1
|
Shan Y, Hou B, Wang J, Chen A, Liu S. Exploring the role of exosomal MicroRNAs as potential biomarkers in preeclampsia. Front Immunol 2024; 15:1385950. [PMID: 38566996 PMCID: PMC10985148 DOI: 10.3389/fimmu.2024.1385950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Accepted: 03/08/2024] [Indexed: 04/04/2024] Open
Abstract
The complex pathogenesis of preeclampsia (PE), a significant contributor to maternal and neonatal mortality globally, is poorly understood despite substantial research. This review explores the involvement of exosomal microRNAs (exomiRs) in PE, focusing on their impact on the protein kinase B (AKT)/hypoxia-inducible factor 1-α (HIF1α)/vascular endothelial growth factor (VEGF) signaling pathway as well as endothelial cell proliferation and migration. Specifically, this article amalgamates existing evidence to reveal the pivotal role of exomiRs in regulating mesenchymal stem cell and trophoblast function, placental angiogenesis, the renin-angiotensin system, and nitric oxide production, which may contribute to PE etiology. This review emphasizes the limited knowledge regarding the role of exomiRs in PE while underscoring the potential of exomiRs as non-invasive biomarkers for PE diagnosis, prediction, and treatment. Further, it provides valuable insights into the mechanisms of PE, highlighting exomiRs as key players with clinical implications, warranting further exploration to enhance the current understanding and the development of novel therapeutic interventions.
Collapse
Affiliation(s)
- Yuping Shan
- Department of Obstetrics and Gynecology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Bo Hou
- Department of Cardiovascular Medicine, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Jingli Wang
- Department of Medical Genetics, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Aiping Chen
- Department of Obstetrics and Gynecology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Shiguo Liu
- Department of Medical Genetics, The Affiliated Hospital of Qingdao University, Qingdao, China
| |
Collapse
|
2
|
Andrawus M, Sharvit L, Atzmon G. Epigenetics and Pregnancy: Conditional Snapshot or Rolling Event. Int J Mol Sci 2022; 23:12698. [PMID: 36293556 PMCID: PMC9603966 DOI: 10.3390/ijms232012698] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 10/12/2022] [Accepted: 10/19/2022] [Indexed: 11/17/2022] Open
Abstract
Epigenetics modification such as DNA methylation can affect maternal health during the gestation period. Furthermore, pregnancy can drive a range of physiological and molecular changes that have the potential to contribute to pathological conditions. Pregnancy-related risk factors include multiple environmental, behavioral, and hereditary factors that can impact maternal DNA methylation with long-lasting consequences. Identification of the epigenetic patterns linked to poor pregnancy outcomes is crucial since changes in DNA methylation patterns can have long-term effects. In this review, we provide an overview of the epigenetic changes that influence pregnancy-related molecular programming such as gestational diabetes, immune response, and pre-eclampsia, in an effort to close the gap in current understanding regarding interactions between the environment, the genetics of the fetus, and the pregnant woman.
Collapse
Affiliation(s)
| | | | - Gil Atzmon
- Department of Human Biology, University of Haifa, Haifa 3498838, Israel
| |
Collapse
|
3
|
Yousefzadeh Y, Soltani-Zangbar MS, Kalafi L, Tarbiat A, Shahmohammadi Farid S, Aghebati-Maleki L, Parhizkar F, Danaii S, Taghavi S, Jadidi-Niaragh F, Samadi Kafil H, Mahmoodpoor A, Ahmadian Heris J, Hojjat-Farsangi M, Yousefi M. Evaluation of CD39, CD73, HIF-1α, and their related miRNAs expression in decidua of preeclampsia cases compared to healthy pregnant women. Mol Biol Rep 2022; 49:10183-10193. [PMID: 36048381 DOI: 10.1007/s11033-022-07887-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 08/18/2022] [Indexed: 11/30/2022]
Abstract
BACKGROUND The Preeclampsia (PE) molecular mechanisms are not fully revealed and different biological processes are involved in the pathogenesis of PE. We aimed to evaluate adenosine and hypoxia-related signaling molecules in PE patients in the current study. METHODS Decidua tissue and peripheral blood samples were taken from 25 healthy pregnant and 25 PE women at delivery time. CD39, CD73, and Hypoxia-inducible factor-alpha (HIF-α) were evaluated in mRNA and protein level using real-time PCR and western blotting techniques, respectively. Also, miR-30a, miR-206, and miR-18a expression were evaluated by real-time PCR. At last, secretion levels of IGF and TGF-β in the taken serum of blood samples were measured by ELISA. RESULTS Our results revealed that Expression of CD39 is decreased in PE cases versus healthy controls at mRNA and protein levels (p = 0.0003 for both). CD73 and HIF-α showed an increased level of expression in PE patients at RNA and protein status (p = 0.0157 and p < 0.0001 for protein evaluation of CD73 and HIF-α, respectively). The miRNA-30a (p = 0.0037) and miR-206 (p = 0.0113) showed elevated expression in the decidua of the PE group. The concentration of secreted IGF-1 (p = 0.0002) and TGF-β (p = 0.0101) in serum samples of PE cases compared to the healthy group were decreased. CONCLUSION In conclusion, our results showed that aberrant expression of molecules that are involved in ATP catabolism and the hypoxic conditions is observed in PE cases and involved in their hypertension and inflammation could be served as PE prognosis by more confirming in comprehensive future studies. miR-206 and miR-30a play a role by regulating CD39 and CD73 as molecules that are involved in ATP catabolism as well as regulating the production of IGF-1 in the process of hypertension, which is the main feature in patients with preeclampsia. On the other hand, decreased level of miR-18a lead to upregulation of HIF-1a, and the consequence condition of hypoxia increases hypertension and inflammation in these patients.
Collapse
Affiliation(s)
- Yousef Yousefzadeh
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Immunology, School of Medicine, Tabriz University of Medical Sciences, PO Box: 516-6615573, Tabriz, Iran
| | - Mohammad Sadegh Soltani-Zangbar
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Immunology, School of Medicine, Tabriz University of Medical Sciences, PO Box: 516-6615573, Tabriz, Iran
| | - Ladan Kalafi
- Gynecology Department, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ali Tarbiat
- Department of Cardiology, Medical Faculty, Urmia University of Medical Sciences, Urmia, Iran
| | - Sima Shahmohammadi Farid
- Department of Immunology, School of Medicine, Tabriz University of Medical Sciences, PO Box: 516-6615573, Tabriz, Iran
| | | | - Forough Parhizkar
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Shahla Danaii
- Gynecology Department, Eastern Azerbaijan ACECR ART Center, Eastern Azerbaijan Branch of ACECR, Tabriz, Iran
| | - Simin Taghavi
- Women's Reproductive Health Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Farhad Jadidi-Niaragh
- Department of Immunology, School of Medicine, Tabriz University of Medical Sciences, PO Box: 516-6615573, Tabriz, Iran
| | - Hossein Samadi Kafil
- Drug Applied Research Center, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ata Mahmoodpoor
- Department of Anesthesiology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Javad Ahmadian Heris
- Department of Allergy and Clinical Immunology, Pediatric Hospital, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Hojjat-Farsangi
- Department of Oncology-Pathology, Immune and Gene Therapy Lab, Cancer Center Karolinska (CCK), Karolinska University Hospital Solna and Karolinska Institute, Stockholm, Sweden
| | - Mehdi Yousefi
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran. .,Department of Immunology, School of Medicine, Tabriz University of Medical Sciences, PO Box: 516-6615573, Tabriz, Iran.
| |
Collapse
|
4
|
Iriyama T, Sayama S, Osuga Y. Role of adenosine signaling in preeclampsia. J Obstet Gynaecol Res 2021; 48:49-57. [PMID: 34657345 DOI: 10.1111/jog.15066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 10/04/2021] [Indexed: 11/29/2022]
Abstract
Placenta-specific molecular basis that is responsible for the pathophysiology of preeclampsia (PE) remains to be fully understood. Adenosine, an endogenous nucleoside, is a signaling molecule that is induced under pathological conditions such as hypoxia and is involved in various diseases. Recent evidence on humans and animal models has demonstrated that enhanced placental adenosine signaling contributes to the development of PE. This review is to summarize current progress and discuss the significance of adenosine signaling in the pathophysiology of PE and future perspectives of therapeutic possibilities targeting adenosine signaling.
Collapse
Affiliation(s)
- Takayuki Iriyama
- Department of Obstetrics and Gynecology, Faculty of Medicine, The University of Tokyo, Tokyo, Japan
| | - Seisuke Sayama
- Department of Obstetrics and Gynecology, Faculty of Medicine, The University of Tokyo, Tokyo, Japan
| | - Yutaka Osuga
- Department of Obstetrics and Gynecology, Faculty of Medicine, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
5
|
Epigenetic processes during preeclampsia and effects on fetal development and chronic health. Clin Sci (Lond) 2021; 135:2307-2327. [PMID: 34643675 DOI: 10.1042/cs20190070] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 09/08/2021] [Accepted: 09/29/2021] [Indexed: 01/12/2023]
Abstract
Preeclampsia (PE), the leading cause of maternal and fetal morbidity and mortality, is associated with poor fetal growth, intrauterine growth restriction (IUGR) and low birth weight (LBW). Offspring of women who had PE are at increased risk for cardiovascular (CV) disease later in life. However, the exact etiology of PE is unknown. Moreover, there are no effective interventions to treat PE or alleviate IUGR and the developmental origins of chronic disease in the offspring. The placenta is critical to fetal growth and development. Epigenetic regulatory processes such as histone modifications, microRNAs and DNA methylation play an important role in placental development including contributions to the regulation of trophoblast invasion and remodeling of the spiral arteries. Epigenetic processes that lead to changes in placental gene expression in PE mediate downstream effects that contribute to the development of placenta dysfunction, a critical mediator in the onset of PE, impaired fetal growth and IUGR. Therefore, this review will focus on epigenetic processes that contribute to the pathogenesis of PE and IUGR. Understanding the epigenetic mechanisms that contribute to normal placental development and the initiating events in PE may lead to novel therapeutic targets in PE that improve fetal growth and mitigate increased CV risk in the offspring.
Collapse
|
6
|
Sagrillo-Fagundes L, Casagrande Paim T, Pretto L, Bertaco I, Zanatelli C, Vaillancourt C, Wink MR. The implications of the purinergic signaling throughout pregnancy. J Cell Physiol 2021; 237:507-522. [PMID: 34596240 DOI: 10.1002/jcp.30594] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 08/26/2021] [Accepted: 09/14/2021] [Indexed: 12/14/2022]
Abstract
Purinergic signaling is a necessary mechanism to trigger or even amplify cell communication. Its ligands, notably adenosine triphosphate (ATP) and adenosine, modulate specific membrane-bound receptors in virtually all human cells. Regardless of the stage of the pregnancy, cellular communication between maternal, placental, and fetal cells is the paramount mechanism to sustain its optimal status. In this review, we describe the crucial role of purinergic signaling on the regulation of the maternal-fetal trophic exchanges, immune control, and endocrine exchanges throughout pregnancy. The nature of the modulation of both ATP and adenosine on the embryo-maternal interface, going through placental invasion until birth delivery depends on the general maternal-fetal health state and consequently on the selective activation of their specific receptors. In addition, an increasing number of studies have been demonstrating the pivotal role of ATP and adenosine in modulating deleterious effects of suboptimal conditions of pregnancy. Here, we discuss the role of purinergic signaling on the balance that coordinates the embryo-maternal exchanges and a promising therapeutic venue in the context of pregnancy disorders.
Collapse
Affiliation(s)
- Lucas Sagrillo-Fagundes
- Departamento de Ciências Básicas da Saúde e Laboratório de Biologia Celular, Universidade Federal de Ciências da Saúde de Porto Alegre, Porto Alegre, Rio Grande do Sul, Brazil
| | - Thaís Casagrande Paim
- Departamento de Ciências Básicas da Saúde e Laboratório de Biologia Celular, Universidade Federal de Ciências da Saúde de Porto Alegre, Porto Alegre, Rio Grande do Sul, Brazil
| | - Luiza Pretto
- Departamento de Ciências Básicas da Saúde e Laboratório de Biologia Celular, Universidade Federal de Ciências da Saúde de Porto Alegre, Porto Alegre, Rio Grande do Sul, Brazil
| | - Isadora Bertaco
- Departamento de Ciências Básicas da Saúde e Laboratório de Biologia Celular, Universidade Federal de Ciências da Saúde de Porto Alegre, Porto Alegre, Rio Grande do Sul, Brazil
| | - Carla Zanatelli
- Departamento de Ciências Básicas da Saúde e Laboratório de Biologia Celular, Universidade Federal de Ciências da Saúde de Porto Alegre, Porto Alegre, Rio Grande do Sul, Brazil
| | - Cathy Vaillancourt
- Centre Armand Frappier Santé Biotechnologie, INRS, Laval, Quebec, Canada
| | - Márcia R Wink
- Departamento de Ciências Básicas da Saúde e Laboratório de Biologia Celular, Universidade Federal de Ciências da Saúde de Porto Alegre, Porto Alegre, Rio Grande do Sul, Brazil
| |
Collapse
|
7
|
Wang Y, Xu Y, Yan S, Cao K, Zeng X, Zhou Y, Liu Z, Yang Q, Pan Y, Wang X, Boison D, Su Y, Jiang X, Patel VS, Fulton D, Weintraub NL, Huo Y. Adenosine kinase is critical for neointima formation after vascular injury by inducing aberrant DNA hypermethylation. Cardiovasc Res 2021; 117:561-575. [PMID: 32065618 PMCID: PMC7820850 DOI: 10.1093/cvr/cvaa040] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2019] [Revised: 01/20/2020] [Accepted: 02/12/2020] [Indexed: 12/21/2022] Open
Abstract
AIMS Adenosine receptors and extracellular adenosine have been demonstrated to modulate vascular smooth muscle cell (VSMC) proliferation and neointima formation. Adenosine kinase (ADK) is a major enzyme regulating intracellular adenosine levels but is function in VSMC remains unclear. Here, we investigated the role of ADK in vascular injury-induced smooth muscle proliferation and delineated the mechanisms underlying its action. METHODS AND RESULTS We found that ADK expression was higher in the neointima of injured vessels and in platelet-derived growth factor-treated VSMCs. Genetic and pharmacological inhibition of ADK was enough to attenuate arterial injury-induced neointima formation due to inhibition of VSMC proliferation. Mechanistically, using infinium methylation assays and bisulfite sequencing, we showed that ADK metabolized the intracellular adenosine and potentiated the transmethylation pathway, then induced the aberrant DNA hypermethylation. Pharmacological inhibition of aberrant DNA hypermethylation increased KLF4 expression and suppressed VSMC proliferation as well as the neointima formation. Importantly, in human femoral arteries, we observed increased ADK expression and DNA hypermethylation as well as decreased KLF4 expression in neointimal VSMCs of stenotic vessels suggesting that our findings in mice are relevant for human disease and may hold translational significance. CONCLUSION Our study unravels a novel mechanism by which ADK promotes VSMC proliferation via inducing aberrant DNA hypermethylation, thereby down-regulating KLF4 expression and promoting neointima formation. These findings advance the possibility of targeting ADK as an epigenetic modulator to combat vascular injury.
Collapse
Affiliation(s)
- Yong Wang
- College of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
- Vascular Biology Center, Medical College of Georgia, Augusta University, Augusta, GA, USA
| | - Yiming Xu
- Vascular Biology Center, Medical College of Georgia, Augusta University, Augusta, GA, USA
- The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People’s Hospital; State Key Lab of Respiratory Disease; School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Siyuan Yan
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Science, Beijing, China
| | - Kaixiang Cao
- The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People’s Hospital; State Key Lab of Respiratory Disease; School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Xianqiu Zeng
- Key Laboratory of Chemical Genomics, Peking University Shenzhen Graduate School, Shenzhen, Guangdong, China
| | - Yaqi Zhou
- Key Laboratory of Chemical Genomics, Peking University Shenzhen Graduate School, Shenzhen, Guangdong, China
| | - Zhiping Liu
- Vascular Biology Center, Medical College of Georgia, Augusta University, Augusta, GA, USA
- Key Laboratory of Chemical Genomics, Peking University Shenzhen Graduate School, Shenzhen, Guangdong, China
| | - Qiuhua Yang
- Vascular Biology Center, Medical College of Georgia, Augusta University, Augusta, GA, USA
- Key Laboratory of Chemical Genomics, Peking University Shenzhen Graduate School, Shenzhen, Guangdong, China
| | - Yue Pan
- Georgia Prevention Institute, Augusta University, Augusta, GA, USA
| | - Xiaoling Wang
- Georgia Prevention Institute, Augusta University, Augusta, GA, USA
| | - Detlev Boison
- Robert S. Dow Neurobiology Laboratories, Legacy Research Institute, Portland, OR, USA
| | - Yunchao Su
- Department of Pharmacology and Toxicology, Medical College of Georgia, Augusta University, Augusta, GA, USA
| | - Xuejun Jiang
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Science, Beijing, China
| | - Vijay S Patel
- Department of Anesthesiology and Perioperative Medicine, Augusta University, Augusta, GA, USA
| | - David Fulton
- Vascular Biology Center, Medical College of Georgia, Augusta University, Augusta, GA, USA
| | - Neal L Weintraub
- Vascular Biology Center, Medical College of Georgia, Augusta University, Augusta, GA, USA
| | - Yuqing Huo
- Vascular Biology Center, Medical College of Georgia, Augusta University, Augusta, GA, USA
| |
Collapse
|
8
|
Metabolomic and molecular insights into sickle cell disease and innovative therapies. Blood Adv 2020; 3:1347-1355. [PMID: 31015210 DOI: 10.1182/bloodadvances.2018030619] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2018] [Accepted: 03/11/2019] [Indexed: 12/19/2022] Open
Abstract
Sickle cell disease (SCD) is an autosomal-recessive hemolytic disorder with high morbidity and mortality. The pathophysiology of SCD is characterized by the polymerization of deoxygenated intracellular sickle hemoglobin, which causes the sickling of erythrocytes. The recent development of metabolomics, the newest member of the "omics" family, has provided a powerful new research strategy to accurately measure functional phenotypes that are the net result of genomic, transcriptomic, and proteomic changes. Metabolomics changes respond faster to external stimuli than any other "ome" and are especially appropriate for surveilling the metabolic profile of erythrocytes. In this review, we summarize recent pioneering research that exploited cutting-edge metabolomics and state-of-the-art isotopically labeled nutrient flux analysis to monitor and trace intracellular metabolism in SCD mice and humans. Genetic, structural, biochemical, and molecular studies in mice and humans demonstrate unrecognized intracellular signaling pathways, including purinergic and sphingolipid signaling networks that promote hypoxic metabolic reprogramming by channeling glucose metabolism to glycolysis via the pentose phosphate pathway. In turn, this hypoxic metabolic reprogramming induces 2,3-bisphosphoglycerate production, deoxygenation of sickle hemoglobin, polymerization, and sickling. Additionally, we review the detrimental role of an impaired Lands' cycle, which contributes to sickling, inflammation, and disease progression. Thus, metabolomic profiling allows us to identify the pathological role of adenosine signaling and S1P-mediated erythrocyte hypoxic metabolic reprogramming and hypoxia-induced impaired Lands' cycle in SCD. These findings further reveal that the inhibition of adenosine and S1P signaling cascade and the restoration of an imbalanced Lands' cycle have potent preclinical efficacy in counteracting sickling, inflammation, and disease progression.
Collapse
|
9
|
Frazier S, McBride MW, Mulvana H, Graham D. From animal models to patients: the role of placental microRNAs, miR-210, miR-126, and miR-148a/152 in preeclampsia. Clin Sci (Lond) 2020; 134:1001-1025. [PMID: 32337535 PMCID: PMC7239341 DOI: 10.1042/cs20200023] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Revised: 03/23/2020] [Accepted: 04/14/2020] [Indexed: 12/12/2022]
Abstract
Placental microRNAs (miRNAs) regulate the placental transcriptome and play a pathological role in preeclampsia (PE), a hypertensive disorder of pregnancy. Three PE rodent model studies explored the role of placental miRNAs, miR-210, miR-126, and miR-148/152 respectively, by examining expression of the miRNAs, their inducers, and potential gene targets. This review evaluates the role of miR-210, miR-126, and miR-148/152 in PE by comparing findings from the three rodent model studies with in vitro studies, other animal models, and preeclamptic patients to provide comprehensive insight into genetic components and pathological processes in the placenta contributing to PE. The majority of studies demonstrate miR-210 is upregulated in PE in part driven by HIF-1α and NF-κBp50, stimulated by hypoxia and/or immune-mediated processes. Elevated miR-210 may contribute to PE via inhibiting anti-inflammatory Th2-cytokines. Studies report an up- and downregulation of miR-126, arguably reflecting differences in expression between cell types and its multifunctional capacity. MiR-126 may play a pro-angiogenic role by mediating the PI3K-Akt pathway. Most studies report miR-148/152 family members are upregulated in PE. Evidence suggests they may inhibit DNA methylation of genes involved in metabolic and inflammatory pathways. Given the genetic heterogeneity of PE, it is unlikely that a single placental miRNA is a suitable therapeutic target for all patients. Investigating miRNAs in PE subtypes in patients and animal models may represent a more appropriate approach going forward. Developing methods for targeting placental miRNAs and specific placental cell types remains crucial for research seeking to target placental miRNAs as a novel treatment for PE.
Collapse
Affiliation(s)
- Sonya Frazier
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, U.K
| | - Martin W. McBride
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, U.K
| | - Helen Mulvana
- Biomedical Engineering, University of Strathclyde, Glasgow, U.K
| | - Delyth Graham
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, U.K
| |
Collapse
|
10
|
Iriyama T, Wang W, Parchim NF, Sayama S, Kumasawa K, Nagamatsu T, Song A, Xia Y, Kellems RE. Reciprocal upregulation of hypoxia-inducible factor-1α and persistently enhanced placental adenosine signaling contribute to the pathogenesis of preeclampsia. FASEB J 2020; 34:4041-4054. [PMID: 31930569 DOI: 10.1096/fj.201902583r] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Revised: 12/28/2019] [Accepted: 12/30/2019] [Indexed: 02/02/2023]
Abstract
Recent evidence indicates that elevated placental adenosine signaling contributes to preeclampsia (PE). However, the molecular basis for the chronically enhanced placental adenosine signaling in PE remains unclear. Here, we report that hypoxia-inducible factor-1α (HIF-1α) is crucial for the enhancement of placental adenosine signaling. Utilizing a pharmacologic approach to reduce placental adenosine levels, we found that enhanced adenosine underlies increased placental HIF-1α in an angiotensin receptor type 1 receptor agonistic autoantibody (AT1 -AA)-induced mouse model of PE. Knockdown of placental HIF-1α in vivo suppressed the accumulation of adenosine and increased ecto-5'-nucleotidase (CD73) and adenosine A2B receptor (ADORA2B) in the placentas of PE mouse models induced by AT1 -AA or LIGHT, a TNF superfamily cytokine (TNFSF14). Human in vitro studies using placental villous explants demonstrated that increased HIF-1α resulting from ADORA2B activation facilitates the induction of CD73, ADORA2B, and FLT-1 expression. Overall, we demonstrated that (a) elevated placental HIF-1α by AT1 -AA or LIGHT upregulates CD73 and ADORA2B expression and (b) enhanced adenosine signaling through upregulated ADORA2B induces placental HIF-1α expression, which creates a positive feedback loop that promotes FLT-1 expression leading to disease development. Our results suggest that adenosine-based therapy targeting the malicious cycle of placental adenosine signaling may elicit therapeutic effects on PE.
Collapse
Affiliation(s)
- Takayuki Iriyama
- Department of Obstetrics and Gynecology, Faculty of Medicine, The University of Tokyo, Tokyo, Japan.,Department of Biochemistry and Molecular Biology, The University of Texas McGovern Medical School, Houston, TX, USA
| | - Wei Wang
- Department of Biochemistry and Molecular Biology, The University of Texas McGovern Medical School, Houston, TX, USA.,Department of Nephrology, Xiangya Hospital of Central South University, Changsha, P.R. China
| | - Nicholas F Parchim
- Department of Biochemistry and Molecular Biology, The University of Texas McGovern Medical School, Houston, TX, USA.,Department of Emergency Medicine, The University of New Mexico Hospital, Albuquerque, NM, USA
| | - Seisuke Sayama
- Department of Obstetrics and Gynecology, Faculty of Medicine, The University of Tokyo, Tokyo, Japan.,Department of Biochemistry and Molecular Biology, The University of Texas McGovern Medical School, Houston, TX, USA
| | - Keiichi Kumasawa
- Department of Obstetrics and Gynecology, Faculty of Medicine, The University of Tokyo, Tokyo, Japan
| | - Takeshi Nagamatsu
- Department of Obstetrics and Gynecology, Faculty of Medicine, The University of Tokyo, Tokyo, Japan
| | - Anren Song
- Department of Biochemistry and Molecular Biology, The University of Texas McGovern Medical School, Houston, TX, USA
| | - Yang Xia
- Department of Biochemistry and Molecular Biology, The University of Texas McGovern Medical School, Houston, TX, USA.,Department of Nephrology, Xiangya Hospital of Central South University, Changsha, P.R. China.,Graduate School of Biomedical Sciences, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Rodney E Kellems
- Department of Biochemistry and Molecular Biology, The University of Texas McGovern Medical School, Houston, TX, USA.,Graduate School of Biomedical Sciences, The University of Texas Health Science Center at Houston, Houston, TX, USA
| |
Collapse
|
11
|
Kamrani A, Alipourfard I, Ahmadi-Khiavi H, Yousefi M, Rostamzadeh D, Izadi M, Ahmadi M. The role of epigenetic changes in preeclampsia. Biofactors 2019; 45:712-724. [PMID: 31343798 DOI: 10.1002/biof.1542] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Accepted: 06/13/2019] [Indexed: 12/11/2022]
Abstract
Preeclampsia (PE) is a disorder affecting 2-10% of pregnancies and has a major role for perinatal and maternal mortality and morbidity. PE can be occurred by initiation of new hypertension combined with proteinuria after 20 weeks gestation, as well as various reasons such as inflammatory cytokines, poor trophoblast invasion can be related with PE disease. Environmental factors can cause epigenetic changes including DNA methylation, microRNAs (miRNAs), and histone modification that may be related to different diseases such as PE. Abnormal DNA methylation during placentation is the most important epigenetic factor correlated with PE. Moreover, changes in histone modification like acetylation and also the effect of overregulation or low regulation of miRNAs or long noncoding RNAs on variety signaling pathways can be resulted in PE. The aim of this review is to describe of studies about epigenetic changes in PE and its therapeutic strategies.
Collapse
Affiliation(s)
- Amin Kamrani
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Student's Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Iraj Alipourfard
- Center of Pharmaceutical Sciences, Faculty of Life Sciences, University of Vienna, Vienna, Austria
| | | | - Mehdi Yousefi
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Davood Rostamzadeh
- Cellular and Molecular Research Center, Yasuj University of Medical Sciences, Yasuj, Iran
| | - Morteza Izadi
- Health Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Majid Ahmadi
- Reproductive Biology Department, Tabriz University of Medical Sciences, Tabriz, Iran
- Women's Reproductive Health Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
12
|
Temido-Ferreira M, Coelho JE, Pousinha PA, Lopes LV. Novel Players in the Aging Synapse: Impact on Cognition. J Caffeine Adenosine Res 2019; 9:104-127. [PMID: 31559391 PMCID: PMC6761599 DOI: 10.1089/caff.2019.0013] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
While neuronal loss has long been considered as the main contributor to age-related cognitive decline, these alterations are currently attributed to gradual synaptic dysfunction driven by calcium dyshomeostasis and alterations in ionotropic/metabotropic receptors. Given the key role of the hippocampus in encoding, storage, and retrieval of memory, the morpho- and electrophysiological alterations that occur in the major synapse of this network-the glutamatergic-deserve special attention. We guide you through the hippocampal anatomy, circuitry, and function in physiological context and focus on alterations in neuronal morphology, calcium dynamics, and plasticity induced by aging and Alzheimer's disease (AD). We provide state-of-the art knowledge on glutamatergic transmission and discuss implications of these novel players for intervention. A link between regular consumption of caffeine-an adenosine receptor blocker-to decreased risk of AD in humans is well established, while the mechanisms responsible have only now been uncovered. We review compelling evidence from humans and animal models that implicate adenosine A2A receptors (A2AR) upsurge as a crucial mediator of age-related synaptic dysfunction. The relevance of this mechanism in patients was very recently demonstrated in the form of a significant association of the A2AR-encoding gene with hippocampal volume (synaptic loss) in mild cognitive impairment and AD. Novel pathways implicate A2AR in the control of mGluR5-dependent NMDAR activation and subsequent Ca2+ dysfunction upon aging. The nature of this receptor makes it particularly suited for long-term therapies, as an alternative for regulating aberrant mGluR5/NMDAR signaling in aging and disease, without disrupting their crucial constitutive activity.
Collapse
Affiliation(s)
- Mariana Temido-Ferreira
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
| | - Joana E. Coelho
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
| | - Paula A. Pousinha
- Institut de Pharmacologie Moléculaire et Cellulaire (IPMC), CNRS UMR7275, Université Côte d'Azur, Valbonne, France
| | - Luísa V. Lopes
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
| |
Collapse
|
13
|
Ladd-Acosta C, Feinberg JI, Brown SC, Lurmann FW, Croen LA, Hertz-Picciotto I, Newschaffer CJ, Feinberg AP, Fallin MD, Volk HE. Epigenetic marks of prenatal air pollution exposure found in multiple tissues relevant for child health. ENVIRONMENT INTERNATIONAL 2019; 126:363-376. [PMID: 30826615 PMCID: PMC6446941 DOI: 10.1016/j.envint.2019.02.028] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Revised: 01/05/2019] [Accepted: 02/10/2019] [Indexed: 05/22/2023]
Abstract
BACKGROUND Prenatal air pollution exposure has been linked to many adverse health conditions in the offspring. However, little is known about the mechanisms underlying these associations. Epigenetics may be one plausible biologic link. Here, we sought to identify site-specific and global DNA methylation (DNAm) changes, in developmentally relevant tissues, associated with prenatal exposure to nitrogen dioxide (NO2) and ozone (O3). Additionally, we assessed whether sex-specific changes in methylation exist and whether DNAm changes are consistently observed across tissues. METHODS Genome-scale DNAm measurements were obtained using the Infinium HumanMethylation450k platform for 133 placenta and 175 cord blood specimens from Early Autism Risk Longitudinal Investigation (EARLI) neonates. Ambient NO2 and O3 exposure levels were based on prenatal address locations of EARLI mothers and the Environmental Protection Agency's AirNOW monitoring network using inverse distance weighting. We computed sample-level aggregate methylation measures for each of 5 types of genomic regions including genome-wide, open sea, shelf, shore, and island regions. Linear regression was performed for each genomic region; per-sample aggregate methylation measures were modeled as a function of quantitative exposure level with covariate adjustment. In addition, bumphunting was performed to identify differentially methylated regions (DMRs) associated with prenatal O3 and NO2 exposures in each tissue and by sex, with adjustment for technical and biological sources of variation. RESULTS We identified global and locus-specific changes in DNA methylation related to prenatal exposure to NO2 and O3 in 2 developmentally relevant tissues. Neonates with increased prenatal O3 exposure had lower aggregate levels of DNAm at CpGs located in open sea and shelf regions of the genome. We identified 6 DMRs associated with prenatal NO2 exposure, including 3 sex-specific. An additional 3 sex-specific DMRs were associated with prenatal O3 exposure levels. DMRs initially detected in cord blood samples (n = 4) showed consistent exposure-related changes in DNAm in placenta. However, the DMRs initially detected in placenta (n = 5) did not show DNAm differences in cord blood and, thus, they appear to be tissue-specific. CONCLUSIONS We observed global, locus, and sex-specific methylation changes associated with prenatal NO2 and O3 exposures. Our findings support DNAm is a biologic target of prenatal air pollutant exposures and highlight epigenetic involvement in sex-specific differential susceptibility to environmental exposure effects in 2 developmentally relevant tissues.
Collapse
Affiliation(s)
- Christine Ladd-Acosta
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA; Wendy Klag Center for Autism and Developmental Disabilities, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA.
| | - Jason I Feinberg
- Wendy Klag Center for Autism and Developmental Disabilities, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA; Department of Mental Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Shannon C Brown
- Department of Mental Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | | | - Lisa A Croen
- Autism Research Program, Division of Research, Kaiser Permanente, Oakland, CA, USA
| | - Irva Hertz-Picciotto
- Department of Public Health Sciences, MIND (Medical Investigations of Neurodevelopmental Disorders) Institute, University of California, Davis, CA, USA
| | - Craig J Newschaffer
- A.J. Drexel Autism Institute and Department of Epidemiology and Biostatistics, Drexel University School of Public Health, Philadelphia, PA, USA
| | - Andrew P Feinberg
- Department of Mental Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA; Center for Epigenetics, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - M Daniele Fallin
- Wendy Klag Center for Autism and Developmental Disabilities, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA; Department of Mental Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Heather E Volk
- Wendy Klag Center for Autism and Developmental Disabilities, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA; Department of Mental Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA; Department of Environmental Health and Engineering, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| |
Collapse
|
14
|
Abraham E, Rousseaux S, Agier L, Giorgis-Allemand L, Tost J, Galineau J, Hulin A, Siroux V, Vaiman D, Charles MA, Heude B, Forhan A, Schwartz J, Chuffart F, Bourova-Flin E, Khochbin S, Slama R, Lepeule J. Pregnancy exposure to atmospheric pollution and meteorological conditions and placental DNA methylation. ENVIRONMENT INTERNATIONAL 2018; 118:334-347. [PMID: 29935799 DOI: 10.1016/j.envint.2018.05.007] [Citation(s) in RCA: 82] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Revised: 05/02/2018] [Accepted: 05/02/2018] [Indexed: 05/17/2023]
Abstract
BACKGROUND Air pollution exposure represents a major health threat to the developing foetus. DNA methylation is one of the most well-known molecular determinants of the epigenetic status of cells. Blood DNA methylation has been proven sensitive to air pollutants, but the molecular impact of air pollution on new-borns has so far received little attention. OBJECTIVES We investigated whether nitrogen dioxide (NO2), particulate matter (PM10), temperature and humidity during pregnancy are associated with differences in placental DNA methylation levels. METHODS Whole-genome DNA-methylation was measured using the Illumina's Infinium HumanMethylation450 BeadChip in the placenta of 668 newborns from the EDEN cohort. We designed an original strategy using a priori biological information to focus on candidate genes with a specific expression pattern in placenta (active or silent) combined with an agnostic epigenome-wide association study (EWAS). We used robust linear regression to identify CpGs and differentially methylated regions (DMR) associated with each exposure during short- and long-term time-windows. RESULTS The candidate genes approach identified nine CpGs mapping to 9 genes associated with prenatal NO2 and PM10 exposure [false discovery rate (FDR) p < 0.05]. Among these, the methylation level of 2 CpGs located in ADORA2B remained significantly associated with NO2 exposure during the 2nd trimester and whole pregnancy in the EWAS (FDR p < 0.05). EWAS further revealed associations between the environmental exposures under study and variations of DNA methylation of 4 other CpGs. We further identified 27 DMRs significantly (FDR p < 0.05) associated with air pollutants exposure and 13 DMRs with meteorological conditions. CONCLUSIONS The methylation of ADORA2B, a gene whose expression was previously associated with hypoxia and pre-eclampsia, was consistently found here sensitive to atmospheric pollutants. In addition, air pollutants were associated to DMRs pointing towards genes previously implicated in preeclampsia, hypertensive and metabolic disorders. These findings demonstrate that air pollutants exposure at levels commonly experienced in the European population are associated with placental gene methylation and provide some mechanistic insight into some of the reported effects of air pollutants on preeclampsia.
Collapse
Affiliation(s)
- Emilie Abraham
- Univ. Grenoble Alpes, Inserm, CNRS, IAB, 38000 Grenoble, France
| | | | - Lydiane Agier
- Univ. Grenoble Alpes, Inserm, CNRS, IAB, 38000 Grenoble, France
| | | | - Jörg Tost
- Laboratory for Epigenetics and Environment, Centre National de Recherche en Génomique Humaine, CEA - Institut de Biologie François Jacob, Evry, France
| | | | | | - Valérie Siroux
- Univ. Grenoble Alpes, Inserm, CNRS, IAB, 38000 Grenoble, France
| | - Daniel Vaiman
- Genomics, Epigenetics and Physiopathology of Reproduction, Institut Cochin, U1016 Inserm - UMR 8104 CNRS - Paris-Descartes University, Paris, France
| | - Marie-Aline Charles
- Inserm U1153, Early Origins of Child Health and Development team, Research Center for Epidemiology and Biostatistics Sorbonne Paris Cité (CRESS), Paris Descartes University, Villejuif, France
| | - Barbara Heude
- Inserm U1153, Early Origins of Child Health and Development team, Research Center for Epidemiology and Biostatistics Sorbonne Paris Cité (CRESS), Paris Descartes University, Villejuif, France
| | - Anne Forhan
- Inserm U1153, Early Origins of Child Health and Development team, Research Center for Epidemiology and Biostatistics Sorbonne Paris Cité (CRESS), Paris Descartes University, Villejuif, France
| | - Joel Schwartz
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | | | | | - Saadi Khochbin
- Univ. Grenoble Alpes, Inserm, CNRS, IAB, 38000 Grenoble, France
| | - Rémy Slama
- Univ. Grenoble Alpes, Inserm, CNRS, IAB, 38000 Grenoble, France
| | - Johanna Lepeule
- Univ. Grenoble Alpes, Inserm, CNRS, IAB, 38000 Grenoble, France.
| |
Collapse
|
15
|
Hypertension Editors' Picks: Preeclampsia, Pregnancy, and Hypertension. Hypertension 2018; 72:e1-e18. [PMID: 29899140 DOI: 10.1161/hypertensionaha.118.11037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|