1
|
Sun R, Li H, Chen Y, Hu M, Wang J. Tubuloside A alleviates postmyocardial infarction cardiac fibrosis by inhibiting TGM2: Involvement of inflammation and mitochondrial pathway apoptosis. Int Immunopharmacol 2024; 143:113324. [PMID: 39393274 DOI: 10.1016/j.intimp.2024.113324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 10/01/2024] [Accepted: 10/02/2024] [Indexed: 10/13/2024]
Abstract
Cardiac fibrosis is associated with myocardial remodeling following myocardial infarction (MI), which can lead to heart failure, arrhythmias, and even death. This study aimed to determine the effects of tubuloside A (TA) on cardiac fibrosis after MI and elucidate their underlying molecular mechanisms. Rats were divided into the following groups: sham (fake surgery), MI, MI + 1 mg/kg TA, and MI + 3 mg/kg TA. Compared with MI, the addition of TA significantly reduced mortality, improved cardiac function, decreased infarct size, and inhibited myocardial injury and fibrosis. To verify the direct targets of TA, we used cellular thermal shift assay and drug affinity responsive target stability to analyze drug-protein interactions and discovered that TA can bind directly to TGM2 and inhibit its enzymatic activity. Furthermore, to investigate whether TA can inhibit the TGF-β1-mediated activation of cardiac fibroblasts (CFs) through TGM2, we overexpressed TGM2 in CF cells and treated them with TA. We found that TA inhibited the activity of TGM2 in CF cells and reduced α-SMA, collagen-I, and collagen-III levels, thereby inhibiting the progression of fibrosis. Similarly, we found that TA could exert anti-inflammatory and antiapoptotic effects by inhibiting TGM2. Overall, we demonstrated that TA is a potential candidate drug for inhibiting the impacts of myocardial infarction and cardiac fibrosis, reducing postinfarction fibrosis by inhibiting the NF-κB signaling pathway and suppressing mitochondrial pathway-mediated apoptosis. Therefore, focusing on drug discovery strategies for TA may provide a promising therapeutic approach for MI.
Collapse
Affiliation(s)
- Runfeng Sun
- Department of Cardiology, Donghai People's Hospital Affiliated to Kangda College of Nanjing Medical University, Donghai People's Hospital, Lianyungang 222300, China
| | - Hua Li
- Department of Cardiology, Donghai People's Hospital Affiliated to Kangda College of Nanjing Medical University, Donghai People's Hospital, Lianyungang 222300, China
| | - Yun Chen
- Department of Cardiology, Donghai People's Hospital Affiliated to Kangda College of Nanjing Medical University, Donghai People's Hospital, Lianyungang 222300, China
| | - Ming Hu
- Department of Cardiology, Donghai People's Hospital Affiliated to Kangda College of Nanjing Medical University, Donghai People's Hospital, Lianyungang 222300, China
| | - Jiaping Wang
- Department of Cardiology, Donghai People's Hospital Affiliated to Kangda College of Nanjing Medical University, Donghai People's Hospital, Lianyungang 222300, China.
| |
Collapse
|
2
|
Lin L, Xu H, Yao Z, Zeng X, Kang L, Li Y, Zhou G, Wang S, Zhang Y, Cheng D, Chen Q, Zhao X, Li R. Jin-Xin-Kang alleviates heart failure by mitigating mitochondrial dysfunction through the Calcineurin/Dynamin-Related Protein 1 signaling pathway. JOURNAL OF ETHNOPHARMACOLOGY 2024; 335:118685. [PMID: 39127116 DOI: 10.1016/j.jep.2024.118685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Revised: 08/01/2024] [Accepted: 08/07/2024] [Indexed: 08/12/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Chronic heart failure (CHF) is a severe consequence of cardiovascular disease, marked by cardiac dysfunction. Jin-Xin-Kang (JXK) is a traditional Chinese herbal formula used for the treatment of CHF. This formula consists of seven medicinal herbs, including Ginseng (Ginseng quinquefolium (L.) Alph.Wood), Astragali Radix (Astragalus membranaceus (Fisch.) Bunge), Salvia miltiorrhiza (Salvia miltiorrhiza Bunge), Descurainiae Semen Lepidii Semen (Descurainia sophia (L.) Webb ex Prantl), Leonuri Herba (Leonurus japonicus Houtt.), Cinnamomi Ramulus (Cinnamomum cassia (L.) J.Presl), and Ilex pubescens (Ilex pubescens Hook. & Arn.). Its clinical efficacy has been validated through prospective randomized controlled studies. However, the specific mechanisms of action for this formula have yet to be elucidated. AIM OF THE STUDY This study aimed to investigate the effect of JXK on mitochondrial function and its mechanism in the treatment of CHF. METHODS JXK components were qualitatively analyzed using UPLC-Q-Orbitrap-MS. HF was induced in mice via transverse aortic constriction (TAC). After successful model establishment, lyophilized JXK-L (4.38 g/kg) and JXK-H (13.14 g/kg) were administered for 8 weeks. In vitro, hypertrophic myocardium was induced using angiotensin II (Ang II) for 48 h, followed by JXK-L and JXK-H treatment. Network pharmacology and molecular docking techniques were used to predict the relevant targets of JXK. Cardiac function, serum markers, and histopathological changes were evaluated to assess cardiac function. Immunofluorescence of Tomm20, mitochondrial membrane potential, and ROS were measured to assess mitochondrial dysfunction. Protein expression of calcineurin (CaN) and Drp1 in the myocardium was assessed by Western blot analysis. RESULTS We detected that the active components of JXK include terpenes, glycosides, flavonoids, amino acids, and alkaloids, among others. In mice with CHF, JXK improved cardiac function and reversed ventricular remodeling. Network pharmacology indicated that JXK can inhibit the calcium signaling pathway. The molecular docking results demonstrated that the active components of JXK effectively bind with CaN. Both in vitro and in vivo experiments confirmed that JXK regulated the CaN/Drp1 pathway and alleviated mitochondrial dysfunction. CONCLUSION JXK can inhibit the CaN/Drp1 pathway to improve mitochondrial function, and consequently treat CHF.
Collapse
Affiliation(s)
- Liwen Lin
- Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Honglin Xu
- Guangzhou University of Chinese Medicine, Guangzhou, China; Innovation Research Center, Shandong University of Chinese Medicine, Jinan, China
| | - Zhengyang Yao
- Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xianyou Zeng
- Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Liang Kang
- Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yihua Li
- Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Guiting Zhou
- Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Shushu Wang
- Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yuling Zhang
- Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Danling Cheng
- Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Qi Chen
- Department of Cardiology, Guangdong Provincial Hospital of Traditional Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China.
| | - Xinjun Zhao
- Cardiology Center, First Affiliated Hospital of Guangzhou University of Traditional Chinese Medicine, Guangzhou, China; Guangdong Clinical Research Academy of Chinese Medicine, Guangzhou, China.
| | - Rong Li
- Cardiology Center, First Affiliated Hospital of Guangzhou University of Traditional Chinese Medicine, Guangzhou, China; Guangdong Clinical Research Academy of Chinese Medicine, Guangzhou, China.
| |
Collapse
|
3
|
Janssens KLPM, Bovendeerd PHM. Impact of cardiac patch alignment on restoring post-infarct ventricular function. Biomech Model Mechanobiol 2024; 23:1963-1976. [PMID: 39088120 DOI: 10.1007/s10237-024-01877-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Accepted: 07/12/2024] [Indexed: 08/02/2024]
Abstract
Acute myocardial infarction (MI) leads to a loss of cardiac function which, following adverse ventricular remodeling (AVR), can ultimately result in heart failure. Tissue-engineered contractile patches placed over the infarct offer potential for restoring cardiac function and reducing AVR. In this computational study, we investigate how improvement of pump function depends on the orientation of the cardiac patch and the fibers therein relative to the left ventricle (LV). Additionally, we examine how model outcome depends on the choice of material properties for healthy and infarct tissue. In a finite element model of LV mechanics, an infarction was induced by eliminating active stress generation and increasing passive tissue stiffness in a region comprising 15% of the LV wall volume. The cardiac patch was modeled as a rectangular piece of healthy myocardium with a volume of 25% of the infarcted tissue. The orientation of the patch was varied from 0 to 150 ∘ relative to the circumferential plane. The infarct reduced stroke work by 34% compared to the healthy heart. Optimal patch support was achieved when the patch was oriented parallel to the subepicardial fiber direction, restoring 9% of lost functionality. Typically, about one-third of the total recovery was attributed to the patch, while the remainder resulted from restored functionality in native myocardium adjacent to the infarct. The patch contributes to cardiac function through two mechanisms. A contribution of tissue in the patch and an increased contribution of native tissue, due to favorable changes in mechanical boundary conditions.
Collapse
Affiliation(s)
- Koen L P M Janssens
- Department of Biomedical Engineering, Eindhoven University of Technology, 5600MB, Eindhoven, The Netherlands.
| | - Peter H M Bovendeerd
- Department of Biomedical Engineering, Eindhoven University of Technology, 5600MB, Eindhoven, The Netherlands
| |
Collapse
|
4
|
El Khayari A, Hakam SM, Malka G, Rochette L, El Fatimy R. New insights into the cardio-renal benefits of SGLT2 inhibitors and the coordinated role of miR-30 family. Genes Dis 2024; 11:101174. [PMID: 39224109 PMCID: PMC11367061 DOI: 10.1016/j.gendis.2023.101174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 09/15/2023] [Accepted: 10/10/2023] [Indexed: 09/04/2024] Open
Abstract
Sodium-glucose co-transporter inhibitors (SGLTis) are the latest class of anti-hyperglycemic agents. In addition to inhibiting the absorption of glucose by the kidney causing glycosuria, these drugs also demonstrate cardio-renal benefits in diabetic subjects. miR-30 family, one of the most abundant microRNAs in the heart, has recently been linked to a setting of cardiovascular diseases and has been proposed as novel biomarkers in kidney dysfunctions as well; their expression is consistently dysregulated in a variety of cardio-renal dysfunctions. The mechanistic involvement and the potential interplay between miR-30 and SGLT2i effects have yet to be thoroughly elucidated. Recent research has stressed the relevance of this cluster of microRNAs as modulators of several pathological processes in the heart and kidneys, raising the possibility of these small ncRNAs playing a central role in various cardiovascular complications, notably, endothelial dysfunction and pathological remodeling. Here, we review current evidence supporting the pleiotropic effects of SGLT2is in cardiovascular and renal outcomes and investigate the link and the coordinated implication of the miR-30 family in endothelial dysfunction and cardiac remodeling. We also discuss the emerging role of circulating miR-30 as non-invasive biomarkers and attractive therapeutic targets for cardiovascular diseases and kidney diseases. Clinical evidence, as well as metabolic, cellular, and molecular aspects, are comprehensively covered.
Collapse
Affiliation(s)
- Abdellatif El Khayari
- Institute of Biological Sciences (ISSB-P), UM6P Faculty of Medical Sciences, Mohammed VI Polytechnic University (UM6P), Ben-Guerir 43150, Morocco
| | - Soukaina Miya Hakam
- Institute of Biological Sciences (ISSB-P), UM6P Faculty of Medical Sciences, Mohammed VI Polytechnic University (UM6P), Ben-Guerir 43150, Morocco
| | - Gabriel Malka
- Institute of Biological Sciences (ISSB-P), UM6P Faculty of Medical Sciences, Mohammed VI Polytechnic University (UM6P), Ben-Guerir 43150, Morocco
| | - Luc Rochette
- Equipe d'Accueil (EA 7460): Physiopathologie et Epidémiologie Cérébro-Cardiovasculaires (PEC2), Université de Bourgogne – Franche Comté, Faculté des Sciences de Santé, 7 Bd Jeanne d'Arc, Dijon 21000, France
| | - Rachid El Fatimy
- Institute of Biological Sciences (ISSB-P), UM6P Faculty of Medical Sciences, Mohammed VI Polytechnic University (UM6P), Ben-Guerir 43150, Morocco
| |
Collapse
|
5
|
Martin TG, Hunt DR, Langer SJ, Tan Y, Ebmeier CC, Leinwand LA. Regression of postprandial cardiac hypertrophy in burmese pythons is mediated by FoxO1. Proc Natl Acad Sci U S A 2024; 121:e2408719121. [PMID: 39352930 PMCID: PMC11474088 DOI: 10.1073/pnas.2408719121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Accepted: 08/16/2024] [Indexed: 10/04/2024] Open
Abstract
As ambush-hunting predators that consume large prey after long intervals of fasting, Burmese pythons evolved with unique adaptations for modulating organ structure and function. Among these is cardiac hypertrophy that develops within three days following a meal (Andersen et al., 2005, Secor, 2008), which we previously showed was initiated by circulating growth factors (Riquelme et al., 2011). Postprandial cardiac hypertrophy in pythons also rapidly regresses with subsequent fasting (Secor, 2008); however, the molecular mechanisms that regulate the dynamic cardiac remodeling in pythons during digestion are largely unknown. In this study, we employed a multiomics approach coupled with targeted molecular analyses to examine remodeling of the python ventricular transcriptome and proteome throughout digestion. We found that forkhead box protein O1 (FoxO1) signaling was suppressed prior to hypertrophy development and then activated during regression, which coincided with decreased and then increased expression, respectively, of FoxO1 transcriptional targets involved in proteolysis. To define the molecular mechanistic role of FoxO1 in hypertrophy regression, we used cultured mammalian cardiomyocytes treated with postfed python plasma. Hypertrophy regression both in pythons and in vitro coincided with activation of FoxO1-dependent autophagy; however, the introduction of a FoxO1-specific inhibitor prevented both regression of cell size and autophagy activation. Finally, to determine whether FoxO1 activation could induce regression, we generated an adenovirus expressing a constitutively active FoxO1. FoxO1 activation was sufficient to prevent and reverse postfed plasma-induced hypertrophy, which was partially prevented by autophagy inhibition. Our results indicate that modulation of FoxO1 activity contributes to the dynamic ventricular remodeling in postprandial Burmese pythons.
Collapse
Affiliation(s)
- Thomas G. Martin
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado Boulder, Boulder, CO80309
- BioFrontiers Institute, University of Colorado Boulder, Boulder, CO80303
| | - Dakota R. Hunt
- BioFrontiers Institute, University of Colorado Boulder, Boulder, CO80303
- Department of Biochemistry, University of Colorado Boulder, Boulder, CO80303
| | - Stephen J. Langer
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado Boulder, Boulder, CO80309
- BioFrontiers Institute, University of Colorado Boulder, Boulder, CO80303
| | - Yuxiao Tan
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado Boulder, Boulder, CO80309
- BioFrontiers Institute, University of Colorado Boulder, Boulder, CO80303
| | | | - Leslie A. Leinwand
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado Boulder, Boulder, CO80309
- BioFrontiers Institute, University of Colorado Boulder, Boulder, CO80303
| |
Collapse
|
6
|
Duse DA, Schröder NH, Srivastava T, Benkhoff M, Vogt J, Nowak MK, Funk F, Semleit N, Wollnitzke P, Erkens R, Kötter S, Meuth SG, Keul P, Santos W, Polzin A, Kelm M, Krüger M, Schmitt J, Levkau B. Deficiency of the sphingosine-1-phosphate (S1P) transporter Mfsd2b protects the heart against hypertension-induced cardiac remodeling by suppressing the L-type-Ca 2+ channel. Basic Res Cardiol 2024; 119:853-868. [PMID: 39110173 PMCID: PMC11461684 DOI: 10.1007/s00395-024-01073-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 07/26/2024] [Accepted: 07/29/2024] [Indexed: 10/09/2024]
Abstract
The erythrocyte S1P transporter Mfsd2b is also expressed in the heart. We hypothesized that S1P transport by Mfsd2b is involved in cardiac function. Hypertension-induced cardiac remodeling was induced by 4-weeks Angiotensin II (AngII) administration and assessed by echocardiography. Ca2+ transients and sarcomere shortening were examined in adult cardiomyocytes (ACM) from Mfsd2b+/+ and Mfsd2b-/- mice. Tension and force development were measured in skinned cardiac fibers. Myocardial gene expression was determined by real-time PCR, Protein Phosphatase 2A (PP2A) by enzymatic assay, and S1P by LC/MS, respectively. Msfd2b was expressed in the murine and human heart, and its deficiency led to higher cardiac S1P. Mfsd2b-/- mice had regular basal cardiac function but were protected against AngII-induced deterioration of left-ventricular function as evidenced by ~ 30% better stroke volume and cardiac index, and preserved ejection fraction despite similar increases in blood pressure. Mfsd2b-/- ACM exhibited attenuated Ca2+ mobilization in response to isoprenaline whereas contractility was unchanged. Mfsd2b-/- ACM showed no changes in proteins responsible for Ca2+ homeostasis, and skinned cardiac fibers exhibited reduced passive tension generation with preserved contractility. Verapamil abolished the differences in Ca2+ mobilization between Mfsd2b+/+ and Mfsd2b-/- ACM suggesting that S1P inhibits L-type-Ca2+ channels (LTCC). In agreement, intracellular S1P activated the inhibitory LTCC phosphatase PP2A in ACM and PP2A activity was increased in Mfsd2b-/- hearts. We suggest that myocardial S1P protects from hypertension-induced left-ventricular remodeling by inhibiting LTCC through PP2A activation. Pharmacologic inhibition of Mfsd2b may thus offer a novel approach to heart failure.
Collapse
Affiliation(s)
- Dragos Andrei Duse
- Institute for Molecular Medicine III, University Hospital Düsseldorf and Heinrich Heine University, Düsseldorf, Germany
- Department of Cardiology, Pneumology, and Vascular Medicine, Medical Faculty, Heinrich Heine University, Düsseldorf, Germany
- Cardiovascular Research Institute Düsseldorf (CARID), Düsseldorf, Germany
| | - Nathalie Hannelore Schröder
- Institute for Molecular Medicine III, University Hospital Düsseldorf and Heinrich Heine University, Düsseldorf, Germany
| | - Tanu Srivastava
- Institute of Pharmacology, University Hospital Düsseldorf, Düsseldorf, Germany
| | - Marcel Benkhoff
- Department of Cardiology, Pneumology, and Vascular Medicine, Medical Faculty, Heinrich Heine University, Düsseldorf, Germany
| | - Jens Vogt
- Institute for Molecular Medicine III, University Hospital Düsseldorf and Heinrich Heine University, Düsseldorf, Germany
| | - Melissa Kim Nowak
- Institute for Molecular Medicine III, University Hospital Düsseldorf and Heinrich Heine University, Düsseldorf, Germany
| | - Florian Funk
- Institute of Pharmacology, University Hospital Düsseldorf, Düsseldorf, Germany
| | - Nina Semleit
- Institute for Molecular Medicine III, University Hospital Düsseldorf and Heinrich Heine University, Düsseldorf, Germany
| | - Philipp Wollnitzke
- Institute for Molecular Medicine III, University Hospital Düsseldorf and Heinrich Heine University, Düsseldorf, Germany
| | - Ralf Erkens
- Department of Cardiology, Pneumology, and Vascular Medicine, Medical Faculty, Heinrich Heine University, Düsseldorf, Germany
- Cardiovascular Research Institute Düsseldorf (CARID), Düsseldorf, Germany
| | - Sebastian Kötter
- Institute of Cardiovascular Physiology, Medical Faculty and University Hospital Düsseldorf, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | - Sven Günther Meuth
- Department of Neurology, Medical Faculty, Heinrich Heine University of Düsseldorf, Düsseldorf, Germany
| | - Petra Keul
- Institute for Molecular Medicine III, University Hospital Düsseldorf and Heinrich Heine University, Düsseldorf, Germany
| | - Webster Santos
- Department of Chemistry and Virginia Tech Center for Drug Discovery, Virginia Tech, Blacksburg, VA, 24060, USA
| | - Amin Polzin
- Department of Cardiology, Pneumology, and Vascular Medicine, Medical Faculty, Heinrich Heine University, Düsseldorf, Germany
- Cardiovascular Research Institute Düsseldorf (CARID), Düsseldorf, Germany
| | - Malte Kelm
- Department of Cardiology, Pneumology, and Vascular Medicine, Medical Faculty, Heinrich Heine University, Düsseldorf, Germany
- Cardiovascular Research Institute Düsseldorf (CARID), Düsseldorf, Germany
| | - Martina Krüger
- Cardiovascular Research Institute Düsseldorf (CARID), Düsseldorf, Germany
- Institute of Cardiovascular Physiology, Medical Faculty and University Hospital Düsseldorf, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | - Joachim Schmitt
- Cardiovascular Research Institute Düsseldorf (CARID), Düsseldorf, Germany
- Institute of Pharmacology, University Hospital Düsseldorf, Düsseldorf, Germany
| | - Bodo Levkau
- Institute for Molecular Medicine III, University Hospital Düsseldorf and Heinrich Heine University, Düsseldorf, Germany.
- Cardiovascular Research Institute Düsseldorf (CARID), Düsseldorf, Germany.
| |
Collapse
|
7
|
White A, Dixon DD, Agrawal V, Brittain E, Lindman B, Mallugari R, Mosley JD, Perry AS, Shah RV, Wells QS, Kuipers AL, Gupta DK. Left Ventricular Wall Stress and Incident Heart Failure in Elderly Community-Dwelling Individuals. JACC. ADVANCES 2024; 3:101262. [PMID: 39309659 PMCID: PMC11416663 DOI: 10.1016/j.jacadv.2024.101262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 07/28/2024] [Accepted: 08/02/2024] [Indexed: 09/25/2024]
Abstract
Background Greater left ventricular (LV) wall stress is associated with adverse outcomes among patients with prevalent heart failure (HF). Less is known about the association between LV wall stress and incident HF. Objectives The purpose of the study was to identify clinical factors associated with wall stress and test the association between wall stress and incident HF. Methods We studied 4,601 ARIC (Atherosclerosis Risk In Communities) study participants without prevalent HF who underwent echocardiography between 2011 and 2013. LV end systolic and diastolic wall stress (LVESWS, LVEDWS) were calculated from chamber and wall thickness, systemic blood pressure, and transmitral Doppler E/e' as a surrogate for LV end diastolic pressure. Incident HF was ascertained by International Classification of Diseases (ICD)-9/10 claims for hospitalized HF through December 31, 2016. We used Cox regression to test the association between wall stress and incident HF, adjusted for demographics, traditional cardiovascular risk factors, prevalent coronary artery disease and atrial fibrillation, creatinine, N-terminal pro-B-type natriuretic peptide, troponin, triglycerides, C-reactive protein, LV ejection fraction, and LV mass. Results The cohort had a median age of 75 years and 58% women, with 18% identifying as Black. Median LVESWS and LVEDWS were 48.8 (25th-75th percentile: 39.3-60.1) and 18.9 (25th-75th percentile: 15.8-22.5) kdynes/cm2, respectively. LVESWS and LVEDWS were modestly related (rho = 0.30, P < 0.001). Over 4.6 years of median follow-up (156 HF events), each 1 kdyne/cm2 greater LVEDWS was significantly associated with higher risk of incident HF (HR: 1.03; 95% CI: 1.01-1.06), while LVESWS was not (HR: 1.00; 95% CI: 0.99-1.01). Conclusions Among community-dwelling elderly individuals, greater LVEDWS is associated with a higher risk for incident HF.
Collapse
Affiliation(s)
- Audrey White
- Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Debra D. Dixon
- Division of Cardiovascular Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Vanderbilt Translational and Clinical Cardiovascular Research Center, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Vineet Agrawal
- Division of Cardiovascular Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Vanderbilt Translational and Clinical Cardiovascular Research Center, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Department of Veterans Affairs, Nashville, Tennessee, USA
| | - Evan Brittain
- Division of Cardiovascular Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Vanderbilt Translational and Clinical Cardiovascular Research Center, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Brian Lindman
- Division of Cardiovascular Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Vanderbilt Translational and Clinical Cardiovascular Research Center, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Ravinder Mallugari
- Division of Cardiovascular Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Vanderbilt Translational and Clinical Cardiovascular Research Center, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Jonathan D. Mosley
- Vanderbilt Translational and Clinical Cardiovascular Research Center, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Division of Clinical Pharmacology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Andrew S. Perry
- Division of Cardiovascular Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Vanderbilt Translational and Clinical Cardiovascular Research Center, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Ravi V. Shah
- Division of Cardiovascular Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Vanderbilt Translational and Clinical Cardiovascular Research Center, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Quinn S. Wells
- Division of Cardiovascular Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Vanderbilt Translational and Clinical Cardiovascular Research Center, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Allison L. Kuipers
- Department of Epidemiology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Deepak K. Gupta
- Division of Cardiovascular Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Vanderbilt Translational and Clinical Cardiovascular Research Center, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| |
Collapse
|
8
|
Zhang L, Luan Y, Ding X, Yang C, Xing L, Zhang H, Liu Z. Integration of network pharmacology and transcriptomics to explore the mechanism of isoliquiritigenin in treating heart failure induced by myocardial infarction. Toxicol Appl Pharmacol 2024; 492:117114. [PMID: 39357681 DOI: 10.1016/j.taap.2024.117114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 09/20/2024] [Accepted: 09/27/2024] [Indexed: 10/04/2024]
Abstract
BACKGROUND The inflammatory response and myocardial remodeling play critical roles in the progression of heart failure (HF) following myocardial infarction (MI). Isoliquiritigenin (ISL) possesses anti-inflammatory properties and has been investigated in cardiovascular diseases such as atherosclerosis. However, the effects and mechanism of ISL on MI-induced HF remain unclear. This research aimed to explore the effects and mechanism of ISL in the treatment of HF on the basis of network pharmacology, transcriptomics, and experimental verification. METHODS AND RESULTS We established an MI-induced HF mouse model in which ISL was administered via gavage for 28 days. Ultrasonic cardiogram data were collected from the mice, and pathological staining was conducted. Then, network pharmacology and molecular docking were performed. Transcriptomic analysis was also conducted on mouse myocardial tissue. Ultimately, we integrated transcriptomic data and network pharmacology to reveal the underlying mechanism, with the results verified through in vivo experiments. Our experiments indicated that ISL improved cardiac function, preserved myocardial structure, inhibited collagen fiber accumulation, reduced inflammatory factor secretion, and mitigated myocardial cell apoptosis in mice with MI-induced HF. A combination of transcriptomics and network pharmacology analysis revealed that core targets of ISL related to HF were significantly enriched in the Tumor Necrosis Factor (TNF) signaling pathway. Molecular docking validation demonstrated that ISL shows strong binding to these core targets. Additionally, in vivo experiments verified that ISL protects against HF post-MI by inhibiting the TNF signaling pathway. CONCLUSION We clarified the anti-inflammatory and antimyocardial remodeling mechanisms of ISL in the treatment of HF post-MI, which involves the TNF signaling pathway.
Collapse
Affiliation(s)
- Lingxiao Zhang
- Department of Cardiology, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200062, China
| | - Yuling Luan
- Department of Cardiology, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200062, China
| | - Xinyue Ding
- Institute of Cardiovascular Translational Medicine, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200062, China
| | - Chenghao Yang
- Department of Cardiology, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200062, China
| | - Lina Xing
- Institute of Cardiovascular Translational Medicine, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200062, China
| | - Hui Zhang
- Institute of Cardiovascular Translational Medicine, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200062, China.
| | - Zongjun Liu
- Department of Cardiology, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200062, China; Institute of Cardiovascular Translational Medicine, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200062, China.
| |
Collapse
|
9
|
Yin B, Jiang X, Chang X, Song C. Qiliqiangxin capsule alleviates cardiac hypertrophy and cardiac dysfunction by regulating miR-382-5p/ATF3 axis. Clinics (Sao Paulo) 2024; 79:100496. [PMID: 39332150 PMCID: PMC11470416 DOI: 10.1016/j.clinsp.2024.100496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 06/26/2024] [Accepted: 08/25/2024] [Indexed: 09/29/2024] Open
Abstract
OBJECTIVE Qiliqiangxin Capsule (QL) was investigated for its possible role in cardiac hypertrophy in this study. METHODS QL (0.5 mg/mL) was pre-treated in Neonatal Mouse Ventricular Cardiomyocytes (NMVCs) before induction of cardiomyocyte hypertrophy by Angiotensin II (Ang-II). Immunofluorescence staining for α-actinin was conducted to determine cell surface area. Atrial Natriuretic Peptide (ANP) and Brain Natriuretic Peptide (BNP) of hypertrophy markers were examined. Ang-II infusion was given to stimulate cardiac hypertrophy in mice. The cardiac function of mice was detected by echocardiography, and the pathological status of myocardial tissue was observed. RESULTS The surface of cardiomyocytes was enlarged by Ang-II, and ANP and BNP levels were increased. QL processing could save these changes. miR-382-5p was upregulated in Ang-II-treated NMVCs, and reducing miR-382-5p could further enhance the therapeutic effect of QL while elevating miR-382-5p weakened the protective effect of QL. QL could inhibit miR-382-5p expression to negatively regulate Activated Transcription Factor 3 (ATF3) expression. Enhancing ATF3 expression rescued miR-382-5p upregulation-mediated role in NMVCs. In addition, QL alleviated Ang-II-stimulated cardiac hypertrophy and cardiac dysfunction in mice. CONCLUSION QL may alleviate cardiac hypertrophy and cardiac dysfunction via the miR-382-5p/ATF3 axis.
Collapse
Affiliation(s)
- Bao Yin
- Department of Cardiovascular, Zibo Hospital of Traditional Chinese Medicine, Zibo City, Shandong Province, China
| | - XiaoTong Jiang
- Department of Cardiovascular, Zibo Hospital of Traditional Chinese Medicine, Zibo City, Shandong Province, China
| | - XinFeng Chang
- Department of Human Anatomy, Jiangsu Vocational College of Medicine, Yancheng City, Jiangsu Province, China
| | - ChunHua Song
- Department of Surgery, Jiangsu Vocational College of Medicine, Yancheng City, Jiangsu Province, China.
| |
Collapse
|
10
|
Rody E, Zwaig J, Derish I, Khan K, Kachurina N, Gendron N, Giannetti N, Schwertani A, Cecere R. Evaluating the Reparative Potential of Secretome from Patient-Derived Induced Pluripotent Stem Cells during Ischemia-Reperfusion Injury in Human Cardiomyocytes. Int J Mol Sci 2024; 25:10279. [PMID: 39408608 PMCID: PMC11477076 DOI: 10.3390/ijms251910279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 08/29/2024] [Accepted: 09/03/2024] [Indexed: 10/20/2024] Open
Abstract
During a heart attack, ischemia causes losses of billions of cells; this is especially concerning given the minimal regenerative capability of cardiomyocytes (CMs). Heart remuscularization utilizing stem cells has improved cardiac outcomes despite little cell engraftment, thereby shifting focus to cell-free therapies. Consequently, we chose induced pluripotent stem cells (iPSCs) given their pluripotent nature, efficacy in previous studies, and easy obtainability from minimally invasive techniques. Nonetheless, using iPSC secretome-based therapies for treating injured CMs in a clinical setting is ill-understood. We hypothesized that the iPSC secretome, regardless of donor health, would improve cardiovascular outcomes in the CM model of ischemia-reperfusion (IR) injury. Episomal-generated iPSCs from healthy and dilated cardiomyopathy (DCM) donors, passaged 6-10 times, underwent 24 h incubation in serum-free media. Protein content of the secretome was analyzed by mass spectroscopy and used to treat AC16 immortalized CMs during 5 h reperfusion following 24 h of hypoxia. IPSC-derived secretome content, independent of donor health status, had elevated expression of proteins involved in cell survival pathways. In IR conditions, iPSC-derived secretome increased cell survival as measured by metabolic activity (p < 0.05), cell viability (p < 0.001), and maladaptive cellular remodelling (p = 0.052). Healthy donor-derived secretome contained increased expression of proteins related to calcium contractility compared to DCM donors. Congruently, only healthy donor-derived secretomes improved CM intracellular calcium concentrations (p < 0.01). Heretofore, secretome studies mainly investigated differences relating to cell type rather than donor health. Our work suggests that healthy donors provide more efficacious iPSC-derived secretome compared to DCM donors in the context of IR injury in human CMs. These findings illustrate that the regenerative potential of the iPSC secretome varies due to donor-specific differences.
Collapse
Affiliation(s)
- Elise Rody
- Department of Surgery, Division of Cardiac Surgery, McGill University Health Center, Montreal, QC H4A 3J1, Canada
| | - Jeremy Zwaig
- Faculty of Medicine, McGill University, Montreal, QC H3G 2M1, Canada; (J.Z.)
| | - Ida Derish
- Faculty of Medicine, McGill University, Montreal, QC H3G 2M1, Canada; (J.Z.)
- Department of Surgical and Interventional Sciences, McGill University, Montreal, QC H3G 1A4, Canada
| | - Kashif Khan
- Faculty of Medicine, McGill University, Montreal, QC H3G 2M1, Canada; (J.Z.)
- Department of Medicine, Division of Cardiology, McGill University Health Center, Montreal, QC H4A 3J1, Canada (N.G.)
| | - Nadezda Kachurina
- Department of Medicine, Division of Cardiology, McGill University Health Center, Montreal, QC H4A 3J1, Canada (N.G.)
| | - Natalie Gendron
- Department of Medicine, Division of Cardiology, McGill University Health Center, Montreal, QC H4A 3J1, Canada (N.G.)
| | - Nadia Giannetti
- Department of Medicine, Division of Cardiology, McGill University Health Center, Montreal, QC H4A 3J1, Canada (N.G.)
| | - Adel Schwertani
- Department of Medicine, Division of Cardiology, McGill University Health Center, Montreal, QC H4A 3J1, Canada (N.G.)
| | - Renzo Cecere
- Department of Surgery, Division of Cardiac Surgery, McGill University Health Center, Montreal, QC H4A 3J1, Canada
| |
Collapse
|
11
|
López B, Ravassa S, San José G, Latasa I, Losada-Fuentenebro B, Tapia L, Díez J, Bayés-Genís A, González A. Circulating biomarkers of myocardial remodelling: current developments and clinical applications. Heart 2024; 110:1157-1163. [PMID: 39117384 DOI: 10.1136/heartjnl-2024-323865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 06/21/2024] [Indexed: 08/10/2024] Open
Abstract
Myocardial remodelling, entailing cellular and molecular changes in the different components of the cardiac tissue in response to damage, underlies the morphological and structural changes leading to cardiac remodelling, which in turn contributes to cardiac dysfunction and disease progression. Since cardiac tissue is not available for histomolecular diagnosis, surrogate markers are needed for evaluating myocardial remodelling as part of the clinical management of patients with cardiac disease. In this setting, circulating biomarkers, a component of the liquid biopsy, provide a promising approach for the fast, affordable and scalable screening of large numbers of patients, allowing the detection of different pathological features related to myocardial remodelling, aiding in risk stratification and therapy monitoring. However, despite the advances in the field and the identification of numerous potential candidates, their implementation in clinical practice beyond natriuretic peptides and troponins is mostly lacking. In this review, we will discuss some biomarkers related to alterations in the main cardiac tissue compartments (cardiomyocytes, extracellular matrix, endothelium and immune cells) which have shown potential for the assessment of cardiovascular risk, cardiac remodelling and therapy effects. The hurdles and challenges for their translation into clinical practice will also be addressed.
Collapse
Affiliation(s)
- Begoña López
- Program of Cardiovascular Disease, CIMA Universidad de Navarra, Pamplona, Spain
- IdiSNA, Pamplona, Spain
- CIBERCV, Madrid, Spain
| | - Susana Ravassa
- Program of Cardiovascular Disease, CIMA Universidad de Navarra, Pamplona, Spain
- IdiSNA, Pamplona, Spain
- CIBERCV, Madrid, Spain
| | - Gorka San José
- Program of Cardiovascular Disease, CIMA Universidad de Navarra, Pamplona, Spain
- IdiSNA, Pamplona, Spain
- CIBERCV, Madrid, Spain
| | - Iñigo Latasa
- Program of Cardiovascular Disease, CIMA Universidad de Navarra, Pamplona, Spain
- IdiSNA, Pamplona, Spain
- CIBERCV, Madrid, Spain
| | - Blanca Losada-Fuentenebro
- Program of Cardiovascular Disease, CIMA Universidad de Navarra, Pamplona, Spain
- IdiSNA, Pamplona, Spain
| | - Leire Tapia
- Program of Cardiovascular Disease, CIMA Universidad de Navarra, Pamplona, Spain
- IdiSNA, Pamplona, Spain
| | - Javier Díez
- Program of Cardiovascular Disease, CIMA Universidad de Navarra, Pamplona, Spain
- CIBERCV, Madrid, Spain
| | - Antoni Bayés-Genís
- CIBERCV, Madrid, Spain
- University Hospital Germans Trias i Pujol and Universitat Autònoma de Barcelona, Badalona, Spain
| | - Arantxa González
- Program of Cardiovascular Disease, CIMA Universidad de Navarra, Pamplona, Spain
- IdiSNA, Pamplona, Spain
- CIBERCV, Madrid, Spain
- Department of Cardiology, Clínica Univarsidad de Navarra, Pamplona, Spain
| |
Collapse
|
12
|
Sigle M, Rohlfing AK, Cruz Santos M, Kopp T, Krutzke K, Gidlund V, Kollotzek F, Marzi J, von Ungern-Sternberg S, Poso A, Heikenwälder M, Schenke-Layland K, Seizer P, Möllmann J, Marx N, Feil R, Feil S, Lukowski R, Borst O, Schäffer TE, Müller KAL, Gawaz MP, Heinzmann D. Targeting Cyclophilin A in the Cardiac Microenvironment Preserves Heart Function and Structure in Failing Hearts. Circ Res 2024; 135:758-773. [PMID: 39140165 DOI: 10.1161/circresaha.124.324812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Revised: 08/01/2024] [Accepted: 08/07/2024] [Indexed: 08/15/2024]
Abstract
BACKGROUND Cardiac hypertrophy is characterized by remodeling of the myocardium, which involves alterations in the ECM (extracellular matrix) and cardiomyocyte structure. These alterations critically contribute to impaired contractility and relaxation, ultimately leading to heart failure. Emerging evidence implicates that extracellular signaling molecules are critically involved in the pathogenesis of cardiac hypertrophy and remodeling. The immunophilin CyPA (cyclophilin A) has been identified as a potential culprit. In this study, we aimed to unravel the interplay between eCyPA (extracellular CyPA) and myocardial dysfunction and evaluate the therapeutic potential of inhibiting its extracellular accumulation to improve heart function. METHODS Employing a multidisciplinary approach encompassing in silico, in vitro, in vivo, and ex vivo experiments we studied a mouse model of cardiac hypertrophy and human heart specimen to decipher the interaction of CyPA and the cardiac microenvironment in highly relevant pre-/clinical settings. Myocardial expression of CyPA (immunohistology) and the inflammatory transcriptome (NanoString) was analyzed in human cardiac tissue derived from patients with nonischemic, noninflammatory congestive heart failure (n=187). These analyses were paralleled by a mouse model of Ang (angiotensin) II-induced heart failure, which was assessed by functional (echocardiography), structural (immunohistology, atomic force microscopy), and biomolecular (Raman spectroscopy) analyses. The effect of inhibiting eCyPA in the cardiac microenvironment was evaluated using a newly developed neutralizing anti-eCyPA monoclonal antibody. RESULTS We observed a significant accumulation of eCyPA in both human and murine-failing hearts. Importantly, higher eCyPA expression was associated with poor clinical outcomes in patients (P=0.043) and contractile dysfunction in mice (Pearson correlation coefficient, -0.73). Further, myocardial expression of eCyPA was critically associated with an increase in myocardial hypertrophy, inflammation, fibrosis, stiffness, and cardiac dysfunction in vivo. Antibody-based inhibition of eCyPA prevented (Ang II)-induced myocardial remodeling and dysfunction in mice. CONCLUSIONS Our study provides strong evidence of the pathogenic role of eCyPA in remodeling, myocardial stiffening, and dysfunction in heart failure. The findings suggest that antibody-based inhibition of eCyPA may offer a novel therapeutic strategy for nonischemic heart failure. Further research is needed to evaluate the translational potential of these interventions in human patients with cardiac hypertrophy.
Collapse
Affiliation(s)
- Manuel Sigle
- Department of Cardiology and Angiology (M.S., A.-K.R., F.K., S.U.-S., P.S., O.B., K.A.L.M., M.P.G., D.H.), Eberhard Karls University Tübingen, Germany
| | - Anne-Katrin Rohlfing
- Department of Cardiology and Angiology (M.S., A.-K.R., F.K., S.U.-S., P.S., O.B., K.A.L.M., M.P.G., D.H.), Eberhard Karls University Tübingen, Germany
| | - Melanie Cruz Santos
- Institute of Pharmacy, Pharmacology, Toxicology and Clinical Pharmacy (M.C.S., R.L.), University of Tübingen, Germany
| | - Timo Kopp
- Interfaculty Institute of Biochemistry (IFIB) (T.K., R.F., S.F.), University of Tübingen, Germany
| | - Konstantin Krutzke
- Institute for Applied Physics (K.K., V.G., T.E.S.), University of Tübingen, Germany
| | - Vincent Gidlund
- Interfaculty Institute of Biochemistry (IFIB) (T.K., R.F., S.F.), University of Tübingen, Germany
- Institute for Applied Physics (K.K., V.G., T.E.S.), University of Tübingen, Germany
| | - Ferdinand Kollotzek
- Department of Cardiology and Angiology (M.S., A.-K.R., F.K., S.U.-S., P.S., O.B., K.A.L.M., M.P.G., D.H.), Eberhard Karls University Tübingen, Germany
- DFG Heisenberg Group Cardiovascular Thrombo-Inflammation and Translational Thrombocardiology (F.K., O.B.), University of Tübingen, Germany
| | - Julia Marzi
- Institute of Biomedical Engineering, Department for Medical Technologies and Regenerative Medicine (J. Marzi, K.S.-L.), Eberhard Karls University Tübingen, Germany
- Cluster of Excellence iFIT (EXC 2180) "Image-Guided and Functionally Instructed Tumor Therapies," (J. Marzi, A.P., K.S.-L.), University of Tübingen, Germany
- NMI Natural and Medical Sciences Institute at the University of Tübingen Reutlingen, Germany (J. Marzi, K.S.-L.)
| | - Saskia von Ungern-Sternberg
- Department of Cardiology and Angiology (M.S., A.-K.R., F.K., S.U.-S., P.S., O.B., K.A.L.M., M.P.G., D.H.), Eberhard Karls University Tübingen, Germany
- Now with Center for Thrombosis and Hemostasis (CTH), University Medical Center of the Johannes Gutenberg-University Mainz, Germany (S.U.-S.)
| | - Antti Poso
- Cluster of Excellence iFIT (EXC 2180) "Image-Guided and Functionally Instructed Tumor Therapies," (J. Marzi, A.P., K.S.-L.), University of Tübingen, Germany
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland Kuopio (A.P.)
- Department of Pharmaceutical and Medicinal Chemistry, Institute of Pharmaceutical Sciences, Eberhard-Karls-Universität Tübingen, Germany (A.P.)
- Tübingen Center for Academic Drug Discovery and Development (TüCAD2), Tübingen, Germany (A.P.)
| | - Mathias Heikenwälder
- Division of Chronic Inflammation and Cancer, German Cancer Research Centre Heidelberg (DKFZ), Germany (M.H.)
- University Tübingen, Faculty of Medicine, Institute for Interdisciplinary Research on Cancer Metabolism and Chronic Inflammation, M3-Research Center for Malignome, Metabolome and Microbiome (M.H.)
| | - Katja Schenke-Layland
- Institute of Biomedical Engineering, Department for Medical Technologies and Regenerative Medicine (J. Marzi, K.S.-L.), Eberhard Karls University Tübingen, Germany
- Cluster of Excellence iFIT (EXC 2180) "Image-Guided and Functionally Instructed Tumor Therapies," (J. Marzi, A.P., K.S.-L.), University of Tübingen, Germany
- NMI Natural and Medical Sciences Institute at the University of Tübingen Reutlingen, Germany (J. Marzi, K.S.-L.)
| | - Peter Seizer
- Department of Cardiology and Angiology (M.S., A.-K.R., F.K., S.U.-S., P.S., O.B., K.A.L.M., M.P.G., D.H.), Eberhard Karls University Tübingen, Germany
- Now with Aalen, Germany (P.S.)
| | - Julia Möllmann
- Department of Internal Medicine I, University Hospital Aachen, RWTH Aachen University, Germany (J. Möllmann, N.M.)
| | - Nikolaus Marx
- Department of Internal Medicine I, University Hospital Aachen, RWTH Aachen University, Germany (J. Möllmann, N.M.)
| | - Robert Feil
- Interfaculty Institute of Biochemistry (IFIB) (T.K., R.F., S.F.), University of Tübingen, Germany
| | - Susanne Feil
- Interfaculty Institute of Biochemistry (IFIB) (T.K., R.F., S.F.), University of Tübingen, Germany
| | - Robert Lukowski
- Institute of Pharmacy, Pharmacology, Toxicology and Clinical Pharmacy (M.C.S., R.L.), University of Tübingen, Germany
| | - Oliver Borst
- Department of Cardiology and Angiology (M.S., A.-K.R., F.K., S.U.-S., P.S., O.B., K.A.L.M., M.P.G., D.H.), Eberhard Karls University Tübingen, Germany
- DFG Heisenberg Group Cardiovascular Thrombo-Inflammation and Translational Thrombocardiology (F.K., O.B.), University of Tübingen, Germany
| | - Tilman E Schäffer
- Institute for Applied Physics (K.K., V.G., T.E.S.), University of Tübingen, Germany
| | - Karin Anne Lydia Müller
- Department of Cardiology and Angiology (M.S., A.-K.R., F.K., S.U.-S., P.S., O.B., K.A.L.M., M.P.G., D.H.), Eberhard Karls University Tübingen, Germany
| | - Meinrad P Gawaz
- Department of Cardiology and Angiology (M.S., A.-K.R., F.K., S.U.-S., P.S., O.B., K.A.L.M., M.P.G., D.H.), Eberhard Karls University Tübingen, Germany
| | - David Heinzmann
- Department of Cardiology and Angiology (M.S., A.-K.R., F.K., S.U.-S., P.S., O.B., K.A.L.M., M.P.G., D.H.), Eberhard Karls University Tübingen, Germany
| |
Collapse
|
13
|
Huang K, Sun X, Xu X, Lu J, Zhang B, Li Q, Wang C, Ding S, Huang X, Liu X, Xu Z, Han L. METTL3-mediated m6A modification of OTUD1 aggravates press overload induced myocardial hypertrophy by deubiquitinating PGAM5. Int J Biol Sci 2024; 20:4908-4921. [PMID: 39309432 PMCID: PMC11414395 DOI: 10.7150/ijbs.95707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 08/25/2024] [Indexed: 09/25/2024] Open
Abstract
Background: Pathological cardiac hypertrophy, a condition that contributes to heart failure, is characterized by its intricate pathogenesis. The meticulous regulation of protein function, localization, and degradation is a crucial role played by deubiquitinating enzymes in cardiac pathophysiology. This study clarifies the participation and molecular mechanism of OTUD1 (OTU Deubiquitinase 1) in pathological cardiac hypertrophy. Methods: We generated a cardiac-specific Otud1 knockout mouse line (Otud1-CKO) and adeno-associated virus serotype 9-Otud1 mice to determine the role of Otud1 in cardiac hypertrophy. Its impact on cardiomyocytes enlargement was investigated using the adenovirus. RNA immunoprecipitation was used to validate the specific m6a methyltransferase interacted with OTUD1 transcript. RNA sequencing in conjunction with immunoprecipitation-mass spectrometry analysis was employed to identify the direct targets of OTUD1. A series of depletion mutant plasmids were constructed to detect the interaction domain of OTUD1 and its targets. Results: Ang II-stimulated neonatal rat cardiac myocytes and mice hearts subjected to transverse aortic constriction (TAC) showed increased protein levels of Otud1. Cardiac hypertrophy and dysfunction were less frequent in Otud1-CKO mice during TAC treatment, while Otud1 overexpression worsened cardiac hypertrophy and remodeling. METTL3 mediated m6A modification of OTUD1 transcript promoted mRNA stability and elevated protein expression. In terms of pathogenesis, Otud1 plays a crucial role in cardiac hypertrophy by targeting Pgam5, leading to the robust activation of the Ask1-p38/JNK signal pathway to accelerate cardiac hypertrophy. Significantly, the pro-hypertrophy effects of Otud1 overexpression were largely eliminated when Ask1 knockdown. Conclusion: Our findings confirm that targeting the OTUD1-PGAM5 axis holds significant potential as a therapeutic approach for heart failure associated with pathological hypertrophy.
Collapse
Affiliation(s)
- Kai Huang
- Department of Cardiovascular Surgery, Changhai Hospital, Second Military Medical University, Shanghai, China
- Cardiac and Vascular Biology laboratory, Clinical and Translational Medicine Center, Changhai Hospital, Second Military Medical University, Shanghai, China
| | - Xiaotian Sun
- Department of Cardiothoracic Surgery, Huashan Hospital of Fudan University, Shanghai, China
| | - Xiangyang Xu
- Department of Cardiovascular Surgery, Changhai Hospital, Second Military Medical University, Shanghai, China
- Cardiac and Vascular Biology laboratory, Clinical and Translational Medicine Center, Changhai Hospital, Second Military Medical University, Shanghai, China
- Institute of Thoracic Cardiac Surgery, Chinese People's Liberation Army, China
- Key Laboratory of Cardiac Surgery, Chinese People's Liberation Army, China
| | - Jie Lu
- Department of Cardiovascular Surgery, Changhai Hospital, Second Military Medical University, Shanghai, China
| | - Boyao Zhang
- Department of Cardiovascular Surgery, Changhai Hospital, Second Military Medical University, Shanghai, China
| | - Qin Li
- Department of Cardiovascular Surgery, Changhai Hospital, Second Military Medical University, Shanghai, China
- Cardiac and Vascular Biology laboratory, Clinical and Translational Medicine Center, Changhai Hospital, Second Military Medical University, Shanghai, China
- Institute of Thoracic Cardiac Surgery, Chinese People's Liberation Army, China
- Key Laboratory of Cardiac Surgery, Chinese People's Liberation Army, China
| | - Chuyi Wang
- Department of Cardiovascular Surgery, Changhai Hospital, Second Military Medical University, Shanghai, China
| | - Sufan Ding
- Department of Cardiovascular Surgery, Changhai Hospital, Second Military Medical University, Shanghai, China
| | - Xiaolei Huang
- Department of Pathology, Changhai Hospital, Second Military Medical University, Shanghai, China
| | - Xiaohong Liu
- Department of Cardiovascular Surgery, Changhai Hospital, Second Military Medical University, Shanghai, China
- Cardiac and Vascular Biology laboratory, Clinical and Translational Medicine Center, Changhai Hospital, Second Military Medical University, Shanghai, China
- Institute of Thoracic Cardiac Surgery, Chinese People's Liberation Army, China
- Key Laboratory of Cardiac Surgery, Chinese People's Liberation Army, China
| | - Zhiyun Xu
- Department of Cardiovascular Surgery, Changhai Hospital, Second Military Medical University, Shanghai, China
| | - Lin Han
- Department of Cardiovascular Surgery, Changhai Hospital, Second Military Medical University, Shanghai, China
| |
Collapse
|
14
|
Peng D, Wang A, Shi W, Lin L. Pentacyclic triterpenes, potential novel therapeutic approaches for cardiovascular diseases. Arch Pharm Res 2024; 47:709-735. [PMID: 39048758 DOI: 10.1007/s12272-024-01510-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Accepted: 07/16/2024] [Indexed: 07/27/2024]
Abstract
Cardiovascular diseases (CVDs) involve dysfunction of the heart and blood vessels and have become major health concerns worldwide. Multiple mechanisms may be involved in the occurrence and development of CVDs. Although therapies for CVDs are constantly being developed and applied, the incidence and mortality of CVDs remain high. The roles of natural compounds in CVD treatment are being explored, providing new approaches for the treatment of CVD. Pentacyclic triterpenes are natural compounds with a basic nucleus of 30 carbon atoms, and they have been widely studied for their potential applications in the treatment of CVDs, to which various pharmacological activities contribute, including anti-inflammatory, antioxidant, and antitumor effects. This review introduces the roles of triterpenoids in the prevention and treatment of CVDs, summarizes their potential underlying mechanisms, and provides a comprehensive overview of the therapeutic potential of triterpenoids in the management of CVDs.
Collapse
Affiliation(s)
- Dewei Peng
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, People's Republic of China
- Key Laboratory of Vascular Aging, Ministry of Education, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, People's Republic of China
| | - Aizan Wang
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, People's Republic of China
- Key Laboratory of Vascular Aging, Ministry of Education, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, People's Republic of China
| | - Wei Shi
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, People's Republic of China.
- Key Laboratory of Vascular Aging, Ministry of Education, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, People's Republic of China.
| | - Li Lin
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, People's Republic of China.
- Key Laboratory of Vascular Aging, Ministry of Education, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, People's Republic of China.
| |
Collapse
|
15
|
Cai Y, Zhang J, Zhang H, Qi J, Shi C, Xu Y. The Kv4 potassium channel modulator NS5806 attenuates cardiac hypertrophy in vivo and in vitro. Sci Rep 2024; 14:19839. [PMID: 39191928 PMCID: PMC11349892 DOI: 10.1038/s41598-024-70962-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 08/22/2024] [Indexed: 08/29/2024] Open
Abstract
The compound NS5806 is a Kv4 channel modulator. This study investigated the chronic effects of NS5806 on cardiac hypertrophy induced by transverse aortic constriction (TAC) in mice in vivo and on neonatal rat ventricular cardiomyocyte hypertrophy induced by endothelin-1 (ET-1) in vitro. Four weeks after TAC, NS5806 was administered by gavage for 4 weeks. Echocardiograms revealed pronounced left ventricular (LV) hypertrophy in TAC-treated mice compared with sham mice. NS5806 attenuated LV hypertrophy, as manifested by the restoration of LV wall thickness and weight and the reversal of contractile dysfunction in TAC-treated mice. NS5806 also blunted the TAC-induced increases in the expression of cardiac hypertrophic and fibrotic genes, including ANP, BNP and TGF-β. Electrophysiological recordings revealed a significant prolongation of action potential duration and QT intervals, accompanied by an increase in susceptibility to ventricular arrhythmias in mice with cardiac hypertrophy. However, NS5806 restored these alterations in electrical parameters and thus reduced the incidence of mouse sudden death. Furthermore, NS5806 abrogated the downregulation of the Kv4 protein in the hypertrophic myocardium but did not influence the reduction in Kv4 mRNA expression. In addition, NS5806 suppressed in vitro cardiomyocyte hypertrophy. The results provide novel insight for further ion channel modulator development as a potential treatment option for cardiac hypertrophy.
Collapse
Affiliation(s)
- Yue Cai
- Department of Pharmacology, Hebei Medical University, 361 East Zhongshan Road, Shijiazhuang, 050017, Hebei, China
- The Key Laboratory of New Drug Pharmacology and Toxicology, Hebei Province, Shijiazhuang, 050017, China
- The Key Laboratory of Neural and Vascular Biology, Ministry of Education, Hebei Medical University, Shijiazhuang, 050017, China
- Department of Pharmacy, Hebei General Hospital, Shijiazhuang, 050051, China
- Hebei Key Laboratory of Clinical Pharmacy, Shijiazhuang, 050051, China
| | - Jiali Zhang
- Department of Pharmacology, Hebei Medical University, 361 East Zhongshan Road, Shijiazhuang, 050017, Hebei, China
- The Key Laboratory of New Drug Pharmacology and Toxicology, Hebei Province, Shijiazhuang, 050017, China
- The Key Laboratory of Neural and Vascular Biology, Ministry of Education, Hebei Medical University, Shijiazhuang, 050017, China
| | - Hongxue Zhang
- Department of Pharmacology, Hebei Medical University, 361 East Zhongshan Road, Shijiazhuang, 050017, Hebei, China
- The Key Laboratory of New Drug Pharmacology and Toxicology, Hebei Province, Shijiazhuang, 050017, China
- The Key Laboratory of Neural and Vascular Biology, Ministry of Education, Hebei Medical University, Shijiazhuang, 050017, China
| | - Jinlong Qi
- Department of Pharmacology, Hebei Medical University, 361 East Zhongshan Road, Shijiazhuang, 050017, Hebei, China
- The Key Laboratory of New Drug Pharmacology and Toxicology, Hebei Province, Shijiazhuang, 050017, China
- The Key Laboratory of Neural and Vascular Biology, Ministry of Education, Hebei Medical University, Shijiazhuang, 050017, China
| | - Chenxia Shi
- Department of Pharmacology, Hebei Medical University, 361 East Zhongshan Road, Shijiazhuang, 050017, Hebei, China
- The Key Laboratory of New Drug Pharmacology and Toxicology, Hebei Province, Shijiazhuang, 050017, China
- The Key Laboratory of Neural and Vascular Biology, Ministry of Education, Hebei Medical University, Shijiazhuang, 050017, China
| | - Yanfang Xu
- Department of Pharmacology, Hebei Medical University, 361 East Zhongshan Road, Shijiazhuang, 050017, Hebei, China.
- The Key Laboratory of New Drug Pharmacology and Toxicology, Hebei Province, Shijiazhuang, 050017, China.
- The Key Laboratory of Neural and Vascular Biology, Ministry of Education, Hebei Medical University, Shijiazhuang, 050017, China.
| |
Collapse
|
16
|
Wu Y, Chen S, Huang G, Zhang L, Zhong L, Feng Y, Wen P, Liu J. Transcriptome analysis reveals EBF1 ablation-induced injuries in cardiac system. Theranostics 2024; 14:4894-4915. [PMID: 39239522 PMCID: PMC11373621 DOI: 10.7150/thno.92060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 07/29/2024] [Indexed: 09/07/2024] Open
Abstract
Rationale: Regulatory processes of transcription factors (TFs) shape heart development and influence the adult heart's response to stress, contributing to cardiac disorders. Despite their significance, the precise mechanisms underpinning TF-mediated regulation remain elusive. Here, we identify that EBF1, as a TF, is highly expressed in human heart tissues. EBF1 is reported to be associated with human cardiovascular disease, but its roles are unclear in heart. In this study, we investigated EBF1 function in cardiac system. Methods: RNA-seq was utilized to profile EBF1 expression patterns. CRISPR/Cas9 was utilized to knock out EBF1 to investigate its effects. Human pluripotent stem cells (hPSCs) differentiated into cardiac lineages were used to mimic cardiac development. Cardiac function was evaluated on mouse model with Ebf1 knockout by using techniques such as echocardiography. RNA-seq was conducted to analyze transcriptional perturbations. ChIP-seq was employed to elucidate EBF1-bound genes and the underlying regulatory mechanisms. Results: EBF1 was expressed in some human and mouse cardiomyocyte. Knockout of EBF1 inhibited cardiac development. ChIP-seq indicated EBF1's binding on promoters of cardiogenic TFs pivotal to cardiac development, facilitating their transcriptional expression and promoting cardiac development. In mouse, Ebf1 depletion triggered transcriptional perturbations of genes, resulting in cardiac remodeling. Mechanistically, we found that EBF1 directly bound to upstream chromatin regions of cardiac hypertrophy-inducing genes, contributing to cardiac hypertrophy. Conclusions: We uncover the mechanisms underlying EBF1-mediated regulatory processes, shedding light on cardiac development, and the pathogenesis of cardiac remodeling. These findings emphasize EBF1's critical role in orchestrating diverse aspects of cardiac processes and provide a promising therapeutic intervention for cardiomyopathy.
Collapse
Affiliation(s)
- Yueheng Wu
- Medical Research Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China, 510080
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Guangzhou, Guangdong, China, 510080
- Guangdong Provincial Key Laboratory of South China Structural Heart Disease, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China, 510080
| | - Shaoxian Chen
- Medical Research Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China, 510080
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Guangzhou, Guangdong, China, 510080
- Guangdong Provincial Key Laboratory of South China Structural Heart Disease, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China, 510080
| | - Guiping Huang
- Medical Research Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China, 510080
- Guangdong Provincial Key Laboratory of Clinical Pharmacology, Medical Research Center, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Guangzhou, Guangdong, China, 510080
| | - Lu Zhang
- Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangdong-Hong Kong Joint Laboratory for Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China, 510530
| | - Liying Zhong
- Medical Research Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China, 510080
| | - Yi Feng
- Medical Research Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China, 510080
| | - Pengju Wen
- Medical Research Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China, 510080
| | - Juli Liu
- Medical Research Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China, 510080
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Guangzhou, Guangdong, China, 510080
| |
Collapse
|
17
|
Wang J, Ye X, Wang Y. Anshen Shumai Decoction inhibits post-infarction inflammation and myocardial remodeling through suppression of the p38 MAPK/c-FOS/EGR1 pathway. J Mol Histol 2024; 55:437-454. [PMID: 38874870 DOI: 10.1007/s10735-024-10214-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Accepted: 06/06/2024] [Indexed: 06/15/2024]
Abstract
Anshen Shumai Decoction (ASSMD) is traditionally employed to manage coronary artery disease arrhythmias. Its protective efficacy against myocardial infarction remains to be elucidated. This investigation employed a rat model of myocardial infarction, achieved through the ligation of the left anterior descending (LAD) coronary artery, followed by a 28-day administration of ASSMD. The study observed the decoction's mitigative impact on myocardial injury, with gene regulation effects discerned through transcriptomic analysis. Furthermore, ASSMD's influence on cardiomyocyte apoptosis and fibrotic protein secretion was assessed using an embryonic rat cardiomyocyte cell line (H9c2) under hypoxic conditions and rat cardiac fibroblasts subjected to normoxic culture conditions with TGF-β. A functional rescue assay involving overexpression of FOS and Early Growth Response Factor 1 (EGR1), combined with inhibition of the p38 Mitogen-activated Protein Kinase (MAPK) pathway, was conducted. Results indicated that ASSMD significantly curtailed cardiomyocyte apoptosis and myocardial fibrosis in infarcted rats, primarily by downregulating FOS and EGR1 gene expression and inhibiting the upstream p38 MAPK pathway. These actions of ASSMD culminated in reduced expression of pro-apoptotic, collagen, and fibrosis-associated proteins, conferring myocardial protection and anti-fibrotic effects on cardiac fibroblasts.
Collapse
Affiliation(s)
- Jianfeng Wang
- Department of Cardiology, Chun'an County Traditional Chinese Medicine Hospital, No. 1 Xin'an West Road, Qiandaohu Town, Chun'an County, Hangzhou, 311700, P. R. China
| | - Xiaolei Ye
- School of Medicine, Ningbo University, Ningbo, 315211, P. R. China
| | - Yanqin Wang
- Department of Cardiology, Chun'an County Traditional Chinese Medicine Hospital, No. 1 Xin'an West Road, Qiandaohu Town, Chun'an County, Hangzhou, 311700, P. R. China.
| |
Collapse
|
18
|
Chen PH, Hsiao CY, Chiang SJ, Chung KH, Tsai SY. Association of lipids and inflammatory markers with left ventricular wall thickness in patients with bipolar disorder. J Affect Disord 2024; 358:12-18. [PMID: 38705523 DOI: 10.1016/j.jad.2024.05.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 04/04/2024] [Accepted: 05/02/2024] [Indexed: 05/07/2024]
Abstract
BACKGROUND Individuals with bipolar disorder (BD) face a high risk of heart failure and left ventricular (LV) dysfunction. Despite strong evidence that high LV relative wall thickness (RWT) is a risk marker for heart failure, few studies have evaluated LV RWT and aggravating factors in individuals with BD. METHODS We recruited 104 participants (52 patients with BD and 52 age- and sex-matched mentally healthy controls) to undergo echocardiographic imaging and biochemistry, high-sensitivity C-reactive protein (hs-CRP), and blood cell count measurements. LV RWT was estimated using the following equation: (2 × LV posterior wall end-diastolic thickness)/LV end-diastolic diameter. Clinical data were obtained through interviews and chart reviews. RESULTS The BD group exhibited a significantly greater LV RWT (Cohen's d = 0.53, p = 0.003) and a less favorable mitral valve E/A ratio (Cohen's d = 0.54, p = 0.023) and LV global longitudinal strain (Cohen's d = 0.57, p = 0.047) than did the control group. Multiple linear regression revealed that in the BD group, serum triglyceride levels (β = 0.466, p = 0.001), platelet-to-lymphocyte ratios (β = 0.324, p = 0.022), and hs-CRP levels (β = 0.289, p = 0.043) were all significantly and positively associated with LV RWT. LIMITATIONS This study applied a cross-sectional design, meaning that the direction of causation could not be inferred. CONCLUSIONS Patients with BD are at a risk of heart failure, as indicated by their relatively high LV RWT. Lipid levels and systemic inflammation may explain this unfavorable association.
Collapse
Affiliation(s)
- Pao-Huan Chen
- Department of Psychiatry, Taipei Medical University Hospital, Taipei, Taiwan; Psychiatric Research Center, Taipei Medical University Hospital, Taipei, Taiwan; Department of Psychiatry, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Cheng-Yi Hsiao
- Division of Cardiology, Department of Internal Medicine, Taipei Medical University Hospital, Taipei, Taiwan; Cardiovascular Research Center, Taipei Medical University Hospital, Taipei, Taiwan; Taipei Heart Institute, Taipei Medical University, Taipei, Taiwan; Division of Cardiology, Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Shuo-Ju Chiang
- Division of Cardiology, Department of Internal Medicine, Taipei City Hospital Yangming Branch, Taipei, Taiwan; School of Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei, Taiwan
| | - Kuo-Hsuan Chung
- Department of Psychiatry, Taipei Medical University Hospital, Taipei, Taiwan; Psychiatric Research Center, Taipei Medical University Hospital, Taipei, Taiwan; Department of Psychiatry, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Shang-Ying Tsai
- Department of Psychiatry, Taipei Medical University Hospital, Taipei, Taiwan; Psychiatric Research Center, Taipei Medical University Hospital, Taipei, Taiwan; Department of Psychiatry, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan.
| |
Collapse
|
19
|
Rodrigues KE, Pontes MHB, Cantão MBS, Prado AF. The role of matrix metalloproteinase-9 in cardiac remodeling and dysfunction and as a possible blood biomarker in heart failure. Pharmacol Res 2024; 206:107285. [PMID: 38942342 DOI: 10.1016/j.phrs.2024.107285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 06/15/2024] [Accepted: 06/23/2024] [Indexed: 06/30/2024]
Abstract
Heart failure (HF) is the leading cause of morbidity and mortality in cardiovascular diseases, being responsible for many hospitalizations annually. HF is considered a public health problem with significant economic and social impact, which makes searches essential for strategies that improve the ability to predict and diagnose HF. In this way, biomarkers can help in risk stratification for a more personalized approach to patients with HF. Preclinical and clinical evidence shows the participation of matrix metalloproteinase 9 (MMP-9) in the HF process. In this review, we will demonstrate the critical role that MMP-9 plays in cardiac remodeling and dysfunction. We will also show its importance as a blood biomarker in acute and chronic HF patients.
Collapse
Affiliation(s)
- Keuri Eleutério Rodrigues
- Biodiversity and Biotechnology Post Graduate Program - BIONORTE, Institute of Biological Sciences, Federal University of Para, Belem, Brazil; Cardiovascular System Pharmacology and Toxicology Laboratory, Institute of Biological Sciences, Federal University of Para, Belem, Brazil
| | - Maria Helena Barbosa Pontes
- Cardiovascular System Pharmacology and Toxicology Laboratory, Institute of Biological Sciences, Federal University of Para, Belem, Brazil; Pharmacology and Biochemistry Post Graduate Program - FARMABIO, Institute of Biological Sciences, Federal University of Para, Belem, Brazil
| | - Manoel Benedito Sousa Cantão
- Cardiovascular System Pharmacology and Toxicology Laboratory, Institute of Biological Sciences, Federal University of Para, Belem, Brazil; Pharmacology and Biochemistry Post Graduate Program - FARMABIO, Institute of Biological Sciences, Federal University of Para, Belem, Brazil
| | - Alejandro Ferraz Prado
- Biodiversity and Biotechnology Post Graduate Program - BIONORTE, Institute of Biological Sciences, Federal University of Para, Belem, Brazil; Cardiovascular System Pharmacology and Toxicology Laboratory, Institute of Biological Sciences, Federal University of Para, Belem, Brazil; Pharmacology and Biochemistry Post Graduate Program - FARMABIO, Institute of Biological Sciences, Federal University of Para, Belem, Brazil.
| |
Collapse
|
20
|
Zhao Y, Tan M, Yin Y, Zhang J, Song Y, Li H, Yan L, Jin Y, Wu Z, Yang T, Jiang T, Li H. Comprehensive macro and micro views on immune cells in ischemic heart disease. Cell Prolif 2024:e13725. [PMID: 39087342 DOI: 10.1111/cpr.13725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 06/25/2024] [Accepted: 07/18/2024] [Indexed: 08/02/2024] Open
Abstract
Ischemic heart disease (IHD) is a prevalent cardiovascular condition that remains the primary cause of death due to its adverse ventricular remodelling and pathological changes in end-stage heart failure. As a complex pathologic condition, it involves intricate regulatory processes at the cellular and molecular levels. The immune system and cardiovascular system are closely interconnected, with immune cells playing a crucial role in maintaining cardiac health and influencing disease progression. Consequently, alterations in the cardiac microenvironment are influenced and controlled by various immune cells, such as macrophages, neutrophils, dendritic cells, eosinophils, and T-lymphocytes, along with the cytokines they produce. Furthermore, studies have revealed that Gata6+ pericardial cavity macrophages play a key role in regulating immune cell migration and subsequent myocardial tissue repair post IHD onset. This review outlines the role of immune cells in orchestrating inflammatory responses and facilitating myocardial repair following IHD, considering both macro and micro views. It also discusses innovative immune cell-based therapeutic strategies, offering new insights for further research on the pathophysiology of ischemic heart disease and immune cell-targeted therapy for IHD.
Collapse
Affiliation(s)
- Yongjian Zhao
- Department of Cardiology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Mingyue Tan
- Department of Cardiology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
- Department of Geriatrics, Southwest Hospital, The Third Military Medical University (Army Medical University), Chongqing, China
| | - Yunfei Yin
- Department of Cardiology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Jun Zhang
- Department of Cardiology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Yiyi Song
- Suzhou Medical College of Soochow University, Jiangsu, China
| | - Hang Li
- Department of Cardiology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Lin Yan
- Department of Cardiology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Yifeng Jin
- Department of Cardiology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Ziyue Wu
- Department of Cardiology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Tianke Yang
- Department of Ophthalmology, The First Affiliated Hospital of USTC, University of Science and Technology of China, Hefei, China
| | - Tingbo Jiang
- Department of Cardiology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Hongxia Li
- Department of Cardiology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| |
Collapse
|
21
|
Lu F, Wu B, Dong L, Shu X, Wang Y. Pro-angiogenic cytokine features of left ventricular remodeling in patients with bicuspid aortic valve. Hellenic J Cardiol 2024:S1109-9666(24)00161-1. [PMID: 39038608 DOI: 10.1016/j.hjc.2024.07.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Revised: 05/15/2024] [Accepted: 07/16/2024] [Indexed: 07/24/2024] Open
Abstract
OBJECTIVE Bicuspid aortic valve (BAV) is prone to promote left ventricular remodeling (LVR), which is associated with adverse clinical outcomes. Although the association between angiogenic activity and LVR has been established, pro-angiogenic cytokine features and potential biomarker candidates for LVR in patients with BAV remain to be clarified. METHODS From November 2018 to May 2019, patients with BAV diagnosed by transthoracic echocardiography at our institution were included. LVR was diagnosed on the basis of echocardiographic calculations of relative wall thickness (RWT) and left ventricular mass index (LVMI). A multiplex ELISA array was used to measure the plasma levels of 60 angiogenesis-related cytokines. RESULTS Among 103 patients with BAV, 71 were categorized into the LVR group and 32 into the normal left ventricular (LV) geometry group. BAV patients with LVR demonstrated increased LVMI, elevated prevalence of moderate to severe aortic stenosis and aortic regurgitation, and decreased LV ejection fraction (LVEF). Plasma levels of angiopoietin-1 were elevated in BAV patients with or without LVR compared with healthy controls (P = 0.001, P < 0.001, respectively), and were negatively correlated with RWT (r = -0.222, P = 0.027). Plasma levels of angiopoietin-2 were elevated in the LVR group (P = 0.001) compared with the normal LV geometry group, and were negatively correlated with LVEF (r = -0.330, P = 0.002). CONCLUSION Decreased angiogenesis plays a crucial role in the occurrence and progression of LVR in patients with BAV. Disturbance in the pro- and anti-angiogenesis equilibrium in BAV patients with LVR may reflect the aggravation of endothelial injury and dysfunction.
Collapse
Affiliation(s)
- Feiwei Lu
- Department of Echocardiography, Zhongshan Hospital, Fudan University, Shanghai, China; Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Boting Wu
- Department of Transfusion, Zhongshan Hospital, Fudan University, Shanghai, China.
| | - Lili Dong
- Department of Echocardiography, Zhongshan Hospital, Fudan University, Shanghai, China; Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Xianhong Shu
- Department of Echocardiography, Zhongshan Hospital, Fudan University, Shanghai, China; Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yongshi Wang
- Department of Echocardiography, Zhongshan Hospital, Fudan University, Shanghai, China; Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai, China.
| |
Collapse
|
22
|
Shi F. Understanding the roles of salt-inducible kinases in cardiometabolic disease. Front Physiol 2024; 15:1426244. [PMID: 39081779 PMCID: PMC11286596 DOI: 10.3389/fphys.2024.1426244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Accepted: 06/26/2024] [Indexed: 08/02/2024] Open
Abstract
Salt-inducible kinases (SIKs) are serine/threonine kinases of the adenosine monophosphate-activated protein kinase family. Acting as mediators of a broad array of neuronal and hormonal signaling pathways, SIKs play diverse roles in many physiological and pathological processes. Phosphorylation by the upstream kinase liver kinase B1 is required for SIK activation, while phosphorylation by protein kinase A induces the binding of 14-3-3 protein and leads to SIK inhibition. SIKs are subjected to auto-phosphorylation regulation and their activity can also be modulated by Ca2+/calmodulin-dependent protein kinase in response to cellular calcium influx. SIKs regulate the physiological processes through direct phosphorylation on various substrates, which include class IIa histone deacetylases, cAMP-regulated transcriptional coactivators, phosphatase methylesterase-1, among others. Accumulative body of studies have demonstrated that SIKs are important regulators of the cardiovascular system, including early works establishing their roles in sodium sensing and vascular homeostasis and recent progress in pulmonary arterial hypertension and pathological cardiac remodeling. SIKs also regulate inflammation, fibrosis, and metabolic homeostasis, which are essential pathological underpinnings of cardiovascular disease. The development of small molecule SIK inhibitors provides the translational opportunity to explore their potential as therapeutic targets for treating cardiometabolic disease in the future.
Collapse
Affiliation(s)
- Fubiao Shi
- Department of Medicine, Division of Cardiovascular Medicine, Vanderbilt University Medical Center, Nashville, TN, United States
| |
Collapse
|
23
|
Nishimura A, Tang X, Zhou L, Ito T, Kato Y, Nishida M. Sulfur metabolism as a new therapeutic target of heart failure. J Pharmacol Sci 2024; 155:75-83. [PMID: 38797536 DOI: 10.1016/j.jphs.2024.04.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 04/07/2024] [Accepted: 04/21/2024] [Indexed: 05/29/2024] Open
Abstract
Sulfur-based redox signaling has long attracted attention as critical mechanisms underlying the development of cardiac diseases and resultant heart failure. Especially, post-translational modifications of cysteine (Cys) thiols in proteins mediate oxidative stress-dependent cardiac remodeling including myocardial hypertrophy, senescence, and interstitial fibrosis. However, we recently revealed the existence of Cys persulfides and Cys polysulfides in cells and tissues, which show higher redox activities than Cys and substantially contribute to redox signaling and energy metabolism. We have established simple evaluation methods that can detect polysulfides in proteins and inorganic polysulfides in cells and revealed that polysulfides abundantly expressed in normal hearts are dramatically catabolized by exposure to ischemic/hypoxic and environmental electrophilic stress, which causes vulnerability of the heart to mechanical load. Accumulation of hydrogen sulfide, a nucleophilic catabolite of persulfides/polysulfides, may lead to reductive stress in ischemic hearts, and perturbation of polysulfide catabolism can improve chronic heart failure after myocardial infarction in mice. This review focuses on the (patho)physiological role of sulfur metabolism in hearts, and proposes that sulfur catabolism during ischemic/hypoxic stress has great potential as a new therapeutic strategy for the treatment of ischemic heart failure.
Collapse
Affiliation(s)
- Akiyuki Nishimura
- National Institute for Physiological Sciences, National Institutes of Natural Sciences (NINS), Okazaki, 444-8787, Japan; Exploratory Research Center on Life and Living Systems, NINS, Okazaki, 444-8787, Japan; SOKENDAI (The Graduate University for Advanced Studies), Okazaki, 444-8787, Japan.
| | - Xiaokang Tang
- National Institute for Physiological Sciences, National Institutes of Natural Sciences (NINS), Okazaki, 444-8787, Japan; Exploratory Research Center on Life and Living Systems, NINS, Okazaki, 444-8787, Japan; SOKENDAI (The Graduate University for Advanced Studies), Okazaki, 444-8787, Japan
| | - Liuchenzi Zhou
- National Institute for Physiological Sciences, National Institutes of Natural Sciences (NINS), Okazaki, 444-8787, Japan; Exploratory Research Center on Life and Living Systems, NINS, Okazaki, 444-8787, Japan; SOKENDAI (The Graduate University for Advanced Studies), Okazaki, 444-8787, Japan
| | - Tomoya Ito
- Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, 812-8582, Japan
| | - Yuri Kato
- Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, 812-8582, Japan
| | - Motohiro Nishida
- National Institute for Physiological Sciences, National Institutes of Natural Sciences (NINS), Okazaki, 444-8787, Japan; Exploratory Research Center on Life and Living Systems, NINS, Okazaki, 444-8787, Japan; SOKENDAI (The Graduate University for Advanced Studies), Okazaki, 444-8787, Japan; Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, 812-8582, Japan.
| |
Collapse
|
24
|
Meng XM, Pang QY, Zhou ZF, Yuan JH, You L, Feng QP, Zhu BM. Histone methyltransferase MLL4 protects against pressure overload-induced heart failure via a THBS4-mediated protection in ER stress. Pharmacol Res 2024; 205:107263. [PMID: 38876442 DOI: 10.1016/j.phrs.2024.107263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 06/10/2024] [Accepted: 06/11/2024] [Indexed: 06/16/2024]
Abstract
Pressure overload-induced pathological cardiac hypertrophy eventually leads to heart failure (HF). Unfortunately, lack of effective targeted therapies for HF remains a challenge in clinical management. Mixed-lineage leukemia 4 (MLL4) is a member of the SET family of histone methyltransferase enzymes, which possesses histone H3 lysine 4 (H3K4)-specific methyltransferase activity. However, whether and how MLL4 regulates cardiac function is not reported in adult HF. Here we report that MLL4 is required for endoplasmic reticulum (ER) stress homeostasis of cardiomyocytes and protective against pressure overload-induced cardiac hypertrophy and HF. We observed that MLL4 is increased in the heart tissue of HF mouse model and HF patients. The cardiomyocyte-specific deletion of Mll4 (Mll4-cKO) in mice leads to aggravated ER stress and cardiac dysfunction following pressure overloading. MLL4 knockdown neonatal rat cardiomyocytes (NRCMs) also display accelerated decompensated ER stress and hypertrophy induced by phenylephrine (PE). The combined analysis of Cleavage Under Targets and Tagmentation sequencing (CUT&Tag-seq) and RNA sequencing (RNA-seq) data reveals that, silencing of Mll4 alters the chromatin landscape for H3K4me1 modification and gene expression patterns in NRCMs. Interestingly, the deficiency of MLL4 results in a marked reduction of H3K4me1 and H3K27ac occupations on Thrombospondin-4 (Thbs4) gene loci, as well as Thbs4 gene expression. Mechanistically, MLL4 acts as a transcriptional activator of Thbs4 through mono-methylation of H3K4 and further regulates THBS4-dependent ER stress response, ultimately plays a role in HF. Our study indicates that pharmacologically targeting MLL4 and ER stress might be a valid therapeutic approach to protect against cardiac hypertrophy and HF.
Collapse
Affiliation(s)
- Xiang-Min Meng
- Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Qiu-Yu Pang
- Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Zhen-Fang Zhou
- Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Jing-Han Yuan
- Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Lu You
- Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Qi-Pu Feng
- Animal Experiment Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Bing-Mei Zhu
- Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China.
| |
Collapse
|
25
|
Malinow I, Fong DC, Miyamoto M, Badran S, Hong CC. Pediatric dilated cardiomyopathy: a review of current clinical approaches and pathogenesis. Front Pediatr 2024; 12:1404942. [PMID: 38966492 PMCID: PMC11223501 DOI: 10.3389/fped.2024.1404942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 06/05/2024] [Indexed: 07/06/2024] Open
Abstract
Pediatric dilated cardiomyopathy (DCM) is a rare, yet life-threatening cardiovascular condition characterized by systolic dysfunction with biventricular dilatation and reduced myocardial contractility. Therapeutic options are limited with nearly 40% of children undergoing heart transplant or death within 2 years of diagnosis. Pediatric patients are currently diagnosed based on correlating the clinical picture with echocardiographic findings. Patient age, etiology of disease, and parameters of cardiac function significantly impact prognosis. Treatments for pediatric DCM aim to ameliorate symptoms, reduce progression of disease, and prevent life-threatening arrhythmias. Many therapeutic agents with known efficacy in adults lack the same evidence in children. Unlike adult DCM, the pathogenesis of pediatric DCM is not well understood as approximately two thirds of cases are classified as idiopathic disease. Children experience unique gene expression changes and molecular pathway activation in response to DCM. Studies have pointed to a significant genetic component in pediatric DCM, with variants in genes related to sarcomere and cytoskeleton structure implicated. In this regard, pediatric DCM can be considered pediatric manifestations of inherited cardiomyopathy syndromes. Yet exciting recent studies in infantile DCM suggest that this subset has a distinct etiology involving defective postnatal cardiac maturation, such as the failure of programmed centrosome breakdown in cardiomyocytes. Improved knowledge of pathogenesis is central to developing child-specific treatment approaches. This review aims to discuss the established biological pathogenesis of pediatric DCM, current clinical guidelines, and promising therapeutic avenues, highlighting differences from adult disease. The overarching goal is to unravel the complexities surrounding this condition to facilitate the advancement of novel therapeutic interventions and improve prognosis and overall quality of life for pediatric patients affected by DCM.
Collapse
Affiliation(s)
- Ian Malinow
- Division of Cardiovascular Medicine, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Daniel C. Fong
- Division of Cardiovascular Medicine, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Matthew Miyamoto
- Division of Cardiovascular Medicine, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Sarah Badran
- Department of Pediatric Cardiology, Michigan State University College of Human Medicine Helen Devos Children’s Hospital, Grand Rapids, MI, United States
| | - Charles C. Hong
- Department of Medicine, Division of Cardiology, Michigan State University College of Human Medicine, East Lansing, MI, United States
| |
Collapse
|
26
|
Shi J, Shao MJ, Yu M, Tang BP. The Inflammation-Fibrosis Combined Index: A Novel Marker for Predicting Left Ventricular Reverse Remodeling and Prognosis in Patients with HFrEF. J Inflamm Res 2024; 17:3967-3982. [PMID: 38915807 PMCID: PMC11194169 DOI: 10.2147/jir.s460641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 06/12/2024] [Indexed: 06/26/2024] Open
Abstract
Background Inflammation and cardiac fibrosis are important pathogenic drivers of heart failure. The fibrosis-4 index (FIB-4) is associated with a higher degree of fibrosis. The systemic immune inflammation index (SII) is associated with a higher degree of systemic inflammation status. Previous studies have shown that they are associated with a poor prognosis for cardiovascular disease. We sought to investigate the value of FIB-4 combined with the SII as a novel inflammation-fibrosis combined index (IFCI) in predicting left ventricular reverse remodeling (LVRR) and prognosis among reduced ejection fraction heart failure (HFrEF) patients. Methods A total of 895 patients with HFrEF were continuously recruited. Receiver operating characteristic curves were drawn to assess the abilities of inflammation-fibrosis indicators to predict LVRR. Multivariable Cox regression analysis was used to examine independent predictors of composite cardiac events and all-cause death. Results After six months of follow-up, 344 (38.4%) patients experienced LVRR. The IFCI had the largest area under the curve (0.835, P < 0.001). In multivariate-adjusted logistic regression analyses, FIB-4, SII, and IFCI were predictive of LVRR (P value < 0.05). The IFCI was associated with a 3.686-fold higher risk of non-LVRR (odds ratio [OR] = 3.686, P < 0.001). Moreover, an increased IFCI predicted a poor prognosis in HFrEF patients. The highest risk of composite cardiac events (hazard ratio [HR] = 2.716, P < 0.001) was observed in the top IFCI-tertile group, and similar results were found regarding independent risk indicators of all-cause death. Conclusion In summary, this study indicated that increased IFCI at admission offers good predictability regarding non-LVRR and predicts the risk of all-cause mortality or composite cardiovascular events due to HFrEF patients and could be used as a novel marker.
Collapse
Affiliation(s)
- Jia Shi
- Cardiac Pacing and Physiological Department, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, People’s Republic of China
- Xinjiang Key Laboratory of Cardiac Electrophysiology and Cardiac Remodeling, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, People’s Republic of China
| | - Meng-Jiao Shao
- Department of Cardiology, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, People’s Republic of China
| | - Miao Yu
- Cardiac Pacing and Physiological Department, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, People’s Republic of China
- Xinjiang Key Laboratory of Cardiac Electrophysiology and Cardiac Remodeling, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, People’s Republic of China
| | - Bao-Peng Tang
- Cardiac Pacing and Physiological Department, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, People’s Republic of China
- Xinjiang Key Laboratory of Cardiac Electrophysiology and Cardiac Remodeling, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, People’s Republic of China
| |
Collapse
|
27
|
Gallo G, Savoia C. Hypertension and Heart Failure: From Pathophysiology to Treatment. Int J Mol Sci 2024; 25:6661. [PMID: 38928371 PMCID: PMC11203528 DOI: 10.3390/ijms25126661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 06/11/2024] [Accepted: 06/15/2024] [Indexed: 06/28/2024] Open
Abstract
Hypertension represents one of the primary and most common risk factors leading to the development of heart failure (HF) across the entire spectrum of left ventricular ejection fraction. A large body of evidence has demonstrated that adequate blood pressure (BP) control can reduce cardiovascular events, including the development of HF. Although the pathophysiological and epidemiological role of hypertension in the development of HF is well and largely known, some critical issues still deserve to be clarified, including BP targets, particularly in HF patients. Indeed, the management of hypertension in HF relies on the extrapolation of findings from high-risk hypertensive patients in the general population and not from specifically designed studies in HF populations. In patients with hypertension and HF with reduced ejection fraction (HFrEF), it is recommended to combine drugs with documented outcome benefits and BP-lowering effects. In patients with HF with preserved EF (HFpEF), a therapeutic strategy with all major antihypertensive drug classes is recommended. Besides commonly used antihypertensive drugs, different evidence suggests that other drugs recommended in HF for the beneficial effect on cardiovascular outcomes exert advantageous blood pressure-lowering actions. In this regard, type 2 sodium glucose transporter inhibitors (SGLT2i) have been shown to induce BP-lowering actions that favorably affect cardiac afterload, ventricular arterial coupling, cardiac efficiency, and cardiac reverse remodeling. More recently, it has been demonstrated that finerenone, a non-steroidal mineralocorticoid receptor antagonist, reduces new-onset HF and improves other HF outcomes in patients with chronic kidney disease and type 2 diabetes, irrespective of a history of HF. Other proposed agents, such as endothelin receptor antagonists, have provided contrasting results in the management of hypertension and HF. A novel, promising strategy could be represented by small interfering RNA, whose actions are under investigation in ongoing clinical trials.
Collapse
Affiliation(s)
| | - Carmine Savoia
- Clinical and Molecular Medicine Department, Faculty of Medicine and Psychology, Sant’Andrea Hospital, Sapienza University of Rome, 00189 Rome, Italy;
| |
Collapse
|
28
|
Liu S, Deshmukh V, Wang F, Liang J, Cusick J, Li X, Martin JF. Myocardial Infarction Suppresses Protein Synthesis and Causes Decoupling of Transcription and Translation. JACC Basic Transl Sci 2024; 9:792-807. [PMID: 39070274 PMCID: PMC11282883 DOI: 10.1016/j.jacbts.2024.02.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 02/23/2024] [Accepted: 02/23/2024] [Indexed: 07/30/2024]
Abstract
Gene expression involves transcription, translation, and mRNA and protein degradation. Advanced RNA sequencing measures mRNA levels for cell state assessment, but mRNA level does not fully reflect protein level. Identifying heart cell proteomes and their stress response is crucial. Using a cardiomyocyte-specific mouse model, we tracked protein synthesis after myocardial infarction. Our results showed that myocardial infarction suppresses protein synthesis and unveils a decoupling of translation and transcription regulation in cardiomyocytes.
Collapse
Affiliation(s)
- Shijie Liu
- Cardiomyocyte Renewal Laboratory, Texas Heart Institute, Houston, Texas, USA
- (currently) Division of Molecular Cardiovascular Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, USA
- Division of Molecular Cardiovascular Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, USA
| | - Vaibhav Deshmukh
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, Texas, USA
| | - Fangfei Wang
- Division of Molecular Cardiovascular Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, USA
| | - Jie Liang
- Division of Molecular Cardiovascular Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, USA
| | - Jenna Cusick
- Division of Molecular Cardiovascular Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, USA
| | - Xiao Li
- Gene Editing Laboratory, Texas Heart Institute, Houston, Texas, USA
| | - James F. Martin
- Cardiomyocyte Renewal Laboratory, Texas Heart Institute, Houston, Texas, USA
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, Texas, USA
- Gene Editing Laboratory, Texas Heart Institute, Houston, Texas, USA
- Cardiovascular Research Institute, Baylor College of Medicine, Houston, Texas, USA
| |
Collapse
|
29
|
Akbar N, Razzaq SS, Salim A, Haneef K. Mesenchymal Stem Cell-Derived Exosomes and Their MicroRNAs in Heart Repair and Regeneration. J Cardiovasc Transl Res 2024; 17:505-522. [PMID: 37875715 DOI: 10.1007/s12265-023-10449-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 10/06/2023] [Indexed: 10/26/2023]
Abstract
Mesenchymal stem cells (MSCs) can be differentiated into cardiac, endothelial, and smooth muscle cells. Therefore, MSC-based therapeutic approaches have the potential to deal with the aftermaths of cardiac diseases. However, transplanted stem cells rarely survive in damaged myocardium, proposing that paracrine factors other than trans-differentiation may involve in heart regeneration. Apart from cytokines/growth factors, MSCs secret small, single-membrane organelles named exosomes. The MSC-secreted exosomes are enriched in lipids, proteins, nucleic acids, and microRNA (miRNA). There has been an increasing amount of data that confirmed that MSC-derived exosomes and their active molecule microRNA (miRNAs) regulate signaling pathways involved in heart repair/regeneration. In this review, we systematically present an overview of MSCs, their cardiac differentiation, and the role of MSC-derived exosomes and exosomal miRNAs in heart regeneration. In addition, biological functions regulated by MSC-derived exosomes and exosomal-derived miRNAs in the process of heart regeneration are reviewed.
Collapse
Affiliation(s)
- Nukhba Akbar
- Dr. Zafar H. Zaidi Center for Proteomics, University of Karachi, Karachi, 75270, Pakistan
| | - Syeda Saima Razzaq
- Dr. Zafar H. Zaidi Center for Proteomics, University of Karachi, Karachi, 75270, Pakistan
| | - Asmat Salim
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, 75270, Pakistan
| | - Kanwal Haneef
- Dr. Zafar H. Zaidi Center for Proteomics, University of Karachi, Karachi, 75270, Pakistan.
| |
Collapse
|
30
|
Xu G, Xu Y, Zhang Y, Kao G, Li J. miR-1268a Regulates Fatty Acid Metabolism by Targeting CD36 in Angiotensin II-induced Heart Failure. Cell Biochem Biophys 2024; 82:1193-1201. [PMID: 38619643 DOI: 10.1007/s12013-024-01268-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/03/2024] [Indexed: 04/16/2024]
Abstract
Multiple RNAs have been involved in the progress of heart failure. However, the role of miR-1268a in heart failure is still unclear. The differentially expressed miRNAs in heart failure was analyzed based on GEO dataset GSE104150. AC16 cells were treated with Angiotensin II (Ang II) to explore the role of miR-1268a in heart failure. The web tool miRWalk was used to analyze the targets of miR-1268a. miR-1268a was up-regulated in Ang II-treated AC16 cells. Ang II treatment markedly inhibited cell proliferation, ATP production, fatty acid (FA) uptake and enhanced levels of HF markers BNP and ST2, and oxidative stress of AC16 cells. Notably, inhibition of miR-1268a eliminated the inhibiting effect of Ang II on cell proliferation, ATP production, FA uptake and decreased levels of BNP an ST2, and oxidative stress on AC16 cells. Furthermore, CD36 was a target of miR-1268a and the CD36 level was decreased by miR-1268a mimics but increased by miR-1268a inhibitor in AC16 cells. miR-1268a regulates FA metabolism and oxidative stress in myocardial cells by targeting CD36 in heart failure.
Collapse
Affiliation(s)
- Gang Xu
- Department of Cardiovascular Medicine, Chongqing Emergency Medical Center, Chongqing University Central Hospital, Chongqing, 400010, China
| | - Yi Xu
- Department of Cardiovascular Medicine, Chongqing Emergency Medical Center, Chongqing University Central Hospital, Chongqing, 400010, China
| | - Ying Zhang
- Department of Cardiovascular Medicine, Chongqing Emergency Medical Center, Chongqing University Central Hospital, Chongqing, 400010, China
| | - Guoying Kao
- Department of Cardiovascular Medicine, Chongqing Emergency Medical Center, Chongqing University Central Hospital, Chongqing, 400010, China.
| | - Jun Li
- Department of Cardiovascular Medicine, Chongqing Emergency Medical Center, Chongqing University Central Hospital, Chongqing, 400010, China.
| |
Collapse
|
31
|
Aslan A, Ari Yuka S. Therapeutic peptides for coronary artery diseases: in silico methods and current perspectives. Amino Acids 2024; 56:37. [PMID: 38822212 PMCID: PMC11143054 DOI: 10.1007/s00726-024-03397-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 05/06/2024] [Indexed: 06/02/2024]
Abstract
Many drug formulations containing small active molecules are used for the treatment of coronary artery disease, which affects a significant part of the world's population. However, the inadequate profile of these molecules in terms of therapeutic efficacy has led to the therapeutic use of protein and peptide-based biomolecules with superior properties, such as target-specific affinity and low immunogenicity, in critical diseases. Protein‒protein interactions, as a consequence of advances in molecular techniques with strategies involving the combined use of in silico methods, have enabled the design of therapeutic peptides to reach an advanced dimension. In particular, with the advantages provided by protein/peptide structural modeling, molecular docking for the study of their interactions, molecular dynamics simulations for their interactions under physiological conditions and machine learning techniques that can work in combination with all these, significant progress has been made in approaches to developing therapeutic peptides that can modulate the development and progression of coronary artery diseases. In this scope, this review discusses in silico methods for the development of peptide therapeutics for the treatment of coronary artery disease and strategies for identifying the molecular mechanisms that can be modulated by these designs and provides a comprehensive perspective for future studies.
Collapse
Affiliation(s)
- Ayca Aslan
- Department of Bioengineering, Faculty of Chemical and Metallurgical Engineering, Yildiz Technical University, Esenler, Istanbul, Turkey
- Health Biotechnology Joint Research and Application Center of Excellence, Esenler, Istanbul, Turkey
| | - Selcen Ari Yuka
- Department of Bioengineering, Faculty of Chemical and Metallurgical Engineering, Yildiz Technical University, Esenler, Istanbul, Turkey.
- Health Biotechnology Joint Research and Application Center of Excellence, Esenler, Istanbul, Turkey.
| |
Collapse
|
32
|
Malikides O, Simantirakis E, Zacharis E, Fragkiadakis K, Kochiadakis G, Marketou M. Cardiac Remodeling and Ventricular Pacing: From Genes to Mechanics. Genes (Basel) 2024; 15:671. [PMID: 38927607 PMCID: PMC11203142 DOI: 10.3390/genes15060671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 05/17/2024] [Accepted: 05/21/2024] [Indexed: 06/28/2024] Open
Abstract
Cardiac remodeling and ventricular pacing represent intertwined phenomena with profound implications for cardiovascular health and therapeutic interventions. This review explores the intricate relationship between cardiac remodeling and ventricular pacing, spanning from the molecular underpinnings to biomechanical alterations. Beginning with an examination of genetic predispositions and cellular signaling pathways, we delve into the mechanisms driving myocardial structural changes and electrical remodeling in response to pacing stimuli. Insights into the dynamic interplay between pacing strategies and adaptive or maladaptive remodeling processes are synthesized, shedding light on the clinical implications for patients with various cardiovascular pathologies. By bridging the gap between basic science discoveries and clinical translation, this review aims to provide a comprehensive understanding of cardiac remodeling in the context of ventricular pacing, paving the way for future advancements in cardiovascular care.
Collapse
Affiliation(s)
- Onoufrios Malikides
- Department of Cardiology, University General Hospital of Heraklion, 71003 Heraklion, Greece; (E.S.); (E.Z.); (K.F.); (G.K.); (M.M.)
| | - Emmanouel Simantirakis
- Department of Cardiology, University General Hospital of Heraklion, 71003 Heraklion, Greece; (E.S.); (E.Z.); (K.F.); (G.K.); (M.M.)
- Medical School, University of Crete, 71003 Heraklion, Greece
| | - Evangelos Zacharis
- Department of Cardiology, University General Hospital of Heraklion, 71003 Heraklion, Greece; (E.S.); (E.Z.); (K.F.); (G.K.); (M.M.)
- Medical School, University of Crete, 71003 Heraklion, Greece
| | - Konstantinos Fragkiadakis
- Department of Cardiology, University General Hospital of Heraklion, 71003 Heraklion, Greece; (E.S.); (E.Z.); (K.F.); (G.K.); (M.M.)
- Medical School, University of Crete, 71003 Heraklion, Greece
| | - George Kochiadakis
- Department of Cardiology, University General Hospital of Heraklion, 71003 Heraklion, Greece; (E.S.); (E.Z.); (K.F.); (G.K.); (M.M.)
- Medical School, University of Crete, 71003 Heraklion, Greece
| | - Maria Marketou
- Department of Cardiology, University General Hospital of Heraklion, 71003 Heraklion, Greece; (E.S.); (E.Z.); (K.F.); (G.K.); (M.M.)
- Medical School, University of Crete, 71003 Heraklion, Greece
| |
Collapse
|
33
|
Dhalla NS, Mota KO, Elimban V, Shah AK, de Vasconcelos CML, Bhullar SK. Role of Vasoactive Hormone-Induced Signal Transduction in Cardiac Hypertrophy and Heart Failure. Cells 2024; 13:856. [PMID: 38786079 PMCID: PMC11119949 DOI: 10.3390/cells13100856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 05/13/2024] [Accepted: 05/14/2024] [Indexed: 05/25/2024] Open
Abstract
Heart failure is the common concluding pathway for a majority of cardiovascular diseases and is associated with cardiac dysfunction. Since heart failure is invariably preceded by adaptive or maladaptive cardiac hypertrophy, several biochemical mechanisms have been proposed to explain the development of cardiac hypertrophy and progression to heart failure. One of these includes the activation of different neuroendocrine systems for elevating the circulating levels of different vasoactive hormones such as catecholamines, angiotensin II, vasopressin, serotonin and endothelins. All these hormones are released in the circulation and stimulate different signal transduction systems by acting on their respective receptors on the cell membrane to promote protein synthesis in cardiomyocytes and induce cardiac hypertrophy. The elevated levels of these vasoactive hormones induce hemodynamic overload, increase ventricular wall tension, increase protein synthesis and the occurrence of cardiac remodeling. In addition, there occurs an increase in proinflammatory cytokines and collagen synthesis for the induction of myocardial fibrosis and the transition of adaptive to maladaptive hypertrophy. The prolonged exposure of the hypertrophied heart to these vasoactive hormones has been reported to result in the oxidation of catecholamines and serotonin via monoamine oxidase as well as the activation of NADPH oxidase via angiotensin II and endothelins to promote oxidative stress. The development of oxidative stress produces subcellular defects, Ca2+-handling abnormalities, mitochondrial Ca2+-overload and cardiac dysfunction by activating different proteases and depressing cardiac gene expression, in addition to destabilizing the extracellular matrix upon activating some metalloproteinases. These observations support the view that elevated levels of various vasoactive hormones, by producing hemodynamic overload and activating their respective receptor-mediated signal transduction mechanisms, induce cardiac hypertrophy. Furthermore, the occurrence of oxidative stress due to the prolonged exposure of the hypertrophied heart to these hormones plays a critical role in the progression of heart failure.
Collapse
Affiliation(s)
- Naranjan S. Dhalla
- Institute of Cardiovascular Sciences, St. Boniface Hospital Albrechtsen Research Centre, Department of Physiology and Pathophysiology, Max Rady College of Medicine, University of Manitoba, Winnipeg, MB R2H 2A6, Canada; (V.E.); (S.K.B.)
| | - Karina O. Mota
- Department of Physiology, Center of Biological and Health Sciences, Federal University of Sergipe, Sao Cristóvao 49100-000, Brazil; (K.O.M.); (C.M.L.d.V.)
| | - Vijayan Elimban
- Institute of Cardiovascular Sciences, St. Boniface Hospital Albrechtsen Research Centre, Department of Physiology and Pathophysiology, Max Rady College of Medicine, University of Manitoba, Winnipeg, MB R2H 2A6, Canada; (V.E.); (S.K.B.)
| | - Anureet K. Shah
- Department of Nutrition and Food Science, California State University, Los Angeles, CA 90032-8162, USA;
| | - Carla M. L. de Vasconcelos
- Department of Physiology, Center of Biological and Health Sciences, Federal University of Sergipe, Sao Cristóvao 49100-000, Brazil; (K.O.M.); (C.M.L.d.V.)
| | - Sukhwinder K. Bhullar
- Institute of Cardiovascular Sciences, St. Boniface Hospital Albrechtsen Research Centre, Department of Physiology and Pathophysiology, Max Rady College of Medicine, University of Manitoba, Winnipeg, MB R2H 2A6, Canada; (V.E.); (S.K.B.)
| |
Collapse
|
34
|
Hu GF, Meng LB, Li J, Xu J, Xu HX, Liu DP. HLA-B and TIMP1 as hub genes of the ventricular remodeling caused by hypertension. Aging (Albany NY) 2024; 16:8260-8278. [PMID: 38728374 PMCID: PMC11132017 DOI: 10.18632/aging.205816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 04/10/2024] [Indexed: 05/12/2024]
Abstract
RATIONALE Myocardial fibrosis is an important pathological change that occurs during ventricular remodeling in patients with hypertension and is an important pathophysiological basis of cardiovascular disease. However, the molecular mechanism underlying this ventricular remodeling is unclear. METHODS Bioinformatics analysis identified HLA-B and TIMP1 as hub genes in the process of myocardial fibrosis. Expression and correlation analyses of significant hub genes with ventricular remodeling were performed. Weighted gene co-expression network analysis (WGCNA) was performed to verify the role of HLA-B. ceRNA network was constructed to identify the candidate molecule drugs. Receiver operating characteristic (ROC) curves were analyzed. RESULTS RT-qPCR was performed to verify the roles of HLA-B and TIMP1 in seven control individuals with hypertension and seven patients with hypertension and ventricular remodeling. The WGCNA showed that HLA-B was in the brown module and the correlation coefficient between HLA-B and ventricular remodeling was 0.67. Based on univariate logistic proportional regression analysis, HLA-B influences ventricular remodeling (P<0.05). RT-qPCR showed that the relative expression levels of HLA-B and TIMP1 were significantly higher in HLVR samples compared with their expression in the control group. CONCLUSIONS HLA-B and TIMP1 might provide novel research targets for the diagnosis and treatment of HLVR.
Collapse
Affiliation(s)
- Gai-Feng Hu
- Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, National Clinical Research Center for Cardiovascular Diseases, Chaoyang 100029, Beijing, China
| | - Ling-Bing Meng
- Department of Cardiology, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Changping 102218, Beijing, China
| | - Jianyi Li
- Department of Cardiology, Beijing Hospital, National Center of Gerontology, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Dong Dan 100730, Beijing, China
- Graduate School of Peking Union Medical College and Chinese Academy of Medical Sciences, Dongcheng 100730, Beijing, China
| | - Jiapei Xu
- Department of Cardiology, Beijing Hospital, National Center of Gerontology, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Dong Dan 100730, Beijing, China
| | - Hong-Xuan Xu
- Department of Cardiology, Beijing Hospital, National Center of Gerontology, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Dong Dan 100730, Beijing, China
| | - De-Ping Liu
- Department of Cardiology, Beijing Hospital, National Center of Gerontology, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Dong Dan 100730, Beijing, China
- Graduate School of Peking Union Medical College and Chinese Academy of Medical Sciences, Dongcheng 100730, Beijing, China
| |
Collapse
|
35
|
Wu H, Zhai Y, Yu J, Wei L, Qi X. Transcriptome and proteome analyses reveal that upregulation of GSTM2 by allisartan improves cardiac remodeling and dysfunction in hypertensive rats. Exp Ther Med 2024; 27:220. [PMID: 38590561 PMCID: PMC11000455 DOI: 10.3892/etm.2024.12508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Accepted: 02/20/2024] [Indexed: 04/10/2024] Open
Abstract
Long-term hypertension can lead to hypertensive heart disease, which ultimately progresses to heart failure. As an angiotensin receptor blocker antihypertensive drug, allisartan can control blood pressure, and improve cardiac remodeling and cardiac dysfunction caused by hypertension. The aim of the present study was to investigate the protective effects of allisartan on the heart of spontaneously hypertensive rats (SHRs) and the underlying mechanisms. SHRs were used as an animal model of hypertensive heart disease and were treated with allisartan orally at a dose of 25 mg/kg/day. The blood pressure levels of the rats were continuously monitored, their body and heart weights were measured, and their cardiac structure and function were evaluated using echocardiography. Wheat germ agglutinin staining and Masson trichrome staining were employed to assess the morphology of the myocardial tissue. In addition, transcriptome and proteome analyses were performed using the Solexa/Illumina sequencing platform and tandem mass tag technology, respectively. Immunofluorescence co-localization was conducted to analyze Nrf2 nuclear translocation, and TUNEL was performed to detect the levels of cell apoptosis. The protein expression levels of pro-collagen I, collagen III, phosphorylated (p)-AKT, AKT, p-PI3K and PI3K, and the mRNA expression levels of Col1a1 and Col3a1 were determined by western blotting and reverse transcription-quantitative PCR, respectively. Allisartan lowered blood pressure, attenuated cardiac remodeling and improved cardiac function in SHRs. In addition, allisartan alleviated cardiomyocyte hypertrophy and cardiac fibrosis. Allisartan also significantly affected the 'pentose phosphate pathway', 'fatty acid elongation', 'valine, leucine and isoleucine degradation', 'glutathione metabolism', and 'amino sugar and nucleotide sugar metabolism' pathways in the hearts of SHRs, and upregulated the expression levels of GSTM2. Furthermore, allisartan activated the PI3K-AKT-Nrf2 signaling pathway and inhibited cardiomyocyte apoptosis. In conclusion, the present study demonstrated that allisartan can effectively control blood pressure in SHRs, and improves cardiac remodeling and cardiac dysfunction. Allisartan may also upregulate the expression levels of GSTM2 in the hearts of SHRs and significantly affect glutathione metabolism, as determined by transcriptome and proteome analyses. The cardioprotective effect of allisartan may be mediated through activation of the PI3K-AKT-Nrf2 signaling pathway, upregulation of GSTM2 expression and reduction of cardiomyocyte apoptosis in SHRs.
Collapse
Affiliation(s)
- Hao Wu
- School of Medicine, Nankai University, Tianjin 300071, P.R. China
- Department of Cardiology, Tianjin Union Medical Center, Tianjin 300121, P.R. China
| | - Yajun Zhai
- Graduate School, Tianjin Medical University, Tianjin 300070, P.R. China
| | - Jing Yu
- Department of Physiology and Pathophysiology, Tianjin Medical University, Tianjin 300070, P.R. China
| | - Liping Wei
- School of Medicine, Nankai University, Tianjin 300071, P.R. China
- Department of Cardiology, Tianjin Union Medical Center, Tianjin 300121, P.R. China
| | - Xin Qi
- School of Medicine, Nankai University, Tianjin 300071, P.R. China
- Department of Cardiology, Tianjin Union Medical Center, Tianjin 300121, P.R. China
| |
Collapse
|
36
|
Greenberg L, Tom Stump W, Lin Z, Bredemeyer AL, Blackwell T, Han X, Greenberg AE, Garcia BA, Lavine KJ, Greenberg MJ. Harnessing molecular mechanism for precision medicine in dilated cardiomyopathy caused by a mutation in troponin T. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.05.588306. [PMID: 38645235 PMCID: PMC11030379 DOI: 10.1101/2024.04.05.588306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/23/2024]
Abstract
Familial dilated cardiomyopathy (DCM) is frequently caused by autosomal dominant point mutations in genes involved in diverse cellular processes, including sarcomeric contraction. While patient studies have defined the genetic landscape of DCM, genetics are not currently used in patient care, and patients receive similar treatments regardless of the underlying mutation. It has been suggested that a precision medicine approach based on the molecular mechanism of the underlying mutation could improve outcomes; however, realizing this approach has been challenging due to difficulties linking genotype and phenotype and then leveraging this information to identify therapeutic approaches. Here, we used multiscale experimental and computational approaches to test whether knowledge of molecular mechanism could be harnessed to connect genotype, phenotype, and drug response for a DCM mutation in troponin T, deletion of K210. Previously, we showed that at the molecular scale, the mutation reduces thin filament activation. Here, we used computational modeling of this molecular defect to predict that the mutant will reduce cellular and tissue contractility, and we validated this prediction in human cardiomyocytes and engineered heart tissues. We then used our knowledge of molecular mechanism to computationally model the effects of a small molecule that can activate the thin filament. We demonstrate experimentally that the modeling correctly predicts that the small molecule can partially rescue systolic dysfunction at the expense of diastolic function. Taken together, our results demonstrate how molecular mechanism can be harnessed to connect genotype and phenotype and inspire strategies to optimize mechanism-based therapeutics for DCM.
Collapse
Affiliation(s)
- Lina Greenberg
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - W. Tom Stump
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Zongtao Lin
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Andrea L. Bredemeyer
- Department of Medicine, Cardiovascular Division, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Thomas Blackwell
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Xian Han
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Akiva E. Greenberg
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Benjamin A. Garcia
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Kory J. Lavine
- Department of Medicine, Cardiovascular Division, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Michael J. Greenberg
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO, 63110, USA
| |
Collapse
|
37
|
Wei W, Li C, Zhang B, Huang D, Li Z, Gao J. Total Glucosides of Paeony Ameliorate Myocardial Injury in Chronic Heart Failure Rats by Suppressing PARP-1. J Cardiovasc Transl Res 2024; 17:388-402. [PMID: 37831380 PMCID: PMC11052853 DOI: 10.1007/s12265-023-10440-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Accepted: 09/18/2023] [Indexed: 10/14/2023]
Abstract
Total glucosides of paeony (TGP) have a potential protective effect on chronic heart failure (CHF) rats, but the mechanism remains unclear. PARP inhibition prevents the decrease in myocardial contractility. Therefore, we aim to investigate the effects and mechanisms of TGP on CHF and the role of PARP-1 in CHF. Left anterior descending ligation rats and adriamycin-treated H9C9 cells were used as CHF models, and captopril as a positive control for in vivo experiments. We found that TGP alleviated myocardial remodeling and improved cardiac morphology and function. TGP also reduced myocardial apoptosis and autophagy, decreased inflammatory factor release, and inhibited the PARP-1 and NF-κB proteins. Through cell transfection, we found that PAPR-1 knockdown inhibited NF-κB nuclear translocation. Additionally, TGP inhibited apoptosis, autophagy, and inflammation in CHF cells, while PARP-1 overexpression partially antagonized them. In conclusion, TGP has the potential to improve CHF and PARP-1 may be a potential target.
Collapse
Affiliation(s)
- Wenjuan Wei
- Department of Cardiology, The First People's Hospital of Xiaoshan District, No. 199, Shixin Nan Road, Xiaoshan District, Hangzhou, 311200, Zhejiang, China
| | - Caiyan Li
- Department of Cardiology, The First People's Hospital of Xiaoshan District, No. 199, Shixin Nan Road, Xiaoshan District, Hangzhou, 311200, Zhejiang, China
| | - Baoyong Zhang
- Department of Cardiology, The First People's Hospital of Xiaoshan District, No. 199, Shixin Nan Road, Xiaoshan District, Hangzhou, 311200, Zhejiang, China
| | - Deyun Huang
- Department of Cardiology, The First People's Hospital of Xiaoshan District, No. 199, Shixin Nan Road, Xiaoshan District, Hangzhou, 311200, Zhejiang, China
| | - Zheming Li
- College of Pharmacy, Hangzhou Medical College, No. 481, Binwen Road, Binjiang District, Hangzhou, 310053, Zhejiang, China.
| | - Jiaer Gao
- Department of Cardiology, The First People's Hospital of Xiaoshan District, No. 199, Shixin Nan Road, Xiaoshan District, Hangzhou, 311200, Zhejiang, China.
| |
Collapse
|
38
|
Chen BH, Tang H, An DA, Pu J, Wu LM. Prognostic value of paradoxical pulsation after acute anterior myocardial infarction. Eur J Intern Med 2024; 122:148-150. [PMID: 38281817 DOI: 10.1016/j.ejim.2024.01.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Accepted: 01/16/2024] [Indexed: 01/30/2024]
Affiliation(s)
- Bing-Hua Chen
- Department of Radiology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Hui Tang
- Department of Radiology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Dong-Aolei An
- Department of Radiology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Jun Pu
- Department of Cardiology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, No.160 PuJian Road, Shanghai 200127, China
| | - Lian-Ming Wu
- Department of Radiology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China.
| |
Collapse
|
39
|
Xie J, Lin H, Zuo A, Shao J, Sun W, Wang S, Song J, Yao W, Luo Y, Sun J, Wang M. The JMJD family of histone demethylase and their intimate links to cardiovascular disease. Cell Signal 2024; 116:111046. [PMID: 38242266 DOI: 10.1016/j.cellsig.2024.111046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 01/05/2024] [Accepted: 01/11/2024] [Indexed: 01/21/2024]
Abstract
The incidence rate and mortality rate of cardiovascular disease rank first in the world. It is associated with various high-risk factors, and there is no single cause. Epigenetic modifications, such as DNA methylation or histone modification, actively participate in the initiation and development of cardiovascular diseases. Histone lysine methylation is a type of histone post-translational modification. The human Jumonji C domain (JMJD) protein family consists of more than 30 members. JMJD proteins participate in many key nuclear processes and play a key role in the specific regulation of gene expression, DNA damage and repair, and DNA replication. Importantly, increasing evidence shows that JMJD proteins are abnormally expressed in cardiovascular diseases, which may be a potential mechanism for the occurrence and development of these diseases. Here, we discuss the key roles of JMJD proteins in various common cardiovascular diseases. This includes histone lysine demethylase, which has been studied in depth, and less-studied JMJD members. Furthermore, we focus on the epigenetic changes induced by each JMJD member, summarize recent research progress, and evaluate their relationship with cardiovascular diseases and therapeutic potential.
Collapse
Affiliation(s)
- Jiarun Xie
- Department of Traditional Chinese Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China; School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, China
| | - Haoyu Lin
- Department of Traditional Chinese Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China; School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, China
| | - Anna Zuo
- Department of Traditional Chinese Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China; School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, China
| | - Junqiao Shao
- Department of Traditional Chinese Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China; School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, China
| | - Wei Sun
- Department of Traditional Chinese Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China; School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, China
| | - Shaoting Wang
- Department of Traditional Chinese Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China; School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, China
| | - Jianda Song
- Department of Traditional Chinese Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China; School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, China
| | - Wang Yao
- Department of Traditional Chinese Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China; School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, China
| | - Yanyu Luo
- Department of Traditional Chinese Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China; School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, China
| | - Jia Sun
- Department of Traditional Chinese Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China.
| | - Ming Wang
- Department of Traditional Chinese Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China; School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, China.
| |
Collapse
|
40
|
Yaghoobi A, Rezaee M, Behnoush AH, Khalaji A, Mafi A, Houjaghan AK, Masoudkabir F, Pahlavan S. Role of long noncoding RNAs in pathological cardiac remodeling after myocardial infarction: An emerging insight into molecular mechanisms and therapeutic potential. Biomed Pharmacother 2024; 172:116248. [PMID: 38325262 DOI: 10.1016/j.biopha.2024.116248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 01/29/2024] [Accepted: 02/01/2024] [Indexed: 02/09/2024] Open
Abstract
Myocardial infarction (MI) is the leading cause of heart failure (HF), accounting for high mortality and morbidity worldwide. As a consequence of ischemia/reperfusion injury during MI, multiple cellular processes such as oxidative stress-induced damage, cardiomyocyte death, and inflammatory responses occur. In the next stage, the proliferation and activation of cardiac fibroblasts results in myocardial fibrosis and HF progression. Therefore, developing a novel therapeutic strategy is urgently warranted to restrict the progression of pathological cardiac remodeling. Recently, targeting long non-coding RNAs (lncRNAs) provided a novel insight into treating several disorders. In this regard, numerous investigations have indicated that several lncRNAs could participate in the pathogenesis of MI-induced cardiac remodeling, suggesting their potential therapeutic applications. In this review, we summarized lncRNAs displayed in the pathophysiology of cardiac remodeling after MI, emphasizing molecular mechanisms. Also, we highlighted the possible translational role of lncRNAs as therapeutic targets for this condition and discussed the potential role of exosomes in delivering the lncRNAs involved in post-MI cardiac remodeling.
Collapse
Affiliation(s)
- Alireza Yaghoobi
- Tehran Heart Center, Cardiovascular Diseases Research Institute, Tehran University of Medical Sciences, Tehran, Iran; Department of Pharmacology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Malihe Rezaee
- Tehran Heart Center, Cardiovascular Diseases Research Institute, Tehran University of Medical Sciences, Tehran, Iran; Department of Pharmacology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Amir Hossein Behnoush
- Tehran Heart Center, Cardiovascular Diseases Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Amirmohammad Khalaji
- Tehran Heart Center, Cardiovascular Diseases Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Alireza Mafi
- Department of Clinical Biochemistry, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| | | | - Farzad Masoudkabir
- Tehran Heart Center, Cardiovascular Diseases Research Institute, Tehran University of Medical Sciences, Tehran, Iran.
| | - Sara Pahlavan
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran.
| |
Collapse
|
41
|
Delaunay M, Paterek A, Gautschi I, Scherler G, Diviani D. AKAP2-anchored extracellular signal-regulated kinase 1 (ERK1) regulates cardiac myofibroblast migration. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2024; 1871:119674. [PMID: 38242328 DOI: 10.1016/j.bbamcr.2024.119674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 12/22/2023] [Accepted: 01/10/2024] [Indexed: 01/21/2024]
Abstract
Cardiac fibrosis is a major cause of dysfunctions and arrhythmias in failing hearts. At the cellular level fibrosis is mediated by cardiac myofibroblasts, which display an increased migratory capacity and secrete large amounts of extracellular matrix. These properties allow myofibroblasts to invade, remodel and stiffen the myocardium and eventually alter cardiac function. While the enhanced ability of cardiac myofibroblasts to migrate has been proposed to contribute to the initiation of the fibrotic process, the molecular mechanisms controlling their motile function have been poorly defined. In this context, our current findings indicate that A-kinase anchoring protein 2 (AKAP2) associates with actin at the leading edge of migrating cardiac myofibroblasts. Proteomic analysis of the AKAP2 interactome revealed that this anchoring protein assembles a signaling complex composed of the extracellular regulated kinase 1 (ERK1) and its upstream activator Grb2 that mediates the activation of ERK in cardiac myofibroblasts. Silencing AKAP2 expression results in a significant reduction in the phosphorylation of ERK1 and its downstream effector WAVE2, a protein involved in actin polymerization, and impairs the ability of cardiac myofibroblasts to migrate. Importantly, disruption of the interaction between AKAP2 and F-actin using cell-permeant competitor peptides, inhibits the activation of the ERK-WAVE2 signaling axis, resulting in a reduction of the translocation of Arp2 to the leading-edge membrane and in inhibition of cardiac myofibroblast migration. Collectively, these findings suggest that AKAP2 functions as an F-actin bound molecular scaffold mediating the activation of an ERK1-dependent promigratory transduction pathway in cardiac myofibroblasts.
Collapse
Affiliation(s)
- Marion Delaunay
- Department of Biomedical Sciences, Faculty of Biology et Medicine, University of Lausanne, 1011 Lausanne, Switzerland
| | - Aleksandra Paterek
- Department of Biomedical Sciences, Faculty of Biology et Medicine, University of Lausanne, 1011 Lausanne, Switzerland
| | - Ivan Gautschi
- Department of Biomedical Sciences, Faculty of Biology et Medicine, University of Lausanne, 1011 Lausanne, Switzerland
| | - Greta Scherler
- Department of Biomedical Sciences, Faculty of Biology et Medicine, University of Lausanne, 1011 Lausanne, Switzerland
| | - Dario Diviani
- Department of Biomedical Sciences, Faculty of Biology et Medicine, University of Lausanne, 1011 Lausanne, Switzerland.
| |
Collapse
|
42
|
Wang J, Liu S, Meng X, Zhao X, Wang T, Lei Z, Lehmann HI, Li G, Alcaide P, Bei Y, Xiao J. Exercise Inhibits Doxorubicin-Induced Cardiotoxicity via Regulating B Cells. Circ Res 2024; 134:550-568. [PMID: 38323433 PMCID: PMC11233173 DOI: 10.1161/circresaha.123.323346] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 01/23/2024] [Indexed: 02/08/2024]
Abstract
BACKGROUND Doxorubicin is an effective chemotherapeutic agent, but its use is limited by acute and chronic cardiotoxicity. Exercise training has been shown to protect against doxorubicin-induced cardiotoxicity, but the involvement of immune cells remains unclear. This study aimed to investigate the role of exercise-derived B cells in protecting against doxorubicin-induced cardiotoxicity and to further determine whether B cell activation and antibody secretion play a role in this protection. METHODS Mice that were administered with doxorubicin (5 mg/kg per week, 20 mg/kg cumulative dose) received treadmill running exercise. The adoptive transfer of exercise-derived splenic B cells to μMT-/- (B cell-deficient) mice was performed to elucidate the mechanism of B cell regulation that mediated the effect of exercise. RESULTS Doxorubicin-administered mice that had undergone exercise training showed improved cardiac function, and low levels of cardiac apoptosis, atrophy, and fibrosis, and had reduced cardiac antibody deposition and proinflammatory responses. Similarly, B cell pharmacological and genetic depletion alleviated doxorubicin-induced cardiotoxicity, which phenocopied the protection of exercise. In vitro performed coculture experiments confirmed that exercise-derived B cells reduced cardiomyocyte apoptosis and fibroblast activation compared with control B cells. Importantly, the protective effect of exercise on B cells was confirmed by the adoptive transfer of splenic B cells from exercised donor mice to μMT-/- recipient mice. However, blockage of Fc gamma receptor IIB function using B cell transplants from exercised Fc gamma receptor IIB-/- mice abolished the protection of exercise-derived B cells against doxorubicin-induced cardiotoxicity. Mechanistically, we found that Fc gamma receptor IIB, an important B cell inhibitory receptor, responded to exercise and increased B cell activation threshold, which participated in exercise-induced protection against doxorubicin-induced cardiotoxicity. CONCLUSIONS Our results demonstrate that exercise training protects against doxorubicin-induced cardiotoxicity by upregulating Fc gamma receptor IIB expression in B cells, which plays an important anti-inflammatory role and participates in the protective effect of exercise against doxorubicin-induced cardiotoxicity.
Collapse
Affiliation(s)
- Jing Wang
- Institute of Geriatrics (Shanghai University), Affiliated Nantong Hospital of Shanghai University (The Sixth People's Hospital of Nantong) and School of Life Science (J.W., S.L., X.M., X.Z., T.W., Y.B., J.X.), Shanghai University, China
- Joint International Research Laboratory of Biomaterials and Biotechnology in Organ Repair (Ministry of Education) (J.W., S.L., T.W., Y.B., J.X.), Shanghai University, China
- Cardiac Regeneration and Ageing Laboratory, Institute of Cardiovascular Sciences, Shanghai Engineering Research Center of Organ Repair, School of Medicine (J.W., S.L., X.M., X.Z., T.W., Y.B., J.X.), Shanghai University, China
| | - Shuqin Liu
- Institute of Geriatrics (Shanghai University), Affiliated Nantong Hospital of Shanghai University (The Sixth People's Hospital of Nantong) and School of Life Science (J.W., S.L., X.M., X.Z., T.W., Y.B., J.X.), Shanghai University, China
- Joint International Research Laboratory of Biomaterials and Biotechnology in Organ Repair (Ministry of Education) (J.W., S.L., T.W., Y.B., J.X.), Shanghai University, China
- Cardiac Regeneration and Ageing Laboratory, Institute of Cardiovascular Sciences, Shanghai Engineering Research Center of Organ Repair, School of Medicine (J.W., S.L., X.M., X.Z., T.W., Y.B., J.X.), Shanghai University, China
| | - Xinxiu Meng
- Institute of Geriatrics (Shanghai University), Affiliated Nantong Hospital of Shanghai University (The Sixth People's Hospital of Nantong) and School of Life Science (J.W., S.L., X.M., X.Z., T.W., Y.B., J.X.), Shanghai University, China
- Cardiac Regeneration and Ageing Laboratory, Institute of Cardiovascular Sciences, Shanghai Engineering Research Center of Organ Repair, School of Medicine (J.W., S.L., X.M., X.Z., T.W., Y.B., J.X.), Shanghai University, China
| | - Xuan Zhao
- Institute of Geriatrics (Shanghai University), Affiliated Nantong Hospital of Shanghai University (The Sixth People's Hospital of Nantong) and School of Life Science (J.W., S.L., X.M., X.Z., T.W., Y.B., J.X.), Shanghai University, China
- Cardiac Regeneration and Ageing Laboratory, Institute of Cardiovascular Sciences, Shanghai Engineering Research Center of Organ Repair, School of Medicine (J.W., S.L., X.M., X.Z., T.W., Y.B., J.X.), Shanghai University, China
| | - Tianhui Wang
- Institute of Geriatrics (Shanghai University), Affiliated Nantong Hospital of Shanghai University (The Sixth People's Hospital of Nantong) and School of Life Science (J.W., S.L., X.M., X.Z., T.W., Y.B., J.X.), Shanghai University, China
- Joint International Research Laboratory of Biomaterials and Biotechnology in Organ Repair (Ministry of Education) (J.W., S.L., T.W., Y.B., J.X.), Shanghai University, China
- Cardiac Regeneration and Ageing Laboratory, Institute of Cardiovascular Sciences, Shanghai Engineering Research Center of Organ Repair, School of Medicine (J.W., S.L., X.M., X.Z., T.W., Y.B., J.X.), Shanghai University, China
| | - Zhiyong Lei
- CDL Research (Z.L.)
- Department of Cardiology, Laboratory of Experimental Cardiology (Z.L.)
- UMC Utrecht Regenerative Medicine Center (Z.L.)
- University Medical Center, Utrecht University, the Netherlands (Z.L.)
| | - H Immo Lehmann
- Cardiovascular Division of the Massachusetts General Hospital and Harvard Medical School, Boston, MA (H.I.L., G.L.)
| | - Guoping Li
- Cardiovascular Division of the Massachusetts General Hospital and Harvard Medical School, Boston, MA (H.I.L., G.L.)
| | - Pilar Alcaide
- Department of Immunology, Tufts University School of Medicine, Boston, MA (P.A.)
| | - Yihua Bei
- Institute of Geriatrics (Shanghai University), Affiliated Nantong Hospital of Shanghai University (The Sixth People's Hospital of Nantong) and School of Life Science (J.W., S.L., X.M., X.Z., T.W., Y.B., J.X.), Shanghai University, China
- Joint International Research Laboratory of Biomaterials and Biotechnology in Organ Repair (Ministry of Education) (J.W., S.L., T.W., Y.B., J.X.), Shanghai University, China
- Cardiac Regeneration and Ageing Laboratory, Institute of Cardiovascular Sciences, Shanghai Engineering Research Center of Organ Repair, School of Medicine (J.W., S.L., X.M., X.Z., T.W., Y.B., J.X.), Shanghai University, China
| | - Junjie Xiao
- Institute of Geriatrics (Shanghai University), Affiliated Nantong Hospital of Shanghai University (The Sixth People's Hospital of Nantong) and School of Life Science (J.W., S.L., X.M., X.Z., T.W., Y.B., J.X.), Shanghai University, China
- Joint International Research Laboratory of Biomaterials and Biotechnology in Organ Repair (Ministry of Education) (J.W., S.L., T.W., Y.B., J.X.), Shanghai University, China
- Cardiac Regeneration and Ageing Laboratory, Institute of Cardiovascular Sciences, Shanghai Engineering Research Center of Organ Repair, School of Medicine (J.W., S.L., X.M., X.Z., T.W., Y.B., J.X.), Shanghai University, China
| |
Collapse
|
43
|
Labbé P, Martel C, Shi YF, Montezano A, He Y, Gillis MA, Higgins MÈ, Villeneuve L, Touyz R, Tardif JC, Thorin-Trescases N, Thorin E. Knockdown of ANGPTL2 promotes left ventricular systolic dysfunction by upregulation of NOX4 in mice. Front Physiol 2024; 15:1320065. [PMID: 38426206 PMCID: PMC10902461 DOI: 10.3389/fphys.2024.1320065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 01/29/2024] [Indexed: 03/02/2024] Open
Abstract
Background: Angiopoietin-like 2 (ANGPTL2) is a pro-inflammatory and pro-oxidant circulating protein that predicts and promotes chronic inflammatory diseases such as atherosclerosis in humans. Transgenic murine models demonstrated the deleterious role of ANGPTL2 in vascular diseases, while deletion of ANGPTL2 was protective. The nature of its role in cardiac tissues is, however, less clear. Indeed, in adult mice knocked down (KD) for ANGPTL2, we recently reported a mild left ventricular (LV) dysfunction originating from a congenital aortic valve stenosis, demonstrating that ANGPTL2 is essential to cardiac development and function. Hypothesis: Because we originally demonstrated that the KD of ANGPTL2 protected vascular endothelial function via an upregulation of arterial NOX4, promoting the beneficial production of dilatory H2O2, we tested the hypothesis that increased cardiac NOX4 could negatively affect cardiac redox and remodeling and contribute to LV dysfunction observed in adult Angptl2-KD mice. Methods and results: Cardiac expression and activity of NOX4 were higher in KD mice, promoting higher levels of cardiac H2O2 when compared to wild-type (WT) mice. Immunofluorescence showed that ANGPTL2 and NOX4 were co-expressed in cardiac cells from WT mice and both proteins co-immunoprecipitated in HEK293 cells, suggesting that ANGPTL2 and NOX4 physically interact. Pressure overload induced by transverse aortic constriction surgery (TAC) promoted LV systolic dysfunction in WT mice but did not further exacerbate the dysfunction in KD mice. Importantly, the severity of LV systolic dysfunction in KD mice (TAC and control SHAM) correlated with cardiac Nox4 expression. Injection of an adeno-associated virus (AAV9) delivering shRNA targeting cardiac Nox4 expression fully reversed LV systolic dysfunction in KD-SHAM mice, demonstrating the causal role of NOX4 in cardiac dysfunction in KD mice. Targeting cardiac Nox4 expression in KD mice also induced an antioxidant response characterized by increased expression of NRF2/KEAP1 and catalase. Conclusion: Together, these data reveal that the absence of ANGPTL2 induces an upregulation of cardiac NOX4 that contributes to oxidative stress and LV dysfunction. By interacting and repressing cardiac NOX4, ANGPTL2 could play a new beneficial role in the maintenance of cardiac redox homeostasis and function.
Collapse
Affiliation(s)
- Pauline Labbé
- Montreal Heart Institute, Research Center, Montreal, QC, Canada
- Department of Pharmacology, Faculty of Medicine, Université de Montréal, Montreal, QC, Canada
| | - Cécile Martel
- Montreal Heart Institute, Research Center, Montreal, QC, Canada
- Department of Pharmacology, Faculty of Medicine, Université de Montréal, Montreal, QC, Canada
| | - Yan-Fen Shi
- Montreal Heart Institute, Research Center, Montreal, QC, Canada
| | - Augusto Montezano
- Research Institute of the McGill University Health Centre, Montreal, QC, Canada
| | - Ying He
- Research Institute of the McGill University Health Centre, Montreal, QC, Canada
| | | | | | | | - Rhian Touyz
- Research Institute of the McGill University Health Centre, Montreal, QC, Canada
| | - Jean-Claude Tardif
- Montreal Heart Institute, Research Center, Montreal, QC, Canada
- Department of Medicine, Faculty of Medicine, Université de Montréal, Montreal, QC, Canada
| | | | - Eric Thorin
- Montreal Heart Institute, Research Center, Montreal, QC, Canada
- Department of Pharmacology, Faculty of Medicine, Université de Montréal, Montreal, QC, Canada
- Department of Surgery, Faculty of Medicine, Université de Montréal, Montreal, QC, Canada
| |
Collapse
|
44
|
Bao H, Wang X, Zhou H, Zhou W, Liao F, Wei F, Yang S, Luo Z, Li W. PCSK9 regulates myofibroblast transformation through the JAK2/STAT3 pathway to regulate fibrosis after myocardial infarction. Biochem Pharmacol 2024; 220:115996. [PMID: 38154546 DOI: 10.1016/j.bcp.2023.115996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Revised: 11/20/2023] [Accepted: 12/18/2023] [Indexed: 12/30/2023]
Abstract
Cardiac fibrosis is pivotal in the progression of numerous cardiovascular diseases. This phenomenon is hallmarked by an excessive deposition of ECM protein secreted by myofibroblasts, leading to increased myocardial stiffness. Proprotein convertase subtilisin/kexin type 9 (PCSK9) is a serine protease that belongs to the proprotein-converting enzyme family. It has emerged as a viable therapeutic target for reducing plasma low-density lipoprotein cholesterol. However, the exact mechanism via which PCSK9 impacts cardiac fibrosis remains unclear. In the present research, an increase in circulating PCSK9 protein levels was observed in individuals with myocardial infarction and rat models of myocardial infarction. Moreover, the inhibition of circulating PCSK9 in rats was found to reduce post-infarction fibrosis. In vitro experiments further demonstrated that overexpression of PCSK9 or stimulation by extracellular PCSK9 recombinant protein enhanced the transformation of cardiac fibroblasts to myofibroblasts. This process also elevated collagen Ⅰ, and Ⅲ, as well as α-SMA protein levels. However, these effects were countered when co-incubated with the STAT3 inhibitor S3I-201. This study suggests that PCSK9 may function as a novel regulator of myocardial fibrosis, primarily via the JAK2/STAT3 pathway.
Collapse
Affiliation(s)
- Hailong Bao
- Department of Cardiovascular Medicine, The Affiliated Hospital of Guizhou Medical University, Guiyang 550004, Guizhou, China; Department of Cardiovascular Medicine, Gui Qian International General Hospital, Guiyang 550018, Guizhou, China
| | - Xu Wang
- Department of Cardiovascular Medicine, The Affiliated Hospital of Guizhou Medical University, Guiyang 550004, Guizhou, China; The Key Laboratory of Myocardial Remodeling Research, The Affiliated Hospital of Guizhou Medical University, Guiyang 550004, Guizhou, China
| | - Haiyan Zhou
- Department of Cardiovascular Medicine, The Affiliated Hospital of Guizhou Medical University, Guiyang 550004, Guizhou, China; The Key Laboratory of Myocardial Remodeling Research, The Affiliated Hospital of Guizhou Medical University, Guiyang 550004, Guizhou, China
| | - Wei Zhou
- Department of Cardiovascular Medicine, The Affiliated Hospital of Guizhou Medical University, Guiyang 550004, Guizhou, China; The Key Laboratory of Myocardial Remodeling Research, The Affiliated Hospital of Guizhou Medical University, Guiyang 550004, Guizhou, China
| | - Fujun Liao
- Department of Cardiovascular Medicine, The Affiliated Hospital of Guizhou Medical University, Guiyang 550004, Guizhou, China; The Key Laboratory of Myocardial Remodeling Research, The Affiliated Hospital of Guizhou Medical University, Guiyang 550004, Guizhou, China
| | - Fang Wei
- Department of Cardiovascular Medicine, The Affiliated Hospital of Guizhou Medical University, Guiyang 550004, Guizhou, China; The Key Laboratory of Myocardial Remodeling Research, The Affiliated Hospital of Guizhou Medical University, Guiyang 550004, Guizhou, China
| | - Shiyu Yang
- Department of Cardiovascular Medicine, Gui Qian International General Hospital, Guiyang 550018, Guizhou, China
| | - Zhenhua Luo
- Department of Central Lab, Guizhou Provincial People's Hospital, Guiyang 550002, Guizhou, China.
| | - Wei Li
- Department of Cardiovascular Medicine, The Affiliated Hospital of Guizhou Medical University, Guiyang 550004, Guizhou, China; The Key Laboratory of Myocardial Remodeling Research, The Affiliated Hospital of Guizhou Medical University, Guiyang 550004, Guizhou, China.
| |
Collapse
|
45
|
Connelly KA, Wu E, Visram A, Friedberg MK, Batchu SN, Yerra VG, Thai K, Nghiem L, Zhang Y, Kabir G, Desjardins JF, Advani A, Gilbert RE. The SGLT2i Dapagliflozin Reduces RV Mass Independent of Changes in RV Pressure Induced by Pulmonary Artery Banding. Cardiovasc Drugs Ther 2024; 38:57-68. [PMID: 36173474 DOI: 10.1007/s10557-022-07377-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/18/2022] [Indexed: 11/03/2022]
Abstract
BACKGROUND Sodium glucose linked transporter 2 (SGLT2) inhibition not only reduces morbidity and mortality in patients with diagnosed heart failure but also prevents the development of heart failure hospitalization in those at risk. While studies to date have focused on the role of SGLT2 inhibition in left ventricular failure, whether this drug class is efficacious in the treatment and prevention of right heart failure has not been explored. HYPOTHESIS We hypothesized that SGLT2 inhibition would reduce the structural, functional, and molecular responses to pressure overload of the right ventricle. METHODS Thirteen-week-old Fischer F344 rats underwent pulmonary artery banding (PAB) or sham surgery prior to being randomized to receive either the SGLT2 inhibitor: dapagliflozin (0.5 mg/kg/day) or vehicle by oral gavage. After 6 weeks of treatment, animals underwent transthoracic echocardiography and invasive hemodynamic studies. Animals were then terminated, and their hearts harvested for structural and molecular analyses. RESULTS PAB induced features consistent with a compensatory response to increased right ventricular (RV) afterload with elevated mass, end systolic pressure, collagen content, and alteration in calcium handling protein expression (all p < 0.05 when compared to sham + vehicle). Dapagliflozin reduced RV mass, including both wet and dry weight as well as normalizing the protein expression of SERCA 2A, phospho-AMPK and LC3I/II ratio expression (all p < 0.05). SIGNIFICANCE Dapagliflozin reduces the structural, functional, and molecular manifestations of right ventricular pressure overload. Whether amelioration of these early changes in the RV may ultimately lead to a reduction in RV failure remains to be determined.
Collapse
Affiliation(s)
- Kim A Connelly
- Keenan Research Center for Biomedical Science, Li Ka Shing Knowledge Institute, St. Michael's Hospital, 30 bond St, Toronto, ON, M5B1W8, Canada.
| | - Ellen Wu
- Keenan Research Center for Biomedical Science, Li Ka Shing Knowledge Institute, St. Michael's Hospital, 30 bond St, Toronto, ON, M5B1W8, Canada
| | - Aylin Visram
- Keenan Research Center for Biomedical Science, Li Ka Shing Knowledge Institute, St. Michael's Hospital, 30 bond St, Toronto, ON, M5B1W8, Canada
| | - Mark K Friedberg
- Division of Cardiology, Labatt Family Heart Center Toronto, Toronto, ON, Canada
- Physiology and Experimental Medicine, Hospital for Sick Children and University of Toronto, Toronto, ON, Canada
| | - Sri Nagarjun Batchu
- Keenan Research Center for Biomedical Science, Li Ka Shing Knowledge Institute, St. Michael's Hospital, 30 bond St, Toronto, ON, M5B1W8, Canada
| | - Veera Ganesh Yerra
- Keenan Research Center for Biomedical Science, Li Ka Shing Knowledge Institute, St. Michael's Hospital, 30 bond St, Toronto, ON, M5B1W8, Canada
| | - Kerri Thai
- Keenan Research Center for Biomedical Science, Li Ka Shing Knowledge Institute, St. Michael's Hospital, 30 bond St, Toronto, ON, M5B1W8, Canada
| | - Linda Nghiem
- Keenan Research Center for Biomedical Science, Li Ka Shing Knowledge Institute, St. Michael's Hospital, 30 bond St, Toronto, ON, M5B1W8, Canada
| | - Yanling Zhang
- Keenan Research Center for Biomedical Science, Li Ka Shing Knowledge Institute, St. Michael's Hospital, 30 bond St, Toronto, ON, M5B1W8, Canada
| | - Golam Kabir
- Keenan Research Center for Biomedical Science, Li Ka Shing Knowledge Institute, St. Michael's Hospital, 30 bond St, Toronto, ON, M5B1W8, Canada
| | - J F Desjardins
- Keenan Research Center for Biomedical Science, Li Ka Shing Knowledge Institute, St. Michael's Hospital, 30 bond St, Toronto, ON, M5B1W8, Canada
| | - Andrew Advani
- Keenan Research Center for Biomedical Science, Li Ka Shing Knowledge Institute, St. Michael's Hospital, 30 bond St, Toronto, ON, M5B1W8, Canada
| | - Richard E Gilbert
- Keenan Research Center for Biomedical Science, Li Ka Shing Knowledge Institute, St. Michael's Hospital, 30 bond St, Toronto, ON, M5B1W8, Canada.
| |
Collapse
|
46
|
Wang S, Ono R, Wu D, Aoki K, Kato H, Iwahana T, Okada S, Kobayashi Y, Liu H. Pulse wave-based evaluation of the blood-supply capability of patients with heart failure via machine learning. Biomed Eng Online 2024; 23:7. [PMID: 38243221 PMCID: PMC10797936 DOI: 10.1186/s12938-024-01201-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 01/04/2024] [Indexed: 01/21/2024] Open
Abstract
Pulse wave, as a message carrier in the cardiovascular system (CVS), enables inferring CVS conditions while diagnosing cardiovascular diseases (CVDs). Heart failure (HF) is a major CVD, typically requiring expensive and time-consuming treatments for health monitoring and disease deterioration; it would be an effective and patient-friendly tool to facilitate rapid and precise non-invasive evaluation of the heart's blood-supply capability by means of powerful feature-abstraction capability of machine learning (ML) based on pulse wave, which remains untouched yet. Here we present an ML-based methodology, which is verified to accurately evaluate the blood-supply capability of patients with HF based on clinical data of 237 patients, enabling fast prediction of five representative cardiovascular function parameters comprising left ventricular ejection fraction (LVEF), left ventricular end-diastolic diameter (LVDd), left ventricular end-systolic diameter (LVDs), left atrial dimension (LAD), and peripheral oxygen saturation (SpO2). Two ML networks were employed and optimized based on high-quality pulse wave datasets, and they were validated consistently through statistical analysis based on the summary independent-samples t-test (p > 0.05), the Bland-Altman analysis with clinical measurements, and the error-function analysis. It is proven that evaluation of the SpO2, LAD, and LVDd performance can be achieved with the maximum error < 15%. While our findings thus demonstrate the potential of pulse wave-based, non-invasive evaluation of the blood-supply capability of patients with HF, they also set the stage for further refinements in health monitoring and deterioration prevention applications.
Collapse
Affiliation(s)
- Sirui Wang
- Graduate School of Science and Engineering, Chiba University, Chiba, Japan
| | - Ryohei Ono
- Department of Cardiovascular Medicine, Chiba University Graduate School of Medicine, Chiba, Japan
| | - Dandan Wu
- Graduate School of Science and Engineering, Chiba University, Chiba, Japan
| | - Kaoruko Aoki
- Department of Cardiovascular Medicine, Chiba University Graduate School of Medicine, Chiba, Japan
| | - Hirotoshi Kato
- Department of Cardiovascular Medicine, Chiba University Graduate School of Medicine, Chiba, Japan
| | - Togo Iwahana
- Department of Cardiovascular Medicine, Chiba University Graduate School of Medicine, Chiba, Japan
| | - Sho Okada
- Department of Cardiovascular Medicine, Chiba University Graduate School of Medicine, Chiba, Japan
| | - Yoshio Kobayashi
- Department of Cardiovascular Medicine, Chiba University Graduate School of Medicine, Chiba, Japan
| | - Hao Liu
- Graduate School of Science and Engineering, Chiba University, Chiba, Japan.
| |
Collapse
|
47
|
Liu Z, Sammani S, Barber CJ, Kempf CL, Li F, Yang Z, Bermudez RT, Camp SM, Herndon VR, Furenlid LR, Martin DR, Garcia JGN. An eNAMPT-neutralizing mAb reduces post-infarct myocardial fibrosis and left ventricular dysfunction. Biomed Pharmacother 2024; 170:116103. [PMID: 38160623 PMCID: PMC10872269 DOI: 10.1016/j.biopha.2023.116103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 12/21/2023] [Accepted: 12/26/2023] [Indexed: 01/03/2024] Open
Abstract
Myocardial infarction (MI) triggers adverse ventricular remodeling (VR), cardiac fibrosis, and subsequent heart failure. Extracellular nicotinamide phosphoribosyltransferase (eNAMPT) is postulated to play a significant role in VR processing via activation of the TLR4 inflammatory pathway. We hypothesized that an eNAMPT specific monoclonal antibody (mAb) could target and neutralize overexpressed eNAMPT post-MI and attenuate chronic cardiac inflammation and fibrosis. We investigated humanized ALT-100 and ALT-300 mAb with high eNAMPT-neutralizing capacity in an infarct rat model to test our hypothesis. ALT-300 was 99mTc-labeled to generate 99mTc-ALT-300 for imaging myocardial eNAMPT expression at 2 hours, 1 week, and 4 weeks post-IRI. The eNAMPT-neutralizing ALT-100 mAb (0.4 mg/kg) or saline was administered intraperitoneally at 1 hour and 24 hours post-reperfusion and twice a week for 4 weeks. Cardiac function changes were determined by echocardiography at 3 days and 4 weeks post-IRI. 99mTc-ALT-300 uptake was initially localized to the ischemic area at risk (IAR) of the left ventricle (LV) and subsequently extended to adjacent non-ischemic areas 2 hours to 4 weeks post-IRI. Radioactive uptake (%ID/g) of 99mTc-ALT-300 in the IAR increased from 1 week to 4 weeks (0.54 ± 0.16 vs. 0.78 ± 0.13, P < 0.01). Rats receiving ALT-100 mAb exhibited significantly improved myocardial histopathology and cardiac function at 4 weeks, with a significant reduction in the collagen volume fraction (%LV) compared to controls (21.5 ± 6.1% vs. 29.5 ± 9.9%, P < 0.05). Neutralization of the eNAMPT/TLR4 inflammatory cascade is a promising therapeutic strategy for MI by reducing chronic inflammation, fibrosis, and preserving cardiac function.
Collapse
Affiliation(s)
- Zhonglin Liu
- Translational Imaging Center, Houston Methodist Research Institute, Houston Methodist Hospital, Houston, TX, United States; Department of Medical Imaging, University of Arizona Health Sciences, Tucson, AZ, United States.
| | - Saad Sammani
- Department of Medicine, University of Arizona Health Sciences, Tucson, AZ, United States
| | - Christy J Barber
- Department of Medical Imaging, University of Arizona Health Sciences, Tucson, AZ, United States
| | - Carrie L Kempf
- University of Florida UF Scripps Research Institute, Jupiter, FL, United States
| | - Feng Li
- Translational Imaging Center, Houston Methodist Research Institute, Houston Methodist Hospital, Houston, TX, United States
| | - Zhen Yang
- Translational Imaging Center, Houston Methodist Research Institute, Houston Methodist Hospital, Houston, TX, United States
| | - Rosendo T Bermudez
- Department of Medicine, University of Arizona Health Sciences, Tucson, AZ, United States
| | - Sara M Camp
- University of Florida UF Scripps Research Institute, Jupiter, FL, United States
| | - Vivian Reyes Herndon
- Department of Medicine, University of Arizona Health Sciences, Tucson, AZ, United States
| | - Lars R Furenlid
- Department of Medical Imaging, University of Arizona Health Sciences, Tucson, AZ, United States
| | - Diego R Martin
- Translational Imaging Center, Houston Methodist Research Institute, Houston Methodist Hospital, Houston, TX, United States.
| | - Joe G N Garcia
- University of Florida UF Scripps Research Institute, Jupiter, FL, United States
| |
Collapse
|
48
|
Pensa AV, Khan SS, Shah RV, Wilcox JE. Heart failure with improved ejection fraction: Beyond diagnosis to trajectory analysis. Prog Cardiovasc Dis 2024; 82:102-112. [PMID: 38244827 DOI: 10.1016/j.pcad.2024.01.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Accepted: 01/14/2024] [Indexed: 01/22/2024]
Abstract
Left ventricular (LV) systolic dysfunction represents a highly treatable cause of heart failure (HF). A substantial proportion of patients with HF with reduced ejection fraction (EF;HFrEF) demonstrate improvement in LV systolic function (termed HF with improved EF [HFimpEF]), either spontaneously or when treated with guideline-directed medical therapy (GDMT). Although it is a relatively new HF classification, HFimpEF has emerged in recent years as an important and distinct clinical entity. Improvement in LVEF leads to decreased rates of mortality and adverse HF-related outcomes compared to patients with sustained LV systolic dysfunction (HFrEF). While numerous clinical and imaging factors have been associated with HFimpEF, identification of which patients do and do not improve requires further investigation. In addition, patients improve at different rates, and what determines the trajectory of HFimpEF patients after improvement is incompletely characterized. A proportion of patients maintain improvement in LV systolic function, while others experience a recrudescence of systolic dysfunction, especially with GDMT discontinuation. In this review we discuss the contemporary guideline-recommended classification definition of HFimpEF, the epidemiology of improvement in LV systolic function, and the clinical course of this unique patient population. We also offer evidence-based recommendations for the clinical management of HFimpEF and provide a roadmap for future directions in understanding and improving outcomes in the care of patients with HFimpEF.
Collapse
Affiliation(s)
- Anthony V Pensa
- Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, United States of America
| | - Sadiya S Khan
- Department of Medicine, Division of Cardiology, Northwestern University Feinberg School of Medicine, Chicago, IL, United States of America
| | - Ravi V Shah
- Department of Medicine, Division of Cardiology, Vanderbilt University School of Medicine, Nashville, TN, United States of America
| | - Jane E Wilcox
- Department of Medicine, Division of Cardiology, Northwestern University Feinberg School of Medicine, Chicago, IL, United States of America.
| |
Collapse
|
49
|
Wang Z, Li W, Chen S, Tang XX. Role of ADAM and ADAMTS proteases in pathological tissue remodeling. Cell Death Discov 2023; 9:447. [PMID: 38071234 PMCID: PMC10710407 DOI: 10.1038/s41420-023-01744-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 11/10/2023] [Accepted: 11/23/2023] [Indexed: 09/10/2024] Open
Abstract
Pathological tissue remodeling is closely associated with the occurrence and aggravation of various diseases. A Disintegrin And Metalloproteinases (ADAM), as well as A Disintegrin And Metalloproteinase with ThromboSpondin motifs (ADAMTS), belong to zinc-dependent metalloproteinase superfamily, are involved in a range of pathological states, including cancer metastasis, inflammatory disorders, respiratory diseases and cardiovascular diseases. Mounting studies suggest that ADAM and ADAMTS proteases contribute to the development of tissue remodeling in various diseases, mainly through the regulation of cell proliferation, apoptosis, migration and extracellular matrix remodeling. This review focuses on the roles of ADAM and ADAMTS proteinases in diseases with pathological tissue remodeling, with particular emphasis on the molecular mechanisms through which ADAM and ADAMTS proteins mediate tissue remodeling. Some of these reported proteinases have defined protective or contributing roles in indicated diseases, while their underlying regulation is obscure. Future studies are warranted to better understand the catalytic and non-catalytic functions of ADAM and ADAMTS proteins, as well as to evaluate the efficacy of targeting these proteases in pathological tissue remodeling.
Collapse
Affiliation(s)
- Zhaoni Wang
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, National Center for Respiratory Medicine, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Wanshan Li
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, National Center for Respiratory Medicine, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Shixing Chen
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, National Center for Respiratory Medicine, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Xiao Xiao Tang
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, National Center for Respiratory Medicine, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.
- Guangzhou Laboratory, Bio-island, Guangzhou, China.
| |
Collapse
|
50
|
Hu L, Gao D, Lv H, Lian L, Wang M, Wang Y, Xie Y, Zhang J. Finding New Targets for the Treatment of Heart Failure: Endoplasmic Reticulum Stress and Autophagy. J Cardiovasc Transl Res 2023; 16:1349-1356. [PMID: 37432587 DOI: 10.1007/s12265-023-10410-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 06/28/2023] [Indexed: 07/12/2023]
Abstract
Heart failure is a progressive disease with an annual mortality rate of about 10% and is the end-stage stage of various heart diseases, which places a huge socioeconomic burden on the healthcare system. The development of heart failure has received increasing attention as a potential way to improve the treatment of this disease. Many studies have shown that endoplasmic reticulum stress and autophagy play an important role in the occurrence and development of heart failure. With the in-depth study of endoplasmic reticulum stress and autophagy, both are considered promising targets for pharmacological interventions to treat heart failure, but the mechanism of heart failure between the two is not clear. This review will highlight the effects of endoplasmic reticulum stress, autophagy, and their interactions in the development and development of heart failure, thereby helping to provide direction for the future development of targeted therapies for patients with heart failure. CLINICAL RELEVANCE: This study explored the new targets for the treatment of heart failure: endoplasmic reticulum stress and autophagy. Targeted drug therapy for endoplasmic reticulum stress and autophagy is expected to provide a new intervention target for the treatment of heart failure.
Collapse
Affiliation(s)
- Leilei Hu
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, 300183, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, 300193, China
- Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, China
| | - Dongjie Gao
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, 300183, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, 300193, China
- Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, China
| | - Hao Lv
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, 300183, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, 300193, China
- Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, China
| | - Lu Lian
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, 300183, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, 300193, China
- Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, China
| | - Mingyang Wang
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, 300183, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, 300193, China
- Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, China
| | - Yunjiao Wang
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, 300183, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, 300193, China
- Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, China
| | - Yingyu Xie
- Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, China.
| | - Junping Zhang
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, 300183, China.
| |
Collapse
|