1
|
Badrov MB, Tobushi T, Notarius CF, Keys E, Nardone M, Cherney DZ, Mak S, Floras JS. Sympathetic Response to 1-Leg Cycling Exercise Predicts Exercise Capacity in Patients With Heart Failure With Preserved Ejection Fraction. Circ Heart Fail 2025; 18:e011962. [PMID: 39641163 DOI: 10.1161/circheartfailure.124.011962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Accepted: 10/25/2024] [Indexed: 12/07/2024]
Abstract
BACKGROUND In heart failure, sympathetic excess and exercise intolerance impair quality of life. In heart failure with reduced ejection fraction, exercise stimulates a reflex increase in muscle sympathetic nerve activity (MSNA) that relates inversely to peak oxygen uptake (V̇O2peak). Whether similar sympathoexcitatory responses are present in heart failure with preserved EF (HFpEF) and relate to V̇O2peak are unknown. METHODS In 13 patients with HFpEF (70±6 years), 17 comorbidity-matched controls (CMC; 67±8 years), and 18 healthy controls (65±8 years), we measured heart rate, blood pressure, and MSNA (microneurography) during (1) 7-minute baseline; (2) 2-minute isometric handgrip (40% maximal voluntary contraction) or rhythmic handgrip (50% and 30% maximal voluntary contraction) exercise, followed by 2-minute postexercise circulatory occlusion; and (3) 4-minute 1-leg cycling (2 minutes each at mild and moderate intensity). V̇O2peak was obtained by open-circuit spirometry. RESULTS Resting MSNA was higher and V̇O2peak was lower in HFpEF versus CMCs and healthy controls (all P<0.05). During handgrip, MSNA increased in all groups (all P<0.05); in HFpEF, MSNA was greater than CMCs and healthy controls during HG and postexercise circulatory occlusion at 40% isometric handgrip (all P<0.05) and HG only at 50% and 30% rhythmic handgrip (all P<0.05). During cycling, MSNA (bursts·min-1) decreased during mild (-4±4; P=0.01) and moderate (-8±6; P<0.001) cycling in healthy controls, was unchanged during mild (+1±7; P=0.42) and moderate (+2±8; P=0.28) cycling in CMCs, yet increased in HFpEF during mild (+8±8; P<0.001) and moderate (+9±10; P<0.001) cycling. In HFpEF, the change in MSNA during moderate cycling related inversely to relative (r=-0.72; R 2=0.51; P<0.01) and percent-predicted (r=-0.63; R 2=0.39; P=0.03) V̇O2peak. No statistically significant relationships were detected in controls (P>0.05). CONCLUSIONS In contrast to CMCs, patients with HFpEF exhibit augmented MSNA at rest and during exercise. The magnitude of such paradoxical sympathoexcitation during dynamic cycling relates inversely to V̇O2peak, consistent with a neurogenic, vasoconstrictor limit on exercise capacity in HFpEF.
Collapse
Affiliation(s)
- Mark B Badrov
- University Health Network and Sinai Health, Department of Medicine (M.B.B., T.T., C.F.N., E.K., M.N., D.Z.C., S.M., J.S.F.), University of Toronto, ON, Canada
- Faculty of Kinesiology and Physical Education (C.F.N.), University of Toronto, ON, Canada
- Lunenfeld-Tanenbaum Research Institute, Sinai Health, Toronto, ON, Canada (M.B.B., T.T., S.M., J.S.F.)
| | - Tomoyuki Tobushi
- University Health Network and Sinai Health, Department of Medicine (M.B.B., T.T., C.F.N., E.K., M.N., D.Z.C., S.M., J.S.F.), University of Toronto, ON, Canada
- Faculty of Kinesiology and Physical Education (C.F.N.), University of Toronto, ON, Canada
- Lunenfeld-Tanenbaum Research Institute, Sinai Health, Toronto, ON, Canada (M.B.B., T.T., S.M., J.S.F.)
| | - Catherine F Notarius
- University Health Network and Sinai Health, Department of Medicine (M.B.B., T.T., C.F.N., E.K., M.N., D.Z.C., S.M., J.S.F.), University of Toronto, ON, Canada
- Faculty of Kinesiology and Physical Education (C.F.N.), University of Toronto, ON, Canada
| | - Evan Keys
- University Health Network and Sinai Health, Department of Medicine (M.B.B., T.T., C.F.N., E.K., M.N., D.Z.C., S.M., J.S.F.), University of Toronto, ON, Canada
- Toronto General Hospital Research Institute, University Health Network, ON, Canada (M.B.B., T.T., C.F.N., E.K., M.N., D.Z.C., J.S.F.)
| | - Massimo Nardone
- University Health Network and Sinai Health, Department of Medicine (M.B.B., T.T., C.F.N., E.K., M.N., D.Z.C., S.M., J.S.F.), University of Toronto, ON, Canada
- Toronto General Hospital Research Institute, University Health Network, ON, Canada (M.B.B., T.T., C.F.N., E.K., M.N., D.Z.C., J.S.F.)
| | - David Z Cherney
- University Health Network and Sinai Health, Department of Medicine (M.B.B., T.T., C.F.N., E.K., M.N., D.Z.C., S.M., J.S.F.), University of Toronto, ON, Canada
- Toronto General Hospital Research Institute, University Health Network, ON, Canada (M.B.B., T.T., C.F.N., E.K., M.N., D.Z.C., J.S.F.)
| | - Susanna Mak
- University Health Network and Sinai Health, Department of Medicine (M.B.B., T.T., C.F.N., E.K., M.N., D.Z.C., S.M., J.S.F.), University of Toronto, ON, Canada
- Lunenfeld-Tanenbaum Research Institute, Sinai Health, Toronto, ON, Canada (M.B.B., T.T., S.M., J.S.F.)
| | - John S Floras
- University Health Network and Sinai Health, Department of Medicine (M.B.B., T.T., C.F.N., E.K., M.N., D.Z.C., S.M., J.S.F.), University of Toronto, ON, Canada
- Toronto General Hospital Research Institute, University Health Network, ON, Canada (M.B.B., T.T., C.F.N., E.K., M.N., D.Z.C., J.S.F.)
- Lunenfeld-Tanenbaum Research Institute, Sinai Health, Toronto, ON, Canada (M.B.B., T.T., S.M., J.S.F.)
| |
Collapse
|
2
|
Bunsawat K, Skow RJ, Kaur J, Wray DW. Neural control of the circulation during exercise in heart failure with reduced and preserved ejection fraction. Am J Physiol Heart Circ Physiol 2023; 325:H998-H1011. [PMID: 37682236 PMCID: PMC10907034 DOI: 10.1152/ajpheart.00214.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 08/23/2023] [Accepted: 09/06/2023] [Indexed: 09/09/2023]
Abstract
Patients with heart failure with reduced (HFrEF) and preserved ejection fraction (HFpEF) exhibit severe exercise intolerance that may be due, in part, to inappropriate cardiovascular and hemodynamic adjustments to exercise. Several neural mechanisms and locally released vasoactive substances work in concert through complex interactions to ensure proper adjustments to meet the metabolic demands of the contracting skeletal muscle. Specifically, accumulating evidence suggests that disease-related alterations in neural mechanisms (e.g., central command, exercise pressor reflex, arterial baroreflex, and cardiopulmonary baroreflex) contribute to heightened sympathetic activation and impaired ability to attenuate sympathetic vasoconstrictor responsiveness that may contribute to reduced skeletal muscle blood flow and severe exercise intolerance in patients with HFrEF. In contrast, little is known regarding these important aspects of physiology in patients with HFpEF, though emerging data reveal heightened sympathetic activation and attenuated skeletal muscle blood flow during exercise in this patient population that may be attributable to dysregulated neural control of the circulation. The overall goal of this review is to provide a brief overview of the current understanding of disease-related alterations in the integrative neural cardiovascular responses to exercise in both HFrEF and HFpEF phenotypes, with a focus on sympathetic nervous system regulation during exercise.
Collapse
Affiliation(s)
- Kanokwan Bunsawat
- Division of Geriatrics, Department of Internal Medicine, University of Utah, Salt Lake City, Utah, United States
- Geriatric Research, Education, and Clinical Center, George E. Wahlen Department of Veterans Affairs Medical Center, Salt Lake City, Utah, United States
| | - Rachel J Skow
- Department of Kinesiology, The University of Texas at Arlington, Arlington, Texas, United States
- Faculty of Nursing, University of Alberta, Edmonton, Alberta, Canada
| | - Jasdeep Kaur
- Department of Kinesiology and Health Education, The University of Texas at Austin, Austin, Texas, United States
| | - D Walter Wray
- Division of Geriatrics, Department of Internal Medicine, University of Utah, Salt Lake City, Utah, United States
- Geriatric Research, Education, and Clinical Center, George E. Wahlen Department of Veterans Affairs Medical Center, Salt Lake City, Utah, United States
- Department of Nutrition and Integrative Physiology, University of Utah, Salt Lake City, Utah, United States
| |
Collapse
|
3
|
Badrov MB, Yoo JK, Hissen SL, Nelson DB, Shoemaker JK, Fu Q. Sympathetic Action Potential Firing and Recruitment Patterns Are Abnormal in Gestational Hypertension. Hypertension 2023; 80:291-301. [PMID: 36065805 PMCID: PMC9851937 DOI: 10.1161/hypertensionaha.122.19754] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 08/14/2022] [Indexed: 11/04/2022]
Abstract
BACKGROUND We tested the hypothesis that women who develop gestational hypertension (GH) display abnormal sympathetic action potential (AP) discharge patterns during late pregnancy (32-36 weeks), both at supine rest and during postural stress. METHODS Thirteen nonpregnant, female controls (nonpregnant controls [CTRL]) and 32 pregnant women participated; 14 had low-risk (no personal history of GH) normal pregnancies (LR-NP), 10 had high-risk (personal history of GH) normal pregnancies (HR-NP), and 8 developed GH. We measured heart rate, blood pressure, and muscle sympathetic nerve activity (microneurography) at supine rest and 60° head-up tilt. Sympathetic AP patterns were studied using wavelet-based methodology. RESULTS At rest, muscle sympathetic nerve activity burst frequency was elevated in LR-NP, HR-NP, and GH versus CTRL (all P≤0.01); however, the AP content per integrated burst was augmented only in GH (20±5 spikes/burst), compared with CTRL (8±3 spikes/burst), LR-NP (9±2 spikes/burst) and HR-NP (11±4 spikes/burst; all P<0.0001). Thus, total AP firing frequency was greater in GH versus each of CTRL, LR-NP, and HR-NP (all P<0.0001). In pregnancy, AP frequency is related directly to systolic (R2=46%) and diastolic (R2=20%) blood pressure (both P≤0.01). Unlike CTRL (both P<0.01), women who developed GH were unable to increase within-burst AP firing (P=0.71) or recruit latent subpopulations of larger-sized APs (P=0.72) in response to head-up tilt, perhaps related to a ceiling-effect; however, total AP firing frequency in the upright posture was elevated in the GH cohort versus CTRL, LR-NP, and HR-NP (all P<0.05). CONCLUSIONS Women who develop GH display aberrant sympathetic AP firing patterns in both the supine and upright postures.
Collapse
Affiliation(s)
- Mark B. Badrov
- Institute for Exercise and Environmental Medicine, Texas Health Presbyterian Hospital Dallas, Dallas, TX, USA
- University of Texas Southwestern Medical Center, Dallas, TX, USA
- Department of Medicine, Toronto General Health Research Institute, University Health Network, Toronto, ON, Canada
| | - Jeung-Ki Yoo
- Institute for Exercise and Environmental Medicine, Texas Health Presbyterian Hospital Dallas, Dallas, TX, USA
- University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Sarah L. Hissen
- Institute for Exercise and Environmental Medicine, Texas Health Presbyterian Hospital Dallas, Dallas, TX, USA
- University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - David B. Nelson
- University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - J. Kevin Shoemaker
- School of Kinesiology, Western University, London, ON, Canada
- Department of Physiology and Pharmacology, Western University, London, ON, Canada
| | - Qi Fu
- Institute for Exercise and Environmental Medicine, Texas Health Presbyterian Hospital Dallas, Dallas, TX, USA
- University of Texas Southwestern Medical Center, Dallas, TX, USA
| |
Collapse
|
4
|
Badrov MB, Keir DA, Tomlinson G, Notarius CF, Millar PJ, Kimmerly DS, Shoemaker JK, Keys E, Floras JS. Normal and excessive muscle sympathetic nerve activity in heart failure: implications for future trials of therapeutic autonomic modulation. Eur J Heart Fail 2023; 25:201-210. [PMID: 36459000 DOI: 10.1002/ejhf.2749] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 11/11/2022] [Accepted: 11/28/2022] [Indexed: 12/03/2022] Open
Abstract
AIMS Patients with sympathetic excess are those most likely to benefit from novel interventions targeting the autonomic nervous system. To inform such personalized therapy, we identified determinants of augmented muscle sympathetic nerve activity (MSNA) in heart failure, versus healthy controls. METHODS AND RESULTS We compared data acquired in 177 conventionally-treated, stable non-diabetic patients in sinus rhythm, aged 18-79 years (149 males; 28 females; left ventricular ejection fraction [LVEF] 25 ± 11% [mean ± standard deviation]; range 5-60%), and, concurrently, under similar conditions, in 658 healthy, normotensive volunteers (398 males; aged 18-81 years). In heart failure, MSNA ranged between 7 and 90 bursts·min-1 , proportionate to heart rate (p < 0.0001) and body mass index (BMI) (p = 0.03), but was unrelated to age, blood pressure, or drug therapy. Mean MSNA, adjusted for age, sex, BMI, and heart rate, was greater in heart failure (+14.2 bursts·min-1 ; 95% confidence interval [CI] 12.1-16.3; p < 0.0001), but lower in women (-5.0 bursts·min-1 ; 95% CI 3.4-6.6; p < 0.0001). With spline modeling, LVEF accounted for 9.8% of MSNA variance; MSNA related inversely to LVEF below an inflection point of ∼21% (p < 0.006), but not above. Burst incidence was greater in ischaemic than dilated cardiomyopathy (p = 0.01), and patients with sleep apnoea (p = 0.03). Burst frequency correlated inversely with stroke volume (p < 0.001), cardiac output (p < 0.001), and peak oxygen consumption (p = 0.002), and directly with norepinephrine (p < 0.0001) and peripheral resistance (p < 0.001). CONCLUSION Burst frequency and incidence exceeded normative values in only ∼53% and ∼33% of patients. Such diversity encourages selective deployment of sympatho-modulatory therapies. Clinical characteristics can highlight individuals who may benefit from future personalized interventions targeting pathological sympathetic activation.
Collapse
Affiliation(s)
- Mark B Badrov
- University Health Network and Sinai Health Division of Cardiology, Department of Medicine, University of Toronto and the Toronto General Hospital Research Institute, Toronto, Ontario, Canada
| | - Daniel A Keir
- University Health Network and Sinai Health Division of Cardiology, Department of Medicine, University of Toronto and the Toronto General Hospital Research Institute, Toronto, Ontario, Canada
- School of Kinesiology, Western University, London, Ontario, Canada
| | - George Tomlinson
- University Health Network and Sinai Health Division of Cardiology, Department of Medicine, University of Toronto and the Toronto General Hospital Research Institute, Toronto, Ontario, Canada
| | - Catherine F Notarius
- University Health Network and Sinai Health Division of Cardiology, Department of Medicine, University of Toronto and the Toronto General Hospital Research Institute, Toronto, Ontario, Canada
| | - Philip J Millar
- University Health Network and Sinai Health Division of Cardiology, Department of Medicine, University of Toronto and the Toronto General Hospital Research Institute, Toronto, Ontario, Canada
- Department of Human Health and Nutritional Science, University of Guelph, Guelph, Ontario, Canada
| | - Derek S Kimmerly
- University Health Network and Sinai Health Division of Cardiology, Department of Medicine, University of Toronto and the Toronto General Hospital Research Institute, Toronto, Ontario, Canada
- Division of Kinesiology, School of Health and Performance, Dalhousie University, Halifax, Nova Scotia, Canada
| | - J Kevin Shoemaker
- School of Kinesiology, Western University, London, Ontario, Canada
- Department of Physiology and Pharmacology, Western University, London, Ontario, Canada
| | - Evan Keys
- University Health Network and Sinai Health Division of Cardiology, Department of Medicine, University of Toronto and the Toronto General Hospital Research Institute, Toronto, Ontario, Canada
| | - John S Floras
- University Health Network and Sinai Health Division of Cardiology, Department of Medicine, University of Toronto and the Toronto General Hospital Research Institute, Toronto, Ontario, Canada
| |
Collapse
|
5
|
Manabe K, D’Souza AW, Washio T, Takeda R, Hissen SL, Akins JD, Fu Q. Sympathetic and hemodynamic responses to exercise in heart failure with preserved ejection fraction. Front Cardiovasc Med 2023; 10:1148324. [PMID: 37139124 PMCID: PMC10150451 DOI: 10.3389/fcvm.2023.1148324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 03/27/2023] [Indexed: 05/05/2023] Open
Abstract
Excessive sympathetic activity during exercise causes heightened peripheral vasoconstriction, which can reduce oxygen delivery to active muscles, resulting in exercise intolerance. Although both patients suffering from heart failure with preserved and reduced ejection fraction (HFpEF and HFrEF, respectively) exhibit reduced exercise capacity, accumulating evidence suggests that the underlying pathophysiology may be different between these two conditions. Unlike HFrEF, which is characterized by cardiac dysfunction with lower peak oxygen uptake, exercise intolerance in HFpEF appears to be predominantly attributed to peripheral limitations involving inadequate vasoconstriction rather than cardiac limitations. However, the relationship between systemic hemodynamics and the sympathetic neural response during exercise in HFpEF is less clear. This mini review summarizes the current knowledge on the sympathetic (i.e., muscle sympathetic nerve activity, plasma norepinephrine concentration) and hemodynamic (i.e., blood pressure, limb blood flow) responses to dynamic and static exercise in HFpEF compared to HFrEF, as well as non-HF controls. We also discuss the potential of a relationship between sympathetic over-activation and vasoconstriction leading to exercise intolerance in HFpEF. The limited body of literature indicates that higher peripheral vascular resistance, perhaps secondary to excessive sympathetically mediated vasoconstrictor discharge compared to non-HF and HFrEF, drives exercise in HFpEF. Excessive vasoconstriction also may primarily account for over elevations in blood pressure and concomitant limitations in skeletal muscle blood flow during dynamic exercise, resulting in exercise intolerance. Conversely, during static exercise, HFpEF exhibit relatively normal sympathetic neural reactivity compared to non-HF, suggesting that other mechanisms beyond sympathetic vasoconstriction dictate exercise intolerance in HFpEF.
Collapse
Affiliation(s)
- Kazumasa Manabe
- Women’s Heart Health Laboratory, Institute for Exercise and Environmental Medicine at Texas Health Presbyterian Hospital, Dallas, TX, United States
- Cardiology Division, Internal Medicine, The University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Andrew W. D’Souza
- Women’s Heart Health Laboratory, Institute for Exercise and Environmental Medicine at Texas Health Presbyterian Hospital, Dallas, TX, United States
- Cardiology Division, Internal Medicine, The University of Texas Southwestern Medical Center, Dallas, TX, United States
- Neurovascular Research Laboratory, School of Kinesiology, Western University, London, ON, Canada
| | - Takuro Washio
- Women’s Heart Health Laboratory, Institute for Exercise and Environmental Medicine at Texas Health Presbyterian Hospital, Dallas, TX, United States
- Cardiology Division, Internal Medicine, The University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Ryosuke Takeda
- Women’s Heart Health Laboratory, Institute for Exercise and Environmental Medicine at Texas Health Presbyterian Hospital, Dallas, TX, United States
- Cardiology Division, Internal Medicine, The University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Sarah L. Hissen
- Women’s Heart Health Laboratory, Institute for Exercise and Environmental Medicine at Texas Health Presbyterian Hospital, Dallas, TX, United States
- Cardiology Division, Internal Medicine, The University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - John D. Akins
- Women’s Heart Health Laboratory, Institute for Exercise and Environmental Medicine at Texas Health Presbyterian Hospital, Dallas, TX, United States
- Cardiology Division, Internal Medicine, The University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Qi Fu
- Women’s Heart Health Laboratory, Institute for Exercise and Environmental Medicine at Texas Health Presbyterian Hospital, Dallas, TX, United States
- Cardiology Division, Internal Medicine, The University of Texas Southwestern Medical Center, Dallas, TX, United States
- Correspondence: Qi Fu
| |
Collapse
|
6
|
Neder JA, Phillips DB, O'Donnell DE, Dempsey JA. Excess ventilation and exertional dyspnoea in heart failure and pulmonary hypertension. Eur Respir J 2022; 60:13993003.00144-2022. [PMID: 35618273 DOI: 10.1183/13993003.00144-2022] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Accepted: 05/05/2022] [Indexed: 01/11/2023]
Abstract
Increased ventilation relative to metabolic demands, indicating alveolar hyperventilation and/or increased physiological dead space (excess ventilation), is a key cause of exertional dyspnoea. Excess ventilation has assumed a prominent role in the functional assessment of patients with heart failure (HF) with reduced (HFrEF) or preserved (HFpEF) ejection fraction, pulmonary arterial hypertension (PAH) and chronic thromboembolic pulmonary hypertension (CTEPH). We herein provide the key pieces of information to the caring physician to 1) gain unique insights into the seeds of patients' shortness of breath and 2) develop a rationale for therapeutically lessening excess ventilation to mitigate this distressing symptom. Reduced bulk oxygen transfer induced by cardiac output limitation and/or right ventricle-pulmonary arterial uncoupling increase neurochemical afferent stimulation and (largely chemo-) receptor sensitivity, leading to alveolar hyperventilation in HFrEF, PAH and small-vessel, distal CTEPH. As such, interventions geared to improve central haemodynamics and/or reduce chemosensitivity have been particularly effective in lessening their excess ventilation. In contrast, 1) high filling pressures in HFpEF and 2) impaired lung perfusion leading to ventilation/perfusion mismatch in proximal CTEPH conspire to increase physiological dead space. Accordingly, 1) decreasing pulmonary capillary pressures and 2) mechanically unclogging larger pulmonary vessels (pulmonary endarterectomy and balloon pulmonary angioplasty) have been associated with larger decrements in excess ventilation. Exercise training has a strong beneficial effect across diseases. Addressing some major unanswered questions on the link of excess ventilation with exertional dyspnoea under the modulating influence of pharmacological and nonpharmacological interventions might prove instrumental to alleviate the devastating consequences of these prevalent diseases.
Collapse
Affiliation(s)
- J Alberto Neder
- Clinical Exercise Physiology and Respiratory Investigation Unit, Division of Respiratory and Critical Care Medicine, Dept of Medicine, Queen's University and Kingston Health Sciences Centre, Kingston, ON, Canada
| | - Devin B Phillips
- Clinical Exercise Physiology and Respiratory Investigation Unit, Division of Respiratory and Critical Care Medicine, Dept of Medicine, Queen's University and Kingston Health Sciences Centre, Kingston, ON, Canada
| | - Denis E O'Donnell
- Clinical Exercise Physiology and Respiratory Investigation Unit, Division of Respiratory and Critical Care Medicine, Dept of Medicine, Queen's University and Kingston Health Sciences Centre, Kingston, ON, Canada
| | - Jerome A Dempsey
- John Rankin Laboratory of Pulmonary Medicine, Dept of Population Health Sciences, University of Wisconsin-Madison, Madison, WI, USA
| |
Collapse
|
7
|
Badrov MB, Keir DA, Notarius CF, O'Donnell E, Millar PJ, Kimmerly DS, Shoemaker JK, Floras JS. Influence of sex and age on the relationship between aerobic fitness and muscle sympathetic nerve activity in healthy adults. Am J Physiol Heart Circ Physiol 2022; 323:H934-H940. [PMID: 36206052 DOI: 10.1152/ajpheart.00450.2022] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
We examined the influence of sex and age on the relationship between aerobic fitness and muscle sympathetic nerve activity (MSNA) in healthy adults. Data were assessed from 224 volunteers (88 females), aged 18-76 yr, in whom resting MSNA (microneurography) and peak oxygen uptake (V̇o2peak; incremental exercise test) were evaluated. When separated into younger (<50 yr) and older (≥50 yr) subgroups, there were inverse relationships between relative V̇o2peak (mL·kg-1·min-1) and MSNA burst frequency in younger males (R2 = 0.21, P < 0.0001) and older females (R2 = 0.36, P < 0.01), but not older males (R2 = 0.05, P = 0.08) or younger females (R2 = 0.03, P = 0.14). Similar patterns were observed with absolute V̇o2peak (L·min-1) and percent-predicted (based on age, sex, weight, height, and modality), and with burst incidence. Sex and age influence the relationship between aerobic fitness and resting MSNA, and, thus, must be considered as key variables when studying these potential associations; inverse relationships are strongest in younger males and older females.NEW & NOTEWORTHY Our data reveal for the first time that associations between aerobic fitness and resting muscle sympathetic nerve activity are sex and age specific; inverse relationships are evident in younger males (<50 yr) and older females (≥50 yr), but absent in younger females (<50 yr) and older males (≥50 yr).
Collapse
Affiliation(s)
- Mark B Badrov
- University Health Network and Sinai Health Division of Cardiology, Department of Medicine, University of Toronto and the Toronto General Hospital Research Institute, Toronto, Ontario, Canada
| | - Daniel A Keir
- University Health Network and Sinai Health Division of Cardiology, Department of Medicine, University of Toronto and the Toronto General Hospital Research Institute, Toronto, Ontario, Canada.,School of Kinesiology, Western University, London, Ontario, Canada
| | - Catherine F Notarius
- University Health Network and Sinai Health Division of Cardiology, Department of Medicine, University of Toronto and the Toronto General Hospital Research Institute, Toronto, Ontario, Canada
| | - Emma O'Donnell
- University Health Network and Sinai Health Division of Cardiology, Department of Medicine, University of Toronto and the Toronto General Hospital Research Institute, Toronto, Ontario, Canada.,School of Sport and Exercise Health Sciences, Loughborough University, Loughborough, United Kingdom
| | - Philip J Millar
- University Health Network and Sinai Health Division of Cardiology, Department of Medicine, University of Toronto and the Toronto General Hospital Research Institute, Toronto, Ontario, Canada.,Department of Human Health and Nutritional Science, University of Guelph, Guelph, Ontario, Canada
| | - Derek S Kimmerly
- University Health Network and Sinai Health Division of Cardiology, Department of Medicine, University of Toronto and the Toronto General Hospital Research Institute, Toronto, Ontario, Canada.,Division of Kinesiology, School of Health and Performance, Dalhousie University, Halifax, Nova Scotia, Canada
| | - J Kevin Shoemaker
- School of Kinesiology, Western University, London, Ontario, Canada.,Department of Physiology and Pharmacology, Western University, London, Ontario, Canada
| | - John S Floras
- University Health Network and Sinai Health Division of Cardiology, Department of Medicine, University of Toronto and the Toronto General Hospital Research Institute, Toronto, Ontario, Canada
| |
Collapse
|
8
|
Moore JP, Simpson LL, Drinkhill MJ. Differential contributions of cardiac, coronary and pulmonary artery vagal mechanoreceptors to reflex control of the circulation. J Physiol 2022; 600:4069-4087. [PMID: 35903901 PMCID: PMC9544715 DOI: 10.1113/jp282305] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 07/19/2022] [Indexed: 11/25/2022] Open
Abstract
Distinct populations of stretch-sensitive mechanoreceptors attached to myelinated vagal afferents are found in the heart and adjoining coronary and pulmonary circulations. Receptors at atrio-venous junctions appear to be involved in control of intravascular volume. These atrial receptors influence sympathetic control of the heart and kidney, but contribute little to reflex control of systemic vascular resistance. Baroreceptors at the origins of the coronary circulation elicit reflex vasodilatation, like feedback control from systemic arterial baroreceptors, as well as having characteristics that could contribute to regulation of mean pressure. In contrast, feedback from baroreceptors in the pulmonary artery and bifurcation is excitatory and elicits a pressor response. Elevation of pulmonary arterial pressure resets the vasomotor limb of the systemic arterial baroreflex, which could be relevant for control of sympathetic vasoconstrictor outflow during exercise and other states associated with elevated pulmonary arterial pressure. Ventricular receptors, situated mainly in the inferior posterior wall of the left ventricle, and attached to unmyelinated vagal afferents, are relatively inactive under basal conditions. However, a change to the biochemical environment of cardiac tissue surrounding these receptors elicits a depressor response. Some ventricular receptors respond, modestly, to mechanical distortion. Probably, ventricular receptors contribute little to tonic feedback control; however, reflex bradycardia and hypotension in response to chemical activation may decrease the work of the heart during myocardial ischaemia. Overall, greater awareness of heterogeneous reflex effects originating from cardiac, coronary and pulmonary artery mechanoreceptors is required for a better understanding of integrated neural control of circulatory function and arterial blood pressure.
Collapse
Affiliation(s)
| | - Lydia L. Simpson
- Department of Sport ScienceUniversity of InnsbruckInnsbruckAustria
| | - Mark J. Drinkhill
- Leeds Insititute for Cardiovascular and Metabolic MedicineUniversity of LeedsLeedsUK
| |
Collapse
|
9
|
Mukai Y, Murai H, Hamaoka T, Sugimoto H, Inoue O, Goten C, Kusayama T, Takashima SI, Kato T, Usui S, Sakata K, Takata S, Takamura M. Effect of pulmonary vein isolation on the relationship between left atrial reverse remodeling and sympathetic nerve activity in patients with atrial fibrillation. Clin Auton Res 2022; 32:229-235. [PMID: 35737214 DOI: 10.1007/s10286-022-00873-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Accepted: 06/06/2022] [Indexed: 11/03/2022]
Abstract
PURPOSE Catheter ablation (CA) to isolate the pulmonary vein, which is an established treatment for atrial fibrillation (AF), is associated with left atrium reverse remodeling (LARR). The intrinsic cardiac autonomic nervous system includes the ganglion plexi adjacent to the pulmonary vein in the left atrium (LA). However, little is known about the effect of CA on the relationship between LARR and sympathetic nerve activity in patients with AF. METHODS This study enrolled 22 AF patients with a normal left ventricular ejection fraction (LVEF) aged 64.6 ± 12.9 years who were scheduled for CA. Sympathetic nerve activity was evaluated by direct recording of muscle sympathetic nerve activity (MSNA) before and 12 weeks after CA. Blood pressure, heart rate (HR), HR variability, and echocardiography were also measured. RESULTS The heart rate increased significantly after CA (63 ± 10.9 vs. 70.6 ± 7.7 beats/min, p < 0.01), but blood pressure did not change. A high frequency (HF) and low frequency (LF) of HR variability decreased significantly after ablation, but no significant change in LF/HF was observed. CA significantly decreased MSNA (38.9 ± 9.9 vs. 28 ± 9.1 bursts/min, p < 0.01). Moreover, regression analysis revealed a positive correlation between the percentage change in MSNA and the LA volume index (r = 0.442, p < 0.05). CONCLUSIONS Our results show that CA for AF reduced MSNA and the decrease was associated with the LA volume index in AF patients with a normal LVEF. These findings suggest that LARR induced by CA for AF decrease sympathetic nerve activity.
Collapse
Affiliation(s)
- Yusuke Mukai
- Department of Cardiovascular Medicine, Kanazawa University Graduate School of Medical Sciences Kanazawa, Kanazawa, Japan
| | - Hisayoshi Murai
- Department of Cardiovascular Medicine, Kanazawa University Graduate School of Medical Sciences Kanazawa, Kanazawa, Japan. .,Department of Cardiology, Kanazawa Municipal Hospital, Kanazawa, Japan.
| | - Takuto Hamaoka
- Department of Cardiovascular Medicine, Kanazawa University Graduate School of Medical Sciences Kanazawa, Kanazawa, Japan
| | - Hiroyuki Sugimoto
- Department of Cardiovascular Medicine, Kanazawa University Graduate School of Medical Sciences Kanazawa, Kanazawa, Japan
| | - Oto Inoue
- Department of Cardiovascular Medicine, Kanazawa University Graduate School of Medical Sciences Kanazawa, Kanazawa, Japan
| | - Chiaki Goten
- Department of Cardiovascular Medicine, Kanazawa University Graduate School of Medical Sciences Kanazawa, Kanazawa, Japan
| | - Takashi Kusayama
- Department of Cardiovascular Medicine, Kanazawa University Graduate School of Medical Sciences Kanazawa, Kanazawa, Japan
| | - Shin-Ichiro Takashima
- Department of Cardiovascular Medicine, Kanazawa University Graduate School of Medical Sciences Kanazawa, Kanazawa, Japan
| | - Takeshi Kato
- Department of Cardiovascular Medicine, Kanazawa University Graduate School of Medical Sciences Kanazawa, Kanazawa, Japan
| | - Soichiro Usui
- Department of Cardiovascular Medicine, Kanazawa University Graduate School of Medical Sciences Kanazawa, Kanazawa, Japan
| | - Kenji Sakata
- Department of Cardiovascular Medicine, Kanazawa University Graduate School of Medical Sciences Kanazawa, Kanazawa, Japan
| | - Shigeo Takata
- Department of Cardiology, Kanazawa Municipal Hospital, Kanazawa, Japan
| | - Masayuki Takamura
- Department of Cardiovascular Medicine, Kanazawa University Graduate School of Medical Sciences Kanazawa, Kanazawa, Japan
| |
Collapse
|
10
|
Hu WH, Khoo MCK. Treatment of Cheyne-Stokes Respiration in Heart Failure with Adaptive Servo-Ventilation: An Integrative Model. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1384:79-103. [PMID: 36217080 DOI: 10.1007/978-3-031-06413-5_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The SERVE-HF (Treatment of Predominant Central Sleep Apnea by Adaptive Servo Ventilation in Patients with Heart Failure) multicenter trial found a small but significant increase in all-cause and cardiovascular mortality in patients assigned to adaptive servo-ventilation (ASV) versus guideline-based medical treatment. To better understand the physiological underpinnings of this clinical outcome, we employ an integrative computer model to simulate congestive heart failure with Cheyne-Stokes respiration (CHF-CSR) in subjects with a broad spectrum of underlying pathogenetic mechanisms, as well as to determine the in silico changes in cardiopulmonary and autonomic physiology resulting from ASV. Our simulation results demonstrate that while the elimination of CSR through ASV can partially restore cardiorespiratory and autonomic physiology toward normality in the vast majority of CHF phenotypes, the degree of restoration can be highly variable, depending on the combination of CHF mechanisms in play. The group with the lowest left ventricular ejection fraction (LVEF) appears to be most vulnerable to the potentially adverse effects of ASV, but the level of pulmonary capillary wedge pressure (PCWP) plays an important role in determining the nature of these effects.
Collapse
|
11
|
Heusser K, Wittkoepper J, Bara C, Haverich A, Diedrich A, Levine BD, Schmitto JD, Jordan J, Tank J. Sympathetic vasoconstrictor activity before and after left ventricular assist device implantation in patients with end-stage heart failure. Eur J Heart Fail 2021; 23:1955-1959. [PMID: 34496114 DOI: 10.1002/ejhf.2344] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 08/30/2021] [Accepted: 09/06/2021] [Indexed: 01/08/2023] Open
Abstract
AIMS Sympathetic overactivity, which predicts poor outcome in patients with heart failure, normalizes following cardiac transplantation. We tested the hypothesis that haemodynamic improvement following left ventricular assist device (LVAD) implantation is also associated with reductions in centrally generated sympathetic activity. METHODS AND RESULTS In eight patients with heart failure (two women, six men, age 44-66 years), we continuously recorded electrocardiogram, beat-to-beat finger blood pressure, respiration, and muscle sympathetic nerve activity (MSNA) before and after implantation of the continuous-flow LVAD devices HeartWare HVAD (n = 4) and HeartMate II (n = 2), and the non-continuous-flow device HeartMate 3 (n = 2). LVAD implantation increased cardiac output by 1.29 ± 0.88 L/min (P = 0.060) and mean arterial pressure by 16.2 ± 7.9 mmHg (P < 0.001), while reducing pulse pressure by 25.3 ± 9.8 mmHg (P < 0.001). LVAD implantation did not change MSNA burst frequency (-1.3 ± 7.5 bursts/min, P = 0.636), total activity (+0.62 ± 1.83 au, P = 0.369), or normalized activity (+0.63 ± 4.23, P = 0.685). MSNA burst incidence was decreased (-7.8 ± 9.3 bursts/100 heart beats, P = 0.049). However, cardiac ectopy altered MSNA bursting patterns that could be mistaken for sympatholysis. CONCLUSION Implantation of current design LVAD does not consistently normalize sympathetic activity in patients with end-stage heart failure despite haemodynamic improvement.
Collapse
Affiliation(s)
- Karsten Heusser
- Institute of Aerospace Medicine, German Aerospace Center, Cologne, Germany
| | - Judith Wittkoepper
- Institute of Clinical Pharmacology, Hannover Medical School, Hannover, Germany
| | - Christoph Bara
- Department of Cardiac, Thoracic, Transplantation, and Vascular Surgery, Hannover Medical School, Hannover, Germany
| | - Axel Haverich
- Department of Cardiac, Thoracic, Transplantation, and Vascular Surgery, Hannover Medical School, Hannover, Germany
| | - André Diedrich
- Department of Medicine, Division of Clinical Pharmacology, Autonomic Dysfunction Center, Vanderbilt University Medical Center & Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, USA
| | - Benjamin D Levine
- Institute for Exercise and Environmental Medicine, Texas Health Presbyterian Hospital, Dallas, TX, USA.,Department of Internal Medicine, Division of Cardiology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Jan D Schmitto
- Department of Cardiac, Thoracic, Transplantation, and Vascular Surgery, Hannover Medical School, Hannover, Germany
| | - Jens Jordan
- Institute of Aerospace Medicine, German Aerospace Center, Cologne, Germany.,Chair of Aerospace Medicine, University of Cologne, Cologne, Germany
| | - Jens Tank
- Institute of Aerospace Medicine, German Aerospace Center, Cologne, Germany
| |
Collapse
|
12
|
Keir DA, Notarius CF, Badrov MB, Millar PJ, Floras JS. Heart failure-specific inverse relationship between the muscle sympathetic response to dynamic leg exercise and V̇O2peak. Appl Physiol Nutr Metab 2021; 46:1119-1125. [DOI: 10.1139/apnm-2020-1074] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
During 1-leg cycling, contralateral muscle sympathetic nerve activity (MSNA) falls in healthy adults but increases in most with reduced ejection fraction heart failure (HFrEF). We hypothesized that their peak oxygen uptake (V̇O2peak) relates inversely to their MSNA response to exercise. Twenty-nine patients (6 women; 63 ± 9 years; left ventricular ejection fraction: 30 ± 7%; V̇O2peak: 78 ± 23 percent age-predicted (%V̇O2peak); mean ± SD) and 21 healthy adults (9 women; 58 ± 7 years; 115 ± 29%V̇O2peak) performed 2 min of mild- (“loadless”) and moderate-intensity (“loaded”) 1-leg cycling. Heart rate, blood pressure (BP), contralateral leg MSNA and perceived exertion rate (RPE) were recorded. Resting MSNA burst frequency (BF) was higher (p < 0.01) in HFrEF (51 ± 11 vs 44 ± 7 bursts·min−1). Exercise heart rate, BP and RPE responses at either intensity were similar between groups. In minute 2 of “loadless” and “loaded” cycling, group mean BF fell from baseline values in controls (−5 ± 6 and −7 ± 7 bursts·min−1, respectively) but rose in HFrEF (+5 ± 7 and +5 ± 10 bursts·min−1). However, in 10 of the latter cohort, BF fell, similarly to controls. An inverse relationship between ΔBF from baseline to “loaded” cycling and %V̇O2peak was present in patients (r = −0.43, p < 0.05) but absent in controls (r = 0.07, p = 0.77). In HFrEF, ∼18% of variance in %V̇O2peak can be attributed to the change in BF elicited by exercise. Novelty: Unlike healthy individuals, in the majority of heart failure patients with reduced ejection fraction (HFrEF), 1-leg cycling increases muscle sympathetic nerve activity (MSNA). In HFrEF, ∼18% of age-predicted peak oxygen uptake (V̇O2peak) can be attributed to changes in MSNA elicited by low-intensity exercise. This relationship is absent in healthy adults.
Collapse
Affiliation(s)
- Daniel A. Keir
- University Health Network and Mount Sinai Hospital Division of Cardiology and Department of Medicine, University of Toronto, and the Toronto General Research Institute, Toronto, Ontario, Canada
- School of Kinesiology, The University of Western Ontario, London, Ontario, Canada
| | - Catherine F. Notarius
- University Health Network and Mount Sinai Hospital Division of Cardiology and Department of Medicine, University of Toronto, and the Toronto General Research Institute, Toronto, Ontario, Canada
| | - Mark B. Badrov
- University Health Network and Mount Sinai Hospital Division of Cardiology and Department of Medicine, University of Toronto, and the Toronto General Research Institute, Toronto, Ontario, Canada
| | - Philip J. Millar
- University Health Network and Mount Sinai Hospital Division of Cardiology and Department of Medicine, University of Toronto, and the Toronto General Research Institute, Toronto, Ontario, Canada
- Department of Human Health and Nutritional Science, University of Guelph, Guelph, Ontario, Canada
| | - John S. Floras
- University Health Network and Mount Sinai Hospital Division of Cardiology and Department of Medicine, University of Toronto, and the Toronto General Research Institute, Toronto, Ontario, Canada
| |
Collapse
|
13
|
Floras JS. The 2021 Carl Ludwig Lecture. Unsympathetic autonomic regulation in heart failure: patient-inspired insights. Am J Physiol Regul Integr Comp Physiol 2021; 321:R338-R351. [PMID: 34259047 DOI: 10.1152/ajpregu.00143.2021] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Defined as a structural or functional cardiac abnormality accompanied by symptoms, signs, or biomarkers of altered ventricular pressures or volumes, heart failure also is a state of autonomic disequilibrium. A large body of evidence affirms that autonomic disturbances are intrinsic to heart failure; basal or stimulated sympathetic nerve firing or neural norepinephrine (NE) release more often than not exceed homeostatic need, such that an initially adaptive adrenergic or vagal reflex response becomes maladaptive. The magnitude of such maladaptation predicts prognosis. This Ludwig lecture develops two theses: the elucidation and judiciously targeted amelioration of maladaptive autonomic disturbances offers opportunities to complement contemporary guideline-based heart failure therapy, and serendipitous single-participant insights, acquired in the course of experimental protocols with entirely different intent, can generate novel insight, inform mechanisms, and launch entirely new research directions. I précis six elements of our current synthesis of the causes and consequences of maladaptive sympathetic disequilibrium in heart failure, shaped by patient-inspired epiphanies: arterial baroreceptor reflex modulation, excitation stimulated by increased cardiac filling pressure, paradoxical muscle sympathetic activation as a peripheral neurogenic constraint on exercise capacity, renal sympathetic restraint of natriuresis, coexisting sleep apnea, and augmented chemoreceptor reflex sensitivity and then conclude by envisaging translational therapeutic opportunities.
Collapse
Affiliation(s)
- John S Floras
- University Health Network and Sinai Health Division of Cardiology, Toronto General Hospital Research Institute and Department of Medicine, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
14
|
Incognito AV, Teixeira AL, Shafer BM, Nardone M, Vermeulen TD, Foster GE, Millar PJ. Muscle sympathetic single-unit responses during rhythmic handgrip exercise and isocapnic hypoxia in males: the role of sympathoexcitation magnitude. J Neurophysiol 2021; 126:170-180. [PMID: 34133241 DOI: 10.1152/jn.00678.2020] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
A small proportion of postganglionic muscle sympathetic single units can be inhibited during sympathoexcitatory stressors in humans. However, whether these responses are dependent on the specific stressor or the level of sympathoexcitation remains unclear. We hypothesize that, when matched by sympathoexcitatory magnitude, different stressors can evoke similar proportions of inhibited single units. Multiunit and single-unit muscle sympathetic nerve activity (MSNA) were recorded in seven healthy young males at baseline and during 1) rhythmic handgrip exercise (40% of maximum voluntary contraction) and 2) acute isocapnic hypoxia (partial pressure of end-tidal O2 47 ± 3 mmHg). Single units were classified as activated, nonresponsive, or inhibited if the spike frequency was above, within, or below the baseline variability, respectively. By design, rhythmic handgrip and isocapnic hypoxia similarly increased multiunit total MSNA [Δ273 ± 208 vs. Δ254 ± 193 arbitrary units (AU), P = 0.84] and single-unit spike frequency (Δ8 ± 10 vs. Δ12 ± 13 spikes/min, P = 0.12). Among 19 identified single units, the proportions of activated (47% vs. 68%), nonresponsive (32% vs. 16%), and inhibited (21% vs. 16%) single units were not different between rhythmic handgrip and isocapnic hypoxia (P = 0.42). However, only 9 (47%) single units behaved with concordant response patterns across both stressors (7 activated, 1 nonresponsive, and 1 inhibited during both stressors). During the 1-min epoch with the highest increase in total MSNA during hypoxia (Δ595 ± 282 AU, P < 0.01) only one single unit was inhibited. These findings suggest that the proportions of muscle sympathetic single units inhibited during stress are associated with the level of sympathoexcitation and not the stressor per se in healthy young males.NEW & NOTEWORTHY Subpopulations of muscle sympathetic single units can be inhibited during mild sympathoexcitatory stress. We demonstrate that rhythmic handgrip exercise and isocapnic hypoxia, when matched by multiunit sympathoexcitation, induce similar proportions of single-unit inhibition, highlighting that heterogeneous single-unit response patterns are related to the level of sympathoexcitation independent of the stressor type. Interestingly, only 47% of single units behaved with concordant response patterns between stressors, suggesting the potential for functional specificity within the postganglionic neuronal pool.
Collapse
Affiliation(s)
- Anthony V Incognito
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, Ontario, Canada
| | - André L Teixeira
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, Ontario, Canada
| | - Brooke M Shafer
- Centre for Heart, Lung, and Vascular Health, School of Health and Exercise Sciences, University of British Columbia, Kelowna, British Columbia, Canada
| | - Massimo Nardone
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, Ontario, Canada
| | - Tyler D Vermeulen
- Centre for Heart, Lung, and Vascular Health, School of Health and Exercise Sciences, University of British Columbia, Kelowna, British Columbia, Canada
| | - Glen E Foster
- Centre for Heart, Lung, and Vascular Health, School of Health and Exercise Sciences, University of British Columbia, Kelowna, British Columbia, Canada
| | - Philip J Millar
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, Ontario, Canada.,Toronto General Research Institute, Toronto General Hospital, Toronto, Ontario, Canada
| |
Collapse
|
15
|
Floras JS. From Brain to Blood Vessel: Insights From Muscle Sympathetic Nerve Recordings: Arthur C. Corcoran Memorial Lecture 2020. Hypertension 2021; 77:1456-1468. [PMID: 33775112 DOI: 10.1161/hypertensionaha.121.16490] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Multiunit recordings of postganglionic sympathetic outflow to muscle yield otherwise imperceptible insights into sympathetic neural modulation of human vascular resistance and blood pressure. This Corcoran Lecture will illustrate the utility of microneurography to investigate neurogenic cardiovascular regulation; review data concerning muscle sympathetic nerve activity of women and men with normal and high blood pressure; explore 2 concepts, central upregulation of muscle sympathetic outflow and cortical autonomic neuroplasticity; present sleep apnea as an imperfect model of neurogenic hypertension; and expose the paradox of sympathetic excitation without hypertension. In awake healthy normotensive individuals, resting muscle sympathetic nerve activity increases with age, sleep fragmentation, and obstructive apnea. Its magnitude is not signaled by heart rate. Age-related changes are nonlinear and differ by sex. In men, sympathetic nerve activity increases with age but without relation to their blood pressure, whereas in women, both rise concordantly after age 40. Mean values for muscle sympathetic nerve activity burst incidence are consistently higher in cohorts with hypertension than in matched normotensives, yet women's sympathetic nerve traffic can increase 3-fold between ages 30 and 70 without causing hypertension. Thus, increased sympathetic nerve activity may be necessary but is insufficient for primary hypertension. Moreover, its inhibition does not consistently decrease blood pressure. Despite a half-century of microneurographic research, large gaps remain in our understanding of the content of the sympathetic broadcast from brain to blood vessel and its specific individual consequences for circulatory regulation and cardiovascular, renal, and metabolic risk.
Collapse
Affiliation(s)
- John S Floras
- Sinai Health and University Health Network Division of Cardiology, Toronto General Hospital Research Institute, and the Department of Medicine, University of Toronto
| |
Collapse
|
16
|
Sympathetic neural responses in heart failure during exercise and after exercise training. Clin Sci (Lond) 2021; 135:651-669. [DOI: 10.1042/cs20201306] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 02/01/2021] [Accepted: 02/15/2021] [Indexed: 12/25/2022]
Abstract
Abstract
The sympathetic nervous system coordinates the cardiovascular response to exercise. This regulation is impaired in both experimental and human heart failure with reduced ejection fraction (HFrEF), resulting in a state of sympathoexcitation which limits exercise capacity and contributes to adverse outcome. Exercise training can moderate sympathetic excess at rest. Recording sympathetic nerve firing during exercise is more challenging. Hence, data acquired during exercise are scant and results vary according to exercise modality. In this review we will: (1) describe sympathetic activity during various exercise modes in both experimental and human HFrEF and consider factors which influence these responses; and (2) summarise the effect of exercise training on sympathetic outflow both at rest and during exercise in both animal models and human HFrEF. We will particularly highlight studies in humans which report direct measurements of efferent sympathetic nerve traffic using intraneural recordings. Future research is required to clarify the neural afferent mechanisms which contribute to efferent sympathetic activation during exercise in HFrEF, how this may be altered by exercise training, and the impact of such attenuation on cardiac and renal function.
Collapse
|
17
|
Badrov MB, Mak S, Floras JS. Cardiovascular Autonomic Disturbances in Heart Failure With Preserved Ejection Fraction. Can J Cardiol 2020; 37:609-620. [PMID: 33310140 DOI: 10.1016/j.cjca.2020.12.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 12/03/2020] [Accepted: 12/04/2020] [Indexed: 02/09/2023] Open
Abstract
In heart failure with reduced ejection fraction (HFrEF), diminished tonic and reflex vagal heart rate modulation and exaggerated sympathetic outflow and neural norepinephrine release are evident from disease inception. Each of these disturbances of autonomic regulation has been independently associated with shortened survival, and β-adrenoceptor antagonism and therapeutic autonomic modulation by other means have been demonstrated, in clinical trials, to lessen symptoms and prolong survival. In contrast, data concerning the autonomic status of patients with heart failure with preserved ejection fraction (HFpEF) are comparatively sparse. Little is known concerning the prognostic consequences of autonomic dysregulation in such individuals, and therapies applied with success in HFrEF have in most trials failed to improve symptoms or survival of those with HFpEF. A recent HFpEF Expert Scientific Panel report emphasised that without a deeper understanding of the pathophysiology of HFpEF, establishing effective treatment will be challenging. One aspect of such pathology may be cardiovascular autonomic disequilibrium, often worsened by acute exercise or routine daily activity. This review aims to summarise existing knowledge concerning parasympathetic and sympathetic function of patients with HFpEF, consider potential mechanisms and specific consequences of autonomic disturbances that have been identified, and propose hypotheses for future investigation.
Collapse
Affiliation(s)
- Mark B Badrov
- Division of Cardiology, Department of Medicine, University Health Network and Sinai Health System, University of Toronto, Toronto, Ontario, Canada
| | - Susanna Mak
- Division of Cardiology, Department of Medicine, University Health Network and Sinai Health System, University of Toronto, Toronto, Ontario, Canada
| | - John S Floras
- Division of Cardiology, Department of Medicine, University Health Network and Sinai Health System, University of Toronto, Toronto, Ontario, Canada.
| |
Collapse
|
18
|
Incognito AV, Nardone M, Teixeira AL, Lee JB, Kathia MM, Millar PJ. Muscle sympathetic single-unit response patterns during progressive muscle metaboreflex activation in young healthy adults. J Neurophysiol 2020; 124:682-690. [PMID: 32727266 DOI: 10.1152/jn.00305.2020] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Muscle sympathetic single units can respond differentially to stress, but whether these responses are linked to the degree of sympathoexcitation is unclear. Fifty-three muscle sympathetic single units (microneurography) were recorded in 17 participants (8 women; 24 ± 3 yr). Five 40-s bouts of 10% static handgrip were performed during a 10-min forearm ischemia to progressively increase metabolite accumulation. Each static handgrip was separated by a 75-s ischemic rest [postexercise circulatory occlusion (PECO)] to assess the isolated action of the muscle metaboreflex. During each set of PECO, individual single units were classified as activated, nonresponsive, or inhibited if the spike frequency was above, within, or below the baseline variability, respectively. From sets 1-5 of PECO, the proportion of single units with activated (34, 45, 68, 87, and 89%), nonresponsive (43, 44, 23, 7, and 9%), or inhibited (23, 11, 9, 6, and 2%) responses changed (P < 0.001) as total muscle sympathoexcitation increased. A total of 51/53 (96%) single units were activated in at least one set of PECO, 16 (31%) initially inhibited before activation. This response pattern delayed the activation onset compared with noninhibited units (set 3 ± 1 vs. 2 ± 1, P < 0.001). Once activated, the spike-frequency rate of rise was similar (8.5 ± 6.5 vs. 7.1 ± 6.0 spikes/min per set, P = 0.48). Muscle sympathetic single-unit firing demonstrated differential control during muscle metaboreflex activation. Single units that were initially inhibited during progressive metaboreflex activation were capable of being activated in later sets. These findings reveal that single-unit activity is influenced by convergent neural inputs (i.e., both inhibitory and excitatory), which yield heterogenous single-unit activation thresholds.NEW & NOTEWORTHY Muscle sympathetic single units respond differentially to sympathoexcitatory stress such that single units can increase firing to contribute to the sympathoexcitatory response or can be nonresponsive or even inhibited. We observed a subgroup of single units that can respond bidirectionally, being first inhibited before activated by progressive increases in forearm muscle metaboreflex activation. These results suggest convergent neural inputs (i.e., inhibitory and excitatory), which yield heterogenous muscle sympathetic single-unit activation thresholds.
Collapse
Affiliation(s)
- Anthony V Incognito
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, Ontario, Canada
| | - Massimo Nardone
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, Ontario, Canada
| | - André L Teixeira
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, Ontario, Canada
| | - Jordan B Lee
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, Ontario, Canada
| | - Muhammad M Kathia
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, Ontario, Canada
| | - Philip J Millar
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, Ontario, Canada.,Toronto General Research Institute, Toronto, Ontario, Canada
| |
Collapse
|
19
|
Lee JB, Omazic LJ, Kathia M. What happens in vagus, no longer stays in vagus. J Physiol 2020; 598:4435-4437. [PMID: 32662882 DOI: 10.1113/jp280388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 07/10/2020] [Indexed: 11/08/2022] Open
Affiliation(s)
- Jordan B Lee
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, ON, Canada
| | - Lucas J Omazic
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, ON, Canada
| | - Muhammad Kathia
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, ON, Canada
| |
Collapse
|
20
|
Sympathetic neural overdrive in congestive heart failure and its correlates: systematic reviews and meta-analysis. J Hypertens 2020; 37:1746-1756. [PMID: 30950979 DOI: 10.1097/hjh.0000000000002093] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
BACKGROUND AND OBJECTIVES Sympathetic neural activation occurs in congestive heart failure (CHF). However, the small sample size of the microneurographic studies, heterogeneity of the patients examined, presence of comorbidities as well as confounders (including treatment) represented major weaknesses not allowing to identify the major features of the phoenomenon, particularly in mild CHF. This meta-analysis evaluated 2530 heart failure (CHF) patients recruited in 106 microneurographic studies. It was based on muscle sympathetic nerve activity (MSNA) quantification in CHF of different clinical severity, but data from less widely addressed conditions, such as ischemic vs. idiopathic, were also considered. METHODS Assessment was extended to the relationships of MSNA with venous plasma norepinephrine, heart rate (HR) and echocardiographic parameters of cardiac morphology [left ventricular (LV) end-diastolic diameter] and function (LV ejection fraction) as well. RESULTS MSNA was significantly greater (1.9 times, P < 0.001) in CHF patients as compared with healthy controls, a progressive significant increase being observed from New York Heart Association classes I-IV in unadjusted and adjusted analyses. MSNA was significantly greater in both untreated and treated CHF (P < 0.001 for both), related to left ventricular (LV) end-diastolic diameter and to a lesser extent to LV ejection fraction (r = 0.24 and -0.05, P < 0.001 and <0.01, respectively), and closely associated with HR (r = 0.66, P < 0.001) and plasma norepinephrine (r = 0.68, P < 0.001). CONCLUSION CHF is characterized by sympathetic overactivity which mirrors the degree of LV dysfunction independently of the stage of CHF, its cause and presence of confounders or pharmacological treatment. plasma norepinephrine and HR represent potentially valuable surrogate markers of sympathetic activation in the clinical setting.
Collapse
|
21
|
Okabe Y, Murai H, Tokuhisa H, Hamaoka T, Mukai Y, Sugimoto H, Takashima SI, Kato T, Matsuo S, Usui S, Furusho H, Takamura M, Kaneko S. Renal iodine 123-metaiodobenzylguanidine scintigraphy relates to muscle sympathetic nervous activity in heart failure with reduced ejection fraction. Auton Neurosci 2020; 226:102671. [PMID: 32272358 DOI: 10.1016/j.autneu.2020.102671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Revised: 03/29/2020] [Accepted: 03/29/2020] [Indexed: 10/24/2022]
Abstract
BACKGROUND Renal denervation is effective for modulating augmented sympathetic nerve activity (SNA) in heart failure with reduced ejection fraction (HFrEF). We have demonstrated that renal iodine123-metaiodobenzylguanidine (123I-MIBG) scintigraphy is associated with muscle sympathetic nerve activity (MSNA) in patients with hypertension. However, it is unclear whether renal 123I-MIBG scintigraphy is useful for assessment of SNA in HFrEF. METHODS The study population consisted of 24 HFrEF patients and 11 healthy subjects as controls. Patients with HFrEF underwent 123I-MIBG scintigraphy and hemodynamics using a Swan-Ganz catheter (SGC). HFrEF was defined as echocardiography with left ventricular ejection fraction (LVEF) < 50%. MSNA was measured from the peroneal nerve for direct evaluation of SNA. Renal 123I-MIBG scintigraphy was performed simultaneously with cardiac scintigraphy. The early and delayed kidney-to-mediastinum ratio (K/M), early and delayed heart-to-mediastinum ratio (H/M), and washout rate (WR) were calculated. RESULTS LVEFs were 35% ± 11% in patients with HFrEF and 63% ± 10% in the controls (p < 0.01). The WR of cardiac 123I-MIBG showed no relation to MSNA, but was related to stroke volume (r = 0.45, p < 0.05). In contrast, the WR of renal 123I-MIBG scintigraphy (average of both sides) showed a strong correlation with MSNA (BI, r = 0.70, p < 0.01; BF, r = 0.66, p < 0.01); however, no significant correlations were detected between renal 123I-MIBG scintigraphy and SGC results. CONCLUSIONS The WR of renal 123I-MIBG scintigraphy may reflect MSNA. Further studies are needed to clarify the relationship between renal 123I-MIBG imaging and renal SNA.
Collapse
Affiliation(s)
- Yoshitaka Okabe
- Department of Cardiovascular Medicine, Kanazawa University Graduate School of Medical Sciences, Japan
| | - Hisayoshi Murai
- Department of Cardiovascular Medicine, Kanazawa University Graduate School of Medical Sciences, Japan.
| | - Hideki Tokuhisa
- Department of Cardiovascular Medicine, Kanazawa University Graduate School of Medical Sciences, Japan
| | - Takuto Hamaoka
- Department of Cardiovascular Medicine, Kanazawa University Graduate School of Medical Sciences, Japan
| | - Yusuke Mukai
- Department of Cardiovascular Medicine, Kanazawa University Graduate School of Medical Sciences, Japan
| | - Hiroyuki Sugimoto
- Department of Cardiovascular Medicine, Kanazawa University Graduate School of Medical Sciences, Japan
| | - Shin-Ichiro Takashima
- Department of Cardiovascular Medicine, Kanazawa University Graduate School of Medical Sciences, Japan
| | - Takeshi Kato
- Department of Cardiovascular Medicine, Kanazawa University Graduate School of Medical Sciences, Japan
| | - Shinro Matsuo
- Department of Nuclear Medicine, Graduate School of Medical Science, Kanazawa University, Kanazawa, Japan
| | - Soichiro Usui
- Department of Cardiovascular Medicine, Kanazawa University Graduate School of Medical Sciences, Japan
| | - Hiroshi Furusho
- Department of Cardiovascular Medicine, Kanazawa University Graduate School of Medical Sciences, Japan
| | - Masayuki Takamura
- Department of Cardiovascular Medicine, Kanazawa University Graduate School of Medical Sciences, Japan
| | - Shuichi Kaneko
- Departments of Gastroenterology, Kanazawa University Hospital, Kanazawa, Japan
| |
Collapse
|
22
|
Incognito AV, Samora M, Shepherd AD, Cartafina RA, Guimarães GMN, Daher M, Millar PJ, Vianna LC. Arterial baroreflex regulation of muscle sympathetic single-unit activity in men: influence of resting blood pressure. Am J Physiol Heart Circ Physiol 2020; 318:H937-H946. [DOI: 10.1152/ajpheart.00700.2019] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The arterial baroreflex has dominant control over multiunit muscle sympathetic nerve activity (MSNA) burst occurrence, but whether this extends to all single units or is influenced by resting blood pressure status is unclear. In 22 men (32 ± 8 yr), we assessed 68 MSNA single units during sequential bolus injections of nitroprusside and phenylephrine (modified Oxford). Sympathetic baroreflex sensitivity (sBRS) was quantified as the weighted negative linear regression slope between diastolic blood pressure (DBP) and single-unit spike firing probability and multiple spike firing. Strong negative linear relationships ( r ≥ −0.50) between DBP and spike firing probability were observed in 63/68 (93%) single units (−2.27 ± 1.27%·cardiac cycle−1·mmHg−1 [operating range, 18 ± 8 mmHg]). In contrast, only 45/68 (66%) single units had strong DBP-multiple spike firing relationships (−0.13 ± 0.18 spikes·cardiac cycle−1·mmHg−1 [operating range, 14 ± 7 mmHg]). Participants with higher resting DBP (65 ± 3 vs. 77 ± 3 mmHg, P < 0.001) had similar spike firing probability sBRS (low vs. high, −2.08 ± 1.08 vs. −2.46 ± 1.42%·cardiac cycle−1·mmHg−1, P = 0.33), but a smaller sBRS operating range (20 ± 6 vs. 16 ± 9 mmHg, P = 0.01; 86 ± 24 vs. 52 ± 25% of total range, P < 0.001) and a higher proportion of single units without arterial baroreflex control outside this range [6/31 (19%) vs. 21/32 (66%), P < 0.001]. Participants with higher resting DBP also had fewer single units with arterial baroreflex control of multiple spike firing (79 vs. 53%, P = 0.04). The majority of MSNA single units demonstrate strong arterial baroreflex control over spike firing probability during pharmacological manipulation of blood pressure. Changes in single-unit sBRS operating range and control of multiple spike firing may represent altered sympathetic recruitment patterns associated with the early development of hypertension. NEW & NOTEWORTHY Muscle sympathetic single units can be differentially controlled during stress. In contrast, we demonstrate that 93% of single units maintain strong arterial baroreflex control during pharmacological manipulation of blood pressure. Interestingly, the operating range and proportion of single units that lose arterial baroreflex control outside of this range are influenced by resting blood pressure levels. Altered single unit, but not multiunit, arterial baroreflex control may represent changes in sympathetic recruitment patterns in early stage development of hypertension.
Collapse
Affiliation(s)
- Anthony V. Incognito
- Human Health and Nutritional Sciences, University of Guelph, Guelph, Ontario, Canada
- NeuroV̇ASQ̇-Integrative Physiology Laboratory, Faculty of Physical Education, University of Brasília, Brasília, Brazil
| | - Milena Samora
- NeuroV̇ASQ̇-Integrative Physiology Laboratory, Faculty of Physical Education, University of Brasília, Brasília, Brazil
| | - Andrew D. Shepherd
- Human Health and Nutritional Sciences, University of Guelph, Guelph, Ontario, Canada
| | - Roberta A. Cartafina
- NeuroV̇ASQ̇-Integrative Physiology Laboratory, Faculty of Physical Education, University of Brasília, Brasília, Brazil
| | | | - Mauricio Daher
- NeuroV̇ASQ̇-Integrative Physiology Laboratory, Faculty of Physical Education, University of Brasília, Brasília, Brazil
| | - Philip J. Millar
- Human Health and Nutritional Sciences, University of Guelph, Guelph, Ontario, Canada
| | - Lauro C. Vianna
- NeuroV̇ASQ̇-Integrative Physiology Laboratory, Faculty of Physical Education, University of Brasília, Brasília, Brazil
| |
Collapse
|
23
|
Nardone M, Teixeira AL. Stretching our understanding of baroreflex control in humans: evidence of a positive feedback pulmonary baroreflex. J Physiol 2020; 598:1435-1436. [PMID: 32096555 DOI: 10.1113/jp279662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Accepted: 02/20/2020] [Indexed: 11/08/2022] Open
Affiliation(s)
- Massimo Nardone
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, ON, Canada
| | - André L Teixeira
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, ON, Canada
| |
Collapse
|
24
|
Simpson LL, Meah VL, Steele A, Thapamagar S, Gasho C, Anholm JD, Drane AL, Dawkins TG, Busch SA, Oliver SJ, Lawley JS, Tymko MM, Ainslie PN, Steinback CD, Stembridge M, Moore JP. Evidence for a physiological role of pulmonary arterial baroreceptors in sympathetic neural activation in healthy humans. J Physiol 2020; 598:955-965. [PMID: 31977069 DOI: 10.1113/jp278731] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Accepted: 01/20/2020] [Indexed: 12/11/2022] Open
Abstract
KEY POINTS In an anaesthetised animal model, independent stimulation of baroreceptors in the pulmonary artery elicits reflex sympathoexcitation. In humans, pulmonary arterial pressure is positively related to basal muscle sympathetic nerve activity (MSNA) under conditions where elevated pulmonary pressure is evident (e.g. high altitude); however, a causal link is not established. Using a novel experimental approach, we demonstrate that reducing pulmonary arterial pressure lowers basal MSNA in healthy humans. This response is distinct from the negative feedback reflex mediated by aortic and carotid sinus baroreceptors when systemic arterial pressure is lowered. Afferent input from pulmonary arterial baroreceptors may contribute to sympathetic neural activation in healthy lowland natives exposed to high altitude. ABSTRACT In animal models, distension of baroreceptors located in the pulmonary artery induces a reflex increase in sympathetic outflow; however, this has not been examined in humans. Therefore, we investigated whether reductions in pulmonary arterial pressure influenced sympathetic outflow and baroreflex control of muscle sympathetic nerve activity (MSNA). Healthy lowlanders (n = 13; 5 females) were studied 4-8 days following arrival at high altitude (4383 m; Cerro de Pasco, Peru), a setting that increases both pulmonary arterial pressure and sympathetic outflow. MSNA (microneurography) and blood pressure (BP; photoplethysmography) were measured continuously during ambient air breathing (Amb) and a 6 min inhalation of the vasodilator nitric oxide (iNO; 40 ppm in 21% O2 ), to selectively lower pulmonary arterial pressure. A modified Oxford test was performed under both conditions. Pulmonary artery systolic pressure (PASP) was determined using Doppler echocardiography. iNO reduced PASP (24 ± 3 vs. 32 ± 5 mmHg; P < 0.001) compared to Amb, with a similar reduction in MSNA total activity (1369 ± 576 to 994 ± 474 a.u min-1 ; P = 0.01). iNO also reduced the MSNA operating point (burst incidence; 39 ± 16 to 33 ± 17 bursts·100 Hb-1 ; P = 0.01) and diastolic operating pressure (82 ± 8 to 80 ± 8 mmHg; P < 0.001) compared to Amb, without changing heart rate (P = 0.6) or vascular-sympathetic baroreflex gain (P = 0.85). In conclusion, unloading of pulmonary arterial baroreceptors reduced basal sympathetic outflow to the skeletal muscle vasculature and reset vascular-sympathetic baroreflex control of MSNA downward and leftward in healthy humans at high altitude. These data suggest the existence of a lesser-known reflex input involved in sympathetic activation in humans.
Collapse
Affiliation(s)
- Lydia L Simpson
- Extremes Research Group, School of Sport, Health and Exercise Sciences, Bangor University, Wales, UK
| | - Victoria L Meah
- Neurovascular Health Laboratory, Faculty of Kinesiology, Sport, and Recreation, University of Alberta, Canada
| | - Andrew Steele
- Neurovascular Health Laboratory, Faculty of Kinesiology, Sport, and Recreation, University of Alberta, Canada
| | - Suman Thapamagar
- Division of Pulmonary and Critical Care, School of Medicine, Loma Linda University, Loma Linda, CA, USA
| | - Christopher Gasho
- Division of Pulmonary and Critical Care, School of Medicine, Loma Linda University, Loma Linda, CA, USA
| | - James D Anholm
- Division of Pulmonary and Critical Care, School of Medicine, Loma Linda University, Loma Linda, CA, USA
| | - Aimee L Drane
- Cardiff School of Sport and Health Sciences, Cardiff Metropolitan University, Wales, UK
| | - Tony G Dawkins
- Cardiff School of Sport and Health Sciences, Cardiff Metropolitan University, Wales, UK
| | - Stephen A Busch
- Neurovascular Health Laboratory, Faculty of Kinesiology, Sport, and Recreation, University of Alberta, Canada
| | - Samuel J Oliver
- Extremes Research Group, School of Sport, Health and Exercise Sciences, Bangor University, Wales, UK
| | - Justin S Lawley
- Department of Sport Science, Division of Physiology, University of Innsbruck, Austria
| | - Michael M Tymko
- Centre for Heart, Lung, and Vascular Health, University of British Columbia Okanagan, Kelowna, Canada
| | - Phillip N Ainslie
- Centre for Heart, Lung, and Vascular Health, University of British Columbia Okanagan, Kelowna, Canada
| | - Craig D Steinback
- Neurovascular Health Laboratory, Faculty of Kinesiology, Sport, and Recreation, University of Alberta, Canada
| | - Mike Stembridge
- Cardiff School of Sport and Health Sciences, Cardiff Metropolitan University, Wales, UK
| | - Jonathan P Moore
- Extremes Research Group, School of Sport, Health and Exercise Sciences, Bangor University, Wales, UK
| |
Collapse
|
25
|
Isobe Y, Nakatsumi Y, Sugiyama Y, Hamaoka T, Murai H, Takamura M, Kaneko S, Takata S, Takamura T. Severity Indices for Obstructive Sleep Apnea Syndrome Reflecting Glycemic Control or Insulin Resistance. Intern Med 2019; 58:3227-3234. [PMID: 31327833 PMCID: PMC6911756 DOI: 10.2169/internalmedicine.3005-19] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Objective We aimed to identify obstructive sleep apnea syndrome (OSAS) severity indices reflecting the anthropometric and metabolic characteristics of patients with OSAS. Methods A total of 76 patients with OSAS underwent nasal continuous positive airway pressure (nCPAP). We also investigated the effects of nCPAP on OSAS-associated muscle sympathetic nerve activity (MSNA), risk for cardiovascular diseases, and insulin secretion and sensitivity. Results Among the OSAS severity indices, HbA1c was significantly correlated with the apnea-hypopnea index, whereas HOMA-beta, HOMA-IR, and hepatic insulin resistance were significantly correlated with % SpO2<90%, independent of age, gender, and body mass index (BMI). Burst incidence of MSNA was independently associated with only a 3% oxygen desaturation index. nCPAP therapy significantly lowered the OSAS severity indices and reduced the burst rate, burst incidence, and heart rate. Conclusion The OSAS severity indices reflecting apnea/hypopnea are associated with glycemic control, whereas those reflecting hypoxia, particularly % SpO2<90%, are associated with hepatic insulin resistance independent of obesity. Both types of OSAS severity indices, especially the 3% oxygen desaturation index (reflecting intermittent hypoxia), are independently associated with MSNA, which is dramatically lowered with the use of nCPAP therapy. These findings may aid in interpreting each OSAS severity index and understanding the pathophysiology of OSAS in clinical settings.
Collapse
Affiliation(s)
- Yuki Isobe
- Department of Endocrinology and Metabolism, Kanazawa University Graduate School of Medical Sciences, Japan
| | - Yasuto Nakatsumi
- Division of Internal Medicine, Kanazawa Municipal Hospital, Japan
| | - Yu Sugiyama
- Division of Internal Medicine, Kanazawa Municipal Hospital, Japan
| | - Takuto Hamaoka
- Department of Cardiology, Kanazawa University Graduate School of Medical Sciences, Japan
| | - Hisayoshi Murai
- Department of Cardiology, Kanazawa University Graduate School of Medical Sciences, Japan
| | - Masayuki Takamura
- Department of Cardiology, Kanazawa University Graduate School of Medical Sciences, Japan
| | - Shuichi Kaneko
- Department of System Biology, Kanazawa University Graduate School of Medical Sciences, Japan
| | - Shigeo Takata
- Division of Internal Medicine, Kanazawa Municipal Hospital, Japan
| | - Toshinari Takamura
- Department of Endocrinology and Metabolism, Kanazawa University Graduate School of Medical Sciences, Japan
| |
Collapse
|
26
|
Notarius CF, Millar PJ, Keir DA, Murai H, Haruki N, O'Donnell E, Marzolini S, Oh P, Floras JS. Training heart failure patients with reduced ejection fraction attenuates muscle sympathetic nerve activation during mild dynamic exercise. Am J Physiol Regul Integr Comp Physiol 2019; 317:R503-R512. [PMID: 31365304 DOI: 10.1152/ajpregu.00104.2019] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Muscle sympathetic nerve activity (MSNA) decreases during low-intensity dynamic one-leg exercise in healthy subjects but increases in patients with heart failure with reduced ejection fraction (HFrEF). We hypothesized that increased peak oxygen uptake (V̇o2peak) after aerobic training would be accompanied by less sympathoexcitation during both mild and moderate one-leg dynamic cycling, an attenuated muscle metaboreflex, and greater skin vasodilation. We studied 27 stable, treated HFrEF patients (6 women; mean age: 65 ± 2 SE yr; mean left ventricular ejection fraction: 30 ± 1%) and 18 healthy age-matched volunteers (6 women; mean age: 57 ± 2 yr). We assessed V̇o2peak (open-circuit spirometry) and the skin microcirculatory response to reactive hyperemia (laser flowmetry). Fibular MSNA (microneurography) was recorded before and during one-leg cycling (2 min unloaded and 2 min at 50% of V̇o2peak) and, to assess the muscle metaboreflex, during posthandgrip ischemia (PHGI). HFrEF patients were evaluated before and after 6 mo of exercise-based cardiac rehabilitation. Pretraining V̇o2peak and skin vasodilatation were lower (P < 0.001) and resting MSNA higher (P = 0.01) in HFrEF than control subjects. Training improved V̇o2peak (+3.0 ± 1.0 mL·kg-1·min-1; P < 0.001) and cutaneous vasodilation and diminished resting MSNA (-6.0 ± 2.0, P = 0.01) plus exercise MSNA during unloaded (-4.0 ± 2.5, P = 0.04) but not loaded cycling (-1.0 ± 4.0 bursts/min, P = 0.34) and MSNA during PHGI (P < 0.05). In HFrEF patients, exercise training lowers MSNA at rest, desensitizes the sympathoexcitatory metaboreflex, and diminishes MSNA elicited by mild but not moderate cycling. Training-induced downregulation of resting MSNA and attenuated reflex sympathetic excitation may improve exercise capacity and survival.
Collapse
Affiliation(s)
- Catherine F Notarius
- Division of Cardiology, University Health Network and Mount Sinai Hospital, University of Toronto, Toronto, Ontario, Canada
| | - Philip J Millar
- Division of Cardiology, University Health Network and Mount Sinai Hospital, University of Toronto, Toronto, Ontario, Canada.,Department of Human Health and Nutritional Sciences, University of Guelph, Ontario, Canada
| | - Daniel A Keir
- Division of Cardiology, University Health Network and Mount Sinai Hospital, University of Toronto, Toronto, Ontario, Canada
| | - Hisayoshi Murai
- Division of Cardiology, University Health Network and Mount Sinai Hospital, University of Toronto, Toronto, Ontario, Canada
| | - Nobuhiko Haruki
- Division of Cardiology, University Health Network and Mount Sinai Hospital, University of Toronto, Toronto, Ontario, Canada
| | - Emma O'Donnell
- Division of Cardiology, University Health Network and Mount Sinai Hospital, University of Toronto, Toronto, Ontario, Canada.,School of Sport, Exercise, and Health Sciences, Loughborough University, Loughborough, United Kingdom
| | - Susan Marzolini
- Cardiovascular Prevention and Rehabilitation Program, Toronto Rehabilitation Institute, University Health Network, Toronto, Ontario, Canada
| | - Paul Oh
- Cardiovascular Prevention and Rehabilitation Program, Toronto Rehabilitation Institute, University Health Network, Toronto, Ontario, Canada
| | - John S Floras
- Division of Cardiology, University Health Network and Mount Sinai Hospital, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
27
|
Doherty CJ, King TJ, Incognito AV, Lee JB, Shepherd AD, Cacoilo JA, Slysz JT, Burr JF, Millar PJ. Effects of dynamic arm and leg exercise on muscle sympathetic nerve activity and vascular conductance in the inactive leg. J Appl Physiol (1985) 2019; 127:464-472. [PMID: 31246555 DOI: 10.1152/japplphysiol.00997.2018] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
The influence of muscle sympathetic nerve activity (MSNA) responses on local vascular conductance during exercise are not well established. Variations in exercise mode and active muscle mass can produce divergent MSNA responses. Therefore, we sought to examine the effects of small- versus large-muscle mass dynamic exercise on vascular conductance and MSNA responses in the inactive limb. Thirty-five participants completed two study visits in a randomized order. During visit 1, superficial femoral artery (SFA) blood flow (Doppler ultrasound) was assessed at rest and during steady-state rhythmic handgrip (RHG; 1:1 duty cycle, 40% maximal voluntary contraction), one-leg cycling (17 ± 3% peak power output), and concurrent exercise at the same intensities. During visit 2, MSNA (contralateral fibular nerve microneurography) was acquired successfully in 12/35 participants during the same exercise modes. SFA blood flow increased during RHG (P < 0.0001) and concurrent exercise (P = 0.03) but not cycling (P = 0.91). SFA vascular conductance was unchanged during RHG (P = 0.88) but reduced similarly during concurrent and cycling exercise (both P < 0.003). RHG increased MSNA burst frequency (P = 0.04) without altering burst amplitude (P = 0.69) or total MSNA (P = 0.26). In contrast, cycling and concurrent exercise had no effects on MSNA burst frequency (both P ≥ 0.10) but increased burst amplitude (both P ≤ 0.001) and total MSNA (both P ≤ 0.007). Across all exercise modes, the changes in MSNA burst amplitude and SFA vascular conductance were correlated negatively (r = -0.43, P = 0.02). In summary, the functional vascular consequences of alterations in sympathetic outflow to skeletal muscle are most closely associated with changes in MSNA burst amplitude, but not frequency, during low-intensity dynamic exercise.NEW & NOTEWORTHY Low-intensity small- versus large-muscle mass exercise can elicit divergent effects on muscle sympathetic nerve activity (MSNA). We examined the relationships between changes in MSNA (burst frequency and amplitude) and superficial femoral artery (SFA) vascular conductance during rhythmic handgrip, one-leg cycling, and concurrent exercise in the inactive leg. Only changes in MSNA burst amplitude were inversely associated with SFA vascular conductance responses. This result highlights the functional importance of measuring MSNA burst amplitude during exercise.
Collapse
Affiliation(s)
- Connor J Doherty
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, Ontario, Canada
| | - Trevor J King
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, Ontario, Canada
| | - Anthony V Incognito
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, Ontario, Canada
| | - Jordan B Lee
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, Ontario, Canada
| | - Andrew D Shepherd
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, Ontario, Canada
| | - Joseph A Cacoilo
- Department of Kinesiology, University of Guelph-Humber, Toronto, Ontario, Canada
| | - Joshua T Slysz
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, Ontario, Canada
| | - Jamie F Burr
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, Ontario, Canada
| | - Philip J Millar
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, Ontario, Canada.,Toronto General Research Institute, Toronto General Hospital, Toronto, Ontario, Canada
| |
Collapse
|
28
|
Keir DA, Duffin J, Millar PJ, Floras JS. Simultaneous assessment of central and peripheral chemoreflex regulation of muscle sympathetic nerve activity and ventilation in healthy young men. J Physiol 2019; 597:3281-3296. [DOI: 10.1113/jp277691] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Accepted: 05/13/2019] [Indexed: 12/20/2022] Open
Affiliation(s)
- Daniel A. Keir
- University Health Network and Mount Sinai Hospital Division of CardiologyDepartment of Medicine, University of Toronto Toronto Ontario Canada
| | - James Duffin
- Departments of Anaesthesia and PhysiologyUniversity of Toronto Toronto Ontario Canada
- Thornhill Research Inc. Toronto Ontario Canada
| | - Philip J. Millar
- University Health Network and Mount Sinai Hospital Division of CardiologyDepartment of Medicine, University of Toronto Toronto Ontario Canada
- Human Health and Nutritional ScienceUniversity of Guelph Guelph Ontario Canada
| | - John S. Floras
- University Health Network and Mount Sinai Hospital Division of CardiologyDepartment of Medicine, University of Toronto Toronto Ontario Canada
| |
Collapse
|
29
|
Millar PJ, Notarius CF, Haruki N, Floras JS. Heart Failure-Specific Relationship Between Muscle Sympathetic Nerve Activity and Aortic Wave Reflection. J Card Fail 2019; 25:404-408. [PMID: 30862489 DOI: 10.1016/j.cardfail.2019.03.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Revised: 02/26/2019] [Accepted: 03/06/2019] [Indexed: 10/27/2022]
Abstract
BACKGROUND Reflected arterial waves contribute to left ventricular (LV) afterload. Heart failure patients with reduced ejection fraction (HFrEF) are afterload sensitive and sympathetically activated. We tested the hypothesis that HFrEF patients exhibit a positive relationship between sympathetic vasoconstrictor discharge and aortic wave reflection. METHODS Sixteen treated patients with HFrEF (61 ± 9 years of age, left ventricular ejection fraction 30 ± 7%, 3 women) and 16 similar-aged healthy control subjects (57 ± 7 years of age, 4 women) underwent noninvasive measurements of radial pulse waveforms (applanation tonometry) to calculate central blood pressures and aortic wave reflection characteristics: augmentation pressure (AP), augmentation index (AIx), and AIx corrected to a heart rate of 75 beats/min (AIx@75). Muscle sympathetic nerve activity (MSNA) burst frequency was recorded from the fibular nerve (microneurography). RESULTS HFrEF patients had higher AIx (26 ± 9 vs 17 ± 15%; P < .05) and MSNA burst frequency (48 ± 7 vs 39 ± 11 bursts/min; P < .05) and lower central diastolic pressure than control subjects (64 ± 8 vs 70 ± 9 mm Hg; P = 0.05). There were no between-group differences in heart rate, other measures of blood pressure (brachial and central; P > .05), AP (11 ± 5 vs 7 ± 8 mm Hg; P = 0.11), or AIx@75 (19 ± 9 vs 13 ± 11%,-P = 0.14). MSNA correlated positively with AP (r = 0.50; P < .05), AIx (r = 0.51; P < .05), and AIx@75 (r = 0.54; P < .05) in HFrEF patients but not in control subjects (r = 0.002-0.18; P > 0.49). CONCLUSIONS In patients with HFrEF, but not similarly aged healthy subjects, indices of aortic wave reflection correlate positively with MSNA. By increasing LV afterload, such neurovascular coupling could impair LV performance and worsen heart failure symptoms. Therapies that attenuate neurogenic vasoconstriction may benefit HFrEF patients by diminishing arterial wave reflection.
Collapse
Affiliation(s)
- Philip J Millar
- University Health Network and Mount Sinai Hospital Division of Cardiology, Department of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Catherine F Notarius
- University Health Network and Mount Sinai Hospital Division of Cardiology, Department of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Nobuhiko Haruki
- University Health Network and Mount Sinai Hospital Division of Cardiology, Department of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - John S Floras
- University Health Network and Mount Sinai Hospital Division of Cardiology, Department of Medicine, University of Toronto, Toronto, Ontario, Canada.
| |
Collapse
|
30
|
Moore JP, Drinkhill MJ. Differential control of muscle sympathetic outflow in single units of humans: a role for pulmonary artery baroreceptors? Am J Physiol Heart Circ Physiol 2019; 316:H430-H431. [PMID: 30715905 DOI: 10.1152/ajpheart.00817.2018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Jonathan P Moore
- School of Sport, Health and Exercise Sciences, Bangor University , Bangor , United Kingdom
| | - Mark J Drinkhill
- Leeds Institute for Cardiovascular and Metabolic Medicine, University of Leeds , Leeds , United Kingdom
| |
Collapse
|
31
|
Incognito AV, Doherty CJ, Nardone M, Lee JB, Notay K, Seed JD, Millar PJ. Evidence for differential control of muscle sympathetic single units during mild sympathoexcitation in young, healthy humans. Am J Physiol Heart Circ Physiol 2019; 316:H13-H23. [DOI: 10.1152/ajpheart.00675.2018] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Two subpopulations of muscle sympathetic single units with opposite discharge characteristics have been identified during low-level cardiopulmonary baroreflex loading and unloading in middle-aged adults and patients with heart failure. The present study sought to determine whether similar subpopulations are present in young healthy adults during cardiopulmonary baroreflex unloading ( study 1) and rhythmic handgrip exercise ( study 2). Continuous hemodynamic and multiunit and single unit muscle sympathetic nerve activity (MSNA) data were collected at baseline and during nonhypotensive lower body negative pressure (LBNP; n = 12) and 40% maximal voluntary contraction rhythmic handgrip exercise (RHG; n = 24). Single unit MSNA responses were classified as anticipated or paradoxical based on whether changes were concordant or discordant with the multiunit MSNA response, respectively. LBNP and RHG both increased multiunit MSNA burst frequency (∆5 ± 3 bursts/min, P < 0.001; ∆5 ± 8 bursts/min, P = 0.005), burst amplitude (∆5 ± 7%, P = 0.04; ∆13 ± 14%, P < 0.001), and total MSNA (∆302 ± 191 AU/min, P = 0.001; ∆585 ± 556 AU/min, P < 0.001). During LBNP and RHG, 43 and 64 muscle single units were identified, respectively, which increased spike frequency (∆9 ± 11 spikes/min, P < 0.001; ∆10 ± 19 spikes/min, P < 0.001) and the probability of multiple spike firing (∆10 ± 12%, P < 0.001; ∆11 ± 26%, P = 0.001). During LBNP and RHG, 36 (84%) and 39 (61%) single units possessed anticipated firing responses (∆12 ± 10 spikes/min, P < 0.001; ∆19 ± 19 spikes/min, P < 0.001), whereas 7 (16%) and 25 (39%) single units exhibited paradoxical reductions (∆−3 ± 1 spikes/min, P = 0.003; ∆−4 ± 5 spikes/min, P < 0.001). The observation of divergent subpopulations of muscle sympathetic single units in healthy young humans during two mild sympathoexcitatory stressors supports differential control at the fiber level as a fundamental characteristic of human sympathetic regulation. NEW & NOTEWORTHY The activity of muscle sympathetic single units was recorded during cardiopulmonary baroreceptor unloading and rhythmic handgrip exercise in young healthy humans. During both stressors, the majority of single units (84% and 61%) exhibited anticipated behavior concordant with the integrated muscle sympathetic response, whereas a smaller proportion (16% and 39%) exhibited paradoxical sympathoinhibition. These results support differential control of postganglionic muscle sympathetic fibers as a characteristic of human sympathetic regulation during mild sympathoexcitatory stress. Listen to this article's corresponding podcast at https://ajpheart.podbean.com/e/differential-control-of-sympathetic-outflow-in-young-humans/ .
Collapse
Affiliation(s)
- Anthony V. Incognito
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, Ontario, Canada
| | - Connor J. Doherty
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, Ontario, Canada
| | - Massimo Nardone
- Department of Kinesiology, University of Guelph-Humber, Toronto, Ontario, Canada
| | - Jordan B. Lee
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, Ontario, Canada
| | - Karambir Notay
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, Ontario, Canada
| | - Jeremy D. Seed
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, Ontario, Canada
| | - Philip J. Millar
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, Ontario, Canada
- Toronto General Research Institute, Toronto, Ontario, Canada
| |
Collapse
|
32
|
Linz D, Elliott AD, Hohl M, Malik V, Schotten U, Dobrev D, Nattel S, Böhm M, Floras J, Lau DH, Sanders P. Role of autonomic nervous system in atrial fibrillation. Int J Cardiol 2018; 287:181-188. [PMID: 30497894 DOI: 10.1016/j.ijcard.2018.11.091] [Citation(s) in RCA: 91] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Revised: 11/01/2018] [Accepted: 11/14/2018] [Indexed: 01/08/2023]
Abstract
Atrial fibrillation is the most common sustained arrhythmia and is associated with significant morbidity and mortality. The autonomic nervous system has a significant role in the milieu predisposing to the triggers, perpetuators and substrate for atrial fibrillation. It has direct electrophysiological effects and causes alterations in atrial structure. In a significant portion of patients with atrial fibrillation, the autonomic nervous system activity is likely a composite of reflex excitation due to atrial fibrillation itself and contribution of concomitant risk factors such as hypertension, obesity and sleep-disordered breathing. We review the role of autonomic nervous system activation, with focus on changes in reflex control during atrial fibrillation and the role of combined sympatho-vagal activation for atrial fibrillation initiation, maintenance and progression. Finally, we discuss the potential impact of combined aggressive risk factor management as a strategy to modify the autonomic nervous system in patients with atrial fibrillation and to reverse the arrhythmogenic substrate.
Collapse
Affiliation(s)
- Dominik Linz
- Centre for Heart Rhythm Disorders (CHRD), South Australian Health and Medical Research Institute (SAHMRI), University of Adelaide and Royal Adelaide Hospital, Adelaide, Australia.
| | - Adrian D Elliott
- Centre for Heart Rhythm Disorders (CHRD), South Australian Health and Medical Research Institute (SAHMRI), University of Adelaide and Royal Adelaide Hospital, Adelaide, Australia
| | - Mathias Hohl
- Saarland University, Klinik für Innere Medizin III (Cardiology, Angiology and Intensive Care Medicine), Homburg, Saar, Germany
| | - Varun Malik
- Centre for Heart Rhythm Disorders (CHRD), South Australian Health and Medical Research Institute (SAHMRI), University of Adelaide and Royal Adelaide Hospital, Adelaide, Australia
| | - Ulrich Schotten
- University Maastricht, Dept. of Physiology, Maastricht, the Netherlands
| | - Dobromir Dobrev
- Institute of Pharmacology, West German Heart and Vascular Center, University Duisburg-Essen, Essen, Germany
| | - Stanley Nattel
- Institute of Pharmacology, West German Heart and Vascular Center, University Duisburg-Essen, Essen, Germany; Department of Medicine, Montreal Heart Institute, Université de Montréal, Montréal, Quebec, Canada; Department of Pharmacology and Therapeutics, McGill University, Montreal, Quebec, Canada
| | - Michael Böhm
- Saarland University, Klinik für Innere Medizin III (Cardiology, Angiology and Intensive Care Medicine), Homburg, Saar, Germany
| | - John Floras
- University Health Network and Sinai Health System Division of Cardiology, University of Toronto, Toronto, Ontario, Canada
| | - Dennis H Lau
- Centre for Heart Rhythm Disorders (CHRD), South Australian Health and Medical Research Institute (SAHMRI), University of Adelaide and Royal Adelaide Hospital, Adelaide, Australia
| | - Prashanthan Sanders
- Centre for Heart Rhythm Disorders (CHRD), South Australian Health and Medical Research Institute (SAHMRI), University of Adelaide and Royal Adelaide Hospital, Adelaide, Australia
| |
Collapse
|
33
|
Notarius CF, Millar PJ, Doherty CJ, Incognito AV, Haruki N, O'Donnell E, Floras JS. Microneurographic characterization of sympathetic responses during 1-leg exercise in young and middle-aged humans. Appl Physiol Nutr Metab 2018; 44:194-199. [PMID: 30063163 DOI: 10.1139/apnm-2018-0101] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Muscle sympathetic nerve activity (MSNA) at rest increases with age. However, the influence of age on MSNA recorded during dynamic leg exercise is unknown. We tested the hypothesis that aging attenuates the sympatho-inhibitory response observed in young subjects performing mild to moderate 1-leg cycling. After predetermining peak oxygen uptake, we compared contra-lateral fibular nerve MSNA during 2 min each of mild (unloaded) and moderate (30%-40% of the work rate at peak oxygen uptake, halved for single leg) 1-leg cycling in 18 young (age, 23 ± 1 years (mean ± SE)) and 18 middle-aged (age, 57 ± 2 years) sex-matched healthy subjects. Mean height, weight, resting heart rate, systolic blood pressure, and percent predicted peak oxygen uptake were similar between groups. Middle-aged subjects had higher resting MSNA burst frequency and incidence (P < 0.001) and diastolic blood pressure (P = 0.04). During moderate 1-leg cycling, older subjects' systolic blood pressure increased more (+21 ± 5 vs. +10 ± 1 mm Hg; P = 0.02) and their fall in MSNA burst incidence was amplified (-19 ± 2 vs. -11 ± 2 bursts/100 heart beats; P = 0.01) but because heart rate rose less (+15 ± 3 vs. +19 ± 2 bpm; P = 0.03), exercise induced similar reductions in burst frequency (P = 0.25). Contrary to our initial hypothesis, with advancing age, mild- to moderate-intensity dynamic leg exercise elicits a greater rise in systolic blood pressure and a larger fall in MSNA.
Collapse
Affiliation(s)
- Catherine F Notarius
- a University Health Network and Mount Sinai Hospital Division of Cardiology, University of Toronto, Toronto General Hospital, University Health Network, 200 Elizabeth St., Toronto, ON M5G 2C4, Canada
| | - Philip J Millar
- a University Health Network and Mount Sinai Hospital Division of Cardiology, University of Toronto, Toronto General Hospital, University Health Network, 200 Elizabeth St., Toronto, ON M5G 2C4, Canada.,b Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Connor J Doherty
- b Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Anthony V Incognito
- b Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Nobuhiko Haruki
- a University Health Network and Mount Sinai Hospital Division of Cardiology, University of Toronto, Toronto General Hospital, University Health Network, 200 Elizabeth St., Toronto, ON M5G 2C4, Canada
| | - Emma O'Donnell
- a University Health Network and Mount Sinai Hospital Division of Cardiology, University of Toronto, Toronto General Hospital, University Health Network, 200 Elizabeth St., Toronto, ON M5G 2C4, Canada.,c School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough LE11 3TU, UK
| | - John S Floras
- a University Health Network and Mount Sinai Hospital Division of Cardiology, University of Toronto, Toronto General Hospital, University Health Network, 200 Elizabeth St., Toronto, ON M5G 2C4, Canada
| |
Collapse
|
34
|
Millar PJ, Oechslin EN. Hypertensive Response With Exercise to Reveal Increased Cardiovascular Risk in Adults With Aortic Coarctation Repair: Value and Caution. Can J Cardiol 2018; 34:536-539. [PMID: 29731016 DOI: 10.1016/j.cjca.2018.03.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Revised: 03/22/2018] [Accepted: 03/22/2018] [Indexed: 11/27/2022] Open
Affiliation(s)
- Philip J Millar
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, Ontario, Canada; Toronto General Research Institute, Toronto General Hospital, Toronto, Ontario, Canada.
| | - Erwin N Oechslin
- Division of Cardiology, Peter Munk Cardiac Center, Toronto Congenital Cardiac Center for Adults, and University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
35
|
Incognito AV, Doherty CJ, Lee JB, Burns MJ, Millar PJ. Ischemic preconditioning does not alter muscle sympathetic responses to static handgrip and metaboreflex activation in young healthy men. Physiol Rep 2018; 5:5/14/e13342. [PMID: 28720715 PMCID: PMC5532483 DOI: 10.14814/phy2.13342] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2017] [Accepted: 05/30/2017] [Indexed: 11/25/2022] Open
Abstract
Ischemic preconditioning (IPC) has been hypothesized to elicit ergogenic effects by reducing feedback from metabolically sensitive group III/IV muscle afferents during exercise. If so, reflex efferent neural outflow should be attenuated. We investigated the effects of IPC on muscle sympathetic nerve activity (MSNA) during static handgrip (SHG) and used post‐exercise circulatory occlusion (PECO) to isolate for the muscle metaboreflex. Thirty‐seven healthy men (age: 24 ± 5 years [mean ± SD]) were randomized to receive sham (n = 16) or IPC (n = 21) interventions. Blood pressure, heart rate, and MSNA (microneurography; sham n = 11 and IPC n = 18) were collected at rest and during 2 min of SHG (30% maximal voluntary contraction) and 3 min of PECO before (PRE) and after (POST) sham or IPC treatment (3 × 5 min 20 mmHg or 200 mmHg unilateral upper arm cuff inflation). Resting mean arterial pressure was higher following sham (79 ± 7 vs. 83 ± 6 mmHg, P < 0.01) but not IPC (81 ± 6 vs. 82 ± 6 mmHg, P > 0.05), while resting MSNA burst frequency was unchanged (P > 0.05) with sham (18 ± 7 vs. 19 ± 9 bursts/min) or IPC (17 ± 7 vs. 19 ± 7 bursts/min). Mean arterial pressure, heart rate, stroke volume, cardiac output, and total vascular conductance responses during SHG and PECO were comparable PRE and POST following sham and IPC (All P > 0.05). Similarly, MSNA burst frequency, burst incidence, and total MSNA responses during SHG and PECO were comparable PRE and POST with sham and IPC (All P > 0.05). These findings demonstrate that IPC does not reduce hemodynamic responses or central sympathetic outflow directed toward the skeletal muscle during activation of the muscle metaboreflex using static exercise or subsequent PECO.
Collapse
Affiliation(s)
- Anthony V Incognito
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, Ontario, Canada
| | - Connor J Doherty
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, Ontario, Canada
| | - Jordan B Lee
- Department of Kinesiology, University of Guelph-Humber, Toronto, Ontario, Canada
| | - Matthew J Burns
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, Ontario, Canada
| | - Philip J Millar
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, Ontario, Canada .,Toronto General Research Institute, Toronto General Hospital, Toronto, Ontario, Canada
| |
Collapse
|
36
|
Shoemaker JK, Klassen SA, Badrov MB, Fadel PJ. Fifty years of microneurography: learning the language of the peripheral sympathetic nervous system in humans. J Neurophysiol 2018; 119:1731-1744. [PMID: 29412776 DOI: 10.1152/jn.00841.2017] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
As a primary component of homeostasis, the sympathetic nervous system enables rapid adjustments to stress through its ability to communicate messages among organs and cause targeted and graded end organ responses. Key in this communication model is the pattern of neural signals emanating from the central to peripheral components of the sympathetic nervous system. But what is the communication strategy employed in peripheral sympathetic nerve activity (SNA)? Can we develop and interpret the system of coding in SNA that improves our understanding of the neural control of the circulation? In 1968, Hagbarth and Vallbo (Hagbarth KE, Vallbo AB. Acta Physiol Scand 74: 96-108, 1968) reported the first use of microneurographic methods to record sympathetic discharges in peripheral nerves of conscious humans, allowing quantification of SNA at rest and sympathetic responsiveness to physiological stressors in health and disease. This technique also has enabled a growing investigation into the coding patterns within, and cardiovascular outcomes associated with, postganglionic SNA. This review outlines how results obtained by microneurographic means have improved our understanding of SNA outflow patterns at the action potential level, focusing on SNA directed toward skeletal muscle in conscious humans.
Collapse
Affiliation(s)
- J Kevin Shoemaker
- School of Kinesiology, University of Western Ontario , London, Ontario , Canada
| | - Stephen A Klassen
- School of Kinesiology, University of Western Ontario , London, Ontario , Canada
| | - Mark B Badrov
- School of Kinesiology, University of Western Ontario , London, Ontario , Canada
| | - Paul J Fadel
- Department of Kinesiology, University of Texas at Arlington , Arlington, Texas
| |
Collapse
|
37
|
Nardone M, Incognito AV, Millar PJ. Evidence for Pressure-Independent Sympathetic Modulation of Central Pulse Wave Velocity. J Am Heart Assoc 2018; 7:JAHA.117.007971. [PMID: 29378730 PMCID: PMC5850264 DOI: 10.1161/jaha.117.007971] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Background Whether the sympathetic nervous system can directly alter central aortic stiffness remains controversial, mainly because of the difficulty in experimentally augmenting peripheral vasoconstrictor activity without changing blood pressure. Methods and Results To address this limitation, we utilized low‐level cardiopulmonary baroreflex loading and unloading shown previously to alter sympathetic outflow without evoking parallel hemodynamic modulation. Blood pressure and carotid‐femoral aortic pulse wave velocity (cf‐PWV) were measured in 32 healthy participants (24±2 years; women: n=15) before and during 12‐minute applications of low‐level lower body negative pressure; −7 mm Hg) and lower body positive pressure; +7 mm Hg), applied in a random order. Fibular nerve microneurography was used to collect muscle sympathetic nerve activity (MSNA) in a subset (n=8) to confirm peripheral sympathetic responses. During lower body negative pressure, heart rate, blood pressure, stroke volume, cardiac output, and total peripheral resistance were not statistically different (all P>0.05); MSNA burst frequency (+15%; P=0.007), total MSNA (+44%; P=0.006), and cf‐PWV (∆+0.3±0.2 m/s; P<0.001) increased. In total, 28 (88%) of participants observed an increase in cf‐PWV greater than the baseline typical error of measurement. During lower body positive pressure, heart rate, stroke volume, cardiac output, and total peripheral resistance were not statistically different (all P>0.05), though blood pressure increased (P<0.05) and pulse pressure decreased (P=0.01); MSNA burst frequency (−4%; P=0.37), total MSNA (−7%; P=0.89), and cf‐PWV (∆0.0±0.2 m/s; P=0.68) were not statistically different. Conclusions These findings provide evidence that acute elevations in peripheral sympathetic activity can increase central aortic PWV in young participants independent of a change in distending or pulsatile blood pressure or heart rate.
Collapse
Affiliation(s)
- Massimo Nardone
- Department of Kinesiology, University of Guelph-Humber, Toronto, Ontario, Canada
| | - Anthony V Incognito
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, Ontario, Canada
| | - Philip J Millar
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, Ontario, Canada .,Toronto General Research Institute, Toronto General Hospital, Toronto, Ontario, Canada
| |
Collapse
|
38
|
Macefield VG, Wallin BG. Physiological and pathophysiological firing properties of single postganglionic sympathetic neurons in humans. J Neurophysiol 2017; 119:944-956. [PMID: 29142091 DOI: 10.1152/jn.00004.2017] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
It has long been known from microneurographic recordings in human subjects that the activity of postganglionic sympathetic axons occurs as spontaneous bursts, with muscle sympathetic nerve activity (MSNA) exhibiting strong cardiac rhythmicity via the baroreflex and skin sympathetic nerve activity showing much weaker cardiac modulation. Here we review the firing properties of single sympathetic neurons, obtained using highly selective microelectrodes. Individual vasoconstrictor neurons supplying muscle or skin, or sudomotor neurons supplying sweat glands, always discharge with a low firing probability (~30%) and at very low frequencies (~0.5 Hz). Moreover, they usually fire only once per cardiac interval but can fire greater than four times within a burst. Modeling has shown that this pattern can best be explained by individual neurons being driven by, on average, two preganglionic inputs. Unitary recordings of muscle vasoconstrictor neurons have been made in several pathophysiological states, including heart failure, hypertension, obstructive sleep apnea, bronchiectasis, chronic obstructive pulmonary disease, depression, and panic disorder. The augmented MSNA in each of these diseases features an increase in firing probability and discharge frequency of individual muscle vasoconstrictor neurons above that seen in healthy subjects, yet firing rates rarely exceed 1 Hz. However, unlike patients with heart failure, all patients with respiratory disease or panic disorder, and patients with hyperhidrosis, exhibited an increase in multiple within-burst firing, which emphasizes the different modes by which the sympathetic nervous system grades its output in pathophysiological states of high sympathetic nerve activity.
Collapse
Affiliation(s)
- Vaughan G Macefield
- School of Medicine, Western Sydney University , Sydney , Australia.,Neuroscience Research Australia, Sydney , Australia.,Baker Heart and Diabetes Institute , Melbourne , Australia
| | - B Gunnar Wallin
- Department of Clinical Neurophysiology, Institute of Neuroscience and Physiology, Sahlgren Academy at University of Gothenburg , Gothenburg , Sweden
| |
Collapse
|
39
|
Incognito AV, Doherty CJ, Lee JB, Burns MJ, Millar PJ. Interindividual variability in muscle sympathetic responses to static handgrip in young men: evidence for sympathetic responder types? Am J Physiol Regul Integr Comp Physiol 2017; 314:R114-R121. [PMID: 29070505 DOI: 10.1152/ajpregu.00266.2017] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Negative and positive muscle sympathetic nerve activity (MSNA) responders have been observed during mental stress. We hypothesized that similar MSNA response patterns could be identified during the first minute of static handgrip and contribute to the interindividual variability throughout exercise. Supine measurements of multiunit MSNA (microneurography) and continuous blood pressure (Finometer) were recorded in 29 young healthy men during the first (HG1) and second (HG2) minute of static handgrip (30% maximal voluntary contraction) and subsequent postexercise circulatory occlusion (PECO). Responders were identified on the basis of differences from the typical error of baseline total MSNA: 7 negative, 12 positive, and 10 nonresponse patterns. Positive responders demonstrated larger total MSNA responses during HG1 ( P < 0.01) and HG2 ( P < 0.0001); however, the increases in blood pressure throughout handgrip exercise were similar between all groups, as were the changes in heart rate, stroke volume, cardiac output, total vascular conductance, and respiration (all P > 0.05). Comparing negative and positive responders, total MSNA responses were similar during PECO ( P = 0.17) but opposite from HG2 to PECO (∆40 ± 46 vs. ∆-21 ± 62%, P = 0.04). Negative responders also had a shorter time-to-peak diastolic blood pressure during HG1 (20 ± 20 vs. 44 ± 14 s, P < 0.001). Total MSNA responses during HG1 were associated with responses to PECO ( r = 0.39, P < 0.05), the change from HG2 to PECO ( r = -0.49, P < 0.01), and diastolic blood pressure time to peak ( r = 0.50, P < 0.01). Overall, MSNA response patterns during the first minute of static handgrip contribute to interindividual variability and appear to be influenced by differences in central command, muscle metaboreflex activation, and rate of loading of the arterial baroreflex.
Collapse
Affiliation(s)
- Anthony V Incognito
- Department of Human Health and Nutritional Sciences, University of Guelph , Guelph, Ontario , Canada
| | - Connor J Doherty
- Department of Human Health and Nutritional Sciences, University of Guelph , Guelph, Ontario , Canada
| | - Jordan B Lee
- Department of Kinesiology, University of Guelph-Humber , Toronto, Ontario , Canada
| | - Matthew J Burns
- Department of Human Health and Nutritional Sciences, University of Guelph , Guelph, Ontario , Canada
| | - Philip J Millar
- Department of Human Health and Nutritional Sciences, University of Guelph , Guelph, Ontario , Canada.,Toronto General Research Institute , Toronto, Ontario , Canada
| |
Collapse
|
40
|
Doherty CJ, Incognito AV, Notay K, Burns MJ, Slysz JT, Seed JD, Nardone M, Burr JF, Millar PJ. Muscle sympathetic nerve responses to passive and active one-legged cycling: insights into the contributions of central command. Am J Physiol Heart Circ Physiol 2017; 314:H3-H10. [PMID: 28939650 DOI: 10.1152/ajpheart.00494.2017] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The contribution of central command to the peripheral vasoconstrictor response during exercise has been investigated using primarily handgrip exercise. The purpose of the present study was to compare muscle sympathetic nerve activity (MSNA) responses during passive (involuntary) and active (voluntary) zero-load cycling to gain insights into the effects of central command on sympathetic outflow during dynamic exercise. Hemodynamic measurements and contralateral leg MSNA (microneurography) data were collected in 18 young healthy participants at rest and during 2 min of passive and active zero-load one-legged cycling. Arterial baroreflex control of MSNA burst occurrence and burst area were calculated separately in the time domain. Blood pressure and stroke volume increased during exercise ( P < 0.0001) but were not different between passive and active cycling ( P > 0.05). In contrast, heart rate, cardiac output, and total vascular conductance were greater during the first and second minute of active cycling ( P < 0.001). MSNA burst frequency and incidence decreased during passive and active cycling ( P < 0.0001), but no differences were detected between exercise modes ( P > 0.05). Reductions in total MSNA were attenuated during the first ( P < 0.0001) and second ( P = 0.0004) minute of active compared with passive cycling, in concert with increased MSNA burst amplitude ( P = 0.02 and P = 0.005, respectively). The sensitivity of arterial baroreflex control of MSNA burst occurrence was lower during active than passive cycling ( P = 0.01), while control of MSNA burst strength was unchanged ( P > 0.05). These results suggest that central feedforward mechanisms are involved primarily in modulating the strength, but not the occurrence, of a sympathetic burst during low-intensity dynamic leg exercise. NEW & NOTEWORTHY Muscle sympathetic nerve activity burst frequency decreased equally during passive and active cycling, but reductions in total muscle sympathetic nerve activity were attenuated during active cycling. These results suggest that central command primarily regulates the strength, not the occurrence, of a muscle sympathetic burst during low-intensity dynamic leg exercise.
Collapse
Affiliation(s)
- Connor J Doherty
- Department of Human Health and Nutritional Sciences, University of Guelph , Guelph, Ontario , Canada
| | - Anthony V Incognito
- Department of Human Health and Nutritional Sciences, University of Guelph , Guelph, Ontario , Canada
| | - Karambir Notay
- Department of Human Health and Nutritional Sciences, University of Guelph , Guelph, Ontario , Canada
| | - Matthew J Burns
- Department of Human Health and Nutritional Sciences, University of Guelph , Guelph, Ontario , Canada
| | - Joshua T Slysz
- Department of Human Health and Nutritional Sciences, University of Guelph , Guelph, Ontario , Canada
| | - Jeremy D Seed
- Department of Human Health and Nutritional Sciences, University of Guelph , Guelph, Ontario , Canada
| | - Massimo Nardone
- Department of Kinesiology, University of Guelph-Humber , Toronto, Ontario , Canada
| | - Jamie F Burr
- Department of Human Health and Nutritional Sciences, University of Guelph , Guelph, Ontario , Canada
| | - Philip J Millar
- Department of Human Health and Nutritional Sciences, University of Guelph , Guelph, Ontario , Canada.,Toronto General Research Institute, Toronto General Hospital , Toronto, Ontario , Canada
| |
Collapse
|
41
|
Azevedo ER, Mak S, Floras JS, Parker JD. Acute effects of angiotensin-converting enzyme inhibition versus angiotensin II receptor blockade on cardiac sympathetic activity in patients with heart failure. Am J Physiol Regul Integr Comp Physiol 2017; 313:R410-R417. [PMID: 28679681 DOI: 10.1152/ajpregu.00095.2017] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Revised: 06/12/2017] [Accepted: 06/30/2017] [Indexed: 01/17/2023]
Abstract
The beneficial effects of angiotensin-converting enzyme (ACE) inhibitors and angiotensin II (ANG II) receptor antagonists in patients with heart failure secondary to reduced ejection fraction (HFrEF) are felt to result from prevention of the adverse effects of ANG II on systemic afterload and renal homeostasis. However, ANG II can activate the sympathetic nervous system, and part of the beneficial effects of ACE inhibitors and ANG II antagonists may result from their ability to inhibit such activation. We examined the acute effects of the ACE inhibitor captopril (25 mg, n = 9) and the ANG II receptor antagonist losartan (50 mg, n = 10) on hemodynamics as well as total body and cardiac norepinephrine spillover in patients with chronic HFrEF. Hemodynamic and neurochemical measurements were made at baseline and at 1, 2, and 4 h after oral dosing. Administration of both drugs caused significant reductions in systemic arterial, cardiac filling, and pulmonary artery pressures (P < 0.05 vs. baseline). There was no significant difference in the magnitude of those hemodynamic effects. Plasma concentrations of ANG II were significantly decreased by captopril and increased by losartan (P < 0.05 vs. baseline for both). Total body sympathetic activity increased in response to both captopril and losartan (P < 0.05 vs. baseline for both); however, there was no change in cardiac sympathetic activity in response to either drug. The results of the present study do not support the hypothesis that the acute inhibition of the renin-angiotensin system has sympathoinhibitory effects in patients with chronic HFrEF.
Collapse
Affiliation(s)
- Eduardo R Azevedo
- Division of Cardiology, Department of Medicine, Mount Sinai Hospital, Toronto, Ontario, Canada; Lunenfeld-Tanenbaum Research Institute, University of Toronto, Toronto, Ontario, Canada; and Department of Pharmacology and Toxicology, University of Toronto, Toronto, Ontario, Canada
| | - Susanna Mak
- Division of Cardiology, Department of Medicine, Mount Sinai Hospital, Toronto, Ontario, Canada; Lunenfeld-Tanenbaum Research Institute, University of Toronto, Toronto, Ontario, Canada; and Department of Pharmacology and Toxicology, University of Toronto, Toronto, Ontario, Canada
| | - John S Floras
- Division of Cardiology, Department of Medicine, Mount Sinai Hospital, Toronto, Ontario, Canada; Lunenfeld-Tanenbaum Research Institute, University of Toronto, Toronto, Ontario, Canada; and Department of Pharmacology and Toxicology, University of Toronto, Toronto, Ontario, Canada
| | - John D Parker
- Division of Cardiology, Department of Medicine, Mount Sinai Hospital, Toronto, Ontario, Canada; Lunenfeld-Tanenbaum Research Institute, University of Toronto, Toronto, Ontario, Canada; and Department of Pharmacology and Toxicology, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
42
|
Notay K, Incognito AV, Millar PJ. Acute beetroot juice supplementation on sympathetic nerve activity: a randomized, double-blind, placebo-controlled proof-of-concept study. Am J Physiol Heart Circ Physiol 2017; 313:H59-H65. [DOI: 10.1152/ajpheart.00163.2017] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Revised: 05/03/2017] [Accepted: 05/03/2017] [Indexed: 01/09/2023]
Abstract
Acute dietary nitrate ([Formula: see text]) supplementation reduces resting blood pressure in healthy normotensives. This response has been attributed to increased nitric oxide bioavailability and peripheral vasodilation, although nitric oxide also tonically inhibits central sympathetic outflow. We hypothesized that acute dietary [Formula: see text] supplementation using beetroot (BR) juice would reduce blood pressure and muscle sympathetic nerve activity (MSNA) at rest and during exercise. Fourteen participants (7 men and 7 women, age: 25 ± 10 yr) underwent blood pressure and MSNA measurements before and after (165–180 min) ingestion of 70ml high-[Formula: see text] (~6.4 mmol [Formula: see text]) BR or [Formula: see text]-depleted BR placebo (PL; ~0.0055 mmol [Formula: see text]) in a double-blind, randomized, crossover design. Blood pressure and MSNA were also collected during 2 min of static handgrip (30% maximal voluntary contraction). The changes in resting MSNA burst frequency (−3 ± 5 vs. 3 ± 4 bursts/min, P = 0.001) and burst incidence (−4 ± 7 vs. 4 ± 5 bursts/100 heart beats, P = 0.002) were lower after BR versus PL, whereas systolic blood pressure (−1 ± 5 vs. 2 ± 5 mmHg, P = 0.30) and diastolic blood pressure (4 ± 5 vs. 5 ± 7 mmHg, P = 0.68) as well as spontaneous arterial sympathetic baroreflex sensitivity ( P = 0.95) were not different. During static handgrip, the change in MSNA burst incidence (1 ± 8 vs. 8 ± 9 bursts/100 heart beats, P = 0.04) was lower after BR versus PL, whereas MSNA burst frequency (6 ± 6 vs. 11 ± 10 bursts/min, P = 0.11) as well as systolic blood pressure (11 ± 7 vs. 12 ± 8 mmHg, P = 0.94) and diastolic blood pressure (11 ± 4 vs. 11 ± 4 mmHg, P = 0.60) were not different. Collectively, these data provide proof of principle that acute BR supplementation can decrease central sympathetic outflow at rest and during exercise. Dietary [Formula: see text] supplementation may represent a novel intervention to target exaggerated sympathetic outflow in clinical populations. NEW & NOTEWORTHY The hemodynamic benefits of dietary nitrate supplementation have been attributed to nitric oxide-mediated peripheral vasodilation. Here, we provide proof of concept that acute dietary nitrate supplementation using beetroot juice can decrease muscle sympathetic outflow at rest and during exercise in a normotensive population. These results have applications for targeting central sympathetic overactivation in disease.
Collapse
Affiliation(s)
- Karambir Notay
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, Ontario, Canada; and
| | - Anthony V. Incognito
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, Ontario, Canada; and
| | - Philip J. Millar
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, Ontario, Canada; and
- Toronto General Research Institute, Toronto General Hospital, Toronto, Ontario, Canada
| |
Collapse
|
43
|
Takamura M, Murai H, Okabe Y, Okuyama Y, Hamaoka T, Mukai Y, Tokuhisa H, Inoue O, Takashima SI, Kato T, Matsuo S, Usui S, Furusho H, Kaneko S. Significant correlation between renal 123I-metaiodobenzylguanidine scintigraphy and muscle sympathetic nerve activity in patients with primary hypertension. J Nucl Cardiol 2017; 24:363-371. [PMID: 28070734 DOI: 10.1007/s12350-016-0760-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2016] [Accepted: 08/05/2016] [Indexed: 01/08/2023]
Abstract
BACKGROUND Iodine-123 metaiodobenzylguanidine (123I-MIBG) scintigraphy is used as a noninvasive imaging method for assessing cardiac sympathetic nerve activity. We tested the hypothesis that renal 123I-MIBG imaging is correlated with muscle sympathetic nerve activity (MSNA) in patients with primary hypertension. METHODS Thirty-one consecutive patients with primary hypertension were included. Multiunit MSNA was recorded from the peroneal nerve to evaluate direct efferent sympathetic nerve activity. Planar renal and cardiac 123I-MIBG images were acquired. Early and delayed kidney-to-mediastinum ratio (K/M), early and delayed heart-to-mediastinum ratio (H/M), and washout rates (WR) were calculated. RESULTS In 27 of 31 patients, blood pressure was controlled on antihypertensive medication. Mean systolic and diastolic blood pressures were 118 ± 18 and 67 ± 15 mmHg, respectively. Although early and late K/M and H/M were not significantly correlated with MSNA, both cardiac and average renal WR were significantly correlated with MSNA (r = 0.45, P = .0035 and r = 0.68, P < .001, respectively). Right and left renal WR were similarly correlated with MSNA. Renal WR was significantly higher than cardiac WR (43.2% vs 25.8%, P < .001) in these patients with hypertension. CONCLUSIONS Renal 123I-MIBG WR was significantly associated with multiunit MSNA. Renal 123I-MIBG imaging offers a noninvasive clinical methodology for assessing renal sympathetic nerve function.
Collapse
Affiliation(s)
- Masayuki Takamura
- Department of Disease Control and Homeostasis, Graduate School of Medical Science, Kanazawa University, 13-1 Takara-machi, Kanazawa, 920-8641, Japan
| | - Hisayoshi Murai
- Department of Disease Control and Homeostasis, Graduate School of Medical Science, Kanazawa University, 13-1 Takara-machi, Kanazawa, 920-8641, Japan.
| | - Yoshitaka Okabe
- Department of Disease Control and Homeostasis, Graduate School of Medical Science, Kanazawa University, 13-1 Takara-machi, Kanazawa, 920-8641, Japan
| | - Yuji Okuyama
- Department of Cardiology, Osaka General Medical Center, Osaka, Japan
| | - Takuto Hamaoka
- Department of Disease Control and Homeostasis, Graduate School of Medical Science, Kanazawa University, 13-1 Takara-machi, Kanazawa, 920-8641, Japan
| | - Yusuke Mukai
- Department of Disease Control and Homeostasis, Graduate School of Medical Science, Kanazawa University, 13-1 Takara-machi, Kanazawa, 920-8641, Japan
| | - Hideki Tokuhisa
- Department of Disease Control and Homeostasis, Graduate School of Medical Science, Kanazawa University, 13-1 Takara-machi, Kanazawa, 920-8641, Japan
| | - Oto Inoue
- Department of Disease Control and Homeostasis, Graduate School of Medical Science, Kanazawa University, 13-1 Takara-machi, Kanazawa, 920-8641, Japan
| | - Shin-Ichiro Takashima
- Department of Disease Control and Homeostasis, Graduate School of Medical Science, Kanazawa University, 13-1 Takara-machi, Kanazawa, 920-8641, Japan
| | - Takeshi Kato
- Department of Disease Control and Homeostasis, Graduate School of Medical Science, Kanazawa University, 13-1 Takara-machi, Kanazawa, 920-8641, Japan
| | - Shinro Matsuo
- Department of Nuclear Medicine, Graduate School of Medical Science, Kanazawa University, Kanazawa, Japan
| | - Soichiro Usui
- Department of Disease Control and Homeostasis, Graduate School of Medical Science, Kanazawa University, 13-1 Takara-machi, Kanazawa, 920-8641, Japan
| | - Hiroshi Furusho
- Department of Disease Control and Homeostasis, Graduate School of Medical Science, Kanazawa University, 13-1 Takara-machi, Kanazawa, 920-8641, Japan
| | - Shuichi Kaneko
- Department of Disease Control and Homeostasis, Graduate School of Medical Science, Kanazawa University, 13-1 Takara-machi, Kanazawa, 920-8641, Japan
| |
Collapse
|
44
|
Toschi-Dias E, Rondon MUPB, Cogliati C, Paolocci N, Tobaldini E, Montano N. Contribution of Autonomic Reflexes to the Hyperadrenergic State in Heart Failure. Front Neurosci 2017; 11:162. [PMID: 28424575 PMCID: PMC5372354 DOI: 10.3389/fnins.2017.00162] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2016] [Accepted: 03/13/2017] [Indexed: 12/28/2022] Open
Abstract
Heart failure (HF) is a complex syndrome representing the clinical endpoint of many cardiovascular diseases of different etiology. Given its prevalence, incidence and social impact, a better understanding of HF pathophysiology is paramount to implement more effective anti-HF therapies. Based on left ventricle (LV) performance, HF is currently classified as follows: (1) with reduced ejection fraction (HFrEF); (2) with mid-range EF (HFmrEF); and (3) with preserved EF (HFpEF). A central tenet of HFrEF pathophysiology is adrenergic hyperactivity, featuring increased sympathetic nerve discharge and a progressive loss of rhythmical sympathetic oscillations. The role of reflex mechanisms in sustaining adrenergic abnormalities during HFrEF is increasingly well appreciated and delineated. However, the same cannot be said for patients affected by HFpEF or HFmrEF, whom also present with autonomic dysfunction. Neural mechanisms of cardiovascular regulation act as “controller units,” detecting and adjusting for changes in arterial blood pressure, blood volume, and arterial concentrations of oxygen, carbon dioxide and pH, as well as for humoral factors eventually released after myocardial (or other tissue) ischemia. They do so on a beat-to-beat basis. The central dynamic integration of all these afferent signals ensures homeostasis, at rest and during states of physiological or pathophysiological stress. Thus, the net result of information gathered by each controller unit is transmitted by the autonomic branch using two different codes: intensity and rhythm of sympathetic discharges. The main scope of the present article is to (i) review the key neural mechanisms involved in cardiovascular regulation; (ii) discuss how their dysfunction accounts for the hyperadrenergic state present in certain forms of HF; and (iii) summarize how sympathetic efferent traffic reveal central integration among autonomic mechanisms under physiological and pathological conditions, with a special emphasis on pathophysiological characteristics of HF.
Collapse
Affiliation(s)
- Edgar Toschi-Dias
- Heart Institute (InCor) do Hospital das Clínicas da Faculdade de Medicina da Universidade de São PauloSão Paulo, Brazil.,Department of Internal Medicine, Fondazione IRCCS Ca' Granda Ospedale Maggiore PoliclinicoMilan, Italy
| | | | - Chiara Cogliati
- Medicina ad Indirizzo Fisiopatologico, ASST Fatebenefratelli SaccoMilan, Italy
| | - Nazareno Paolocci
- Division of Cardiology, Department of Medicine, Johns Hopkins Medical InstitutionsBaltimore, MD, USA.,Dipartimento di Medicina Sperimentale, Universita' degli Studi di PerugiaPerugia, Italy
| | - Eleonora Tobaldini
- Department of Internal Medicine, Fondazione IRCCS Ca' Granda Ospedale Maggiore PoliclinicoMilan, Italy.,Dipartimento di Dipartimento Scienze cliniche e di comunità, Università degli Studi di MilanoMilan, Italy
| | - Nicola Montano
- Department of Internal Medicine, Fondazione IRCCS Ca' Granda Ospedale Maggiore PoliclinicoMilan, Italy.,Dipartimento di Dipartimento Scienze cliniche e di comunità, Università degli Studi di MilanoMilan, Italy
| |
Collapse
|
45
|
Sun D, Yang F. Metformin improves cardiac function in mice with heart failure after myocardial infarction by regulating mitochondrial energy metabolism. Biochem Biophys Res Commun 2017; 486:329-335. [PMID: 28302481 DOI: 10.1016/j.bbrc.2017.03.036] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2017] [Accepted: 03/11/2017] [Indexed: 12/20/2022]
Abstract
To investigate whether metformin can improve the cardiac function through improving the mitochondrial function in model of heart failure after myocardial infarction. Male C57/BL6 mice aged about 8 weeks were selected and the anterior descending branch was ligatured to establish the heart failure model after myocardial infarction. The cardiac function was evaluated via ultrasound after 3 days to determine the modeling was successful, and the mice were randomly divided into two groups. Saline group (Saline) received the intragastric administration of normal saline for 4 weeks, and metformin group (Met) received the intragastric administration of metformin for 4 weeks. At the same time, Shame group (Sham) was set up. Changes in cardiac function in mice were detected at 4 weeks after operation. Hearts were taken from mice after 4 weeks, and cell apoptosis in myocardial tissue was detected using TUNEL method; fresh mitochondria were taken and changes in oxygen consumption rate (OCR) and respiratory control rate (RCR) of mitochondria in each group were detected using bio-energy metabolism tester, and change in mitochondrial membrane potential (MMP) of myocardial tissue was detected via JC-1 staining; the expressions and changes in Bcl-2, Bax, Sirt3, PGC-1α and acetylated PGC-1α in myocardial tissue were detected by Western blot. RT-PCR was used to detect mRNA levels in Sirt3 in myocardial tissues. Metformin improved the systolic function of heart failure model rats after myocardial infarction and reduced the apoptosis of myocardial cells after myocardial infarction. Myocardial mitochondrial respiratory function and membrane potential were decreased after myocardial infarction, and metformin treatment significantly improved the mitochondrial respiratory function and mitochondrial membrane potential; Metformin up-regulated the expression of Sirt3 and the activity of PGC-1α in myocardial tissue of heart failure after myocardial infarction. Metformin decreases the acetylation level of PGC-1α through up-regulating Sirt3, mitigates the damage to mitochondrial membrane potential of model of heart failure after myocardial infarction and improves the respiratory function of mitochondria, thus improving the cardiac function of mice.
Collapse
Affiliation(s)
- Dan Sun
- Department of Geriatrics, General Hospital of Daqing Oil Field, Daqing City, China.
| | - Fei Yang
- Department of Geriatrics, General Hospital of Daqing Oil Field, Daqing City, China
| |
Collapse
|
46
|
Strzalkowski NDJ, Incognito AV, Bent LR, Millar PJ. Cutaneous Mechanoreceptor Feedback from the Hand and Foot Can Modulate Muscle Sympathetic Nerve Activity. Front Neurosci 2016; 10:568. [PMID: 28008306 PMCID: PMC5143677 DOI: 10.3389/fnins.2016.00568] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Accepted: 11/24/2016] [Indexed: 01/07/2023] Open
Abstract
Stimulation of high threshold mechanical nociceptors on the skin can modulate efferent sympathetic outflow. Whether low threshold mechanoreceptors from glabrous skin are similarly capable of modulating autonomic outflow is unclear. Therefore, the purpose of this study was to examine the effects of cutaneous afferent feedback from the hand palm and foot sole on efferent muscle sympathetic nerve activity (MSNA). Fifteen healthy young participants (9 male; 25 ± 3 years [range: 22-29]) underwent microneurographic recording of multi-unit MSNA from the right fibular nerve during 2 min of baseline and 2 min of mechanical vibration (150 Hz, 220 μm peak-to-peak) applied to the left hand or foot. Each participant completed three trials of both hand and foot stimulation, each separated by 5 min. MSNA burst frequency decreased similarly during the 2 min of both hand (20.8 ± 8.9 vs. 19.3 ± 8.6 bursts/minute [Δ -8%], p = 0.035) and foot (21.0 ± 8.3 vs. 19.5 ± 8.3 bursts/minute [Δ -8%], p = 0.048) vibration but did not alter normalized mean burst amplitude or area (All p > 0.05). Larger reductions in burst frequency were observed during the first 10 s (onset) of both hand (20.8 ± 8.9 vs. 17.0 ± 10.4 [Δ -25%], p < 0.001) and foot (21.0 ± 8.3 vs. 18.3 ± 9.4 [Δ -16%], p = 0.035) vibration, in parallel with decreases in normalized mean burst amplitude (hand: 0.45 ± 0.06 vs. 0.36 ± 0.14% [Δ -19%], p = 0.03; foot: 0.47 ± 0.07 vs. 0.34 ± 0.19% [Δ -27%], p = 0.02) and normalized mean burst area (hand: 0.42 ± 0.05 vs. 0.32 ± 0.12% [Δ -25%], p = 0.003; foot: 0.47 ± 0.05 vs. 0.34 ± 0.16% [Δ -28%], p = 0.01). These results demonstrate that tactile feedback from the hands and feet can influence efferent sympathetic outflow to skeletal muscle.
Collapse
Affiliation(s)
| | - Anthony V Incognito
- Department of Human Health and Nutritional Science, University of Guelph Guelph, ON, Canada
| | - Leah R Bent
- Department of Human Health and Nutritional Science, University of Guelph Guelph, ON, Canada
| | - Philip J Millar
- Department of Human Health and Nutritional Science, University of GuelphGuelph, ON, Canada; Toronto General Research Institute, Toronto General HospitalToronto, ON, Canada
| |
Collapse
|
47
|
Floras JS, Zamel N. Complexity of Sympathetic Nerve Traffic in Human Heart Failure: Seeking Inspiration. J Card Fail 2016; 23:104-106. [PMID: 27908780 DOI: 10.1016/j.cardfail.2016.11.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2016] [Revised: 11/21/2016] [Accepted: 11/23/2016] [Indexed: 11/18/2022]
Affiliation(s)
- John S Floras
- University Health Network and Mount Sinai Hospital Department of Medicine, University of Toronto, Toronto, Ontario, Canada.
| | - Noe Zamel
- University Health Network and Mount Sinai Hospital Department of Medicine, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
48
|
Taylor KS, Murai H, Millar PJ, Haruki N, Kimmerly DS, Morris BL, Tomlinson G, Bradley TD, Floras JS. Arousal From Sleep and Sympathetic Excitation During Wakefulness. Hypertension 2016; 68:1467-1474. [DOI: 10.1161/hypertensionaha.116.08212] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2016] [Revised: 08/05/2016] [Accepted: 09/11/2016] [Indexed: 02/07/2023]
Abstract
Obstructive apnea during sleep elevates the set point for efferent sympathetic outflow during wakefulness. Such resetting is attributed to hypoxia-induced upregulation of peripheral chemoreceptor and brain stem sympathetic function. Whether recurrent arousal from sleep also influences daytime muscle sympathetic nerve activity is unknown. We therefore tested, in a cohort of 48 primarily nonsleepy, middle-aged, male (30) and female (18) volunteers (age: 59±1 years, mean±SE), the hypothesis that the frequency of arousals from sleep (arousal index) would relate to daytime muscle sympathetic burst incidence, independently of the frequency of apnea or its severity. Polysomnography identified 24 as having either no or mild obstructive sleep apnea (apnea–hypopnea index <15 events/h) and 24 with moderate-to-severe obstructive sleep apnea (apnea–hypopnea index >15 events/h). Burst incidence correlated significantly with arousal index (
r
=0.53;
P
<0.001), minimum oxygen saturation (
r
=−0.43;
P
=0.002), apnea–hypopnea index (
r
=0.41;
P
=0.004), age (
r
=0.36;
P
=0.013), and body mass index (
r
=0.33;
P
=0.022) but not with oxygen desaturation index (
r
=0.28;
P
=0.056). Arousal index was the single strongest predictor of muscle sympathetic nerve activity burst incidence, present in all best subsets regression models. The model with the highest adjusted
R
2
(0.456) incorporated arousal index, minimum oxygen saturation, age, body mass index, and oxygen desaturation index but not apnea–hypopnea index. An apnea- and hypoxia-independent effect of sleep fragmentation on sympathetic discharge during wakefulness could contribute to intersubject variability, age-related increases in muscle sympathetic nerve activity, associations between sleep deprivation and insulin resistance or insomnia and future cardiovascular events, and residual adrenergic risk with persistence of hypertension should therapy eliminate obstructive apneas but not arousals.
Collapse
Affiliation(s)
- Keri S. Taylor
- From the University Health Network and Mount Sinai Hospital Department of Medicine, University of Toronto, Ontario, Canada
| | - Hisayoshi Murai
- From the University Health Network and Mount Sinai Hospital Department of Medicine, University of Toronto, Ontario, Canada
| | - Philip J. Millar
- From the University Health Network and Mount Sinai Hospital Department of Medicine, University of Toronto, Ontario, Canada
| | - Nobuhiko Haruki
- From the University Health Network and Mount Sinai Hospital Department of Medicine, University of Toronto, Ontario, Canada
| | - Derek S. Kimmerly
- From the University Health Network and Mount Sinai Hospital Department of Medicine, University of Toronto, Ontario, Canada
| | - Beverley L. Morris
- From the University Health Network and Mount Sinai Hospital Department of Medicine, University of Toronto, Ontario, Canada
| | - George Tomlinson
- From the University Health Network and Mount Sinai Hospital Department of Medicine, University of Toronto, Ontario, Canada
| | - T. Douglas Bradley
- From the University Health Network and Mount Sinai Hospital Department of Medicine, University of Toronto, Ontario, Canada
| | - John S. Floras
- From the University Health Network and Mount Sinai Hospital Department of Medicine, University of Toronto, Ontario, Canada
| |
Collapse
|
49
|
Triposkiadis F, Pieske B, Butler J, Parissis J, Giamouzis G, Skoularigis J, Brutsaert D, Boudoulas H. Global left atrial failure in heart failure. Eur J Heart Fail 2016; 18:1307-1320. [DOI: 10.1002/ejhf.645] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2016] [Revised: 07/21/2016] [Accepted: 07/24/2016] [Indexed: 01/08/2023] Open
Affiliation(s)
- Filippos Triposkiadis
- Department of Cardiology; Larissa University Hospital; PO Box 1425 411 10 Larissa Greece
| | - Burkert Pieske
- Department of Internal Medicine and Cardiology, Charité University Medicine Berlin-Campus Virchow Klinikum, and Department of Internal Medicine and Cardiology, German Heart Centre; Berlin Centre for Heart Failure; Berlin Germany
| | - Javed Butler
- Cardiology Division, School of Medicine; Stony Brook University; Stony Brook NY USA
| | - John Parissis
- Department of Cardiology; Athens University Hospital Attikon; Athens Greece
| | - Gregory Giamouzis
- Department of Cardiology; Larissa University Hospital; PO Box 1425 411 10 Larissa Greece
| | - John Skoularigis
- Department of Cardiology; Larissa University Hospital; PO Box 1425 411 10 Larissa Greece
| | - Dirk Brutsaert
- Laboratory of Physiopharmacology (Building T2); University of Antwerp; Universiteitsplein 1 Antwerp 2610 Belgium
| | - Harisios Boudoulas
- Ohio State University; Columbus Ohio USA
- Biomedical Research Foundation Academy of Athens; Athens, and Aristotelian University of Thessaloniki; Thessaloniki Greece
| |
Collapse
|
50
|
Notay K, Seed JD, Incognito AV, Doherty CJ, Nardone M, Burns MJ, Millar PJ. Validity and reliability of measuring resting muscle sympathetic nerve activity using short sampling durations in healthy humans. J Appl Physiol (1985) 2016; 121:1065-1073. [PMID: 27687563 DOI: 10.1152/japplphysiol.00736.2016] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2016] [Accepted: 09/27/2016] [Indexed: 11/22/2022] Open
Abstract
Resting muscle sympathetic nerve activity (MSNA) demonstrates high intraindividual reproducibility when sampled over 5-30 min epochs, although shorter sampling durations are commonly used before and during a stress to quantify sympathetic responsiveness. The purpose of the present study was to examine the intratest validity and reliability of MSNA sampled over 2 and 1 min and 30 and 15 s epoch durations. We retrospectively analyzed 68 resting fibular nerve microneurographic recordings obtained from 53 young, healthy participants (37 men; 23 ± 6 yr of age). From a stable 7-min resting baseline, MSNA (burst frequency and incidence, normalized mean burst amplitude, total burst area) was compared among each epoch duration and a standard 5-min control. Bland-Altman plots were used to determine agreement and bias. Three sequential MSNA measurements were collected using each sampling duration to calculate absolute and relative reliability (coefficients of variation and intraclass correlation coefficients). MSNA values were similar among each sampling duration and the 5-min control (all P > 0.05), highly correlated (r = 0.69-0.93; all P < 0.001), and demonstrated no evidence of fixed bias (all P > 0.05). A consistent proportional bias (P < 0.05) was present for MSNA burst frequency (all sampling durations) and incidence (1 min and 30 and 15 s), such that participants with low and high average MSNA underestimated and overestimated the true value, respectively. Reliability decreased progressively using the 30- and 15-s sampling durations. In conclusion, short 2 and 1 min and 30 s sampling durations can provide valid and reliable measures of MSNA, although increased sample size may be required for epochs ≤30 s, due to poorer reliability.
Collapse
Affiliation(s)
- Karambir Notay
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, Ontario, Canada; and
| | - Jeremy D Seed
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, Ontario, Canada; and
| | - Anthony V Incognito
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, Ontario, Canada; and
| | - Connor J Doherty
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, Ontario, Canada; and
| | - Massimo Nardone
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, Ontario, Canada; and
| | - Matthew J Burns
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, Ontario, Canada; and
| | - Philip J Millar
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, Ontario, Canada; and .,Toronto General Research Institute, Toronto General Hospital, Toronto, Ontario, Canada
| |
Collapse
|