1
|
Ge X, Ma Z, Wei W, Deng H, Tang S, Han Y, Li Y, He X, Li M, Lin N, Li H, Zhang Y, Sheng L. Integrated proteomic and metabolomic analysis reveals the potential therapeutic mechanism of Quanduzhong capsule in rats with spontaneous hypertension and knee osteoarthritis. JOURNAL OF ETHNOPHARMACOLOGY 2024; 340:119176. [PMID: 39617089 DOI: 10.1016/j.jep.2024.119176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 11/27/2024] [Accepted: 11/28/2024] [Indexed: 12/08/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Quanduzhong capsule (QDZ), derived from Eucommia ulmoides Oliv., has been traditionally used in Chinese medicine for its beneficial effects on musculoskeletal health. Its clinical application has extended to conditions such as spontaneous hypertension combined with knee osteoarthritis (SKOA). However, the specific mechanisms by which QDZ alleviates symptoms and improves outcomes in this complex condition remain to be fully elucidated. AIM OF THE STUDY This study aims to evaluate the therapeutic potential of QDZ in treating SKOA. By performing serum proteomics and metabolomics, we seek to explore the related biological pathways and elucidate the mechanisms underlying QDZ's effects on SKOA. MATERIALS AND METHODS Serum samples from control, spontaneous hypertension (SHR), SKOA, and SKOA treated with QDZ groups were analyzed using data-independent acquisition-based proteomics to identify differentially expressed proteins. Serum levels of angiotensin II, norepinephrine, endothelin-1, classical pro-inflammatory factors such as macrophage colony-stimulating factor, tumor necrosis factor-alpha, and interleukin-1 beta were measured. Additionally, serum metabolomics was performed to examine the changes in metabolite profiles. Correlation analysis was conducted to link changed proteins and metabolites with key pathways affected by QDZ. RESULTS Proteomics analysis revealed significant alterations in serum protein expression between control, SHR, and SKOA groups, with changes in pathways related to immune regulation and vascular function. KEGG enrichment analysis highlighted pathways such as endocytosis, synaptic vesicle cycling, and immune responses were enriched in SKOA group compared with control group. QDZ treatment significantly modulated above pathways and reduced inflammatory and cardiovascular markers which were upregulated in SKOA group. Metabolomics analysis showed that QDZ reversed SKOA-induced changes in amino acid and organic acid metabolism, affecting pathways including valine, leucine, and isoleucine metabolism, as well as the TCA cycle. Correlation analysis revealed significant relationships between key proteins and metabolites, underscoring the integrated role of immune and metabolic pathways in QDZ's effects. CONCLUSIONS Our results indicate QDZ has a significant therapeutic potential for SKOA by modulating both protein and metabolite profiles associated with inflammation, vascular dysfunction, and metabolic imbalance. Our findings provide insights into the mechanisms through which QDZ exerts its effects and support its use as a promising treatment for SKOA. This study highlights the impact of QDZ on proteomic and metabolomic alterations, offering a basis for its broader application in treating SKOA.
Collapse
Affiliation(s)
- Xinyu Ge
- Functional Metabolomics and Gut Microbiome Laboratory, School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Zhaochen Ma
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, No. 16, Nanxiaojie, Dongzhimennei, Beijing, 100700, China
| | - Wenjing Wei
- Functional Metabolomics and Gut Microbiome Laboratory, School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Huaijue Deng
- Functional Metabolomics and Gut Microbiome Laboratory, School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Shuhui Tang
- Functional Metabolomics and Gut Microbiome Laboratory, School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Yefeng Han
- Functional Metabolomics and Gut Microbiome Laboratory, School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Yifan Li
- Functional Metabolomics and Gut Microbiome Laboratory, School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Xiaofang He
- Functional Metabolomics and Gut Microbiome Laboratory, School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Mingxiao Li
- Functional Metabolomics and Gut Microbiome Laboratory, School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Na Lin
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, No. 16, Nanxiaojie, Dongzhimennei, Beijing, 100700, China
| | - Houkai Li
- Functional Metabolomics and Gut Microbiome Laboratory, School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Yanqiong Zhang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, No. 16, Nanxiaojie, Dongzhimennei, Beijing, 100700, China.
| | - Lili Sheng
- Functional Metabolomics and Gut Microbiome Laboratory, School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| |
Collapse
|
2
|
Buneeva OA, Fedchenko VI, Kaloshina SA, Zavyalova MG, Zgoda VG, Medvedev AE. Proteomic profiling of renal tissue of normo- and hypertensive rats with the renalase peptide RP220 as an affinity ligand. BIOMEDITSINSKAIA KHIMIIA 2024; 70:145-155. [PMID: 38940203 DOI: 10.18097/pbmc20247003145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/29/2024]
Abstract
Renalase (RNLS) is a recently discovered protein that plays an important role in the regulation of blood pressure by acting inside and outside cells. Intracellular RNLS is a FAD-dependent oxidoreductase that oxidizes isomeric forms of β-NAD(P)H. Extracellular renalase lacking its N-terminal peptide and cofactor FAD exerts various protective effects via non-catalytic mechanisms. Certain experimental evidence exists in the literature that the RP220 peptide (a 20-mer peptide corresponding to the amino acid sequence RNLS 220-239) reproduces a number of non-catalytic effects of this protein, acting on receptor proteins of the plasma membrane. The possibility of interaction of this peptide with intracellular proteins has not been studied. Taking into consideration the known role of RNLS as a possible antihypertensive factor, the aim of this study was to perform proteomic profiling of the kidneys of normotensive and hypertensive rats using RP220 as an affinity ligand. Proteomic (semi-quantitative) identification revealed changes in the relative content of about 200 individual proteins in the kidneys of hypertensive rats bound to the affinity sorbent as compared to the kidneys of normotensive animals. Increased binding of SHR renal proteins to RP220 over the normotensive control was found for proteins involved in the development of cardiovascular pathology. Decreased binding of the kidney proteins from hypertensive animals to RP220 was noted for components of the ubiquitin-proteasome system, ribosomes, and cytoskeleton.
Collapse
Affiliation(s)
- O A Buneeva
- Institute of Biomedical Chemistry, Moscow, Russia
| | | | | | | | - V G Zgoda
- Institute of Biomedical Chemistry, Moscow, Russia
| | - A E Medvedev
- Institute of Biomedical Chemistry, Moscow, Russia
| |
Collapse
|
3
|
Bastrup JA, Jepps TA. Proteomic mapping reveals dysregulated angiogenesis in the cerebral arteries of rats with early-onset hypertension. J Biol Chem 2023; 299:105221. [PMID: 37660920 PMCID: PMC10558802 DOI: 10.1016/j.jbc.2023.105221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 08/07/2023] [Accepted: 08/16/2023] [Indexed: 09/05/2023] Open
Abstract
Hypertension is associated with the presence of vascular abnormalities, including remodeling and rarefaction. These processes play an important role in cerebrovascular disease development; however, the mechanistic changes leading to these diseases are not well characterized. Using data-independent acquisition-based mass spectrometry analysis, here we determined the protein changes in cerebral arteries in pre- and early-onset hypertension from the spontaneously hypertensive rat (SHR), a model that resembles essential hypertension in humans. Our analysis identified 125 proteins with expression levels that were significantly upregulated or downregulated in 12-week-old spontaneously hypertensive rats compared to normotensive Wistar Kyoto rats. Using an angiogenesis enrichment analysis, we further identified a critical imbalance in angiogenic proteins that promoted an anti-angiogenic profile in cerebral arteries at early onset of hypertension. In a comparison to previously published data, we demonstrate that this angiogenic imbalance is not present in mesenteric and renal arteries from age-matched SHRs. Finally, we identified two proteins (Fbln5 and Cdh13), whose expression levels were critically altered in cerebral arteries compared to the other arterial beds. The observation of an angiogenic imbalance in cerebral arteries from the SHR reveals critical protein changes in the cerebrovasculature at the early onset of hypertension and provides novel insights into the early pathology of cerebrovascular disease.
Collapse
Affiliation(s)
- Joakim A Bastrup
- Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark.
| | - Thomas A Jepps
- Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
4
|
Yu Z, Wang L, Wu S, Zhao W. Dissecting the potential mechanism of antihypertensive effects of RVPSL on spontaneously hypertensive rats via widely targeted kidney metabolomics. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2023; 103:428-436. [PMID: 36373790 DOI: 10.1002/jsfa.12157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Revised: 07/26/2022] [Accepted: 07/30/2022] [Indexed: 06/16/2023]
Abstract
BACKGROUND Our previous study has demonstrated that the egg-white-derived peptide RVPSL can lower blood pressure in spontaneously hypertensive rats (SHRs), but its potential action mechanism remains unclear. In this work, the underlying mechanism of the antihypertensive effects of RVPSL in SHRs was elucidated using the widely targeted kidney metabolomics approach. RESULTS Ten SHRs were divided into two groups: SHR-Untreated group (0.9% saline) and SHR-RVPSL group (50 mg kg-1 body weight RVPSL) for 4 weeks. After 4 weeks, kidney samples were collected and widely targeted (liquid chromatography-electrospray ionization-tandem mass spectrometry) metabolomics was used to detect metabolites. Fifty-six biomarkers were identified that may be associated with hypertension. Among them, 17 biomarkers were upregulated and 39 biomarkers were downregulated. The results suggested that eight potential biomarkers were identified in kidney samples: O-phospho-l-serine, tyramine, citric acid, 3-hydroxybutyrate, O-acetyl-l-serine, 15-oxo-5Z,8Z,11Z,13E-eicosatetraenoic acid (15-oxoETE), dopaquinone and 3,3',5-triiodo-l-thyronine. These potential biomarkers mainly involved carbon metabolism, thyroid hormone signaling pathway, tyrosine metabolism and arachidonic acid metabolism. CONCLUSION The study suggested that RVPSL may exert antihypertensive effects through upregulation of O-phospho-l-serine, 3-hydroxybutyrate and 15-oxoETE, and downregulation of tyramine, citric acid, O-acetyl-l-serine, 3,3',5-triiodo-l-thyronine and dopaquinone. The antihypertensive effects of RVPSL may be related to carbon metabolism, thyroid hormone signaling pathway, tyrosine metabolism and arachidonic acid metabolism. RVPSL exhibited a potent antihypertensive effect, and the antihypertensive effects were associated with inhibition of vascular smooth muscle cell proliferation, vascular remodeling, vascular endothelium dysfunction, restoring reactive oxygen species, oxidative stress, inflammation and immune reaction. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- Zhipeng Yu
- School of Food Science and Engineering, Hainan University, Haikou, PR China
| | - Li Wang
- College of Food Science and Engineering, Bohai University, Jinzhou, PR China
| | - Sijia Wu
- Laboratory of Nutrition and Functional Food, Jilin University, Changchun, PR China
| | - Wenzhu Zhao
- School of Food Science and Engineering, Hainan University, Haikou, PR China
| |
Collapse
|
5
|
Zhang Y, Liang F, Zhang D, Qi S, Liu Y. Metabolites as extracellular vesicle cargo in health, cancer, pleural effusion, and cardiovascular diseases: An emerging field of study to diagnostic and therapeutic purposes. Biomed Pharmacother 2023; 157:114046. [PMID: 36469967 DOI: 10.1016/j.biopha.2022.114046] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 11/19/2022] [Accepted: 11/25/2022] [Indexed: 12/03/2022] Open
Abstract
Extracellular vesicles (EVs) are highly diverse nanoscale membrane-bound structures released from different cell types into the extracellular environment. They play essential functions in cell signaling by transporting their cargo, such as proteins, RNA, DNA, lipids, metabolites, and small molecules, to recipient cells. It has recently been shown that EVs might modulate carcinogenesis by delivering cargo to recipient cells. Furthermore, recent discoveries revealed that changes in plasma-derived EV levels and cargo in subjects with metabolic diseases were documented by many researchers, suggesting that EVs might be a promising source of disease biomarkers. One of the cargos of EVs that has recently attracted the most attention is metabolites. The metabolome of these vesicles introduces a plethora of disease indicators; hence, examining the metabolomics of EVs detected in human biofluids would be an effective approach. On the other hand, metabolites have various roles in biological systems, including the production of energies, synthesizing macromolecules, and serving as signaling molecules and hormones. Metabolome rewiring in cancer and stromal cells is a characteristic of malignancy, but the current understanding of how this affects the metabolite composition and activity of tumor-derived EVs remains in its infancy. Since new findings and studies in the field of exosome biology and metabolism are constantly being published, it is likely that diagnostic and treatment techniques, including the use of exosome metabolites, will be launched in the coming years. Recent years have seen increased interest in the EV metabolome as a possible source for biomarker development. However, our understanding of the role of these molecules in health and disease is still immature. In this work, we have provided the latest findings regarding the role of metabolites as EV cargoes in the pathophysiology of diseases, including cancer, pleural effusion (PE), and cardiovascular disease (CVD). We also discussed the significance of metabolites as EV cargoes of microbiota and their role in host-microbe interaction. In addition, the latest findings on metabolites in the form of EV cargoes as biomarkers for disease diagnosis and treatment are presented in this study.
Collapse
Affiliation(s)
- Yan Zhang
- Department of Anesthesiology, China-Japan Union Hospital of Jilin University, Changchun, 130033, People's Republic of China
| | - Feng Liang
- Department of Anesthesiology, China-Japan Union Hospital of Jilin University, Changchun, 130033, People's Republic of China
| | - DuoDuo Zhang
- Department of Thoracic Surgery, The First Hospital of Jilin University, Changchun, Jilin Province 130021, People's Republic of China
| | - Shuang Qi
- Department of Anesthesiology, China-Japan Union Hospital of Jilin University, Changchun, 130033, People's Republic of China.
| | - Yan Liu
- Department of Hand Surgery, China-Japan Union Hospital of Jilin University, Changchun, 130033, People's Republic of China.
| |
Collapse
|
6
|
Xiao X, Li R, Wu C, Yan Y, Yuan M, Cui B, Zhang Y, Zhang C, Zhang X, Zhang W, Hui R, Wang Y. A genome-wide association study identifies a novel association between SDC3 and apparent treatment-resistant hypertension. BMC Med 2022; 20:463. [PMID: 36447229 PMCID: PMC9710180 DOI: 10.1186/s12916-022-02665-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Accepted: 11/14/2022] [Indexed: 12/02/2022] Open
Abstract
BACKGROUND Compared with patients who require fewer antihypertensive agents, those with apparent treatment-resistant hypertension (aTRH) are at increased risk for cardiovascular and all-cause mortality, independent of blood pressure control. However, the etiopathogenesis of aTRH is still poorly elucidated. METHODS We performed a genome-wide association study (GWAS) in first cohort including 586 aTRHs and 871 healthy controls. Next, expression quantitative trait locus (eQTL) analysis was used to identify genes that are regulated by single nucleotide polymorphisms (SNPs) derived from the GWAS. Then, we verified the genes obtained from the eQTL analysis in the validation cohort including 65 aTRHs, 96 hypertensives, and 100 healthy controls through gene expression profiling analysis and real-time quantitative polymerase chain reaction (RT-qPCR) assay. RESULTS The GWAS in first cohort revealed four suggestive loci (1p35, 4q13.2-21.1, 5q22-23.2, and 15q11.1-q12) represented by 23 SNPs. The 23 significant SNPs were in or near LAPTM5, SDC3, UGT2A1, FTMT, and NIPA1. eQTL analysis uncovered 14 SNPs in 1p35 locus all had same regulation directions for SDC3 and LAPTM5. The disease susceptible alleles of SNPs in 1p35 locus were associated with lower gene expression for SDC3 and higher gene expression for LAPTM5. The disease susceptible alleles of SNPs in 4q13.2-21.1 were associated with higher gene expression for UGT2B4. GTEx database did not show any statistically significant eQTLs between the SNPs in 5q22-23.2 and 15q11.1-q12 loci and their influenced genes. Then, gene expression profiling analysis in the validation cohort confirmed lower expression of SDC3 in aTRH but no significant differences on LAPTM5 and UGT2B4, when compared with controls and hypertensives, respectively. RT-qPCR assay further verified the lower expression of SDC3 in aTRH. CONCLUSIONS Our study identified a novel association of SDC3 with aTRH, which contributes to the elucidation of its etiopathogenesis and provides a promising therapeutic target.
Collapse
Affiliation(s)
- Xiao Xiao
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, 167 Beilishi Rd, Beijing, China
| | - Rui Li
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, 167 Beilishi Rd, Beijing, China
| | - Cunjin Wu
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, 167 Beilishi Rd, Beijing, China
| | - Yupeng Yan
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, 167 Beilishi Rd, Beijing, China
| | - Mengmeng Yuan
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, 167 Beilishi Rd, Beijing, China
| | - Bing Cui
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, 167 Beilishi Rd, Beijing, China
| | - Yu Zhang
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, 167 Beilishi Rd, Beijing, China
| | - Channa Zhang
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, 167 Beilishi Rd, Beijing, China
| | - Xiaoxia Zhang
- Department of Pharmacy, The First Affiliated Hospital, Xi'an Jiaotong University, 277 West Yanta Road, Xi'an, Shaanxi, China
| | - Weili Zhang
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, 167 Beilishi Rd, Beijing, China
| | - Rutai Hui
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, 167 Beilishi Rd, Beijing, China
| | - Yibo Wang
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, 167 Beilishi Rd, Beijing, China.
| |
Collapse
|
7
|
The Metabolomic Characterization of Different Types of Coronary Atherosclerotic Heart Disease in Male. Cardiol Res Pract 2022; 2022:6491129. [PMID: 35865323 PMCID: PMC9296306 DOI: 10.1155/2022/6491129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 05/15/2022] [Accepted: 06/27/2022] [Indexed: 11/18/2022] Open
Abstract
Background In clinical practice, many patients with coronary atherosclerotic heart disease (CAD) have atypical clinical symptoms. It is difficult to accurately identify stable CAD or unstable CAD early through clinical symptoms and coronary angiography. This study aimed to screen the potential metabolite biomarkers in male patients with stable CAD and unstable CAD. Methods In this work, the metabolomic characterization of the male patients with healthy control (n = 42), stable coronary artery disease (n = 60), non-ST-elevation acute coronary syndrome (n = 45), including prepercutaneous corona intervention (n = 14), and postpercutaneous coronary intervention (n = 31) were performed by using ultra-performance liquid chromatography-mass spectrometry (UPLC-MS). The serum samples of patients were analyzed by multivariate statistics. Results Results showed that 17 altered metabolites were identified to have a clear distinction between the stable CAD group and the healthy subjects. Compared with the stable coronary artery disease group, 15 specific metabolite markers were found in the acute coronary syndrome group. The percutaneous coronary intervention also affected the metabolic behavior of patients with CAD. Conclusions In summary, CAD is closely related to energy metabolism, lipid metabolism, and amino acid metabolism disorders. The different metabolic pattern characteristics of healthy, stable coronary artery disease and acute coronary syndrome are constructed, which brings a novel theoretical basis for the early diagnosis of patients with stable and unstable CAD.
Collapse
|
8
|
Guo J, Guo X, Sun Y, Li Z, Jia P. Application of omics in hypertension and resistant hypertension. Hypertens Res 2022; 45:775-788. [PMID: 35264783 DOI: 10.1038/s41440-022-00885-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 01/11/2022] [Accepted: 01/29/2022] [Indexed: 12/12/2022]
Abstract
Hypertension is a major modifiable risk factor that affects the global health burden. Despite the availability of multiple antihypertensive drugs, blood pressure is often not optimally controlled. The prevalence of true resistant hypertension in treated hypertensive patients is ~2-20%, and these patients are at higher risk for adverse events and poor clinical outcomes. Therefore, an in-depth dissection of the pathophysiological mechanisms of hypertension and resistant hypertension is needed to identify more effective targets for regulating blood pressure. Omics technologies, such as genomics, transcriptomics, proteomics, metabolomics, and microbiomics, can accurately present the characteristics of organisms at varying molecular levels. Integrative omics can further reveal the network of interactions between molecular levels and provide a complete dynamic view of the organism. In this review, we describe the applications, progress, and challenges of omics technologies in hypertension. Specifically, we discuss the application of omics in resistant hypertension. We believe that omics approaches will produce a better understanding of the pathogenesis of hypertension and resistant hypertension and improve diagnostic and therapeutic strategies, thus increasing rates of blood pressure control and reducing the public health burden of hypertension.
Collapse
Affiliation(s)
- Jiuqi Guo
- Department of Cardiology, The First Hospital of China Medical University, Shenyang, 110001, China
| | - Xiaofan Guo
- Department of Cardiology, The First Hospital of China Medical University, Shenyang, 110001, China
| | - Yingxian Sun
- Department of Cardiology, The First Hospital of China Medical University, Shenyang, 110001, China
| | - Zhao Li
- Department of Cardiology, The First Hospital of China Medical University, Shenyang, 110001, China.
| | - Pengyu Jia
- Department of Cardiology, The First Hospital of China Medical University, Shenyang, 110001, China.
| |
Collapse
|
9
|
Ding Z, Wang W, Zhang K, Ming F, Yangdai T, Xu T, Shi H, Bao Y, Yao H, Peng H, Han C, Jiang W, Liu J, Hou X, Lin R. Novel scheme for non-invasive gut bioinformation acquisition with a magnetically controlled sampling capsule endoscope. Gut 2021; 70:2297-2306. [PMID: 33452177 DOI: 10.1136/gutjnl-2020-322465] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 01/01/2021] [Accepted: 01/04/2021] [Indexed: 02/06/2023]
Abstract
OBJECTIVE Intestinal flora and metabolites are associated with multiple systemic diseases. Current approaches for acquiring information regarding microbiota/metabolites have limitations. We aimed to develop a precise magnetically controlled sampling capsule endoscope (MSCE) for the convenient, non-invasive and accurate acquisition of digestive bioinformation for disease diagnosis and evaluation. DESIGN The MSCE and surgery were both used for sampling both jejunal and ileal GI content in the control and antibiotic-induced diarrhoea groups. The GI content was then used for microbiome profiling and metabolomics profiling. RESULTS Compared with surgery, our data showed that the MSCE precisely acquired data regarding the intestinal flora and metabolites, which was effectively differentiated in different intestinal regions and disease models. Using MSCE, we detected a dramatic decrease in the abundance of Bacteroidetes, Patescibacteria and Actinobacteria and hippuric acid levels, as well as an increase in the abundance of Escherichia-Shigella and the 2-pyrrolidinone levels were detected in the antibiotic-induced diarrhoea model by MSCE. MSCE-mediated sampling revealed specific gut microbiota/metabolites including Enterococcus, Lachnospiraceae, acetyl-L-carnitine and succinic acid, which are related to metabolic diseases, cancers and nervous system disorders. Additionally, the MSCE exhibited good sealing characteristics with no contamination after sampling. CONCLUSIONS We present a newly developed MSCE that can non-invasively and accurately acquire intestinal bioinformation via direct visualization under magnetic control, which may further aid in disease prevention, diagnosis, prognosis and treatment.
Collapse
Affiliation(s)
- Zhen Ding
- Division of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Weijun Wang
- Division of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Kun Zhang
- Division of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Fanhua Ming
- R&D department, ANKON Technologies, Wuhan, China
| | | | - Tao Xu
- Division of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Huiying Shi
- Division of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yuhui Bao
- R&D department, ANKON Technologies, Wuhan, China
| | - Hailing Yao
- Division of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hangyu Peng
- R&D department, ANKON Technologies, Wuhan, China
| | - Chaoqun Han
- Division of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Weiwei Jiang
- Division of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jun Liu
- Division of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaohua Hou
- Division of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Rong Lin
- Division of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
10
|
Gómez-Cebrián N, Vázquez Ferreiro P, Carrera Hueso FJ, Poveda Andrés JL, Puchades-Carrasco L, Pineda-Lucena A. Pharmacometabolomics by NMR in Oncology: A Systematic Review. Pharmaceuticals (Basel) 2021; 14:ph14101015. [PMID: 34681239 PMCID: PMC8539252 DOI: 10.3390/ph14101015] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 09/28/2021] [Accepted: 09/29/2021] [Indexed: 12/14/2022] Open
Abstract
Pharmacometabolomics (PMx) studies aim to predict individual differences in treatment response and in the development of adverse effects associated with specific drug treatments. Overall, these studies inform us about how individuals will respond to a drug treatment based on their metabolic profiles obtained before, during, or after the therapeutic intervention. In the era of precision medicine, metabolic profiles hold great potential to guide patient selection and stratification in clinical trials, with a focus on improving drug efficacy and safety. Metabolomics is closely related to the phenotype as alterations in metabolism reflect changes in the preceding cascade of genomics, transcriptomics, and proteomics changes, thus providing a significant advance over other omics approaches. Nuclear Magnetic Resonance (NMR) is one of the most widely used analytical platforms in metabolomics studies. In fact, since the introduction of PMx studies in 2006, the number of NMR-based PMx studies has been continuously growing and has provided novel insights into the specific metabolic changes associated with different mechanisms of action and/or toxic effects. This review presents an up-to-date summary of NMR-based PMx studies performed over the last 10 years. Our main objective is to discuss the experimental approaches used for the characterization of the metabolic changes associated with specific therapeutic interventions, the most relevant results obtained so far, and some of the remaining challenges in this area.
Collapse
Affiliation(s)
- Nuria Gómez-Cebrián
- Drug Discovery Unit, Instituto de Investigación Sanitaria La Fe, 46026 Valencia, Spain;
| | | | | | | | - Leonor Puchades-Carrasco
- Drug Discovery Unit, Instituto de Investigación Sanitaria La Fe, 46026 Valencia, Spain;
- Correspondence: (L.P.-C.); (A.P.-L.); Tel.: +34-963246713 (L.P.-C.)
| | - Antonio Pineda-Lucena
- Molecular Therapeutics Program, Centro de Investigación Médica Aplicada, 31008 Navarra, Spain
- Correspondence: (L.P.-C.); (A.P.-L.); Tel.: +34-963246713 (L.P.-C.)
| |
Collapse
|
11
|
Zhang Y, Zhao H, Liu B, Shu H, Zhang L, Bao M, Yi W, Tan Y, Ji X, Zhang C, Zhao N, Pang G, He D, Wang Y, Li L, Yi J, Lu C. Human serum metabolomic analysis reveals progression for high blood pressure in type 2 diabetes mellitus. BMJ Open Diabetes Res Care 2021; 9:9/1/e002337. [PMID: 34711543 PMCID: PMC8557281 DOI: 10.1136/bmjdrc-2021-002337] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Accepted: 10/05/2021] [Indexed: 11/04/2022] Open
Abstract
INTRODUCTION Type 2 diabetes mellitus (T2DM) is one of the most ordinary metabolic disorders and manifests as a high blood sugar level; 80%-90% of patients with T2DM will develop high blood pressure (HBP), which exacerbates irreversible organ damage. Understanding the metabolic basis of HBP is essential to facilitating early diagnosis and prompt treatments of diabetic complications. RESEARCH DESIGN AND METHODS 34 patients who originally had T2DM and then developed HBP within 1 year were selected from physical examination participants. Using ultrahigh-performance liquid chromatography quadrupole time-of-flight metabolomic analysis, we compared the metabolomic profile of patients with 30 healthy controls. The results showed a clear discrimination in metabolomic profiles between T2DM and T2DM+HBP when employing orthogonal projection to latent structure with discriminant analysis with electrospray ionization modes. RESULTS Eight differential metabolites changed significantly during disease progression, among which L-isoleucine, L-glutamic acid, pyroglutamic acid and linoleic acid decreased, while sphinganine, Cer(d18:0/16:0), Cer(d18:0/18:0), and citric acid increased. These metabolites are associated with the γ-glutamyl cycle, tricarboxylic acid cycle, and ceramide metabolism. CONCLUSIONS These novel serum biomarkers may improve the management of T2DM and HBP complications, thus reducing the use of incorrect medical care.
Collapse
Affiliation(s)
- Yin Zhang
- China Academy of Chinese Medical Sciences, Beijing, China
- Yichun University, Yichun, Jiangxi, China
| | - Heru Zhao
- China Academy of Chinese Medical Sciences, Beijing, China
- Yichun University, Yichun, Jiangxi, China
| | - Bin Liu
- China Academy of Chinese Medical Sciences, Beijing, China
| | - Haiyang Shu
- Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Lulu Zhang
- China Academy of Chinese Medical Sciences, Beijing, China
- Yichun University, Yichun, Jiangxi, China
| | - Mei Bao
- China Academy of Chinese Medical Sciences, Beijing, China
- Yichun University, Yichun, Jiangxi, China
| | - Wenjun Yi
- China Academy of Chinese Medical Sciences, Beijing, China
| | - Yong Tan
- China Academy of Chinese Medical Sciences, Beijing, China
| | - Xinyu Ji
- China Academy of Chinese Medical Sciences, Beijing, China
| | - Chi Zhang
- China Academy of Chinese Medical Sciences, Beijing, China
| | - Ning Zhao
- China Academy of Chinese Medical Sciences, Beijing, China
| | - Guoming Pang
- Traditional Chinese Medicine Hospital of Kaifeng, Kaifeng, China
| | - Dan He
- Jiangxi University of Traditional Chinese Medicine, Nanchang, Jiangxi, China
| | - Yuexi Wang
- China Academy of Chinese Medical Sciences, Beijing, China
| | - Li Li
- China Academy of Chinese Medical Sciences, Beijing, China
| | | | - Cheng Lu
- China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
12
|
Santiago-Hernandez A, Martinez PJ, Agudiez M, Heredero A, Gonzalez-Calero L, Yuste-Montalvo A, Esteban V, Aldamiz-Echevarria G, Martin-Lorenzo M, Alvarez-Llamas G. Metabolic Alterations Identified in Urine, Plasma and Aortic Smooth Muscle Cells Reflect Cardiovascular Risk in Patients with Programmed Coronary Artery Bypass Grafting. Antioxidants (Basel) 2021; 10:antiox10091369. [PMID: 34573001 PMCID: PMC8466954 DOI: 10.3390/antiox10091369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 08/25/2021] [Accepted: 08/25/2021] [Indexed: 11/16/2022] Open
Abstract
Atherosclerosis is the predominant pathology associated to premature deaths due to cardiovascular disease. However, early intervention based on a personalized diagnosis of cardiovascular risk is very limited. We have previously identified metabolic alterations during atherosclerosis development in a rabbit model and in subjects suffering from an acute coronary syndrome. Here we aim to identify specific metabolic signatures which may set the basis for novel tools aiding cardiovascular risk diagnosis in clinical practice. In a cohort of subjects with programmed coronary artery bypass grafting (CABG), we have performed liquid chromatography and targeted mass spectrometry analysis in urine and plasma. The role of vascular smooth muscle cells from human aorta (HA-VSMCs) was also investigated by analyzing the intra and extracellular metabolites in response to a pro-atherosclerotic stimulus. Statistically significant variation was considered if p value < 0.05 (Mann-Whitney test). Urinary trimethylamine N-oxide (TMAO), arabitol and spermidine showed higher levels in the CVrisk group compared with a control group; while glutamine and pantothenate showed lower levels. The same trend was found for plasma TMAO and glutamine. Plasma choline, acetylcholine and valine were also decreased in CVrisk group, while pyruvate was found increased. In the secretome of HA-VSMCs, TMAO, pantothenate, glycerophosphocholine, glutathion, spermidine and acetylcholine increased after pro-atherosclerotic stimulus, while secreted glutamine decreased. At intracellular level, TMAO, pantothenate and glycerophosphocholine increased with stimulation. Observed metabolic deregulations pointed to an inflammatory response together with a deregulation of oxidative stress counteraction.
Collapse
Affiliation(s)
- Aranzazu Santiago-Hernandez
- Immunoallergy and Proteomics Laboratory, Department of Immunology, IIS-Fundacion Jimenez Diaz, UAM, 28040 Madrid, Spain; (A.S.-H.); (P.J.M.); (M.A.); (L.G.-C.); (M.M.-L.)
| | - Paula J. Martinez
- Immunoallergy and Proteomics Laboratory, Department of Immunology, IIS-Fundacion Jimenez Diaz, UAM, 28040 Madrid, Spain; (A.S.-H.); (P.J.M.); (M.A.); (L.G.-C.); (M.M.-L.)
| | - Marta Agudiez
- Immunoallergy and Proteomics Laboratory, Department of Immunology, IIS-Fundacion Jimenez Diaz, UAM, 28040 Madrid, Spain; (A.S.-H.); (P.J.M.); (M.A.); (L.G.-C.); (M.M.-L.)
| | - Angeles Heredero
- Department of Cardiac Surgery, Fundacion Jimenez Diaz, UAM, 28040 Madrid, Spain; (A.H.); (G.A.-E.)
| | - Laura Gonzalez-Calero
- Immunoallergy and Proteomics Laboratory, Department of Immunology, IIS-Fundacion Jimenez Diaz, UAM, 28040 Madrid, Spain; (A.S.-H.); (P.J.M.); (M.A.); (L.G.-C.); (M.M.-L.)
| | - Alma Yuste-Montalvo
- Allergy and Inmunology Department, IIS-Fundacion Jimenez Diaz, UAM, 28040 Madrid, Spain; (A.Y.-M.); (V.E.)
| | - Vanesa Esteban
- Allergy and Inmunology Department, IIS-Fundacion Jimenez Diaz, UAM, 28040 Madrid, Spain; (A.Y.-M.); (V.E.)
- Red de Asma, Reacciones Adversas y Alergicas, Instituto de Salud Carlos III, 28040 Madrid, Spain
- Faculty of Medicine and Biomedicine, Alfonso X El Sabio University, 28691 Madrid, Spain
| | | | - Marta Martin-Lorenzo
- Immunoallergy and Proteomics Laboratory, Department of Immunology, IIS-Fundacion Jimenez Diaz, UAM, 28040 Madrid, Spain; (A.S.-H.); (P.J.M.); (M.A.); (L.G.-C.); (M.M.-L.)
| | - Gloria Alvarez-Llamas
- Immunoallergy and Proteomics Laboratory, Department of Immunology, IIS-Fundacion Jimenez Diaz, UAM, 28040 Madrid, Spain; (A.S.-H.); (P.J.M.); (M.A.); (L.G.-C.); (M.M.-L.)
- Red de Investigacion Renal (REDINREN), Instituto de Salud Carlos III, 28040 Madrid, Spain
- Correspondence: ; Tel.: +34-915504800 (ext. 2203)
| |
Collapse
|
13
|
Ning Z, Song Z, Wang C, Peng S, Wan X, Liu Z, Lu A. How Perturbated Metabolites in Diabetes Mellitus Affect the Pathogenesis of Hypertension? Front Physiol 2021; 12:705588. [PMID: 34483960 PMCID: PMC8416465 DOI: 10.3389/fphys.2021.705588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Accepted: 07/26/2021] [Indexed: 11/17/2022] Open
Abstract
The presence of hypertension (HTN) in type 2 diabetes mellitus (DM) is a common phenomenon in more than half of the diabetic patients. Since HTN constitutes a predictor of vascular complications and cardiovascular disease in type 2 DM patients, it is of significance to understand the molecular and cellular mechanisms of type 2 DM binding to HTN. This review attempts to understand the mechanism via the perspective of the metabolites. It reviewed the metabolic perturbations, the biological function of perturbated metabolites in two diseases, and the mechanism underlying metabolic perturbation that contributed to the connection of type 2 DM and HTN. DM-associated metabolic perturbations may be involved in the pathogenesis of HTN potentially in insulin, angiotensin II, sympathetic nervous system, and the energy reprogramming to address how perturbated metabolites in type 2 DM affect the pathogenesis of HTN. The recent integration of the metabolism field with microbiology and immunology may provide a wider perspective. Metabolism affects immune function and supports immune cell differentiation by the switch of energy. The diverse metabolites produced by bacteria modified the biological process in the inflammatory response of chronic metabolic diseases either. The rapidly evolving metabolomics has enabled to have a better understanding of the process of diseases, which is an important tool for providing some insight into the investigation of diseases mechanism. Metabolites served as direct modulators of biological processes were believed to assess the pathological mechanisms involved in diseases.
Collapse
Affiliation(s)
- Zhangchi Ning
- Institute of Basic Theory for Chinese Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| | - Zhiqian Song
- Institute of Basic Theory for Chinese Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| | - Chun Wang
- Institute of Basic Theory for Chinese Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| | - Shitao Peng
- Institute of Basic Theory for Chinese Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| | - Xiaoying Wan
- Institute of Basic Theory for Chinese Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| | - Zhenli Liu
- Institute of Basic Theory for Chinese Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| | - Aiping Lu
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China
| |
Collapse
|
14
|
TCA Cycle and Fatty Acids Oxidation Reflect Early Cardiorenal Damage in Normoalbuminuric Subjects with Controlled Hypertension. Antioxidants (Basel) 2021; 10:antiox10071100. [PMID: 34356333 PMCID: PMC8301016 DOI: 10.3390/antiox10071100] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 07/05/2021] [Accepted: 07/07/2021] [Indexed: 01/22/2023] Open
Abstract
Moderately increased albuminuria, defined by an albumin to creatinine ratio (ACR) > 30 mg/g, is an indicator of subclinical organ damage associated with a higher risk of cardiovascular and renal disease. Normoalbuminuric subjects are considered at no cardiorenal risk in clinical practice, and molecular changes underlying early development are unclear. To decipher subjacent mechanisms, we stratified the normoalbuminuria condition. A total of 37 hypertensive patients under chronic renin–angiotensin system (RAS) suppression with ACR values in the normoalbuminuria range were included and classified as control (C) (ACR < 10 mg/g) and high-normal (HN) (ACR = 10–30 mg/g). Target metabolomic analysis was carried out by liquid chromatography and mass spectrometry to investigate the role of the cardiorenal risk urinary metabolites previously identified. Besides this, urinary free fatty acids (FFAs), fatty acid binding protein 1 (FABP1) and nephrin were analyzed by colorimetric and ELISA assays. A Mann–Whitney test was applied, ROC curves were calculated and Spearman correlation analysis was carried out. Nine metabolites showed significantly altered abundance in HN versus C, and urinary FFAs and FABP1 increased in HN group, pointing to dysregulation in the tricarboxylic acid cycle (TCA) cycle and fatty acids β-oxidation. We showed here how cardiorenal metabolites associate with albuminuria, already in the normoalbuminuric range, evidencing early renal damage at a tubular level and suggesting increased β-oxidation to potentially counteract fatty acids overload in the HN range.
Collapse
|
15
|
Chronic exercise mediates epigenetic suppression of L-type Ca2+ channel and BKCa channel in mesenteric arteries of hypertensive rats. J Hypertens 2021; 38:1763-1776. [PMID: 32384389 DOI: 10.1097/hjh.0000000000002457] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND Regular exercise is a lifestyle intervention for controlling hypertension and has an improving effect on vascular function. Voltage-gated L-type Ca (LTCC) and large-conductance Ca-activated K (BKCa) channels are two principal mediators of vascular smooth muscle cell contractility and arterial tone. The present study tested the hypothesis that DNA methylation dynamics plays a key role in exercise-induced reprogramming and downregulation of LTCC and BKCa channel in mesenteric arteries from spontaneously hypertensive rats (SHRs). METHODS SHRs and Wistar-Kyoto (WKY) rats were subjected to exercise training or kept sedentary, and vascular molecular and functional properties were evaluated. RESULTS Exercise inhibited hypertension-induced upregulation of LTCC and BKCa channel function in mesenteric arteries by repressing LTCC α1c and BKCa β1 subunit expression. In accordance, exercise triggered hypermethylation of α1c and β1 gene in SHR, with concomitant decreasing TET1, increasing DNMT1 and DNMT3b expression in mesenteric arteries, as well as altering peripheral α-KG and S-adenosylmethionine/ S-adenosylhomocysteine ratio. Acting synergistically, these exercise-induced functional and molecular amelioration could allow for attenuating hypertension-induced elevation in arterial blood pressure. CONCLUSION Our results indicate that exercise suppresses LTCC and BKCa channel function via hypermethylation of α1c and β1 subunits, which contributes to the restoration of mesenteric arterial function and vasodilation during hypertension.
Collapse
|
16
|
Martin-Lorenzo M, Ramos-Barron A, Gutierrez-Garcia P, Martin-Blazquez A, Santiago-Hernandez A, Rodrigo Calabia E, Gomez-Alamillo C, Alvarez-Llamas G. Urinary Spermidine Predicts and Associates with In-Hospital Acute Kidney Injury after Cardiac Surgery. Antioxidants (Basel) 2021; 10:antiox10060896. [PMID: 34199603 PMCID: PMC8229689 DOI: 10.3390/antiox10060896] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Accepted: 05/27/2021] [Indexed: 01/08/2023] Open
Abstract
Acute Kidney Injury (AKI) affects up to 30% of the patients who undergo cardiac surgery (CVS) and is related to higher mortality. We aim to investigate molecular features associated with in-hospital AKI development and determine the predictive value of these features when analyzed preoperatively. This is a case-control study. From an initial cohort of 110 recruited subjects, a total of 60 patients undergoing cardiac surgery were included: 20 (33%) developed in-hospital AKI (CVS-AKI) and 40 did not (controls, CVS-C). Pre- and post-surgery samples were collected and a prospective study was carried out. A total of 312 serum samples and 258 urine samples were analyzed by nuclear magnetic resonance, mass spectrometry and ELISA. Six features predicted AKI development in pre-surgery samples: urinary kidney functional loss marker kidney injury molecule-1 (uKIM-1), 2-hydroxybutyric acid, 2-hydroxyphenylacetic acid, hippuric acid, phosphoethanolamine and spermidine. Two of them stood out as powerful predictors. Pre-surgery uKIM-1 levels were increased in CVS-AKI vs. CVS-C (AUC = 0.721, p-value = 0.0392) and associated strongly with the outcome (OR = 5.333, p-value = 0.0264). Spermidine showed higher concentration in CVS-AKI (p-value < 0.0001, AUC = 0.970) and had a strong association with the outcome (OR = 69.75, p-value < 0.0001). uKIM-1 and particularly spermidine predict in-hospital AKI associated with CVS in preoperative samples. These findings may aid in preventing postoperative AKI and improve prognosis of CVS.
Collapse
Affiliation(s)
- Marta Martin-Lorenzo
- Department of Immunology, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz-UAM, 28040 Madrid, Spain; (M.M.-L.); (P.G.-G.); (A.M.-B.); (A.S.-H.)
| | - Angeles Ramos-Barron
- Nephrology Department, Hospital Marqués de Valdecilla, IDIVAL, 39008 Santander, Spain; (A.R.-B.); (E.R.C.); (C.G.-A.)
| | - Paula Gutierrez-Garcia
- Department of Immunology, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz-UAM, 28040 Madrid, Spain; (M.M.-L.); (P.G.-G.); (A.M.-B.); (A.S.-H.)
| | - Ariadna Martin-Blazquez
- Department of Immunology, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz-UAM, 28040 Madrid, Spain; (M.M.-L.); (P.G.-G.); (A.M.-B.); (A.S.-H.)
| | - Aranzazu Santiago-Hernandez
- Department of Immunology, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz-UAM, 28040 Madrid, Spain; (M.M.-L.); (P.G.-G.); (A.M.-B.); (A.S.-H.)
| | - Emilio Rodrigo Calabia
- Nephrology Department, Hospital Marqués de Valdecilla, IDIVAL, 39008 Santander, Spain; (A.R.-B.); (E.R.C.); (C.G.-A.)
- REDInREN, 28040 Madrid, Spain
| | - Carlos Gomez-Alamillo
- Nephrology Department, Hospital Marqués de Valdecilla, IDIVAL, 39008 Santander, Spain; (A.R.-B.); (E.R.C.); (C.G.-A.)
| | - Gloria Alvarez-Llamas
- Department of Immunology, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz-UAM, 28040 Madrid, Spain; (M.M.-L.); (P.G.-G.); (A.M.-B.); (A.S.-H.)
- REDInREN, 28040 Madrid, Spain
- Correspondence:
| |
Collapse
|
17
|
Agudiez M, Martinez PJ, Martin-Lorenzo M, Heredero A, Santiago-Hernandez A, Molero D, Garcia-Segura JM, Aldamiz-Echevarria G, Alvarez-Llamas G. Analysis of urinary exosomal metabolites identifies cardiovascular risk signatures with added value to urine analysis. BMC Biol 2020; 18:192. [PMID: 33317539 PMCID: PMC7737341 DOI: 10.1186/s12915-020-00924-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 11/10/2020] [Indexed: 01/02/2023] Open
Abstract
BACKGROUND Subclinical atherosclerosis may result in fatal cardiovascular (CV) events, but the underlying mechanisms and molecular players leading to disease are not entirely understood. Thus, novel approaches capable of identifying the factors involved in pathological progression and providing a better understanding of the subjacent mechanisms are needed. Extracellular vesicles (EVs) have been shown to have numerous biological functions, and their metabolome has recently generated interest as a source of novel biomarkers. The metabolic content of the exosomes has been so far unexplored in cardiovascular disease (CVD), and here, we developed an analytical strategy aimed at probing urinary exosomal metabolite content and its association to CV risk. RESULTS Direct analysis of the exosomes without metabolite extraction was evaluated by high-resolution magic angle spinning (1H HR-MAS). Other two methodologies for the analysis of exosomal metabolites by 1H NMR were set up, based on methanol or organic solvents sequential extraction. The three methods were compared in terms of the number of detected signals and signal to noise ratio (S/N). The methanol method was applied to identify altered metabolites in the urinary exosomes of subjects with programmed coronary artery by-pass grafting (CABG) versus a control group. Target mass spectrometry (MS) was also performed for differential analysis. The clinical performance of exosomal metabolites of interest in CVD was investigated, and the added value of the exosomes compared to urine analysis was evaluated. Based on S/N ratio, simplicity, reproducibility, and quality of the spectrum, the methanol method was chosen for the study in CVD. A cardiometabolic signature composed by 4-aminohippuric acid, N-1-methylnicotinamide, and citric acid was identified in urinary exosomes. Directly in urine, 4-aminohippuric acid and citric acid do not show variation between groups and changes in N-1-methylnicotinamide are less pronounced, proving the added value of exosomes. CONCLUSIONS We set up a novel methodology to analyze metabolic alterations in urinary exosomes and identified a cardiometabolic signature in these microvesicles. This study constitutes the first evidence of a role for the exosomal metabolism in CVD and demonstrates the possibility to evaluate the urinary exosomal metabolic content by NMR and MS.
Collapse
Affiliation(s)
- Marta Agudiez
- Immunology Department, IIS-Fundacion Jimenez Diaz-UAM, Madrid, Spain
| | - Paula J Martinez
- Immunology Department, IIS-Fundacion Jimenez Diaz-UAM, Madrid, Spain
| | | | - Angeles Heredero
- Cardiac Surgery Department, Fundacion Jimenez Diaz-UAM, Madrid, Spain
| | | | | | - Juan Manuel Garcia-Segura
- CAI-RMN, Universidad Complutense, Madrid, Spain.,Department of Biochemistry and Molecular Biology, Faculty of Biology, Universidad Complutense, Madrid, Spain
| | | | - Gloria Alvarez-Llamas
- Immunology Department, IIS-Fundacion Jimenez Diaz-UAM, Madrid, Spain. .,REDINREN, Madrid, Spain.
| |
Collapse
|
18
|
Metabolomics of Interstitial Fluid, Plasma and Urine in Patients with Arterial Hypertension: New Insights into the Underlying Mechanisms. Diagnostics (Basel) 2020; 10:diagnostics10110936. [PMID: 33187152 PMCID: PMC7698256 DOI: 10.3390/diagnostics10110936] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 11/07/2020] [Accepted: 11/09/2020] [Indexed: 01/04/2023] Open
Abstract
There is growing evidence that lymphatic system plays a pivotal role in the pathogenesis of hypertension. Here, for the first time, the metabolome of interstitial fluid is analyzed in patients with arterial hypertension. Due to ethical issues to obtain human interstitial fluid samples, this study included only oncological patients after axillary lymph node dissection (ALND). These patients were matched into hypertensive (n = 29) and normotensive (n = 35) groups with similar oncological status. Simultaneous evaluation of interstitial fluid, plasma, and urine was obtained by combining high-resolution proton nuclear magnetic resonance (1H NMR) spectroscopy with chemometric analysis. Orthogonal partial least squares discriminant analysis (OPLS-DA) provided a clear differentiation between the hypertension and normotensive group, with the discrimination visible in each biofluid. In interstitial fluid nine potential metabolomic biomarkers for hypertension could be identified (creatinine, proline, pyroglutamine, glycine, alanine, 1-methylhistidine, the lysyl group of albumin, threonine, lipids), seven distinct markers in plasma (creatinine, mannose, isobutyrate, glycine, alanine, lactate, acetate, ornithine), and seven respectively in urine (methylmalonate, citrulline, phenylacetylglycine, fumarate, citrate, 1-methylnicotinamide, trans-aconitate). Biomarkers in plasma and urine allowed for the identification of specific biochemical pathways involved in hypertension, as previously suggested. Analysis of the interstitial fluid metabolome provided additional biomarkers compared to plasma or urine. Those biomarkers reflected primarily alterations in the metabolism of lipids and amino acids, and indicated increased levels of oxidative stress/inflammation in patients with hypertension.
Collapse
|
19
|
Smeets NJL, Schreuder MF, Dalinghaus M, Male C, Lagler FB, Walsh J, Laer S, de Wildt SN. Pharmacology of enalapril in children: a review. Drug Discov Today 2020; 25:S1359-6446(20)30336-6. [PMID: 32835726 DOI: 10.1016/j.drudis.2020.08.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 08/06/2020] [Accepted: 08/13/2020] [Indexed: 12/28/2022]
Abstract
Enalapril is an angiotensin-converting enzyme (ACE) inhibitor that is used for the treatment of (paediatric) hypertension, heart failure and chronic kidney diseases. Because its disposition, efficacy and safety differs across the paediatric continuum, data from adults cannot be automatically extrapolated to children. This review highlights paediatric enalapril pharmacokinetic data and demonstrates that these are inadequate to support with certainty an age-related effect on enalapril/enalaprilat pharmacokinetics. In addition, our review shows that evidence to support effective and safe prescribing of enalapril in children is limited, especially in young children and heart failure patients; studies in these groups are either absent or show conflicting results. We provide explanations for observed differences between age groups and indications, and describe areas for future research.
Collapse
Affiliation(s)
- Nori J L Smeets
- Department of Pharmacology and Toxicology, Radboud Institute of Health Sciences, Radboudumc, Nijmegen, the Netherlands
| | - Michiel F Schreuder
- Department of Pediatric Nephrology, Radboud Institute of Molecular Sciences, Radboudumc Amalia Children's Hospital, Nijmegen, the Netherlands
| | - Michiel Dalinghaus
- Department of Pediatric Cardiology, Erasmus MC - Sophia, Rotterdam, the Netherlands
| | - Christoph Male
- Department of Paediatrics and Adolescent Medicine, Medical University of Vienna, Vienna, Austria
| | | | | | - Stephanie Laer
- Institute of Clinical Pharmacy and Pharmacotherapy, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | - Saskia N de Wildt
- Department of Pharmacology and Toxicology, Radboud Institute of Health Sciences, Radboudumc, Nijmegen, the Netherlands; Department of Intensive Care and Pediatric Surgery, Erasmus MC - Sophia Children's Hospital, Rotterdam, the Netherlands.
| |
Collapse
|
20
|
Rodríguez-Sánchez E, Navarro-García JA, Aceves-Ripoll J, González-Lafuente L, Baldan-Martin M, de la Cuesta F, Alvarez-Llamas G, Barderas MG, Segura J, Ruilope LM, Ruiz-Hurtado G. Prediction of the early response to spironolactone in resistant hypertension by the combination of matrix metalloproteinase-9 activity and arterial stiffness parameters. EUROPEAN HEART JOURNAL. CARDIOVASCULAR PHARMACOTHERAPY 2020; 8:68-76. [PMID: 32663251 DOI: 10.1093/ehjcvp/pvaa086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 06/15/2020] [Accepted: 07/08/2020] [Indexed: 11/14/2022]
Abstract
AIMS The aim of present study was to determine whether arterial stiffness assessed with the biochemical parameter active matrix metalloproteinase (MMP)-9 and the clinical parameters pulse pressure (PP) and pulse wave velocity predicts the response to spironolactone in resistant hypertension (RH). METHODS AND RESULTS Ambulatory blood pressure (BP) and active MMP-9 (measured by zymography and ELISA) were measured at baseline, and patients were classified as having pseudo-RH or RH. Patients with RH received spironolactone and the response was determined after 8 weeks by ambulatory BP monitoring: those who achieved BP goals were considered controlled (CRH) and those who did not were considered uncontrolled (UCRH). Plasma active MMP-9 was significantly higher in patients with RH than with pseudo-RH, and correlated with 24-hour systolic BP and PP. Receiver operating characteristic analysis indicated that active MMP-9 could predict the response to spironolactone, and its combination with 24-hour PP and pulse wave velocity significantly improved this prediction. Moreover, plasma of patients with UCRH induced the MMP-9 expression pathway. CONCLUSION We propose active MMP-9 as a useful biomarker to identify patients with RH who will not respond to spironolactone. Combining MMP-9 activity with classical arterial stiffness parameters improves the prediction of the clinical response to spironolactone and might contribute to guide the most appropriate therapeutic decisions for patients with RH.
Collapse
Affiliation(s)
- Elena Rodríguez-Sánchez
- Cardiorenal Translational Laboratory, Institute of Research i + 12, Hospital Universitario 12 de Octubre, Madrid, Spain
| | - José Alberto Navarro-García
- Cardiorenal Translational Laboratory, Institute of Research i + 12, Hospital Universitario 12 de Octubre, Madrid, Spain
| | - Jennifer Aceves-Ripoll
- Cardiorenal Translational Laboratory, Institute of Research i + 12, Hospital Universitario 12 de Octubre, Madrid, Spain
| | - Laura González-Lafuente
- Cardiorenal Translational Laboratory, Institute of Research i + 12, Hospital Universitario 12 de Octubre, Madrid, Spain
| | - Montserrat Baldan-Martin
- Department of Vascular Physiopathology, Hospital Nacional de Parapléjicos (HNP), SESCAM, Toledo, Spain
| | - Fernando de la Cuesta
- Department of Vascular Physiopathology, Hospital Nacional de Parapléjicos (HNP), SESCAM, Toledo, Spain
| | - Gloria Alvarez-Llamas
- Departament of Immunology, IIS-Fundación Jimenez Diaz-UAM, Madrid, Spain.,REDINREN, Madrid, Spain
| | - María G Barderas
- Department of Vascular Physiopathology, Hospital Nacional de Parapléjicos (HNP), SESCAM, Toledo, Spain
| | - Julián Segura
- Cardiorenal Translational Laboratory, Institute of Research i + 12, Hospital Universitario 12 de Octubre, Madrid, Spain.,Hypertension Unit, Hospital Universitario 12 de Octubre, Madrid, Spain
| | - Luis M Ruilope
- Cardiorenal Translational Laboratory, Institute of Research i + 12, Hospital Universitario 12 de Octubre, Madrid, Spain.,Hypertension Unit, Hospital Universitario 12 de Octubre, Madrid, Spain.,European University of Madrid, Madrid, Spain.,CIBER-CV, Hospital Universitario 12 de Octubre, Madrid, Spain
| | - Gema Ruiz-Hurtado
- Cardiorenal Translational Laboratory, Institute of Research i + 12, Hospital Universitario 12 de Octubre, Madrid, Spain.,Hypertension Unit, Hospital Universitario 12 de Octubre, Madrid, Spain.,CIBER-CV, Hospital Universitario 12 de Octubre, Madrid, Spain
| |
Collapse
|
21
|
Gomes A, Godinho-Pereira J, Oudot C, Sequeira CO, Macià A, Carvalho F, Motilva MJ, Pereira SA, Matzapetakis M, Brenner C, Santos CN. Berry fruits modulate kidney dysfunction and urine metabolome in Dahl salt-sensitive rats. Free Radic Biol Med 2020; 154:119-131. [PMID: 32437928 DOI: 10.1016/j.freeradbiomed.2020.05.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 04/21/2020] [Accepted: 05/02/2020] [Indexed: 01/12/2023]
Abstract
Berries are rich sources of (poly)phenols which have been associated with the prevention of cardiovascular diseases in animal models and in human clinical trials. Recently, a berry enriched diet was reported to decrease blood pressure and attenuate kidney disease progression on Dahl salt-sensitive rats. However, the relationship between kidney function, metabolism and (poly)phenols was not evaluated. We hypothesize that berries promote metabolic alterations concomitantly with an attenuation of the progression of renal disease. For that, kidney and urinary metabolomic changes induced by the berry enriched diet in hypertensive rats (Dahl salt-sensitive) were analyzed using liquid chromatography (UPLC-MS/MS) and 1H NMR techniques. Moreover, physiological and metabolic parameters, and kidney histopathological data were also collected. The severity of the kidney lesions promoted in Dahl rats by a high salt diet was significantly reduced by berries, namely a decrease in sclerotic glomeruli. In addition, was observed a high urinary excretion of metabolites that are indicators of alterations in glycolysis/gluconeogenesis, citrate cycle, and pyruvate metabolism in the salt induced-hypertensive rats, a metabolic profile counteracted by berries consumption. We also provide novel insights that relates (poly)phenols consumption with alterations in cysteine redox pools. Cysteine contribute to the redox signaling that is normally disrupted during kidney disease onset and progression. Our findings provide a vision about the metabolic responses of hypertensive rats to a (poly)phenol enriched diet, which may contribute to the understanding of the beneficial effects of (poly)phenols in salt-induced hypertension.
Collapse
Affiliation(s)
- A Gomes
- Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2780-901, Oeiras, Portugal; Instituto de Tecnologia Química e Biológica, Universidade NOVA de Lisboa, Av. da República, 2780-157, Oeiras, Portugal
| | - J Godinho-Pereira
- Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2780-901, Oeiras, Portugal; Instituto de Tecnologia Química e Biológica, Universidade NOVA de Lisboa, Av. da República, 2780-157, Oeiras, Portugal
| | - C Oudot
- INSERM UMR-S 1180, University of Paris-Sud, University of Paris-Saclay, 5 rue Jean-Baptiste Clément, 92296, Châtenay Malabry, France
| | - C O Sequeira
- CEDOC, Chronic Diseases Research Centre, NOVA Medical School|Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, Campo dos Mártires da Pátria, 130, 1169-056, Lisboa, Portugal
| | - A Macià
- Food Technology Department, Agrotecnio Center, Escuela Técnica Superior de Ingeniería Agraria, University of Lleida, Lleida, Spain
| | - F Carvalho
- Laboratório de Morfologia Renal, Hospital Curry Cabral, EPE, Rua da Beneficência n. 8, 1069-166, Lisboa, Portugal
| | - M J Motilva
- Instituto de Ciencias de la Vid y del Vino-ICVV, CSIC-Universidad de La Rioja-Gobierno de La Rioja, Finca "La Grajera", Carretera de Burgos km 6, 26007, Logroño, La Rioja, Spain
| | - S A Pereira
- CEDOC, Chronic Diseases Research Centre, NOVA Medical School|Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, Campo dos Mártires da Pátria, 130, 1169-056, Lisboa, Portugal
| | - M Matzapetakis
- Instituto de Tecnologia Química e Biológica, Universidade NOVA de Lisboa, Av. da República, 2780-157, Oeiras, Portugal
| | - C Brenner
- Université Paris-Saclay, CNRS, Institut Gustave Roussy, Aspects métaboliques et systémiques de l'oncogénèse pour de nouvelles approches thérapeutiques, 94805, Villejuif, France
| | - C N Santos
- Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2780-901, Oeiras, Portugal; Instituto de Tecnologia Química e Biológica, Universidade NOVA de Lisboa, Av. da República, 2780-157, Oeiras, Portugal; CEDOC, Chronic Diseases Research Centre, NOVA Medical School|Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, Campo dos Mártires da Pátria, 130, 1169-056, Lisboa, Portugal.
| |
Collapse
|
22
|
Differential metabolic profile associated with the condition of normoalbuminuria in the hypertensive population. Nefrologia 2020; 40:440-445. [PMID: 32144010 DOI: 10.1016/j.nefro.2019.10.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Revised: 10/14/2019] [Accepted: 10/24/2019] [Indexed: 01/21/2023] Open
Abstract
BACKGROUND AND AIM Albuminuria is an indicator of sub-clinical organ damage and a marker of cardiovascular risk and renal disease. A percentage of hypertensive patients develop albuminuria despite being under chronic suppression of the renin-angiotensin system (RAS). We previously identified urinary metabolites associated with the development of albuminuria. In this study, we searched for metabolic alterations which reflect different levels within the condition of normoalbuminuria. PATIENTS, MATERIALS AND METHODS Urine from 48 hypertensive patients under chronic RAS suppression was analysed. They were classified according to the albumin/creatinine ratio (ACR) into 3groups: Normoalbuminuria (<10mg/g); high-normal (10-30mg/g in men, or 20-40mg/g in women); and moderately high albuminuria (microalbuminuria, 30-200mg/g or 40-300mg/g, respectively). The metabolome was analysed by mass spectrometry and a correlation analysis was performed between altered metabolite levels and ACR. RESULTS Oxaloacetate, 3-ureidopropionate, guanidoacetate and malate show significant variation between the normo and micro groups. Additionally, these metabolites are able to differentiate between patients in the normo and high-normal range. A significant correlation between metabolites and ACR was found. Observed variations point to alterations in the energy metabolism already in patients with albuminuria in the high-normal range. CONCLUSIONS The association between the molecular panel consisting of 3-ureidopropionate, oxaloacetate, malate and guanidoacetate and different levels of albuminuria is confirmed. A metabolic fingerprint was also identified showing variations within the condition of normoalbuminuria allowing an earlier molecular stratification of patients.
Collapse
|
23
|
Zhang XW, Li QH, Xu ZD, Dou JJ. Mass spectrometry-based metabolomics in health and medical science: a systematic review. RSC Adv 2020; 10:3092-3104. [PMID: 35497733 PMCID: PMC9048967 DOI: 10.1039/c9ra08985c] [Citation(s) in RCA: 93] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Accepted: 12/14/2019] [Indexed: 01/15/2023] Open
Abstract
Metabolomics is the study of the investigation of small molecules derived from cellular and organism metabolism, which reflects the outcomes of the complex network of biochemical reactions in living systems. As the most recent member of the omics family, there has been notable progress in metabolomics in the last decade, mainly driven by the improvement in mass spectrometry (MS). MS-based metabolomic strategies in modern health and medical science studies provide innovative tools for novel diagnostic and prognostic approaches, as well as an augmented role in drug development, nutrition science, toxicology, and forensic science. In the present review, we not only introduce the application of MS-based metabolomics in the above fields, but also discuss the MS analysis technologies commonly used in metabolomics and the application of metabolomics in precision medicine, and further explore the challenges and perspectives of metabolomics in the field of health and medical science, which are expected to make a little contribution to the better development of metabolomics.
Collapse
Affiliation(s)
- Xi-Wu Zhang
- Institute of Chinese Medicine, Heilongjiang University of Chinese Medicine Heping Road 24 Harbin 150040 China +86-451-87266827 +86-451-87266827
| | - Qiu-Han Li
- Institute of Chinese Medicine, Heilongjiang University of Chinese Medicine Heping Road 24 Harbin 150040 China +86-451-87266827 +86-451-87266827
| | - Zuo-di Xu
- Institute of Chinese Medicine, Heilongjiang University of Chinese Medicine Heping Road 24 Harbin 150040 China +86-451-87266827 +86-451-87266827
| | - Jin-Jin Dou
- Institute of Chinese Medicine, Heilongjiang University of Chinese Medicine Heping Road 24 Harbin 150040 China +86-451-87266827 +86-451-87266827
| |
Collapse
|
24
|
Macias S, Kirma J, Yilmaz A, Moore SE, McKinley MC, McKeown PP, Woodside JV, Graham SF, Green BD. Application of 1H-NMR Metabolomics for the Discovery of Blood Plasma Biomarkers of a Mediterranean Diet. Metabolites 2019; 9:metabo9100201. [PMID: 31569638 PMCID: PMC6836148 DOI: 10.3390/metabo9100201] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Revised: 09/22/2019] [Accepted: 09/23/2019] [Indexed: 12/19/2022] Open
Abstract
The Mediterranean diet (MD) is a dietary pattern well-known for its benefits in disease prevention. Monitoring adherence to the MD could be improved by discovery of novel dietary biomarkers. The MEDiterranean Diet in Northern Ireland (MEDDINI) intervention study monitored the adherence of participants to the MD for up to 12 months. This investigation aimed to profile plasma metabolites, correlating each against the MD score of participants (n = 58). Based on an established 14-point scale MD score, subjects were classified into two groups (“low” and “high”). 1H-Nuclear Magnetic Resonance (1H-NMR) metabolomic analysis found that citric acid was the most significant metabolite (p = 5.99 × 10−4*; q = 0.03), differing between ‘low’ and ‘high’. Furthermore, five additional metabolites significantly differed (p < 0.05; q < 0.35) between the two groups. Discriminatory metabolites included: citric acid, pyruvic acid, betaine, mannose, acetic acid and myo-inositol. Additionally, the top five most influential metabolites in multivariate models were also citric acid, pyruvic acid, betaine, mannose and myo-inositol. Metabolites significantly correlated with the consumption of certain food types. For example, citric acid positively correlated fruit, fruit juice and vegetable constituents of the diet, and negatively correlated with sweet foods alone or when combined with carbonated drinks. Citric acid was the best performing biomarker and this was enhanced by paired ratio with pyruvic acid. The present study demonstrates the utility of metabolomic profiling for effectively assessing adherence to MD and the discovery of novel dietary biomarkers.
Collapse
Affiliation(s)
- Shirin Macias
- Institute for Global Food Security, School of Biological Sciences, Queen's University Belfast, Belfast BT9 5DL, UK.
| | - Joseph Kirma
- Beaumont Health, 3811 W. 13 Mile Road, Royal Oak, MI 48073, USA.
- Oakland University-William Beaumont School of Medicine, Rochester, MI 48309, USA.
| | - Ali Yilmaz
- Beaumont Health, 3811 W. 13 Mile Road, Royal Oak, MI 48073, USA.
- Oakland University-William Beaumont School of Medicine, Rochester, MI 48309, USA.
| | - Sarah E Moore
- Centre for Public Health, Queen's University Belfast, Belfast BT12 6BA, UK.
| | | | - Pascal P McKeown
- School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast, Belfast BT9 7BL, UK
| | - Jayne V Woodside
- Institute for Global Food Security, School of Biological Sciences, Queen's University Belfast, Belfast BT9 5DL, UK.
- Centre for Public Health, Queen's University Belfast, Belfast BT12 6BA, UK.
| | - Stewart F Graham
- Beaumont Health, 3811 W. 13 Mile Road, Royal Oak, MI 48073, USA.
- Oakland University-William Beaumont School of Medicine, Rochester, MI 48309, USA.
| | - Brian D Green
- Institute for Global Food Security, School of Biological Sciences, Queen's University Belfast, Belfast BT9 5DL, UK.
| |
Collapse
|
25
|
Pang H, Jia W, Hu Z. Emerging Applications of Metabolomics in Clinical Pharmacology. Clin Pharmacol Ther 2019; 106:544-556. [DOI: 10.1002/cpt.1538] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Accepted: 05/18/2019] [Indexed: 12/20/2022]
Affiliation(s)
- Huanhuan Pang
- School of Pharmaceutical Sciences Tsinghua University Beijing China
| | - Wei Jia
- Cancer Biology Program University of Hawaii Cancer Center Honolulu Hawaii USA
| | - Zeping Hu
- School of Pharmaceutical Sciences Tsinghua University Beijing China
- Tsinghua‐Peking Joint Center for Life Sciences Tsinghua University Beijing China
- Beijing Frontier Research Center for Biological Structure Tsinghua University Beijing China
| |
Collapse
|
26
|
Zubcevic J, Richards EM, Yang T, Kim S, Sumners C, Pepine CJ, Raizada MK. Impaired Autonomic Nervous System-Microbiome Circuit in Hypertension. Circ Res 2019; 125:104-116. [PMID: 31219753 PMCID: PMC6588177 DOI: 10.1161/circresaha.119.313965] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Hypertension affects an estimated 103 million Americans, yet gaps in knowledge continue to limit its successful management. Rapidly emerging evidence is linking gut dysbiosis to many disorders and diseases including hypertension. The evolution of the -omics techniques has allowed determination of the abundance and potential function of gut bacterial species by next-generation bacterial sequencing, whereas metabolomics techniques report shifts in bacterial metabolites in the systemic circulation of hypertensive patients and rodent models of hypertension. The gut microbiome and host have evolved to exist in balance and cooperation, and there is extensive crosstalk between the 2 to maintain this balance, including during regulation of blood pressure. However, an understanding of the mechanisms of dysfunctional host-microbiome interactions in hypertension is still lacking. Here, we synthesize some of our recent data with published reports and present concepts and a rationale for our emerging hypothesis of a dysfunctional gut-brain axis in hypertension. Hopefully, this new information will improve the understanding of hypertension and help to address some of these knowledge gaps.
Collapse
Affiliation(s)
- Jasenka Zubcevic
- Department of Physiological Sciences, College of Veterinary Medicine; University of Florida, Gainesville FL32610
| | - Elaine M. Richards
- Department of Physiology and Functional Genomics, College of Medicine, University of Florida, Gainesville FL32610
| | - Tao Yang
- Department of Physiology and Functional Genomics, College of Medicine, University of Florida, Gainesville FL32610
| | - Seungbum Kim
- Department of Physiology and Functional Genomics, College of Medicine, University of Florida, Gainesville FL32610
| | - Colin Sumners
- Department of Physiology and Functional Genomics, College of Medicine, University of Florida, Gainesville FL32610
| | - Carl J Pepine
- Division of Cardiovascular Medicine, Department of Medicine, College of Medicine, University of Florida, Gainesville FL32610
| | - Mohan K Raizada
- Department of Physiology and Functional Genomics, College of Medicine, University of Florida, Gainesville FL32610
| |
Collapse
|
27
|
Meoni G, Lorini S, Monti M, Madia F, Corti G, Luchinat C, Zignego AL, Tenori L, Gragnani L. The metabolic fingerprints of HCV and HBV infections studied by Nuclear Magnetic Resonance Spectroscopy. Sci Rep 2019; 9:4128. [PMID: 30858406 PMCID: PMC6412048 DOI: 10.1038/s41598-019-40028-4] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Accepted: 01/23/2019] [Indexed: 02/06/2023] Open
Abstract
Few studies are available on metabolic changes in liver injuries and this is the first metabolomic study evaluating a group of HCV-positive patients, before and after viral eradication via DAA IFN-free regimens, using 1H-NMR to characterize and compare their serum fingerprints to naïve HBV-patients and healthy donors. The investigation clearly shows differences in the metabolomic profile of HCV patients before and after effective DAA treatment. Significant changes in metabolites levels in patients undergoing therapy suggest alterations in several metabolic pathways. It has been shown that 1H-NMR fingerprinting approach is an optimal technique in predicting the specific infection and the healthy status of studied subjects (Monte-Carlo cross validated accuracies: 86% in the HCV vs HBV model, 98.7% in the HCV vs HC model). Metabolite data collected support the hypothesis that the HCV virus induces glycolysis over oxidative phosphorylation in a similar manner to the Warburg effect in cancer, moreover our results have demonstrated a different action of the two viruses on cellular metabolism, corroborating the hypothesis that the metabolic perturbation on patients could be attributed to a direct role in viral infection. This metabolomic study has revealed some alteration in metabolites for the first time (2-oxoglutarate and 3-hydroxybutrate) concerning the HCV-infection model that could explain several extrahepatic manifestations associated with such an infection.
Collapse
Affiliation(s)
- Gaia Meoni
- University of Florence, Magnetic Resonance Center (CERM), Sesto Fiorentino, 50019, Italy.,Consorzio Interuniversitario Risonanze Magnetiche di Metallo Proteine (CIRMMP), Sesto Fiorentino, 50019, Italy
| | - Serena Lorini
- Careggi University Hospital, Department of Experimental and Clinical Medicine, Interdepartmental Center for Systemic Manifestations of Hepatitis Viruses (MaSVE), Florence, 50134, Italy
| | - Monica Monti
- Careggi University Hospital, Department of Experimental and Clinical Medicine, Interdepartmental Center for Systemic Manifestations of Hepatitis Viruses (MaSVE), Florence, 50134, Italy
| | - Francesco Madia
- Careggi University Hospital, Department of Experimental and Clinical Medicine, Interdepartmental Center for Systemic Manifestations of Hepatitis Viruses (MaSVE), Florence, 50134, Italy
| | - Giampaolo Corti
- Careggi University Hospital, Infectious and Tropical Diseases Unit, Florence, 50134, Italy
| | - Claudio Luchinat
- University of Florence, Magnetic Resonance Center (CERM), Sesto Fiorentino, 50019, Italy.,Consorzio Interuniversitario Risonanze Magnetiche di Metallo Proteine (CIRMMP), Sesto Fiorentino, 50019, Italy.,University of Florence, Department of Chemistry "Ugo Schiff", Sesto Fiorentino, 50019, Italy
| | - Anna Linda Zignego
- Careggi University Hospital, Department of Experimental and Clinical Medicine, Interdepartmental Center for Systemic Manifestations of Hepatitis Viruses (MaSVE), Florence, 50134, Italy
| | - Leonardo Tenori
- University of Florence, Magnetic Resonance Center (CERM), Sesto Fiorentino, 50019, Italy. .,University of Florence, Department of Experimental and Clinical Medicine, Florence, 50134, Italy.
| | - Laura Gragnani
- Careggi University Hospital, Department of Experimental and Clinical Medicine, Interdepartmental Center for Systemic Manifestations of Hepatitis Viruses (MaSVE), Florence, 50134, Italy.
| |
Collapse
|
28
|
Martin-Lorenzo M, Martinez PJ, Baldan-Martin M, Lopez JA, Minguez P, Santiago-Hernandez A, Vazquez J, Segura J, Ruiz-Hurtado G, Vivanco F, Barderas MG, Ruilope LM, Alvarez-Llamas G. Urine Haptoglobin and Haptoglobin-Related Protein Predict Response to Spironolactone in Patients With Resistant Hypertension. Hypertension 2019; 73:794-802. [PMID: 30712426 DOI: 10.1161/hypertensionaha.118.12242] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Resistant hypertension prevalence is progressively increasing, and prolonged exposure to suboptimal blood pressure control results in higher cardiovascular risk and end-organ damage. Among various antihypertensive agents, spironolactone seems the most effective choice to treat resistant hypertension once triple therapy including a diuretic fails. However success in blood pressure control is not guaranteed, adverse effects are not negligible, and no clinical tools are available to predict patient's response. Complementary to our previous study of resistant hypertension metabolism, here we investigated urinary proteome changes with potential capacity to predict response to spironolactone. Twenty-nine resistant hypertensives were included. A prospective study was conducted and basal urine was collected before spironolactone administration. Patients were classified in responders or nonresponders in terms of blood pressure control. Protein quantitation was performed by liquid chromatography-mass spectrometry; ELISA and target mass spectrometry analysis were performed for confirmation. Among 3310 identified proteins, HP (haptoglobin) and HPR (haptoglobin-related protein) showed the most significant variations, with increased levels in nonresponders compared with responders before drug administration (variation rate, 5.98 and 7.83, respectively). Protein-coordinated responses were also evaluated by functional enrichment analysis, finding oxidative stress, chronic inflammatory response, blood coagulation, complement activation, and regulation of focal adhesions as physiopathological mechanisms in resistant hypertension. In conclusion, protein changes able to predict patients' response to spironolactone in basal urine were here identified for the first time. These data, once further confirmed, will support clinical decisions on patients' management while contributing to optimize the rate of control of resistant hypertensives with spironolactone.
Collapse
Affiliation(s)
- Marta Martin-Lorenzo
- From the Laboratory of Immunoallergy and Proteomics, Department of Immunology (M.M.-L., P.J.M., A.S.-H., G.A.-L.), IIS-Fundación Jiménez Díaz-UAM, Madrid, Spain
| | - Paula J Martinez
- From the Laboratory of Immunoallergy and Proteomics, Department of Immunology (M.M.-L., P.J.M., A.S.-H., G.A.-L.), IIS-Fundación Jiménez Díaz-UAM, Madrid, Spain
| | - Montserrat Baldan-Martin
- Department of Vascular Physiopathology, Hospital Nacional de Parapléjicos SESCAM, Toledo, Spain (M.B.-M., M.G.B.)
| | - Juan A Lopez
- Laboratory of Cardiovascular Proteomics CNIC, Madrid, Spain (J.A.L., J.V.)
| | - Pablo Minguez
- Department of Genetics (P.M.), IIS-Fundación Jiménez Díaz-UAM, Madrid, Spain
| | - Aranzazu Santiago-Hernandez
- From the Laboratory of Immunoallergy and Proteomics, Department of Immunology (M.M.-L., P.J.M., A.S.-H., G.A.-L.), IIS-Fundación Jiménez Díaz-UAM, Madrid, Spain
| | - Jesus Vazquez
- Laboratory of Cardiovascular Proteomics CNIC, Madrid, Spain (J.A.L., J.V.)
| | - Julian Segura
- Department of Nephrology, Hypertension Unit, Hospital Universitario 12 de Octubre, Madrid, Spain (J.S., L.M.R.)
| | - Gema Ruiz-Hurtado
- Cardiorenal Translational Laboratory, Instituto de Investigación I+12 Hospital Universitario 12 de Octubre/CIBER-CV, Madrid, Spain (G.R.-H., L.M.R.)
| | - Fernando Vivanco
- Department of Biochemistry and Molecular Biology, I Universidad Complutense, Madrid, Spain (F.V.)
| | - Maria G Barderas
- Department of Vascular Physiopathology, Hospital Nacional de Parapléjicos SESCAM, Toledo, Spain (M.B.-M., M.G.B.)
| | - Luis M Ruilope
- Department of Nephrology, Hypertension Unit, Hospital Universitario 12 de Octubre, Madrid, Spain (J.S., L.M.R.).,Cardiorenal Translational Laboratory, Instituto de Investigación I+12 Hospital Universitario 12 de Octubre/CIBER-CV, Madrid, Spain (G.R.-H., L.M.R.).,School of Doctoral Studies and Research, Universidad Europea de Madrid, Spain (L.M.R.)
| | - Gloria Alvarez-Llamas
- From the Laboratory of Immunoallergy and Proteomics, Department of Immunology (M.M.-L., P.J.M., A.S.-H., G.A.-L.), IIS-Fundación Jiménez Díaz-UAM, Madrid, Spain.,REDINREN, Madrid, Spain (G.A.-L.)
| |
Collapse
|
29
|
Liu L, He X, Zhao M, Yang S, Wang S, Yu X, Liu J, Zang W. Regulation of DNA methylation and 2-OG/TET signaling by choline alleviated cardiac hypertrophy in spontaneously hypertensive rats. J Mol Cell Cardiol 2019; 128:26-37. [PMID: 30660679 DOI: 10.1016/j.yjmcc.2019.01.011] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Revised: 12/24/2018] [Accepted: 01/14/2019] [Indexed: 12/17/2022]
Abstract
DNA methylation is a well-defined epigenetic modification that regulates gene transcription. However, the role of DNA methylation in the cardiac hypertrophy seen in hypertension is unclear. This study was performed to investigate genome-wide DNA methylation profiles in spontaneously hypertensive rats (SHRs) and Wistar-Kyoto rats (WKY), and the cardioprotective effect of choline. Eight-week-old male SHRs received intraperitoneal injections of choline (8 mg/kg/day) for 8 weeks. SHRs showed aberrant methylation distribution on chromosomes and genome regions, with decreased methylation levels at CHG and CHH sites. A total of 91,559 differentially methylated regions (DMRs) were detected between SHRs and WKY rats, of which 28,197 were demethylated and 63,362 were methylated. Choline treatment partly restored the DMRs in SHRs, which were related to 131 genes. Gene ontology analysis and Kyoto Encyclopedia of Genes and Genomes analysis of DMRs suggested that choline partly reversed the dysfunctions of biological processes, cellular components and molecular functions in SHRs. Moreover, the inhibition of 2-oxoglutarate accumulation by choline, thereby inhibiting excessive activation of ten-eleven translocation methylcytosine dioxygenase enzymes, may correlate with the beneficial effects of choline on methylation levels, cardiac hypertrophy and cardiac function of SHRs, as indicated by decreased heart rate and blood pressure, and increased ejection fraction and fractional shortening. This study provides the first genome-wide DNA methylation profile of the hypertrophic myocardium of SHRs and suggests a novel role for this epigenetic modification in hypertension. Choline treatment may represent a promising approach for modification of DNA methylation and optimization of the epigenetic profile for antihypertensive therapy.
Collapse
Affiliation(s)
- Longzhu Liu
- Department of Pharmacology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, PR China
| | - Xi He
- Department of Pharmacology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, PR China
| | - Ming Zhao
- Department of Pharmacology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, PR China
| | - Si Yang
- Department of Pharmacology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, PR China
| | - Shengpeng Wang
- Cardiovascular Research Center, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, PR China
| | - Xiaojiang Yu
- Department of Pharmacology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, PR China
| | - Jiankang Liu
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi, PR China
| | - Weijin Zang
- Department of Pharmacology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, PR China.
| |
Collapse
|
30
|
Perco P, Pena M, Heerspink HJL, Mayer G. Multimarker Panels in Diabetic Kidney Disease: The Way to Improved Clinical Trial Design and Clinical Practice? Kidney Int Rep 2018; 4:212-221. [PMID: 30775618 PMCID: PMC6365367 DOI: 10.1016/j.ekir.2018.12.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Revised: 11/15/2018] [Accepted: 12/04/2018] [Indexed: 02/06/2023] Open
Abstract
Diabetic kidney disease (DKD) is a complex and multifactorial disorder associated with deregulations in a large number of different biological pathways on the molecular level. Using the 2 established biomarkers, estimated glomerular filtration rate (eGFR) and albuminuria will not allow allocating patients to tailored therapy. Molecular multimarker panels as sensors for the deregulation of the various disease mechanisms combined with a better understanding of how investigational as well as approved drugs interfere with these disease processes forms the basis for platform trials in DKD. In these platform trials, patients with DKD are assigned to the most suitable treatment arm based on their molecular marker profile. Close monitoring of biomarkers after treatment initiation together with assessment of renal function and "off-target" effects will allow identification of therapy responders, with nonresponders shifted to the next-best treatment arm based on their molecular profile. In this viewpoint article, we summarize evidence on the variation of DKD disease progression as well as the response to therapy and outline procedures to model disease pathophysiology supporting biomarker panel construction. Finally, the use of biomarkers in clinical trial setup is discussed.
Collapse
Affiliation(s)
- Paul Perco
- Department of Internal Medicine IV (Nephrology and Hypertension), Medical University Innsbruck, Innsbruck, Austria
| | - Michelle Pena
- Department of Clinical Pharmacy and Pharmacology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Hiddo J L Heerspink
- Department of Clinical Pharmacy and Pharmacology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Gert Mayer
- Department of Internal Medicine IV (Nephrology and Hypertension), Medical University Innsbruck, Innsbruck, Austria
| | | |
Collapse
|
31
|
Sanz AB, Ramos AM, Soler MJ, Sanchez-Niño MD, Fernandez-Fernandez B, Perez-Gomez MV, Ortega MR, Alvarez-Llamas G, Ortiz A. Advances in understanding the role of angiotensin-regulated proteins in kidney diseases. Expert Rev Proteomics 2018; 16:77-92. [DOI: 10.1080/14789450.2018.1545577] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Ana Belén Sanz
- Nephrology, IIS-Fundacion Jimenez Diaz and Universidad Autonoma de Madrid, Madrid, Spain
| | - Adrian Mario Ramos
- Nephrology, IIS-Fundacion Jimenez Diaz and Universidad Autonoma de Madrid, Madrid, Spain
| | - Maria Jose Soler
- Department of Nephrology, Hospital del Mar-IMIM (Hospital del Mar Medical Research Institute), Barcelona, Spain
| | | | | | | | - Marta Ruiz Ortega
- Nephrology, IIS-Fundacion Jimenez Diaz and Universidad Autonoma de Madrid, Madrid, Spain
| | - Gloria Alvarez-Llamas
- Nephrology, IIS-Fundacion Jimenez Diaz and Universidad Autonoma de Madrid, Madrid, Spain
| | - Alberto Ortiz
- Nephrology, IIS-Fundacion Jimenez Diaz and Universidad Autonoma de Madrid, Madrid, Spain
| |
Collapse
|
32
|
Wei FF, Zhang ZY, Huang QF, Staessen JA. Diagnosis and management of resistant hypertension: state of the art. Nat Rev Nephrol 2018; 14:428-441. [DOI: 10.1038/s41581-018-0006-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
33
|
Liu T, Liu M, Shang P, Jin X, Liu W, Zhang Y, Li X, Ding Y, Li Y, Wen A. Investigation into the underlying molecular mechanisms of hypertensive nephrosclerosis using bioinformatics analyses. Mol Med Rep 2018; 17:4440-4448. [PMID: 29328390 PMCID: PMC5802219 DOI: 10.3892/mmr.2018.8405] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2017] [Accepted: 11/24/2017] [Indexed: 12/11/2022] Open
Abstract
Hypertensive nephrosclerosis (HNS) is a major risk factor for end-stage renal disease. However, the underlying pathogenesis of HNS remains to be fully determined. The gene expression profile of GSE20602, which consists of 14 glomeruli samples from patients with HNS and 4 normal glomeruli control samples, was obtained from the Gene Expression Omnibus database. Gene ontology (GO) and pathway enrichment analyses were performed in order to investigate the functions and pathways of differentially expressed genes (DEGs). Pathway relation and co‑expression networks were constructed in order to identify key genes and signaling pathways involved in HNS. In total, 483 DEGs were identified to be associated with HNS, including 302 upregulated genes and 181 downregulated genes. Furthermore, GO analysis revealed that DEGs were significantly enriched in the small molecule metabolic process. In addition, pathway analysis also revealed that DEGs were predominantly involved in metabolic pathways. The tricarboxylic acid (TCA) cycle was identified as the hub pathway in the pathway relation network, whereas the sorbitol dehydrogenase (SORD) and cubulin (CUBN) genes were revealed to be the hub genes in the co‑expression network. The present study revealed that the SORD, CUBN and albumin genes as well as the TCA cycle and metabolic pathways are involved in the pathogenesis of HNS. The results of the present study may contribute to the determination of the molecular mechanisms underlying HNS, and provide insight into the exploration of novel targets for the diagnosis and treatment of HNS.
Collapse
Affiliation(s)
- Tianlong Liu
- Department of Pharmacy, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Minna Liu
- Department of Nephrology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Peijin Shang
- Department of Pharmacy, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Xin Jin
- Department of Pharmacy, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Wenxing Liu
- Department of Pharmacy, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Yikai Zhang
- Department of Pharmacy, General Hospital of Shenyang Military Region, Shenyang, Liaoning 110016, P.R. China
| | - Xinfang Li
- Department of Inorganic Chemistry, School of Pharmacy, Second Military Medical University, Shanghai 200433, P.R. China
| | - Yi Ding
- Department of Pharmacy, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Yuwen Li
- Department of Pharmacy, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Aidong Wen
- Department of Pharmacy, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| |
Collapse
|