,Department of AngioCardioNeurology, IRCCS Neuromed, 86077 Pozzilli (IS), Italy
| | - Leonardo Schirone
- Department of Medical and Surgical Sciences and Biotechnologies, Sapienza University of Rome, Rome, 04100 Latina (LT), Italy
| | - Isotta Chimenti
- Department of Medical and Surgical Sciences and Biotechnologies, Sapienza University of Rome, Rome, 04100 Latina (LT), Italy
| | - Derek Yee
- Department of Internal Medicine, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Giuseppe Biondi-Zoccai
- Department of Medical and Surgical Sciences and Biotechnologies, Sapienza University of Rome, Rome, 04100 Latina (LT), Italy.,Department of AngioCardioNeurology, IRCCS Neuromed, 86077 Pozzilli (IS), Italy
| | - Massimo Volpe
- Department of Medical and Surgical Sciences and Biotechnologies, Sapienza University of Rome, Rome, 04100 Latina (LT), Italy.,Department of AngioCardioNeurology, IRCCS Neuromed, 86077 Pozzilli (IS), Italy
| | - Sebastiano Sciarretta
- Department of Medical and Surgical Sciences and Biotechnologies, Sapienza University of Rome, Rome, 04100 Latina (LT), Italy.,Department of AngioCardioNeurology, IRCCS Neuromed, 86077 Pozzilli (IS), Italy
| |
Collapse
|
18
|
A Review of the Molecular Mechanisms Underlying the Development and Progression of Cardiac Remodeling. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2017; 2017:3920195. [PMID: 28751931 PMCID: PMC5511646 DOI: 10.1155/2017/3920195] [Citation(s) in RCA: 271] [Impact Index Per Article: 33.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Accepted: 05/30/2017] [Indexed: 02/07/2023]
Abstract
Pathological molecular mechanisms involved in myocardial remodeling contribute to alter the existing structure of the heart, leading to cardiac dysfunction. Among the complex signaling network that characterizes myocardial remodeling, the distinct processes are myocyte loss, cardiac hypertrophy, alteration of extracellular matrix homeostasis, fibrosis, defective autophagy, metabolic abnormalities, and mitochondrial dysfunction. Several pathophysiological stimuli, such as pressure and volume overload, trigger the remodeling cascade, a process that initially confers protection to the heart as a compensatory mechanism. Yet chronic inflammation after myocardial infarction also leads to cardiac remodeling that, when prolonged, leads to heart failure progression. Here, we review the molecular pathways involved in cardiac remodeling, with particular emphasis on those associated with myocardial infarction. A better understanding of cell signaling involved in cardiac remodeling may support the development of new therapeutic strategies towards the treatment of heart failure and reduction of cardiac complications. We will also discuss data derived from gene therapy approaches for modulating key mediators of cardiac remodeling.
Collapse
|
19
|
Newell LF, Holtan SG, Yates JE, Pereira L, Tyner JW, Burd I, Bagby GC. PlGF enhances TLR-dependent inflammatory responses in human mononuclear phagocytes. Am J Reprod Immunol 2017. [PMID: 28635072 DOI: 10.1111/aji.12709] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
PROBLEM Levels of placental growth factor (PlGF) peak during third trimester of pregnancy, a time when women are at increased risk of virus-induced morbidity. We hypothesized PlGF might contribute to an exaggerated inflammatory response to Toll-like receptor (TLR) activation. METHOD OF STUDY Primary human adult and cord blood CD14+ cells were cultured in the presence of TLR ligands and/or PlGF. RESULTS PlGF significantly enhanced the magnitude and duration of TNF messenger RNA and protein production by TLR-7/8-activated monocytes, and increased subsequent production of TNF-independent inflammatory cytokines. This PlGF/TLR effect involved multiple inflammatory cytokines/chemokines and was seen with the majority of TLR agonists. PlGF enhanced phosphorylation of IkappaB kinase (IKK) in monocytes stimulated with the TLR-7/8 agonist R848, and IKK inhibition completely suppressed the PlGF effect. CONCLUSION PlGF enhances TLR-signaling upstream of IKK and contributes to an exaggerated pathologic pro-inflammatory state in response to activation of maternal and fetal mononuclear phagocytes by specific TLR agonists.
Collapse
Affiliation(s)
- Laura F Newell
- Hematology and Medical Oncology, Oregon Health & Science University, Knight Cancer Institute, Portland, OR, USA
| | - Shernan G Holtan
- Division of Hematology, Oncology and Transplant, University of Minnesota, Minneapolis, MN, USA
| | - Jane E Yates
- Northwest Veterans Affairs Cancer Research Center, Portland, OR, USA
| | - Leonardo Pereira
- Division of Maternal-Fetal Medicine, Department of Obstetrics and Gynecology, Oregon Health & Science University, Portland, OR, USA
| | - Jeffrey W Tyner
- Hematology and Medical Oncology, Oregon Health & Science University, Knight Cancer Institute, Portland, OR, USA.,Department of Cell, Development, and Cancer Biology, Oregon Health & Science University, Portland, OR, USA
| | - Irina Burd
- Department of Gynecology and Obstetrics, Integrated Research Center for Fetal Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Grover C Bagby
- Hematology and Medical Oncology, Oregon Health & Science University, Knight Cancer Institute, Portland, OR, USA.,Northwest Veterans Affairs Cancer Research Center, Portland, OR, USA
| |
Collapse
|
20
|
The Spleen: A Hub Connecting Nervous and Immune Systems in Cardiovascular and Metabolic Diseases. Int J Mol Sci 2017; 18:ijms18061216. [PMID: 28590409 PMCID: PMC5486039 DOI: 10.3390/ijms18061216] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Revised: 05/30/2017] [Accepted: 06/02/2017] [Indexed: 12/14/2022] Open
Abstract
Metabolic disorders have been identified as major health problems affecting a large portion of the world population. In addition, obesity and insulin resistance are principal risk factors for the development of cardiovascular diseases. Altered immune responses are common features of both hypertension and obesity and, moreover, the involvement of the nervous system in the modulation of immune system is gaining even more attention in both pathophysiological contexts. For these reasons, during the last decades, researches focused their efforts on the comprehension of the molecular mechanisms connecting immune system to cardiovascular and metabolic diseases. On the other hand, it has been reported that in these pathological conditions, central neural pathways modulate the activity of the peripheral nervous system, which is strongly involved in onset and progression of the disease. It is interesting to notice that neural reflex can also participate in the modulation of immune functions. In this scenario, the spleen becomes the crucial hub allowing the interaction of different systems differently involved in metabolic and cardiovascular diseases. Here, we summarize the major findings that dissect the role of the immune system in disorders related to metabolic and cardiovascular dysfunctions, and how this could also be influenced by neural reflexes.
Collapse
|
21
|
Sustained Placental Growth Factor-2 Treatment Does Not Aggravate Advanced Atherosclerosis in Ischemic Cardiomyopathy. J Cardiovasc Transl Res 2017; 10:348-358. [DOI: 10.1007/s12265-017-9742-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2016] [Accepted: 03/14/2017] [Indexed: 12/17/2022]
|
22
|
Maffei A, Cifelli G, Carnevale R, Iacobucci R, Pallante F, Fardella V, Fardella S, Hirsch E, Lembo G, Carnevale D. La inhibición de la PI3Kγ protege contra la miocardiopatía diabética en ratones. Rev Esp Cardiol 2017. [DOI: 10.1016/j.recesp.2016.04.025] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
23
|
Seno A, Takeda Y, Matsui M, Okuda A, Nakano T, Nakada Y, Kumazawa T, Nakagawa H, Nishida T, Onoue K, Somekawa S, Watanabe M, Kawata H, Kawakami R, Okura H, Uemura S, Saito Y. Suppressed Production of Soluble Fms-Like Tyrosine Kinase-1 Contributes to Myocardial Remodeling and Heart Failure. Hypertension 2016; 68:678-87. [PMID: 27480835 DOI: 10.1161/hypertensionaha.116.07371] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Accepted: 06/26/2016] [Indexed: 01/17/2023]
Abstract
Soluble fms-like tyrosine kinase-1 (sFlt-1), an endogenous inhibitor of vascular endothelial growth factor and placental growth factor, is involved in the pathogenesis of cardiovascular disease. However, the significance of sFlt-1 in heart failure has not been fully elucidated. We found that sFlt-1 is decreased in renal failure and serves as a key molecule in atherosclerosis. In this study, we aimed to investigate the role of the decreased sFlt-1 production in heart failure, using sFlt-1 knockout mice. sFlt-1 knockout mice and wild-type mice were subjected to transverse aortic constriction and evaluated after 7 days. The sFlt-1 knockout mice had significantly higher mortality (52% versus 15%; P=0.0002) attributable to heart failure and showed greater cardiac hypertrophy (heart weight to body weight ratio, 8.95±0.45 mg/g in sFlt-1 knockout mice versus 6.60±0.32 mg/g in wild-type mice; P<0.0001) and cardiac dysfunction, which was accompanied by a significant increase in macrophage infiltration and cardiac fibrosis, than wild-type mice after transverse aortic constriction. An anti-placental growth factor-neutralizing antibody prevented pressure overload-induced cardiac hypertrophy, fibrosis, and cardiac dysfunction. Moreover, monocyte chemoattractant protein-1 expression was significantly increased in the hypertrophied hearts of sFlt-1 knockout mice compared with wild-type mice. Monocyte chemoattractant protein-1 inhibition with neutralizing antibody ameliorated maladaptive cardiac remodeling in sFlt-1 knockout mice after transverse aortic constriction. In conclusion, decreased sFlt-1 production plays a key role in the aggravation of cardiac hypertrophy and heart failure through upregulation of monocyte chemoattractant protein-1 expression in pressure-overloaded heart.
Collapse
Affiliation(s)
- Ayako Seno
- From the First Department of Internal Medicine, Nara Medical University, Kashihara, Nara, Japan (A.S., Y.T., M.M., A.O., T. Nakano, Y.N., T.K., H.N., T. Nishida, K.O., S.S., M.W., H.K., R.K., H.O., S.U., Y.S.); and Department of Regulatory Medicine for Blood Pressure, Kashihara, Nara, Japan (T.K., Y.S.)
| | - Yukiji Takeda
- From the First Department of Internal Medicine, Nara Medical University, Kashihara, Nara, Japan (A.S., Y.T., M.M., A.O., T. Nakano, Y.N., T.K., H.N., T. Nishida, K.O., S.S., M.W., H.K., R.K., H.O., S.U., Y.S.); and Department of Regulatory Medicine for Blood Pressure, Kashihara, Nara, Japan (T.K., Y.S.)
| | - Masaru Matsui
- From the First Department of Internal Medicine, Nara Medical University, Kashihara, Nara, Japan (A.S., Y.T., M.M., A.O., T. Nakano, Y.N., T.K., H.N., T. Nishida, K.O., S.S., M.W., H.K., R.K., H.O., S.U., Y.S.); and Department of Regulatory Medicine for Blood Pressure, Kashihara, Nara, Japan (T.K., Y.S.)
| | - Aya Okuda
- From the First Department of Internal Medicine, Nara Medical University, Kashihara, Nara, Japan (A.S., Y.T., M.M., A.O., T. Nakano, Y.N., T.K., H.N., T. Nishida, K.O., S.S., M.W., H.K., R.K., H.O., S.U., Y.S.); and Department of Regulatory Medicine for Blood Pressure, Kashihara, Nara, Japan (T.K., Y.S.)
| | - Tomoya Nakano
- From the First Department of Internal Medicine, Nara Medical University, Kashihara, Nara, Japan (A.S., Y.T., M.M., A.O., T. Nakano, Y.N., T.K., H.N., T. Nishida, K.O., S.S., M.W., H.K., R.K., H.O., S.U., Y.S.); and Department of Regulatory Medicine for Blood Pressure, Kashihara, Nara, Japan (T.K., Y.S.)
| | - Yasuki Nakada
- From the First Department of Internal Medicine, Nara Medical University, Kashihara, Nara, Japan (A.S., Y.T., M.M., A.O., T. Nakano, Y.N., T.K., H.N., T. Nishida, K.O., S.S., M.W., H.K., R.K., H.O., S.U., Y.S.); and Department of Regulatory Medicine for Blood Pressure, Kashihara, Nara, Japan (T.K., Y.S.)
| | - Takuya Kumazawa
- From the First Department of Internal Medicine, Nara Medical University, Kashihara, Nara, Japan (A.S., Y.T., M.M., A.O., T. Nakano, Y.N., T.K., H.N., T. Nishida, K.O., S.S., M.W., H.K., R.K., H.O., S.U., Y.S.); and Department of Regulatory Medicine for Blood Pressure, Kashihara, Nara, Japan (T.K., Y.S.)
| | - Hitoshi Nakagawa
- From the First Department of Internal Medicine, Nara Medical University, Kashihara, Nara, Japan (A.S., Y.T., M.M., A.O., T. Nakano, Y.N., T.K., H.N., T. Nishida, K.O., S.S., M.W., H.K., R.K., H.O., S.U., Y.S.); and Department of Regulatory Medicine for Blood Pressure, Kashihara, Nara, Japan (T.K., Y.S.)
| | - Taku Nishida
- From the First Department of Internal Medicine, Nara Medical University, Kashihara, Nara, Japan (A.S., Y.T., M.M., A.O., T. Nakano, Y.N., T.K., H.N., T. Nishida, K.O., S.S., M.W., H.K., R.K., H.O., S.U., Y.S.); and Department of Regulatory Medicine for Blood Pressure, Kashihara, Nara, Japan (T.K., Y.S.)
| | - Kenji Onoue
- From the First Department of Internal Medicine, Nara Medical University, Kashihara, Nara, Japan (A.S., Y.T., M.M., A.O., T. Nakano, Y.N., T.K., H.N., T. Nishida, K.O., S.S., M.W., H.K., R.K., H.O., S.U., Y.S.); and Department of Regulatory Medicine for Blood Pressure, Kashihara, Nara, Japan (T.K., Y.S.)
| | - Satoshi Somekawa
- From the First Department of Internal Medicine, Nara Medical University, Kashihara, Nara, Japan (A.S., Y.T., M.M., A.O., T. Nakano, Y.N., T.K., H.N., T. Nishida, K.O., S.S., M.W., H.K., R.K., H.O., S.U., Y.S.); and Department of Regulatory Medicine for Blood Pressure, Kashihara, Nara, Japan (T.K., Y.S.)
| | - Makoto Watanabe
- From the First Department of Internal Medicine, Nara Medical University, Kashihara, Nara, Japan (A.S., Y.T., M.M., A.O., T. Nakano, Y.N., T.K., H.N., T. Nishida, K.O., S.S., M.W., H.K., R.K., H.O., S.U., Y.S.); and Department of Regulatory Medicine for Blood Pressure, Kashihara, Nara, Japan (T.K., Y.S.)
| | - Hiroyuki Kawata
- From the First Department of Internal Medicine, Nara Medical University, Kashihara, Nara, Japan (A.S., Y.T., M.M., A.O., T. Nakano, Y.N., T.K., H.N., T. Nishida, K.O., S.S., M.W., H.K., R.K., H.O., S.U., Y.S.); and Department of Regulatory Medicine for Blood Pressure, Kashihara, Nara, Japan (T.K., Y.S.)
| | - Rika Kawakami
- From the First Department of Internal Medicine, Nara Medical University, Kashihara, Nara, Japan (A.S., Y.T., M.M., A.O., T. Nakano, Y.N., T.K., H.N., T. Nishida, K.O., S.S., M.W., H.K., R.K., H.O., S.U., Y.S.); and Department of Regulatory Medicine for Blood Pressure, Kashihara, Nara, Japan (T.K., Y.S.)
| | - Hiroyuki Okura
- From the First Department of Internal Medicine, Nara Medical University, Kashihara, Nara, Japan (A.S., Y.T., M.M., A.O., T. Nakano, Y.N., T.K., H.N., T. Nishida, K.O., S.S., M.W., H.K., R.K., H.O., S.U., Y.S.); and Department of Regulatory Medicine for Blood Pressure, Kashihara, Nara, Japan (T.K., Y.S.)
| | - Shiro Uemura
- From the First Department of Internal Medicine, Nara Medical University, Kashihara, Nara, Japan (A.S., Y.T., M.M., A.O., T. Nakano, Y.N., T.K., H.N., T. Nishida, K.O., S.S., M.W., H.K., R.K., H.O., S.U., Y.S.); and Department of Regulatory Medicine for Blood Pressure, Kashihara, Nara, Japan (T.K., Y.S.)
| | - Yoshihiko Saito
- From the First Department of Internal Medicine, Nara Medical University, Kashihara, Nara, Japan (A.S., Y.T., M.M., A.O., T. Nakano, Y.N., T.K., H.N., T. Nishida, K.O., S.S., M.W., H.K., R.K., H.O., S.U., Y.S.); and Department of Regulatory Medicine for Blood Pressure, Kashihara, Nara, Japan (T.K., Y.S.).
| |
Collapse
|
24
|
Maffei A, Cifelli G, Carnevale R, Iacobucci R, Pallante F, Fardella V, Fardella S, Hirsch E, Lembo G, Carnevale D. PI3Kγ Inhibition Protects Against Diabetic Cardiomyopathy in Mice. ACTA ACUST UNITED AC 2016; 70:16-24. [PMID: 27422446 DOI: 10.1016/j.rec.2016.04.034] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2015] [Accepted: 04/07/2016] [Indexed: 11/26/2022]
Abstract
INTRODUCTION AND OBJECTIVES Cardiovascular diseases, including cardiomyopathy, are the major complications in diabetes. A deeper understanding of the molecular mechanisms leading to cardiomyopathy is critical for developing novel therapies. We proposed phosphoinositide3-kinase gamma (PI3Kγ) as a molecular target against diabetic cardiomyopathy, given the role of PI3Kγ in cardiac remodeling to pressure overload. Given the availability of a pharmacological inhibitor of this molecular target GE21, we tested the validity of our hypothesis by inducing diabetes in mice with genetic ablation of PI3Kγ or knock-in for a catalytically inactive PI3Kγ. METHODS Mice were made diabetic by streptozotocin. Cardiac function was assessed by serial echocardiographic analyses, while fibrosis and inflammation were evaluated by histological analysis. RESULTS Diabetes induced cardiac dysfunction in wild-type mice. Systolic dysfunction was completely prevented, and diastolic dysfunction was partially blocked, in both PI3Kγ knock-out and kinase-dead mice. Cardiac dysfunction was similarly rescued by administration of the PI3Kγ inhibitor GE21 in a dose-dependent manner. These actions of genetic and pharmacological PI3Kγ inhibition were associated with a decrease in inflammation and fibrosis in diabetic hearts. CONCLUSIONS Our study demonstrates a fundamental role of PI3Kγ in diabetic cardiomyopathy in mice and the beneficial effect of pharmacological PI3Kγ inhibition, highlighting its potential as a promising strategy for clinical treatment of cardiac complications of diabetic patients.
Collapse
Affiliation(s)
- Angelo Maffei
- Department of Angiocardioneurology and Translational Medicine, IRCCS Neuromed, Istituto Neurologico Mediterraneo, Pozzilli, Isernia, Italy
| | - Giuseppe Cifelli
- Department of Angiocardioneurology and Translational Medicine, IRCCS Neuromed, Istituto Neurologico Mediterraneo, Pozzilli, Isernia, Italy
| | - Raimondo Carnevale
- Department of Angiocardioneurology and Translational Medicine, IRCCS Neuromed, Istituto Neurologico Mediterraneo, Pozzilli, Isernia, Italy
| | - Roberta Iacobucci
- Department of Angiocardioneurology and Translational Medicine, IRCCS Neuromed, Istituto Neurologico Mediterraneo, Pozzilli, Isernia, Italy
| | - Fabio Pallante
- Department of Angiocardioneurology and Translational Medicine, IRCCS Neuromed, Istituto Neurologico Mediterraneo, Pozzilli, Isernia, Italy
| | - Valentina Fardella
- Department of Angiocardioneurology and Translational Medicine, IRCCS Neuromed, Istituto Neurologico Mediterraneo, Pozzilli, Isernia, Italy
| | - Stefania Fardella
- Department of Angiocardioneurology and Translational Medicine, IRCCS Neuromed, Istituto Neurologico Mediterraneo, Pozzilli, Isernia, Italy
| | - Emilio Hirsch
- Department of Molecular Biotechnologies and Health Sciences, University of Torino, Turin, Italy
| | - Giuseppe Lembo
- Department of Angiocardioneurology and Translational Medicine, IRCCS Neuromed, Istituto Neurologico Mediterraneo, Pozzilli, Isernia, Italy; Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy
| | - Daniela Carnevale
- Department of Angiocardioneurology and Translational Medicine, IRCCS Neuromed, Istituto Neurologico Mediterraneo, Pozzilli, Isernia, Italy; Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy.
| |
Collapse
|
25
|
Gruson D, Hermans MP, Ferracin B, Ahn SA, Rousseau MF. Sflt-1 in heart failure: relation with disease severity and biomarkers. Scandinavian Journal of Clinical and Laboratory Investigation 2016; 76:411-6. [DOI: 10.1080/00365513.2016.1190863] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Affiliation(s)
- Damien Gruson
- Pôle de Recherche en Endocrinologie, Diabète et Nutrition, Institut de Recherche Expérimentale et Clinique, Cliniques Universitaires St-Luc and Université Catholique de Louvain, Brussels, Belgium
- Department of Laboratory Medicine, Cliniques Universitaires St-Luc and Université Catholique de Louvain, Brussels, Belgium
| | - Michel P. Hermans
- Pôle de Recherche en Endocrinologie, Diabète et Nutrition, Institut de Recherche Expérimentale et Clinique, Cliniques Universitaires St-Luc and Université Catholique de Louvain, Brussels, Belgium
| | - Benjamin Ferracin
- Pôle de Recherche en Endocrinologie, Diabète et Nutrition, Institut de Recherche Expérimentale et Clinique, Cliniques Universitaires St-Luc and Université Catholique de Louvain, Brussels, Belgium
| | - Sylvie A. Ahn
- Division of Cardiology, Cliniques Universitaires St-Luc and Pôle de Recherche Cardiovasculaire, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, Brussels, Belgium
| | - Michel F. Rousseau
- Division of Cardiology, Cliniques Universitaires St-Luc and Pôle de Recherche Cardiovasculaire, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, Brussels, Belgium
| |
Collapse
|
26
|
Enhanced ADAM17 expression is associated with cardiac remodeling in rats with acute myocardial infarction. Life Sci 2016; 151:61-69. [PMID: 26944439 DOI: 10.1016/j.lfs.2016.02.097] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2015] [Revised: 02/22/2016] [Accepted: 02/29/2016] [Indexed: 11/23/2022]
Abstract
AIM This study aimed to investigate the dynamic expression of A-disintegrin-and-metalloproteinase-17 (ADAM17) during cardiac remodeling after acute myocardial infarction (AMI). MAIN METHODS Forty male Wistar rats with a permanent ligation of the left anterior descending artery were equally divided into four groups based on predefined sacrifice time: MI1d, MI1w, MI4w and MI12w. As controls, 36 rats only with left thoracotomy were equally divided into four groups. Cardiac remodeling was assessed by echocardiography and hematoxylin and eosin (H&E) staining. ADAM17 mRNA was detected by real-time reverse transcription polymerase chain reaction, and protein expression of ADAM17, tissue inhibitor of metalloproteinases-3 (TIMP-3) and TNF-α was analyzed by western blotting. KEY FINDINGS The systolic function was sharply worsened in the MI1w group (versus the Con1w group, P<0.05), but left ventricular weight index was significantly increased after 4weeks post-MI (P<0.05). H&E staining revealed that one week after AMI, myocardial tissue in the epicardial border zone of the infarcted heart was mixed with broken mitochondrial cristae and decreased matrix density. ADAM17 mRNA and protein expression was significantly increased, accompanied by decreased TIMP-3 and upregulated TNF-α expression in the MI1w group (versus the MI1d group, all P<0.05). Moreover, dynamic ADAM17 mRNA expression was positively correlated with enlarged LVEDd and LVESd (P=0.001, P=0.003) and negatively with LVEF (P=0.039) in AMI rats. SIGNIFICANCE Enhanced ADAM17 expression, along with decreased TIMP-3 and increased TNF-α expression, especially within one week after AMI, is associated with cardiac remodeling.
Collapse
|
27
|
Hou J, Zheng D, Fung G, Deng H, Chen L, Liang J, Jiang Y, Hu Y. Mangiferin suppressed advanced glycation end products (AGEs) through NF-κB deactivation and displayed anti-inflammatory effects in streptozotocin and high fat diet-diabetic cardiomyopathy rats. Can J Physiol Pharmacol 2016; 94:332-40. [PMID: 26751764 DOI: 10.1139/cjpp-2015-0073] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Given the importance of the aggregation of advanced glycation end products (AGEs) and cardiac inflammation in the onset and progression of diabetic cardiomyopathy (DCM), our objective in this study was to demonstrate the cardioprotective effect of mangiferin, an antidiabetic and anti-inflammatory agent, on diabetic rat model. The DCM model was established by a high-fat diet and a low dose of streptozotocin. DCM rats were treated orally with mangiferin (20 mg/kg) for 16 weeks. Serum and left ventricular myocardium were collected for determination of inflammatory cytokines. AGEs mRNA and protein expression of nuclear factor kappa B (NF-κB) and receptor for AGEs (RAGE) in myocardium were assayed by real-time PCR and Western blot. ROS levels were measured by dihydroethidium fluorescence staining. NF-κB binding activity was assayed by TransAM NF-κB p65 ELISA kit. Chronic treatment with mangiferin decreased the levels of myocardial enzymes (CK-MB, LDH) and inflammatory mediators (TNF-α, IL-1β). Meanwhile, NF-κB is inhibited by the reduction of nuclear translocation of p65 subunit, and mangiferin reduced AGE production and decreased the mRNA and protein expression of RAGE in DCM rats. Our data indicated that mangiferin could significantly ameliorate DCM by preventing the release of inflammatory cytokines, and inhibiting ROS accumulation, AGE/RAGE production, and NF-κB nuclear translocation, suggesting that mangiferin treatment might be beneficial in DCM.
Collapse
Affiliation(s)
- Jun Hou
- Department of Pharmacy, Chengdu Military General Hospital, Chengdu, China
- Centre for Heart Lung Innovation, St. Paul’s Hospital, Department of Pathology and Laboratory Medicine, The University of British Columbia, Vancouver, BC, Canada
| | - Dezhi Zheng
- Department of Cardiovascular Surgery, Jinan Military General Hospital, Jinan, China
| | - Gabriel Fung
- Centre for Heart Lung Innovation, St. Paul’s Hospital, Department of Pathology and Laboratory Medicine, The University of British Columbia, Vancouver, BC, Canada
| | - Haoyu Deng
- Centre for Heart Lung Innovation, St. Paul’s Hospital, Department of Pathology and Laboratory Medicine, The University of British Columbia, Vancouver, BC, Canada
| | - Lin Chen
- Department of Cardiovascular Surgery, Xinqiao Hospital, Third Military Medical University, Chongqing, China
| | - Jiali Liang
- Department of Cardiovascular Surgery, Jinan Military General Hospital, Jinan, China
| | - Yan Jiang
- Department of Pharmacy, Chengdu Military General Hospital, Chengdu, China
| | - Yonghe Hu
- Department of Traditional Chinese Medicine, Chengdu Military General Hospital, Chengdu, China
| |
Collapse
|
28
|
Placental growth factor 2 — A potential therapeutic strategy for chronic myocardial ischemia. Int J Cardiol 2016; 203:534-42. [DOI: 10.1016/j.ijcard.2015.10.177] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2015] [Revised: 10/22/2015] [Accepted: 10/24/2015] [Indexed: 12/17/2022]
|
29
|
Stöhr R, Kappel BA, Carnevale D, Cavalera M, Mavilio M, Arisi I, Fardella V, Cifelli G, Casagrande V, Rizza S, Cattaneo A, Mauriello A, Menghini R, Lembo G, Federici M. TIMP3 interplays with apelin to regulate cardiovascular metabolism in hypercholesterolemic mice. Mol Metab 2015; 4:741-52. [PMID: 26500845 PMCID: PMC4588459 DOI: 10.1016/j.molmet.2015.07.007] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2015] [Revised: 07/23/2015] [Accepted: 07/27/2015] [Indexed: 11/18/2022] Open
Abstract
OBJECTIVE Tissue inhibitor of metalloproteinase 3 (TIMP3) is an extracellular matrix (ECM) bound protein, which has been shown to be downregulated in human subjects and experimental models with cardiometabolic disorders, including type 2 diabetes mellitus, hypertension and atherosclerosis. The aim of this study was to investigate the effects of TIMP3 on cardiac energy homeostasis during increased metabolic stress conditions. METHODS ApoE(-/-)TIMP3(-/-) and ApoE(-/-) mice on a C57BL/6 background were subjected to telemetric ECG analysis and experimental myocardial infarction as models of cardiac stress induction. We used Western blot, qRT-PCR, histology, metabolomics, RNA-sequencing and in vivo phenotypical analysis to investigate the molecular mechanisms of altered cardiac energy metabolism. RESULTS ApoE(-/-)TIMP3(-/-) revealed decreased lifespan. Telemetric ECG analysis showed increased arrhythmic episodes, and experimental myocardial infarction by left anterior descending artery (LAD) ligation resulted in increased peri-operative mortality together with increased scar formation, ventricular dilatation and a reduction of cardiac function after 4 weeks in the few survivors. Hearts of ApoE(-/-)TIMP3(-/-) exhibited accumulation of neutral lipids when fed a chow diet, which was exacerbated by a high fat, high cholesterol diet. Metabolomics analysis revealed an increase in circulating markers of oxidative stress with a reduction in long chain fatty acids. Using whole heart mRNA sequencing, we identified apelin as a putative modulator of these metabolic defects. Apelin is a regulator of fatty acid oxidation, and we found a reduction in the levels of enzymes involved in fatty acid oxidation in the left ventricle of ApoE(-/-)TIMP3(-/-) mice. Injection of apelin restored the hitherto identified metabolic defects of lipid oxidation. CONCLUSION TIMP3 regulates lipid metabolism as well as oxidative stress response via apelin. These findings therefore suggest that TIMP3 maintains metabolic flexibility in the heart, particularly during episodes of increased cardiac stress.
Collapse
Affiliation(s)
- Robert Stöhr
- Department of Systems Medicine, University of Rome Tor Vergata, 00133 Rome, Italy
- Department of Internal Medicine I, University Hospital Aachen, Pauwelsstraße 30, 52074 Aachen, Germany
| | - Ben Arpad Kappel
- Department of Systems Medicine, University of Rome Tor Vergata, 00133 Rome, Italy
- Department of Internal Medicine I, University Hospital Aachen, Pauwelsstraße 30, 52074 Aachen, Germany
| | - Daniela Carnevale
- Department of Angiocardioneurology and Translational Medicine, IRCCS Neuromed, 86077 Pozzilli, IS, Italy
- Department of Molecular Medicine, Sapienza University of Rome, 00161 Rome, Italy
| | - Michele Cavalera
- Department of Systems Medicine, University of Rome Tor Vergata, 00133 Rome, Italy
| | - Maria Mavilio
- Department of Systems Medicine, University of Rome Tor Vergata, 00133 Rome, Italy
| | - Ivan Arisi
- Genomics Facility, European Brain Research Institute, Rome, Italy
| | - Valentina Fardella
- Department of Angiocardioneurology and Translational Medicine, IRCCS Neuromed, 86077 Pozzilli, IS, Italy
| | - Giuseppe Cifelli
- Department of Angiocardioneurology and Translational Medicine, IRCCS Neuromed, 86077 Pozzilli, IS, Italy
| | - Viviana Casagrande
- Department of Systems Medicine, University of Rome Tor Vergata, 00133 Rome, Italy
| | - Stefano Rizza
- Department of Systems Medicine, University of Rome Tor Vergata, 00133 Rome, Italy
| | - Antonino Cattaneo
- European Brain Research Institute, Rome, Italy
- Scuola Normale Superiore, Pisa, Italy
| | - Alessandro Mauriello
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, 00133 Rome, Italy
| | - Rossella Menghini
- Department of Systems Medicine, University of Rome Tor Vergata, 00133 Rome, Italy
| | - Giuseppe Lembo
- Department of Angiocardioneurology and Translational Medicine, IRCCS Neuromed, 86077 Pozzilli, IS, Italy
| | - Massimo Federici
- Department of Systems Medicine, University of Rome Tor Vergata, 00133 Rome, Italy
- Center for Atherosclerosis, Department of Medicine, Policlinico Tor Vergata, 00133 Rome, Italy
- Corresponding author. Department of Systems Medicine, University of Rome “Tor Vergata”, Via Montpellier 1, 00133 Rome, Italy. Tel.: +39 06 72596889; fax: +39 06 72596890.
| |
Collapse
|
30
|
Esposito G, Schiattarella GG, Perrino C, Cattaneo F, Pironti G, Franzone A, Gargiulo G, Magliulo F, Serino F, Carotenuto G, Sannino A, Ilardi F, Scudiero F, Brevetti L, Oliveti M, Giugliano G, Del Giudice C, Ciccarelli M, Renzone G, Scaloni A, Zambrano N, Trimarco B. Dermcidin: a skeletal muscle myokine modulating cardiomyocyte survival and infarct size after coronary artery ligation. Cardiovasc Res 2015; 107:431-41. [PMID: 26101262 DOI: 10.1093/cvr/cvv173] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/09/2014] [Accepted: 06/05/2015] [Indexed: 11/13/2022] Open
Abstract
AIMS Coronary artery disease is the leading cause of death in western countries, and its association with lower extremity peripheral artery disease (LE-PAD) represents an independent predictor of worse outcome. However, the molecular mechanisms underlying these effects are currently unknown. METHODS AND RESULTS To investigate these processes, we used in vitro approaches and several mouse models: (i) unilateral limb ischaemia by left common femoral artery ligation [peripheral ischaemia (PI), n = 38]; (ii) myocardial infarction by permanent ligation of the left descending coronary artery (MI, n = 40); (iii) MI after 5 weeks of limb ischaemia (PI + MI, n = 44); (iv) sham operation (SHAM, n = 20). Compared with MI, PI + MI hearts were characterized by a significant increase in cardiomyocyte apoptosis, larger infarct areas, and decreased cardiac function. By using a proteomic approach, we identified a ≅ 8 kDa circulating peptide, Dermcidin (DCD), secreted by ischaemic skeletal muscles, enhancing cardiomyocytes apoptosis under hypoxic conditions and infarct size after permanent coronary artery ligation. siRNA interference experiments to reduce DCD circulating levels significantly reduced infarct size and ameliorated cardiac function after MI. CONCLUSION Our data demonstrate that chronic limb ischaemia activates detrimental pathways in the ischaemic heart through humoral mechanisms of remote organ crosstalk. Thus, DCD may represent a novel important myokine modulating cardiomyocyte survival and function.
Collapse
Affiliation(s)
- Giovanni Esposito
- Division of Cardiology, Department of Advanced Biomedical Sciences, Federico II University, Via Pansini 5, Naples 80131, Italy
| | - Gabriele Giacomo Schiattarella
- Division of Cardiology, Department of Advanced Biomedical Sciences, Federico II University, Via Pansini 5, Naples 80131, Italy
| | - Cinzia Perrino
- Division of Cardiology, Department of Advanced Biomedical Sciences, Federico II University, Via Pansini 5, Naples 80131, Italy
| | - Fabio Cattaneo
- Division of Cardiology, Department of Advanced Biomedical Sciences, Federico II University, Via Pansini 5, Naples 80131, Italy
| | - Gianluigi Pironti
- Division of Cardiology, Department of Advanced Biomedical Sciences, Federico II University, Via Pansini 5, Naples 80131, Italy Department of Medicine, Duke University Medical Center, Durham, USA
| | - Anna Franzone
- Division of Cardiology, Department of Advanced Biomedical Sciences, Federico II University, Via Pansini 5, Naples 80131, Italy
| | - Giuseppe Gargiulo
- Division of Cardiology, Department of Advanced Biomedical Sciences, Federico II University, Via Pansini 5, Naples 80131, Italy
| | - Fabio Magliulo
- Division of Cardiology, Department of Advanced Biomedical Sciences, Federico II University, Via Pansini 5, Naples 80131, Italy
| | - Federica Serino
- Division of Cardiology, Department of Advanced Biomedical Sciences, Federico II University, Via Pansini 5, Naples 80131, Italy
| | - Giuseppe Carotenuto
- Division of Cardiology, Department of Advanced Biomedical Sciences, Federico II University, Via Pansini 5, Naples 80131, Italy
| | - Anna Sannino
- Division of Cardiology, Department of Advanced Biomedical Sciences, Federico II University, Via Pansini 5, Naples 80131, Italy
| | - Federica Ilardi
- Division of Cardiology, Department of Advanced Biomedical Sciences, Federico II University, Via Pansini 5, Naples 80131, Italy
| | - Fernando Scudiero
- Division of Cardiology, Department of Advanced Biomedical Sciences, Federico II University, Via Pansini 5, Naples 80131, Italy
| | - Linda Brevetti
- Division of Cardiology, Department of Advanced Biomedical Sciences, Federico II University, Via Pansini 5, Naples 80131, Italy
| | - Marco Oliveti
- Division of Cardiology, Department of Advanced Biomedical Sciences, Federico II University, Via Pansini 5, Naples 80131, Italy
| | | | - Carmine Del Giudice
- Division of Cardiology, Department of Advanced Biomedical Sciences, Federico II University, Via Pansini 5, Naples 80131, Italy
| | - Michele Ciccarelli
- Department of Medicine and Surgery, University of Salerno, Naples, Italy
| | - Giovanni Renzone
- Proteomics & Mass Spectrometry Laboratory, ISPAAM, National Research Council, Naples, Italy
| | - Andrea Scaloni
- Proteomics & Mass Spectrometry Laboratory, ISPAAM, National Research Council, Naples, Italy
| | - Nicola Zambrano
- Department of Molecular Medicine and Medical Biotechnologies/CEINGE-Advanced Biotechnology, Federico II University, Naples, Italy
| | - Bruno Trimarco
- Division of Cardiology, Department of Advanced Biomedical Sciences, Federico II University, Via Pansini 5, Naples 80131, Italy
| |
Collapse
|
31
|
Increased cardiac remodeling in cardiac-specific Flt-1 receptor knockout mice with pressure overload. Cell Tissue Res 2015; 362:389-98. [PMID: 26017635 DOI: 10.1007/s00441-015-2209-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2014] [Accepted: 05/05/2015] [Indexed: 12/14/2022]
Abstract
Vascular endothelial growth factor (VEGF) inhibition has previously been shown to have damaging effects on the heart. Because the role of Flt-1 (a phosphotyrosine kinase receptor for VEGF) in cardiac function and hypertrophy is unclear, we generated mice lacking Flt-1 only in their cardiomyocytes (Flt-1 KO). The hearts from 8- to 10-week-old mice were measured by using echocardiography and histology. No significant differences were seen in fraction shortening, cross-sectional area of cardiomyocytes, and interstitial collagen fraction between littermate controls and KO mice at baseline. To test the hypothesis that Flt-1 is involved in cardiac remodeling, we performed transverse aorta constriction (TAC) by ligating the transverse ascending aorta. Four weeks after TAC, echocardiography of the mice was performed, and the hearts were excised for pathological analysis and Western blotting. No difference in mortality was found between Flt-1 KO mice and controls; however, KO mice showed a greater cardiomyocyte cross-sectional area and interstitial collagen fraction than controls. Western blotting indicated that AKT was activated less in Flt-1 KO hearts after TAC compared with that in control hearts. Thus, Flt-1 deletion in cardiomyocytes increased hypertrophy, fibrosis, and regression of AKT phosphorylation. Our study suggests that Flt-1 plays a critical role in cardiac hypertrophy induced by pressure overload via the activation of AKT, which seems to be cardioprotective.
Collapse
|
32
|
Peruzzi M, Biondi-Zoccai G, Abbate A, Giordano A, Frati G. Commentary: which comes first, the phoenix or the flame? Reflections on the role of inflammation in patients undergoing lower limb revascularization for peripheral artery disease. J Endovasc Ther 2015; 22:240-2. [PMID: 25809369 DOI: 10.1177/1526602815573217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
| | - Giuseppe Biondi-Zoccai
- Sapienza University of Rome, Latina, Italy Eleonora Lorillard Spencer Cenci Foundation, Rome, Italy
| | | | - Arturo Giordano
- Presidio Ospedaliero Pineta Grande, Castel Volturno, Italy Casa di Salute Santa Lucia, San Giuseppe Vesuviano, Italy
| | - Giacomo Frati
- Sapienza University of Rome, Latina, Italy IRCCS Neuromed, Pozzilli, Italy
| |
Collapse
|
33
|
The muscle-specific chaperone protein melusin is a potent cardioprotective agent. Basic Res Cardiol 2015; 110:10. [DOI: 10.1007/s00395-015-0466-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/09/2014] [Revised: 01/01/2015] [Accepted: 01/16/2015] [Indexed: 01/12/2023]
|
34
|
Zhu B, Zhang P, Zeng P, Huang Z, Dong TF, Gui YK, Zhang GW. Tissue factor pathway inhibitor-2 silencing promotes hepatocellular carcinoma cell invasion in vitro. Anat Rec (Hoboken) 2014; 296:1708-16. [PMID: 24591127 DOI: 10.1002/ar.22789] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2013] [Accepted: 06/30/2013] [Indexed: 11/09/2022]
Abstract
Hepatocellular carcinoma (HCC) is a leading cause of cancer-related death in the world and metastasis is an essential aspect of HCC progression. Tissue factor pathway inhibitor-2 (TFPI-2) has been implicated as a potential suppressor gene to regulate tumor invasion and metastasis. In this study, we silenced TFPI-2 in the HCC cell line MHCC97-L and evaluated the role of TFPI-2 in cell invasion and its impact on gene expression. We showed in this study that stable TFPI-2 downregulation in MHCC97-L cells resulted in increased cell adhesion and invasion. We also showed that mRNA and protein expression levels of MMP-1/3, CD44, and ICAM-1 were increased, while those of MMP-2/9 were not changed by TFPI-2 silencing. Furthermore, silencing of TFPI-2 caused increased Akt phosphorylation level and NF-κB transcription in MHCC97-L cells. In conclusion, this study confirms that TFPI-2 downregulation can contribute to tumor invasion of HCC cells through alteration in the expression of metastasis-related genes.
Collapse
Affiliation(s)
- Bin Zhu
- Department of Infectious Diseases, First Affiliated Hospital of Xinxiang Medical University, Xinxiang, 453100, China
| | | | | | | | | | | | | |
Collapse
|
35
|
The angiogenic factor PlGF mediates a neuroimmune interaction in the spleen to allow the onset of hypertension. Immunity 2014; 41:737-52. [PMID: 25517614 DOI: 10.1016/j.immuni.2014.11.002] [Citation(s) in RCA: 86] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2014] [Accepted: 09/23/2014] [Indexed: 12/12/2022]
Abstract
Hypertension is a health problem affecting over 1 billion people worldwide. How the immune system gets activated under hypertensive stimuli to contribute to blood pressure elevation is a fascinating enigma. Here we showed a splenic role for placental growth factor (PlGF), which accounts for the onset of hypertension, through immune system modulation. PlGF repressed the expression of the protein Timp3 (tissue inhibitor of metalloproteinases 3), through the transcriptional Sirt1-p53 axis. Timp3 repression allowed costimulation of T cells and their deployment toward classical organs involved in hypertension. We showed that the spleen is an essential organ for the development of hypertension through a noradrenergic drive mediated by the celiac ganglion efferent. Overall, we demonstrate that PlGF mediates the neuroimmune interaction in the spleen, organizing a unique and nonredundant response that allows the onset of hypertension.
Collapse
|
36
|
Stöhr R, Cavalera M, Menini S, Mavilio M, Casagrande V, Rossi C, Urbani A, Cardellini M, Pugliese G, Menghini R, Federici M. Loss of TIMP3 exacerbates atherosclerosis in ApoE null mice. Atherosclerosis 2014; 235:438-43. [DOI: 10.1016/j.atherosclerosis.2014.05.946] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2014] [Revised: 05/17/2014] [Accepted: 05/23/2014] [Indexed: 12/20/2022]
|
37
|
Long-term home noninvasive mechanical ventilation increases systemic inflammatory response in chronic obstructive pulmonary disease: a prospective observational study. Mediators Inflamm 2014; 2014:503145. [PMID: 24976687 PMCID: PMC4058212 DOI: 10.1155/2014/503145] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2014] [Revised: 05/08/2014] [Accepted: 05/11/2014] [Indexed: 02/05/2023] Open
Abstract
Background. Long-term home noninvasive mechanical ventilation (NIV) is beneficial in COPD but its impact on inflammation is unknown. We assessed the hypothesis that NIV modulates systemic and pulmonary inflammatory biomarkers in stable COPD. Methods. Among 610 patients referred for NIV, we shortlisted those undergoing NIV versus oxygen therapy alone, excluding subjects with comorbidities or non-COPD conditions. Sputum and blood samples were collected after 3 months of clinical stability and analyzed for levels of human neutrophil peptides (HNP), interleukin-6 (IL-6), interleukin-10 (IL-10), and tumor necrosis factor-alpha (TNF-alpha). Patients underwent a two-year follow-up. Unadjusted, propensity-matched, and pH-stratified analyses were performed. Results. Ninety-three patients were included (48 NIV, 45 oxygen), with analogous baseline features. Sputum analysis showed similar HNP, IL-6, IL-10, and TNF-alpha levels (P > 0.5). Conversely, NIV group exhibited higher HNP and IL-6 systemic levels (P < 0.001) and lower IL-10 concentrations (P < 0.001). Subjects undergoing NIV had a significant reduction of rehospitalizations during follow-up compared to oxygen group (P = 0.005). These findings were confirmed after propensity matching and pH stratification. Conclusions. These findings challenge prior paradigms based on the assumption that pulmonary inflammation is per se detrimental. NIV beneficial impact on lung mechanics may overcome the potential unfavorable effects of an increased inflammatory state.
Collapse
|
38
|
Jia ZB, Tian H, Kang K, Miao HZ, Liu KY, Jiang SL, Wang LP. Expression of the tissue inhibitor of metalloproteinase-3 by transplanted VSMCs modifies heart structure and function after myocardial infarction. Transpl Immunol 2014; 30:149-58. [PMID: 24727088 DOI: 10.1016/j.trim.2014.03.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2014] [Revised: 03/28/2014] [Accepted: 03/31/2014] [Indexed: 10/25/2022]
Abstract
OBJECTIVES Extracellular matrix (ECM) remodelling is a critical aspect of cardiac remodelling following myocardial infarction. Tissue inhibitors of metalloproteinases (TIMPs) are physiological inhibitors of matrix metalloproteinases (MMPs) that degrade the ECM proteins. TIMP-3 is highly expressed in the heart and is markedly downregulated in patients with ischaemic cardiomyopathy. Cell-based gene therapy can enhance the effects of cell transplantation by temporally and spatially regulating the release of the gene product. The purpose of this study was to investigate the role of TIMP-3 gene-transfected vascular smooth muscle cells (VSMCs) in modifying heart structure and function in rats when transplanted 3days after myocardial infarction (MI). METHODS Anesthetised rats were subjected to coronary artery ligation followed 3days later by thoracotomy and transplantation of TIMP-3 gene-transfected VSMCs, untransfected VSMCs or medium injected directly into the ischaemic myocardium. We assessed left ventricular structure and function by echocardiography and morphometry, and measured the levels of myocardial matrix metalloproteinase-2 and -9 (MMP-2, MMP-9), TIMP-3 and tumour necrosis factor-α (TNF-α) at 4weeks post-myocardial infarction. RESULTS Transplantation of TIMP-3 gene-transfected VSMCs and untransfected VSMCs significantly decreased scar expansion and ventricular dilatation 25days post-transplantation (4weeks after MI). MMPs and TNF-α levels were reduced in the transplantation groups when compared to the group that was given an injection of medium only. Transplantation of TIMP-3 gene-transfected VSMCs was more effective in preventing progressive cardiac dysfunction, ventricular dilatation and in reducing MMP-2, MMP-9 and TNF-α levels when compared to the transplantation of untransfected VSMCs. CONCLUSIONS TIMP-3 gene transfection was associated with attenuated left ventricular dilation and recovery of systolic function after MI compared with the control. TIMP-3 transfection enhanced the effects of transplanted VSMCs in rats by inhibiting matrix degradation and inflammatory cytokine expression, leading to improved myocardial remodelling.
Collapse
Affiliation(s)
- Zhi-Bo Jia
- Department of Cardiovascular Surgery, Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Hai Tian
- Department of Cardiovascular Surgery, Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Kai Kang
- Department of Cardiovascular Surgery, Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Hong-Zhi Miao
- Department of Cardiothoracic Surgery, First Hospital of Qiqihaer, Qiqihaer, China
| | - Kai-Yu Liu
- Department of Cardiovascular Surgery, Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Shu-Lin Jiang
- Department of Cardiovascular Surgery, Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Li-Ping Wang
- Department of Geriatrics, The Second Affiliated Hospital of Harbin Medical University, Harbin, China.
| |
Collapse
|
39
|
Marullo AGM, Peruzzi M, Cavarretta E, Biondi-Zoccai G, Frati G. Left ventricular assist devices in chronic heart failure: more questions than answers? J Am Coll Cardiol 2013; 62:2257. [PMID: 24013050 DOI: 10.1016/j.jacc.2013.06.060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2013] [Accepted: 06/17/2013] [Indexed: 02/05/2023]
|
40
|
Unsöld B, Kaul A, Sbroggiò M, Schubert C, Regitz-Zagrosek V, Brancaccio M, Damilano F, Hirsch E, Van Bilsen M, Munts C, Sipido K, Bito V, Detre E, Wagner NM, Schäfer K, Seidler T, Vogt J, Neef S, Bleckmann A, Maier LS, Balligand JL, Bouzin C, Ventura-Clapier R, Garnier A, Eschenhagen T, El-Armouche A, Knöll R, Tarone G, Hasenfuß G. Melusin protects from cardiac rupture and improves functional remodelling after myocardial infarction. Cardiovasc Res 2013; 101:97-107. [DOI: 10.1093/cvr/cvt235] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Abstract
Aims
Melusin is a muscle-specific chaperone protein whose expression is required for a compensatory hypertrophy response to pressure overload. Here, we evaluated the consequences of melusin overexpression in the setting of myocardial infarction (MI) using a comprehensive multicentre approach.
Methods and results
Mice overexpressing melusin in the heart (TG) and wild-type controls (WT) were subjected to permanent LAD ligation and both the acute response (Day 3) and subsequent remodelling (2 weeks) were examined. Mortality in wild-type mice was significant between Days 3 and 7, primarily due to cardiac rupture, but melusin's overexpression strongly reduced mortality (43.2% in wild-type vs. 27.3% in melusin-TG, P = 0.005). At Day 3 after MI, a time point preceding the mortality peak, TG hearts had increased heat shock protein 70 expression, increased ERK1/2 signalling, reduced cardiomyocyte hyper-contractility and inflammatory cell infiltrates, and increased matricellular protein expression in the infarcted area.
At 2 weeks after MI, melusin overexpression conferred a favourable adaptive remodelling characterized by reduced left ventricle dilatation and better preserved contractility in the presence of a comparable degree of hypertrophy. Adaptive remodelling in melusin TG mice was characterized by reduced apoptosis and fibrosis as well as increased cardiomyocyte contractility.
Conclusions
Consistent with its function as a chaperone protein, melusin overexpression exerts a dual protective action following MI reducing an array of maladaptive processes. In the early phase after MI, reduced inflammation and myocyte remodelling protect against cardiac rupture. Chronically, reduced myocyte loss and matrix remodelling, with preserved myocyte contractility, confer adaptive LV remodelling.
Collapse
Affiliation(s)
- Bernhard Unsöld
- Department of Cardiology, University of Göttingen, Heart Research Center Göttingen, Göttingen, Germany
| | - Axel Kaul
- Department of Cardiology, University of Göttingen, Heart Research Center Göttingen, Göttingen, Germany
| | - Mauro Sbroggiò
- Dipartimento di Biotecnologie Molecolari e Scienze per la Salute, Università di Torino, Turin, Italy
| | - Carola Schubert
- Institute of Gender in Medicine, Charité-Universitätsmedizin, Berlin, Germany
| | | | - Mara Brancaccio
- Dipartimento di Biotecnologie Molecolari e Scienze per la Salute, Università di Torino, Turin, Italy
| | - Federico Damilano
- Dipartimento di Biotecnologie Molecolari e Scienze per la Salute, Università di Torino, Turin, Italy
| | - Emilio Hirsch
- Dipartimento di Biotecnologie Molecolari e Scienze per la Salute, Università di Torino, Turin, Italy
| | - Marc Van Bilsen
- Department of Physiology, Cardiovascular Research Institute Maastricht, Maastricht University, Maastricht, the Netherlands
| | - Chantal Munts
- Department of Physiology, Cardiovascular Research Institute Maastricht, Maastricht University, Maastricht, the Netherlands
| | - Karin Sipido
- Division of Experimental Cardiology, Department of Cardiovascular Medicine, University of Leuven, Leuven, Belgium
| | - Virginie Bito
- Division of Experimental Cardiology, Department of Cardiovascular Medicine, University of Leuven, Leuven, Belgium
| | - Elke Detre
- Division of Experimental Cardiology, Department of Cardiovascular Medicine, University of Leuven, Leuven, Belgium
| | - Nana Maria Wagner
- Department of Cardiology, University of Göttingen, Heart Research Center Göttingen, Göttingen, Germany
| | - Katrin Schäfer
- Department of Cardiology, University of Göttingen, Heart Research Center Göttingen, Göttingen, Germany
| | - Tim Seidler
- Department of Cardiology, University of Göttingen, Heart Research Center Göttingen, Göttingen, Germany
| | - Johannes Vogt
- Department of Cardiology, University of Göttingen, Heart Research Center Göttingen, Göttingen, Germany
| | - Stefan Neef
- Department of Cardiology, University of Göttingen, Heart Research Center Göttingen, Göttingen, Germany
| | - Annalen Bleckmann
- Department of Hematology and Oncology, University of Göttingen, Göttingen, Germany
| | - Lars S. Maier
- Department of Cardiology, University of Göttingen, Heart Research Center Göttingen, Göttingen, Germany
| | - Jean Luc Balligand
- Pharmacology and Therapeutics, Institut de Recherche Expérimentale et Clinique (IREC), Université Catholique de Louvain, Brussels, Belgium
| | - Caroline Bouzin
- Pharmacology and Therapeutics, Institut de Recherche Expérimentale et Clinique (IREC), Université Catholique de Louvain, Brussels, Belgium
| | | | | | - Thomas Eschenhagen
- Department of Experimental Pharmacology and Toxicology, University Medical Center Hamburg Eppendorf, Hamburg, Germany
| | - Ali El-Armouche
- Department of Pharmacology, University of Göttingen, Heart Research Center Göttingen, Göttingen, Germany
| | - Ralph Knöll
- Myocardial Genetics, Imperial College London, London, UK
| | - Guido Tarone
- Dipartimento di Biotecnologie Molecolari e Scienze per la Salute, Università di Torino, Turin, Italy
| | - Gerd Hasenfuß
- Department of Cardiology, University of Göttingen, Heart Research Center Göttingen, Göttingen, Germany
| |
Collapse
|
41
|
A novel closed-chest porcine model of chronic ischemic heart failure suitable for experimental research in cardiovascular disease. BIOMED RESEARCH INTERNATIONAL 2013; 2013:410631. [PMID: 24151600 PMCID: PMC3787582 DOI: 10.1155/2013/410631] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/18/2013] [Accepted: 08/12/2013] [Indexed: 02/05/2023]
Abstract
Cardiac pathologies are among the leading causes of mortality and morbidity in industrialized countries, with myocardial infarction (MI) representing one of the major conditions leading to heart failure (HF). Hitherto, the development of consistent, stable, and reproducible models of closed-chest MI in large animals, meeting the clinical realism of a patient with HF subsequent to chronic ischemic necrosis, has not been successful. We hereby report the design and ensuing application of a novel porcine experimental model of closed-chest chronic ischemia suitable for biomedical research, mimicking post-MI HF. We also emphasize the key procedural steps involved in replicating this unprecedented model, from femoral artery and vein catheterization to MI induction by permanent occlusion of the left anterior descending coronary artery through superselective deployment of platinum-nylon coils, as well as endomyocardial biopsy sampling for histologic analysis and cell harvesting. Our model could indeed represent a valuable contribution and tool for translational research, providing precious insights to understand and overcome the many hurdles concerning, and currently quenching, the preclinical steps mandatory for the clinical translation of new cardiovascular technologies for personalized HF treatments.
Collapse
|
42
|
Cathelicidin antimicrobial peptide inhibits fibroblast migration via P2X7 receptor signaling. Biochem Biophys Res Commun 2013; 437:609-14. [DOI: 10.1016/j.bbrc.2013.07.010] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2013] [Accepted: 07/04/2013] [Indexed: 11/23/2022]
|
43
|
Abstract
Heart failure is a devastating condition, the progression of which culminates in a mismatch of oxygen supply and demand, with limited options for treatment. Heart failure has several underlying causes including, but not limited to, ischaemic heart disease, valvular dysfunction, and hypertensive heart disease. Dysfunctional blood vessel formation is a major problem in advanced heart failure, regardless of the aetiology. Vascular endothelial growth factor (VEGF) is the cornerstone cytokine involved in the formation of new vessels. A multitude of investigations, at both the preclinical and clinical levels, have garnered valuable information on the potential utility of targeting VEGF as a treatment option for heart failure. However, clinical trials of VEGF gene therapy in patients with coronary artery disease or peripheral artery disease have not, to date, demonstrated clinical benefit. In this Review, we outline the biological characterization of VEGF, and examine the evidence for its potential therapeutic application, including the novel concept of VEGF as adjuvant therapy to stem cell transplantation, in patients with heart failure.
Collapse
|
44
|
Han J, Gerstenhaber JA, Lazarovici P, Lelkes PI. Tissue Factor Activity and ECM-Related Gene Expression in Human Aortic Endothelial Cells Grown on Electrospun Biohybrid Scaffolds. Biomacromolecules 2013; 14:1338-48. [DOI: 10.1021/bm400450m] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Jingjia Han
- School
of Biomedical
Engineering, Science and Health Systems, Drexel University, Philadelphia, Pennsylvania 19104,
United States
| | - Jonathan A. Gerstenhaber
- School
of Biomedical
Engineering, Science and Health Systems, Drexel University, Philadelphia, Pennsylvania 19104,
United States
- Department of Bioengineering, College of Engineering, Temple University, Philadelphia, Pennsylvania 19122,
United States
| | - Philip Lazarovici
- School
of Biomedical
Engineering, Science and Health Systems, Drexel University, Philadelphia, Pennsylvania 19104,
United States
- School of Pharmacy
Institute for Drug Research, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 91120,
Israel
| | - Peter I. Lelkes
- School
of Biomedical
Engineering, Science and Health Systems, Drexel University, Philadelphia, Pennsylvania 19104,
United States
- Department of Bioengineering, College of Engineering, Temple University, Philadelphia, Pennsylvania 19122,
United States
| |
Collapse
|
45
|
Accornero F, Molkentin JD. Placental growth factor as a protective paracrine effector in the heart. Trends Cardiovasc Med 2013; 21:220-4. [PMID: 22902069 DOI: 10.1016/j.tcm.2012.05.014] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
In response to injury, the myocardium hypertrophies in an attempt to maintain or augment function, which is associated with ventricular remodeling and changes in capillary density. During the compensatory phase of the hypertrophic response, the myocardium maintains output and is characterized by a coordinated neo-angiogenic and fibrotic response that supports cardiomyocyte health and survival. Emerging evidence shows that paracrine-mediated cross talk between cardiac myocytes and nonmyocytes within the heart is critical for cardiac adaptation to stress, including the extent of hypertrophy and angiogenesis. This review discusses recent results indicating that placental growth factor (PGF; also called PlGF), a secreted factor within the vascular endothelial growth factor superfamily, is a pivotal mediator of adaptive cardiac hypertrophy and beneficial angiogenesis through its ability to coordinate the intercellular communication between different cell types in the heart.
Collapse
Affiliation(s)
- Federica Accornero
- Department of Pediatrics, Division of Molecular Cardiovascular Biology and the Howard Hughes Medical Institute, University of Cincinnati, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | | |
Collapse
|
46
|
Liu X, Claus P, Wu M, Reyns G, Verhamme P, Pokreisz P, Vandenwijngaert S, Dubois C, Vanhaecke J, Verbeken E, Bogaert J, Janssens S. Placental growth factor increases regional myocardial blood flow and contractile function in chronic myocardial ischemia. Am J Physiol Heart Circ Physiol 2013; 304:H885-94. [PMID: 23316060 DOI: 10.1152/ajpheart.00587.2012] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Placental growth factor (PlGF) has a distinct biological phenotype with a predominant proangiogenic role in disease without affecting quiescent vessels in healthy organs. We tested whether systemic administration of recombinant human (rh)PlGF improves regional myocardial blood flow (MBF) and systolic function recovery in a porcine chronic myocardial ischemia model. We implanted a flow-limiting stent in the proximal left anterior descending coronary artery and measured systemic hemodynamics, regional myocardial function using MRI, and blood flow using colored microspheres 4 wk later. Animals were then randomized in a blinded way to receive an infusion of rhPlGF (15 μg·kg(-1)·day(-1), n = 9) or PBS (control; n = 10) for 2 wk. At 8 wk, myocardial perfusion and function were reassessed. Infusion of rhPlGF transiently increased PlGF serum levels >30-fold (1,153 ± 180 vs. 33 ± 18 pg/ml at baseline, P < 0.001) without affecting systemic hemodynamics. From 4 to 8 wk, rhPlGF increased regional MBF from 0.46 ± 0.11 to 0.85 ± 0.16 ml·min(-1)·g(-1), with a concomitant increase in systolic wall thickening from 11 ± 3% to 26 ± 5% in the ischemic area. In control animals, no significant changes from 4 to 8 wk were observed (MBF: 0.45 ± 0.07 to 0.49 ± 0.08 ml·min(-1)·g(-1) and systolic wall thickening: 14 ± 4% to 18 ± 1%). rhPlGF-induced functional improvement was accompanied by increased myocardial neovascularization, enhanced glycogen utilization, and reduced oxidative stress and cardiomyocyte apoptosis in the ischemic zone. In conclusion, systemic rhPlGF infusion significantly enhances regional blood flow and contractile function of the chronic ischemic myocardium without adverse effects. PlGF protein infusion may represent an attractive therapeutic strategy to increase myocardial perfusion and energetics in chronic ischemic cardiomyopathy.
Collapse
Affiliation(s)
- Xiaoshun Liu
- Division of Clinical Cardiology and Department of Cardiovascular Sciences, Gasthuisberg University Hospitals, Leuven, Belgium
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Abstract
Placental growth factor (PlGF) belongs to the vascular endothelial growth factor family and is one of the most interesting candidates as an "angiogenic cytokine," capable of not only controlling angiogenic functions but also finely regulating the inflammatory response. Because inflammatory response and, in particular, recruitment of monocyte/macrophage lineage cells are processes strictly connected to the cardiovascular system in health and disease, PlGF appears to be an intriguing player in the interplay of these phenomena. This review discusses recent findings unraveling novel functions of PlGF in ruling the inflammatory response during cardiac remodeling to pressure overload and the ensuing therapeutic implications and future directions for research.
Collapse
|
48
|
De Falco S. The discovery of placenta growth factor and its biological activity. Exp Mol Med 2012; 44:1-9. [PMID: 22228176 DOI: 10.3858/emm.2012.44.1.025] [Citation(s) in RCA: 295] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Angiogenesis is a complex biological phenomenon crucial for a correct embryonic development and for post-natal growth. In adult life, it is a tightly regulated process confined to the uterus and ovary during the different phases of the menstrual cycle and to the heart and skeletal muscles after prolonged and sustained physical exercise. Conversly, angiogenesis is one of the major pathological changes associated with several complex diseases like cancer, atherosclerosis, arthritis, diabetic retinopathy and age-related macular degeneration. Among the several molecular players involved in angiogenesis, some members of VEGF family, VEGF-A, VEGF-B and placenta growth factor (PlGF), and the related receptors VEGF receptor 1 (VEGFR-1, also known as Flt-1) and VEGF receptor 2 (VEGFR-2, also known as Flk-1 in mice and KDR in human) have a decisive role. In this review, we describe the discovery and molecular characteristics of PlGF, and discuss the biological role of this growth factor in physiological and pathological conditions.
Collapse
Affiliation(s)
- Sandro De Falco
- Angiogenesis Laboratory and Stem Cell Fate Laboratory, Institute of Genetics and Biophysics 'Adriano Buzzati-Traverso', Napoli, Italy.
| |
Collapse
|