1
|
Yeh TY, Liu PH. Removal of a compressive mass causes a transient disruption of blood-brain barrier but a long-term recovery of spiny stellate neurons in the rat somatosensory cortex. Restor Neurol Neurosci 2021; 39:111-127. [PMID: 34024792 DOI: 10.3233/rnn-201085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND In the cranial cavity, a space-occupying mass such as epidural hematoma usually leads to compression of brain. Removal of a large compressive mass under the cranial vault is critical to the patients. OBJECTIVE The purpose of this study was to examine whether and to what extent epidural decompression of the rat primary somatosensory cortex affects the underlying microvessels, spiny stellate neurons and their afferent fibers. METHODS Rats received epidural decompression with preceding 1-week compression by implantation of a bead. The thickness of cortex was measured using brain coronal sections. The permeability of blood-brain barrier (BBB) was assessed by Evans Blue and immunoglobulin G extravasation. The dendrites and dendritic spines of the spiny stellate neurons were revealed by Golgi-Cox staining and analyzed. In addition, the thalamocortical afferent (TCA) fibers in the cortex were illustrated using anterograde tracing and examined. RESULTS The cortex gradually regained its thickness over time and became comparable to the sham group at 3 days after decompression. Although the diameter of cortical microvessels were unaltered, a transient disruption of the BBB was observed at 6 hours and 1 day after decompression. Nevertheless, no brain edema was detected. In contrast, the dendrites and dendritic spines of the spiny stellate neurons and the TCA fibers were markedly restored from 2 weeks to 3 months after decompression. CONCLUSIONS Epidural decompression caused a breakdown of the BBB, which was early-occurring and short-lasting. In contrast, epidural decompression facilitated a late-onset and prolonged recovery of the spiny stellate neurons and their afferent fibers.
Collapse
Affiliation(s)
- Tzu-Yin Yeh
- Department of Anatomy, Tzu Chi University, Hualien, Taiwan
| | - Pei-Hsin Liu
- Department of Anatomy, Tzu Chi University, Hualien, Taiwan.,Medical Physiology, Tzu Chi University, Hualien, Taiwan
| |
Collapse
|
2
|
Yang S, Liu K, Yao L, Liu K, Weng G, Xu K, Li P. Correlation of optical attenuation coefficient estimated using optical coherence tomography with changes in astrocytes and neurons in a chronic photothrombosis stroke model. BIOMEDICAL OPTICS EXPRESS 2019; 10:6258-6271. [PMID: 31853398 PMCID: PMC6913389 DOI: 10.1364/boe.10.006258] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Revised: 11/09/2019] [Accepted: 11/10/2019] [Indexed: 06/02/2023]
Abstract
The optical attenuation coefficient (OAC) estimated using optical coherence tomography (OAC-OCT) offers a label-free 3D mapping of tissue infarction, but the physiological origin of the OAC contrast remains unclear. For effectively suppressing OAC fluctuations, we propose a hybrid (wavelength/angle) division multiplexing (HDM) method, which improved the OAC contrast by 70.7% in tissue phantoms. To test the feasibility of OAC-based infarction detection, triphenyltetrazolium chloride (TTC) staining was performed on fresh ex vivo brain slices, and the TTC-defined infarction was used as the ground truth. Sharp OAC contrast was observed between the TTC-defined infarction (1.09 mm-1) and normal tissue (0.79 mm-1). The OAC infarction spatially matched well with the TTC-defined infarction. To further explore the physiological origin of OAC contrast in ischemic stroke at the cellular level, the dynamic changes in OAC were measured in the rat cortex in vivo over 3 weeks after photothrombosis (PT) occlusion and found significantly correlated with the changes in astrocytes and neurons acquired with ex vivo hematoxylin and eosin (HE), glial fibrillary acidic protein (GFAP), and NeuN staining. These results suggest that OAC imaging enables non-invasive infarction detection and its contrast might originate from the changes in astrocytes and neurons in the chronic PT stroke model. The cellular responses revealed by in vivo OAC imaging would be essential for evaluating treatments and even developing novel therapies.
Collapse
Affiliation(s)
- Shanshan Yang
- State Key Lab of Modern Optical Instrumentation, College of Optical Science and Engineering, Zhejiang University, Hangzhou, Zhejiang 310027, China
| | - Kezhou Liu
- Department of Biomedical Engineering, Key Laboratory of Biomedical Engineering of Education Ministry, Zhejiang University, Hangzhou, Zhejiang 310027, China
- College of Artificial Intelligence, Dept. of Biomedical Engineering, Hangzhou Dianzi University, Hangzhou, Zhejiang 310018, China
| | - Lin Yao
- State Key Lab of Modern Optical Instrumentation, College of Optical Science and Engineering, Zhejiang University, Hangzhou, Zhejiang 310027, China
| | - Kaiyuan Liu
- State Key Lab of Modern Optical Instrumentation, College of Optical Science and Engineering, Zhejiang University, Hangzhou, Zhejiang 310027, China
| | - Guoqing Weng
- College of Artificial Intelligence, Dept. of Biomedical Engineering, Hangzhou Dianzi University, Hangzhou, Zhejiang 310018, China
| | - Kedi Xu
- Qiushi Academy for Advanced Studies (QAAS), Zhejiang University, Hangzhou, Zhejiang 310027, China
- Department of Biomedical Engineering, Key Laboratory of Biomedical Engineering of Education Ministry, Zhejiang University, Hangzhou, Zhejiang 310027, China
- Zhejiang Provincial Key Laboratory of Cardio-Cerebral Vascular Detection Technology and Medicinal Effectiveness Appraisal, Zhejiang University, Hangzhou, Zhejiang 310027, China
| | - Peng Li
- State Key Lab of Modern Optical Instrumentation, College of Optical Science and Engineering, Zhejiang University, Hangzhou, Zhejiang 310027, China
| |
Collapse
|
3
|
Nasser M, Ballout N, Mantash S, Bejjani F, Najdi F, Ramadan N, Soueid J, Zibara K, Kobeissy F. Transplantation of Embryonic Neural Stem Cells and Differentiated Cells in a Controlled Cortical Impact (CCI) Model of Adult Mouse Somatosensory Cortex. Front Neurol 2018; 9:895. [PMID: 30405520 PMCID: PMC6208009 DOI: 10.3389/fneur.2018.00895] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Accepted: 10/02/2018] [Indexed: 12/11/2022] Open
Abstract
Traumatic brain injury (TBI) is a major cause of death worldwide. Depending on the severity of the injury, TBI can reflect a broad range of consequences such as speech impairment, memory disturbances, and premature death. In this study, embryonic neural stem cells (ENSC) were isolated from E14 mouse embryos and cultured to produce neurospheres which were induced to generate differentiated cells (DC). As a cell replacement treatment option, we aimed to transplant ENSC or DC into the adult injured C57BL/6 mouse cortex controlled cortical impact (CCI) model, 7 days post-trauma, in comparison to saline injection (control). The effect of grafted cells on neuroinflammation and neurogenesis was investigated at 1 and 4 weeks post-transplantation. Results showed that microglia were activated following mild CCI, but not enhanced after engraftment of ENSC or DC. Indeed, ipsilateral lesioned somatosensory area expressed high levels of Iba-1+ microglia within the different groups after 1 and 4 weeks. On the other hand, treatment with ENSC or DC demonstrated a significant reduction in astrogliosis. The levels of GFAP expressing astrocytes started decreasing early (1 week) in the ENSC group and then were similarly low at 4 weeks in both ENSC and DC. Moreover, neurogenesis was significantly enhanced in ENSC and DC groups. Indeed, a significant increase in the number of DCX expressing progenitor cells was observed at 1 week in the ENSC group, and in DC and ENSC groups at 4 weeks. Furthermore, the number of mature neuronal cells (NeuN+) significantly increased in DC group at 4 weeks whereas they decreased in ENSC group at 1 week. Therefore, injection of ENSC or DC post-CCI caused decreased astrogliosis and suggested an increased neurogenesis via inducing neural progenitor proliferation and expression rather than neuronal maturation. Thus, ENSC may play a role in replacing lost cells and brain repair following TBI by improving neurogenesis and reducing neuroinflammation, reflecting an optimal environment for transplanted and newly born cells.
Collapse
Affiliation(s)
- Mohammad Nasser
- Biology Department, Faculty of Sciences-I, Lebanese University, Beirut, Lebanon.,ER045, PRASE, DSST, Lebanese University, Beirut, Lebanon
| | | | - Sarah Mantash
- ER045, PRASE, DSST, Lebanese University, Beirut, Lebanon
| | | | - Farah Najdi
- ER045, PRASE, DSST, Lebanese University, Beirut, Lebanon
| | - Naify Ramadan
- ER045, PRASE, DSST, Lebanese University, Beirut, Lebanon.,Department of Biochemistry and Molecular Genetics, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Jihane Soueid
- Department of Biochemistry and Molecular Genetics, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Kazem Zibara
- Biology Department, Faculty of Sciences-I, Lebanese University, Beirut, Lebanon.,ER045, PRASE, DSST, Lebanese University, Beirut, Lebanon
| | - Firas Kobeissy
- Department of Biochemistry and Molecular Genetics, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| |
Collapse
|
4
|
Isaev NK, Stelmashook EV, Genrikhs EE, Korshunova GA, Sumbatyan NV, Kapkaeva MR, Skulachev VP. Neuroprotective properties of mitochondria-targeted antioxidants of the SkQ-type. Rev Neurosci 2016; 27:849-855. [DOI: 10.1515/revneuro-2016-0036] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2016] [Accepted: 07/13/2016] [Indexed: 12/20/2022]
Abstract
AbstractIn 2008, using a model of compression brain ischemia, we presented the first evidence that mitochondria-targeted antioxidants of the SkQ family, i.e. SkQR1 [10-(6′-plastoquinonyl)decylrhodamine], have a neuroprotective action. It was shown that intraperitoneal injections of SkQR1 (0.5–1 μmol/kg) 1 day before ischemia significantly decreased the damaged brain area. Later, we studied in more detail the anti-ischemic action of this antioxidant in a model of experimental focal ischemia provoked by unilateral intravascular occlusion of the middle cerebral artery. The neuroprotective action of SkQ family compounds (SkQR1, SkQ1, SkQTR1, SkQT1) was manifested through the decrease in trauma-induced neurological deficit in animals and prevention of amyloid-β-induced impairment of long-term potentiation in rat hippocampal slices. At present, most neurophysiologists suppose that long-term potentiation underlies cellular mechanisms of memory and learning. They consider inhibition of this process by amyloid-β1-42as anin vitromodel of memory disturbance in Alzheimer’s disease. Further development of the above studies revealed that mitochondria-targeted antioxidants could retard accumulation of hyperphosphorylated τ-protein, as well as amyloid-β1-42, and its precursor APP in the brain, which are involved in developing neurodegenerative processes in Alzheimer’s disease.
Collapse
Affiliation(s)
- Nickolay K. Isaev
- 1Department of Bioenergetics, Belozersky Research Institute of Physico-Chemical Biology Lomonosov Moscow State University, Leninsky Gory, 1, b. 40, 119992 Moscow, Russian Federation
- 2Brain Research Department Research Center of Neurology, 125367 Moscow, Russian Federation
| | - Elena V. Stelmashook
- 2Brain Research Department Research Center of Neurology, 125367 Moscow, Russian Federation
| | - Elisaveta E. Genrikhs
- 2Brain Research Department Research Center of Neurology, 125367 Moscow, Russian Federation
| | - Galina A. Korshunova
- 1Department of Bioenergetics, Belozersky Research Institute of Physico-Chemical Biology Lomonosov Moscow State University, Leninsky Gory, 1, b. 40, 119992 Moscow, Russian Federation
| | - Natalya V. Sumbatyan
- 1Department of Bioenergetics, Belozersky Research Institute of Physico-Chemical Biology Lomonosov Moscow State University, Leninsky Gory, 1, b. 40, 119992 Moscow, Russian Federation
| | - Marina R. Kapkaeva
- 2Brain Research Department Research Center of Neurology, 125367 Moscow, Russian Federation
| | - Vladimir P. Skulachev
- 1Department of Bioenergetics, Belozersky Research Institute of Physico-Chemical Biology Lomonosov Moscow State University, Leninsky Gory, 1, b. 40, 119992 Moscow, Russian Federation
| |
Collapse
|
5
|
Chen LJ, Wang YJ, Chen JR, Tseng GF. NMDA receptor triggered molecular cascade underlies compression-induced rapid dendritic spine plasticity in cortical neurons. Exp Neurol 2015; 266:86-98. [PMID: 25708984 DOI: 10.1016/j.expneurol.2015.02.014] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2014] [Revised: 12/05/2014] [Accepted: 02/09/2015] [Indexed: 10/24/2022]
Abstract
Compression causes the reduction of dendritic spines of underlying adult cortical pyramidal neurons but the mechanisms remain at large. Using a rat epidural cerebral compression model, dendritic spines on the more superficial-lying layer III pyramidal neurons were found quickly reduced in 12h, while those on the deep-located layer V pyramidal neurons were reduced slightly later, starting 1day following compression. No change in the synaptic vesicle markers synaptophysin and vesicular glutamate transporter 1 suggest no change in afferents. Postsynaptically, N-methyl-d-aspartate (NMDA) receptor trafficking to synaptic membrane was detected in 10min and lasting to 1day after compression. Translocation of calcineurin to synapses and enhancement of its enzymatic activity were detected within 10min as well. These suggest that compression rapidly activated NMDA receptors to increase postsynaptic calcium, which then activated the phosphatase calcineurin. In line with this, dephosphorylation and activation of the actin severing protein cofilin, and the consequent depolymerization of actin were all identified in the compressed cortex within matching time frames. Antagonizing NMDA receptors with MK801 before compression prevented this cascade of events, including NR1 mobilization, calcineurin activation and actin depolymerization, in the affected cortex. Morphologically, MK801 pretreatment prevented the loss of dendritic spines on the compressed cortical pyramidal neurons as well. In short, we demonstrated, for the first time, mechanisms underlying the rapid compression-induced cortical neuronal dendritic spine plasticity. In addition, the mechanical force of compression appears to activate NMDA receptors to initiate a rapid postsynaptic molecular cascade to trim dendritic spines on the compressed cortical pyramidal neurons within half a day.
Collapse
Affiliation(s)
- Li-Jin Chen
- Department of Anatomy, College of Medicine, Tzu-Chi University, Hualien, Taiwan
| | - Yueh-Jan Wang
- Department of Anatomy, College of Medicine, Tzu-Chi University, Hualien, Taiwan
| | - Jeng-Rung Chen
- Department of Veterinary Medicine, College of Veterinary Medicine, National Chung-Hsing University, Taichung, Taiwan
| | - Guo-Fang Tseng
- Department of Anatomy, College of Medicine, Tzu-Chi University, Hualien, Taiwan.
| |
Collapse
|
6
|
Xerri C, Zennou-Azogui Y. Early and moderate sensory stimulation exerts a protective effect on perilesion representations of somatosensory cortex after focal ischemic damage. PLoS One 2014; 9:e99767. [PMID: 24914807 PMCID: PMC4051766 DOI: 10.1371/journal.pone.0099767] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2014] [Accepted: 05/19/2014] [Indexed: 02/05/2023] Open
Abstract
Previous studies have shown that intensive training within an early critical time window after focal cortical ischemia increases the area of damaged tissue and is detrimental to behavioral recovery. We postulated that moderate stimulation initiated soon after the lesion could have protective effects on peri-infarct cortical somatotopic representations. Therefore, we have assessed the effects of mild cutaneous stimulation delivered in an attention-demanding behavioral context on the functional organization of the perilesion somatosensory cortex using high-density electrophysiological mapping. We compared the effects of 6-day training initiated on the 3rd day postlesion (early training; ET) to those of same-duration training started on the 8th day (delayed training; DT). Our findings confirm previous work showing that the absence of training aggravates representational loss in the perilesion zone. In addition, ET was found to be sufficient to limit expansion of the ischemic lesion and reduce tissue loss, and substantially maintain the neuronal responsiveness to tactile stimulation, thereby preserving somatotopic map arrangement in the peri-infarct cortical territories. By contrast, DT did not prevent tissue loss and only partially reinstated lost representations in a use-dependent manner within the spared peri-infarct cortical area. This study differentiates the effects of early versus delayed training on perilesion tissue and cortical map reorganization, and underscores the neuroprotective influence of mild rehabilitative stimulation on neuronal response properties in the peri-infarct cortex during an early critical period.
Collapse
Affiliation(s)
- Christian Xerri
- Neurosciences Intégratives et Adaptatives, Aix-Marseille Université, Centre National de la Recherche Scientifique, Unité Mixte de Recherche 7260, Fédération de Recherches Comportement-Cerveau-Cognition 3512, Marseille, France
- * E-mail:
| | - Yoh'i Zennou-Azogui
- Neurosciences Intégratives et Adaptatives, Aix-Marseille Université, Centre National de la Recherche Scientifique, Unité Mixte de Recherche 7260, Fédération de Recherches Comportement-Cerveau-Cognition 3512, Marseille, France
| |
Collapse
|
7
|
Abstract
Cortical compression can be a significant problem in many types of brain injuries, such as brain trauma, localized brain edema, hematoma, focal cerebral ischemia, or brain tumors. Mechanical and cellular alterations can result in global changes in excitation and inhibition on the neuronal network level even in the absence of histologically significant cell injury, often manifesting clinically as seizures. Despite the importance and prevalence of this problem, however, the precise electrophysiological effects of brain injury have not been well characterized. In this study, the changes in electrophysiology were characterized following sustained cortical compression using large-scale, multielectrode measurement of multiunit activity in primary somatosensory cortex in a sensory-evoked, in vivo animal model. Immediately following the initiation of injury at a distal site, there was a period of suppression of the evoked response in the rat somatosensory cortex, followed by hyper-excitability that was accompanied by an increase in the spatial extent of cortical activation. Paired-pulse tactile stimulation revealed a dramatic shift in the excitatory/inhibitory dynamics, suggesting a longer term hyperexcitability of the cortical circuit following the initial suppression that could be linked to the disruption of one or more inhibitory mechanisms of the thalamocortical circuit. Together, our results showed that the use of a sensory-evoked response provided a robust and repeatable functional marker of the evolution of the consequences of mild injury, serving as an important step toward in vivo quantification of alterations in excitation and inhibition in the cortex in the setting of traumatic brain injury.
Collapse
|
8
|
Martinez M, Brezun JM, Xerri C. Sensorimotor experience influences recovery of forelimb abilities but not tissue loss after focal cortical compression in adult rats. PLoS One 2011; 6:e16726. [PMID: 21359230 PMCID: PMC3040209 DOI: 10.1371/journal.pone.0016726] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2010] [Accepted: 12/22/2010] [Indexed: 11/23/2022] Open
Abstract
Sensorimotor activity has been shown to play a key role in functional outcome after extensive brain damage. This study was aimed at assessing the influence of sensorimotor experience through subject-environment interactions on the time course of both lesion and gliosis volumes as well as on the recovery of forelimb sensorimotor abilities following focal cortical injury. The lesion consisted of a cortical compression targeting the forepaw representational area within the primary somatosensory cortex of adult rats. After the cortical lesion, rats were randomly subjected to various postlesion conditions: unilateral C5-C6 dorsal root transection depriving the contralateral cortex from forepaw somatosensory inputs, standard housing or an enriched environment promoting sensorimotor experience and social interactions. Behavioral tests were used to assess forelimb placement during locomotion, forelimb-use asymmetry, and forepaw tactile sensitivity. For each group, the time course of tissue loss was described and the gliosis volume over the first postoperative month was evaluated using an unbiased stereological method. Consistent with previous studies, recovery of behavioral abilities was found to depend on post-injury experience. Indeed, increased sensorimotor activity initiated early in an enriched environment induced a rapid and more complete behavioral recovery compared with standard housing. In contrast, severe deprivation of peripheral sensory inputs led to a delayed and only partial sensorimotor recovery. The dorsal rhizotomy was found to increase the perilesional gliosis in comparison to standard or enriched environments. These findings provide further evidence that early sensory experience has a beneficial influence on the onset and time course of functional recovery after focal brain injury.
Collapse
Affiliation(s)
- Marina Martinez
- CNRS UMR 6149, Integrative and Adaptive Neurosciences, Pôle 3 C, IFR 131, University of Provence, Marseilles, France
| | - Jean-Michel Brezun
- CNRS UMR 6149, Integrative and Adaptive Neurosciences, Pôle 3 C, IFR 131, University of Provence, Marseilles, France
| | - Christian Xerri
- CNRS UMR 6149, Integrative and Adaptive Neurosciences, Pôle 3 C, IFR 131, University of Provence, Marseilles, France
| |
Collapse
|
9
|
Lin JL, Huang YH, Shen YC, Huang HC, Liu PH. Ascorbic acid prevents blood-brain barrier disruption and sensory deficit caused by sustained compression of primary somatosensory cortex. J Cereb Blood Flow Metab 2010; 30:1121-36. [PMID: 20051973 PMCID: PMC2949198 DOI: 10.1038/jcbfm.2009.277] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Transient compression of rat somatosensory cortex has been reported to affect cerebral microvasculature and sensory function simultaneously. However, the effects of long-term cortical compression remain unknown. Here, we investigated whether and to what extent sustained but moderate epidural compression of rat somatosensory cortex impairs somatic sensation and/or cortical microvasculature. Electrophysiological and behavioral tests revealed that sustained compression caused only short-term sensory deficit, particularly at 1 day after injury. Although the diameter of cortical microvessels was coincidentally reduced, no ischemic insult was observed. By measuring Evans Blue and immunoglobulin G extravasation, the blood-brain barrier (BBB) permeability was found to dramatically increase during 1 to 3 days, but this did not lead to brain edema. Furthermore, immunoblotting showed that the BBB component proteins occludin, claudin-5, type IV collagen, and glial fibrillary acidic protein were markedly upregulated in the injured cortex during 1 to 2 weeks when BBB regained integrity. Conversely, treatment of ascorbic acid prevented compression-induced BBB disruption and sensory impairment. Together, these data suggest that sustained compression of the somatosensory cortex compromises BBB integrity and somatic sensation only in the early period. Ascorbic acid may be used therapeutically to modulate cortical compression and/or BBB dysfunction.
Collapse
Affiliation(s)
- Jia-Li Lin
- Institute of Neuroscience, Tzu Chi University, Hualien, Taiwan
| | | | | | | | | |
Collapse
|
10
|
Moreira TJTP, Pierre K, Maekawa F, Repond C, Cebere A, Liljequist S, Pellerin L. Enhanced cerebral expression of MCT1 and MCT2 in a rat ischemia model occurs in activated microglial cells. J Cereb Blood Flow Metab 2009; 29:1273-83. [PMID: 19401710 DOI: 10.1038/jcbfm.2009.50] [Citation(s) in RCA: 78] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Monocarboxylate transporters (MCTs) are essential for the use of lactate, an energy substrate known to be overproduced in brain during an ischemic episode. The expression of MCT1 and MCT2 was investigated at 48 h of reperfusion from focal ischemia induced by unilateral extradural compression in Wistar rats. Increased MCT1 mRNA expression was detected in the injured cortex and hippocampus of compressed animals compared to sham controls. In the contralateral, uncompressed hemisphere, increases in MCT1 mRNA level in the cortex and MCT2 mRNA level in the hippocampus were noted. Interestingly, strong MCT1 and MCT2 protein expression was found in peri-lesional macrophages/microglia and in an isolectin B4+/S100beta+ cell population in the corpus callosum. In vitro, MCT1 and MCT2 protein expression was observed in the N11 microglial cell line, whereas an enhancement of MCT1 expression by tumor necrosis factor-alpha (TNF-alpha) was shown in these cells. Modulation of MCT expression in microglia suggests that these transporters may help sustain microglial functions during recovery from focal brain ischemia. Overall, our study indicates that changes in MCT expression around and also away from the ischemic area, both at the mRNA and protein levels, are a part of the metabolic adaptations taking place in the brain after ischemia.
Collapse
|
11
|
Bakeeva LE, Barskov IV, Egorov MV, Isaev NK, Kapelko VI, Kazachenko AV, Kirpatovsky VI, Kozlovsky SV, Lakomkin VL, Levina SB, Pisarenko OI, Plotnikov EY, Saprunova VB, Serebryakova LI, Skulachev MV, Stelmashook EV, Studneva IM, Tskitishvili OV, Vasilyeva AK, Victorov IV, Zorov DB, Skulachev VP. Mitochondria-targeted plastoquinone derivatives as tools to interrupt execution of the aging program. 2. Treatment of some ROS- and Age-related diseases (heart arrhythmia, heart infarctions, kidney ischemia, and stroke). BIOCHEMISTRY (MOSCOW) 2009; 73:1288-99. [DOI: 10.1134/s000629790812002x] [Citation(s) in RCA: 129] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
12
|
Skulachev VP, Anisimov VN, Antonenko YN, Bakeeva LE, Chernyak BV, Erichev VP, Filenko OF, Kalinina NI, Kapelko VI, Kolosova NG, Kopnin BP, Korshunova GA, Lichinitser MR, Obukhova LA, Pasyukova EG, Pisarenko OI, Roginsky VA, Ruuge EK, Senin II, Severina II, Skulachev MV, Spivak IM, Tashlitsky VN, Tkachuk VA, Vyssokikh MY, Yaguzhinsky LS, Zorov DB. An attempt to prevent senescence: a mitochondrial approach. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2008; 1787:437-61. [PMID: 19159610 DOI: 10.1016/j.bbabio.2008.12.008] [Citation(s) in RCA: 300] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2008] [Revised: 12/16/2008] [Accepted: 12/18/2008] [Indexed: 12/14/2022]
Abstract
Antioxidants specifically addressed to mitochondria have been studied to determine if they can decelerate senescence of organisms. For this purpose, a project has been established with participation of several research groups from Russia and some other countries. This paper summarizes the first results of the project. A new type of compounds (SkQs) comprising plastoquinone (an antioxidant moiety), a penetrating cation, and a decane or pentane linker has been synthesized. Using planar bilayer phospholipid membrane (BLM), we selected SkQ derivatives with the highest permeability, namely plastoquinonyl-decyl-triphenylphosphonium (SkQ1), plastoquinonyl-decyl-rhodamine 19 (SkQR1), and methylplastoquinonyldecyltriphenylphosphonium (SkQ3). Anti- and prooxidant properties of these substances and also of ubiquinonyl-decyl-triphenylphosphonium (MitoQ) were tested in aqueous solution, detergent micelles, liposomes, BLM, isolated mitochondria, and cell cultures. In mitochondria, micromolar cationic quinone derivatives were found to be prooxidants, but at lower (sub-micromolar) concentrations they displayed antioxidant activity that decreases in the series SkQ1=SkQR1>SkQ3>MitoQ. SkQ1 was reduced by mitochondrial respiratory chain, i.e. it is a rechargeable antioxidant. Nanomolar SkQ1 specifically prevented oxidation of mitochondrial cardiolipin. In cell cultures, SkQR1, a fluorescent SkQ derivative, stained only one type of organelles, namely mitochondria. Extremely low concentrations of SkQ1 or SkQR1 arrested H(2)O(2)-induced apoptosis in human fibroblasts and HeLa cells. Higher concentrations of SkQ are required to block necrosis initiated by reactive oxygen species (ROS). In the fungus Podospora anserina, the crustacean Ceriodaphnia affinis, Drosophila, and mice, SkQ1 prolonged lifespan, being especially effective at early and middle stages of aging. In mammals, the effect of SkQs on aging was accompanied by inhibition of development of such age-related diseases and traits as cataract, retinopathy, glaucoma, balding, canities, osteoporosis, involution of the thymus, hypothermia, torpor, peroxidation of lipids and proteins, etc. SkQ1 manifested a strong therapeutic action on some already pronounced retinopathies, in particular, congenital retinal dysplasia. With drops containing 250 nM SkQ1, vision was restored to 67 of 89 animals (dogs, cats, and horses) that became blind because of a retinopathy. Instillation of SkQ1-containing drops prevented the loss of sight in rabbits with experimental uveitis and restored vision to animals that had already become blind. A favorable effect of the same drops was also achieved in experimental glaucoma in rabbits. Moreover, the SkQ1 pretreatment of rats significantly decreased the H(2)O(2) or ischemia-induced arrhythmia of the isolated heart. SkQs strongly reduced the damaged area in myocardial infarction or stroke and prevented the death of animals from kidney ischemia. In p53(-/-) mice, 5 nmol/kgxday SkQ1 decreased the ROS level in the spleen and inhibited appearance of lymphomas to the same degree as million-fold higher concentration of conventional antioxidant NAC. Thus, SkQs look promising as potential tools for treatment of senescence and age-related diseases.
Collapse
Affiliation(s)
- Vladimir P Skulachev
- A. N. Belozersky Institute of Physico-Chemical Biology, Moscow State University, Vorobyevy Gory 1, Moscow, Russia.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Luo W, Wang Z, Li P, Zeng S, Luo Q. A modified mini-stroke model with region-directed reperfusion in rat cortex. J Cereb Blood Flow Metab 2008; 28:973-83. [PMID: 18073774 DOI: 10.1038/sj.jcbfm.9600591] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Mini-ischemia localized into a specific brain area has promoted understanding of the mechanisms underlying brain recovery in stroke. However, the conventional mini-stroke model adopted permanent arterial ligations but lacked controllable reperfusion, which is crucial for the outcome of delayed functional recovery. In this study, we devised a new rat mini-stroke model in which the vascular ligations can be easily reversed to induce targeted reperfusion. Specifically, a flexible ring was incorporated into the conventional small arterial ligations to tighten the ligating loops and facilitate cutting the ligatures for sufficient reperfusion afterwards. The distribution of cerebral blood flow was explored directly through a cranial window using laser speckle contrast imaging. A distinct ischemic core, which well fits the profile of the ligated ring, was bordered by a penumbral zone and then together surrounded by nonischemic tissue immediately after the arterial ligations involving the ring. After cutting the ligatures, post-recanalization hyperperfusion occurred in the previous ischemic core and to a greater extent at 24 h after reperfusion. In contrast, recirculation of common carotid artery in the conventional mini-stroke model hardly altered hypoperfusion status within the ischemic core. Evidence from two kinds of control groups indicated that the ring might produce a compression effect on the underlying cortex and then contribute to the more highly localized infarct that was identified by triphenyltetrazolium chloride staining. Our data suggest that this model provides opportunities for investigating the neurovascular dynamics in acute stroke and rehabilitation, especially with emerging optical imaging techniques.
Collapse
Affiliation(s)
- Weihua Luo
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, PR China
| | | | | | | | | |
Collapse
|
14
|
Ding MC, Lo EH, Stanley GB. Sustained focal cortical compression reduces electrically-induced seizure threshold. Neuroscience 2008; 154:551-5. [PMID: 18495350 DOI: 10.1016/j.neuroscience.2008.03.088] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2007] [Revised: 03/28/2008] [Accepted: 03/28/2008] [Indexed: 11/17/2022]
Abstract
Brain injury can often result in the subsequent appearance of seizures, suggesting an alteration in neural excitability associated with the balance between neuronal excitation and inhibition. The process by which this occurs has yet to be fully elucidated. The specific nature of the changes in excitation and inhibition is still unclear, as is the process by which the seizures appear following injury. In this study, we investigated the effects of focal cortical compression on electrically-induced localized seizure threshold in rats. Male Long Evans rats were implanted with stimulating screw electrodes in their motor cortices above the regions controlling forelimb movement. Initial seizure threshold was determined in the animals using a ramped electrical stimulation procedure prior to any compression. Following initial threshold determination, animals underwent sustained cortical compression and then following a 24 h recovery period had their seizure thresholds tested again with electrical stimulation. Reliability of threshold measurements was confirmed through repeated measurements of seizure threshold. Localized seizure threshold was significantly lowered following sustained cortical compression as compared with control cases. Taken together, the results here suggest a change in global brain excitability following localized, focal compression.
Collapse
Affiliation(s)
- M C Ding
- School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, 02138, USA
| | | | | |
Collapse
|
15
|
Moreira TJTP, Cebere A, Cebers G, Ostenson CG, Efendic S, Liljequist S. Reduced HO-1 protein expression is associated with more severe neurodegeneration after transient ischemia induced by cortical compression in diabetic Goto-Kakizaki rats. J Cereb Blood Flow Metab 2007; 27:1710-23. [PMID: 17406657 DOI: 10.1038/sj.jcbfm.9600479] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Pronounced hyperglycemia provoked by extradural compression (EC) of the sensorimotor cortex was recently described in the non-insulin dependent Goto-Kakizaki (GK) diabetic rat. Compared with control Wistar rats, GK rats exhibited more extensive brain damage after cortical ischemia at 48 h of reperfusion (Moreira et al, 2007). We hypothesized that the enhanced brain injury in GK rats could be caused by differential regulation of the heme degrading enzyme heme oxygenase (HO)-1, known to interact with the expression of other target genes implicated in antioxidant defense, inflammation and neurodegeneration, such as superoxide dismutase (SOD)-1, -2, inducible nitric oxide synthase (iNOS), and tumor necrosis factor-alpha (TNFalpha). At 48 h after ischemia, relative mRNA expression of such target genes was compared between ipsilateral (compressed) and contralateral (uncompressed) hemispheres of GK rats, along with baseline comparison of sham, uncompressed GK and Wistar rats. Immunohistochemistry was performed to detect cellular and regional localization of HO-1 at this time point. Baseline expression of HO-1, iNOS, and TNFalpha mRNA was increased in the cortex of sham GK rats. GK rats showed pronounced hyperglycemia during EC and transient attenuation of regional cerebral blood flow recovery. At 48 h after reperfusion, HO-1 mRNA expression was 7- to 8-fold higher in the ischemic cortex of both strains, being the most upregulated gene under study. Heme oxygenase-1 protein expression was significantly reduced in diabetic rats and was found in perilesional astrocytes and rare microglial cells, in both strains. The reduced HO-1 protein expression in GK rats at 48 h after reperfusion combined with more extensive neurodegeneration induced by EC, provides further in vivo evidence for a neuroprotective role of HO after brain ischemia.
Collapse
Affiliation(s)
- Tiago J T P Moreira
- Division of Drug Dependence Research, Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | | | | | | | | | | |
Collapse
|
16
|
Moreira T, Cebers G, Pickering C, Ostenson CG, Efendic S, Liljequist S. Diabetic Goto-Kakizaki rats display pronounced hyperglycemia and longer-lasting cognitive impairments following ischemia induced by cortical compression. Neuroscience 2006; 144:1169-85. [PMID: 17175109 DOI: 10.1016/j.neuroscience.2006.10.054] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2006] [Revised: 09/07/2006] [Accepted: 10/27/2006] [Indexed: 01/04/2023]
Abstract
Hyperglycemia has been shown to worsen the outcome of brain ischemia in several animal models but few experimental studies have investigated impairments in cognition induced by ischemic brain lesions in hyperglycemic animals. The Goto-Kakizaki (GK) rat naturally develops type 2 diabetes characterized by mild hyperglycemia and insulin resistance. We hypothesized that GK rats would display more severe cerebral damage due to hyperglycemia-aggravated brain injury and, accordingly, more severe cognitive impairments. In this study, recovery of motor and cognitive functions of GK and healthy Wistar rats was examined following extradural compression (EC) of the sensorimotor cortex. For this purpose, tests of vestibulomotor function (beam-walking) and combined tests of motor function and learning (locomotor activity from day (D) 1 to D5, operant lever-pressing from D14 to D25) were used. EC consistently reduced cerebral blood flow in both strains. Anesthesia-challenge and EC resulted in pronounced hyperglycemia in GK but not in Wistar rats. Lower beam-walking scores, increased locomotor activity, impairments in long-term habituation and learning of operant lever-pressing were more pronounced and observed at later time-points in GK rats. Fluoro-Jade, a marker of irreversible neuronal degeneration, revealed consistent degeneration in the ipsilateral cortex, hippocampus and thalamus at 2, 7 and 14 days post-compression. The amount of degeneration in these structures was considerably higher in GK rats. Thus, GK rats exhibited marked hyperglycemia during EC, as well as longer-lasting behavioral deficits and increased neurodegeneration during recovery. The GK rat is thus an attractive model for neuropathologic and cognitive studies after ischemic brain injury in hyperglycemic rats.
Collapse
Affiliation(s)
- T Moreira
- Department of Clinical Neuroscience, Division of Drug Dependence Research Building L4a:00, Karolinska Institutet, SE-17177 Stockholm, Sweden.
| | | | | | | | | | | |
Collapse
|
17
|
Moreira T, Cebers G, Salehi M, Wägner A, Liljequist S. Impaired long-term habituation is dissociated from increased locomotor activity after sensorimotor cortex compression. Behav Brain Res 2006; 167:9-22. [PMID: 16337698 DOI: 10.1016/j.bbr.2005.06.048] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2005] [Revised: 06/14/2005] [Accepted: 06/14/2005] [Indexed: 11/24/2022]
Abstract
Behavioural habituation to a novel environment is a simple form of learning in rodents. We studied the habituation and locomotor activity (LMA) of Wistar rats subjected to unilateral, transient (30min) extradural compression (EC) of the right sensorimotor cortex. One group of rats was tested every 24h during the first 5 days (D1-D5) post-EC. Two other groups were tested for the first time in the LMA boxes on D3 and D6 post-EC and their performance was compared with the group tested on D1 (activity in a novel environment). Total and center locomotion, vertical activity and time spent in the center of the LMA box were reduced on D1 post-EC and normalized by D2. The EC-induced motor paresis was undetectable on the rotarod by D2 and on the beam-walking by D3. Total locomotion, vertical activity and time spent in the center of EC-rats significantly increased from D1 to D3. EC caused neurodegeneration in the cortex, caudate putamen and thalamus as detected by Fluoro-Jade staining. The size of the cortical damage decreased from D2 to D5 in the medial and caudal regions of the compressed hemisphere, in accordance with recovery of motor function. LMA provided additional information in the follow-up of recovery from brain injury and habituation to the environment. Thus, long-term, inter-session habituation was impaired from D1 to D3 but dissociated from increased LMA intra-session on D3, when the motor deficits provoked by EC were already undetectable in the rotarod and beam-walking tests.
Collapse
Affiliation(s)
- Tiago Moreira
- Department of Clinical Neuroscience, Division of Drug Dependence Research, Karolinska University Hospital, Bldg. L4:00, SE-17176 Stockholm, Sweden
| | | | | | | | | |
Collapse
|
18
|
Moreira T, Cebers G, Cebere A, Wägner A, Liljequist S. Extradural compression of the sensorimotor cortex delays the acquisition but not the recalling of a lever-pressing task in Wistar rats. Behav Brain Res 2005; 164:250-65. [PMID: 16157396 DOI: 10.1016/j.bbr.2005.06.013] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2005] [Revised: 06/01/2005] [Accepted: 06/02/2005] [Indexed: 12/01/2022]
Abstract
The learning and recalling of a lever-press task (LPT) after brief unilateral extradural compression (EC) of the right sensorimotor cortex was studied in Wistar rats. All rats, regardless of the time-point for EC, were trained to lever press for food from D(day)1 to D6. On D8, the position of the active lever was changed to the right side of the operant box and performance was tested until D14. Total and active lever presses, as well as % errors were used to analyse the performance. Rats submitted to EC 24 h before initiating the LPT schedule (naïve-compressed group) showed delayed task acquisition and impaired performance until D10. No significant impairments were detected by D3 on a beam-walking test, excluding paresis as the cause to the delay. Rats submitted to EC after they learned the LPT (trained-compressed group) showed only mildly impaired post-compression performance with no effects on the recalling of the task. Using a progressive ratio LPT, the maximum number of presses to obtain a food-pellet (breaking point) was significantly reduced 24h after EC suggesting reduced motivation for the task early after brain injury. The delayed acquisition of the LPT in naïve-compressed rats was accompanied by consistent cortical, striatal and thalamic degeneration detected by Fluoro-Jade and anti-glial fibrillary acidic protein (GFAP) staining, whereas the improvement in the performance of this group was accompanied by a reduction of the cortical damage on D10. Recall of the LPT in trained-compressed rats was not altered by EC, suggesting the contribution of compensatory mechanisms.
Collapse
Affiliation(s)
- Tiago Moreira
- Department of Clinical Neuroscience, Division of Drug Dependence Research, Karolinska University Hospital, Bldg. L4:00, SE-17176 Stockholm, Sweden
| | | | | | | | | |
Collapse
|
19
|
Burnett MG, Detre JA, Greenberg JH. Activation–flow coupling during graded cerebral ischemia. Brain Res 2005; 1047:112-8. [PMID: 15893740 DOI: 10.1016/j.brainres.2005.04.024] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2004] [Revised: 04/11/2005] [Accepted: 04/13/2005] [Indexed: 11/16/2022]
Abstract
Most functional neuroimaging techniques rely on activation-flow coupling (AFC) to detect changes in regional brain function, but AFC responses may also be altered during pathophysiological conditions such as ischemia. To define the relationship between progressive ischemia and the AFC response, graded levels of cerebral blood flow reduction were produced using a rat compression ischemia model, and the cerebral hemodynamic response to forepaw stimulation was measured. Graded levels of cortical ischemia of the somatosensory cortex were induced in male Sprague-Dawley rats (n = 16) by compressing the intact dura with a 4-mm-diameter cylinder equipped with a laser-Doppler probe, combined with ipsilateral common carotid artery occlusion. At each level of CBF reduction, electric forepaw stimulation was conducted, and signal-averaged laser Doppler and evoked potential responses were recorded. A visible AFC response was present at all levels of CBF reduction (0-90% reduction from baseline), and the temporal characteristics of the response appeared largely preserved. However, the amplitude of the AFC response began to decline at levels of mild ischemia (10% flow reduction) and progressively decreased with further CBF reduction. The amplitude of the evoked response appeared to decrease in concert with the AFC amplitude and appeared to be equally sensitive to ischemia. AFC appears to be a sensitive marker for cerebral ischemia, and alterations in the AFC response occur at CBF reductions above the accepted thresholds for infarction. However, the AFC response is also preserved when flow is reduced below ischemic thresholds.
Collapse
Affiliation(s)
- Mark G Burnett
- Department of Neurosurgery, University of Pennsylvania School of Medicine, Philadelphia, 415 Stemmler Hall, 3450 Hamilton Walk, University of Pennsylvania, Philadelphia, PA 19104-6063, USA
| | | | | |
Collapse
|
20
|
Hoffman JR, Greenberg JH, Furuya D, Craik RL, Fanelli P, Breslow S, Sheehan S, Ketschek A, Damkaoutis C, Reivich M, Hand P. Rats recovering from unilateral barrel-cortex ischemia are capable of completing a whisker-dependent task using only their affected whiskers. Brain Res 2003; 965:91-9. [PMID: 12591124 DOI: 10.1016/s0006-8993(02)04141-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Rats use their vibrissae for a variety of exploratory tasks including location of objects and discrimination of texture. This study examines recovery in vibrissal function following a unilateral ischemic injury to the somatosensory cortex. Vibrissal function was examined in adult food-restricted rats performing on a two-texture discrimination device. Animals were trained and tested until the criteria of >80% correct choices was demonstrated on three consecutive days. Ischemic rats were constrained to use the affected whiskers by clipping the ipsilateral vibrissae. One group was tested after ischemia, a second group was trained before ischemia and then tested, and a third group was pre-trained and received whisker stimulation and tested post-ischemia. Nai;ve animals recovering from ischemia took longer to reach criteria than intact or unilateral trimmed control animals. Pre-trained animals with compression ischemia receiving whisker stimulation with sucrose water completed the task to criteria in the fewest number of trials. The results indicate that recovery of vibrissal function occurs following a unilateral ischemic injury. Histological analysis in animals without whisker stimulation indicates that the number of normal appearing cortical barrels following ischemia was inversely correlated to the number of trials needed to complete the behavioral task. This suggests that the natural recovery of the ability to discriminate textures is related to the degree of damage to the barrel cortex. The relationship between cortical barrels and behavioral recovery did not hold for the ischemic animals receiving whisker stimulation. This latter group demonstrated recovery despite marked anatomical lesions suggesting that the intervention influenced reorganization.
Collapse
Affiliation(s)
- John R Hoffman
- Department of Biology, Arcadia University, 450 S. Easton Road, Glenside, PA 19038, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Ningaraj NS, Rao M, Hashizume K, Asotra K, Black KL. Regulation of blood-brain tumor barrier permeability by calcium-activated potassium channels. J Pharmacol Exp Ther 2002; 301:838-51. [PMID: 12023511 DOI: 10.1124/jpet.301.3.838] [Citation(s) in RCA: 88] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The blood-brain tumor barrier (BTB) limits the delivery of therapeutic drugs to brain tumors. We demonstrate in a rat brain tumor (RG2) model an enhanced drug delivery to brain tumor following intracarotid infusion of bradykinin (BK), nitric oxide (NO) donors, or agonists of soluble guanylate cyclase (sGC) and calcium-dependent potassium (K(Ca)) channels. We modulated K(Ca) channels by specific agonists and agents that produce NO and cGMP in situ to obtain sustained enhancement of selective drug delivery to brain tumors. Intracarotid infusion of BK or 1,3-dihydro-1-[2-hydroxy-5-(trifluoromethyl)phenyl]-5-(trifluoromethyl)-2H-benzimidazol-2-one (NS-1619) significantly enhanced BTB permeability (K(i)) to [(14)C]alpha-aminoisobutyric acid in the brain tumor area but not in normal brain tissue. The K(i) increase achieved by BK, NS-1619, NO donors, or the sGC activator 3-(5'-hydroxymethyl-2'furyl)-1-benzylindazole (YC-1) was significantly attenuated when coinfused with a K(Ca) channel antagonist, iberiotoxin. Immunoblot and immunolocalization studies demonstrate overexpression of K(Ca) channels in tumor cells and capillaries compared with normal brain. The potentiometric assays demonstrate the functional activity of K(Ca) channels in rat brain endothelial and glioma cells. Additionally, we show that BK and NS-1619 significantly increased the density of transport vesicles in the cytoplasm of brain tumor capillary endothelia and tumor cells. The cleft indices and cleft area indices in rat tumor capillaries were significantly higher than in normal brain capillaries, and BK infusion did not alter these indices. These data demonstrate that the cellular mechanism for K(Ca) channel-mediated BTB permeability increase is due to accelerated formation of pinocytotic vesicles, which can transport drugs across BTB. We conclude that K(Ca) channels serve as a convergence point in the biochemical regulation of BTB permeability.
Collapse
Affiliation(s)
- Nagendra S Ningaraj
- Maxine Dunitz Neurosurgical Institute, Division of Cardiology, Cedars-Sinai Medical Center, 8631 West Third Street, Los Angeles, CA 90048, USA
| | | | | | | | | |
Collapse
|