1
|
Sridhar S, Clayton RH. The effect of non-local coupling of fibroblasts on pacing dynamics in a 2D tissue: a simulation study. Sci Rep 2025; 15:16016. [PMID: 40341653 PMCID: PMC12062413 DOI: 10.1038/s41598-025-99674-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2025] [Accepted: 04/22/2025] [Indexed: 05/10/2025] Open
Abstract
Although myocytes in healthy hearts are usually coupled to nearest neighbours via gap junctions, under conditions such as fibrosis, in scar tissue, or across ablation lines, myocytes can uncouple from their neighbours. However it has been experimentally observed that electrical conduction can still occur across these uncoupled regions via fibroblasts. In this paper we propose a novel model of non-local coupling between myocytes and fibroblasts in a 2D tissue, and hypothesise that such long-range coupling can give rise to pro-arrhythmic re-entrant wave dynamics. We have simulated the scar and the surrounding border zone via simultaneous coupling of fibroblasts with both proximal and distal regions of myocardium. We find that in this setup the border zone itself is a dynamical outcome of the coupling between cells within and outside the scar. We have determined the effect of the border zone on the stability of waves generated by rapid pacing. Furthermore we have identified key parameters that determine wave dynamics in this geometry, and have also described the mechanism underlying the complex wave dynamics. These findings are of significance for our understanding of cardiac arrhythmias associated with regions of myocardial scar.
Collapse
Affiliation(s)
- S Sridhar
- School of Computer Science and Insigneo Institute for in-silico Medicine, University of Sheffield, Sheffield, UK.
| | - Richard H Clayton
- School of Computer Science and Insigneo Institute for in-silico Medicine, University of Sheffield, Sheffield, UK.
| |
Collapse
|
2
|
Otani NF, Figueroa E, Garrison J, Hewson M, Muñoz L, Fenton FH, Karma A, Weinberg SH. Ephaptic Coupling as a Resolution to the Paradox of Action Potential Wave Speed and Discordant Alternans Spatial Scales in the Heart. PHYSICAL REVIEW LETTERS 2023; 130:218401. [PMID: 37295103 PMCID: PMC10688031 DOI: 10.1103/physrevlett.130.218401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 03/07/2023] [Indexed: 06/12/2023]
Abstract
Previous computer simulations have suggested that existing models of action potential wave propagation in the heart are not consistent with observed wave propagation behavior. Specifically, computer models cannot simultaneously reproduce the rapid wave speeds and small spatial scales of discordant alternans patterns measured experimentally in the same simulation. The discrepancy is important, because discordant alternans can be a key precursor to the development of abnormal and dangerous rapid rhythms in the heart. In this Letter, we show that this paradox can be resolved by allowing so-called ephaptic coupling to play a primary role in wave front propagation in place of conventional gap-junction coupling. With this modification, physiological wave speeds and small discordant alternans spatial scales both occur with gap-junction resistance values that are more in line with those observed in experiments. Our theory thus also provides support to the hypothesis that ephaptic coupling plays an important role in normal wave propagation.
Collapse
Affiliation(s)
- Niels F. Otani
- Rochester Institute of Technology, Rochester, New York 14623, USA
| | - Eileen Figueroa
- Rochester Institute of Technology, Rochester, New York 14623, USA
| | - James Garrison
- Hampden-Sydney College, Hampden-Sydney, Virginia 23943, USA
| | - Michelle Hewson
- Western Carolina University, Cullowhee, North Carolina 28723, USA
| | - Laura Muñoz
- Rochester Institute of Technology, Rochester, New York 14623, USA
| | | | - Alain Karma
- Northeastern University, Boston, Massachusetts 02115, USA
| | | |
Collapse
|
3
|
Otani NF, Figueroa E, Garrison J, Hewson M, Muñoz L, Fenton FH, Karma A, Weinberg SH. Role of ephaptic coupling in discordant alternans domain sizes and action potential propagation in the heart. Phys Rev E 2023; 107:054407. [PMID: 37329030 PMCID: PMC10688036 DOI: 10.1103/physreve.107.054407] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 03/10/2023] [Indexed: 06/18/2023]
Abstract
Discordant alternans, the spatially out-of-phase alternation of the durations of propagating action potentials in the heart, has been linked to the onset of fibrillation, a major cardiac rhythm disorder. The sizes of the regions, or domains, within which these alternations are synchronized are critical in this link. However, computer models employing standard gap junction-based coupling between cells have been unable to reproduce simultaneously the small domain sizes and rapid action potential propagation speeds seen in experiments. Here we use computational methods to show that rapid wave speeds and small domain sizes are possible when a more detailed model of intercellular coupling that accounts for so-called ephaptic effects is used. We provide evidence that the smaller domain sizes are possible, because different coupling strengths can exist on the wavefronts, for which both ephaptic and gap-junction coupling are involved, in contrast to the wavebacks, where only gap-junction coupling plays an active role. The differences in coupling strength are due to the high density of fast-inward (sodium) channels known to localize on the ends of cardiac cells, which are only active (and thus engage ephaptic coupling) during wavefront propagation. Thus, our results suggest that this distribution of fast-inward channels, as well as other factors responsible for the critical involvement of ephaptic coupling in wave propagation, including intercellular cleft spacing, play important roles in increasing the vulnerability of the heart to life-threatening tachyarrhythmias. Our results, combined with the absence of short-wavelength discordant alternans domains in standard gap-junction-dominated coupling models, also provide evidence that both gap-junction and ephaptic coupling are critical in wavefront propagation and waveback dynamics.
Collapse
Affiliation(s)
- Niels F. Otani
- School of Mathematical Sciences, Rochester Institute of Technology, Rochester, New York 14623, USA
| | - Eileen Figueroa
- Department of Electrical, Computer and Telecommunications Engineering Technology, Rochester Institute of Technology, Rochester, New York 14623, USA
| | - James Garrison
- Department of Mathematics and Computer Science, Hampden-Sydney College, Hampden-Sydney, Virginia 23943, USA
| | - Michelle Hewson
- Department of Mathematics and Computer Science, Western Carolina University, Cullowhee, North Carolina 28723, USA
| | - Laura Muñoz
- School of Mathematical Sciences, Rochester Institute of Technology, Rochester, New York 14623, USA
| | - Flavio H. Fenton
- School of Physics, Georgia Institute of Technology, Atlanta, Georgia 30332, USA
| | - Alain Karma
- Physics Department and Center for Interdisciplinary Research on Complex Systems, Northeastern University, Boston, Massachusetts 02115, USA
| | - Seth H. Weinberg
- Department of Biomedical Engineering, The Ohio State University, Columbus, Ohio 43210, USA
| |
Collapse
|
4
|
Abstract
The global burden caused by cardiovascular disease is substantial, with heart disease representing the most common cause of death around the world. There remains a need to develop better mechanistic models of cardiac function in order to combat this health concern. Heart rhythm disorders, or arrhythmias, are one particular type of disease which has been amenable to quantitative investigation. Here we review the application of quantitative methodologies to explore dynamical questions pertaining to arrhythmias. We begin by describing single-cell models of cardiac myocytes, from which two and three dimensional models can be constructed. Special focus is placed on results relating to pattern formation across these spatially-distributed systems, especially the formation of spiral waves of activation. Next, we discuss mechanisms which can lead to the initiation of arrhythmias, focusing on the dynamical state of spatially discordant alternans, and outline proposed mechanisms perpetuating arrhythmias such as fibrillation. We then review experimental and clinical results related to the spatio-temporal mapping of heart rhythm disorders. Finally, we describe treatment options for heart rhythm disorders and demonstrate how statistical physics tools can provide insights into the dynamics of heart rhythm disorders.
Collapse
Affiliation(s)
- Wouter-Jan Rappel
- Department of Physics, University of California San Diego, La Jolla, CA 92037
| |
Collapse
|
5
|
Huang C, Song Z, Qu Z. Synchronization of spatially discordant voltage and calcium alternans in cardiac tissue. Phys Rev E 2022; 106:024406. [PMID: 36109882 PMCID: PMC11316446 DOI: 10.1103/physreve.106.024406] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Accepted: 07/18/2022] [Indexed: 06/01/2023]
Abstract
The heart is an excitable medium which is excited by membrane potential depolarization and propagation. Membrane potential depolarization brings in calcium (Ca) through the Ca channels to trigger intracellular Ca release for contraction of the heart. Ca also affects voltage via Ca-dependent ionic currents, and thus, voltage and Ca are bidirectionally coupled. It has been shown that the voltage subsystem or the Ca subsystem can generate its own dynamical instabilities which are affected by their bidirectional couplings, leading to complex dynamics of action potential and Ca cycling. Moreover, the dynamics become spatiotemporal in tissue in which cells are diffusively coupled through voltage. A widely investigated spatiotemporal dynamics is spatially discordant alternans (SDA) in which action potential duration (APD) or Ca amplitude exhibits temporally period-2 and spatially out-of-phase patterns, i.e., APD-SDA and Ca-SDA patterns, respectively. However, the mechanisms of formation, stability, and synchronization of APD-SDA and Ca-SDA patterns remain incompletely understood. In this paper, we use cardiac tissue models described by an amplitude equation, coupled iterated maps, and reaction-diffusion equations with detailed physiology (the ionic model) to perform analytical and computational investigations. We show that, when the Ca subsystem is stable, the Ca-SDA pattern always follows the APD-SDA pattern, and thus, they are always synchronized. When the Ca subsystem is unstable, synchronization of APD-SDA and Ca-SDA patterns depends on the stabilities of both subsystems, their coupling strengths, and the spatial scales of the initial Ca-SDA patterns. Spontaneous (initial condition-independent) synchronization is promoted by enhancing APD instability and reducing Ca instability as well as stronger Ca-to-APD and APD-to-Ca coupling, a pattern formation caused by dynamical instabilities. When Ca is more unstable and APD is less unstable or APD-to-Ca coupling is weak, synchronization of APD-SDA and Ca-SDA patterns is promoted by larger initially synchronized Ca-SDA clusters, i.e., initial condition-dependent synchronization. The synchronized APD-SDA and Ca-SDA patterns can be locked in-phase, antiphase, or quasiperiodic depending on the coupling relationship between APD and Ca. These theoretical and simulation results provide mechanistic insights into the APD-SDA and Ca-SDA dynamics observed in experimental studies.
Collapse
Affiliation(s)
- Chunli Huang
- School of Mathematics and Statistics, Guangdong University of Foreign Studies, Guangzhou 510420, China
- Department of Medicine, University of California, Los Angeles, California 90095, USA
| | - Zhen Song
- Peng Cheng Laboratory, Shenzhen, Guangdong, China
| | - Zhilin Qu
- Department of Medicine, University of California, Los Angeles, California 90095, USA
- Department of Computational Medicine, University of California, Los Angeles, California 90095, USA
| |
Collapse
|
6
|
Loppini A, Erhardt J, Fenton FH, Filippi S, Hörning M, Gizzi A. Optical Ultrastructure of Large Mammalian Hearts Recovers Discordant Alternans by In Silico Data Assimilation. FRONTIERS IN NETWORK PHYSIOLOGY 2022; 2:866101. [PMID: 36926104 PMCID: PMC10012998 DOI: 10.3389/fnetp.2022.866101] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Accepted: 03/04/2022] [Indexed: 12/12/2022]
Abstract
Understanding and predicting the mechanisms promoting the onset and sustainability of cardiac arrhythmias represent a primary concern in the scientific and medical communities still today. Despite the long-lasting effort in clinical and physico-mathematical research, a critical aspect to be fully characterized and unveiled is represented by spatiotemporal alternans patterns of cardiac excitation. The identification of discordant alternans and higher-order alternating rhythms by advanced data analyses as well as their prediction by reliable mathematical models represents a major avenue of research for a broad and multidisciplinary scientific community. Current limitations concern two primary aspects: 1) robust and general-purpose feature extraction techniques and 2) in silico data assimilation within reliable and predictive mathematical models. Here, we address both aspects. At first, we extend our previous works on Fourier transformation imaging (FFI), applying the technique to whole-ventricle fluorescence optical mapping. Overall, we identify complex spatial patterns of voltage alternans and characterize higher-order rhythms by a frequency-series analysis. Then, we integrate the optical ultrastructure obtained by FFI analysis within a fine-tuned electrophysiological mathematical model of the cardiac action potential. We build up a novel data assimilation procedure demonstrating its reliability in reproducing complex alternans patterns in two-dimensional computational domains. Finally, we prove that the FFI approach applied to both experimental and simulated signals recovers the same information, thus closing the loop between the experiment, data analysis, and numerical simulations.
Collapse
Affiliation(s)
- Alessandro Loppini
- Nonlinear Physics and Mathematical Modeling Laboratory, University Campus Bio-Medico of Rome, Rome, Italy
| | - Julia Erhardt
- Biobased Materials Laboratory, Institute of Biomaterials and Biomolecular Systems, Faculty of Energy, Process and Biotechnology, University of Stuttgart, Stuttgart, Germany
| | - Flavio H Fenton
- School of Physics, Georgia Institute of Technology, Atlanta, GA, United States
| | - Simonetta Filippi
- Nonlinear Physics and Mathematical Modeling Laboratory, University Campus Bio-Medico of Rome, Rome, Italy
| | - Marcel Hörning
- Biobased Materials Laboratory, Institute of Biomaterials and Biomolecular Systems, Faculty of Energy, Process and Biotechnology, University of Stuttgart, Stuttgart, Germany
| | - Alessio Gizzi
- Nonlinear Physics and Mathematical Modeling Laboratory, University Campus Bio-Medico of Rome, Rome, Italy
| |
Collapse
|
7
|
You T, Luo C, Zhang K, Zhang H. Electrophysiological Mechanisms Underlying T-Wave Alternans and Their Role in Arrhythmogenesis. Front Physiol 2021; 12:614946. [PMID: 33746768 PMCID: PMC7969788 DOI: 10.3389/fphys.2021.614946] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Accepted: 02/10/2021] [Indexed: 12/18/2022] Open
Abstract
T-wave alternans (TWA) reflects every-other-beat alterations in the morphology of the electrocardiogram ST segment or T wave in the setting of a constant heart rate, hence, in the absence of heart rate variability. It is believed to be associated with the dispersion of repolarization and has been used as a non-invasive marker for predicting the risk of malignant cardiac arrhythmias and sudden cardiac death as numerous studies have shown. This review aims to provide up-to-date review on both experimental and simulation studies in elucidating possible mechanisms underlying the genesis of TWA at the cellular level, as well as the genesis of spatially concordant/discordant alternans at the tissue level, and their transition to cardiac arrhythmia. Recent progress and future perspectives in antiarrhythmic therapies associated with TWA are also discussed.
Collapse
Affiliation(s)
- Tingting You
- Key Lab of Medical Electrophysiology, Ministry of Education, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, China
| | - Cunjin Luo
- School of Computer Science and Electronic Engineering, University of Essex, Colchester, United Kingdom
| | - Kevin Zhang
- School of Medicine, Imperial College of London, London, United Kingdom
| | - Henggui Zhang
- Key Lab of Medical Electrophysiology, Ministry of Education, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, China.,Department of Physics and Astronomy, University of Manchester, Manchester, United Kingdom
| |
Collapse
|
8
|
Huang C, Song Z, Di Z, Qu Z. Stability of spatially discordant repolarization alternans in cardiac tissue. CHAOS (WOODBURY, N.Y.) 2020; 30:123141. [PMID: 33380024 PMCID: PMC7928074 DOI: 10.1063/5.0029209] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Accepted: 11/18/2020] [Indexed: 06/02/2023]
Abstract
Cardiac alternans, a period-2 behavior of excitation and contraction of the heart, is a precursor of ventricular arrhythmias and sudden cardiac death. One form of alternans is repolarization or action potential duration alternans. In cardiac tissue, repolarization alternans can be spatially in-phase, called spatially concordant alternans, or spatially out-of-phase, called spatially discordant alternans (SDA). In SDA, the border between two out-of-phase regions is called a node in a one-dimensional cable or a nodal line in a two-dimensional tissue. In this study, we investigate the stability and dynamics of the nodes and nodal lines of repolarization alternans driven by voltage instabilities. We use amplitude equation and coupled map lattice models to derive theoretical results, which are compared with simulation results from the ionic model. Both conduction velocity restitution induced SDA and non-conduction velocity restitution induced SDA are investigated. We show that the stability and dynamics of the SDA nodes or nodal lines are determined by the balance of the tensions generated by conduction velocity restitution, convection due to action potential propagation, curvature of the nodal lines, and repolarization and coupling heterogeneities. Our study provides mechanistic insights into the different SDA behaviors observed in experiments.
Collapse
Affiliation(s)
| | - Zhen Song
- Department of Medicine, University of California, Los Angeles, California 90095, USA
| | - Zengru Di
- Department of Systems Science, Beijing Normal University, Beijing 100875, China
| | - Zhilin Qu
- Author to whom correspondence should be addressed:
| |
Collapse
|
9
|
Cusimano N, Gizzi A, Fenton F, Filippi S, Gerardo-Giorda L. Key aspects for effective mathematical modelling of fractional-diffusion in cardiac electrophysiology: a quantitative study. COMMUNICATIONS IN NONLINEAR SCIENCE & NUMERICAL SIMULATION 2020; 84:105152. [PMID: 32863678 PMCID: PMC7453933 DOI: 10.1016/j.cnsns.2019.105152] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Microscopic structural features of cardiac tissue play a fundamental role in determining complex spatio-temporal excitation dynamics at the macroscopic level. Recent efforts have been devoted to the development of mathematical models accounting for non-local spatio-temporal coupling able to capture these complex dynamics without the need of resolving tissue heterogeneities down to the micro-scale. In this work, we analyse in detail several important aspects affecting the overall predictive power of these modelling tools and provide some guidelines for an effective use of space-fractional models of cardiac electrophysiology in practical applications. Through an extensive computational study in simplified computational domains, we highlight the robustness of models belonging to different categories, i.e., physiological and phenomenological descriptions, against the introduction of non-locality, and lay down the foundations for future research and model validation against experimental data. A modern genetic algorithm framework is used to investigate proper parameterisations of the considered models, and the crucial role played by the boundary assumptions in the considered settings is discussed. Several numerical results are provided to support our claims.
Collapse
Affiliation(s)
- N. Cusimano
- Basque Center for Applied Mathematics, Alameda de Mazarredo 14, 48009 Bilbao, Spain
| | - A. Gizzi
- Department of Engineering, University of Rome Campus Bio-Medico, via A. del Portillo 21, 00128 Rome, Italy
| | - F.H. Fenton
- School of Physics, Georgia Insitute of Technology, 837 State Street NW, Atlanta, GA 30332, United States
| | - S. Filippi
- Department of Engineering, University of Rome Campus Bio-Medico, via A. del Portillo 21, 00128 Rome, Italy
| | - L. Gerardo-Giorda
- Basque Center for Applied Mathematics, Alameda de Mazarredo 14, 48009 Bilbao, Spain
| |
Collapse
|
10
|
Huang C, Song Z, Landaw J, Qu Z. Spatially Discordant Repolarization Alternans in the Absence of Conduction Velocity Restitution. Biophys J 2020; 118:2574-2587. [PMID: 32101718 DOI: 10.1016/j.bpj.2020.02.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Revised: 01/21/2020] [Accepted: 02/06/2020] [Indexed: 01/20/2023] Open
Abstract
Spatially discordant alternans (SDA) of action potential duration (APD) has been widely observed in cardiac tissue and is linked to cardiac arrhythmogenesis. Theoretical studies have shown that conduction velocity restitution (CVR) is required for the formation of SDA. However, this theory is not completely supported by experiments, indicating that other mechanisms may exist. In this study, we carried out computer simulations using mathematical models of action potentials to investigate the mechanisms of SDA in cardiac tissue. We show that when CVR is present and engaged, such as fast pacing from one side of the tissue, the spatial pattern of APD in the tissue undergoes either spatially concordant alternans or SDA, independent of initial conditions or tissue heterogeneities. When CVR is not engaged, such as simultaneous pacing of the whole tissue or under normal/slow heart rates, the spatial pattern of APD in the tissue can have multiple solutions, including spatially concordant alternans and different SDA patterns, depending on heterogeneous initial conditions or pre-existing repolarization heterogeneities. In homogeneous tissue, curved nodal lines are not stable, which either evolve into straight lines or disappear. However, in heterogeneous itssue, curved nodal lines can be stable, depending on their initial locations and shapes relative to the structure of the heterogeneity. Therefore, CVR-induced SDA and non-CVR-induced SDA exhibit different dynamical properties, which may be responsible for the different SDA properties observed in experimental studies and arrhythmogenesis in different clinical settings.
Collapse
Affiliation(s)
- Chunli Huang
- Department of Medicine, University of California, Los Angeles, Los Angeles, California; Department of Systems Science, Beijing Normal University, Beijing, China
| | - Zhen Song
- Department of Medicine, University of California, Los Angeles, Los Angeles, California
| | - Julian Landaw
- Department of Medicine, University of California, Los Angeles, Los Angeles, California
| | - Zhilin Qu
- Department of Medicine, University of California, Los Angeles, Los Angeles, California; Department of Computational Medicine, University of California, Los Angeles, Los Angeles, California.
| |
Collapse
|
11
|
Kulkarni K, Merchant FM, Kassab MB, Sana F, Moazzami K, Sayadi O, Singh JP, Heist EK, Armoundas AA. Cardiac Alternans: Mechanisms and Clinical Utility in Arrhythmia Prevention. J Am Heart Assoc 2019; 8:e013750. [PMID: 31617437 PMCID: PMC6898836 DOI: 10.1161/jaha.119.013750] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Kanchan Kulkarni
- Cardiovascular Research CenterMassachusetts General HospitalBostonMA
| | | | - Mohamad B. Kassab
- Cardiovascular Research CenterMassachusetts General HospitalBostonMA
| | - Furrukh Sana
- Cardiovascular Research CenterMassachusetts General HospitalBostonMA
| | - Kasra Moazzami
- Cardiovascular Research CenterMassachusetts General HospitalBostonMA
| | - Omid Sayadi
- Cardiovascular Research CenterMassachusetts General HospitalBostonMA
| | - Jagmeet P. Singh
- Cardiology DivisionCardiac Arrhythmia ServiceMassachusetts General HospitalBostonMA
| | - E. Kevin Heist
- Cardiology DivisionCardiac Arrhythmia ServiceMassachusetts General HospitalBostonMA
| | - Antonis A. Armoundas
- Cardiovascular Research CenterMassachusetts General HospitalBostonMA
- Institute for Medical Engineering and ScienceMassachusetts Institute of TechnologyCambridgeMA
| |
Collapse
|
12
|
Wang W, Zhang S, Ni H, Garratt CJ, Boyett MR, Hancox JC, Zhang H. Mechanistic insight into spontaneous transition from cellular alternans to arrhythmia-A simulation study. PLoS Comput Biol 2018; 14:e1006594. [PMID: 30500818 PMCID: PMC6291170 DOI: 10.1371/journal.pcbi.1006594] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Revised: 12/12/2018] [Accepted: 10/23/2018] [Indexed: 02/01/2023] Open
Abstract
Cardiac electrical alternans (CEA), manifested as T-wave alternans in ECG, is a clinical biomarker for predicting cardiac arrhythmias and sudden death. However, the mechanism underlying the spontaneous transition from CEA to arrhythmias remains incompletely elucidated. In this study, multiscale rabbit ventricular models were used to study the transition and a potential role of INa in perpetuating such a transition. It was shown CEA evolved into either concordant or discordant action potential (AP) conduction alternans in a homogeneous one-dimensional tissue model, depending on tissue AP duration and conduction velocity (CV) restitution properties. Discordant alternans was able to cause conduction failure in the model, which was promoted by impaired sodium channel with either a reduced or increased channel current. In a two-dimensional homogeneous tissue model, a combined effect of rate- and curvature-dependent CV broke-up alternating wavefronts at localised points, facilitating a spontaneous transition from CEA to re-entry. Tissue inhomogeneity or anisotropy further promoted break-up of re-entry, leading to multiple wavelets. Similar observations have also been seen in human atrial cellular and tissue models. In conclusion, our results identify a mechanism by which CEA spontaneously evolves into re-entry without a requirement for premature ventricular complexes or pre-existing tissue heterogeneities, and demonstrated the important pro-arrhythmic role of impaired sodium channel activity. These findings are model-independent and have potential human relevance.
Collapse
Affiliation(s)
- Wei Wang
- Biological Physics Group, School of Physics & Astronomy, The University of Manchester, Manchester, United Kingdom
| | - Shanzhuo Zhang
- School of Computer Science and Technology, Harbin Institute of Technology, Harbin, China
| | - Haibo Ni
- Biological Physics Group, School of Physics & Astronomy, The University of Manchester, Manchester, United Kingdom
| | - Clifford J. Garratt
- Manchester Heart Centre, Manchester Royal Infirmary, Manchester, United Kingdom
| | - Mark R. Boyett
- Manchester Heart Centre, Manchester Royal Infirmary, Manchester, United Kingdom
| | - Jules C. Hancox
- Biological Physics Group, School of Physics & Astronomy, The University of Manchester, Manchester, United Kingdom
- School of Physiology, Pharmacology and Neuroscience, and Cardiovascular Research Laboratories, School of Medical Sciences, University of Bristol, Bristol, United Kingdom
| | - Henggui Zhang
- Biological Physics Group, School of Physics & Astronomy, The University of Manchester, Manchester, United Kingdom
- School of Computer Science and Technology, Harbin Institute of Technology, Harbin, China
- Key Laboratory of Medical Electrophysiology of Ministry of Education and Medical Electrophysiological Key Laboratory of Sichuan Province, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, Sichuan, China
- Space Institute of Southern China, Shenzhen, China
| |
Collapse
|
13
|
Muñoz LM, Gelzer ARM, Fenton FH, Qian W, Lin W, Gilmour RF, Otani NF. Discordant Alternans as a Mechanism for Initiation of Ventricular Fibrillation In Vitro. J Am Heart Assoc 2018; 7:e007898. [PMID: 30371176 PMCID: PMC6201417 DOI: 10.1161/jaha.117.007898] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Accepted: 06/19/2018] [Indexed: 11/16/2022]
Abstract
Background Ventricular tachyarrhythmias are often preceded by short sequences of premature ventricular complexes. In a previous study, a restitution-based computational model predicted which sequences of stimulated premature complexes were most likely to induce ventricular fibrillation in canines in vivo. However, the underlying mechanism, based on discordant-alternans dynamics, could not be verified in that study. The current study seeks to elucidate the mechanism by determining whether the spatiotemporal evolution of action potentials and initiation of ventricular fibrillation in in vitro experiments are consistent with model predictions. Methods and Results Optical mapping voltage signals from canine right-ventricular tissue (n=9) were obtained simultaneously from the entire epicardium and endocardium during and after premature stimulus sequences. Model predictions of action potential propagation along a 1-dimensional cable were developed using action potential duration versus diastolic interval data. The model predicted sign-change patterns in action potential duration and diastolic interval spatial gradients with posterior probabilities of 91.1%, and 82.1%, respectively. The model predicted conduction block with 64% sensitivity and 100% specificity. A generalized estimating equation logistic-regression approach showed that model-prediction effects were significant for both conduction block ( P<1×10-15, coefficient 44.36) and sustained ventricular fibrillation ( P=0.0046, coefficient, 1.63) events. Conclusions The observed sign-change patterns favored discordant alternans, and the model successfully identified sequences of premature stimuli that induced conduction block. This suggests that the relatively simple discordant-alternans-based process that led to block in the model may often be responsible for ventricular fibrillation onset when preceded by premature beats. These observations may aid in developing improved methods for anticipating block and ventricular fibrillation.
Collapse
Affiliation(s)
- Laura M. Muñoz
- School of Mathematical SciencesRochester Institute of TechnologyRochesterNY
| | | | | | | | | | - Robert F. Gilmour
- University of Prince Edward IslandCharlottetownPrince Edward IslandCanada
| | - Niels F. Otani
- School of Mathematical SciencesRochester Institute of TechnologyRochesterNY
| |
Collapse
|
14
|
Biton Y, Rabinovitch A, Braunstein D, Aviram I, Campbell K, Mironov S, Herron T, Jalife J, Berenfeld O. Causality analysis of leading singular value decomposition modes identifies rotor as the dominant driving normal mode in fibrillation. CHAOS (WOODBURY, N.Y.) 2018; 28:013128. [PMID: 29390625 PMCID: PMC5786449 DOI: 10.1063/1.5021261] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Accepted: 12/28/2017] [Indexed: 06/07/2023]
Abstract
Cardiac fibrillation is a major clinical and societal burden. Rotors may drive fibrillation in many cases, but their role and patterns are often masked by complex propagation. We used Singular Value Decomposition (SVD), which ranks patterns of activation hierarchically, together with Wiener-Granger causality analysis (WGCA), which analyses direction of information among observations, to investigate the role of rotors in cardiac fibrillation. We hypothesized that combining SVD analysis with WGCA should reveal whether rotor activity is the dominant driving force of fibrillation even in cases of high complexity. Optical mapping experiments were conducted in neonatal rat cardiomyocyte monolayers (diameter, 35 mm), which were genetically modified to overexpress the delayed rectifier K+ channel IKr only in one half of the monolayer. Such monolayers have been shown previously to sustain fast rotors confined to the IKr overexpressing half and driving fibrillatory-like activity in the other half. SVD analysis of the optical mapping movies revealed a hierarchical pattern in which the primary modes corresponded to rotor activity in the IKr overexpressing region and the secondary modes corresponded to fibrillatory activity elsewhere. We then applied WGCA to evaluate the directionality of influence between modes in the entire monolayer using clear and noisy movies of activity. We demonstrated that the rotor modes influence the secondary fibrillatory modes, but influence was detected also in the opposite direction. To more specifically delineate the role of the rotor in fibrillation, we decomposed separately the respective SVD modes of the rotor and fibrillatory domains. In this case, WGCA yielded more information from the rotor to the fibrillatory domains than in the opposite direction. In conclusion, SVD analysis reveals that rotors can be the dominant modes of an experimental model of fibrillation. Wiener-Granger causality on modes of the rotor domains confirms their preferential driving influence on fibrillatory modes.
Collapse
Affiliation(s)
- Yaacov Biton
- Physics Department, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel
| | - Avinoam Rabinovitch
- Physics Department, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel
| | - Doron Braunstein
- Physics Department, Sami Shamoon College of Engineering, Beer-Sheva 84100, Israel
| | - Ira Aviram
- Physics Department, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel
| | - Katherine Campbell
- Center for Arrhythmia Research, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - Sergey Mironov
- Center for Arrhythmia Research, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - Todd Herron
- Center for Arrhythmia Research, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - José Jalife
- Center for Arrhythmia Research, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - Omer Berenfeld
- Center for Arrhythmia Research, University of Michigan, Ann Arbor, Michigan 48109, USA
| |
Collapse
|
15
|
LaVigne NS, Holt N, Hoffman MJ, Cherry EM. Effects of model error on cardiac electrical wave state reconstruction using data assimilation. CHAOS (WOODBURY, N.Y.) 2017; 27:093911. [PMID: 28964160 DOI: 10.1063/1.4999603] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Reentrant electrical scroll waves have been shown to underlie many cardiac arrhythmias, but the inability to observe locations away from the heart surfaces and the restriction of observations to only one or two state variables have made understanding arrhythmia mechanisms challenging. Recently, we showed that data assimilation from spatiotemporally sparse surrogate observations could be used to reconstruct a reliable time series of state estimates of reentrant cardiac electrical waves including unobserved variables in one and three spatial dimensions. However, real cardiac tissue is unlikely to be described accurately by mathematical models because of errors in model formulation and parameterization as well as intrinsic but poorly described spatial heterogeneity of electrophysiological properties in the heart. Here, we extend our previous work to assess how model error affects the accuracy of cardiac state estimates achieved using data assimilation with the Local Ensemble Transform Kalman Filter. We focus on one-dimensional states of discordant alternans characterized by significant wavelength oscillations. We demonstrate that data assimilation can provide high-quality estimates under a wide range of model error conditions, ranging from varying one or more parameter values to using an entirely different model to generate the truth state. We illustrate how multiplicative and additive inflation can be used to reduce error in the state estimates. Even when the truth state contains underlying spatial heterogeneity, we show that using a homogeneous model in the data assimilation algorithm can achieve good results. Overall, we find data assimilation to be a robust approach for reconstructing complex cardiac electrical states corresponding to arrhythmias even in the presence of model error.
Collapse
Affiliation(s)
- Nicholas S LaVigne
- Center for Applied Mathematics, Cornell University, Ithaca, New York 14853, USA
| | - Nathan Holt
- School of Mathematical Sciences, Rochester Institute of Technology, Rochester, New York 14623, USA
| | - Matthew J Hoffman
- School of Mathematical Sciences, Rochester Institute of Technology, Rochester, New York 14623, USA
| | - Elizabeth M Cherry
- School of Mathematical Sciences, Rochester Institute of Technology, Rochester, New York 14623, USA
| |
Collapse
|
16
|
Otani NF. Theory of the development of alternans in the heart during controlled diastolic interval pacing. CHAOS (WOODBURY, N.Y.) 2017; 27:093935. [PMID: 28964128 DOI: 10.1063/1.5003250] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
The beat-to-beat alternation in action potential durations (APDs) in the heart, called APD alternans, has been linked to the development of serious cardiac rhythm disorders, including ventricular tachycardia and fibrillation. The length of the period between action potentials, called the diastolic interval (DI), is a key dynamical variable in the standard theory of alternans development. Thus, methods that control the DI may be useful in preventing dangerous cardiac rhythms. In this study, we examine the dynamics of alternans during controlled-DI pacing using a series of single-cell and one-dimensional (1D) fiber models of alternans dynamics. We find that a model that combines a so-called memory model with a calcium cycling model can reasonably explain two key experimental results: the possibility of alternans during constant-DI pacing and the phase lag of APDs behind DIs during sinusoidal-DI pacing. We also find that these results can be replicated by incorporating the memory model into an amplitude equation description of a 1D fiber. The 1D fiber result is potentially concerning because it seems to suggest that constant-DI control of alternans can only be effective over only a limited region in space.
Collapse
Affiliation(s)
- Niels F Otani
- Department of Mathematical Sciences, Rochester Institute of Technology, Rochester, New York 14623, USA
| |
Collapse
|
17
|
Aswath Kumar AK, Drahi A, Jacquemet V. Fitting local repolarization parameters in cardiac reaction-diffusion models in the presence of electrotonic coupling. Comput Biol Med 2016; 81:55-63. [PMID: 28012295 DOI: 10.1016/j.compbiomed.2016.12.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Revised: 11/15/2016] [Accepted: 12/14/2016] [Indexed: 10/20/2022]
Abstract
BACKGROUND Repolarization gradients contribute to arrhythmogenicity. In reaction-diffusion models of cardiac tissue, heterogeneities in action potential duration (APD) can be created by locally modifying an intrinsic membrane kinetics parameter. Electrotonic coupling, however, acts as a confounding factor that modulates APD dispersion. METHOD We developed an algorithm based on a quasi-Newton method that iteratively adjusts the spatial distribution of a membrane parameter to reproduce a pre-defined target APD map in a coupled tissue. The method assumes that the relation between the adjustable parameter and APD is bijective in an isolated cell. Each iteration of the algorithm involved simulating the cardiac reaction-diffusion system with the updated parameter profile for one beat and extracting the APD map. The algorithm was extended to simultaneous estimation of two parameter profiles based on two APD maps at different repolarization thresholds. RESULTS The method was validated in 1D, 2D and 3D atrial tissues using synthetic target APD maps with controllable total variation and maximum APD gradient. The adjustable parameter was local acetylcholine concentration. The iterations converged provided that APD gradients were not too steep. Convergence was found to be faster 2-5 iterations) when the maximal gradient was less steep, when APD range was smaller and when tissue conductivity was reduced. CONCLUSION This algorithm provides a tool to automatically generate arrhythmogenic substrates with controllable repolarization gradients and possibly incorporate experimental APD maps into computer models.
Collapse
Affiliation(s)
- Akshay Kota Aswath Kumar
- Université de Montréal, Département de Pharmacologie et Physiologie , Institut de Génie Biomédical, Montréal, Canada; Hôpital du Sacré-Coeur de Montréal, Centre de Recherche, Montréal, Canada
| | - Angelina Drahi
- Université de Montréal, Département de Pharmacologie et Physiologie , Institut de Génie Biomédical, Montréal, Canada; Hôpital du Sacré-Coeur de Montréal, Centre de Recherche, Montréal, Canada
| | - Vincent Jacquemet
- Université de Montréal, Département de Pharmacologie et Physiologie , Institut de Génie Biomédical, Montréal, Canada; Hôpital du Sacré-Coeur de Montréal, Centre de Recherche, Montréal, Canada.
| |
Collapse
|
18
|
Vidmar D, Narayan SM, Krummen DE, Rappel WJ. Determining conduction patterns on a sparse electrode grid: Implications for the analysis of clinical arrhythmias. Phys Rev E 2016; 94:050401. [PMID: 27967050 PMCID: PMC5161037 DOI: 10.1103/physreve.94.050401] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2016] [Indexed: 11/07/2022]
Abstract
We present a general method of utilizing bioelectric recordings from a spatially sparse electrode grid to compute a dynamic vector field describing the underlying propagation of electrical activity. This vector field, termed the wave-front flow field, permits quantitative analysis of the magnitude of rotational activity (vorticity) and focal activity (divergence) at each spatial point. We apply this method to signals recorded during arrhythmias in human atria and ventricles using a multipolar contact catheter and show that the flow fields correlate with corresponding activation maps. Further, regions of elevated vorticity and divergence correspond to sites identified as clinically significant rotors and focal sources where therapeutic intervention can be effective. These flow fields can provide quantitative insights into the dynamics of normal and abnormal conduction in humans and could potentially be used to enhance therapies for cardiac arrhythmias.
Collapse
Affiliation(s)
- David Vidmar
- Department of Physics, University of California, San Diego, La Jolla, California 92093, USA
| | - Sanjiv M Narayan
- Department of Cardiovascular Medicine, Stanford University, Palo Alto, California 94305, USA
| | - David E Krummen
- Department of Medicine, University of California, San Diego, La Jolla, California 92093, USA and the Veterans Administration San Diego Healthcare System, San Diego, California 92161, USA
| | - Wouter-Jan Rappel
- Department of Physics, University of California, San Diego, La Jolla, California 92903, USA
| |
Collapse
|
19
|
Alonso S, Bär M, Echebarria B. Nonlinear physics of electrical wave propagation in the heart: a review. REPORTS ON PROGRESS IN PHYSICS. PHYSICAL SOCIETY (GREAT BRITAIN) 2016; 79:096601. [PMID: 27517161 DOI: 10.1088/0034-4885/79/9/096601] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
The beating of the heart is a synchronized contraction of muscle cells (myocytes) that is triggered by a periodic sequence of electrical waves (action potentials) originating in the sino-atrial node and propagating over the atria and the ventricles. Cardiac arrhythmias like atrial and ventricular fibrillation (AF,VF) or ventricular tachycardia (VT) are caused by disruptions and instabilities of these electrical excitations, that lead to the emergence of rotating waves (VT) and turbulent wave patterns (AF,VF). Numerous simulation and experimental studies during the last 20 years have addressed these topics. In this review we focus on the nonlinear dynamics of wave propagation in the heart with an emphasis on the theory of pulses, spirals and scroll waves and their instabilities in excitable media with applications to cardiac modeling. After an introduction into electrophysiological models for action potential propagation, the modeling and analysis of spatiotemporal alternans, spiral and scroll meandering, spiral breakup and scroll wave instabilities like negative line tension and sproing are reviewed in depth and discussed with emphasis on their impact for cardiac arrhythmias.
Collapse
Affiliation(s)
- Sergio Alonso
- Physikalisch-Technische Bundesanstalt, Abbestr. 2-12 10587, Berlin, Germany. Department of Physics, Universitat Politècnica de Catalunya, Av. Dr. Marañón 44, E-08028 Barcelona, Spain
| | | | | |
Collapse
|
20
|
Vandersickel N, Defauw A, Dawyndt P, Panfilov AV. Global alternans instability and its effect on non-linear wave propagation: dynamical Wenckebach block and self terminating spiral waves. Sci Rep 2016; 6:29397. [PMID: 27384223 PMCID: PMC4935945 DOI: 10.1038/srep29397] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2015] [Accepted: 06/17/2016] [Indexed: 11/09/2022] Open
Abstract
The main mechanism of formation of reentrant cardiac arrhythmias is via formation of waveblocks at heterogeneities of cardiac tissue. We report that heterogeneity and the area of waveblock can extend itself in space and can result formation of new additional sources, or termination of existing sources of arrhythmias. This effect is based on a new form of instability, which we coin as global alternans instability (GAI). GAI is closely related to the so-called (discordant) alternans instability, however its onset is determined by the global properties of the APD-restitution curve and not by its slope. The APD-restitution curve relates the duration of the cardiac pulse (APD) to the time interval between the pulses, and can easily be measured in an experimental or even clinical setting. We formulate the conditions for the onset of GAI, study its manifestation in various 1D and 2D situations and discuss its importance for the onset of cardiac arrhythmias.
Collapse
Affiliation(s)
- Nele Vandersickel
- Department of Physics and Astronomy, Ghent University, Krijgslaan 281, S9, 9000 Ghent, Belgium
| | - Arne Defauw
- Department of Physics and Astronomy, Ghent University, Krijgslaan 281, S9, 9000 Ghent, Belgium
| | - Peter Dawyndt
- Department of Applied Mathematics, Computer Science and Statistics, Ghent University, Krijgslaan 281, S9, 9000 Ghent, Belgium
| | - Alexander V Panfilov
- Department of Physics and Astronomy, Ghent University, Krijgslaan 281, S9, 9000 Ghent, Belgium.,Moscow Institute of Physics and Technology (State University) Dolgoprudny, Moscow Region, Russia
| |
Collapse
|
21
|
Weinberg SH. Impaired Sarcoplasmic Reticulum Calcium Uptake and Release Promote Electromechanically and Spatially Discordant Alternans: A Computational Study. CLINICAL MEDICINE INSIGHTS-CARDIOLOGY 2016; 10:1-15. [PMID: 27385917 PMCID: PMC4920205 DOI: 10.4137/cmc.s39709] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Revised: 05/26/2016] [Accepted: 05/27/2016] [Indexed: 02/01/2023]
Abstract
Cardiac electrical dynamics are governed by cellular-level properties, such as action potential duration (APD) restitution and intracellular calcium (Ca) handling, and tissue-level properties, including conduction velocity restitution and cell-cell coupling. Irregular dynamics at the cellular level can lead to instabilities in cardiac tissue, including alternans, a beat-to-beat alternation in the action potential and/or the intracellular Ca transient. In this study, we incorporate a detailed single cell coupled map model of Ca cycling and bidirectional APD-Ca coupling into a spatially extended tissue model to investigate the influence of sarcoplasmic reticulum (SR) Ca uptake and release properties on alternans and conduction block. We find that an intermediate SR Ca uptake rate and larger SR Ca release resulted in the widest range of stimulus periods that promoted alternans. However, both reduced SR Ca uptake and release promote arrhythmogenic spatially and electromechanically discordant alternans, suggesting a complex interaction between SR Ca handling and alternans characteristics at the cellular and tissue level.
Collapse
Affiliation(s)
- Seth H Weinberg
- Department of Biomedical Engineering, Virginia Commonwealth University, Richmond, VA, USA
| |
Collapse
|
22
|
Majumder R, Engels MC, de Vries AAF, Panfilov AV, Pijnappels DA. Islands of spatially discordant APD alternans underlie arrhythmogenesis by promoting electrotonic dyssynchrony in models of fibrotic rat ventricular myocardium. Sci Rep 2016; 6:24334. [PMID: 27072041 PMCID: PMC4829862 DOI: 10.1038/srep24334] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2015] [Accepted: 02/25/2016] [Indexed: 12/11/2022] Open
Abstract
Fibrosis and altered gap junctional coupling are key features of ventricular remodelling and are associated with abnormal electrical impulse generation and propagation. Such abnormalities predispose to reentrant electrical activity in the heart. In the absence of tissue heterogeneity, high-frequency impulse generation can also induce dynamic electrical instabilities leading to reentrant arrhythmias. However, because of the complexity and stochastic nature of such arrhythmias, the combined effects of tissue heterogeneity and dynamical instabilities in these arrhythmias have not been explored in detail. Here, arrhythmogenesis was studied using in vitro and in silico monolayer models of neonatal rat ventricular tissue with 30% randomly distributed cardiac myofibroblasts and systematically lowered intercellular coupling achieved in vitro through graded knockdown of connexin43 expression. Arrhythmia incidence and complexity increased with decreasing intercellular coupling efficiency. This coincided with the onset of a specialized type of spatially discordant action potential duration alternans characterized by island-like areas of opposite alternans phase, which positively correlated with the degree of connexinx43 knockdown and arrhythmia complexity. At higher myofibroblast densities, more of these islands were formed and reentrant arrhythmias were more easily induced. This is the first study exploring the combinatorial effects of myocardial fibrosis and dynamic electrical instabilities on reentrant arrhythmia initiation and complexity.
Collapse
Affiliation(s)
- Rupamanjari Majumder
- Laboratory of Experimental Cardiology, Department of Cardiology, Heart Lung Centre Leiden, Leiden University Medical Enter, Leiden, the Netherlands
| | - Marc C. Engels
- Laboratory of Experimental Cardiology, Department of Cardiology, Heart Lung Centre Leiden, Leiden University Medical Enter, Leiden, the Netherlands
| | - Antoine A. F. de Vries
- Laboratory of Experimental Cardiology, Department of Cardiology, Heart Lung Centre Leiden, Leiden University Medical Enter, Leiden, the Netherlands
| | | | - Daniël A. Pijnappels
- Laboratory of Experimental Cardiology, Department of Cardiology, Heart Lung Centre Leiden, Leiden University Medical Enter, Leiden, the Netherlands
| |
Collapse
|
23
|
Weinberg SH. Spatial discordance and phase reversals during alternate pacing in discrete-time kinematic and cardiomyocyte ionic models. CHAOS (WOODBURY, N.Y.) 2015; 25:103119. [PMID: 26520085 DOI: 10.1063/1.4932961] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Alternans, a beat-to-beat alternation in the cardiac action potential duration (APD), is a dynamical instability linked with the initiation of arrhythmias and sudden cardiac death, and arises via a period-doubling bifurcation when myocytes are stimulated at fast rates. In this study, we analyze the stability of a propagating electrical wave in a one-dimensional cardiac myocyte model in response to an arrhythmogenic rhythm known as alternate pacing. Using a discrete-time kinematic model and complex frequency (Z) domain analysis, we derive analytical expressions to predict phase reversals and spatial discordance in the interbeat interval (IBI) and APD, which, importantly, cannot be predicted with a model that neglects the influence of cell coupling on repolarization. We identify key dimensionless parameters that determine the transition from spatial concordance to discordance. Finally, we show that the theoretical predictions agree closely with numerical simulations of an ionic myocyte model, over a wide range of parameters, including variable IBI, altered ionic current gating, and reduced cell coupling. We demonstrate a novel approach to predict instability in cardiac tissue during alternate pacing and further illustrate how this approach can be generalized to more detail models of myocyte dynamics.
Collapse
Affiliation(s)
- Seth H Weinberg
- Virginia Modeling, Analysis and Simulation Center, Old Dominion University, Suffolk, Virginia 23435, USA
| |
Collapse
|
24
|
Hazim A, Belhamadia Y, Dubljevic S. Control of cardiac alternans in an electromechanical model of cardiac tissue. Comput Biol Med 2015; 63:108-17. [PMID: 26069933 DOI: 10.1016/j.compbiomed.2015.05.011] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2015] [Revised: 05/12/2015] [Accepted: 05/13/2015] [Indexed: 11/26/2022]
Abstract
Electrical alternations in cardiac action potential duration have been shown to be a precursor to arrhythmias and sudden cardiac death. Through the mechanism of excitation-contraction coupling, the presence of electrical alternans induces alternations in the heart muscle contractile activity. Also, contraction of cardiac tissue affects the process of cardiac electric wave propagation through the mechanism of the so-called mechanoelectrical feedback. Electrical excitation and contraction of cardiac tissue can be linked by an electromechanical model such as the Nash-Panfilov model. In this work, we explore the feasibility of suppressing cardiac alternans in the Nash-Panfilov model which is employed for small and large deformations. Several electrical pacing and mechanical perturbation feedback strategies are considered to demonstrate successful suppression of alternans on a one-dimensional cable. This is the first attempt to combine electrophysiologically relevant cardiac models of electrical wave propagation and contractility of cardiac tissue in a synergistic effort to suppress cardiac alternans. Numerical examples are provided to illustrate the feasibility and the effects of the proposed algorithms to suppress cardiac alternans.
Collapse
Affiliation(s)
- Azzam Hazim
- Department of Biomedical Engineering, University of Alberta, Edmonton, AB Canada T6G 2V2
| | - Youssef Belhamadia
- Department of Biomedical Engineering, Department of Mathematics and Campus Saint-Jean, University of Alberta, AB Canada T6C 4G9
| | - Stevan Dubljevic
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, AB Canada T6G 2V4.
| |
Collapse
|
25
|
The role of short term memory and conduction velocity restitution in alternans formation. J Theor Biol 2014; 367:21-28. [PMID: 25435411 DOI: 10.1016/j.jtbi.2014.11.014] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2014] [Revised: 11/12/2014] [Accepted: 11/17/2014] [Indexed: 11/22/2022]
Abstract
Alternans is the periodic beat-to-beat short-long alternation in action potential duration (APD), which is considered to be a precursor of ventricular arrhythmias and sudden cardiac death. In extended cardiac tissue, electrical alternans can be either spatially concordant (SCA, all cells oscillate in phase) or spatially discordant (SDA, cells in different regions oscillate out of phase). SDA gives rise to an increase in the spatial dispersion of repolarization, which is thought to be proarrhythmic. In this paper, we investigated the effect of two aspects of short term memory (STM) (α, τ) and their interplay with conduction velocity (CV) restitution on alternans formation using numerical simulations of a mapping model with two beats of memory. Here, α quantifies the dependence of APD restitution on pacing history and τ characterizes APD accommodation, which is an exponential change of APD over time once basic cycle length (BCL) changes. Our main findings are as follows: In both single cell and spatially coupled homogeneous cable, the interplay between α and τ affects the dynamical behaviors of the system. For the case of large APD accommodation (τ ≥ 290 ms), increase in α leads to suppression of alternans. However, if APD accommodation is small (τ ≤ 250 ms), increase in α leads to appearance of additional alternans region. On the other hand, the slope of CV restitution does not change the regions of alternans in the cable. However, steep CV restitution leads to more complicated dynamical behaviors of the system. Specifically, SDA instead of SCA are observed. In addition, for steep CV restitution and sufficiently large τ, we observed formations of type II conduction block (CB2), transition from type I conduction block (CB1) to CB2, and unstable nodes.
Collapse
|
26
|
Abstract
In a normal human life span, the heart beats about 2 to 3 billion times. Under diseased conditions, a heart may lose its normal rhythm and degenerate suddenly into much faster and irregular rhythms, called arrhythmias, which may lead to sudden death. The transition from a normal rhythm to an arrhythmia is a transition from regular electrical wave conduction to irregular or turbulent wave conduction in the heart, and thus this medical problem is also a problem of physics and mathematics. In the last century, clinical, experimental, and theoretical studies have shown that dynamical theories play fundamental roles in understanding the mechanisms of the genesis of the normal heart rhythm as well as lethal arrhythmias. In this article, we summarize in detail the nonlinear and stochastic dynamics occurring in the heart and their links to normal cardiac functions and arrhythmias, providing a holistic view through integrating dynamics from the molecular (microscopic) scale, to the organelle (mesoscopic) scale, to the cellular, tissue, and organ (macroscopic) scales. We discuss what existing problems and challenges are waiting to be solved and how multi-scale mathematical modeling and nonlinear dynamics may be helpful for solving these problems.
Collapse
Affiliation(s)
- Zhilin Qu
- Department of Medicine (Cardiology), David Geffen School of Medicine, University of California, Los Angeles, California 90095, USA
- Correspondence to: Zhilin Qu, PhD, Department of Medicine, Division of Cardiology, David Geffen School of Medicine at UCLA, A2-237 CHS, 650 Charles E. Young Drive South, Los Angeles, CA 90095, Tel: 310-794-6050, Fax: 310-206-9133,
| | - Gang Hu
- Department of Physics, Beijing Normal University, Beijing 100875, China
| | - Alan Garfinkel
- Department of Medicine (Cardiology), David Geffen School of Medicine, University of California, Los Angeles, California 90095, USA
- Department of Integrative Biology and Physiology, University of California, Los Angeles, California 90095, USA
| | - James N. Weiss
- Department of Medicine (Cardiology), David Geffen School of Medicine, University of California, Los Angeles, California 90095, USA
- Department of Physiology, David Geffen School of Medicine, University of California, Los Angeles, California 90095, USA
| |
Collapse
|
27
|
Yapari F, Deshpande D, Belhamadia Y, Dubljevic S. Control of cardiac alternans by mechanical and electrical feedback. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2014; 90:012706. [PMID: 25122334 DOI: 10.1103/physreve.90.012706] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2013] [Indexed: 06/03/2023]
Abstract
A persistent alternation in the cardiac action potential duration has been linked to the onset of ventricular arrhythmia, which may lead to sudden cardiac death. A coupling between these cardiac alternans and the intracellular calcium dynamics has also been identified in previous studies. In this paper, the system of PDEs describing the small amplitude of alternans and the alternation of peak intracellular Ca(2+) are stabilized by optimal boundary and spatially distributed actuation. A simulation study demonstrating the successful annihilation of both alternans on a one-dimensional cable of cardiac cells by utilizing the full-state feedback controller is presented. Complimentary to these studies, a three variable Nash-Panfilov model is used to investigate alternans annihilation via mechanical (or stretch) perturbations. The coupled model includes the active stress which defines the mechanical properties of the tissue and is utilized in the feedback algorithm as an independent input from the pacing based controller realization in alternans annihilation. Simulation studies of both control methods demonstrate that the proposed methods can successfully annihilate alternans in cables that are significantly longer than 1 cm, thus overcoming the limitations of earlier control efforts.
Collapse
Affiliation(s)
- Felicia Yapari
- Deparment of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta, T6G 2V4 Canada
| | - Dipen Deshpande
- Deparment of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta, T6G 2V4 Canada
| | - Youssef Belhamadia
- Campus Saint-Jean and Department of Mathematics, University of Alberta, Edmonton, Alberta, T6C 4G9 Canada
| | - Stevan Dubljevic
- Deparment of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta, T6G 2V4 Canada
| |
Collapse
|
28
|
Heart rate variability and alternans formation in the heart: The role of feedback in cardiac dynamics. J Theor Biol 2014; 350:90-7. [DOI: 10.1016/j.jtbi.2014.02.015] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2013] [Revised: 01/28/2014] [Accepted: 02/13/2014] [Indexed: 11/18/2022]
|
29
|
Skardal PS, Karma A, Restrepo JG. Spatiotemporal dynamics of calcium-driven cardiac alternans. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2014; 89:052707. [PMID: 25353829 PMCID: PMC4404323 DOI: 10.1103/physreve.89.052707] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2014] [Indexed: 06/04/2023]
Abstract
We investigate the dynamics of spatially discordant alternans (SDA) driven by an instability of intracellular calcium cycling using both amplitude equations [P. S. Skardal, A. Karma, and J. G. Restrepo, Phys. Rev. Lett. 108, 108103 (2012)] and ionic model simulations. We focus on the common case where the bidirectional coupling of intracellular calcium concentration and membrane voltage dynamics produces calcium and voltage alternans that are temporally in phase. We find that, close to the alternans bifurcation, SDA is manifested as a smooth wavy modulation of the amplitudes of both repolarization and calcium transient (CaT) alternans, similarly to the well-studied case of voltage-driven alternans. In contrast, further away from the bifurcation, the amplitude of CaT alternans jumps discontinuously at the nodes separating out-of-phase regions, while the amplitude of repolarization alternans remains smooth. We identify universal dynamical features of SDA pattern formation and evolution in the presence of those jumps. We show that node motion of discontinuous SDA patterns is strongly hysteretic even in homogeneous tissue due to the novel phenomenon of "unidirectional pinning": node movement can only be induced towards, but not away from, the pacing site in response to a change of pacing rate or physiological parameter. In addition, we show that the wavelength of discontinuous SDA patterns scales linearly with the conduction velocity restitution length scale, in contrast to the wavelength of smooth patterns that scales sublinearly with this length scale. Those results are also shown to be robust against cell-to-cell fluctuations due to the property that unidirectional node motion collapses multiple jumps accumulating in nodal regions into a single jump. Amplitude equation predictions are in good overall agreement with ionic model simulations. Finally, we briefly discuss physiological implications of our findings. In particular, we suggest that due to the tendency of conduction blocks to form near nodes, the presence of unidirectional pinning makes calcium-driven alternans potentially more arrhythmogenic than voltage-driven alternans.
Collapse
Affiliation(s)
- Per Sebastian Skardal
- Departament d’Enginyeria Informàtica i Matemàtiques, Universitat Rovira i Virgili, 43007 Tarragona, Spain
- Department of Applied Mathematics, University of Colorado at Boulder, Colorado 80309, USA
| | - Alain Karma
- Physics Department and Center for Interdisciplinary Research on Complex Systems, Northeastern University, Boston, Massachusetts 02115, USA
| | - Juan G. Restrepo
- Department of Applied Mathematics, University of Colorado at Boulder, Colorado 80309, USA
| |
Collapse
|
30
|
Merchant FM, Sayadi O, Moazzami K, Puppala D, Armoundas AA. T-wave alternans as an arrhythmic risk stratifier: state of the art. Curr Cardiol Rep 2014; 15:398. [PMID: 23881581 DOI: 10.1007/s11886-013-0398-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Microvolt level T-wave alternans (MTWA), a phenomenon of beat-to-beat variability in the repolarization phase of the ventricles, has been closely associated with an increased risk of ventricular tachyarrhythmic events (VTE) and sudden cardiac death (SCD) during medium- and long-term follow-up. Recent observations also suggest that heightened MTWA magnitude may be closely associated with short-term risk of impending VTE. At the subcellular and cellular level, perturbations in calcium transport processes likely play a primary role in the genesis of alternans, which then secondarily lead to alternans of action potential morphology and duration (APD). As such, MTWA may play a role not only in risk stratification but also more fundamentally in the pathogenesis of VTE. In this paper, we outline recent advances in understanding the pathogenesis of MTWA and also the utility of T-wave alternans testing for clinical risk stratification. We also highlight emerging clinical applications for MTWA.
Collapse
Affiliation(s)
- Faisal M Merchant
- Cardiology Division, Emory University School of Medicine, Atlanta, GA, USA
| | | | | | | | | |
Collapse
|
31
|
Finlay MC, Xu L, Taggart P, Hanson B, Lambiase PD. Bridging the gap between computation and clinical biology: validation of cable theory in humans. Front Physiol 2013; 4:213. [PMID: 24027527 PMCID: PMC3761165 DOI: 10.3389/fphys.2013.00213] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2013] [Accepted: 07/25/2013] [Indexed: 11/13/2022] Open
Abstract
Introduction: Computerized simulations of cardiac activity have significantly contributed to our understanding of cardiac electrophysiology, but techniques of simulations based on patient-acquired data remain in their infancy. We sought to integrate data acquired from human electrophysiological studies into patient-specific models, and validated this approach by testing whether electrophysiological responses to sequential premature stimuli could be predicted in a quantitatively accurate manner. Methods: Eleven patients with structurally normal hearts underwent electrophysiological studies. Semi-automated analysis was used to reconstruct activation and repolarization dynamics for each electrode. This S2 extrastimuli data was used to inform individualized models of cardiac conduction, including a novel derivation of conduction velocity restitution. Activation dynamics of multiple premature extrastimuli were then predicted from this model and compared against measured patient data as well as data derived from the ten-Tusscher cell-ionic model. Results: Activation dynamics following a premature S3 were significantly different from those after an S2. Patient specific models demonstrated accurate prediction of the S3 activation wave, (Pearson's R2 = 0.90, median error 4%). Examination of the modeled conduction dynamics allowed inferences into the spatial dispersion of activation delay. Further validation was performed against data from the ten-Tusscher cell-ionic model, with our model accurately recapitulating predictions of repolarization times (R2 = 0.99). Conclusions: Simulations based on clinically acquired data can be used to successfully predict complex activation patterns following sequential extrastimuli. Such modeling techniques may be useful as a method of incorporation of clinical data into predictive models.
Collapse
Affiliation(s)
- Malcolm C Finlay
- Department of Cardiac Electrophysiology, The Heart Hospital, Institute of Cardiovascular Science, University College London London, UK
| | | | | | | | | |
Collapse
|
32
|
Abstract
The objective of this article is to present a broad review of the role of cardiac electric rotors and their accompanying spiral waves in the mechanism of cardiac fibrillation. At the outset, we present a brief historical overview regarding reentry and then discuss the basic concepts and terminologies pertaining to rotors and their initiation. Thereafter, the intrinsic properties of rotors and spiral waves, including phase singularities, wavefront curvature, and dominant frequency maps, are discussed. The implications of rotor dynamics for the spatiotemporal organization of fibrillation, independent of the species being studied, are described next. The knowledge gained regarding the role of cardiac structure in the initiation or maintenance of rotors and the ionic bases of spiral waves in the past 2 decades, as well as the significance for drug therapy, is reviewed subsequently. We conclude by examining recent evidence suggesting that rotors are critical in sustaining both atrial and ventricular fibrillation in the human heart and its implications for treatment with radiofrequency ablation.
Collapse
Affiliation(s)
- Sandeep V Pandit
- Center for Arrhythmia Research, University of Michigan, NCRC, 2800 Plymouth Rd, Ann Arbor, MI 48109, USA
| | | |
Collapse
|
33
|
Gizzi A, Cherry EM, Gilmour RF, Luther S, Filippi S, Fenton FH. Effects of pacing site and stimulation history on alternans dynamics and the development of complex spatiotemporal patterns in cardiac tissue. Front Physiol 2013; 4:71. [PMID: 23637684 PMCID: PMC3630331 DOI: 10.3389/fphys.2013.00071] [Citation(s) in RCA: 84] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2012] [Accepted: 03/18/2013] [Indexed: 01/26/2023] Open
Abstract
Alternans of action potential duration has been associated with T wave alternans and the development of arrhythmias because it produces large gradients of repolarization. However, little is known about alternans dynamics in large mammalian hearts. Using optical mapping to record electrical activations simultaneously from the epicardium and endocardium of 9 canine right ventricles, we demonstrate novel arrhythmogenic complex spatiotemporal dynamics. (i) Alternans predominantly develops first on the endocardium. (ii) The postulated simple progression from normal rhythm to concordant to discordant alternans is not always observed; concordant alternans can develop from discordant alternans as the pacing period is decreased. (iii) In contrast to smaller tissue preparations, multiple stationary nodal lines may exist and need not be perpendicular to the pacing site or to each other. (iv) Alternans has fully three-dimensional dynamics and the epicardium and endocardium can show significantly different dynamics: multiple nodal surfaces can be transmural or intramural and can form concave/convex surfaces resulting in islands of discordant alternans. (v) The complex spatiotemporal patterns observed during alternans are very sensitive to both the site of stimulation and the stimulation history. Alternans in canine ventricles not only exhibit larger amplitudes and persist for longer cycle length regimes compared to those found in smaller mammalian hearts, but also show novel dynamics not previously described that enhance dispersion and show high sensitivity to initial conditions. This indicates some underlying predisposition to chaos and can help to guide the design of new drugs and devices controlling and preventing arrhythmic events.
Collapse
Affiliation(s)
- Alessio Gizzi
- Non-linear Physics and Mathematical Modeling Laboratory, University Campus Bio-Medico of Rome Rome, Italy
| | | | | | | | | | | |
Collapse
|
34
|
Cherry EM, Fenton FH, Gilmour RF. Mechanisms of ventricular arrhythmias: a dynamical systems-based perspective. Am J Physiol Heart Circ Physiol 2012; 302:H2451-63. [PMID: 22467299 PMCID: PMC3378269 DOI: 10.1152/ajpheart.00770.2011] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2011] [Accepted: 03/26/2012] [Indexed: 01/23/2023]
Abstract
Defining the cellular electrophysiological mechanisms for ventricular tachyarrhythmias is difficult, given the wide array of potential mechanisms, ranging from abnormal automaticity to various types of reentry and kk activity. The degree of difficulty is increased further by the fact that any particular mechanism may be influenced by the evolving ionic and anatomic environments associated with many forms of heart disease. Consequently, static measures of a single electrophysiological characteristic are unlikely to be useful in establishing mechanisms. Rather, the dynamics of the electrophysiological triggers and substrates that predispose to arrhythmia development need to be considered. Moreover, the dynamics need to be considered in the context of a system, one that displays certain predictable behaviors, but also one that may contain seemingly stochastic elements. It also is essential to recognize that even the predictable behaviors of this complex nonlinear system are subject to small changes in the state of the system at any given time. Here we briefly review some of the short-, medium-, and long-term alterations of the electrophysiological substrate that accompany myocardial disease and their potential impact on the initiation and maintenance of ventricular arrhythmias. We also provide examples of cases in which small changes in the electrophysiological substrate can result in rather large differences in arrhythmia outcome. These results suggest that an interrogation of cardiac electrical dynamics is required to provide a meaningful assessment of the immediate risk for arrhythmia development and for evaluating the effects of putative antiarrhythmic interventions.
Collapse
Affiliation(s)
- Elizabeth M Cherry
- Department of Biomedical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, New York 14853-6401, USA
| | | | | |
Collapse
|
35
|
Deshpande D, Belhamadia Y, Dubljevic S. Cardiac alternans annihilation by distributed mechano-electric feedback (MEF). ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2012; 2011:259-62. [PMID: 22254299 DOI: 10.1109/iembs.2011.6090050] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
The presence of the electrical alternans induces, through the mechanism of the excitation-contraction coupling, an alternation in the heart muscle contractile activity. In this work, we demonstrate the cardiac alternans annihilation by applied mechanical perturbation. In particular, we address annihilation of alternans in realistic heart size tissue by considering ionic currents suggested by Luo-Rudy-1 (LR1) model, in which the control algorithm involves a combined electrical boundary pacing control and a spatially distributed calcium based control which perturbs the calcium in the cells. Complimentary to this, we also address a novel mechanism of alternans annihilation which uses a Nash Panfilov model coupled with the stress equilibrium equations. The coupled model includes an additional variable to represent the active stress which defines the mechanical properties of the tissue.
Collapse
Affiliation(s)
- Dipen Deshpande
- Dept. of Chemical and Materials Engg, Faculty of Engineering, University of Alberta, T6G 2V4 Canada.
| | | | | |
Collapse
|
36
|
Gaeta SA, Christini DJ. Non-linear dynamics of cardiac alternans: subcellular to tissue-level mechanisms of arrhythmia. Front Physiol 2012; 3:157. [PMID: 22783195 PMCID: PMC3389489 DOI: 10.3389/fphys.2012.00157] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2012] [Accepted: 05/05/2012] [Indexed: 12/22/2022] Open
Abstract
Cardiac repolarization alternans is a rhythm disturbance of the heart in which rapid stimulation elicits a beat-to-beat alternation in the duration of action potentials and magnitude of intracellular calcium transients in individual cardiac myocytes. Although this phenomenon has been identified as a potential precursor to dangerous reentrant arrhythmias and sudden cardiac death, significant uncertainty remains regarding its mechanism and no clinically practical means of halting its occurrence or progression currently exists. Cardiac alternans has well-characterized tissue, cellular, and subcellular manifestations, the mechanisms and interplay of which are an active area of research.
Collapse
Affiliation(s)
- Stephen A. Gaeta
- Department of Physiology, Biophysics and Systems
Biology, Weill Cornell Medical CollegeNew York, NY, USA
| | - David J. Christini
- Department of Physiology, Biophysics and Systems
Biology, Weill Cornell Medical CollegeNew York, NY, USA
| |
Collapse
|
37
|
Abstract
The dynamics of many cardiac arrhythmias, as well as the nature of transitions between different heart rhythms, have long been considered evidence of nonlinear phenomena playing a direct role in cardiac arrhythmogenesis. In most types of cardiac disease, the pathology develops slowly and gradually, often over many years. In contrast, arrhythmias often occur suddenly. In nonlinear systems, sudden changes in qualitative dynamics can, counterintuitively, result from a gradual change in a system parameter-this is known as a bifurcation. Here, we review how nonlinearities in cardiac electrophysiology influence normal and abnormal rhythms and how bifurcations change the dynamics. In particular, we focus on the many recent developments in computational modeling at the cellular level that are focused on intracellular calcium dynamics. We discuss two areas where recent experimental and modeling work has suggested the importance of nonlinearities in calcium dynamics: repolarization alternans and pacemaker cell automaticity.
Collapse
Affiliation(s)
- Trine Krogh-Madsen
- Greenberg Division of Cardiology, Department of Medicine, Weill Cornell Medical College, New York, New York 10065, USA.
| | | |
Collapse
|
38
|
Iravanian S, Kanu UB, Christini DJ. A class of Monte-Carlo-based statistical algorithms for efficient detection of repolarization alternans. IEEE Trans Biomed Eng 2012; 59:1882-91. [PMID: 22481808 DOI: 10.1109/tbme.2012.2192733] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Cardiac repolarization alternans is an electrophysiologic condition identified by a beat-to-beat fluctuation in action potential waveform. It has been mechanistically linked to instances of T-wave alternans, a clinically defined ECG alternation in T-wave morphology, and associated with the onset of cardiac reentry and sudden cardiac death. Many alternans detection algorithms have been proposed in the past, but the majority have been designed specifically for use with T-wave alternans. Action potential duration (APD) signals obtained from experiments (especially those derived from optical mapping) possess unique characteristics, which requires the development and use of a more appropriate alternans detection method. In this paper, we present a new class of algorithms, based on the Monte Carlo method, for the detection and quantitative measurement of alternans. Specifically, we derive a set of algorithms (one an analytical and more efficient version of the other) and compare its performance with the standard spectral method and the generalized likelihood ratio test algorithm using synthetic APD sequences and optical mapping data obtained from an alternans control experiment. We demonstrate the benefits of the new algorithm in the presence of Gaussian and Laplacian noise and frame-shift errors. The proposed algorithms are well suited for experimental applications, and furthermore, have low complexity and are implementable using fixed-point arithmetic, enabling potential use with implantable cardiac devices.
Collapse
Affiliation(s)
- Shahriar Iravanian
- Division of Cardiology, Emory University School of Medicine, Atlanta, GA 30322, USA.
| | | | | |
Collapse
|
39
|
Merchant FM, Armoundas AA. Role of substrate and triggers in the genesis of cardiac alternans, from the myocyte to the whole heart: implications for therapy. Circulation 2012; 125:539-49. [PMID: 22271847 DOI: 10.1161/circulationaha.111.033563] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Faisal M Merchant
- Cardiology Division, Emory University School of Medicine, Atlanta, GA, USA
| | | |
Collapse
|
40
|
Abstract
Several different types of rapid cardiac rhythm disorders, including atrial and ventricular fibrillation, are likely caused by multiple, rapidly rotating, action potential (AP) waves. Thus, an electrical pacing therapy, whose effectiveness is based on being delivered with a particular timing relative to one of these waves, is unlikely to be useful in terminating the remaining waves. Here, we develop pacing protocols that are designed to terminate rotating waves independently of when the sequences of stimuli are imposed or where each wave is in its rotation at the time the sequences are initiated. These protocols are delivered as far-field stimuli, and therefore are capable of simultaneously influencing all the waves present. The pacing intervals for these protocols are, in general, of unequal duration and are determined through examination of the dynamics of AP propagation in a 1-D ring model. Series of two or three stimuli with interstimulus intervals chosen in this way are shown to be effective in terminating these waves over a wide range of ring circumferences and AP dynamical parameters. Stimulus sequences of this type may form the basis for developing new defibrillation protocols to test in experiments or more realistic models of the electrical heart.
Collapse
Affiliation(s)
- Niels F Otani
- Department of Biomedical Sciences, Cornell University, Ithaca, NY 14853, USA.
| |
Collapse
|
41
|
Kanu UB, Iravanian S, Gilmour RF, Christini DJ. Control of action potential duration alternans in canine cardiac ventricular tissue. IEEE Trans Biomed Eng 2011; 58:894-904. [PMID: 21041155 PMCID: PMC3140543 DOI: 10.1109/tbme.2010.2089984] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Cardiac electrical alternans, characterized by a beat-to-beat alternation in action potential waveform, is a naturally occurring phenomenon, which can occur at sufficiently fast pacing rates. Its presence has been putatively linked to the onset of cardiac reentry, which is a precursor to ventricular fibrillation. Previous studies have shown that closed-loop alternans control techniques that apply a succession of externally administered cycle perturbations at a single site provide limited spatially-extended alternans elimination in sufficiently large cardiac substrates. However, detailed experimental investigations into the spatial dynamics of alternans control have been restricted to Purkinje fiber studies. A complete understanding of alternans control in the more clinically relevant ventricular tissue is needed. In this paper, we study the spatial dynamics of alternans and alternans control in arterially perfused canine right ventricular preparations using an optical mapping system capable of high-resolution fluorescence imaging. Specifically, we quantify the spatial efficacy of alternans control along 2.5 cm of tissue, focusing on differences in spatial control between different subregions of tissue. We demonstrate effective control of spatially-extended alternans up to 2.0 cm, with control efficacy attenuating as a function of distance. Our results provide a basis for future investigations into electrode-based control interventions of alternans in cardiac tissue.
Collapse
Affiliation(s)
- Uche B. Kanu
- Department of Biomedical Engineering, Cornell University, Ithaca NY 14853 USA and the Greenberg Division of Cardiology, Weill Cornell Medical College, New York NY 10065 USA
| | - Shahriar Iravanian
- The Division of Cardiology, Emory University School of Medicine, Atlanta GA 30322 USA
| | - Robert F. Gilmour
- The Department of Biomedical Sciences, Cornell University, Ithaca NY 14853 USA
| | - David J. Christini
- The Greenberg Division of Cardiology and the Department of Physiology and Biophysics, Weill Cornell Medical College, New York NY 10065 USA (phone: 212-746-6280)
| |
Collapse
|
42
|
OSAKA TOSHIYUKI, YOKOYAMA ERIKO, HASEBE HIDEYUKI, KODAMA ITSUO. Effects of Chronic Amiodarone on the Electrical Restitution in the Human Ventricle With Reference to Its Antiarrhythmic Efficacy. J Cardiovasc Electrophysiol 2011; 22:669-76. [DOI: 10.1111/j.1540-8167.2010.01990.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
43
|
Alternans resonance and propagation block during supernormal conduction in cardiac tissue with decreased [K(+)](o). Biophys J 2010; 98:1129-38. [PMID: 20371312 DOI: 10.1016/j.bpj.2009.12.4280] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2009] [Revised: 12/02/2009] [Accepted: 12/03/2009] [Indexed: 11/20/2022] Open
Abstract
Cardiac restitution is an important factor in arrhythmogenesis. Steep positive action potential duration and conduction velocity (CV) restitution slopes promote alternans and reentrant arrhythmias. We examined the consequences of supernormal conduction (characterized by a negative CV restitution slope) on patterns of conduction and alternans in strands of Luo-Rudy model cells and in cultured cardiac cell strands. Interbeat intervals (IBIs) were analyzed as a function of distance during S1S2 protocols and during pacing at alternating cycle lengths. Supernormal conduction was induced by decreasing [K(+)](o). In control [K(+)](o) simulations, S1S2 intervals converged toward basic cycle length with a length constant determined by both CV and the CV restitution slope. During alternant pacing, the amplitude of IBI alternans converged with a shorter length constant, determined also by the action potential duration restitution slope. In contrast, during supernormal conduction, S1S2 intervals and the amplitude of alternans diverged. This amplification (resonance) led to phase-locked or more complex alternans patterns, and then to distal conduction block. The convergence/divergence of IBIs was verified in the cultured strands, in which naturally occurring tissue heterogeneities resulted in prominent discontinuities of the spatial IBI profiles. We conclude that supernormal conduction potentiates alternans and spatial analysis of IBIs represents a powerful method to locate tissue heterogeneities.
Collapse
|
44
|
Muñoz LM, Stockton JF, Otani NF. Applications of control theory to the dynamics and propagation of cardiac action potentials. Ann Biomed Eng 2010; 38:2865-76. [PMID: 20407833 PMCID: PMC3319447 DOI: 10.1007/s10439-010-0037-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2009] [Accepted: 04/02/2010] [Indexed: 11/26/2022]
Abstract
Sudden cardiac arrest is a widespread cause of death in the industrialized world. Most cases of sudden cardiac arrest are due to ventricular fibrillation (VF), a lethal cardiac arrhythmia. Electrophysiological abnormalities such as alternans (a beat-to-beat alternation in action potential duration) and conduction block have been suspected to contribute to the onset of VF. This study focuses on the use of control-systems techniques to analyze and design methods for suppressing these precursor factors. Control-systems tools, specifically controllability analysis and Lyapunov stability methods, were applied to a two-variable Karma model of the action-potential (AP) dynamics of a single cell, to analyze the effectiveness of strategies for suppressing AP abnormalities. State-feedback-integral (SFI) control was then applied to a Purkinje fiber simulated with the Karma model, where only one stimulating electrode was used to affect the system. SFI control converted both discordant alternans and 2:1 conduction block back toward more normal patterns, over a wider range of fiber lengths and pacing intervals compared with a Pyragas-type chaos controller. The advantages conferred by using feedback from multiple locations in the fiber, and using integral (i.e., memory) terms in the controller, are discussed.
Collapse
Affiliation(s)
- Laura M Muñoz
- Department of Biomedical Sciences, Cornell University, Ithaca, NY 14853, USA.
| | | | | |
Collapse
|
45
|
Agarwal A, Patwardhan A. A new approach to measure the contribution of restitution to repolarization alternans. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2010; 2009:4516-8. [PMID: 19964640 DOI: 10.1109/iembs.2009.5334109] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Several studies suggest link between repolarization alternans and arrhythmia. A potential target for minimization of alternans amplitude is pharmacological flattening of restitution function, which links a diastolic interval (DI) and subsequent action potential duration (APD). While our recent studies have shown that DI dependent restitution is not a necessary mechanism for alternans, in circumstances of nearly invariant activation intervals, restitution contributes to alternans. Determination of the degree to which restitution contributes to alternans during stable alternans, which requires determination of the gain between DI and APD, is not possible because it always is unity. We propose that the rate of change of alternans along the length of the tissue may provide an estimate of the degree to which restitution contributes to alternans amplitude. We conducted experiments with swine to demonstrate the above approach. In a linear strand of tissue, we paced such that DIs for successive activations were invariant at one end, which eliminates the restitution dependent mechanism of alternans at this end. Due to conduction delays, at the distal end, both restitution dependent and independent mechanisms manifest. Action potentials recorded from right ventricular endocardial tissue from swine (n = 3) showed an average difference in amplitudes of alternans between the two ends to be 11.99, 25.49, and 39.37 msec. Rates of change of alternans amplitude as a function of distance, computed using linear interpolation, were 0.36, 1.69 and 0.97. We propose that this rate of change may provide an indirect measure of degree of contribution of restitution to alternans and thus may be useful in evaluating therapeutic approaches to minimize its amplitude.
Collapse
|
46
|
Krogh-Madsen T, Karma A, Riccio ML, Jordan PN, Christini DJ, Gilmour RF. Off-site control of repolarization alternans in cardiac fibers. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2010; 81:011915. [PMID: 20365407 PMCID: PMC2933068 DOI: 10.1103/physreve.81.011915] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 06/09/2009] [Revised: 12/10/2009] [Indexed: 05/19/2023]
Abstract
Repolarization alternans, a beat-to-beat alternation in action potential duration, has been putatively linked to the onset of cardiac reentry. Anti-alternans control strategies can eliminate alternans in individual cells by exploiting the rate dependence of action potential duration. The same approach, when applied to a common measuring/stimulating site at one end of a cardiac fiber, has been shown to have limited spatial efficacy. As a first step toward spatially distributed electrode control systems, we investigated "off-site" control in canine Purkinje fibers, in which the recording and control sites are different. We found experimentally that alternans can be eliminated at, or very near, the recording site, and that varying the location of the recording site along the fiber causes the node (the location with no alternans) to move along the fiber in close proximity to the recording site. Theoretical predictions based on an amplitude equation [B. Echebarria and A. Karma, Chaos 12, 923 (2002)] show that those findings follow directly from the wave nature of alternans: the most unstable mode of alternans along the fiber is a wave solution of a one-dimensional Helmholtz equation with a node position that only deviates slightly from the recording site by an amount dependent on electrotonic coupling. Computer simulations using a Purkinje fiber model confirm these theoretical and experimental results. Although off-site alternans control does not suppress alternans along the entire fiber, our results indicate that placing the node away from the stimulus site reduces alternans amplitude along the fiber, and may therefore have implications for antiarrhythmic strategies based on alternans termination.
Collapse
Affiliation(s)
- Trine Krogh-Madsen
- Greenberg Division of Cardiology, Department of Medicine, Weill Cornell Medical College, New York, New York 10021, USA.
| | | | | | | | | | | |
Collapse
|
47
|
Aslanidi OV, Stewart P, Boyett MR, Zhang H. Optimal velocity and safety of discontinuous conduction through the heterogeneous Purkinje-ventricular junction. Biophys J 2009; 97:20-39. [PMID: 19580741 DOI: 10.1016/j.bpj.2009.03.061] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2008] [Revised: 02/20/2009] [Accepted: 03/27/2009] [Indexed: 11/19/2022] Open
Abstract
Slow and discontinuous wave conduction through nonuniform junctions in cardiac tissues is generally considered unsafe and proarrythmogenic. However, the relationships between tissue structure, wave conduction velocity, and safety at such junctions are unknown. We have developed a structurally and electrophysiologically detailed model of the canine Purkinje-ventricular junction (PVJ) and varied its heterogeneity parameters to determine such relationships. We show that neither very fast nor very slow conduction is safe, and there exists an optimal velocity that provides the maximum safety factor for conduction through the junction. The resultant conduction time delay across the PVJ is a natural consequence of the electrophysiological and morphological differences between the Purkinje fiber and ventricular tissue. The delay allows the PVJ to accumulate and pass sufficient charge to excite the adjacent ventricular tissue, but is not long enough for the source-to-load mismatch at the junction to be enhanced over time. The observed relationships between the conduction velocity and safety factor can provide new insights into optimal conditions for wave propagation through nonuniform junctions between various cardiac tissues.
Collapse
Affiliation(s)
- Oleg V Aslanidi
- Biological Physics Group, School of Physics and Astronomy, University of Manchester, Manchester, United Kingdom
| | | | | | | |
Collapse
|
48
|
Garzón A, Grigoriev RO, Fenton FH. Model-based control of cardiac alternans on a ring. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2009; 80:021932. [PMID: 19792176 DOI: 10.1103/physreve.80.021932] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2008] [Revised: 05/11/2009] [Indexed: 05/08/2023]
Abstract
Cardiac alternans, a beat-to-beat alternation of cardiac electrical dynamics, and ventricular tachycardia, generally associated with a spiral wave of electrical activity, have been identified as frequent precursors of the life-threatening spatiotemporally chaotic electrical state of ventricular fibrillation (VF). Schemes for the elimination of alternans and the stabilization of spiral waves through the injection of weak external currents have been proposed as methods to prevent VF but have not performed at the level required for clinical implementation. In this paper we propose a control method based on linear-quadratic regulator (LQR) control. Unlike most previously proposed approaches, our method incorporates information from the underlying model to increase efficiency. We use a one-dimensional ringlike geometry, with a single control electrode, to compare the performance of our method with that of two other approaches, quasi-instantaneous suppression of unstable modes (QISUM) and time-delay autosynchronization (TDAS). We find that QISUM fails to suppress alternans due to conduction block. Although both TDAS and LQR succeed in suppressing alternans, LQR is able to suppress the alternans faster and using a much weaker control current. Our results highlight the benefits of a model-based control approach despite its inherent complexity compared with nonmodel-based control such as TDAS.
Collapse
Affiliation(s)
- Alejandro Garzón
- School of Physics, Georgia Institute of Technology, Atlanta, Georgia 30332-0430, USA
| | | | | |
Collapse
|
49
|
Wilson LD, Jeyaraj D, Wan X, Hoeker GS, Said TH, Gittinger M, Laurita KR, Rosenbaum DS. Heart failure enhances susceptibility to arrhythmogenic cardiac alternans. Heart Rhythm 2009; 6:251-9. [PMID: 19187920 PMCID: PMC2764250 DOI: 10.1016/j.hrthm.2008.11.008] [Citation(s) in RCA: 106] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2008] [Accepted: 11/05/2008] [Indexed: 10/21/2022]
Abstract
BACKGROUND Although heart failure (HF) is closely associated with susceptibility to sudden cardiac death (SCD), the mechanisms linking contractile dysfunction to cardiac electrical instability are poorly understood. Cardiac alternans has also been closely associated with SCD, and has been linked to a mechanism for amplifying electrical heterogeneities in the heart. However, previous studies have focused on alternans in normal rather than failing myocardium. OBJECTIVE This study sought to investigate the hypothesis that HF enhances susceptibility to arrhythmogenic cardiac alternans. METHODS High-resolution transmural optical mapping was performed in canine wedge preparations from normal (n = 8) and HF (n = 8) hearts produced by rapid ventricular pacing. RESULTS HF significantly (P < .004) lowered the heart rate (HR) threshold for action potential duration alternans (APD-ALT) from 236 +/- 25 beats/min to 185 +/- 25 beats/min. In dual optical mapping of action potentials and intracellular Ca experiments (n = 16), HF lowered the HR threshold for Ca-ALT (beat-to-beat alternations of cellular Ca cycling) from 238 +/- 35 to 177 +/- 26 beats/min (P < .005). Importantly: (1) Ca-ALT always either developed at slower HR or simultaneously with APD-ALT in the same cells, and (2) the magnitude of Ca-ALT and APD-ALT were closely correlated (P < .05). HF similarly lowered the HR threshold for Ca-ALT in isolated myocytes under nonalternating action potential clamp, indicating that HF enhances susceptibility to cellular alternans independent of HF-associated changes in repolarization. Importantly, HF significantly (P < .02) lowered the HR threshold for spatially discordant arrhythmogenic alternans (different regions of cells alternating in opposite phase, DIS-ALT). Ventricular fibrillation (VF) was induced in 88% of HF preparations, but only 12% of normal preparations (P < .003) and was uniformly preceded by development of DIS-ALT. CONCLUSION Heart failure increases the susceptibility to arrhythmogenic cardiac alternans, which arises from HF-induced impairment in calcium cycling.
Collapse
Affiliation(s)
- Lance D Wilson
- Heart and Vascular Research Center, MetroHealth Campus, Case Western Reserve University, Cleveland, Ohio 44109-1998, USA
| | | | | | | | | | | | | | | |
Collapse
|
50
|
Gelzer ARM, Koller ML, Otani NF, Fox JJ, Enyeart MW, Hooker GJ, Riccio ML, Bartoli CR, Gilmour RF. Dynamic mechanism for initiation of ventricular fibrillation in vivo. Circulation 2008; 118:1123-9. [PMID: 18725487 PMCID: PMC2933035 DOI: 10.1161/circulationaha.107.738013] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND Dynamically induced heterogeneities of repolarization may lead to wave-front destabilizations and initiation of ventricular fibrillation (VF). In a computer modeling study, we demonstrated that specific sequences of premature stimuli maximized dynamically induced spatial dispersion of refractoriness and predisposed the heart to the development of conduction block. The purpose of this study was to determine whether the computer model results pertained to the initiation of VF in dogs in vivo. METHODS AND RESULTS Monophasic action potentials were recorded from right and left ventricular endocardium in anesthetized beagle dogs (n=11) in vivo. Restitution of action potential duration and conduction time and the effective refractory period after delivery of the basic stimulus (S(1)) and each of 3 premature stimuli (S(2), S(3), S(4)) were determined at baseline and during verapamil infusion. The effective refractory period data were used to determine the interstimulus intervals for a sequence of 4 premature stimuli (S(2)S(3)S(4)S(5)=CL(VF)) for which the computer model predicted maximal spatial dispersion of refractoriness. Delivery of CL(VF) was associated with discordant action potential duration alternans and induction of VF in all dogs. Verapamil decreased spatial dispersion of refractoriness by reducing action potential duration and conduction time restitution in a dose-dependent fashion, effects that were associated with reduced inducibility of VF with CL(VF). CONCLUSIONS Maximizing dynamically induced spatial dispersion of repolarization appears to be an effective method for inducing VF. Reducing spatial dispersion of refractoriness by modulating restitution parameters can have an antifibrillatory effect in vivo.
Collapse
Affiliation(s)
- Anna R M Gelzer
- Department of Clinical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|