1
|
Daouda M, Kaali S, Spring E, Mujtaba MN, Jack D, Dwommoh Prah RK, Colicino E, Tawiah T, Gennings C, Osei M, Janevic T, Chillrud SN, Agyei O, Gould CF, Lee AG, Asante KP. Prenatal Household Air Pollution Exposure and Childhood Blood Pressure in Rural Ghana. ENVIRONMENTAL HEALTH PERSPECTIVES 2024; 132:37006. [PMID: 38506828 PMCID: PMC10953816 DOI: 10.1289/ehp13225] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 01/18/2024] [Accepted: 02/08/2024] [Indexed: 03/21/2024]
Abstract
BACKGROUND The association between prenatal household air pollution (HAP) exposure and childhood blood pressure (BP) is unknown. OBJECTIVE Within the Ghana Randomized Air Pollution and Health Study (GRAPHS) we examined time-varying associations between a) maternal prenatal and b) first-year-of-life HAP exposure with BP at 4 years of age and, separately, whether a stove intervention delivered prenatally and continued through the first year of life could improve BP at 4 years of age. METHODS GRAPHS was a cluster-randomized cookstove intervention trial wherein n = 1,414 pregnant women were randomized to one of two stove interventions: a) a liquefied petroleum gas (LPG) stove or improved biomass stove, or b) control (open fire cooking). Maternal HAP exposure over pregnancy and child HAP exposure over the first year of life was quantified by repeated carbon monoxide (CO) measurements; a subset of women (n = 368 ) also performed one prenatal and one postnatal personal fine particulate matter (PM 2.5 ) measurement. Systolic and diastolic BP (SBP and DBP) were measured in n = 667 4-y-old children along with their PM 2.5 exposure (n = 692 ). We examined the effect of the intervention on resting BP z -scores. We also employed reverse distributed lag models to examine time-varying associations between a) maternal prenatal and b) first-year-of-life HAP exposure and resting BP z -scores. Among those with PM 2.5 measures, we examined associations between PM 2.5 and resting BP z -scores. Sex-specific effects were considered. RESULTS Intention-to-treat analyses identified that DBP z -score at 4 years of age was lower among children born in the LPG arm (LPG β = - 0.20 ; 95% CI: - 0.36 , - 0.03 ) as compared with those in the control arm, and females were most susceptible to the intervention. Higher CO exposure in late gestation was associated with higher SBP and DBP z -score at 4 years of age, whereas higher late-first-year-of-life CO exposure was associated with higher DBP z -score. In the subset with PM 2.5 measurements, higher maternal postnatal PM 2.5 exposure was associated with higher SBP z -scores. DISCUSSION These findings suggest that prenatal and first-year-of-life HAP exposure are associated with child BP and support the need for reductions in exposure to HAP, with interventions such as cleaner cooking beginning in pregnancy. https://doi.org/10.1289/EHP13225.
Collapse
Affiliation(s)
- Misbath Daouda
- Department of Environmental Health Sciences, Mailman School of Public Health at Columbia University, New York, New York, USA
- Department of Environmental Health Sciences, School of Public Health, University of California, Berkeley, USA
| | - Seyram Kaali
- Kintampo Health Research Centre, Research and Development Division, Ghana Health Service, Kintampo North Municipality, Ghana
| | - Emma Spring
- University of Michigan, Ann Arbor, Michigan, USA
| | - Mohammed N. Mujtaba
- Kintampo Health Research Centre, Research and Development Division, Ghana Health Service, Kintampo North Municipality, Ghana
| | - Darby Jack
- Department of Environmental Health Sciences, Mailman School of Public Health at Columbia University, New York, New York, USA
| | - Rebecca Kyerewaa Dwommoh Prah
- Kintampo Health Research Centre, Research and Development Division, Ghana Health Service, Kintampo North Municipality, Ghana
| | - Elena Colicino
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Theresa Tawiah
- Kintampo Health Research Centre, Research and Development Division, Ghana Health Service, Kintampo North Municipality, Ghana
| | - Chris Gennings
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Musah Osei
- Kintampo Health Research Centre, Research and Development Division, Ghana Health Service, Kintampo North Municipality, Ghana
| | - Teresa Janevic
- Department of Obstetrics, Gynecology, and Reproductive Science, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Steven N. Chillrud
- Lamont-Doherty Earth Observatory of Columbia University, New York, New York, USA
| | - Oscar Agyei
- Kintampo Health Research Centre, Research and Development Division, Ghana Health Service, Kintampo North Municipality, Ghana
| | - Carlos F. Gould
- Department of Earth System Science, Stanford University, Stanford, California, USA
| | - Alison G. Lee
- Division of Pulmonary, Critical Care and Sleep Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Kwaku Poku Asante
- Kintampo Health Research Centre, Research and Development Division, Ghana Health Service, Kintampo North Municipality, Ghana
| |
Collapse
|
2
|
Predisposed obesity and long-term metabolic diseases from maternal exposure to fine particulate matter (PM2.5) — A review of its effect and potential mechanisms. Life Sci 2022; 310:121054. [DOI: 10.1016/j.lfs.2022.121054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 09/30/2022] [Accepted: 10/05/2022] [Indexed: 11/05/2022]
|
3
|
Ni Y, Szpiro AA, Young MT, Loftus CT, Bush NR, LeWinn KZ, Sathyanarayana S, Enquobahrie DA, Davis RL, Kratz M, Fitzpatrick AL, Sonney JT, Tylavsky FA, Karr CJ. Associations of Pre- and Postnatal Air Pollution Exposures with Child Blood Pressure and Modification by Maternal Nutrition: A Prospective Study in the CANDLE Cohort. ENVIRONMENTAL HEALTH PERSPECTIVES 2021; 129:47004. [PMID: 33797937 PMCID: PMC8043131 DOI: 10.1289/ehp7486] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 03/08/2021] [Accepted: 03/10/2021] [Indexed: 05/03/2023]
Abstract
BACKGROUND Limited data suggest air pollution exposures may contribute to pediatric high blood pressure (HBP), a known predictor of adult cardiovascular diseases. METHODS We investigated this association in the Conditions Affecting Neurocognitive Development and Learning in Early Childhood (CANDLE) study, a sociodemographically diverse pregnancy cohort in the southern United States with participants enrolled from 2006 to 2011. We included 822 mother-child dyads with available address histories and a valid child blood pressure measurement at 4-6 y. Systolic (SBP) and diastolic blood pressures (DBP) were converted to age-, sex-, and height-specific percentiles for normal-weight U.S. children. HBP was classified based on SBP or DBP ≥ 90 th percentile. Nitrogen dioxide (NO 2 ) and particulate matter ≤ 2.5 μ m in aerodynamic diameter (PM 2.5 ) estimates in both pre- and postnatal windows were obtained from annual national models and spatiotemporal models, respectively. We fit multivariate Linear and Poisson regressions and explored multiplicative joint effects with maternal nutrition, child sex, and maternal race using interaction terms. RESULTS Mean PM 2.5 and NO 2 in the prenatal period were 10.8 [standard deviation (SD): 0.9] μ g / m 3 and 10.0 (SD: 2.4) ppb, respectively, and 9.9 (SD: 0.6) μ g / m 3 and 8.8 (SD: 1.9) ppb from birth to the 4-y-old birthday. On average, SBP percentile increased by 14.6 (95% CI: 4.6, 24.6), and DBP percentile increased by 8.7 (95% CI: 1.4, 15.9) with each 2 - μ g / m 3 increase in second-trimester PM 2.5 . PM 2.5 averaged over the prenatal period was only significantly associated with higher DBP percentiles [β = 11.6 (95% CI: 2.9, 20.2)]. Positive associations of second-trimester PM 2.5 with SBP and DBP percentiles were stronger in children with maternal folate concentrations in the lowest quartile (p interaction = 0.05 and 0.07, respectively) and associations with DBP percentiles were stronger in female children (p interaction = 0.05). We did not detect significant association of NO 2 , road proximity, and postnatal PM 2.5 with any outcomes. CONCLUSIONS The findings suggest that higher prenatal PM 2.5 exposure, particularly in the second trimester, is associated with elevated early childhood blood pressure. This adverse association could be modified by pregnancy folate concentrations. https://doi.org/10.1289/EHP7486.
Collapse
Affiliation(s)
- Yu Ni
- Department of Epidemiology, School of Public Health, University of Washington (UW), Seattle, Washington, USA
| | - Adam A. Szpiro
- Department of Biostatistics, School of Public Health, UW, Seattle, Washington, USA
| | - Michael T. Young
- Department of Environmental and Occupational Health Sciences, School of Public Health, UW, Seattle, Washington, USA
| | - Christine T. Loftus
- Department of Environmental and Occupational Health Sciences, School of Public Health, UW, Seattle, Washington, USA
| | - Nicole R. Bush
- Department of Psychiatry, School of Medicine, University of California, San Francisco (UCSF), San Francisco, California, USA
- Department of Pediatrics, School of Medicine, UCSF, San Francisco, California, USA
| | - Kaja Z. LeWinn
- Department of Psychiatry, School of Medicine, University of California, San Francisco (UCSF), San Francisco, California, USA
| | - Sheela Sathyanarayana
- Department of Environmental and Occupational Health Sciences, School of Public Health, UW, Seattle, Washington, USA
- Department of Pediatrics, School of Medicine, UW, Seattle, Washington, USA
- Seattle Children’s Research Institute, Seattle, Washington, USA
| | - Daniel A. Enquobahrie
- Department of Epidemiology, School of Public Health, University of Washington (UW), Seattle, Washington, USA
- Department of Health Services, School of Public Health, UW, Seattle, Washington, USA
| | - Robert L. Davis
- Center for Biomedical Informatics, University of Tennessee Health Science Center (UTHSC), Memphis, Tennessee, USA
- Department of Pediatrics, UTHSC, Memphis, Tennessee, USA
| | - Mario Kratz
- Department of Epidemiology, School of Public Health, University of Washington (UW), Seattle, Washington, USA
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - Annette L. Fitzpatrick
- Department of Epidemiology, School of Public Health, University of Washington (UW), Seattle, Washington, USA
- Department of Family Medicine, School of Medicine, UW, Seattle, Washington, USA
- Department of Global Health, School of Public Health, UW, Seattle, Washington, USA
| | - Jennifer T. Sonney
- Department of Child, Family, and Population Health Nursing, School of Nursing, UW, Seattle, Washington, USA
| | | | - Catherine J. Karr
- Department of Epidemiology, School of Public Health, University of Washington (UW), Seattle, Washington, USA
- Department of Environmental and Occupational Health Sciences, School of Public Health, UW, Seattle, Washington, USA
- Department of Pediatrics, School of Medicine, UW, Seattle, Washington, USA
| |
Collapse
|
4
|
Zanobetti A, Coull BA, Luttmann-Gibson H, van Rossem L, Rifas-Shiman SL, Kloog I, Schwartz JD, Oken E, Bobb JF, Koutrakis P, Gold DR. Ambient Particle Components and Newborn Blood Pressure in Project Viva. J Am Heart Assoc 2020; 10:e016935. [PMID: 33372530 PMCID: PMC7955476 DOI: 10.1161/jaha.120.016935] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Background Both elemental metals and particulate air pollution have been reported to influence adult blood pressure (BP). The aim of this study is to examine which elemental components of particle mass with diameter ≤2.5 μm (PM2.5) are responsible for previously reported associations between PM2.5 and neonatal BP. Methods and Results We studied 1131 mother‐infant pairs in Project Viva, a Boston‐area prebirth cohort. We measured systolic BP (SBP) and diastolic BP (DBP) at a mean age of 30 hours. We calculated average exposures during the 2 to 7 days before birth for the PM2.5 components—aluminum, arsenic, bromine, sulfur, copper, iron, zinc, nickel, vanadium, titanium, magnesium, potassium, silicon, sodium, chlorine, calcium, and lead—measured at the Harvard supersite. Adjusting for covariates and PM2.5, we applied regression models to examine associations between PM2.5 components and median SBP and DBP, and used variable selection methods to select which components were more strongly associated with each BP outcome. We found consistent results with higher nickel associated with significantly higher SBP and DBP, and higher zinc associated with lower SBP and DBP. For an interquartile range increase in the log Z score (1.4) of nickel, we found a 1.78 mm Hg (95% CI, 0.72–2.84) increase in SBP and a 1.30 (95% CI, 0.54–2.06) increase in DBP. Increased zinc (interquartile range log Z score 1.2) was associated with decreased SBP (−1.29 mm Hg; 95% CI, −2.09 to −0.50) and DBP (−0.85 mm Hg; 95% CI: −1.42 to −0.29). Conclusions Our findings suggest that prenatal exposures to particulate matter components, and particularly nickel, may increase newborn BP.
Collapse
Affiliation(s)
- Antonella Zanobetti
- Department of Environmental Health Harvard School of Public Health Boston MA
| | - Brent A Coull
- Department of Biostatistics Harvard School of Public Health Boston MA
| | | | - Lenie van Rossem
- Julius Center for Health Sciences and Primary Care University Medical Center UtrechtUtrecht University Utrecht the Netherlands
| | - Sheryl L Rifas-Shiman
- Division of Chronic Disease Research Across the Lifecourse Department of Population Medicine Harvard Medical School and Harvard Pilgrim Health Care Institute Boston MA
| | - Itai Kloog
- Department of Geography and Environmental Development Ben-Gurion University of the Negev Beer Sheva Israel
| | - Joel D Schwartz
- Department of Environmental Health Harvard School of Public Health Boston MA.,Channing Division of Network Medicine Department of Medicine Brigham and Women's Hospital and Harvard Medical School Boston MA
| | - Emily Oken
- Division of Chronic Disease Research Across the Lifecourse Department of Population Medicine Harvard Medical School and Harvard Pilgrim Health Care Institute Boston MA
| | - Jennifer F Bobb
- Biostatistics Unit Kaiser Permanente Washington Health Research Institute Seattle WA.,Department of Biostatistics University of Washington Seattle WA
| | - Petros Koutrakis
- Department of Environmental Health Harvard School of Public Health Boston MA
| | - Diane R Gold
- Department of Environmental Health Harvard School of Public Health Boston MA.,Channing Division of Network Medicine Department of Medicine Brigham and Women's Hospital and Harvard Medical School Boston MA
| |
Collapse
|
5
|
Capolongo S, Rebecchi A, Dettori M, Appolloni L, Azara A, Buffoli M, Capasso L, Casuccio A, Oliveri Conti G, D'Amico A, Ferrante M, Moscato U, Oberti I, Paglione L, Restivo V, D'Alessandro D. Healthy Design and Urban Planning Strategies, Actions, and Policy to Achieve Salutogenic Cities. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2018; 15:E2698. [PMID: 30501119 PMCID: PMC6313765 DOI: 10.3390/ijerph15122698] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Revised: 11/26/2018] [Accepted: 11/28/2018] [Indexed: 01/11/2023]
Abstract
Starting from a previous experience carried out by the working group "Building and Environmental Hygiene" of the Italian Society of Hygiene and Preventive Medicine (SItI), the aim of the present work is to define new strategic goals for achieving a "Healthy and Salutogenic City", which will be useful to designers, local governments and public bodies, policy makers, and all professionals working at local health agencies. Ten key points have been formulated: 1. climate change and management of adverse weather events; 2. land consumption, sprawl, and shrinking cities; 3. tactical urbanism and urban resilience; 4. urban comfort, safety, and security perception; 5. strengths and weaknesses of urban green areas and infrastructures; 6. urban solid waste management; 7. housing emergencies in relation to socio-economic and environmental changes; 8. energy aspects and environmental planning at an urban scale; 9. socio-assistance and welfare network at an urban scale: importance of a rational and widespread system; and 10. new forms of living, conscious of coparticipation models and aware of sharing quality objectives. Design strategies, actions, and policies, identified to improve public health and wellbeing, underline that the connection between morphological and functional features of urban context and public health is crucial for contemporary cities and modern societies.
Collapse
Affiliation(s)
- Stefano Capolongo
- Dipartimento di Architettura, Ingegneria delle Costruzioni e Ambiente Costruito, Politecnico di Milano, 20133 Milan, Italy.
| | - Andrea Rebecchi
- Dipartimento di Architettura, Ingegneria delle Costruzioni e Ambiente Costruito, Politecnico di Milano, 20133 Milan, Italy.
| | - Marco Dettori
- Dipartimento di Scienze Mediche, Chirurgiche e Sperimentali, Università degli Studi di Sassari, 07100 Sassari, Italy.
| | - Letizia Appolloni
- Dipartimento di Ingegneria Civile Edile e Ambientale, Sapienza Università di Roma, 00184 Rome, Italy.
| | - Antonio Azara
- Dipartimento di Scienze Mediche, Chirurgiche e Sperimentali, Università degli Studi di Sassari, 07100 Sassari, Italy.
| | - Maddalena Buffoli
- Dipartimento di Architettura, Ingegneria delle Costruzioni e Ambiente Costruito, Politecnico di Milano, 20133 Milan, Italy.
| | - Lorenzo Capasso
- Dipartimento di Sanità Pubblica, Medicina Sperimentale e Forense, Università degli Studi di Pavia, 27100 Pavia, Italy.
| | - Alessandra Casuccio
- Dipartimento di Scienze per la Promozione della Salute e Materno Infantile, Università degli Studi di Palermo, 90133 Palermo, Italy.
| | - Gea Oliveri Conti
- Dipartimento di Scienze Mediche Chirurgiche e Tecnologie Avanzate, Università degli Studi di Catania, 95131 Catania, Italy.
| | - Alessandro D'Amico
- Dipartimento di Ingegneria Civile Edile e Ambientale, Sapienza Università di Roma, 00184 Rome, Italy.
| | - Margherita Ferrante
- Dipartimento di Scienze Mediche Chirurgiche e Tecnologie Avanzate, Università degli Studi di Catania, 95131 Catania, Italy.
| | - Umberto Moscato
- Fondazione Policlinico Agostino Gemelli IRCCS, Università Cattolica del Sacro Cuore, 00168 Rome, Italy.
| | - Ilaria Oberti
- Dipartimento di Architettura, Ingegneria delle Costruzioni e Ambiente Costruito, Politecnico di Milano, 20133 Milan, Italy.
| | - Lorenzo Paglione
- Dipartimento di Ingegneria Civile Edile e Ambientale, Sapienza Università di Roma, 00184 Rome, Italy.
| | - Vincenzo Restivo
- Dipartimento di Scienze per la Promozione della Salute e Materno Infantile, Università degli Studi di Palermo, 90133 Palermo, Italy.
| | - Daniela D'Alessandro
- Dipartimento di Ingegneria Civile Edile e Ambientale, Sapienza Università di Roma, 00184 Rome, Italy.
| |
Collapse
|