1
|
Abouzaid A, Ali K, Jatoi S, Ahmed M, Ahmad G, Nazim A, Mehmoodi A, Malik J. Cardiac Arrhythmias in Pulmonary Arterial Hypertension and Chronic Thromboembolic Pulmonary Hypertension: Mechanistic Insights, Pathophysiology, and Outcomes. Ann Noninvasive Electrocardiol 2024; 29:e70010. [PMID: 39205610 PMCID: PMC11358588 DOI: 10.1111/anec.70010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Accepted: 08/06/2024] [Indexed: 09/04/2024] Open
Abstract
Arrhythmias are increasingly recognized as severe complications of precapillary pulmonary hypertension, encompassing pulmonary arterial hypertension (PAH) and chronic thromboembolic pulmonary hypertension (CTEPH). Despite their significant contribution to symptoms, morbidity, in-hospital mortality, and potentially sudden death in PAH/CTEPH, there remains a lack of comprehensive data on epidemiology, pathophysiology, and outcomes to inform the management of these patients. This review provides an overview of the latest evidence on this subject, spanning from the molecular mechanisms underlying arrhythmias in the hypertrophied or failing right heart to the clinical aspects of epidemiology, diagnosis, and treatment.
Collapse
Affiliation(s)
| | - Khansa Ali
- Department of MedicineLiaquat University of Medical and Health SciencesJamshoroPakistan
| | - Suniya Jatoi
- Department of MedicineLiaquat University of Medical and Health SciencesJamshoroPakistan
| | - Mansoor Ahmed
- Department of MedicineLiaquat University of Medical and Health SciencesJamshoroPakistan
| | - Gulfam Ahmad
- Department of MedicineLiaquat University of Medical and Health SciencesJamshoroPakistan
| | - Ahsan Nazim
- Department of MedicineLiaquat University of Medical and Health SciencesJamshoroPakistan
| | - Amin Mehmoodi
- Department of MedicineIbn e Seena HospitalKabulAfghanistan
| | - Jahanzeb Malik
- Department of CardiologyCardiovascular Analytics GroupIslamabadPakistan
| |
Collapse
|
2
|
O'Meara K, Stone G, Buch E, Brownstein A, Saggar R, Channick R, Sherman AE, Bender A. Atrial Arrhythmias in Patients With Pulmonary Hypertension. Chest 2024; 166:201-211. [PMID: 38453002 DOI: 10.1016/j.chest.2024.03.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 03/01/2024] [Accepted: 03/04/2024] [Indexed: 03/09/2024] Open
Abstract
TOPIC IMPORTANCE Atrial arrhythmias (AA) are common in patients with pulmonary hypertension (PH) and contribute to morbidity and mortality. Given the growing PH population, understanding the pathophysiology, clinical impact, and management of AA in PH is important. REVIEW FINDINGS AA occurs in PH with a 5-year incidence of 10% to 25%. AA confers a higher morbidity and mortality, and restoration of normal sinus rhythm improves survival and functionality. AA is thought to develop because of structural alterations of the right atrium caused by changes to the right ventricle (RV) due to elevated pulmonary artery pressures. AA can subsequently worsen RV function. Current guidelines do not provide comprehensive recommendations for the management of AA in PH. Robust evidence to favor a specific treatment approach is lacking. Although the role of medical rate or rhythm control, and the use of cardioversion and ablation, can be inferred from other populations, evidence is lacking in the PH population. Much remains to be determined regarding the optimal management strategy. We present here our institutional approach and discuss areas for future research. SUMMARY This review highlights the epidemiology and pathophysiology of AA in patients with PH, describes the relationship between AA and RV dysfunction, and discusses current management practices. We outline our institutional approach and offer directions for future investigation.
Collapse
MESH Headings
- Humans
- Hypertension, Pulmonary/physiopathology
- Hypertension, Pulmonary/therapy
- Hypertension, Pulmonary/epidemiology
- Hypertension, Pulmonary/diagnosis
- Hypertension, Pulmonary/etiology
- Arrhythmias, Cardiac/physiopathology
- Arrhythmias, Cardiac/therapy
- Arrhythmias, Cardiac/epidemiology
- Arrhythmias, Cardiac/etiology
- Atrial Fibrillation/physiopathology
- Atrial Fibrillation/therapy
- Atrial Fibrillation/complications
- Atrial Fibrillation/epidemiology
- Ventricular Dysfunction, Right/physiopathology
Collapse
Affiliation(s)
- Kyle O'Meara
- Department of Pulmonary & Critical Care Medicine, Cedars Sinai Medical Center, Los Angeles, CA
| | - Gregory Stone
- UCLA Department of Internal Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA
| | - Eric Buch
- UCLA Cardiac Arrhythmia Center, David Geffen School of Medicine at UCLA, Los Angeles, CA
| | - Adam Brownstein
- Division of Pulmonary, Critical Care, Sleep Medicine, Clinical Immunology and Allergy, David Geffen School of Medicine at UCLA, Los Angeles, CA
| | - Rajan Saggar
- Division of Pulmonary, Critical Care, Sleep Medicine, Clinical Immunology and Allergy, David Geffen School of Medicine at UCLA, Los Angeles, CA
| | - Richard Channick
- Division of Pulmonary, Critical Care, Sleep Medicine, Clinical Immunology and Allergy, David Geffen School of Medicine at UCLA, Los Angeles, CA.
| | - Alexander E Sherman
- Division of Pulmonary, Critical Care, Sleep Medicine, Clinical Immunology and Allergy, David Geffen School of Medicine at UCLA, Los Angeles, CA
| | - Aron Bender
- UCLA Cardiac Arrhythmia Center, David Geffen School of Medicine at UCLA, Los Angeles, CA
| |
Collapse
|
3
|
Bai J, Lo A, Kennelly J, Sharma R, Zhao N, Trew ML, Zhao J. Mechanisms of pulmonary arterial hypertension-induced atrial fibrillation: insights from multi-scale models of the human atria. Interface Focus 2023; 13:20230039. [PMID: 38106916 PMCID: PMC10722211 DOI: 10.1098/rsfs.2023.0039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 10/25/2023] [Indexed: 12/19/2023] Open
Abstract
This study aimed to use multi-scale atrial models to investigate pulmonary arterial hypertension (PAH)-induced atrial fibrillation mechanisms. The results of our computer simulations revealed that, at the single-cell level, PAH-induced remodelling led to a prolonged action potential (AP) (ΔAPD: 49.6 ms in the right atria (RA) versus 41.6 ms in the left atria (LA)) and an increased calcium transient (CaT) (ΔCaT: 7.5 × 10-2 µM in the RA versus 0.9 × 10-3 µM in the LA). Moreover, heterogeneous remodelling increased susceptibility to afterdepolarizations, particularly in the RA. At the tissue level, we observed a significant reduction in conduction velocity (CV) (ΔCV: -0.5 m s-1 in the RA versus -0.05 m s-1 in the LA), leading to a shortened wavelength in the RA, but not in the LA. Additionally, afterdepolarizations in the RA contributed to enhanced repolarization dispersion and facilitated unidirectional conduction block. Furthermore, the increased fibrosis in the RA amplified the likelihood of excitation wave breakdown and the occurrence of sustained re-entries. Our results indicated that the RA is characterized by increased susceptibility to afterdepolarizations, slow conduction, reduced wavelength and upregulated fibrosis. These findings shed light on the underlying factors that may promote atrial fibrillation in patients with PAH.
Collapse
Affiliation(s)
- Jieyun Bai
- Department of Electronic Engineering, College of Information Science and Technology, Jinan University, Guangzhou, People's Republic of China
- Auckland Bioengineering Institute, The University of Auckland, Auckland, New Zealand
| | - Andy Lo
- Auckland Bioengineering Institute, The University of Auckland, Auckland, New Zealand
| | - James Kennelly
- Auckland Bioengineering Institute, The University of Auckland, Auckland, New Zealand
| | - Roshan Sharma
- Auckland Bioengineering Institute, The University of Auckland, Auckland, New Zealand
| | - Na Zhao
- School of Instrument Science and Engineering, Southeast University, Nanjing, People's Republic of China
| | - Mark L. Trew
- Auckland Bioengineering Institute, The University of Auckland, Auckland, New Zealand
| | - Jichao Zhao
- Auckland Bioengineering Institute, The University of Auckland, Auckland, New Zealand
| |
Collapse
|
4
|
Yi Y, Tianxin Y, Zhangchi L, Cui Z, Weiguo W, Bo Y. Pinocembrin attenuates susceptibility to atrial fibrillation in rats with pulmonary arterial hypertension. Eur J Pharmacol 2023; 960:176169. [PMID: 37925134 DOI: 10.1016/j.ejphar.2023.176169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 10/23/2023] [Accepted: 10/26/2023] [Indexed: 11/06/2023]
Abstract
BACKGROUND Pulmonary arterial hypertension (PAH) is a disease characterized by pulmonary vascular remodeling that triggers fibrosis and excessive myocardium apoptosis, ultimately facilitating atrial fibrillation (AF). In various rat models, Pinocembrin has anti-fibrotic and anti-apoptotic effects, reducing arrhythmia vulnerability. However, whether pinocembrin alleviates to AF in a PAH model remains unclear. The experiment aims to investigate how pinocembrin affects AF susceptibility in PAH rats and the possible mechanisms involved. METHODS The PAH model was induced by monocrotaline (MCT; i. p. 60 mg/kg). Concurrently, rats received pinocembrin (i.p.50 mg/kg) or saline. Hemodynamics parameters, electrocardiogram parameters, lung H.E. staining, atrial electrophysiological parameters, histology, Western blot, and TUNEL assay were detected. RESULTS Compared to the control rats, MCT-induced PAH rats possessed prominently enhancive mPAP (mean pulmonary artery pressure), pulmonary vascular remodeling, AF inducibility, HRV, right atrial myocardial fibrosis, apoptosis, atrial ERP, APD, and P-wave duration. Additionally, there were lowered protein levels of Cav1.2, Kv4.2, Kv4.3, and connexin 40 (CX40) in the MCT group in right atrial tissue. However, pinocembrin reversed the above pathologies and alleviated the activity of the Rho A/ROCKs signaling pathway, including the expression of Rho A, ROCK1, ROCK2, and its downstream MYPT-1, LIMK2, BCL-2, BAX, cleaved-caspase3 in right atrial and HL-1 cells. CONCLUSION Present data exhibited pinocembrin attenuated atrial electrical, ion-channel, and autonomic remodeling, diminished myocardial fibrosis and apoptosis levels, thereby reducing susceptibility to AF in the MCT-induced PAH rats. Furthermore, we found that pinocembrin exerted inhibitory action on the Rho A/ROCK signaling pathway, which may be potentially associated with its anti-AF effects.
Collapse
Affiliation(s)
- Yu Yi
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, 430060, PR China; Cardiovascular Research Institute, Wuhan University, Wuhan, 430060, PR China; Hubei Key Laboratory of Cardiology, Wuhan, 430060, PR China
| | - Ye Tianxin
- Department of Cardiology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang Province, PR China
| | - Liu Zhangchi
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, 430060, PR China; Cardiovascular Research Institute, Wuhan University, Wuhan, 430060, PR China; Hubei Key Laboratory of Cardiology, Wuhan, 430060, PR China
| | - Zhang Cui
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, 430060, PR China; Cardiovascular Research Institute, Wuhan University, Wuhan, 430060, PR China; Hubei Key Laboratory of Cardiology, Wuhan, 430060, PR China
| | - Wan Weiguo
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, 430060, PR China; Cardiovascular Research Institute, Wuhan University, Wuhan, 430060, PR China; Hubei Key Laboratory of Cardiology, Wuhan, 430060, PR China.
| | - Yang Bo
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, 430060, PR China; Cardiovascular Research Institute, Wuhan University, Wuhan, 430060, PR China; Hubei Key Laboratory of Cardiology, Wuhan, 430060, PR China.
| |
Collapse
|
5
|
Morales-Lara AC, Elkhatib W, Oluleye O, Alhusain R, Saad A, Salwa N, Siddiqui H, Wieczorek MA, Ray J, Parikh P, Burger C, Shapiro B, Kusumoto F, Pillai D, Adedinsewo D. Impact of Pulmonary Hypertension Hemodynamic Phenotype on Incident Atrial Fibrillation. Cardiology 2023; 148:353-362. [PMID: 37276844 DOI: 10.1159/000531402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 05/25/2023] [Indexed: 06/07/2023]
Abstract
INTRODUCTION Atrial fibrillation/flutter (AF) is common among patients with pulmonary hypertension (PH) and is associated with poor clinical outcomes. AF has been shown to occur more commonly among patients with postcapillary PH, although AF also occurs among patients with precapillary PH. The goal of this study was to evaluate the independent impact of PH hemodynamic phenotype on incident AF among patients with PH. METHODS We retrospectively identified 262 consecutive patients, without a prior diagnosis of atrial arrhythmias, seen at the PH clinic at Mayo Clinic, Florida, between 1997 and 2017, who had right heart catheterization and echocardiography performed, with follow-up for outcomes through 2021. Kaplan-Meier analysis and Cox-proportional hazards regression modeling were used to evaluate the independent effect of PH hemodynamic phenotype on incident AF. RESULTS Our study population was classified into two broad PH hemodynamic groups: precapillary (64.9%) and postcapillary (35.1%). The median age was 59.5 years (Q1: 48.4, Q3: 68.4), and 72% were female. In crude models, postcapillary PH was significantly associated with incident AF (HR 2.17, 95% CI: 1.26-3.74, p = 0.005). This association was lost following multivariable adjustment, whereas left atrial volume index remained independently associated with incident AF (aHR 1.30, 95% CI: 1.09-1.54, p = 0.003). CONCLUSION We found PH hemodynamic phenotype was not significantly associated with incident AF in our patient sample; however, echocardiographic evidence of left atrial remodeling appeared to have a greater impact on AF development. Larger studies are needed to validate these findings and identify potential modifiable risk factors for AF in this population.
Collapse
Affiliation(s)
| | - Wiaam Elkhatib
- Department of Internal Medicine, Mayo Clinic, Jacksonville, Florida, USA
| | | | - Rashid Alhusain
- Department of Cardiovascular Medicine, Mayo Clinic, Jacksonville, Florida, USA
| | - Amjad Saad
- Department of Cardiovascular Medicine, Mayo Clinic, Jacksonville, Florida, USA
| | - Najiyah Salwa
- Department of Cardiovascular Medicine, Mayo Clinic, Jacksonville, Florida, USA
| | - Habeeba Siddiqui
- Department of Quantitative Health Sciences, Mayo Clinic, Jacksonville, Florida, USA
| | - Mikolaj A Wieczorek
- Department of Quantitative Health Sciences, Mayo Clinic, Jacksonville, Florida, USA
| | - Jordan Ray
- Department of Cardiovascular Medicine, Mayo Clinic, Jacksonville, Florida, USA
| | - Pragnesh Parikh
- Department of Cardiovascular Medicine, Mayo Clinic, Jacksonville, Florida, USA
| | - Charles Burger
- Department of Pulmonary Medicine, Mayo Clinic, Jacksonville, Florida, USA
| | - Brian Shapiro
- Department of Cardiovascular Medicine, Mayo Clinic, Jacksonville, Florida, USA
| | - Fred Kusumoto
- Department of Cardiovascular Medicine, Mayo Clinic, Jacksonville, Florida, USA
| | - Dilip Pillai
- Department of Cardiovascular Medicine, Mayo Clinic, Jacksonville, Florida, USA
| | - Demilade Adedinsewo
- Department of Cardiovascular Medicine, Mayo Clinic, Jacksonville, Florida, USA
| |
Collapse
|
6
|
Jiang X, Zhang J, Zhou L, Luo J, Wang J, Li L, Chen S. Sympathetic innervation of canine pulmonary artery and morphometric and functional analysis in dehydromonocrotaline-induced models after pulmonary artery denervation. Interact Cardiovasc Thorac Surg 2021; 31:708-717. [PMID: 33057705 DOI: 10.1093/icvts/ivaa166] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 07/06/2020] [Accepted: 07/20/2020] [Indexed: 11/14/2022] Open
Abstract
OBJECTIVES We aimed to describe the anatomic distribution of periarterial pulmonary sympathetic nerves and to observe the long-term morphometric and functional changes after pulmonary artery denervation (PADN), a novel therapy for pulmonary arterial hypertension (PAH). METHODS A total of 45 beagles were divided into a sympathetic innervation group (n = 3, 33.3% were females), a PAH group (n = 35, 34.3% were females) and a control group (n = 7, 28.5% were females). The PAH group was randomly divided into no-PADN (n = 7), instant-PADN (n = 7), 1M-PADN (n = 7), 2M-PADN (n = 7) and 3M-PADN (n = 7) subgroups. The sympathetic innervation group was sacrificed to reveal the sympathetic innervation of pulmonary arteries. PAH was induced by injecting dehydromonocrotaline (DHMCT) through the right atrium. The pulmonary capillary wedge pressure, right ventricular systolic pressure, right ventricular mean pressure, pulmonary artery systolic pressure and pulmonary artery mean pressure of each group were continuously measured. The cardiac output was detected to calculate the pulmonary vascular resistance. PAH and control groups were subjected to immunofluorescence assay, sympathetic nerve conduction velocity measurement and transmission electron microscopy. RESULTS The no-PADN group had significantly higher PVSP, PVMP, pulmonary artery systolic pressure, pulmonary artery mean pressure and pulmonary vascular resistance but lower cardiac output than those of the control group (P < 0.05). Instant-PADN, 1M-PADN, 2M-PADN and 3M-PADN groups had significantly lower PVSP, PVMP, pulmonary artery systolic pressure, pulmonary artery mean pressure and pulmonary vascular resistance but higher cardiac output than those of the no-PADN group (P < 0.05). Most sympathetic nerves were located within 2.5 mm of the intimae of the bifurcation and proximal trunk, mainly in the left trunk. The diameter and cross-sectional area of myelinated fibres in the PAH group were significantly larger than those of the control group. Sympathetic nerve conduction velocity of the PAH group gradually decreased, and nerve fibres were almost demyelinated 3 months after PADN. CONCLUSIONS PADN effectively relieved dehydromonocrotaline-induced canine PAH and decreased sympathetic nerve conduction velocity.
Collapse
Affiliation(s)
- Xiaomin Jiang
- Department of Cardiovascular Research, Nanjing Medical University, Nanjing, China.,Department of Cardiology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Juan Zhang
- Department of Cardiology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Ling Zhou
- Department of Cardiology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Jie Luo
- Department of Cardiovascular Research, Nanjing Medical University, Nanjing, China
| | - Jinsong Wang
- Department of Pathology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Li Li
- Department of Pathology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Shaoliang Chen
- Department of Cardiology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| |
Collapse
|
7
|
Stam K, Clauss S, Taverne YJHJ, Merkus D. Chronic Thromboembolic Pulmonary Hypertension - What Have We Learned From Large Animal Models. Front Cardiovasc Med 2021; 8:574360. [PMID: 33937352 PMCID: PMC8085273 DOI: 10.3389/fcvm.2021.574360] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Accepted: 03/08/2021] [Indexed: 12/21/2022] Open
Abstract
Chronic thrombo-embolic pulmonary hypertension (CTEPH) develops in a subset of patients after acute pulmonary embolism. In CTEPH, pulmonary vascular resistance, which is initially elevated due to the obstructions in the larger pulmonary arteries, is further increased by pulmonary microvascular remodeling. The increased afterload of the right ventricle (RV) leads to RV dilation and hypertrophy. This RV remodeling predisposes to arrhythmogenesis and RV failure. Yet, mechanisms involved in pulmonary microvascular remodeling, processes underlying the RV structural and functional adaptability in CTEPH as well as determinants of the susceptibility to arrhythmias such as atrial fibrillation in the context of CTEPH remain incompletely understood. Several large animal models with critical clinical features of human CTEPH and subsequent RV remodeling have relatively recently been developed in swine, sheep, and dogs. In this review we will discuss the current knowledge on the processes underlying development and progression of CTEPH, and on how animal models can help enlarge understanding of these processes.
Collapse
Affiliation(s)
- Kelly Stam
- Department of Cardiology, Erasmus University Medical Center Rotterdam, Rotterdam, Netherlands
| | - Sebastian Clauss
- Department of Medicine I, University Hospital Munich, Ludwig-Maximilians University Munich, Munich, Germany.,Institute of Surgical Research at the Walter-Brendel-Centre of Experimental Medicine, University Hospital, LMU Munich, Munich, Germany.,DZHK (German Centre for Cardiovascular Research), Partner Site Munich, Munich Heart Alliance, Munich, Germany
| | - Yannick J H J Taverne
- Department of Cardiothoracic Surgery, Erasmus University Medical Center Rotterdam, Rotterdam, Netherlands
| | - Daphne Merkus
- Department of Cardiology, Erasmus University Medical Center Rotterdam, Rotterdam, Netherlands.,Institute of Surgical Research at the Walter-Brendel-Centre of Experimental Medicine, University Hospital, LMU Munich, Munich, Germany.,DZHK (German Centre for Cardiovascular Research), Partner Site Munich, Munich Heart Alliance, Munich, Germany
| |
Collapse
|
8
|
Reddy SA, Nethercott SL, Khialani BV, Grace AA, Martin CA. Management of arrhythmias in pulmonary hypertension. J Interv Card Electrophysiol 2021; 62:219-229. [DOI: 10.1007/s10840-021-00988-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Accepted: 03/28/2021] [Indexed: 12/24/2022]
|
9
|
Enhanced atrial internal-external neural remodeling facilitates atrial fibrillation in the chronic obstructive sleep apnea model. PLoS One 2021; 16:e0247308. [PMID: 33606818 PMCID: PMC7895341 DOI: 10.1371/journal.pone.0247308] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Accepted: 02/04/2021] [Indexed: 11/19/2022] Open
Abstract
OBJECTIVE Autonomic imbalance plays a crucial role in obstructive sleep apnea (OSA) associated atrial fibrillation (AF). Here, we investigated the potential neural mechanism of AF induced by OSA. METHODS Ten dogs were divided into control group (n = 5) and OSA group (n = 5). The chronic OSA model was established by repeat apnea-ventilation cycles for 4 hours a day for 12 weeks. During the process of model establishment, arterial blood gases, atrial effective refractory period (AERP), AF inducibility, normalized low-frequency power (LFnu), normalized high-frequency power (HFnu), and LFnu/ HFnu were evaluated at baseline, 4th week, 8th week, and 12th week. Nerve activities of left stellate ganglion (LSG) and left vagal nerve(LVN) were recorded. Tyrosine hydroxylase(TH), choline acetyltransferase(CHAT), PGP9.5, nerve growth factor(NGF), and c-Fos were detected in the left atrium, LSG, and LVN by immunohistochemistry and western blot. Moreover, high-frequency stimulations of LSG and LVN were conducted to observe the AF inducibility. RESULTS Compared with the control group, the OSA group showed significantly enhanced neural activity of the LSG, increased AF inducibility, and shortened AERP. LFnu and LFnu/HFnu were markedly increased in the OSA group, while no significant difference in HFnu was observed. TH-positive and PGP9.5-positive nerve densities were significantly increased in the LSG and left atrium. Additionally, the protein levels of NGF, c-Fos, and PGP9.5 were upregulated both in the LSG and left atrium. AF inducibility was markedly increased under LSG stimulation without a stimulus threshold change in the OSA group. CONCLUSIONS OSA significantly enhanced LSG and left atrial neural remodeling, and hyperactivity of LSG may accelerate left atrial neural remodeling to increase AF inducibility.
Collapse
|
10
|
Hiram R, Naud P, Xiong F, Al-U'datt D, Algalarrondo V, Sirois MG, Tanguay JF, Tardif JC, Nattel S. Right Atrial Mechanisms of Atrial Fibrillation in a Rat Model of Right Heart Disease. J Am Coll Cardiol 2020; 74:1332-1347. [PMID: 31488271 DOI: 10.1016/j.jacc.2019.06.066] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Revised: 05/29/2019] [Accepted: 06/24/2019] [Indexed: 10/26/2022]
Abstract
BACKGROUND Conditions affecting the right heart, including diseases of the lungs and pulmonary circulation, promote atrial fibrillation (AF), but the mechanisms are poorly understood. OBJECTIVES This study sought to determine whether right heart disease promotes atrial arrhythmogenesis in a rat model of pulmonary hypertension (PH) and, if so, to define the underlying mechanisms. METHODS PH was induced in male Wistar rats with a single intraperitoneal injection of 60 mg/kg of monocrotaline, and rats were studied 21 days later when right heart disease was well developed. AF vulnerability was assessed in vivo and in situ, and mechanisms were defined by optical mapping, histochemistry, and biochemistry. RESULTS Monocrotaline-treated rats developed increased right ventricular pressure and mass, along with right atrial (RA) enlargement. AF/flutter was inducible in 32 of 32 PH rats (100%) in vivo and 11 of 12 (92%) in situ, versus 2 of 32 (6%) and 2 of 12 (17%), respectively, in control rats (p < 0.001 vs. PH for each). PH rats had significant RA (16.1 ± 0.5% of cross-sectional area, vs. 3.0 ± 0.6% in control) and left atrial (LA: 11.8 ± 0.5% vs. 5.4 ± 0.8% control) fibrosis. Multiple extracellular matrix proteins, including collagen 1 and 3, fibronectin, and matrix metalloproteinases 2 and 9, were up-regulated in PH rat RA. Optical mapping revealed significant rate-dependent RA conduction slowing and rotor activity, including stable rotors in 4 of 11 PH rats, whereas no significant conduction slowing or rotor activity occurred in the LA of monocrotaline-treated rats. Transcriptomic analysis revealed differentially enriched genes related to hypertrophy, inflammation, and fibrosis in RA of monocrotaline-treated rats versus control. Biochemical results in PH rats were compared with those of AF-prone rats with atrial remodeling in the context of left ventricular dysfunction due to myocardial infarction: myocardial infarction rat LA shared molecular motifs with PH rat RA. CONCLUSIONS Right heart disease produces a substrate for AF maintenance due to RA re-entrant activity, with an underlying substrate prominently involving RA fibrosis and conduction abnormalities.
Collapse
Affiliation(s)
- Roddy Hiram
- Montreal Heart Institute (MHI), Department of Medicine, Université de Montréal, Montreal, Quebec, Canada
| | - Patrice Naud
- Montreal Heart Institute (MHI), Department of Medicine, Université de Montréal, Montreal, Quebec, Canada
| | - Feng Xiong
- Department of Pharmacology and Therapeutics, McGill University, Montreal, Quebec, Canada
| | - Doa'a Al-U'datt
- Montreal Heart Institute (MHI), Department of Medicine, Université de Montréal, Montreal, Quebec, Canada
| | - Vincent Algalarrondo
- Montreal Heart Institute (MHI), Department of Medicine, Université de Montréal, Montreal, Quebec, Canada
| | - Martin G Sirois
- Montreal Heart Institute (MHI), Department of Medicine, Université de Montréal, Montreal, Quebec, Canada
| | - Jean-François Tanguay
- Montreal Heart Institute (MHI), Department of Medicine, Université de Montréal, Montreal, Quebec, Canada
| | - Jean-Claude Tardif
- Montreal Heart Institute (MHI), Department of Medicine, Université de Montréal, Montreal, Quebec, Canada
| | - Stanley Nattel
- Montreal Heart Institute (MHI), Department of Medicine, Université de Montréal, Montreal, Quebec, Canada; Department of Pharmacology and Therapeutics, McGill University, Montreal, Quebec, Canada; IHU Liryc and Fondation Bordeaux Université, Bordeaux, France; Institute of Pharmacology, West German Heart and Vascular Center, Faculty of Medicine, University Duisburg-Essen, Essen, Germany.
| |
Collapse
|
11
|
Yang M, Wang Y, Xiong X, Xie B, Liu J, Yin J, Zi L, Wang X, Tang Y, Huang C, Zhao Q. SK4 calcium-activated potassium channels activated by sympathetic nerves enhances atrial fibrillation vulnerability in a canine model of acute stroke. Heliyon 2020; 6:e03928. [PMID: 32420493 PMCID: PMC7215192 DOI: 10.1016/j.heliyon.2020.e03928] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Revised: 02/24/2020] [Accepted: 05/01/2020] [Indexed: 12/02/2022] Open
Abstract
Background New-onset atrial fibrillation (AF) is common in patients with acute stroke (AS). Studies have shown that intermediate-conductance calcium-activated potassium channel channels (SK4) play an important role in cardiomyocyte automaticity. The aim of this study was to investigate the effects of SK4 on AF vulnerability in dogs with AS. Experimental Eighteen dogs were randomly divided into a control group, AS group and left stellate ganglion ablation (LSGA) group. In the control group, dogs received craniotomy without right middle cerebral artery occlusion (MCAO). AS dogs were established using a cerebral ischemic model with right MCAO. LSGA dogs underwent MCAO, and LSGA was performed. Results Three days later, the dispersion of the effective refractory period (dERP) and AF vulnerability in the AS group were significantly increased compared with those in the control group and LSGA group. However, no significant difference in dERP and AF vulnerability was found between the control group and the LSGA group. The SK4 inhibitor (TRAM-34) completely inhibited the inducibility of AF in AS dogs. SK4 expression and levels of noradrenaline (NE), β1-AR, p38 and c-Fos in the atrium were higher in the AS dogs than in the control group or LSGA group. However, no significant difference in SK4 expression or levels of NE, β1-AR, p38 and c-Fos in the left atrium was observed between the control group and LSGA group. Conclusion SK4 plays a key role in AF vulnerability in a canine model with AS. The effects of LSGA on AF vulnerability were associated with the p38 signaling pathways.
Collapse
Affiliation(s)
- Mei Yang
- Department of Cardiology, Renmin Hospital of Wuhan University, 238 Jiefang Road, Wuchang, Wuhan City, 430060, PR China
- Cardiovascular Research Institute of Wuhan University, 238 Jiefang Road, Wuchang, Wuhan City, 430060, PR China
- Hubei Key Laboratory of Cardiology, 238 Jiefang Road, Wuchang, Wuhan City, 430060, PR China
| | - Youcheng Wang
- Department of Cardiology, Renmin Hospital of Wuhan University, 238 Jiefang Road, Wuchang, Wuhan City, 430060, PR China
- Cardiovascular Research Institute of Wuhan University, 238 Jiefang Road, Wuchang, Wuhan City, 430060, PR China
- Hubei Key Laboratory of Cardiology, 238 Jiefang Road, Wuchang, Wuhan City, 430060, PR China
| | - Xiaoxing Xiong
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan City, 430060, PR China
| | - Baojun Xie
- Department of Radiology, Renmin Hospital of Wuhan University, Wuhan City, 430060, PR China
| | - Jia Liu
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan City, 430060, PR China
| | - Junkui Yin
- Department of Cardiology, Renmin Hospital of Wuhan University, 238 Jiefang Road, Wuchang, Wuhan City, 430060, PR China
- Cardiovascular Research Institute of Wuhan University, 238 Jiefang Road, Wuchang, Wuhan City, 430060, PR China
- Hubei Key Laboratory of Cardiology, 238 Jiefang Road, Wuchang, Wuhan City, 430060, PR China
| | - Liuliu Zi
- Department of Cardiology, Renmin Hospital of Wuhan University, 238 Jiefang Road, Wuchang, Wuhan City, 430060, PR China
- Cardiovascular Research Institute of Wuhan University, 238 Jiefang Road, Wuchang, Wuhan City, 430060, PR China
- Hubei Key Laboratory of Cardiology, 238 Jiefang Road, Wuchang, Wuhan City, 430060, PR China
| | - Xi Wang
- Department of Cardiology, Renmin Hospital of Wuhan University, 238 Jiefang Road, Wuchang, Wuhan City, 430060, PR China
- Cardiovascular Research Institute of Wuhan University, 238 Jiefang Road, Wuchang, Wuhan City, 430060, PR China
- Hubei Key Laboratory of Cardiology, 238 Jiefang Road, Wuchang, Wuhan City, 430060, PR China
| | - Yanhong Tang
- Department of Cardiology, Renmin Hospital of Wuhan University, 238 Jiefang Road, Wuchang, Wuhan City, 430060, PR China
- Cardiovascular Research Institute of Wuhan University, 238 Jiefang Road, Wuchang, Wuhan City, 430060, PR China
- Hubei Key Laboratory of Cardiology, 238 Jiefang Road, Wuchang, Wuhan City, 430060, PR China
| | - Congxin Huang
- Department of Cardiology, Renmin Hospital of Wuhan University, 238 Jiefang Road, Wuchang, Wuhan City, 430060, PR China
- Cardiovascular Research Institute of Wuhan University, 238 Jiefang Road, Wuchang, Wuhan City, 430060, PR China
- Hubei Key Laboratory of Cardiology, 238 Jiefang Road, Wuchang, Wuhan City, 430060, PR China
| | - Qingyan Zhao
- Department of Cardiology, Renmin Hospital of Wuhan University, 238 Jiefang Road, Wuchang, Wuhan City, 430060, PR China
- Cardiovascular Research Institute of Wuhan University, 238 Jiefang Road, Wuchang, Wuhan City, 430060, PR China
- Hubei Key Laboratory of Cardiology, 238 Jiefang Road, Wuchang, Wuhan City, 430060, PR China
- Corresponding author.
| |
Collapse
|
12
|
Rosenkranz S, Howard LS, Gomberg-Maitland M, Hoeper MM. Systemic Consequences of Pulmonary Hypertension and Right-Sided Heart Failure. Circulation 2020; 141:678-693. [PMID: 32091921 DOI: 10.1161/circulationaha.116.022362] [Citation(s) in RCA: 157] [Impact Index Per Article: 31.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Pulmonary hypertension (PH) is a feature of a variety of diseases and continues to harbor high morbidity and mortality. The main consequence of PH is right-sided heart failure which causes a complex clinical syndrome affecting multiple organ systems including left heart, brain, kidneys, liver, gastrointestinal tract, skeletal muscle, as well as the endocrine, immune, and autonomic systems. Interorgan crosstalk and interdependent mechanisms include hemodynamic consequences such as reduced organ perfusion and congestion as well as maladaptive neurohormonal activation, oxidative stress, hormonal imbalance, and abnormal immune cell signaling. These mechanisms, which may occur in acute, chronic, or acute-on-chronic settings, are common and precipitate adverse functional and structural changes in multiple organs which contribute to increased morbidity and mortality. While the systemic character of PH and right-sided heart failure is often neglected or underestimated, such consequences place additional burden on patients and may represent treatable traits in addition to targeted therapy of PH and underlying causes. Here, we highlight the current state-of-the-art understanding of the systemic consequences of PH and right-sided heart failure on multiple organ systems, focusing on self-perpetuating pathophysiological mechanisms, aspects of increased susceptibility of organ damage, and their reciprocal impact on the course of the disease.
Collapse
Affiliation(s)
- Stephan Rosenkranz
- Clinic III for Internal Medicine (Cardiology) and Cologne Cardiovascular Research Center (CCRC), Heart Center at the University of Cologne, Germany (S.R.).,Center for Molecular Medicine Cologne (CMMC), University of Cologne, Germany (S.R.)
| | - Luke S Howard
- National Pulmonary Hypertension Service, Imperial College Healthcare NHS Trust, London, United Kingdom (L.S.H.)
| | | | - Marius M Hoeper
- Department of Respiratory Medicine, Hannover Medical School, Germany (M.M.H.).,German Center for Lung Research (DZL), Hannover, Germany (M.M.H.)
| |
Collapse
|
13
|
Cirulis MM, Ryan JJ, Archer SL. Pathophysiology, incidence, management, and consequences of cardiac arrhythmia in pulmonary arterial hypertension and chronic thromboembolic pulmonary hypertension. Pulm Circ 2019; 9:2045894019834890. [PMID: 30747032 PMCID: PMC6410395 DOI: 10.1177/2045894019834890] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Arrhythmias are increasingly recognized as serious, end-stage complications of pre-capillary pulmonary hypertension, including pulmonary arterial hypertension (PAH) and chronic thromboembolic pulmonary hypertension (CTEPH). Although arrhythmias contribute to symptoms, morbidity, in-hospital mortality, and possibly sudden death in PAH/CTEPH, there remains a paucity of epidemiologic, pathophysiologic, and outcome data to guide management of these patients. This review summarizes the most current evidence on the topic: from the molecular mechanisms driving arrhythmia in the hypertrophied or failing right heart, to the clinical aspects of epidemiology, diagnosis, and management.
Collapse
Affiliation(s)
- Meghan M Cirulis
- 1 Division of Pulmonary Medicine, Department of Medicine, University of Utah, Salt Lake City, UT, USA
- 2 Division of Cardiovascular Medicine, Department of Medicine, University of Utah, Salt Lake City, UT, USA
| | - John J Ryan
- 2 Division of Cardiovascular Medicine, Department of Medicine, University of Utah, Salt Lake City, UT, USA
| | - Stephen L Archer
- 3 Department of Medicine, Queen's University, Kingston, ON, Canada
| |
Collapse
|
14
|
Davey R. While your PAH patients skip by, don’t forget to check their rhythm …. Pulm Circ 2018; 8:2045894018782472. [PMID: 29916759 PMCID: PMC6024294 DOI: 10.1177/2045894018782472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Affiliation(s)
- Ryan Davey
- CardiologistLondon Health Sciences CentreAssistant ProfessorWestern UniversityLondonOntarioCanada
| |
Collapse
|
15
|
Wanamaker B, Cascino T, McLaughlin V, Oral H, Latchamsetty R, Siontis KC. Atrial Arrhythmias in Pulmonary Hypertension: Pathogenesis, Prognosis and Management. Arrhythm Electrophysiol Rev 2018; 7:43-48. [PMID: 29636972 DOI: 10.15420/aer.2018.3.2] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
Atrial arrhythmias, including atrial fibrillation and atrial flutter, are common in patients with pulmonary hypertension and are closely associated with clinical decompensation and poor clinical outcomes. The mechanisms of arrhythmogenesis and subsequent clinical decompensation are reviewed. Practical implications and current evidence for the management of atrial arrhythmias in patients with pulmonary hypertension are summarised.
Collapse
Affiliation(s)
| | | | | | - Hakan Oral
- University of MichiganAnn Arbor, MI, USA
| | | | | |
Collapse
|
16
|
Jesel L, Barraud J, Lim HS, Marzak H, Messas N, Hirschi S, Santelmo N, Olland A, Falcoz PE, Massard G, Kindo M, Ohlmann P, Chauvin M, Morel O, Kessler R. Early and Late Atrial Arrhythmias After Lung Transplantation - Incidence, Predictive Factors and Impact on Mortality. Circ J 2017; 81:660-667. [PMID: 28202855 DOI: 10.1253/circj.cj-16-0892] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/11/2025]
Abstract
BACKGROUND Atrial arrhythmias (AAs) are frequent after lung transplantation (LT) and late postoperatively. Several predictive factors of early postoperative AAs after LT have been identified but those of late AAs remain unknown. Whether AA after LT affects mortality is still being debated. This study assessed in a large cohort of LT patients the incidence of AAs early and late after surgery, their predictive factors and their effect on mortality. METHODS AND RESULTS We studied 271 consecutive LT patients over 9 years. Mean follow-up was 2.9±2.4 years. 33% patients developed postoperative AAs. Age (odds ratio (OR) 2.35; confidence interval (CI) [1.31-4.24]; P=0.004) and chronic obstructive pulmonary disease (OR 2.13; CI [1.12-4.03]; P=0.02) were independent predictive factors of early AAs. Late AAs occurred 2.2±2.7 years after transplant in 8.8% of the patients. Pretransplant systolic pulmonary arterial pressure (PTsPAP) was the only independent predictive factor of late AA (OR 1.028; CI [1.001-1.056]; P=0.04). Double LT was associated with long-term freedom from atrial fibrillation (AF) but not from atrial flutter (AFL). Early and late AAs after surgery had no effect on mortality. Double LT was associated with better survival. CONCLUSIONS Early AA following LT is common in contrast with the low occurrence of late, often organized, AA. Early and late AAs do not affect mortality. PTsPAP is an independent predictor of late AA. Double LT protects against late AF but not AFL.
Collapse
Affiliation(s)
- Laurence Jesel
- Department of Cardiology, University Hospital of Strasbourg
| | | | - Han S Lim
- Department of Cardiology, Austin and Northern Health
| | - Halim Marzak
- Department of Cardiology, University Hospital of Strasbourg
| | - Nathan Messas
- Department of Cardiology, University Hospital of Strasbourg
| | | | - Nicola Santelmo
- Department of Thoracic Surgery, University Hospital of Strasbourg
| | - Anne Olland
- Department of Thoracic Surgery, University Hospital of Strasbourg
| | | | - Gilbert Massard
- Department of Thoracic Surgery, University Hospital of Strasbourg
| | - Michel Kindo
- Department of Cardiology, University Hospital of Strasbourg
| | | | - Michel Chauvin
- Department of Cardiology, University Hospital of Strasbourg
| | - Olivier Morel
- Department of Cardiology, University Hospital of Strasbourg
| | - Romain Kessler
- Department of Pneumology, University Hospital of Strasbourg
| |
Collapse
|
17
|
Xie AX, Lee JJ, McCarthy KD. Ganglionic GFAP + glial Gq-GPCR signaling enhances heart functions in vivo. JCI Insight 2017; 2:e90565. [PMID: 28138563 DOI: 10.1172/jci.insight.90565] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The sympathetic nervous system (SNS) accelerates heart rate, increases cardiac contractility, and constricts resistance vessels. The activity of SNS efferent nerves is generated by a complex neural network containing neurons and glia. Gq G protein-coupled receptor (Gq-GPCR) signaling in glial fibrillary acidic protein-expressing (GFAP+) glia in the central nervous system supports neuronal function and regulates neuronal activity. It is unclear how Gq-GPCR signaling in GFAP+ glia affects the activity of sympathetic neurons or contributes to SNS-regulated cardiovascular functions. In this study, we investigated whether Gq-GPCR activation in GFAP+ glia modulates the regulatory effect of the SNS on the heart; transgenic mice expressing Gq-coupled DREADD (designer receptors exclusively activated by designer drugs) (hM3Dq) selectively in GFAP+ glia were used to address this question in vivo. We found that acute Gq-GPCR activation in peripheral GFAP+ glia significantly accelerated heart rate and increased left ventricle contraction. Pharmacological experiments suggest that the glial-induced cardiac changes were due to Gq-GPCR activation in satellite glial cells within the sympathetic ganglion; this activation led to increased norepinephrine (NE) release and beta-1 adrenergic receptor activation within the heart. Chronic glial Gq-GPCR activation led to hypotension in female Gfap-hM3Dq mice. This study provides direct evidence that Gq-GPCR activation in peripheral GFAP+ glia regulates cardiovascular functions in vivo.
Collapse
|
18
|
Hypertension Editors’ Picks. Hypertension 2016; 68:e47-53. [DOI: 10.1161/hypertensionaha.116.08096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
19
|
Huston J, Han FT, Ryan JJ. Another Piece to the Puzzle: Linking the Cardiac Nervous System to Atrial Fibrillation in Pulmonary Arterial Hypertension. Hypertension 2015; 66:935-7. [PMID: 26418023 DOI: 10.1161/hypertensionaha.115.06178] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Affiliation(s)
- Jessica Huston
- From the Division of Cardiovascular Medicine, Department of Medicine, University of Utah, Salt Lake City
| | - Frederick T Han
- From the Division of Cardiovascular Medicine, Department of Medicine, University of Utah, Salt Lake City
| | - John J Ryan
- From the Division of Cardiovascular Medicine, Department of Medicine, University of Utah, Salt Lake City.
| |
Collapse
|