1
|
Ru Q, Li Y, Chen L, Wu Y, Min J, Wang F. Iron homeostasis and ferroptosis in human diseases: mechanisms and therapeutic prospects. Signal Transduct Target Ther 2024; 9:271. [PMID: 39396974 PMCID: PMC11486532 DOI: 10.1038/s41392-024-01969-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 08/08/2024] [Accepted: 09/02/2024] [Indexed: 10/15/2024] Open
Abstract
Iron, an essential mineral in the body, is involved in numerous physiological processes, making the maintenance of iron homeostasis crucial for overall health. Both iron overload and deficiency can cause various disorders and human diseases. Ferroptosis, a form of cell death dependent on iron, is characterized by the extensive peroxidation of lipids. Unlike other kinds of classical unprogrammed cell death, ferroptosis is primarily linked to disruptions in iron metabolism, lipid peroxidation, and antioxidant system imbalance. Ferroptosis is regulated through transcription, translation, and post-translational modifications, which affect cellular sensitivity to ferroptosis. Over the past decade or so, numerous diseases have been linked to ferroptosis as part of their etiology, including cancers, metabolic disorders, autoimmune diseases, central nervous system diseases, cardiovascular diseases, and musculoskeletal diseases. Ferroptosis-related proteins have become attractive targets for many major human diseases that are currently incurable, and some ferroptosis regulators have shown therapeutic effects in clinical trials although further validation of their clinical potential is needed. Therefore, in-depth analysis of ferroptosis and its potential molecular mechanisms in human diseases may offer additional strategies for clinical prevention and treatment. In this review, we discuss the physiological significance of iron homeostasis in the body, the potential contribution of ferroptosis to the etiology and development of human diseases, along with the evidence supporting targeting ferroptosis as a therapeutic approach. Importantly, we evaluate recent potential therapeutic targets and promising interventions, providing guidance for future targeted treatment therapies against human diseases.
Collapse
Affiliation(s)
- Qin Ru
- Institute of Intelligent Sport and Proactive Health, Department of Health and Physical Education, Jianghan University, Wuhan, China
| | - Yusheng Li
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Lin Chen
- Institute of Intelligent Sport and Proactive Health, Department of Health and Physical Education, Jianghan University, Wuhan, China
| | - Yuxiang Wu
- Institute of Intelligent Sport and Proactive Health, Department of Health and Physical Education, Jianghan University, Wuhan, China.
| | - Junxia Min
- The First Affiliated Hospital, Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, China.
| | - Fudi Wang
- The Second Affiliated Hospital, School of Public Health, State Key Laboratory of Experimental Hematology, Zhejiang University School of Medicine, Hangzhou, China.
| |
Collapse
|
2
|
Lv S, Zhao K, Li R, Meng C, Li G, Yin F. EGFR-Activated JAK2/STAT3 Pathway Confers Neuroprotection in Spinal Cord Ischemia-Reperfusion Injury: Evidence from High-Throughput Sequencing and Experimental Models. Mol Neurobiol 2024; 61:646-661. [PMID: 37656314 DOI: 10.1007/s12035-023-03548-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Accepted: 07/24/2023] [Indexed: 09/02/2023]
Abstract
This study aimed to investigate the molecular mechanisms underlying spinal cord ischemia-reperfusion (SCI/R) injury. Through RNA-Seq high-throughput sequencing and bioinformatics analysis, we found that EGFR was downregulated in the spinal cord of SCI/R mice and may function via mediating the JAK2/STAT3 signaling pathway. In vitro cell experiments indicated that overexpression of EGFR activated the JAK2/STAT3 signaling pathway and reduced neuronal apoptosis levels. In vivo animal experiments further confirmed this conclusion, suggesting that EGFR inhibits SCI/R-induced neuronal apoptosis by activating the JAK2/STAT3 signaling pathway, thereby improving SCI/R-induced spinal cord injury in mice. This study revealed the molecular mechanisms of SCI/R injury and provided new therapeutic strategies for treating neuronal apoptosis.
Collapse
Affiliation(s)
- Shijie Lv
- Department of Spine Surgery, China-Japan Union Hospital of Jilin University, No. 126, Xiantai Street, Changchun, 130033, People's Republic of China
| | - Kunchi Zhao
- Department of Spine Surgery, China-Japan Union Hospital of Jilin University, No. 126, Xiantai Street, Changchun, 130033, People's Republic of China
| | - Ran Li
- Department of Spine Surgery, China-Japan Union Hospital of Jilin University, No. 126, Xiantai Street, Changchun, 130033, People's Republic of China
| | - Chunyang Meng
- Department of Spine Surgery, China-Japan Union Hospital of Jilin University, No. 126, Xiantai Street, Changchun, 130033, People's Republic of China
| | - Guangchun Li
- Department of Orthopedics, Jilin Province People's Hospital, Changchun, 130021, People's Republic of China
| | - Fei Yin
- Department of Spine Surgery, China-Japan Union Hospital of Jilin University, No. 126, Xiantai Street, Changchun, 130033, People's Republic of China.
| |
Collapse
|
3
|
Xu T, Gao P, Huang Y, Wu M, Yi J, Zhou Z, Zhao X, Jiang T, Liu H, Qin T, Yang Z, Wang X, Bao T, Chen J, Zhao S, Yin G. Git1-PGK1 interaction achieves self-protection against spinal cord ischemia-reperfusion injury by modulating Keap1/Nrf2 signaling. Redox Biol 2023; 62:102682. [PMID: 36963288 PMCID: PMC10053403 DOI: 10.1016/j.redox.2023.102682] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 03/13/2023] [Accepted: 03/17/2023] [Indexed: 03/22/2023] Open
Abstract
Spinal cord ischemia-reperfusion (IR) injury (SCIRI) is a significant secondary injury that causes damage to spinal cord neurons, leading to the impairment of spinal cord sensory and motor functions. Excessive reactive oxygen species (ROS) production is considered one critical mechanism of neuron damage in SCIRI. Nonetheless, the molecular mechanisms underlying the resistance of neurons to ROS remain elusive. Our study revealed that the deletion of Git1 in mice led to poor recovery of spinal cord motor function after SCIRI. Furthermore, we discovered that Git1 has a beneficial effect on neuron resistance to ROS production. Mechanistically, Git1 interacted with PGK1, regulated PGK1 phosphorylation at S203, and affected the intermediate products of glycolysis in neurons. The influence of Git1 on glycolysis regulates the dimerization of Keap1, which leads to changes in Nrf2 ubiquitination and plays a role in resisting ROS. Collectively, we show that Git1 regulates the Keap1/Nrf2 axis to resist ROS in a PGK1-dependent manner and thus is a potential therapeutic target for SCIRI.
Collapse
Affiliation(s)
- Tao Xu
- Department of Orthopedics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210029, China; Division of Spine Surgery, Department of Orthopedic Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School Nanjing, 210008, China; Jiangsu Institute of Functional Reconstruction and Rehabilitation, Nanjing, Jiangsu, 210029, China
| | - Peng Gao
- Department of Orthopedics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210029, China; Jiangsu Institute of Functional Reconstruction and Rehabilitation, Nanjing, Jiangsu, 210029, China
| | - Yifan Huang
- Department of Orthopedics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210029, China; Jiangsu Institute of Functional Reconstruction and Rehabilitation, Nanjing, Jiangsu, 210029, China
| | - Mengyuan Wu
- Department of Orthopedics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210029, China; Jiangsu Institute of Functional Reconstruction and Rehabilitation, Nanjing, Jiangsu, 210029, China
| | - Jiang Yi
- Department of Orthopedics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210029, China; Jiangsu Institute of Functional Reconstruction and Rehabilitation, Nanjing, Jiangsu, 210029, China
| | - Zheng Zhou
- Department of Emergency Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, Jiangsu, China; Jiangsu Institute of Functional Reconstruction and Rehabilitation, Nanjing, Jiangsu, 210029, China
| | - Xuan Zhao
- Department of Orthopedics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210029, China; Jiangsu Institute of Functional Reconstruction and Rehabilitation, Nanjing, Jiangsu, 210029, China
| | - Tao Jiang
- Department of Orthopedics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210029, China; Jiangsu Institute of Functional Reconstruction and Rehabilitation, Nanjing, Jiangsu, 210029, China
| | - Hao Liu
- Department of Orthopedics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210029, China; Jiangsu Institute of Functional Reconstruction and Rehabilitation, Nanjing, Jiangsu, 210029, China
| | - Tao Qin
- Department of Orthopedics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210029, China; Jiangsu Institute of Functional Reconstruction and Rehabilitation, Nanjing, Jiangsu, 210029, China
| | - Zhenqi Yang
- Department of Orthopedics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210029, China; Jiangsu Institute of Functional Reconstruction and Rehabilitation, Nanjing, Jiangsu, 210029, China
| | - Xiaowei Wang
- Department of Orthopedics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210029, China; Jiangsu Institute of Functional Reconstruction and Rehabilitation, Nanjing, Jiangsu, 210029, China
| | - Tianyi Bao
- Department of Orthopedics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210029, China; Jiangsu Institute of Functional Reconstruction and Rehabilitation, Nanjing, Jiangsu, 210029, China
| | - Jian Chen
- Department of Orthopedics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210029, China; Jiangsu Institute of Functional Reconstruction and Rehabilitation, Nanjing, Jiangsu, 210029, China.
| | - Shujie Zhao
- Department of Orthopedics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210029, China; Jiangsu Institute of Functional Reconstruction and Rehabilitation, Nanjing, Jiangsu, 210029, China.
| | - Guoyong Yin
- Department of Orthopedics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210029, China; Jiangsu Institute of Functional Reconstruction and Rehabilitation, Nanjing, Jiangsu, 210029, China.
| |
Collapse
|
4
|
Su QS, Zhuang DL, Nasser MI, Sai X, Deng G, Li G, Zhu P. Stem Cell Therapies for Restorative Treatments of Central Nervous System Ischemia-Reperfusion Injury. Cell Mol Neurobiol 2023; 43:491-510. [PMID: 35129759 DOI: 10.1007/s10571-022-01204-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Accepted: 02/01/2022] [Indexed: 11/27/2022]
Abstract
Ischemic damage to the central nervous system (CNS) is a catastrophic postoperative complication of aortic occlusion subsequent to cardiovascular surgery that can cause brain impairment and sometimes even paraplegia. Over recent years, numerous studies have investigated techniques for protecting and revascularizing the nervous system during intraoperative ischemia; however, owing to a lack of knowledge of the physiological distinctions between the brain and spinal cord, as well as the limited availability of testing techniques and treatments for ischemia-reperfusion injury, the cause of brain and spinal cord ischemia-reperfusion injury remains poorly understood, and no adequate response steps are currently available in the clinic. Given the limited ability of the CNS to repair itself, it is of great clinical value to make full use of the proliferative and differentiation potential of stem cells to repair nerves in degenerated and necrotic regions by stem cell transplantation or mobilization, thereby introducing a novel concept for the treatment of severe CNS ischemia-reperfusion injury. This review summarizes the most recent advances in stem cell therapy for ischemia-reperfusion injury in the brain and spinal cord, aiming to advance basic research and the clinical use of stem cell therapy as a promising treatment for this condition.
Collapse
Affiliation(s)
- Qi-Song Su
- Medical Research Center, Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510100, Guangdong, China.,School of Biology and Biological Engineering, South China University of Technology, Guangzhou, 510080, Guangdong, China
| | - Dong-Lin Zhuang
- Medical Research Center, Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510100, Guangdong, China.,College of Medicine, Shantou University, Shantou, 515063, Guangdong, China
| | - Moussa Ide Nasser
- Medical Research Center, Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510100, Guangdong, China
| | - Xiyalatu Sai
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, 510515, Guangdong, China.,Affiliated Hospital of Inner Mongolia University for the Nationalities, Tongliao City, 028000, Inner Mongolia, China
| | - Gang Deng
- Medical Research Center, Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510100, Guangdong, China.,School of Medicine, South China University of Technology, Guangzhou, 510006, Guangdong, China
| | - Ge Li
- Medical Research Center, Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510100, Guangdong, China. .,School of Biology and Biological Engineering, South China University of Technology, Guangzhou, 510080, Guangdong, China.
| | - Ping Zhu
- Medical Research Center, Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510100, Guangdong, China. .,School of Biology and Biological Engineering, South China University of Technology, Guangzhou, 510080, Guangdong, China. .,College of Medicine, Shantou University, Shantou, 515063, Guangdong, China. .,Guangdong Provincial Key Laboratory of Structural Heart Disease, Guangzhou, 510100, Guangdong, China. .,The Second School of Clinical Medicine, Southern Medical University, Guangzhou, 510515, Guangdong, China. .,Affiliated Hospital of Inner Mongolia University for the Nationalities, Tongliao City, 028000, Inner Mongolia, China.
| |
Collapse
|
5
|
Liu F, Huang Y, Wang H. Rodent Models of Spinal Cord Injury: From Pathology to Application. Neurochem Res 2023; 48:340-361. [PMID: 36303082 DOI: 10.1007/s11064-022-03794-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 10/10/2022] [Accepted: 10/13/2022] [Indexed: 02/04/2023]
Abstract
Spinal cord injury (SCI) often has devastating consequences for the patient's physical, mental and occupational health. At present, there is no effective treatment for SCI, and appropriate animal models are very important for studying the pathological manifestations, injury mechanisms, and corresponding treatment. However, the pathological changes in each injury model are different, which creates difficulties in selecting appropriate models for different research purposes. In this article, we analyze various SCI models and introduce their pathological features, including inflammation, glial scar formation, axon regeneration, ischemia-reperfusion injury, and oxidative stress, and evaluate the advantages and disadvantages of each model, which is convenient for selecting suitable models for different injury mechanisms to study therapeutic methods.
Collapse
Affiliation(s)
- Fuze Liu
- Department of Orthopaedic Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, No. 1 Shuaifuyuan, Beijing, 100730, People's Republic of China
| | - Yue Huang
- Department of Orthopaedic Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, No. 1 Shuaifuyuan, Beijing, 100730, People's Republic of China
| | - Hai Wang
- Department of Orthopaedic Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, No. 1 Shuaifuyuan, Beijing, 100730, People's Republic of China.
| |
Collapse
|
6
|
Kanemaru E, Miyazaki Y, Marutani E, Ezaka M, Goto S, Ohshima E, Bloch DB, Ichinose F. Intranasal administration of polysulfide prevents neurodegeneration in spinal cord and rescues mice from delayed paraplegia after spinal cord ischemia. Redox Biol 2023; 60:102620. [PMID: 36753926 PMCID: PMC9932672 DOI: 10.1016/j.redox.2023.102620] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 01/25/2023] [Accepted: 01/29/2023] [Indexed: 02/04/2023] Open
Abstract
BACKGROUND Delayed paraplegia is a devastating complication of thoracoabdominal aortic surgery. Hydrogen sulfide (H2S) was reported to be protective in a mouse model of spinal cord ischemia and the beneficial effect of H2S has been attributed to polysulfides. The objective of this study was to investigate the effects of polysulfides on delayed paraplegia after spinal cord ischemia. METHODS AND RESULTS Spinal cord ischemia was induced in male and female C57BL/6J mice by clamping the aortic arch and the left subclavian artery. Glutathione trisulfide (GSSSG), glutathione (GSH), glutathione disulfide (GSSG), or vehicle alone was administered intranasally at 0, 8, 23, and 32 h after surgery. All mice treated with vehicle alone developed paraplegia within 48 h after surgery. GSSSG, but not GSH or GSSG, prevented paraplegia in 8 of 11 male mice (73%) and 6 of 8 female mice (75%). Intranasal administration of 34S-labeled GSSSG rapidly increased 34S-labeled sulfane sulfur species in the lumbar spinal cord. In mice treated with intranasal GSSSG, there were increased sulfane sulfur levels, and decreased neurodegeneration, microglia activation, and caspase-3 activation in the lumbar spinal cord. In vitro studies using murine primary cortical neurons showed that GSSSG increased intracellular levels of sulfane sulfur. GSSSG, but not GSH or GSSG, dose-dependently improved cell viability after oxygen and glucose deprivation/reoxygenation (OGD/R). Pantethine trisulfide (PTN-SSS) also increased intracellular sulfane sulfur and improved cell viability after OGD/R. Intranasal administration of PTN-SSS, but not pantethine, prevented paraplegia in 6 of 9 male mice (66%). CONCLUSIONS Intranasal administration of polysulfides rescued mice from delayed paraplegia after transient spinal cord ischemia. The neuroprotective effects of GSSSG were associated with increased levels of polysulfides and sulfane sulfur in the lumbar spinal cord. Targeted delivery of sulfane sulfur by polysulfides may prove to be a novel approach to the treatment of neurodegenerative diseases.
Collapse
Affiliation(s)
- Eiki Kanemaru
- Anesthesia Center for Critical Care Research, Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA, 02114, USA.
| | - Yusuke Miyazaki
- Anesthesia Center for Critical Care Research, Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA, 02114, USA.
| | - Eizo Marutani
- Anesthesia Center for Critical Care Research, Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA, 02114, USA.
| | - Mariko Ezaka
- Anesthesia Center for Critical Care Research, Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA, 02114, USA.
| | - Shunsaku Goto
- Anesthesia Center for Critical Care Research, Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA, 02114, USA.
| | - Etsuo Ohshima
- Corporate Strategy Department, Kyowa Hakko Bio Co., Ltd., Tokyo, 164-0001, Japan.
| | - Donald B. Bloch
- Department of Medicine, Division of Rheumatology, Allergy and Immunology, Massachusetts General Hospital, Boston, MA, 02114, USA
| | - Fumito Ichinose
- Anesthesia Center for Critical Care Research, Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA, 02114, USA.
| |
Collapse
|
7
|
Kelani H, Nuovo G, Bratasz A, Rajan J, Efanov AA, Michaille JJ, Awad H, Tili E. MicroRNA miR-155 Activity in Mouse Choline Acetyltransferase-Positive Neurons Is Critical for the Rate of Early and Late Paraplegia After Transient Aortic Cross-Clamping. Front Mol Neurosci 2022; 15:788301. [PMID: 35185466 PMCID: PMC8850917 DOI: 10.3389/fnmol.2022.788301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2021] [Accepted: 01/10/2022] [Indexed: 11/13/2022] Open
Abstract
Aortic aneurism open repair surgery can cause spinal cord (SC) injury with 5–15% of patients developing paraparesis or paraplegia. Using a mouse model of transient aortic cross-clamping (ACC), we have previously found that the expression of proinflammatory microRNA miR-155 increases in motoneurons (MNs) and endothelial cells (ECs) of ischemic SCs, and that global miR-155 deletion decreases the percentage of paraplegia by 37.4% at 48-h post-ACC. Here, we investigated the cell-specific contribution of miR-155 in choline acetyltransferase-positive (ChAT+) neurons (that include all MNs of the SC) and ECs to SC injury after ACC. Mice lacking miR-155 in ChAT+ neurons (MN-miR-155-KO mice) developed 24.6% less paraplegia than control mice at 48-h post-ACC. In contrast, mice lacking miR-155 in ECs (ECs-miR-155-KO mice) experienced the same percentage of paraplegia as control mice, despite presenting smaller central cord edema. Unexpectedly, mice overexpressing miR-155 in ChAT+ neurons were less likely than control mice to develop early paraplegia during the first day post-ACC, however they reached the same percentage of paraplegia at 48-h. In addition, all mice overexpressing miR-155 in ECs (ECs-miR-155-KI mice) were paraplegic at 48-h post-ACC. Altogether, our results suggest that miR-155 activity in ChAT+ neurons protects the SC against ischemic injury during the first day post-ACC before becoming deleterious during the second day, which indicates that early and late paraplegias arise from different molecular malfunctions. These results point to the need to develop specific protective therapeutics aimed at inhibiting both the early and late deleterious events after open repair surgery of aortic aneurisms.
Collapse
Affiliation(s)
- Hesham Kelani
- Department of Anesthesiology, Wexner Medical Center, The Ohio State University, Columbus, OH, United States
| | | | - Anna Bratasz
- Small Animal Imaging Center Shared Resource, Wexner Medical Center, The Ohio State University, Columbus, OH, United States
| | - Jayanth Rajan
- Department of Anesthesiology, Wexner Medical Center, The Ohio State University, Columbus, OH, United States
| | - Alexander A. Efanov
- Department of Anesthesiology, Wexner Medical Center, The Ohio State University, Columbus, OH, United States
| | - Jean-Jacques Michaille
- BioPerox-IL, Faculté des Sciences Gabriel, Université de Bourgogne-Franche Comté, Dijon, France
- Department of Cancer Biology and Genetics, Wexner Medical Center, The Ohio State University, Columbus, OH, United States
| | - Hamdy Awad
- Department of Anesthesiology, Wexner Medical Center, The Ohio State University, Columbus, OH, United States
- *Correspondence: Hamdy Awad,
| | - Esmerina Tili
- Department of Anesthesiology, Wexner Medical Center, The Ohio State University, Columbus, OH, United States
- Department of Cancer Biology and Genetics, Wexner Medical Center, The Ohio State University, Columbus, OH, United States
- Esmerina Tili,
| |
Collapse
|
8
|
Takayama H, Patel VI, Willey JZ. Stroke and Other Vascular Syndromes of the Spinal Cord. Stroke 2022. [DOI: 10.1016/b978-0-323-69424-7.00031-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
9
|
Li J, Cheng X, Fu D, Liang Y, Chen C, Deng W, He L. Autophagy of Spinal Microglia Affects the Activation of Microglia through the PI3K/AKT/mTOR Signaling Pathway. Neuroscience 2021; 482:77-86. [PMID: 34902496 DOI: 10.1016/j.neuroscience.2021.12.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 12/02/2021] [Accepted: 12/06/2021] [Indexed: 12/28/2022]
Abstract
Delayed paralysis occurs within some patients suffered from ischemic spinal cord injury (ISCI) due to the aorta occlusion during the repair surgery of thoracic and thoracoabdominal aortic aneurysms. Although mild hypothermia has been reported to improve ISCI and prolong the tolerance of rats to ISCI without inducing immediate paralysis, the mechanism remains unclear. Herein, the study revealed that the mild hypothermia treatment indeed partially improved the ISCI in rats caused by cross-clamping at the descending aorta. ISCI induced the excessive activation of microglia and moderate autophagy in the spinal cord tissues of rats, while mild hypothermia significantly induced autophagy and reversed the excessive activation of microglia in the spinal cord tissues of rats. In OGD-stimulated mouse microglia BV-2 cells, the excessive activation of microglia and moderate autophagy were also observed; in the rapamycin-treated OGD model in BV-2 cells, autophagy was significantly enhanced whereas the excessive activation of microglia was reversed. In both in vivo ISCI model in rats and in vitro OGD model in BV-2 cells, the PI3K/AKT/mTOR pathway showed to be inhibited, whereas the PI3K/AKT/mTOR pathway was further inhibited by mild hypothermia in ISCI rats or rapamycin treatment in OGD-stimulated BV-2 cells. In conclusion, enhanced autophagy might be the mechanism of inhibited microglia activation by hypothermia treatment in ISCI rats and by rapamycin treatment in OGD-stimulated BV-2 cells. Autophagy could be enhanced through inhibiting the PI3K/AKT/mTOR pathway.
Collapse
Affiliation(s)
- Jingjuan Li
- Department of Anesthesiology, The Fifth Affiliated Hospital of Southern Medical University, Guangzhou 510900, China
| | - Xin Cheng
- Department of Nephrology, The Affiliated Hospital of Guilin Medical University, Guilin 541000, China
| | - Dan Fu
- Department of Pediatrics, The Fifth Affiliated Hospital of Southern Medical University, Guangzhou 510900, China
| | - Yi Liang
- Department of Anesthesiology, Graduate College, Guilin Medical University, Guilin, Guangxi 541001, China
| | - Cai Chen
- Department of Anesthesiology, The Fifth Affiliated Hospital of Southern Medical University, Guangzhou 510900, China
| | - Wei Deng
- Department of Anesthesiology, Graduate College, Guilin Medical University, Guilin, Guangxi 541001, China
| | - Liang He
- Department of Anesthesiology, The Fifth Affiliated Hospital of Southern Medical University, Guangzhou 510900, China.
| |
Collapse
|
10
|
Zhao YJ, Qiao H, Liu DF, Li J, Li JX, Chang SE, Lu T, Li FT, Wang D, Li HP, He XJ, Wang F. Lithium promotes recovery after spinal cord injury. Neural Regen Res 2021; 17:1324-1333. [PMID: 34782578 PMCID: PMC8643056 DOI: 10.4103/1673-5374.327348] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Lithium is associated with oxidative stress and apoptosis, but the mechanism by which lithium protects against spinal cord injury remains poorly understood. In this study, we found that intraperitoneal administration of lithium chloride (LiCl) in a rat model of spinal cord injury alleviated pathological spinal cord injury and inhibited expression of tumor necrosis factor α, interleukin-6, and interleukin 1 β. Lithium inhibited pyroptosis and reduced inflammation by inhibiting Caspase-1 expression, reducing the oxidative stress response, and inhibiting activation of the Nod-like receptor protein 3 inflammasome. We also investigated the neuroprotective effects of lithium intervention on oxygen/glucose-deprived PC12 cells. We found that lithium reduced inflammation, oxidative damage, apoptosis, and necrosis and up-regulated nuclear factor E2-related factor 2 (Nrf2) and heme oxygenase-1 in PC12 cells. All-trans retinoic acid, an Nrf2 inhibitor, reversed the effects of lithium. These results suggest that lithium exerts anti-inflammatory, anti-oxidant, and anti-pyroptotic effects through the Nrf2/heme oxygenase-1 pathway to promote recovery after spinal cord injury. This study was approved by the Animal Ethics Committee of Xi’an Jiaotong University (approval No. 2018-2053) on October 23, 2018.
Collapse
Affiliation(s)
- Ying-Jie Zhao
- Department of Orthopedics, The Second Affiliated Hospital of Xi'an Jiaotong University School of Medicine, Xi'an, Shaanxi Province, China
| | - Hao Qiao
- Department of Orthopedics, The Second Affiliated Hospital of Xi'an Jiaotong University School of Medicine, Xi'an, Shaanxi Province, China
| | - Dong-Fan Liu
- Department of Orthopedics, The Second Affiliated Hospital of Xi'an Jiaotong University School of Medicine, Xi'an, Shaanxi Province, China
| | - Jie Li
- Department of Orthopedics, The Second Affiliated Hospital of Xi'an Jiaotong University School of Medicine, Xi'an, Shaanxi Province, China
| | - Jia-Xi Li
- Department of Orthopedics, The Second Affiliated Hospital of Xi'an Jiaotong University School of Medicine, Xi'an, Shaanxi Province, China
| | - Su-E Chang
- Department of Orthopedics, The Second Affiliated Hospital of Xi'an Jiaotong University School of Medicine, Xi'an, Shaanxi Province, China
| | - Teng Lu
- Department of Orthopedics, The Second Affiliated Hospital of Xi'an Jiaotong University School of Medicine, Xi'an, Shaanxi Province, China
| | - Feng-Tao Li
- Department of Orthopedics, The Second Affiliated Hospital of Xi'an Jiaotong University School of Medicine, Xi'an, Shaanxi Province, China
| | - Dong Wang
- Department of Orthopedics, The Second Affiliated Hospital of Xi'an Jiaotong University School of Medicine, Xi'an, Shaanxi Province, China
| | - Hao-Peng Li
- Department of Orthopedics, The Second Affiliated Hospital of Xi'an Jiaotong University School of Medicine, Xi'an, Shaanxi Province, China
| | - Xi-Jing He
- Department of Orthopedics, the Second Affiliated Hospital of Xi'an Jiaotong University School of Medicine; Department of Orthopedics, Xi'an International Medical Center Hospital, Xi'an, Shaanxi Province, China
| | - Fang Wang
- Department of Orthopedics, The Second Affiliated Hospital of Xi'an Jiaotong University School of Medicine, Xi'an, Shaanxi Province, China
| |
Collapse
|
11
|
Therapeutic Effects of Risperidone against Spinal Cord Injury in a Rat Model of Asphyxial Cardiac Arrest: A Focus on Body Temperature, Paraplegia, Motor Neuron Damage, and Neuroinflammation. Vet Sci 2021; 8:vetsci8100230. [PMID: 34679060 PMCID: PMC8537088 DOI: 10.3390/vetsci8100230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 10/06/2021] [Accepted: 10/08/2021] [Indexed: 11/17/2022] Open
Abstract
Cardiac arrest (CA) causes severe spinal cord injury and evokes spinal cord disorders including paraplegia. It has been reported that risperidone, an antipsychotic drug, effectively protects neuronal cell death from transient ischemia injury in gerbil brains. However, until now, studies on the effects of risperidone on spinal cord injury after asphyxial CA (ACA) and cardiopulmonary resuscitation (CPR) are not sufficient. Therefore, this study investigated the effect of risperidone on hind limb motor deficits and neuronal damage/death in the lumbar part of the spinal cord following ACA in rats. Mortality, severe motor deficits in the hind limbs, and the damage/death (loss) of motor neurons located in the anterior horn were observed two days after ACA/CPR. These symptoms were significantly alleviated by risperidone (an atypical antipsychotic) treatment after ACA. In vehicle-treated rats, the immunoreactivities of tumor necrosis factor-alpha (TNF-α) and interleukin 1-beta (IL-1β), as pro-inflammatory cytokines, were increased, and the immunoreactivities of IL-4 and IL-13, as anti-inflammatory cytokines, were reduced with time after ACA/CPR. In contrast, in risperidone-treated rats, the immunoreactivity of the pro-inflammatory cytokines was significantly decreased, and the anti-inflammatory cytokines were enhanced compared to vehicle-treated rats. In brief, risperidone treatment after ACA/CPR in rats significantly improved the survival rate and attenuated paralysis, the damage/death (loss) of motor neurons, and inflammation in the lumbar anterior horn. Thus, risperidone might be a therapeutic agent for paraplegia by attenuation of the damage/death (loss) of spinal motor neurons and neuroinflammation after ACA/CPR.
Collapse
|
12
|
Nakai H, Fujita Y, Masuda S, Komatsu M, Tani A, Okita Y, Okada K, Kawamoto A. Intravenous injection of adult human bone marrow mesenchymal stromal cells attenuates spinal cord ischemia/reperfusion injury in a murine aortic arch crossclamping model. JTCVS OPEN 2021; 7:23-40. [PMID: 36003746 PMCID: PMC9390396 DOI: 10.1016/j.xjon.2021.06.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Accepted: 06/04/2021] [Indexed: 06/15/2023]
Abstract
OBJECTIVE We sought to investigate the efficacy of human bone marrow mesenchymal stem/stromal cell (hBM-MSC) in a murine spinal cord ischemia/reperfusion (SCIR) model. METHODS C57BL/6J mice were subjected to SCIR by crossclamping the aortic arch and left subclavian artery for 5.5 minutes. Two hours after reperfusion, hBM-MSCs (hBM-MSC group) or phosphate-buffered saline (control group) were intravenously injected without immunosuppressant. Hindlimb motor function was assessed until day 28 after reperfusion using the Basso Mouse Scale (BMS). The lumbar spinal cord was harvested at hour 24 and day 28, and the histologic number of NeuN-positive motor neurons in 3 cross-sections of each lumbar spinal cord and the gene expression were evaluated. RESULTS BMS score was 0 throughout the study period in all control mice. BMS score was significantly greater in the hBM-MSC group than the control group from hour 8 (P < .05) to day 28 (P < .01). The numbers of motor neurons at hour 24 (P < .01) and day 28 (P < .05) were significantly preserved in the hBM-MSC group than the control group. mRNA expression levels of proinflammatory cytokines were significantly lower (P < .05), and those of insulin-like growth factor-1 (P < .01) and proangiogenic factors (P < .05) were significantly greater in the hBM-MSC group than the control group at hour 24. CONCLUSIONS hBM-MSC therapy may attenuate SCIR injury by preserving motor neurons, at least in part, through inhibition of proinflammatory cytokines and upregulation of proangiogenic factors in the reperfusion-injured spinal cord.
Collapse
Key Words
- BM, bone marrow
- BMS, Basso Mouse Scale
- EV, extracellular vesicle
- IGF-1, insulin-like growth factor-1
- IL-10, interleukin-10
- LSA, left subclavian artery
- PBS, phosphate-buffered saline
- SCI, spinal cord ischemia
- SCIR, spinal cord ischemia/reperfusion
- hBM-MSC, human bone marrow mesenchymal stem/stromal cell
- human bone marrow mesenchymal stromal cells
- mRNA, messenger RNA
- paraplegia
- spinal cord ischemia
- spinal cord reperfusion injury
- thoracic aortic surgery
Collapse
Affiliation(s)
- Hidekazu Nakai
- Division of Cardiovascular Surgery, Department of Surgery, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Yasuyuki Fujita
- Translational Research Center for Medical Innovation, Foundation for Biomedical Research and Innovation at Kobe, Kobe, Japan
| | - Satoru Masuda
- Translational Research Center for Medical Innovation, Foundation for Biomedical Research and Innovation at Kobe, Kobe, Japan
| | - Miki Komatsu
- Translational Research Center for Medical Innovation, Foundation for Biomedical Research and Innovation at Kobe, Kobe, Japan
| | - Ayumi Tani
- Translational Research Center for Medical Innovation, Foundation for Biomedical Research and Innovation at Kobe, Kobe, Japan
| | - Yutaka Okita
- Cardiovascular Center, Takatsuki General Hospital, Takatsuki, Japan
| | - Kenji Okada
- Division of Cardiovascular Surgery, Department of Surgery, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Atsuhiko Kawamoto
- Translational Research Center for Medical Innovation, Foundation for Biomedical Research and Innovation at Kobe, Kobe, Japan
| |
Collapse
|
13
|
Malinovic M, Walker J, Lee F. Ischemia-Reperfusion Injury After Posterior Cervical Laminectomy. Cureus 2021; 13:e18298. [PMID: 34722073 PMCID: PMC8547379 DOI: 10.7759/cureus.18298] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/26/2021] [Indexed: 01/09/2023] Open
Abstract
Ischemia-reperfusion injury is a rare but serious complication encountered after spinal decompression surgery. This is only the 11th case reported in the literature. There is no current mainstay of treatment; however, several therapies have been studied. This case presents a patient with myelomalacia who underwent posterior laminectomy and developed diffuse cord edema with postoperative quadriplegia. Ischemia-reperfusion injury is believed to be mediated by oxidative and nitrosative stress leading to protein degradation and lipid peroxidation. It is characterized by myelomalacia in a chronically ischemic spinal cord and hyperintensity on T2-weighted MRI after decompression. Treatment has involved steroids and rehabilitation, and outcomes have ranged from minor improvement to full recovery. Novel treatment options have shown promise in animal models.
Collapse
Affiliation(s)
- Matea Malinovic
- Anesthesiology, University of Kansas School of Medicine, Wichita, USA
| | - James Walker
- Anesthesiology, University of Kansas School of Medicine, Wichita, USA
| | - Felecia Lee
- Anesthesiology, University of Kansas School of Medicine, Wichita, USA
| |
Collapse
|
14
|
Desimone A, Hong J, Brockie ST, Yu W, Laliberte AM, Fehlings MG. The influence of ApoE4 on the clinical outcomes and pathophysiology of degenerative cervical myelopathy. JCI Insight 2021; 6:e149227. [PMID: 34369386 PMCID: PMC8410082 DOI: 10.1172/jci.insight.149227] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Accepted: 06/30/2021] [Indexed: 11/17/2022] Open
Abstract
Degenerative cervical myelopathy (DCM) is the most common cause of nontraumatic spinal cord injury in adults worldwide. Surgical decompression is generally effective in improving neurological outcomes and halting progression of myelopathic deterioration. However, a subset of patients experience suboptimal neurological outcomes. Given the emerging evidence that apolipoprotein E4 (ApoE4) allelic status influences neurodegenerative conditions, we examined whether the presence of the ApoE4 allele may account for the clinical heterogeneity of treatment outcomes in patients with DCM. Our results demonstrate that human ApoE4+ DCM patients have a significantly lower extent of improvement after decompression surgery. Functional analysis of our DCM mouse model in targeted-replacement mice expressing human ApoE4 revealed delayed gait recovery, forelimb grip strength, and hind limb mechanical sensitivity after decompression surgery, compared with their ApoE3 counterparts. This was accompanied by an exacerbated proinflammatory response resulting in higher concentrations of TNF-α, IL-6, CCL3, and CXCL9. At the site of injury, there was a significant decrease in gray matter area, an increase in the activation of microglia/macrophages, and increased astrogliosis after decompression surgery in the ApoE4 mice. Our study is the first to our knowledge to investigate the pathophysiological underpinnings of ApoE4 in DCM, which suggests a possible personalized medicine approach for the treatment of DCM in ApoE4 carriers.
Collapse
Affiliation(s)
- Alexa Desimone
- Division of Genetics and Development, Krembil Research Institute, University Health Network, Toronto, Ontario, Canada.,Institute of Medical Sciences
| | - James Hong
- Division of Genetics and Development, Krembil Research Institute, University Health Network, Toronto, Ontario, Canada.,Institute of Medical Sciences
| | - Sydney T Brockie
- Division of Genetics and Development, Krembil Research Institute, University Health Network, Toronto, Ontario, Canada.,Institute of Medical Sciences
| | - Wenru Yu
- Division of Genetics and Development, Krembil Research Institute, University Health Network, Toronto, Ontario, Canada
| | - Alex M Laliberte
- Division of Genetics and Development, Krembil Research Institute, University Health Network, Toronto, Ontario, Canada.,Institute of Medical Sciences
| | - Michael G Fehlings
- Division of Genetics and Development, Krembil Research Institute, University Health Network, Toronto, Ontario, Canada.,Institute of Medical Sciences.,Division of Neurosurgery, Department of Surgery, and.,Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
15
|
Chen F, Han J, Wang D. Identification of key microRNAs and the underlying molecular mechanism in spinal cord ischemia-reperfusion injury in rats. PeerJ 2021; 9:e11454. [PMID: 34123589 PMCID: PMC8164840 DOI: 10.7717/peerj.11454] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Accepted: 04/23/2021] [Indexed: 01/06/2023] Open
Abstract
Spinal cord ischemia-reperfusion injury (SCII) is a pathological process with severe complications such as paraplegia and paralysis. Aberrant miRNA expression is involved in the development of SCII. Differences in the experimenters, filtering conditions, control selection, and sequencing platform may lead to different miRNA expression results. This study systematically analyzes the available SCII miRNA expression data to explore the key differently expressed miRNAs (DEmiRNAs) and the underlying molecular mechanism in SCII. A systematic bioinformatics analysis was performed on 23 representative rat SCII miRNA datasets from PubMed. The target genes of key DEmiRNAs were predicted on miRDB. The DAVID and TFactS databases were utilized for functional enrichment and transcription factor binding analyses. In this study, 19 key DEmiRNAs involved in SCII were identified, 9 of which were upregulated (miR-144-3p, miR-3568, miR-204, miR-30c, miR-34c-3p, miR-155-3p, miR-200b, miR-463, and miR-760-5p) and 10 downregulated (miR-28-5p, miR-21-5p, miR-702-3p, miR-291a-3p, miR-199a-3p, miR-352, miR-743b-3p, miR-125b-2-3p, miR-129-1-3p, and miR-136). KEGG enrichment analysis on the target genes of the upregulated DEmiRNAs revealed that the involved pathways were mainly the cGMP-PKG and cAMP signaling pathways. KEGG enrichment analysis on the target genes of the downregulated DEmiRNAs revealed that the involved pathways were mainly the Chemokine and MAPK signaling pathways. GO enrichment analysis indicated that the target genes of the upregulated DEmiRNAs were markedly enriched in biological processes such as brain development and the positive regulation of transcription from RNA polymerase II promoter. Target genes of the downregulated DEmiRNAs were mainly enriched in biological processes such as intracellular signal transduction and negative regulation of cell proliferation. According to the transcription factor analysis, the four transcription factors, including SP1, GLI1, GLI2, and FOXO3, had important regulatory effects on the target genes of the key DEmiRNAs. Among the upregulated DEmiRNAs, miR-3568 was especially interesting. While SCII causes severe neurological deficits of lower extremities, the anti-miRNA oligonucleotides (AMOs) of miR-3568 improve neurological function. Cleaved caspase-3 and Bax was markedly upregulated in SCII comparing to the sham group, and miR-3568 AMO reduced the upregulation. Bcl-2 expression levels showed a opposite trend as cleaved caspase-3. The expression of GATA6, GATA4, and RBPJ decreased after SCII and miR-3568 AMO attenuated this upregulation. In conclusion, 19 significant DEmiRNAs in the pathogenesis of SCII were identified, and the underlying molecular mechanisms were validated. The DEmiRNAs could serve as potential intervention targets for SCII. Moreover, inhibition of miR-3568 preserved hind limb function after SCII by reducing apoptosis, possibly through regulating GATA6, GATA4, and RBPJ in SCII.
Collapse
Affiliation(s)
- Fengshou Chen
- Department of Anesthesiology, the First Hospital of China Medical University, Shenyang, Liaoning province, China
| | - Jie Han
- Department of Anesthesiology, the First Hospital of China Medical University, Shenyang, Liaoning province, China
| | - Dan Wang
- Department of Anesthesiology, the First Hospital of China Medical University, Shenyang, Liaoning province, China
| |
Collapse
|
16
|
Tu J, Vargas Castillo J, Das A, Diwan AD. Degenerative Cervical Myelopathy: Insights into Its Pathobiology and Molecular Mechanisms. J Clin Med 2021; 10:jcm10061214. [PMID: 33804008 PMCID: PMC8001572 DOI: 10.3390/jcm10061214] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 03/07/2021] [Accepted: 03/09/2021] [Indexed: 12/12/2022] Open
Abstract
Degenerative cervical myelopathy (DCM), earlier referred to as cervical spondylotic myelopathy (CSM), is the most common and serious neurological disorder in the elderly population caused by chronic progressive compression or irritation of the spinal cord in the neck. The clinical features of DCM include localised neck pain and functional impairment of motor function in the arms, fingers and hands. If left untreated, this can lead to significant and permanent nerve damage including paralysis and death. Despite recent advancements in understanding the DCM pathology, prognosis remains poor and little is known about the molecular mechanisms underlying its pathogenesis. Moreover, there is scant evidence for the best treatment suitable for DCM patients. Decompressive surgery remains the most effective long-term treatment for this pathology, although the decision of when to perform such a procedure remains challenging. Given the fact that the aged population in the world is continuously increasing, DCM is posing a formidable challenge that needs urgent attention. Here, in this comprehensive review, we discuss the current knowledge of DCM pathology, including epidemiology, diagnosis, natural history, pathophysiology, risk factors, molecular features and treatment options. In addition to describing different scoring and classification systems used by clinicians in diagnosing DCM, we also highlight how advanced imaging techniques are being used to study the disease process. Last but not the least, we discuss several molecular underpinnings of DCM aetiology, including the cells involved and the pathways and molecules that are hallmarks of this disease.
Collapse
Affiliation(s)
- Ji Tu
- Spine Labs, St. George and Sutherland Clinical School, University of New South Wales, Kogarah, NSW 2217, Australia; (J.T.); (A.D.D.)
| | | | - Abhirup Das
- Spine Labs, St. George and Sutherland Clinical School, University of New South Wales, Kogarah, NSW 2217, Australia; (J.T.); (A.D.D.)
- Spine Service, St. George Hospital, Kogarah, NSW 2217, Australia;
- Correspondence:
| | - Ashish D. Diwan
- Spine Labs, St. George and Sutherland Clinical School, University of New South Wales, Kogarah, NSW 2217, Australia; (J.T.); (A.D.D.)
- Spine Service, St. George Hospital, Kogarah, NSW 2217, Australia;
| |
Collapse
|
17
|
Gong L, Lv Y, Li S, Feng T, Zhou Y, Sun Y, Mi D. Changes in transcriptome profiling during the acute/subacute phases of contusional spinal cord injury in rats. ANNALS OF TRANSLATIONAL MEDICINE 2020; 8:1682. [PMID: 33490194 PMCID: PMC7812200 DOI: 10.21037/atm-20-6519] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Background Spinal cord injuries (SCIs), along with subsequent secondary injuries, often result in irreversible damage to both sensory and motor functions. However, a thorough view of the underlying pathological mechanisms of SCIs, especially in a temporal-spatial manner, is still lacking. Methods To obtain a comprehensive, real-time view of multiple subsets of the cellular mechanisms involved in SCIs, we applied RNA-sequencing technology to characterize the temporal changes in gene expression around the lesion site of contusion SCI in rats. First, we identified the differentially expressed genes (DEGs) in contrast to sham controls at 1, 4, and 7 days post SCI. Through bioinformatics analysis, including Pathway analysis, Gene-act-net, and Pathway-act-net, we screened and verified potential key pathways and genes associated with either the acute or subacute stages of SCI pathology. Results The top three overrepresented pathways were associated with cytokine-cytokine receptor interaction, TNF signaling pathway, and cell cycle at day 1; lysosome, cytokine-cytokine receptor interaction, phagosome at day 4; and phagosome, lysosome, cytokine-cytokine receptor interaction at day 7 post injury. Further, we identified uniquely enriched genes at each time point, such as Ccr1 and Nos2 at day 1; as well as Mgst2, and Pla2g3 at 4 and 7 days post-injury. Conclusions Our pathway analysis suggested a transition from inflammatory responses to multiple forms of cell death processes from the acute to subacute stages of SCI. Further, our results revealed a continuous transformation from a more inflammatory to an apoptotic/self-repairing transcriptome following the time-course of SCIs. Our research provides novel insights into the molecular mechanisms of SCI pathophysiology and identifies potential targets for therapeutic intervention after SCI.
Collapse
Affiliation(s)
- Leilei Gong
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Yehua Lv
- Department of Orthopedic, Nantong Traditional Chinese Medicine Hospital, Nantong, China
| | - Shenglong Li
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Tao Feng
- Department of Orthopedic, Nantong Traditional Chinese Medicine Hospital, Nantong, China
| | - Yi Zhou
- Department of Orthopedic, Nantong Traditional Chinese Medicine Hospital, Nantong, China
| | - Yuyu Sun
- Department of Orthopedic, Nantong Third People's Hospital, Nantong University, Nantong, China
| | - Daguo Mi
- Department of Orthopedic, Nantong Traditional Chinese Medicine Hospital, Nantong, China
| |
Collapse
|
18
|
Phosphoglycerate Mutase 1 Prevents Neuronal Death from Ischemic Damage by Reducing Neuroinflammation in the Rabbit Spinal Cord. Int J Mol Sci 2020; 21:ijms21197425. [PMID: 33050051 PMCID: PMC7582635 DOI: 10.3390/ijms21197425] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 09/29/2020] [Accepted: 10/01/2020] [Indexed: 02/07/2023] Open
Abstract
Phosphoglycerate mutase 1 (PGAM1) is a glycolytic enzyme that increases glycolytic flux in the brain. In the present study, we examined the effects of PGAM1 in conditions of oxidative stress and ischemic damage in motor neuron-like (NSC34) cells and the rabbit spinal cord. A Tat-PGAM1 fusion protein was prepared to allow easy crossing of the blood-brain barrier, and Control-PGAM1 was synthesized without the Tat peptide protein transduction domain. Intracellular delivery of Tat-PGAM1, not Control-PGAM1, was achieved in a time- and concentration-dependent manner. Immunofluorescent staining confirmed the intracellular expression of Tat-PGAM1 in NSC34 cells. Tat-PGAM1, but not Control-PGAM1, significantly alleviated H2O2-induced oxidative stress, neuronal death, mitogen-activated protein kinase, and apoptosis-inducing factor expression in NSC34 cells. After ischemia induction in the spinal cord, Tat-PGAM1 treatment significantly improved ischemia-induced neurological impairments and ameliorated neuronal cell death in the ventral horn of the spinal cord 72 h after ischemia. Tat-PGAM1 treatment significantly mitigated the ischemia-induced increase in malondialdehyde and 8-iso-prostaglandin F2α production in the spinal cord. In addition, Tat-PGAM1, but not Control-PGAM1, significantly decreased microglial activation and secretion of pro-inflammatory cytokines, such as interleukin (IL)-1β, IL-6, and tumor necrosis factor (TNF)-α induced by ischemia in the ventral horn of the spinal cord. These results suggest that Tat-PGAM1 can be used as a therapeutic agent to reduce spinal cord ischemia-induced neuronal damage by lowering the oxidative stress, microglial activation, and secretion of pro-inflammatory cytokines, such as IL-1β, IL-6, and TNF-α.
Collapse
|
19
|
Meng C, Qian Y, Zhang C, Liu H, Mu X, Zhang A. IKKε deficiency inhibits acute lung injury following renal ischemia reperfusion injury. Mol Med Rep 2020; 22:4213-4220. [PMID: 33000218 PMCID: PMC7533469 DOI: 10.3892/mmr.2020.11532] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Accepted: 09/01/2020] [Indexed: 02/07/2023] Open
Abstract
Renal ischemia reperfusion injury (IRI) after surgery may promote acute lung injury (ALI) by inducing an inflammatory response. However, the underlying molecular mechanism is still unclear. Studies have reported that inhibitor of κB kinase (IKK)ε primarily regulates inflammation and cell proliferation. The present study aimed to investigate the regulatory role of IKKε in ALI in mice, in order to provide an experimental basis for preventing ALI following surgery-induced renal IRI. C57BL/6J wild-type (WT) and IKKε knockout (IKKε−/−) mice underwent bilateral renal pedicle occlusion. The plasma creatinine concentration, urea nitrogen level and lung wet-to-dry ratio were measured at baseline, and at 24 and 48 h after declamping. The histological localization and protein levels of inflammatory factors, such as tumor necrosis factor (TNF)-α, interleukin (IL)-1β and IL-10, were analyzed in lung tissues. Subsequently, the interactions between IKKε and components of the nuclear factor (NF)-κB pathway were studied. The results of the present study demonstrated that the IKKε−/− groups displayed similar renal function but less pulmonary edema compared with that of the WT groups. The levels of proinflammatory factors in the lungs were significantly upregulated in WT mice compared with those in IKKε−/− mice after IRI surgery. The NF-κB pathway components and downstream factors were substantially upregulated in the WT groups after acute ischemic kidney injury, and these effects were significantly inhibited in the IKKε−/− groups. Based on these data, the present study hypothesized that IKKε may serve a negative role in kidney-lung crosstalk after renal IRI and may be a novel target for the treatment of patients with renal IRI.
Collapse
Affiliation(s)
- Chao Meng
- Department of Critical Care Medicine, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu 210001, P.R. China
| | - Yi Qian
- State Key Laboratory of Reproductive Medicine, Clinical Center of Reproductive Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210009, P.R. China
| | - Cui Zhang
- Department of Critical Care Medicine, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu 210001, P.R. China
| | - Han Liu
- Department of Critical Care Medicine, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu 210001, P.R. China
| | - Xinwei Mu
- Department of Critical Care Medicine, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu 210001, P.R. China
| | - Aiping Zhang
- Department of Cardiothoracic Surgery, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu 210001, P.R. China
| |
Collapse
|
20
|
Naganuma M, Saiki Y, Kanda K, Akiyama M, Adachi O, Horii A, Saiki Y. Nanobubble technology to treat spinal cord ischemic injury. JTCVS OPEN 2020; 3:1-11. [PMID: 36003872 PMCID: PMC9390594 DOI: 10.1016/j.xjon.2020.07.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 07/09/2020] [Accepted: 07/20/2020] [Indexed: 11/29/2022]
Abstract
Background Spinal cord ischemic injury is a severe complication of aortic surgery. We hypothesized that cerebrospinal fluid (CSF) oxygenation with nanobubbles after reperfusion could ameliorate spinal cord ischemic injury. Methods Twenty white Japanese rabbits were categorized into 4 groups of 5 rabbits each: sham group, with balloon catheter insertion into the aorta; ischemia group, with spinal cord ischemic injury by abdominal aortic occlusion; nonoxygenated group, with nonoxygenated artificial CSF irrigation after spinal cord ischemic injury; and oxygenated group, with oxygenated artificial CSF irrigation after spinal cord ischemic injury. At 48 hours after spinal cord ischemic injury, the modified Tarlov score to reflect hind limb movement was evaluated. The spinal cord was histopathologically examined by counting anterior horn cells, and microarray and quantitative reverse-transcription polymerase chain reaction (qRT-PCR) analyses were performed. Results The oxygenated group showed improved neurologic function compared with the ischemia and nonoxygenated groups (P < .01 and P = .019, respectively). Anterior horn neuron prevention in the sham, nonoxygenated, and oxygenated groups was confirmed (mean modified Tarlov score: sham, 9.2 ± 1.9; nonoxygenated, 10.2 ± 2.2; oxygenated, 10.4 ± 2.2; ischemia, 2.7 ± 2.7). Microarray analysis identified 644 genes with twofold or greater increased signals between the ischemia and sham groups. Thirty-three genes related to inflammatory response were enriched among genes differentially expressed between the oxygenated and ischemia groups. Interleukin (IL)-6 and tumor necrosis factor (TNF) expression levels were significantly lower in the oxygenated group compared with the ischemia group, while qRT-PCR showed lower IL-6 and TNF expression levels in the oxygenated group compared with the ischemia group (P < .05). Conclusions CSF oxygenation with nanobubbles after reperfusion can ameliorate spinal cord ischemic injury and suppress inflammatory responses in the spinal cord.
Collapse
|
21
|
Gürkan G, Sayin M, Kizmazoglu C, Erdogan MA, Yigitturk G, Erbak Yilmaz H, Uzunoglu I, Kaya I, Yuceer N. Evaluation of the neuroprotective effects of ozone in an experimental spine injury model. J Neurosurg Spine 2020; 33:406-414. [PMID: 32413852 DOI: 10.3171/2020.2.spine191439] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Accepted: 02/20/2020] [Indexed: 11/06/2022]
Abstract
OBJECTIVE The pathophysiology of spine injury consists of primary and secondary damage mechanisms. The vast majority of treatments aim to prevent or at least stop the progression of secondary neurotoxic events during the acute period. Ozone has been found to have potent antiinflammatory effects, to activate the immune system, and to have a substantial impact on the antioxidant system. In this study the authors aimed to evaluate the neuroprotective effects of ozone and their possible roles in recovery from spine injury, assessed based on biochemical, histological, and neurological parameters using an experimental spine injury model in rats. METHODS The study included 31 female Wistar albino rats. The rats were divided randomly into 5 groups, with 7 rats in each group except the sham group, which contained 3 rats, as follows: group 1 (sham), laminectomy; group 2 (control), laminectomy and spinal trauma with no medical treatment (0.5 ml isotonic saline applied 1 hour postsurgery); group 3, single medical treatment with 30 mg/kg methylprednisolone applied intraperitoneally 1 hour after laminectomy and trauma; group 4, single medical treatment with 60 μg/ml ozone at 0.7 mg/kg applied intraperitoneally 1 hour after laminectomy and trauma; and group 5, double medical treatment with 30 mg/kg methylprednisolone and 60 μg/ml ozone at 0.7 mg/kg applied intraperitoneally 1 hour after laminectomy and trauma. After neurosurgery, neurobehavioral tests were performed in all groups. After 7 days of follow-up, all the rats were killed. Biopsy specimens obtained from trauma sites were examined using H & E, cresyl violet, immunohistochemical (anticonnexin-43), and TUNEL staining processes. Levels of interleukin (IL)-1β, IL-6, and tumor necrosis factor-α (TNF-α) and total oxidant status (TOS) and total antioxidant status (TAS) were measured in blood samples. RESULTS The level of neurobehavioral healing was the highest in the double-treatment group (group 5), and the difference between the groups was significant. The minimum IL-6 level was found in group 5, indicating that the antiinflammatory impact was the most significant in this group (p = 0.01). Additionally, ozone was found to reduce oxidant stress more effectively than methylprednisolone (p = 0.03). Although methylprednisolone was superior to ozone in terms of the antiinflammatory effect, this effect was greater in group 5. Nevertheless, the number of neurons in group 5 was close to that of the control group, and the number of apoptotic cells was the least in group 5 (p < 0.001). CONCLUSIONS In acute spinal injury, the combined application of methylprednisolone and ozone was found to have a greater antiinflammatory effect, hasten clinical recovery, and increase histological recovery compared with methylprednisolone therapy alone. This study showed that this combination therapy of methylprednisolone with the addition of ozone might have a more beneficial effect in the treatment of spinal injury than methylprednisolone therapy alone.
Collapse
Affiliation(s)
- Gokhan Gürkan
- 1Department of Neurosurgery, Katip Celebi University Atatürk Training and Research Hospital, Izmir
| | - Murat Sayin
- 1Department of Neurosurgery, Katip Celebi University Atatürk Training and Research Hospital, Izmir
| | - Ceren Kizmazoglu
- 2Department of Neurosurgery, Dokuz Eylul University Hospital, Izmir
| | | | | | - Huriye Erbak Yilmaz
- 5Department of Medical Biochemistry, Katip Celebi University Atatürk Training and Research Hospital, Izmir; and
| | - Inan Uzunoglu
- 1Department of Neurosurgery, Katip Celebi University Atatürk Training and Research Hospital, Izmir
| | - Ismail Kaya
- 6Department of Neurosurgery, Dumlupinar University Kutahya Evliya Celebi Training and Research Hospital, Kutahya, Turkey
| | - Nurullah Yuceer
- 1Department of Neurosurgery, Katip Celebi University Atatürk Training and Research Hospital, Izmir
| |
Collapse
|
22
|
Telegin GB, Chernov AS, Konovalov NA, Belogurov AA, Balmasova IP, Gabibov AG. Cytokine Profile As a Marker of Cell Damage and Immune Dysfunction after Spinal Cord Injury. Acta Naturae 2020; 12:92-101. [PMID: 33173599 PMCID: PMC7604889 DOI: 10.32607/actanaturae.11096] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Accepted: 09/08/2020] [Indexed: 12/30/2022] Open
Abstract
This study reviews the findings of recent experiments designed to investigate the cytokine profile after a spinal cord injury. The role played by key cytokines in eliciting the cellular response to trauma was assessed. The results of the specific immunopathogenetic interaction between the nervous and immune systems in the immediate and chronic post-traumatic periods are summarized. It was demonstrated that it is reasonable to use the step-by-step approach to the assessment of the cytokine profile after a spinal cord injury and take into account the combination of the pathogenetic and protective components in implementing the regulatory effects of individual cytokines and their integration into the regenerative processes in the injured spinal cord. This allows one to rationally organize treatment and develop novel drugs.
Collapse
Affiliation(s)
- G. B. Telegin
- Branch of Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry Russian Academy of Sciences, Pushchino, 142290 Russia
| | - A. S. Chernov
- Branch of Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry Russian Academy of Sciences, Pushchino, 142290 Russia
| | - N. A. Konovalov
- N.N. Burdenko National Scientific and Practical Center for Neurosurgery, RF Health Ministry, Moscow, 125047 Russia
| | - A. A. Belogurov
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry Russian Academy of Sciences, Moscow, 117997 Russia
| | - I. P. Balmasova
- Evdokimov Moscow State University of Medicine and Dentistry of Russia’s Ministry of Health, Moscow, 127473 Russia
| | - A. G. Gabibov
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry Russian Academy of Sciences, Moscow, 117997 Russia
| |
Collapse
|
23
|
Fang H, Yang M, Pan Q, Jin HL, Li HF, Wang RR, Wang QY, Zhang JP. MicroRNA-22-3p alleviates spinal cord ischemia/reperfusion injury by modulating M2 macrophage polarization via IRF5. J Neurochem 2020; 156:106-120. [PMID: 32406529 DOI: 10.1111/jnc.15042] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 04/17/2020] [Accepted: 05/06/2020] [Indexed: 02/05/2023]
Abstract
Cell death after spinal cord ischemia/reperfusion (I/R) can occur through necrosis, apoptosis, and autophagy, resulting in changes to the immune environment. However, the molecular mechanism of this immune regulation is not clear. Accumulating evidence indicates that microRNAs (miRs) play a crucial role in the pathogenesis of spinal cord I/R injury. Here, we hypothesized miR-22-3p may be involved in spinal cord I/R injury by interacting with interferon regulatory factor (IRF) 5. Rat models of spinal cord I/R injury were established by 12-min occlusion of the aortic arch followed by 48-hr reperfusion, with L4-6 segments of spinal cord tissues collected. MiR-22-3p agomir, a lentivirus-delivered siRNA specific for IRF5, or a lentivirus expressing wild-type IRF5 was injected intrathecally to rats with I/R injury to evaluate the effects of miR-22-3p and IRF5 on hindlimb motor function. Macrophages isolated from rats were treated with miR-22-3p mimic or siRNA specific for IRF5 to evaluate their effects on macrophage polarization. The levels of IL-1β and TNF-α in spinal cord tissues were detected by ELISA. miR-22-3p was down-regulated, whereas IRF5 was up-regulated in rat spinal cord tissues following I/R. IRF5 was a target gene of miR-22-3p and could be negatively regulated by miR-22-3p. Silencing IRF5 or over-expressing miR-22-3p relieved inflammation, elevated Tarlov score, and reduced the degree of severity of spinal cord I/R injury. Increased miR-22-3p facilitated M2 polarization of macrophages and inhibited inflammation in tissues by inhibiting IRF5, thereby attenuating spinal cord I/R injury. Taken together, these results demonstrate that increased miR-22-3p can inhibit the progression of spinal cord I/R injury by repressing IRF5 in macrophages, highlighting the discovery of a promising new target for spinal cord I/R injury treatment.
Collapse
Affiliation(s)
- Hua Fang
- Department of Anesthesiology, Guizhou Provincial People's Hospital, Guiyang, P.R. China.,Department of Anesthesiology, Guizhou University People's Hospital, Guiyang, P.R. China.,Laboratory of Anesthesiology and Perioperative Medicine, Guizhou University School of Medicine, Guiyang, P.R. China
| | - Miao Yang
- Department of Anesthesiology, Guizhou Provincial People's Hospital, Guiyang, P.R. China.,Department of Anesthesiology, Guizhou University People's Hospital, Guiyang, P.R. China.,Laboratory of Anesthesiology and Perioperative Medicine, Guizhou University School of Medicine, Guiyang, P.R. China
| | - Qin Pan
- Department of Anesthesiology, Guizhou Provincial People's Hospital, Guiyang, P.R. China.,Department of Anesthesiology, Guizhou University People's Hospital, Guiyang, P.R. China.,Laboratory of Anesthesiology and Perioperative Medicine, Guizhou University School of Medicine, Guiyang, P.R. China
| | - Hon-Ling Jin
- Department of Anesthesiology, Guizhou Provincial People's Hospital, Guiyang, P.R. China.,Department of Anesthesiology, Guizhou University People's Hospital, Guiyang, P.R. China.,Laboratory of Anesthesiology and Perioperative Medicine, Guizhou University School of Medicine, Guiyang, P.R. China
| | - Hua-Feng Li
- Department of Anesthesiology, West China Second University Hospital, Sichuan University, Chengdu, P.R. China
| | - Ru-Rong Wang
- Department of Anesthesiology, West China Hospital, Sichuan University, Chengdu, P.R. China
| | - Quan-Yun Wang
- Department of Anesthesiology, West China Hospital, Sichuan University, Chengdu, P.R. China
| | - Jian-Ping Zhang
- Department of Anesthesiology, Guizhou Provincial People's Hospital, Guiyang, P.R. China.,Department of Anesthesiology, Guizhou University People's Hospital, Guiyang, P.R. China.,Laboratory of Anesthesiology and Perioperative Medicine, Guizhou University School of Medicine, Guiyang, P.R. China
| |
Collapse
|
24
|
Zhai Y, Zhu Y, Liu J, Xie K, Yu J, Yu L, Deng H. Dexmedetomidine Post-Conditioning Alleviates Cerebral Ischemia-Reperfusion Injury in Rats by Inhibiting High Mobility Group Protein B1 Group (HMGB1)/Toll-Like Receptor 4 (TLR4)/Nuclear Factor kappa B (NF-κB) Signaling Pathway. Med Sci Monit 2020; 26:e918617. [PMID: 31912804 PMCID: PMC6977611 DOI: 10.12659/msm.918617] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND Cerebral ischemia-reperfusion injury is a pivotal cause of deaths due to cerebrovascular accident. Increased research efforts are needed to reveal the mechanism underlying its aggravation or alleviation. In this study, the effects of dexmedetomidine post-conditioning on the HMGB1/TLR4/NF-kappaB signaling pathway in cerebral ischemia-reperfusion rats was explored. MATERIAL AND METHODS Ninety rats were randomly divided into 5 groups - a sham group (Sham), a model group (I/R), a dexmedetomidine post-conditioning group (Dex), a recombinant high mobility group protein B1 group (rHMGB1), and a recombinant HMGB1+dexmedetomidine post-conditioning group (rHMGB1+Dex) - with 18 rats in each group. Longa grading, wet-dry weighing, TTC staining, HE staining, and immunohistochemical staining were used to assess brain damage. ELISA, RT-PCR, and Western blot analyses were performed to assess expression of IL-1ß, TNF-alpha, IL-6, IL-8, HMGB1, TLR4, and NF-kappaB. RESULTS Compared with the I/R group, the neurological function score, brain water content, infarction area, and the number of COX-2- and IBA-1-positive cells in the Dex group were significantly lower, accompanied by downregulated expression of the HMGB1/TLR4/NF-kappaB pathway, alleviated inflammation, and oxidative stress injury in brain tissue. These trends were mostly reversed in the rHMGB1 group and rHMGB1+Dex group, but not in the Dex group. Furthermore, when compared to the Dex group, there were significant increases of H₂O₂, MDA, NO, IL-1ß, TNF-alpha, IL-6, IL-8, HMGB1, TLR4, and p-P65 in the rHMGB1 group and rHMGB1+Dex group, in which a significant decrease of T-AOC, SOD, and p-IkappaBalpha was also detected. CONCLUSIONS Dexmedetomidine post-conditioning can alleviate cerebral ischemia-reperfusion injury in rats by inhibiting the HMGB1/TLR4/NF-kappaB signaling pathway.
Collapse
Affiliation(s)
- Yongyi Zhai
- Department of Rehabilitation, Linzi District People's Hospital, Zibo, Shandong, China (mainland)
| | - Yulin Zhu
- Department of Anesthesiology, Yantaishan Hospital, Yantai, Shandong, China (mainland)
| | - Jingying Liu
- Department of Obstetrics, Yantaishan Hospital, Yantai, Shandong, China (mainland)
| | - Kun Xie
- Department of Anesthesiology, The Second Hospital of Shandong University, Jinan, Shandong, China (mainland)
| | - Jingui Yu
- Department of Anesthesiology, Qilu Hospital of Shandong University, Jinan, Shandong, China (mainland)
| | - Lingzhi Yu
- Department of Pain, Jinan Central Hospital affiliated to Shandong University, Jinan, Shandong, China (mainland)
| | - Hongyan Deng
- Department of Anesthesiology, Haiyang People's Hospital, Haiyang, Shandong, China (mainland)
| |
Collapse
|
25
|
Zhou Z, Han B, Jin H, Chen A, Zhu L. Changes in long non-coding RNA transcriptomic profiles after ischemia-reperfusion injury in rat spinal cord. PeerJ 2020; 8:e8293. [PMID: 31934506 PMCID: PMC6951290 DOI: 10.7717/peerj.8293] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Accepted: 11/25/2019] [Indexed: 12/26/2022] Open
Abstract
With the aim of exploring expression profiles and biological functions of long non-coding RNA (lncRNA) and mRNAs after spinal cord ischemia-reperfusion injury (SCII), differentially expressed lncRNAs (DElncRNAs) and mRNAs (DEmRNAs) in rat spinal cords were identified following SCII through high-throughput RNA sequencing. In total, 1,455 lncRNAs and 6,707 mRNAs were observed to be differentially expressed (—Fold Change— ≥ 2 and P < 0.05) after SCII, including 761 up-regulated and 694 down-regulated lncRNAs, 3,772 up-regulated and 2,935 down-regulated mRNAs. Gene ontology and KEGG pathway analysis showed that the DElncRNAs and DEmRNAs were implicated in many different biological processes and pathways. Further, lncRNA-mRNA co-expression networks were built to explore the potential roles of these DElncRNAs. Our results demonstrate genome-wide lncRNA and mRNA expression patterns in spinal cords after SCII, which may play vital roles in post-SCII pathophysiological processes. These findings are important for future functional research on the lncRNAs involved in SCII and might be critical for providing new insight into identification of potential targets for SCII therapy.
Collapse
Affiliation(s)
- Zhibin Zhou
- Department of Orthopaedics, Changzheng Hospital, Second Medical University, Shanghai, China
| | - Bin Han
- Department of Orthopaedics, Changzheng Hospital, Second Medical University, Shanghai, China
| | - Hai Jin
- Department of Neurosurgery, 202 Hospital of China Medical University, Shengyang, Liaoning, China
| | - Aimin Chen
- Department of Orthopaedics, Changzheng Hospital, Second Medical University, Shanghai, China
| | - Lei Zhu
- Department of Orthopaedics, Changzheng Hospital, Second Medical University, Shanghai, China
| |
Collapse
|
26
|
Li YN, Gao ZW, Li R, Zhang YF, Zhu QS, Huang F. Aquaporin 4 regulation by ginsenoside Rb1 intervenes with oxygen-glucose deprivation/reoxygenation-induced astrocyte injury. Medicine (Baltimore) 2019; 98:e17591. [PMID: 31626131 PMCID: PMC6824638 DOI: 10.1097/md.0000000000017591] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
BACKGROUND Spinal cord ischemia-reperfusion injury (SCII) is a common complication of spinal surgery as well as thoracic and abdominal surgery. Acute cytotoxic edema is the key pathogenic alteration. Therefore, avoiding or decreasing cellular edema has become the major target for SCII treatment. METHODS The antiedema activity of ginsenoside Rb1 on aquaporin (AQP) 4, nerve growth factor (NGF), and brain-derived neurotrophic factor expression was detected by western blot and real-time polymerase chain reaction under conditions of oxygen-glucose deprivation/reoxygenation (OGD/R) in a rat astrocyte model in vitro. In addition, the cellular membrane permeability of AQP4 overexpressing cells or AQP4 small interfering RNA-transfected cells was detected. RESULTS Ginsenoside Rb1 significantly prevented OGD/R-induced AQP4 downregulation in rat astrocytes. In addition, ginsenoside Rb1 treatment or AQP4 overexpression in rat astrocytes significantly attenuated the OGD/R-induced increase of cellular membrane permeability. Moreover, ginsenoside Rb1 obviously prevented the OGD/R-induced decrease of NGF and BDNT expression in rat astrocytes. CONCLUSION These findings demonstrate that ginsenoside Rb1 can relieve spinal cord edema and improve neurological function by increasing AQP4 expression.
Collapse
Affiliation(s)
- Ya-Nan Li
- Department of Pediatrics, The First Hospital of Jilin University
- Department of Molecular Biology, Basic Medical College of Jilin University
| | - Zhong-Wen Gao
- Department of Orthopedics, China-Japan Union Hospital of Jilin University, Changchun, Jilin, PR China
| | - Ran Li
- Department of Orthopedics, China-Japan Union Hospital of Jilin University, Changchun, Jilin, PR China
| | - Yun-Feng Zhang
- Department of Orthopedics, China-Japan Union Hospital of Jilin University, Changchun, Jilin, PR China
| | - Qing-San Zhu
- Department of Orthopedics, China-Japan Union Hospital of Jilin University, Changchun, Jilin, PR China
| | - Fei Huang
- Department of Orthopedics, China-Japan Union Hospital of Jilin University, Changchun, Jilin, PR China
| |
Collapse
|
27
|
Li H, Dong X, Cheng W, Jin M, Zheng D. Neuroprotective mechanism involved in spinal cord stimulation postconditioning. J Thorac Cardiovasc Surg 2019; 159:813-824.e1. [PMID: 31030961 DOI: 10.1016/j.jtcvs.2019.03.048] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/03/2018] [Revised: 02/25/2019] [Accepted: 03/13/2019] [Indexed: 02/05/2023]
Abstract
OBJECTIVES Delayed paraplegia developed postoperatively after thoracoabdominal aneurysm surgery is primarily associated with spinal cord ischemia/reperfusion injury. Our previous study suggested that spinal cord stimulation postconditioning protected the spinal cord from ischemia/reperfusion injury through microglia inhibition. In this study, we further investigated whether α7 nicotinic acetylcholine receptors were involved in the neuroprotective mechanism of spinal cord stimulation. METHODS Rabbits were randomly assigned to sham, control, 2 Hz, α-bungarotoxin, and 2 Hz-α-bungarotoxin groups (n = 24/group). Transient spinal cord ischemia was performed on all rabbits except rabbits in the sham group. Rabbits in the control group received no further intervention, rabbits in the 2 Hz group were given 2 Hz spinal cord stimulation, rabbits in the α-bungarotoxin group received prescribed intrathecal α-bungarotoxin (α-bungarotoxin, a specific α7 nicotinic acetylcholine receptor antagonist) injections, and rabbits in the 2 Hz-α-bungarotoxin group received both α-bungarotoxin injections and 2 Hz spinal cord stimulation. Hind-limb neurologic function was assessed, and spinal cord histologic examination, terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling staining, and microglia staining were performed at 8 hours, 1 day, 3 days, and 7 days of reperfusion. RESULTS Rabbits in the 2 Hz group had significantly better neurologic functions, more α-motor neurons, and lower terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling-positive neuron rates and microglia area/anterior horn area ratios (microglia area ratios) than the control group. The neurologic functions of the α-bungarotoxin group were significantly worse than those of the control group, whereas other results were not significantly different from the control group. The results of the 2 Hz-α-bungarotoxin group were insignificant to the control group except for the terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling-positive neuron rates, which were significantly lower than in the control group. CONCLUSIONS The neuroprotective effects of spinal cord stimulation postconditioning against spinal cord ischemia/reperfusion injury were partially mediated by activating α7 nicotinic acetylcholine receptors.
Collapse
Affiliation(s)
- Huixian Li
- Department of Cardiac Surgery, The First Hospital of Tsinghua University, Beijing, China
| | - Xiuhua Dong
- Department of Anesthesiology, Beijing Anzhen Hospital, Beijing Institute of Heart, Lung and Blood Vessel Diseases, Capital Medical University, Beijing, China
| | - Weiping Cheng
- Department of Anesthesiology, Beijing Anzhen Hospital, Beijing Institute of Heart, Lung and Blood Vessel Diseases, Capital Medical University, Beijing, China.
| | - Mu Jin
- Department of Anesthesiology, Beijing Friendship Hospital, Capital Medical University, Beijing, China.
| | - Deqiang Zheng
- Department of Epidemiology and Health Statistics, School of Public Health, Capital Medical University, Beijing, China.
| |
Collapse
|
28
|
Spinal cord stimulation postconditioning reduces microglial activation through down-regulation of ERK1/2 phosphorylation during spinal cord ischemic reperfusion in rabbits. Neuroreport 2019; 29:1180-1187. [PMID: 29994810 DOI: 10.1097/wnr.0000000000001093] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Microglial activation plays a critical role in spinal cord ischemic reperfusion injury. Spinal cord stimulation preconditioning and postconditioning has shown spinal cord protection in ischemic reperfusion injury in animal studies. However, whether spinal cord stimulation could reduce microglial activation is still unclear. In this study, rabbits experienced 28-min infrarenal aorta occlusion and reperfusion for 8 h, 1, 3, and 7 days correspondingly. Immediately after reperfusion, rabbits received spinal cord stimulation of 2 or 50 Hz for 30 min and daily for a week. The results showed that spinal cord stimulation of 2 Hz reduced microglial activation. Microglial activation was accompanied with up-regulated p-ERK1/2, and microglial inhibition by 2 Hz spinal cord stimulation was associated with down-regulated p-ERK1/2. Spinal cord stimulation increased the expression of IL-1β. Our results revealed, for the first time, that spinal cord stimulation postconditioning suppresses microglial activation during spinal cord ischemic reperfusion by down-regulation of p-ERK1/2, which may be the protective mechanism of spinal cord stimulation.
Collapse
|
29
|
Dexmedetomidine Preconditioning Ameliorates Inflammation and Blood-Spinal Cord Barrier Damage After Spinal Cord Ischemia-Reperfusion Injury by Down-Regulation High Mobility Group Box 1-Toll-Like Receptor 4-Nuclear Factor κB Signaling Pathway. Spine (Phila Pa 1976) 2019; 44:E74-E81. [PMID: 29975331 DOI: 10.1097/brs.0000000000002772] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
STUDY DESIGN To evaluate the effect of Dexmedetomidine (Dex) on the inflammatory response and the integrity of blood-spinal cord barrier (BSCB) after spinal cord ischemia-reperfusion injury (SCIRI). OBJECTIVE To investigate the role of Dex in spinal cord I/R, particularly in the high mobility group box 1-toll-like receptor 4-nuclear factor κB (HMGB1-TLR4-NF-κB) pathway and the integrity of BSCB. SUMMARY OF BACKGROUND DATA High mobility group box 1 (HMGB1) has been identified as a key mediator for the inflammatory response after spinal cord injury. Toll-like receptor 4-nuclear factor κB (TLR4-NF-κB) signaling pathway is the downstream of HMGB1. Dex preconditioning could protect the spinal cord from I/R injury by inhibiting HMGB1 and stabilizing the integrity of BSCB. But its underlying mechanism is not fully understood. METHODS Forty-eight male Japanese white rabbits were randomly assigned to three groups (16 rabbits/group): sham, I/R, and Dex + I/R. The hind-limb motor function was assessed at 12 hours intervals for 48 hours after reperfusion using the modified Tarlov scale score. The expression of HMGB1, TLR4, NF-κB, and tumor necrosis factor α (TNF-α) was evaluated by real-time polymerase chain reaction (RT-PCR) and Western blot. The permeability of BSCB was examined via Evans blue (EB) extravasation. RESULTS Compared with sham group, spinal cord I/R increased the expression of HMGB1, TLR4, NF-κB, and TNF-α as well as the permeability of BSCB (P < 0.05). Spinal cord I/R induced the decline of the score of hind-limb motor function (P < 0.01). Preconditioning with Dex attenuated the up-regulation of the express of HMGB1, TLR4, NF-κB, TNF-α, and stabilized the permeability of BSCB (P < 0.05). Dex preconditioning also improved the hiatopathological outcome and the motor function (P < 0.01). CONCLUSION Dex preconditioning may inhibit the inflammatory response and stabilize the integrity of BSCB at least partially by inhibiting the HMGB1-TLR4-NF-κB signaling pathway to protect spinal cord from ischemia/reperfusion injury. LEVEL OF EVIDENCE 2.
Collapse
|
30
|
Ghincea CV, Ikeno Y, Aftab M, Reece TB. Spinal Cord Protection for Thoracic Aortic Surgery: Bench to Bedside. Semin Thorac Cardiovasc Surg 2019; 31:713-720. [DOI: 10.1053/j.semtcvs.2019.02.025] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Accepted: 02/22/2019] [Indexed: 11/11/2022]
|
31
|
Yamanaka K, Eldeiry M, Aftab M, Ryan TJ, Roda G, Meng X, Weyant MJ, Cleveland JC, Fullerton DA, Reece TB. Pretreatment With Diazoxide Attenuates Spinal Cord Ischemia-Reperfusion Injury Through Signaling Transducer and Activator of Transcription 3 Pathway. Ann Thorac Surg 2018; 107:733-739. [PMID: 30395862 DOI: 10.1016/j.athoracsur.2018.09.031] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Revised: 08/15/2018] [Accepted: 09/14/2018] [Indexed: 01/01/2023]
Abstract
BACKGROUND Delayed paraplegia remains a feared complication of thoracoabdominal aortic intervention. Pharmacologic preconditioning with diazoxide (DZ), an adenosine 5'-triphosphate-sensitive potassium channel opener, results in neuroprotection against ischemic insult. However, the effects of DZ in spinal cord ischemia-reperfusion injury have not been fully elucidated. We hypothesized that DZ attenuates spinal cord ischemia-reperfusion injury through the signaling transducer and activator of transcription (STAT) 3 pathway. METHODS Adult male C57/BL6 mice received DZ (20 mg/kg) by oral gavage. Spinal cords were harvested at 0, 12, 24, 36, 48, and 60 hours after administration of DZ. The expression of phosphorylated STAT3 was assessed by Western blot analysis. Five groups were studied: DZ (DZ pretreatment, n = 8), ischemic control (phosphate-buffered saline pretreatment, n = 11), DZ + STAT3 inhibitor LY5 (DZ pretreatment + LY5, n = 8), LY5 (phosphate-buffered saline pretreatment + LY5, n = 8), and sham (without cross-clamping, n = 5). Spinal cord ischemia was induced by 4 minutes of thoracic aortic cross-clamp. Functional scoring (Basso Mouse Score) was done at 12-hour intervals until 48 hours, and spinal cords were harvested for the evaluation of B-cell lymphoma 2 expression and histologic changes. RESULTS The expression of phosphorylated STAT3 was significantly upregulated 36 hours after the administration of DZ. The motor function in the DZ group was significantly preserved compared with all other groups. The expression of B-cell lymphoma 2 in the DZ group was significantly higher than in the ischemic control, DZ + LY5, and LY5 groups 48 hours after reperfusion. CONCLUSIONS DZ preserves motor function in spinal cord ischemia-reperfusion injury by the STAT3 pathway. DZ may be beneficial clinically for use in spinal protection in aortic intervention.
Collapse
Affiliation(s)
- Katsuhiro Yamanaka
- Division of Cardiothoracic Surgery, Department of Surgery, University of Colorado, Aurora, Colorado.
| | - Mohamed Eldeiry
- Division of Cardiothoracic Surgery, Department of Surgery, University of Colorado, Aurora, Colorado
| | - Muhammad Aftab
- Division of Cardiothoracic Surgery, Department of Surgery, University of Colorado, Aurora, Colorado
| | - Thomas J Ryan
- Division of Cardiothoracic Surgery, Department of Surgery, University of Colorado, Aurora, Colorado
| | - Gavriel Roda
- Division of Cardiothoracic Surgery, Department of Surgery, University of Colorado, Aurora, Colorado
| | - Xianzhong Meng
- Division of Cardiothoracic Surgery, Department of Surgery, University of Colorado, Aurora, Colorado
| | - Michael J Weyant
- Division of Cardiothoracic Surgery, Department of Surgery, University of Colorado, Aurora, Colorado
| | - Joseph C Cleveland
- Division of Cardiothoracic Surgery, Department of Surgery, University of Colorado, Aurora, Colorado
| | - David A Fullerton
- Division of Cardiothoracic Surgery, Department of Surgery, University of Colorado, Aurora, Colorado
| | - T Brett Reece
- Division of Cardiothoracic Surgery, Department of Surgery, University of Colorado, Aurora, Colorado
| |
Collapse
|
32
|
Awad H, Bratasz A, Nuovo G, Burry R, Meng X, Kelani H, Brown M, Ramadan ME, Williams J, Bouhliqah L, Popovich PG, Guan Z, Mcallister C, Corcoran SE, Kaspar B, Michele Basso D, Otero JJ, Kirsch C, Davis IC, Croce CM, Michaille JJ, Tili E. MiR-155 deletion reduces ischemia-induced paralysis in an aortic aneurysm repair mouse model: Utility of immunohistochemistry and histopathology in understanding etiology of spinal cord paralysis. Ann Diagn Pathol 2018; 36:12-20. [PMID: 29966831 PMCID: PMC6208131 DOI: 10.1016/j.anndiagpath.2018.06.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Accepted: 06/13/2018] [Indexed: 12/11/2022]
Abstract
Spinal cord paralysis is relatively common after surgical repair of thoraco-abdominal aortic aneurysm (TAAA) and its etiology is unknown. The present study was designed to examine the histopathology of the disease and investigate whether miR-155 ablation would reduce spinal cord ischemic damage and delayed hindlimb paralysis induced by aortic cross-clamping (ACC) in our mouse model. The loss of locomotor function in ACC-paralyzed mice correlated with the presence of extensive gray matter damage and central cord edema, with minimal white matter histopathology. qRTPCR and Western blotting showed that the spinal cords of wild-type ACC mice that escaped paralysis showed lower miR-155 expression and higher levels of transcripts encoding Mfsd2a, which is implicated in the maintenance of blood-brain barrier integrity. In situ based testing demonstrated that increased miR-155 detection in neurons was highly correlated with the gray matter damage and the loss of one of its targets, Mfsd2a, could serve as a good biomarker of the endothelial cell damage. In vitro, we demonstrated that miR-155 targeted Mfsd2a in endothelial cells and motoneurons and increased endothelial cell permeability. Finally, miR-155 ablation slowed the progression of central cord edema, and reduced the incidence of paralysis by 40%. In sum, the surgical pathology findings clearly indicated that the epicenter of the ischemic-induced paralysis was the gray matter and that endothelial cell damage correlated to Mfsd2a loss is a good biomarker of the disease. MiR-155 targeting therefore offers new therapeutic opportunity for edema caused by traumatic spinal cord injury and diagnostic pathologists, by using immunohistochemistry, can clarify if this mechanism also is important in other ischemic diseases of the CNS, including stroke.
Collapse
Affiliation(s)
- Hamdy Awad
- Department of Anesthesiology, Wexner Medical Center, The Ohio State University, Columbus, OH 43210, USA
| | - Anna Bratasz
- Small Animal Imaging Center Shared Resource, Wexner Medical Center, OSU, USA
| | - Gerard Nuovo
- Present address: Phylogeny, Inc., Powell, OH 43065-7295, USA.
| | - Richard Burry
- Department of Neuroscience, The Ohio State University, Columbus, OH 43210, USA
| | - Xiaomei Meng
- Nationwide Children's Hospital, Columbus, OH 43205, USA
| | - Hesham Kelani
- Department of Anesthesiology, Wexner Medical Center, The Ohio State University, Columbus, OH 43210, USA
| | - Melissa Brown
- Department of Anesthesiology, Wexner Medical Center, The Ohio State University, Columbus, OH 43210, USA
| | - Mohamed E Ramadan
- Department of Anesthesiology, Wexner Medical Center, The Ohio State University, Columbus, OH 43210, USA
| | - Jim Williams
- Present address: Phylogeny, Inc., Powell, OH 43065-7295, USA
| | - Lamia Bouhliqah
- Department of ENT, Wexner Medical Center, OSU, Columbus, OH 43210, USA
| | - Phillip G Popovich
- Department of Neuroscience, The Ohio State University, Columbus, OH 43210, USA
| | - Zhen Guan
- Department of Neuroscience, The Ohio State University, Columbus, OH 43210, USA
| | - Cynthia Mcallister
- Center for Gene Therapy, Nationwide Children's Hospital, Columbus, OH 43205, USA
| | - Sarah E Corcoran
- Center for Gene Therapy, Nationwide Children's Hospital, Columbus, OH 43205, USA
| | - Brian Kaspar
- Center for Gene Therapy, Nationwide Children's Hospital, Columbus, OH 43205, USA
| | - D Michele Basso
- School of Health and Rehabilitation Sciences, The Ohio State University, Columbus, OH 43210, USA
| | - José J Otero
- Department of Pathology, Wexner Medical Center, OSU, Columbus, OH 43210, USA
| | - Claudia Kirsch
- Department of Radiology, NSUH, 300 Community Drive, Manhasset, NY 11030, USA
| | - Ian C Davis
- Department of Veterinary Biosciences, College of Veterinary Medicine, 1925 Coffey Road, Columbus, OH 43210, USA
| | - Carlo Maria Croce
- Department of Cancer Biology and Genetics, The Ohio State University Wexner Medical Center and Comprehensive Cancer Center, Columbus, OH 43210, USA
| | - Jean-Jacques Michaille
- Department of Cancer Biology and Genetics, The Ohio State University Wexner Medical Center and Comprehensive Cancer Center, Columbus, OH 43210, USA; BioPerox-IL, UB-INSERM IFR #100, Université de Bourgogne-Franche Comté, Faculté Gabriel, 6 Bd. Gabriel, 21000 Dijon, France
| | - Esmerina Tili
- Department of Anesthesiology, Wexner Medical Center, The Ohio State University, Columbus, OH 43210, USA; Department of Cancer Biology and Genetics, The Ohio State University Wexner Medical Center and Comprehensive Cancer Center, Columbus, OH 43210, USA
| |
Collapse
|
33
|
Liao Z, Wan Q, Xiao X, Ji J, Su J. A systematic investigation on the composition, evolution and expression characteristics of chemokine superfamily in grass carp Ctenopharyngodon idella. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2018; 82:72-82. [PMID: 29325765 DOI: 10.1016/j.dci.2018.01.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Revised: 01/05/2018] [Accepted: 01/05/2018] [Indexed: 06/07/2023]
Abstract
Chemokines are a superfamily of small cytokines and characterized based on their ability to induce directional migration of cells along a concentration gradient by binding to chemokine receptors, which have important roles in immunology and development. Due to the numerous and diverse members, systematic identifications of chemokine superfamily genes are difficult in many species. To that end, a comprehensive analysis of BLAST and scripting language was conducted to systematically identify and characterize chemokine system in grass carp (Ctenopharyngodon idella). Our results showed that C. idella chemokine superfamily consists of 81 chemokines and 37 receptors, in which, most genes possess typical structural features of the chemokine superfamily. Phylogenetic analyses confirmed the existence of three chemokine subfamilies (CC, CXC and XC) in C. idella and revealed their homologous relationships with other species. Chemokine receptors are transmembrane receptors and contains CCR, CXCR, XCR and ACKR subfamilies. mRNA expression analyses of chemokine superfamily genes indicated that many members are sustainably expressed in multiple tissues before and after grass carp reovirus (GCRV) or Aeromonas hydrophila infection, which provides in vivo evidence for the response patterns after viral or bacterial infection. Meanwhile, this study also explored the evolution of chemokine system from arthropod to higher vertebrates and then investigated the changes in gene number/diversification, gene organization and encoded proteins during vertebrate evolution. These results will serve the further functional and evolutional studies on chemokine superfamily.
Collapse
Affiliation(s)
- Zhiwei Liao
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, China; Hubei Engineering Technology Research Center for Aquatic Animal Disease Control and Prevention, Wuhan 430070, China
| | - Quanyuan Wan
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China
| | - Xun Xiao
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China; Hubei Engineering Technology Research Center for Aquatic Animal Disease Control and Prevention, Wuhan 430070, China
| | - Jianfei Ji
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China; Hubei Engineering Technology Research Center for Aquatic Animal Disease Control and Prevention, Wuhan 430070, China
| | - Jianguo Su
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, China; Hubei Engineering Technology Research Center for Aquatic Animal Disease Control and Prevention, Wuhan 430070, China.
| |
Collapse
|
34
|
Yamanaka K, Eldeiry M, Aftab M, Mares J, Ryan TJ, Meng X, Weyant MJ, Cleveland JC, Fullerton DA, Reece TB. Optimized induction of beta common receptor enhances the neuroprotective function of erythropoietin in spinal cord ischemic injury. J Thorac Cardiovasc Surg 2018. [PMID: 29523405 DOI: 10.1016/j.jtcvs.2017.12.132] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
BACKGROUND Paraplegia remains the most feared complication of complex thoracoabdominal aortic intervention. Although erythropoietin (EPO) has demonstrated neuroprotective effects in spinal cord ischemia, it does not work until expression of the beta common receptor subunit of the EPO receptor (βcR) is induced by ischemia. We hypothesized that the βcR can be induced by diazoxide (DZ), amplifying the neuroprotective effects of EPO in spinal cord ischemia-reperfusion injury. METHODS For the DZ time trial, adult male C57/BL6 mice received DZ (20 mg/kg) by oral gavage. Spinal cords were harvested after 0, 12, 24, 36, and 48 hours of administration. To evaluate optimal dosing, DZ was administered at 0, 5, 10, 20, and 40 mg/kg. The expression of βcR was assessed by Western blot analysis. Five groups were studied: PBS (pretreatment)+PBS (immediately before), PBS+EPO, DZ+PBS, DZ+EPO, and sham (without cross-clamping). Spinal cord ischemia was induced by 4 minutes of thoracic aortic cross-clamping. Functional scoring (Basso Mouse Score) was done at 12-hour intervals for 48 hours, and spinal cords were harvested for histological analysis. RESULTS Western blot analysis demonstrated that optimal βcR up-regulation occurred at 36 hours after DZ administration, and the optimal DZ dosage for βcR induction was 20 mg/kg. Motor function at 48 hours after treatment was significantly better preserved in the DZ+EPO group compared with all other groups, and was significantly better preserved in the DZ only and EPO only groups compared with control (PBS+PBS). CONCLUSIONS Pharmacologic up-regulation of βcR with DZ can increase the efficacy of EPO in preventing spinal cord ischemia and reperfusion injury. Improved understanding of this synergetic mechanism may serve to further prevent ischemic complications for high-risk aortic intervention.
Collapse
Affiliation(s)
- Katsuhiro Yamanaka
- Division of Cardiothoracic Surgery, Department of Surgery, University of Colorado, Aurora, Colo.
| | - Mohamed Eldeiry
- Division of Cardiothoracic Surgery, Department of Surgery, University of Colorado, Aurora, Colo
| | - Muhammad Aftab
- Division of Cardiothoracic Surgery, Department of Surgery, University of Colorado, Aurora, Colo
| | - Joshua Mares
- Division of Cardiothoracic Surgery, Department of Surgery, University of Colorado, Aurora, Colo
| | - Thomas J Ryan
- Division of Cardiothoracic Surgery, Department of Surgery, University of Colorado, Aurora, Colo
| | - Xianzhong Meng
- Division of Cardiothoracic Surgery, Department of Surgery, University of Colorado, Aurora, Colo
| | - Michael J Weyant
- Division of Cardiothoracic Surgery, Department of Surgery, University of Colorado, Aurora, Colo
| | - Joseph C Cleveland
- Division of Cardiothoracic Surgery, Department of Surgery, University of Colorado, Aurora, Colo
| | - David A Fullerton
- Division of Cardiothoracic Surgery, Department of Surgery, University of Colorado, Aurora, Colo
| | - T Brett Reece
- Division of Cardiothoracic Surgery, Department of Surgery, University of Colorado, Aurora, Colo
| |
Collapse
|
35
|
Li H, Dong X, Jin M, Cheng W. The Protective Effect of Spinal Cord Stimulation Postconditioning Against Spinal Cord Ischemia/Reperfusion Injury in Rabbits. Neuromodulation 2018; 21:448-456. [DOI: 10.1111/ner.12751] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Revised: 11/05/2017] [Accepted: 11/24/2017] [Indexed: 12/01/2022]
Affiliation(s)
- Huixian Li
- Department of Anesthesiology; Beijing Anzhen Hospital, Beijing Institute of Heart, Lung and Blood Vessel Diseases, Capital Medical University; Beijing China
| | - Xiuhua Dong
- Department of Anesthesiology; Beijing Anzhen Hospital, Beijing Institute of Heart, Lung and Blood Vessel Diseases, Capital Medical University; Beijing China
| | - Mu Jin
- Department of Anesthesiology; Beijing Anzhen Hospital, Beijing Institute of Heart, Lung and Blood Vessel Diseases, Capital Medical University; Beijing China
| | - Weiping Cheng
- Department of Anesthesiology; Beijing Anzhen Hospital, Beijing Institute of Heart, Lung and Blood Vessel Diseases, Capital Medical University; Beijing China
| |
Collapse
|
36
|
Yang YW, Wang YL, Lu JK, Tian L, Jin M, Cheng WP. Delayed xenon post-conditioning mitigates spinal cord ischemia/reperfusion injury in rabbits by regulating microglial activation and inflammatory factors. Neural Regen Res 2018; 13:510-517. [PMID: 29623938 PMCID: PMC5900516 DOI: 10.4103/1673-5374.228757] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
The neuroprotective effect against spinal cord ischemia/reperfusion injury in rats exerted by delayed xenon post-conditioning is stronger than that produced by immediate xenon post-conditioning. However, the mechanisms underlying this process remain unclear. Activated microglia are the main inflammatory cell type in the nervous system. The release of pro-inflammatory factors following microglial activation can lead to spinal cord damage, and inhibition of microglial activation can relieve spinal cord ischemia/reperfusion injury. To investigate how xenon regulates microglial activation and the release of inflammatory factors, a rabbit model of spinal cord ischemia/reperfusion injury was induced by balloon occlusion of the infrarenal aorta. After establishment of the model, two interventions were given: (1) immediate xenon post-conditioning—after reperfusion, inhalation of 50% xenon for 1 hour, 50% N2/50%O2 for 2 hours; (2) delayed xenon post-conditioning—after reperfusion, inhalation of 50% N2/50%O2 for 2 hours, 50% xenon for 1 hour. At 4, 8, 24, 48 and 72 hours after reperfusion, hindlimb locomotor function was scored using the Jacobs locomotor scale. At 72 hours after reperfusion, interleukin 6 and interleukin 10 levels in the spinal cord of each group were measured using western blot assays. Iba1 levels were determined using immunohistochemistry and a western blot assay. The number of normal neurons at the injury site was quantified using hematoxylin-eosin staining. At 72 hours after reperfusion, delayed xenon post-conditioning remarkably enhanced hindlimb motor function, increased the number of normal neurons at the injury site, decreased Iba1 levels, and inhibited interleukin-6 and interleukin-10 levels in the spinal cord. Immediate xenon post-conditioning did not noticeably affect the above-mentioned indexes. These findings indicate that delayed xenon post-conditioning after spinal cord injury improves the recovery of neurological function by reducing microglial activation and the release of interleukin-6 and interleukin-10.
Collapse
Affiliation(s)
- Yan-Wei Yang
- Department of Anesthesiology, Beijing Anzhen Hospital, Capital Medical University, Beijing Institute of Heart, Lung and Blood Vessel Diseases, Beijing, China
| | - Yun-Lu Wang
- Department of Anesthesiology, Beijing Anzhen Hospital, Capital Medical University, Beijing Institute of Heart, Lung and Blood Vessel Diseases, Beijing, China
| | - Jia-Kai Lu
- Department of Anesthesiology, Beijing Anzhen Hospital, Capital Medical University, Beijing Institute of Heart, Lung and Blood Vessel Diseases, Beijing, China
| | - Lei Tian
- Department of Anesthesiology, Beijing Anzhen Hospital, Capital Medical University, Beijing Institute of Heart, Lung and Blood Vessel Diseases, Beijing, China
| | - Mu Jin
- Department of Anesthesiology, Beijing Anzhen Hospital, Capital Medical University, Beijing Institute of Heart, Lung and Blood Vessel Diseases, Beijing, China
| | - Wei-Ping Cheng
- Department of Anesthesiology, Beijing Anzhen Hospital, Capital Medical University, Beijing Institute of Heart, Lung and Blood Vessel Diseases, Beijing, China
| |
Collapse
|
37
|
Foley LS, Fullerton DA, Mares J, Sungelo M, Weyant MJ, Cleveland JC, Reece TB. Erythropoietin's Beta Common Receptor Mediates Neuroprotection in Spinal Cord Neurons. Ann Thorac Surg 2017; 104:1909-1914. [PMID: 29100648 DOI: 10.1016/j.athoracsur.2017.07.052] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/12/2016] [Revised: 07/11/2017] [Accepted: 07/20/2017] [Indexed: 01/10/2023]
Abstract
BACKGROUND Paraplegia from spinal cord ischemia-reperfusion (SCIR) remains an elusive and devastating complication of complex aortic operations. Erythropoietin (EPO) attenuates this injury in models of SCIR. Upregulation of the EPO beta common receptor (βcR) is associated with reduced damage in models of neural injury. The purpose of this study was to examine whether EPO-mediated neuroprotection was dependent on βcR expression. We hypothesized that spinal cord neurons subjected to oxygen-glucose deprivation would mimic SCIR injury in aortic surgery and EPO treatment attenuates this injury in a βcR-dependent fashion. METHODS Lentiviral vectors with βcR knockdown sequences were tested on neuron cell cultures. The virus with greatest βcR knockdown was selected. Spinal cord neurons from perinatal wild-type mice were harvested and cultured to maturity. They were treated with knockdown or nonsense virus and transduced cells were selected. Three groups (βcR knockdown virus, nonsense control virus, no virus control; n = 8 each) were subjected to 1 hour of oxygen-glucose deprivation. Viability was assessed. βcR expression was quantified by immunoblot. RESULTS EPO preserved neuronal viability after oxygen-glucose deprivation (0.82 ± 0.04 versus 0.61 ± 0.01; p < 0.01). Additionally, EPO-mediated neuron preservation was similar in the nonsense virus and control mice (0.82 ± 0.04 versus 0.80 ± 0.05; p = 0.77). EPO neuron preservation was lost in βcR knockdown mice compared with nonsense control mice (0.46 ± 0.03 versus 0.80 ± 0.05; p < 0.01). CONCLUSIONS EPO attenuates neuronal loss after oxygen-glucose deprivation in a βcR-dependent fashion. This receptor holds immense clinical promise as a target for pharmacotherapies treating spinal cord ischemic injury.
Collapse
Affiliation(s)
- Lisa S Foley
- Department of Surgery, Division of Cardiothoracic Surgery, University of Colorado Denver, Aurora, Colorado.
| | - David A Fullerton
- Department of Surgery, Division of Cardiothoracic Surgery, University of Colorado Denver, Aurora, Colorado
| | - Joshua Mares
- Department of Surgery, Division of Cardiothoracic Surgery, University of Colorado Denver, Aurora, Colorado
| | - Mitchell Sungelo
- Department of Surgery, Division of Cardiothoracic Surgery, University of Colorado Denver, Aurora, Colorado
| | - Michael J Weyant
- Department of Surgery, Division of Cardiothoracic Surgery, University of Colorado Denver, Aurora, Colorado
| | - Joseph C Cleveland
- Department of Surgery, Division of Cardiothoracic Surgery, University of Colorado Denver, Aurora, Colorado
| | - T Brett Reece
- Department of Surgery, Division of Cardiothoracic Surgery, University of Colorado Denver, Aurora, Colorado
| |
Collapse
|
38
|
Liu G, Fan G, Guo G, Kang W, Wang D, Xu B, Zhao J. FK506 Attenuates the Inflammation in Rat Spinal Cord Injury by Inhibiting the Activation of NF-κB in Microglia Cells. Cell Mol Neurobiol 2017; 37:843-855. [PMID: 27572744 DOI: 10.1007/s10571-016-0422-8] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2015] [Accepted: 08/23/2016] [Indexed: 02/08/2023]
Abstract
FK-506 (Tacrolimus) is a very commonly used immunomodulatory agent that plays important roles in modulating the calcium-dependent phosphoserine-phosphothreonine protein phosphatase calcineurin and thus inhibits calcineurin-mediated secondary neuronal damage. The biological function of FK-506 in the spinal cord has not been fully elucidated. To clarify the anti-inflammatory action of FK-506 in spinal cord injury (SCI), we performed an acute spinal cord contusion injury model in adult rats and hypoxia-treated primary spinal cord microglia cultures. This work studied the activation of NF-κB and proinflammatory cytokine (TNF-a, IL-1b, and IL-6) expression. ELISA and q-PCR analysis revealed that TNF-a, IL-1b, and IL-6 levels significantly increased 3 days after spinal cord contusion and decreased after 14 days, accompanied by the increased activation of NF-κB. This increase was reversed by an FK-506 treatment. Double immunofluorescence labeling suggested that NF-κB activation was especially prominent in microglia. Immunohistochemistry confirmed no alteration in the number of microglia. Moreover, the results in hypoxia-treated primary spinal cord microglia confirmed the effect of FK-506 on TNF-a, IL-1b, and IL-6 expression and NF-κB activation. These findings suggest that FK-506 may be involved in microglial activation after SCI.
Collapse
Affiliation(s)
- Gang Liu
- Department of Orthopedic Surgery, Jinling Hospital, 305# East Zhongshan Road, Nanjing, 210002, Jiangsu, China
| | - Gentao Fan
- Department of Orthopedic Surgery, Jinling Hospital, 305# East Zhongshan Road, Nanjing, 210002, Jiangsu, China
| | - Guodong Guo
- Department of Orthopedic Surgery, Jinling Hospital, 305# East Zhongshan Road, Nanjing, 210002, Jiangsu, China
| | - Wenbo Kang
- Department of Orthopedic Surgery, Jinling Hospital, 305# East Zhongshan Road, Nanjing, 210002, Jiangsu, China
| | - Dongsheng Wang
- Department of Orthopedic Surgery, Jinling Hospital, 305# East Zhongshan Road, Nanjing, 210002, Jiangsu, China
| | - Bin Xu
- Department of Orthopedic Surgery, Jinling Hospital, 305# East Zhongshan Road, Nanjing, 210002, Jiangsu, China
| | - Jianning Zhao
- Department of Orthopedic Surgery, Jinling Hospital, 305# East Zhongshan Road, Nanjing, 210002, Jiangsu, China.
| |
Collapse
|
39
|
The Protective Effect of Curcumin on a Spinal Cord Ischemia-Reperfusion Injury Model. Ann Vasc Surg 2017; 42:285-292. [DOI: 10.1016/j.avsg.2016.12.016] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2016] [Revised: 11/29/2016] [Accepted: 12/13/2016] [Indexed: 02/02/2023]
|
40
|
Vidal PM, Karadimas SK, Ulndreaj A, Laliberte AM, Tetreault L, Forner S, Wang J, Foltz WD, Fehlings MG. Delayed decompression exacerbates ischemia-reperfusion injury in cervical compressive myelopathy. JCI Insight 2017; 2:92512. [PMID: 28570271 DOI: 10.1172/jci.insight.92512] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2016] [Accepted: 04/27/2017] [Indexed: 01/21/2023] Open
Abstract
Degenerative cervical myelopathy (DCM) is the most common progressive nontraumatic spinal cord injury. The most common recommended treatment is surgical decompression, although the optimal timing of intervention is an area of ongoing debate. The primary objective of this study was to assess whether a delay in decompression could influence the extent of ischemia-reperfusion injury and alter the trajectory of outcome in DCM. Using a DCM mouse model, we show that decompression acutely led to a 1.5- to 2-fold increase in levels of inflammatory cytokines within the spinal cord. Delayed decompression was associated with exacerbated reperfusion injury, astrogliosis, and poorer neurological recovery. Additionally, delayed decompression was associated with prolonged elevation of inflammatory cytokines and an exacerbated peripheral monocytic inflammatory response (P < 0.01 and 0.001). In contrast, early decompression led to resolution of reperfusion-mediated inflammation, neurological improvement, and reduced hyperalgesia. Similar findings were observed in subjects from the CSM AOSpine North America and International studies, where delayed decompressive surgery resulted in poorer neurological improvement compared with patients with an earlier intervention. Our data demonstrate that delayed surgical decompression for DCM exacerbates reperfusion injury and is associated with ongoing enhanced levels of cytokine expression, microglia activation, and astrogliosis, and paralleled with poorer neurological recovery.
Collapse
Affiliation(s)
- Pia M Vidal
- Division of Genetics & Development, Toronto Western Research Institute and Spine Program, Krembil Neuroscience Center, University Health Network, Toronto, Ontario, Canada
| | - Spyridon K Karadimas
- Division of Genetics & Development, Toronto Western Research Institute and Spine Program, Krembil Neuroscience Center, University Health Network, Toronto, Ontario, Canada.,Institute of Medical Science
| | - Antigona Ulndreaj
- Division of Genetics & Development, Toronto Western Research Institute and Spine Program, Krembil Neuroscience Center, University Health Network, Toronto, Ontario, Canada.,Institute of Medical Science
| | - Alex M Laliberte
- Division of Genetics & Development, Toronto Western Research Institute and Spine Program, Krembil Neuroscience Center, University Health Network, Toronto, Ontario, Canada.,Institute of Medical Science
| | - Lindsay Tetreault
- Department of Surgery, Division of Neurosurgery and Spine Program, University of Toronto, Toronto, Ontario, Canada
| | - Stefania Forner
- Department of Pharmacology, Universidade Federal de Santa Catarina, Florianópolis, Brazil
| | - Jian Wang
- Division of Genetics & Development, Toronto Western Research Institute and Spine Program, Krembil Neuroscience Center, University Health Network, Toronto, Ontario, Canada
| | - Warren D Foltz
- Spatio-Temporal Targeting and Amplification of Radiation Responses (STTARR) Innovation Centre, Department of Radiation Oncology, University Health Network, Toronto, Ontario, Canada
| | - Michael G Fehlings
- Division of Genetics & Development, Toronto Western Research Institute and Spine Program, Krembil Neuroscience Center, University Health Network, Toronto, Ontario, Canada.,Department of Surgery, Division of Neurosurgery and Spine Program, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
41
|
Wang L, Yao Y, He R, Meng Y, Li N, Zhang D, Xu J, Chen O, Cui J, Bian J, Zhang Y, Chen G, Deng X. Methane ameliorates spinal cord ischemia-reperfusion injury in rats: Antioxidant, anti-inflammatory and anti-apoptotic activity mediated by Nrf2 activation. Free Radic Biol Med 2017; 103:69-86. [PMID: 28007572 DOI: 10.1016/j.freeradbiomed.2016.12.014] [Citation(s) in RCA: 72] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2016] [Revised: 11/14/2016] [Accepted: 12/11/2016] [Indexed: 11/28/2022]
Abstract
Methane is reported to have antioxidant, anti-inflammatory and anti-apoptotic properties. We investigated the potential neuroprotective effects of methane-rich saline (MS) on spinal cord ischemia-reperfusion injury and determined that its therapeutic benefits are associated with the activation of nuclear factor erythroid 2-related factor 2 (Nrf2). Rats received 9min of spinal cord ischemia induced by occlusion of the descending thoracic aorta plus systemic hypotension followed by a single MS treatment (10ml/kg, ip) and 72h reperfusion. MS treatment attenuated motor sensory deficits and produced high concentrations of methane in spinal cords during reperfusion, which increased Nrf2 expression and transcriptional activity in neurons, microglia and astrocytes in the ventral, intermediate and dorsal gray matter of lumbar segments. Heme oxygenase-1, superoxide dismutase, catalase and glutathione were upregulated; and glutathione disulfide, superoxide, hydrogen peroxide, malondialdehyde, 8-hydroxy-2-deoxyguanosine and 3-nitrotyrosine were downregulated in MS-treated spinal cords. MS treatment reduced neuronal apoptosis in gray matter zones, which was consistent with the suppression of cytochrome c release to the cytosol from the mitochondria and the activation of caspase-9 and -3. Throughout the gray matter, the activation of microglia and astrocytes was inhibited; the nuclear accumulation of phosphorylated nuclear factor-kappa B p65 was reduced; and tumor necrosis factor α, interleukin 1β, chemokine (C-X-C motif) ligand 1, intercellular adhesion molecule 1 and myeloperoxidase were decreased. MS treatment attenuated blood-spinal cord barrier dysfunction by preventing the expression and activity of matrix metallopeptidase-9 and disrupting tight junction proteins. Consecutive intrathecal injection of specific siRNAs targeting Nrf2 at 24-h intervals 3 days before ischemia reduced the beneficial effects of MS. Our data indicate that MS treatment prevents IR-induced spinal cord damage via antioxidant, anti-inflammatory and anti-apoptotic activities that involve the activation of Nrf2 signaling. Thus, methane may serve as a novel promising therapeutic agent for treating ischemic spinal cord injury.
Collapse
Affiliation(s)
- Liping Wang
- Department of Anesthesiology, Fuzhou General Hospital of PLA, Fuzhou 350025, Fujian Province, People's Republic of China
| | - Ying Yao
- Department of Anesthesiology and Intensive Care Medicine, Changhai Hospital, Second Military Medical University, Shanghai 200433, People's Republic of China
| | - Rong He
- Department of Anesthesiology, Xinyi People's Hospital, Xinyi 221400, Jiangsu Province, People's Republic of China
| | - Yan Meng
- Department of Anesthesiology and Intensive Care Medicine, Changhai Hospital, Second Military Medical University, Shanghai 200433, People's Republic of China
| | - Na Li
- Department of Anesthesiology and Intensive Care Medicine, Changhai Hospital, Second Military Medical University, Shanghai 200433, People's Republic of China
| | - Dan Zhang
- Department of Anesthesiology and Intensive Care Medicine, Changhai Hospital, Second Military Medical University, Shanghai 200433, People's Republic of China
| | - Jiajun Xu
- Department of Diving and Hyperbaric Medicine, Faculty of Naval Medicine, Second Military Medical University, Shanghai 200433, People's Republic of China
| | - Ouyang Chen
- Department of Navy Aviation Medicine, Faculty of Naval Medicine, Second Military Medical University, Shanghai 200433, People's Republic of China
| | - Jin Cui
- Graduate Management Unit, Changhai Hospital, Second Military Medical University, Shanghai 200433, People's Republic of China
| | - Jinjun Bian
- Department of Anesthesiology and Intensive Care Medicine, Changhai Hospital, Second Military Medical University, Shanghai 200433, People's Republic of China
| | - Yan Zhang
- Department of Anesthesiology and Intensive Care Medicine, Changhai Hospital, Second Military Medical University, Shanghai 200433, People's Republic of China
| | - Guozhong Chen
- Department of Anesthesiology, Fuzhou General Hospital of PLA, Fuzhou 350025, Fujian Province, People's Republic of China.
| | - Xiaoming Deng
- Department of Anesthesiology and Intensive Care Medicine, Changhai Hospital, Second Military Medical University, Shanghai 200433, People's Republic of China.
| |
Collapse
|
42
|
Sakr HF, Abbas AM, Bin-Jaliah I. Modulation of the neurological and vascular complications by grape seed extract in a rat model of spinal cord ischemia–reperfusion injury by downregulation of both osteopontin and cyclooxygenase-2. Can J Physiol Pharmacol 2016; 94:719-27. [DOI: 10.1139/cjpp-2015-0498] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
In this study, we investigated the effects of grape seed extract (GSE) on the expression of osteopontin (OPN) and cyclooxygenase-2 (COX-2) in a rat model of spinal cord ischemia–reperfusion injury (SC-IRI). Fifty male rats were divided into 5 groups: control (CON); control + GSE (CON + GSE) (received GSE for 28 days); sham operated (Sham); IRI; and IRI + GSE. SC-IRI was induced by clamping the aorta just above the bifurcation for 45 min, and then the clamp was released for 48 h for reperfusion. IRI + GSE group received GSE for 28 days before SC-IRI. Sensory, motor, and placing/stepping reflex assessment was performed. Prostaglandin E2 (PGE2), thiobarbituric acid reactive substances (TBARs), and total antioxidant capacity (TAC) were measured in spinal cord homogenate. Immunohistochemical examination of the spinal cord for OPN and COX-2 were carried out. SC-IRI resulted in significant increase in plasma nitrite/nitrate level and spinal cord homogenate levels of TBARs and PGE2, and OPN and COX-2 expression with significant decrease in TAC. GSE improves the sensory and motor functions through decreasing OPN and COX-2 expression with reduction of oxidative stress parameters. We conclude a neuroprotective effect of GSE in SC-IRI through downregulating COX-2 and OPN expression plus its antioxidants effects.
Collapse
Affiliation(s)
- Hussein F. Sakr
- Medical Physiology Department, Faculty of Medicine, Mansoura University, Mansoura, Egypt
- Medical Physiology Department, College of Medicine, King Khalid University, KSA
| | - Amr M. Abbas
- Medical Physiology Department, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | - Ismaeel Bin-Jaliah
- Medical Physiology Department, College of Medicine, King Khalid University, KSA
| |
Collapse
|
43
|
Yuksel Y, Guven M, Kaymaz B, Sehitoglu MH, Aras AB, Akman T, Tosun M, Cosar M. Effects of Aloe Vera on Spinal Cord Ischemia-Reperfusion Injury of Rats. J INVEST SURG 2016; 29:389-398. [PMID: 27142763 DOI: 10.1080/08941939.2016.1178358] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
AIM The purpose of this study was to evaluate the possible protective/therapeutic effects of aloe vera (AV) on ischemia-reperfusion injury (I/R) of spinal cord in rats. MATERIALS AND METHODS A total of 28 Wistar Albino rats were divided into four random groups of equal number (n = 7). Group I (control) had no medication or surgery; Group II underwent spinal cord ischemia and was given no medication; Group III was administered AV by gastric gavage for 30 days as pre-treatment; Group IV was administered single dose intraperitoneal methylprednisolone (MP) after the ischemia. Nuclear respiratory factor-1 (NRF1), malondialdehyde (MDA) and superoxide dismutase (SOD) levels were evaluated. Tissue samples were examined histopathologically and neuronal nitric oxide synthase (nNOS) and nuclear factor-kappa B (NF-κB) protein expressions were assessed by immunohistochemical staining. RESULTS NRF1 and SOD levels of ischemia group were found to be lower compared to the other groups. MDA levels significantly increased after I/R. Treatment with AV and MP resulted in reduced MDA levels and also alleviated hemorrhage, edema, inflammatory cell migration and neurons were partially protected from ischemic injury. When AV treatment was compared with MP, there was no statistical difference between them in terms of reduction of neuronal damage. I/R injury increased NF-κB and nNOS expressions. AV and MP treatments decreased NF-κB and nNOS expressions. CONCLUSIONS It was observed that aloe vera attenuated neuronal damage histopathologically and biochemically as pretreatment. Further studies may provide more evidence to determine the additional role of aloe vera in spinal cord ischemia reperfusion injury.
Collapse
Affiliation(s)
- Yasemin Yuksel
- a In Vitro Fertilization Unit, ZekaiTahirBurak Women's Health Education and Research Hospital , Ankara , Turkey
| | - Mustafa Guven
- b Faculty of Medicine, Department of Neurosurgery , Canakkale Onsekiz Mart University , Canakkale , Turkey
| | - Burak Kaymaz
- c Faculty of Medicine, Department of Orthopaedic , Canakkale Onsekiz Mart University , Canakkale , Turkey
| | - Muserref Hilal Sehitoglu
- d Faculty of Medicine, Department of Medical Biochemistry , Canakkale Onsekiz Mart University , Canakkale , Turkey
| | - Adem Bozkurt Aras
- b Faculty of Medicine, Department of Neurosurgery , Canakkale Onsekiz Mart University , Canakkale , Turkey
| | - Tarik Akman
- b Faculty of Medicine, Department of Neurosurgery , Canakkale Onsekiz Mart University , Canakkale , Turkey
| | - Murat Tosun
- e Faculty of Medicine, Department of Histology & Embryology , AfyonKocatepe University , Afyon , Turkey
| | - Murat Cosar
- b Faculty of Medicine, Department of Neurosurgery , Canakkale Onsekiz Mart University , Canakkale , Turkey
| |
Collapse
|
44
|
Han S, Wang B, Li X, Xiao Z, Han J, Zhao Y, Fang Y, Yin Y, Chen B, Dai J. Bone marrow-derived mesenchymal stem cells in three-dimensional culture promote neuronal regeneration by neurotrophic protection and immunomodulation. J Biomed Mater Res A 2016; 104:1759-69. [DOI: 10.1002/jbm.a.35708] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2015] [Revised: 02/26/2016] [Accepted: 03/04/2016] [Indexed: 02/06/2023]
Affiliation(s)
- Sufang Han
- State Key Laboratory of Molecular Developmental Biology; Institute of Genetics and Developmental Biology, Chinese Academy of Sciences; Beijing 100080 China
| | - Bin Wang
- Regeneration Medical Center; Nanjing Drum Tower Hospital, the Affiliated Hospital of Nanjing University Medical School; Nanjing 210008 China
| | - Xing Li
- State Key Laboratory of Molecular Developmental Biology; Institute of Genetics and Developmental Biology, Chinese Academy of Sciences; Beijing 100080 China
- Graduate School; Chinese Academy of Sciences; Beijing 100080 China
| | - Zhifeng Xiao
- State Key Laboratory of Molecular Developmental Biology; Institute of Genetics and Developmental Biology, Chinese Academy of Sciences; Beijing 100080 China
| | - Jin Han
- State Key Laboratory of Molecular Developmental Biology; Institute of Genetics and Developmental Biology, Chinese Academy of Sciences; Beijing 100080 China
| | - Yannan Zhao
- State Key Laboratory of Molecular Developmental Biology; Institute of Genetics and Developmental Biology, Chinese Academy of Sciences; Beijing 100080 China
| | - Yongxiang Fang
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Public Health of Agricultural Ministry, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences; Lanzhou 730046 China
| | - Yanyun Yin
- State Key Laboratory of Molecular Developmental Biology; Institute of Genetics and Developmental Biology, Chinese Academy of Sciences; Beijing 100080 China
| | - Bing Chen
- State Key Laboratory of Molecular Developmental Biology; Institute of Genetics and Developmental Biology, Chinese Academy of Sciences; Beijing 100080 China
| | - Jianwu Dai
- State Key Laboratory of Molecular Developmental Biology; Institute of Genetics and Developmental Biology, Chinese Academy of Sciences; Beijing 100080 China
| |
Collapse
|
45
|
Impact of acquired and innate immunity on spinal cord ischemia and reperfusion injury. Gen Thorac Cardiovasc Surg 2016; 64:251-9. [DOI: 10.1007/s11748-016-0629-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2015] [Accepted: 02/06/2016] [Indexed: 01/01/2023]
|
46
|
Zheng CJ, Yang XY, Qi ZP, Xia P, Hou TT, Li DY. Characteristics of mRNA dynamic expression related to spinal cord ischemia/reperfusion injury: a transcriptomics study. Neural Regen Res 2016; 11:480-6. [PMID: 27127490 PMCID: PMC4829016 DOI: 10.4103/1673-5374.179067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Following spinal cord ischemia/reperfusion injury, an endogenous damage system is immediately activated and participates in a cascade reaction. It is difficult to interpret dynamic changes in these pathways, but the examination of the transcriptome may provide some information. The transcriptome reflects highly dynamic genomic and genetic information and can be seen as a precursor for the proteome. We used DNA microarrays to measure the expression levels of dynamic evolution-related mRNA after spinal cord ischemia/reperfusion injury in rats. The abdominal aorta was blocked with a vascular clamp for 90 minutes and underwent reperfusion for 24 and 48 hours. The simple ischemia group and sham group served as controls. After rats had regained consciousness, hindlimbs showed varying degrees of functional impairment, and gradually improved with prolonged reperfusion in spinal cord ischemia/reperfusion injury groups. Hematoxylin-eosin staining demonstrated that neuronal injury and tissue edema were most severe in the 24-hour reperfusion group, and mitigated in the 48-hour reperfusion group. There were 8,242 differentially expressed mRNAs obtained by Multi-Class Dif in the simple ischemia group, 24-hour and 48-hour reperfusion groups. Sixteen mRNA dynamic expression patterns were obtained by Serial Test Cluster. Of them, five patterns were significant. In the No. 28 pattern, all differential genes were detected in the 24-hour reperfusion group, and their expressions showed a trend in up-regulation. No. 11 pattern showed a decreasing trend in mRNA whereas No. 40 pattern showed an increasing trend in mRNA from ischemia to 48 hours of reperfusion, and peaked at 48 hours. In the No. 25 and No. 27 patterns, differential expression appeared only in the 24-hour and 48-hour reperfusion groups. Among the five mRNA dynamic expression patterns, No. 11 and No. 40 patterns could distinguish normal spinal cord from pathological tissue. No. 25 and No. 27 patterns could distinguish simple ischemia from ischemia/reperfusion. No. 28 pattern could analyze the need for inducing reperfusion injury. The study of specific pathways and functions for different dynamic patterns can provide a theoretical basis for clinical differential diagnosis and treatment of spinal cord ischemia/reperfusion injury.
Collapse
|
47
|
Willey JZ. Stroke and Other Vascular Syndromes of the Spinal Cord. Stroke 2016. [DOI: 10.1016/b978-0-323-29544-4.00031-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
48
|
Li H, Roy Choudhury G, Zhang N, Ding S. Photothrombosis-induced Focal Ischemia as a Model of Spinal Cord Injury in Mice. J Vis Exp 2015:e53161. [PMID: 26274772 DOI: 10.3791/53161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
Spinal cord injury (SCI) is a devastating clinical condition causing permanent changes in sensorimotor and autonomic functions of the spinal cord (SC) below the site of injury. The secondary ischemia that develops following the initial mechanical insult is a serious complication of the SCI and severely impairs the function and viability of surviving neuronal and non-neuronal cells in the SC. In addition, ischemia is also responsible for the growth of lesion during chronic phase of injury and interferes with the cellular repair and healing processes. Thus there is a need to develop a spinal cord ischemia model for studying the mechanisms of ischemia-induced pathology. Focal ischemia induced by photothrombosis (PT) is a minimally invasive and very well established procedure used to investigate the pathology of ischemia-induced cell death in the brain. Here, we describe the use of PT to induce an ischemic lesion in the spinal cord of mice. Following retro-orbital sinus injection of Rose Bengal, the posterior spinal vein and other capillaries on the dorsal surface of SC were irradiated with a green light resulting in the formation of a thrombus and thus ischemia in the affected region. Results from histology and immunochemistry studies show that PT-induced ischemia caused spinal cord infarction, loss of neurons and reactive gliosis. Using this technique a highly reproducible and relatively easy model of SCI in mice can be achieved that would serve the purpose of scientific investigations into the mechanisms of ischemia induced cell death as well as the efficacy of neuroprotective drugs. This model will also allow exploration of the pathological changes that occur following SCI in live mice like axonal degeneration and regeneration, neuronal and astrocytic Ca(2+) signaling using two-photon microscopy.
Collapse
Affiliation(s)
- Hailong Li
- Department of Bioengineering, Dalton Cardiovascular Research Center, University of Missouri
| | - Gourav Roy Choudhury
- Department of Bioengineering, Dalton Cardiovascular Research Center, University of Missouri
| | - Nannan Zhang
- Department of Bioengineering, Dalton Cardiovascular Research Center, University of Missouri
| | - Shinghua Ding
- Department of Bioengineering, Dalton Cardiovascular Research Center, University of Missouri;
| |
Collapse
|
49
|
Spinal Cord Ischemia-Reperfusion Injury Induces Erythropoietin Receptor Expression. Ann Thorac Surg 2015; 100:41-6; discussion 46. [DOI: 10.1016/j.athoracsur.2015.01.027] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2014] [Revised: 01/02/2015] [Accepted: 01/06/2015] [Indexed: 01/22/2023]
|
50
|
Neuroprotective Effect of Ulinastatin on Spinal Cord Ischemia-Reperfusion Injury in Rabbits. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2015; 2015:624819. [PMID: 26161241 PMCID: PMC4487342 DOI: 10.1155/2015/624819] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/17/2014] [Revised: 01/08/2015] [Accepted: 01/08/2015] [Indexed: 01/16/2023]
Abstract
Ulinastatin (UTI), a trypsin inhibitor, is isolated and purified from human urine and has been shown to exert protective effect on myocardial ischemia reperfusion injury in patients. The present study was aimed at investigating the effect of ulinastatin on neurologic functions after spinal cord ischemia reperfusion injury and the underlying mechanism. The spinal cord IR model was achieved by occluding the aorta just caudal to the left renal artery with a bulldog clamp. The drugs were administered immediately after the clamp was removed. The animals were terminated 48 hours after reperfusion. Neuronal function was evaluated with the Tarlov Scoring System. Spinal cord segments between L2 and L5 were harvested for pathological and biochemical analysis. Ulinastatin administration significantly improved postischemic neurologic function with concomitant reduction of apoptotic cell death. In addition, ulinastatin treatment increased SOD activity and decreased MDA content in the spinal cord tissue. Also, ulinastatin treatment suppressed the protein expressions of Bax and caspase-3 but enhanced Bcl-2 protein expression. These results suggest that ulinastatin significantly attenuates spinal cord ischemia-reperfusion injury and improves postischemic neuronal function and that this protection might be attributable to its antioxidant and antiapoptotic properties.
Collapse
|