1
|
Schofield LG, Endacott SK, Delforce SJ, Lumbers ER, Pringle KG. Importance of the (Pro)renin Receptor in Activating the Renin-Angiotensin System During Normotensive and Preeclamptic Pregnancies. Curr Hypertens Rep 2024; 26:483-495. [PMID: 39093387 PMCID: PMC11455731 DOI: 10.1007/s11906-024-01316-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/02/2024] [Indexed: 08/04/2024]
Abstract
PURPOSE OF REVIEW For a healthy pregnancy to occur, a controlled interplay between the maternal circulating renin-angiotensin-aldosterone system (RAAS), placental renin-angiotensin system (RAS) and intrarenal renin-angiotensin system (iRAS) is necessary. Functionally, both the RAAS and iRAS interact to maintain blood pressure and cardiac output, as well as fluid and electrolyte balance. The placental RAS is important for placental development while also influencing the maternal circulating RAAS and iRAS. This narrative review concentrates on the (pro)renin receptor ((P)RR) and its soluble form (s(P)RR) in the context of the hypertensive pregnancy pathology, preeclampsia. RECENT FINDINGS The (P)RR and the s(P)RR have become of particular interest as not only can they activate prorenin and renin, thus influencing levels of angiotensin II (Ang II), but s(P)RR has now been shown to directly interact with and stimulate the Angiotensin II type 1 receptor (AT1R). Levels of both placental (P)RR and maternal circulating s(P)RR are elevated in patients with preeclampsia. Furthermore, s(P)RR has been shown to increase blood pressure in non-pregnant and pregnant rats and mice. In preeclamptic pregnancies, which are characterised by maternal hypertension and impaired placental development and function, we propose that there is enhanced secretion of s(P)RR from the placenta into the maternal circulation. Due to its ability to both activate prorenin and act as an AT1R agonist, excess maternal circulating s(P)RR can act on both the maternal vasculature, and the kidney, leading to RAS over-activation. This results in dysregulation of the maternal circulating RAAS and overactivation of the iRAS, contributing to maternal hypertension, renal damage, and secondary changes to neurohumoral regulation of fluid and electrolyte balance, ultimately contributing to the pathophysiology of preeclampsia.
Collapse
Affiliation(s)
- Lachlan G Schofield
- School of Biomedical Sciences and Pharmacy, College of Health, Medicine and Wellbeing, University of Newcastle, Callaghan, N.S.W, 2308, Australia
- Womens Health Research Program, Hunter Medical Research Institute, New Lambton Heights, N.S.W, 2305, Australia
- Hunter Medical Research Institute, Lot 1 Kookaburra Circuit, New Lambton, N.S.W, 2305, Australia
| | - Saije K Endacott
- School of Biomedical Sciences and Pharmacy, College of Health, Medicine and Wellbeing, University of Newcastle, Callaghan, N.S.W, 2308, Australia
- Womens Health Research Program, Hunter Medical Research Institute, New Lambton Heights, N.S.W, 2305, Australia
- Hunter Medical Research Institute, Lot 1 Kookaburra Circuit, New Lambton, N.S.W, 2305, Australia
| | - Sarah J Delforce
- School of Medicine and Public Health, College of Health, Medicine and Wellbeing, University of Newcastle, Callaghan, N.S.W, 2308, Australia
- Hunter Medical Research Institute, Lot 1 Kookaburra Circuit, New Lambton, N.S.W, 2305, Australia
| | - Eugenie R Lumbers
- School of Biomedical Sciences and Pharmacy, College of Health, Medicine and Wellbeing, University of Newcastle, Callaghan, N.S.W, 2308, Australia
- Womens Health Research Program, Hunter Medical Research Institute, New Lambton Heights, N.S.W, 2305, Australia
- Hunter Medical Research Institute, Lot 1 Kookaburra Circuit, New Lambton, N.S.W, 2305, Australia
| | - Kirsty G Pringle
- School of Biomedical Sciences and Pharmacy, College of Health, Medicine and Wellbeing, University of Newcastle, Callaghan, N.S.W, 2308, Australia.
- Womens Health Research Program, Hunter Medical Research Institute, New Lambton Heights, N.S.W, 2305, Australia.
- Hunter Medical Research Institute, Lot 1 Kookaburra Circuit, New Lambton, N.S.W, 2305, Australia.
| |
Collapse
|
2
|
Lin IC, Wu KLH, Cheng HH, Tsai CC, Yu HR, Hsu TY, Tain YL, Huang LT, Lai YJ. Association of Perinatal Cardiovascular Features with Angiotensin System Expressions in Maternal Preeclampsia. Int J Mol Sci 2024; 25:7426. [PMID: 39000532 PMCID: PMC11242154 DOI: 10.3390/ijms25137426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 06/28/2024] [Accepted: 07/02/2024] [Indexed: 07/16/2024] Open
Abstract
We hypothesized and investigated whether prenatal exposure to preeclampsia (PE) would simultaneously affect perinatal cardiovascular features and angiotensin system expressions. This prospective study was composed of mother-neonate dyads with (n = 49) and without maternal preeclampsia (n = 48) in a single tertiary medical center. The neonates exposed to PE had significantly larger relative sizes for the left and right coronary arteries and a higher cord plasma level of aminopeptidase-N, which positively correlated with the maternal diastolic blood pressures and determined the relative sizes of the left and right coronary arteries, whereas the encoding aminopeptidase-N (ANPEP) mRNA level in the PE cord blood leukocytes was significantly decreased, positively correlated with the neonatal systolic blood pressures (SBPs), and negatively correlated with the cord plasma-induced endothelial vascular cell adhesion molecule-1 mRNA levels. The PE cord plasma significantly induced higher endothelial mRNA levels of angiotensin II type 1 receptor (AT1R) and AT4R, whereas in the umbilical arteries, the protein expressions of AT2R and AT4R were significantly decreased in the PE group. The endothelial AT1R mRNA level positively determined the maternal SBPs, and the AT4R mRNA level positively determined the neonatal chamber size and cardiac output. In conclusion, PE may influence perinatal angiotensin system and cardiovascular manifestations of neonates across placentae. Intriguing correlations between these two warrant further mechanistic investigation.
Collapse
Affiliation(s)
- I-Chun Lin
- Department of Pediatrics, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University, College of Medicine, Kaohsiung 833, Taiwan
| | - Kay L H Wu
- Institute for Translational Research in Biomedicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University, College of Medicine, Kaohsiung 833, Taiwan
| | - Hsin-Hsin Cheng
- Department of Obstetrics and Gynecology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University, College of Medicine, Kaohsiung 833, Taiwan
| | - Ching-Chang Tsai
- Department of Obstetrics and Gynecology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University, College of Medicine, Kaohsiung 833, Taiwan
| | - Hong-Ren Yu
- Department of Pediatrics, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University, College of Medicine, Kaohsiung 833, Taiwan
| | - Te-Yao Hsu
- Department of Obstetrics and Gynecology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University, College of Medicine, Kaohsiung 833, Taiwan
| | - You-Lin Tain
- Department of Pediatrics, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University, College of Medicine, Kaohsiung 833, Taiwan
| | - Li-Tung Huang
- Department of Pediatrics, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University, College of Medicine, Kaohsiung 833, Taiwan
| | - Yun-Ju Lai
- Department of Obstetrics and Gynecology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University, College of Medicine, Kaohsiung 833, Taiwan
| |
Collapse
|
3
|
Lyssy F, Forstner D, Brugger BA, Ujčič K, Guettler J, Kupper N, Wernitznig S, Daxboeck C, Neuper L, El-Heliebi A, Kloimboeck T, Kargl J, Huppertz B, Ghaffari-Tabrizi-Wizsy N, Gauster M. The chicken chorioallantoic membrane assay revisited - A face-lifted approach for new perspectives in placenta research. Placenta 2024:S0143-4004(24)00113-9. [PMID: 38705802 DOI: 10.1016/j.placenta.2024.04.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 04/09/2024] [Accepted: 04/29/2024] [Indexed: 05/07/2024]
Abstract
The study of very early human placentation is largely limited due to ethical restrictions on the use of embryonic tissue and the fact that the placental anatomy of common laboratory animal models varies considerably from that of humans. In recent years several promising models, including trophoblast stem cell-derived organoids, have been developed that have also proven useful for the study of important trophoblast differentiation processes. However, the consideration of maternal blood flow in trophoblast invasion models currently appears to be limited to animal models. An almost forgotten model to study the invasive behavior of trophoblasts is to culture them in vitro on the chicken chorioallantoic membrane (CAM), showing an extraembryonic vascular network in its mesenchymal stroma that is continuously perfused by the chicken embryonic blood circulation. Here, we present an extension of the previously described ex ovo CAM assay and describe the use of cavity-bearing trophoblast spheroids obtained from the first trimester cell line ACH-3P. We demonstrate how spheroids penetrated the CAM and that erosion of CAM vessels by trophoblasts led to filling of the spheroid cavities with chicken blood, mimicking initial steps of intervillous space blood perfusion. Moreover, we prove that this model is useful for state-of-the-art techniques including immunofluorescence and in situ padlock probe hybridization, making it a versatile tool to study aspects of trophoblast invasion in presence of blood flow.
Collapse
Affiliation(s)
- Freya Lyssy
- Division of Cell Biology, Histology and Embryology, Gottfried Schatz Research Center, Medical University of Graz, Austria
| | - Désirée Forstner
- Division of Cell Biology, Histology and Embryology, Gottfried Schatz Research Center, Medical University of Graz, Austria
| | - Beatrice A Brugger
- Division of Cell Biology, Histology and Embryology, Gottfried Schatz Research Center, Medical University of Graz, Austria
| | - Kaja Ujčič
- Division of Cell Biology, Histology and Embryology, Gottfried Schatz Research Center, Medical University of Graz, Austria
| | - Jacqueline Guettler
- Division of Cell Biology, Histology and Embryology, Gottfried Schatz Research Center, Medical University of Graz, Austria
| | - Nadja Kupper
- Division of Cell Biology, Histology and Embryology, Gottfried Schatz Research Center, Medical University of Graz, Austria
| | - Stefan Wernitznig
- Division of Cell Biology, Histology and Embryology, Gottfried Schatz Research Center, Medical University of Graz, Austria
| | - Christine Daxboeck
- Division of Cell Biology, Histology and Embryology, Gottfried Schatz Research Center, Medical University of Graz, Austria
| | - Lena Neuper
- Division of Cell Biology, Histology and Embryology, Gottfried Schatz Research Center, Medical University of Graz, Austria
| | - Amin El-Heliebi
- Division of Cell Biology, Histology and Embryology, Gottfried Schatz Research Center, Medical University of Graz, Austria
| | - Teresa Kloimboeck
- Division of Pharmacology, Otto Loewi Research Center, Medical University of Graz, Austria
| | - Julia Kargl
- Division of Pharmacology, Otto Loewi Research Center, Medical University of Graz, Austria
| | - Berthold Huppertz
- Division of Cell Biology, Histology and Embryology, Gottfried Schatz Research Center, Medical University of Graz, Austria
| | | | - Martin Gauster
- Division of Cell Biology, Histology and Embryology, Gottfried Schatz Research Center, Medical University of Graz, Austria.
| |
Collapse
|
4
|
Lai S, Yu W, Liu Y, Yang Y, Zhang X. Current research and evidence gaps on placental development in iron deficiency anemia. Open Life Sci 2024; 19:20220827. [PMID: 38465334 PMCID: PMC10921475 DOI: 10.1515/biol-2022-0827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 12/19/2023] [Accepted: 12/22/2023] [Indexed: 03/12/2024] Open
Abstract
Studying the effects of maternal iron deficiency anemia (IDA) is complex owing to its diverse causes, each independently impacting the placenta and fetus. Simple treatment with iron supplements does not always resolve the anemia. Therefore, delving into how IDA alters placental development at a molecular level is crucial to further optimize treatment. This review addresses the effects of IDA on placental structures and functions, including changes in oxygen levels, blood vessels, and the immune system. Profound understanding of physiological characteristics and regulatory mechanisms of placental development is key to explain the mechanisms of abnormal placental development in pregnancy-associated disorders. In turn, future strategies for the prevention and treatment of pregnancy complications involving the placenta can be devised. These studies are significant for improving human reproductive health, enhancing sociodemographic qualities, and even lifelong wellbeing, a focal point in future placental research.
Collapse
Affiliation(s)
- Shaoyang Lai
- Department of Obstetrics, School of Medicine, Women and Children’s Hospital, Xiamen University, Xiamen, China
| | - Weiwei Yu
- Department of Obstetrics, School of Medicine, Women and Children’s Hospital, Xiamen University, Xiamen, China
| | - Ying Liu
- Department of Obstetrics, School of Medicine, Women and Children’s Hospital, Xiamen University, Xiamen, China
| | - Yuxin Yang
- Department of Obstetrics, School of Medicine, Women and Children’s Hospital, Xiamen University, Xiamen, China
| | - Xueqin Zhang
- Department of Obstetrics, School of Medicine, Women and Children’s Hospital, Xiamen University, Xiamen, China
| |
Collapse
|
5
|
Benezeder T, Bordag N, Woltsche J, Teufelberger A, Perchthaler I, Weger W, Salmhofer W, Gruber-Wackernagel A, Painsi C, Zhan Q, El-Heliebi A, Babina M, Clark R, Wolf P. Mast cells express IL17A, IL17F and RORC, are activated and persist with IL-17 production in resolved skin of patients with chronic plaque-type psoriasis. RESEARCH SQUARE 2024:rs.3.rs-3958361. [PMID: 38410434 PMCID: PMC10896398 DOI: 10.21203/rs.3.rs-3958361/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/28/2024]
Abstract
Little is known about IL-17 expression in psoriasis and the actual cellular source of IL-17 remains incompletely defined. We show that high numbers of IL-17 + mast cells persisted in resolved lesions after treatment (anti-IL-17A, anti-IL-23, UVB or topical dithranol) and correlated inversely with the time span in remission. IL-17 + mast cells were found in T cell-rich areas and often close to resident memory T cells (Trm) in active psoriasis and resolved lesional skin. Digital cytometry by deconvolution of RNA-seq data showed that activated mast cells were increased in psoriatic skin, while resting mast cells were almost absent and both returned to normal levels after treatment. When primary human skin mast cells were stimulated with T cell cytokines (TNFα, IL-22 and IFNγ), they responded by releasing more IL-17A, as measured by ELISA. In situ mRNA detection using padlock probes specific for transcript variants of IL17A, IL17F, and RORC (encoding the Th17 transcription factor RORγt) revealed positive mRNA signals for IL17A, IL17F, and RORCin tryptase + cells, demonstrating that mast cells have the transcriptional machinery to actively produce IL-17. Mast cells thus belong to the center of the IL-23/IL-17 axis and high numbers of IL-17 + mast cells predict an earlier disease recurrence.
Collapse
Affiliation(s)
- Theresa Benezeder
- Department of Dermatology and Venereology, Medical University of Graz
| | - Natalie Bordag
- Department of Dermatology and Venereology, Medical University of Graz
| | - Johannes Woltsche
- Department of Dermatology and Venereology, Medical University of Graz
| | | | | | - Wolfgang Weger
- Department of Dermatology and Venereology, Medical University of Graz
| | | | | | | | - Qian Zhan
- Department of Dermatology, Brigham and Women's Hospital, Harvard Medical School
| | - Amin El-Heliebi
- Division of Cell Biology, Histology and Embryology, Gottfried Schatz Research Center, Medical University of Graz
| | - Magda Babina
- Institute of Allergology, Charite-Universitatsmedizin Berlin
| | | | - Peter Wolf
- Department of Dermatology and Venereology, Medical University of Graz, Graz, Austria
| |
Collapse
|
6
|
Nowak I, Bochen P. The Antigen-Processing Pathway via Major Histocompatibility Complex I as a New Perspective in the Diagnosis and Treatment of Endometriosis. Arch Immunol Ther Exp (Warsz) 2024; 72:aite-2024-0008. [PMID: 38478380 DOI: 10.2478/aite-2024-0008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 01/30/2024] [Indexed: 04/16/2024]
Abstract
Endometriosis is a debilitating gynecological disease defined as the presence of endometrium-like epithelium and/or stroma outside the uterine cavity. The most commonly affected sites are the pelvic peritoneum, ovaries, uterosacral ligaments, and the rectovaginal septum. The aberrant tissue responds to hormonal stimulation, undergoing cyclical growth and shedding similar to appropriately located endometrial tissue in the uterus. Common symptoms of endometriosis are painful periods and ovulation, severe pelvic cramping, heavy bleeding, pain during sex, urination and bowel pain, bleeding, and pain between periods. Numerous theories have been proposed to explain the pathogenesis of endometriosis. Sampson's theory of retrograde menstruation is considered to be the most accepted. This theory assumes that endometriosis occurs due to the retrograde flow of endometrial cells through the fallopian tubes during menstruation. However, it has been shown that this process takes place in 90% of women, while endometriosis is diagnosed in only 10% of them. This means that there must be a mechanism that blocks the immune system from removing endometrial cells and interferes with its function, leading to implantation of the ectopic endometrium and the formation of lesions. In this review, we consider the contribution of components of the Major Histocompatibility Complex (MHC)-I-mediated antigen-processing pathway, such as the ERAP, TAP, LMP, LNPEP, and tapasin, to the susceptibility, onset, and severity of endometriosis. These elements can induce significant changes in MHC-I-bound peptidomes that may influence the response of immune cells to ectopic endometrial cells.
Collapse
Affiliation(s)
- Izabela Nowak
- Department of Clinical Immunology, Laboratory of Immunogenetics and Tissue, Immunology, Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wrocław, Poland
| | - Patrycja Bochen
- Department of Clinical Immunology, Laboratory of Immunogenetics and Tissue, Immunology, Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wrocław, Poland
| |
Collapse
|
7
|
Pode-Shakked N, Slack M, Sundaram N, Schreiber R, McCracken KW, Dekel B, Helmrath M, Kopan R. RAAS-deficient organoids indicate delayed angiogenesis as a possible cause for autosomal recessive renal tubular dysgenesis. Nat Commun 2023; 14:8159. [PMID: 38071212 PMCID: PMC10710424 DOI: 10.1038/s41467-023-43795-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 11/20/2023] [Indexed: 12/18/2023] Open
Abstract
Autosomal Recessive Renal Tubular Dysgenesis (AR-RTD) is a fatal genetic disorder characterized by complete absence or severe depletion of proximal tubules (PT) in patients harboring pathogenic variants in genes involved in the Renin-Angiotensin-Aldosterone System. To uncover the pathomechanism of AR-RTD, differentiation of ACE-/- and AGTR1-/- induced pluripotent stem cells (iPSCs) and AR-RTD patient-derived iPSCs into kidney organoids is leveraged. Comprehensive marker analyses show that both mutant and control organoids generate indistinguishable PT in vitro under normoxic (21% O2) or hypoxic (2% O2) conditions. Fully differentiated (d24) AGTR1-/- and control organoids transplanted under the kidney capsule of immunodeficient mice engraft and mature well, as do renal vesicle stage (d14) control organoids. By contrast, d14 AGTR1-/- organoids fail to engraft due to insufficient pro-angiogenic VEGF-A expression. Notably, growth under hypoxic conditions induces VEGF-A expression and rescues engraftment of AGTR1-/- organoids at d14, as does ectopic expression of VEGF-A. We propose that PT dysgenesis in AR-RTD is primarily a non-autonomous consequence of delayed angiogenesis, starving PT at a critical time in their development.
Collapse
Affiliation(s)
- Naomi Pode-Shakked
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, 45229, USA
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA
- Division of Nephrology and Hypertension, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
- Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Megan Slack
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, 45229, USA
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA
| | - Nambirajan Sundaram
- Division of Pediatric Surgery, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA
| | - Ruth Schreiber
- Department of Pediatrics, Soroka University Medical Center, Ben Gurion University of the Negev, Beer Sheva, Israel
| | - Kyle W McCracken
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, 45229, USA
- Division of Nephrology and Hypertension, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| | - Benjamin Dekel
- Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
- Pediatric Stem Cell Research Institute and division of pediatric nephrology, Edmond and Lily Safra Children's Hospital, Sheba Medical Center, Ramat-Gan, Israel
| | - Michael Helmrath
- Division of Pediatric Surgery, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA
| | - Raphael Kopan
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, 45229, USA.
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA.
| |
Collapse
|
8
|
Awoyemi T, Zhang W, Rahbar M, Cribbs A, Logenthiran P, Jiang S, Collett G, Cerdeira AS, Vatish M. A cross-sectional analysis of syncytiotrophoblast membrane extracellular vesicles-derived transcriptomic biomarkers in early-onset preeclampsia. Front Cardiovasc Med 2023; 10:1291642. [PMID: 38099221 PMCID: PMC10720444 DOI: 10.3389/fcvm.2023.1291642] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 11/14/2023] [Indexed: 12/17/2023] Open
Abstract
Background Preeclampsia (PE) is a pregnancy-specific hypertensive disorder affecting 2%-8% of pregnancies worldwide. Biomarker(s) for the disorder exists, but while these have excellent negative predictive value, their positive predictive value is poor. Extracellular vesicles released by the placenta into the maternal circulation, syncytiotrophoblast membrane extracellular vesicles (STB-EVs), have been identified as being involved in PE with the potential to act as liquid biopsies. Objective The objective of this study was to identify the difference in the transcriptome of placenta and STB-EVs between preeclampsia and normal pregnancy (NP) and mechanistic pathways. Methods/study design We performed RNA-sequencing on placental tissue, medium/large and small STB-EVs from PE (n = 6) and NP (n = 6), followed by bioinformatic analysis to identify targets that could be used in the future for EV-based diagnostic tests for preeclampsia. Some of the identified biomarkers were validated with real-time polymerase chain reactions. Results Our analysis identified a difference in the transcriptomic STB-EV cargo between PE and NP. We then identified and verified the differential expression of FLNB, COL17A1, SLC45A4, LEP, HTRA4, PAPP-A2, EBI3, HSD17B1, FSTL3, INHBA, SIGLEC6, and CGB3. Our analysis also identified interesting mechanistic processes via an in silico prediction of STB-EV-based mechanistic pathways. Conclusions In this study, using comprehensive profiling of differentially expressed/carried genes of three linked sample subtypes in PE, we identified potential biomarkers and mechanistic gene pathways that may be important in the pathophysiology of PE and could be further explored in future studies.
Collapse
Affiliation(s)
- Toluwalase Awoyemi
- Nuffield Department of Women’s & Reproductive Health, University of Oxford, Oxford, United Kingdom
| | - Wei Zhang
- Nuffield Department of Women’s & Reproductive Health, University of Oxford, Oxford, United Kingdom
| | - Maryam Rahbar
- Nuffield Department of Women’s & Reproductive Health, University of Oxford, Oxford, United Kingdom
| | - Adam Cribbs
- Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, United Kingdom
| | - Prasanna Logenthiran
- Nuffield Department of Women’s & Reproductive Health, University of Oxford, Oxford, United Kingdom
| | - Shuhan Jiang
- Nuffield Department of Women’s & Reproductive Health, University of Oxford, Oxford, United Kingdom
| | - Gavin Collett
- Nuffield Department of Women’s & Reproductive Health, University of Oxford, Oxford, United Kingdom
| | - Ana Sofia Cerdeira
- Nuffield Department of Women’s & Reproductive Health, University of Oxford, Oxford, United Kingdom
| | - Manu Vatish
- Nuffield Department of Women’s & Reproductive Health, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
9
|
Zeng S, Liu Y, Fan P, Yang L, Liu X. Role of leptin in the pathophysiology of preeclampsia. Placenta 2023; 142:128-134. [PMID: 37713744 DOI: 10.1016/j.placenta.2023.09.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 08/26/2023] [Accepted: 09/08/2023] [Indexed: 09/17/2023]
Abstract
Preeclampsia (PE) is a severe pregnancy complication. The exact pathogenesis of PE remains unclear, but it is related to immune, inflammatory, circulatory, and oxidative stress factors. Leptin is a protein involved in these processes and is essential for maintaining a normal pregnancy and healthy fetal growth. Abnormal increases in leptin levels have been observed in the peripheral blood and placenta of patients with PE. Disturbances in leptin can affect the proliferation and hypertrophy of vascular smooth muscle cells, which are important for placentation. Leptin also regulates arterial tension and trophoblast function in pregnant women. In addition, consistently high levels of leptin are linked to hyperactive inflammation and oxidative stress reactions in both patients with PE and animal models. This review focuses on the role of leptin in the pathophysiology of PE and elucidates its potential mechanisms.
Collapse
Affiliation(s)
- Shuai Zeng
- Department of Obstetrics and Gynecology, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China; Laboratory of Genetic Disease and Perinatal Medicine, Laboratory of the Key Perinatal Disease and Key Laboratory of Birth Defects and Related Disease of Women and Children, Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yijun Liu
- Department of Obstetrics and Gynecology, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China; Laboratory of Genetic Disease and Perinatal Medicine, Laboratory of the Key Perinatal Disease and Key Laboratory of Birth Defects and Related Disease of Women and Children, Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Ping Fan
- Laboratory of Genetic Disease and Perinatal Medicine, Laboratory of the Key Perinatal Disease and Key Laboratory of Birth Defects and Related Disease of Women and Children, Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Luming Yang
- Chongqing University Medical School, Chongqing, China
| | - Xinghui Liu
- Department of Obstetrics and Gynecology, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China; Laboratory of Genetic Disease and Perinatal Medicine, Laboratory of the Key Perinatal Disease and Key Laboratory of Birth Defects and Related Disease of Women and Children, Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China.
| |
Collapse
|
10
|
Nonn O, Bonstingl L, Sallinger K, Neuper L, Fuchs J, Gauster M, Huppertz B, Brislinger D, El-Heliebi A, Fluhr H, Kampelmühler E, Klaritsch P. Maternal COVID-19 causing intrauterine foetal demise with microthrombotic placental insufficiency: a case report. BMC Pregnancy Childbirth 2023; 23:653. [PMID: 37689629 PMCID: PMC10492311 DOI: 10.1186/s12884-023-05942-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Accepted: 08/21/2023] [Indexed: 09/11/2023] Open
Abstract
BACKGROUND Pregnant women have an increased risk of getting infected with SARS-CoV-2 and are more prone to severe illness. Data on foetal demise in affected pregnancies and its underlying aetiology is scarce and pathomechanisms remain largely unclear. CASE Herein we present the case of a pregnant woman with COVID-19 and intrauterine foetal demise. She had no previous obstetric or gynaecological history, and presented with mild symptoms at 34 + 3 weeks and no signs of foetal distress. At 35 + 6 weeks intrauterine foetal death was diagnosed. In the placental histopathology evaluation, we found inter- and perivillous fibrin depositions including viral particles in areas of degraded placental anatomy without presence of viral entry receptors and SARS-CoV-2 infection of the placenta. CONCLUSION This case demonstrates that maternal SARS-CoV-2 infection in the third trimester may lead to an unfavourable outcome for the foetus due to placental fibrin deposition in maternal COVID-19 disease possibly via a thrombogenic microenvironment, even when the foetus itself is not infected.
Collapse
Affiliation(s)
- Olivia Nonn
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt- Universität zu Berlin, Berlin, Germany.
- Experimental and Clinical Research Centre, Max Delbrück Center for Molecular Medicine in the Helmholtz Association and Charité Universitätsmedizin Berlin, Berlin, Germany.
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany.
- Division of Cell Biology, Histology and Embryology, Gottfried Schatz Research Center, Medical University of Graz, Graz, Austria.
| | - Lilli Bonstingl
- Division of Cell Biology, Histology and Embryology, Gottfried Schatz Research Center, Medical University of Graz, Graz, Austria
- Center for Biomarker Research in Medicine (CBmed), Graz, Austria
| | - Katja Sallinger
- Division of Cell Biology, Histology and Embryology, Gottfried Schatz Research Center, Medical University of Graz, Graz, Austria
- Center for Biomarker Research in Medicine (CBmed), Graz, Austria
| | - Lena Neuper
- Division of Cell Biology, Histology and Embryology, Gottfried Schatz Research Center, Medical University of Graz, Graz, Austria
| | - Julia Fuchs
- Division of Cell Biology, Histology and Embryology, Gottfried Schatz Research Center, Medical University of Graz, Graz, Austria
- Division of Medical Physics and Biophysics, Gottfried Schatz Research Center, Medical University of Graz, Graz, Austria
| | - Martin Gauster
- Division of Cell Biology, Histology and Embryology, Gottfried Schatz Research Center, Medical University of Graz, Graz, Austria
| | - Berthold Huppertz
- Division of Cell Biology, Histology and Embryology, Gottfried Schatz Research Center, Medical University of Graz, Graz, Austria
| | - Dagmar Brislinger
- Division of Cell Biology, Histology and Embryology, Gottfried Schatz Research Center, Medical University of Graz, Graz, Austria
| | - Amin El-Heliebi
- Division of Cell Biology, Histology and Embryology, Gottfried Schatz Research Center, Medical University of Graz, Graz, Austria
- Center for Biomarker Research in Medicine (CBmed), Graz, Austria
- BioTechMed, Graz, Austria
| | - Herbert Fluhr
- Department of Obstetrics and Gynaecology, Medical University of Graz, Graz, Austria
| | - Eva Kampelmühler
- Diagnostic and Research Institute of Pathology, Diagnostic and Research Center for Molecular Biomedicine, Medical University of Graz, Graz, Austria
| | - Philipp Klaritsch
- Department of Obstetrics and Gynaecology, Medical University of Graz, Graz, Austria
- Research Unit for Fetal Medicine, Department of Obstetrics and Gynaecology, Medical University of Graz, Graz, Austria
| |
Collapse
|
11
|
Brugger BA, Neuper L, Guettler J, Forstner D, Wernitznig S, Kummer D, Lyssy F, Feichtinger J, Krappinger J, El-Heliebi A, Bonstingl L, Moser G, Rodriguez-Blanco G, Bachkönig OA, Gottschalk B, Gruber M, Nonn O, Herse F, Verlohren S, Frank HG, Barapatre N, Kampfer C, Fluhr H, Desoye G, Gauster M. Fluid shear stress induces a shift from glycolytic to amino acid pathway in human trophoblasts. Cell Biosci 2023; 13:163. [PMID: 37684702 PMCID: PMC10492287 DOI: 10.1186/s13578-023-01114-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Accepted: 08/28/2023] [Indexed: 09/10/2023] Open
Abstract
BACKGROUND The human placenta, a tissue with a lifespan limited to the period of pregnancy, is exposed to varying shear rates by maternal blood perfusion depending on the stage of development. In this study, we aimed to investigate the effects of fluidic shear stress on the human trophoblast transcriptome and metabolism. RESULTS Based on a trophoblast cell line cultured in a fluidic flow system, changes caused by shear stress were analyzed and compared to static conditions. RNA sequencing and bioinformatics analysis revealed an altered transcriptome and enriched gene ontology terms associated with amino acid and mitochondrial metabolism. A decreased GLUT1 expression and reduced glucose uptake, together with downregulated expression of key glycolytic rate-limiting enzymes, hexokinase 2 and phosphofructokinase 1 was observed. Altered mitochondrial ATP levels and mass spectrometry data, suggested a shift in energy production from glycolysis towards mitochondrial oxidative phosphorylation. This shift in energy production could be supported by increased expression of glutamic-oxaloacetic transaminase variants in response to shear stress as well as under low glucose availability or after silencing of GLUT1. The shift towards amino acid metabolic pathways could be supported by significantly altered amino acid levels, like glutamic acid, cysteine and serine. Downregulation of GLUT1 and glycolytic rate-limiting enzymes, with concomitant upregulation of glutamic-oxaloacetic transaminase 2 was confirmed in first trimester placental explants cultured under fluidic flow. In contrast, high fluid shear stress decreased glutamic-oxaloacetic transaminase 2 expression in term placental explants when compared to low flow rates. Placental tissue from pregnancies with intrauterine growth restriction are exposed to high shear rates and showed also decreased glutamic-oxaloacetic transaminase 2, while GLUT1 was unchanged and glycolytic rate-limiting enzymes showed a trend to be upregulated. The results were generated by using qPCR, immunoblots, quantification of immunofluorescent pictures, padlock probe hybridization, mass spectrometry and FRET-based measurement. CONCLUSION Our study suggests that onset of uteroplacental blood flow is accompanied by a shift from a predominant glycolytic- to an alternative amino acid converting metabolism in the villous trophoblast. Rheological changes with excessive fluidic shear stress at the placental surface, may disrupt this alternative amino acid pathway in the syncytiotrophoblast and could contribute to intrauterine growth restriction.
Collapse
Affiliation(s)
- Beatrice Anna Brugger
- Division of Cell Biology, Histology and Embryology, Gottfried Schatz Research Center, Medical University of Graz, Neue Stiftingtalstraße 6, OST V, 8010, Graz, Austria
| | - Lena Neuper
- Division of Cell Biology, Histology and Embryology, Gottfried Schatz Research Center, Medical University of Graz, Neue Stiftingtalstraße 6, OST V, 8010, Graz, Austria
| | - Jacqueline Guettler
- Division of Cell Biology, Histology and Embryology, Gottfried Schatz Research Center, Medical University of Graz, Neue Stiftingtalstraße 6, OST V, 8010, Graz, Austria
| | - Désirée Forstner
- Division of Cell Biology, Histology and Embryology, Gottfried Schatz Research Center, Medical University of Graz, Neue Stiftingtalstraße 6, OST V, 8010, Graz, Austria
| | - Stefan Wernitznig
- Division of Cell Biology, Histology and Embryology, Gottfried Schatz Research Center, Medical University of Graz, Neue Stiftingtalstraße 6, OST V, 8010, Graz, Austria
| | - Daniel Kummer
- Division of Cell Biology, Histology and Embryology, Gottfried Schatz Research Center, Medical University of Graz, Neue Stiftingtalstraße 6, OST V, 8010, Graz, Austria
| | - Freya Lyssy
- Division of Cell Biology, Histology and Embryology, Gottfried Schatz Research Center, Medical University of Graz, Neue Stiftingtalstraße 6, OST V, 8010, Graz, Austria
| | - Julia Feichtinger
- Division of Cell Biology, Histology and Embryology, Gottfried Schatz Research Center, Medical University of Graz, Neue Stiftingtalstraße 6, OST V, 8010, Graz, Austria
| | - Julian Krappinger
- Division of Cell Biology, Histology and Embryology, Gottfried Schatz Research Center, Medical University of Graz, Neue Stiftingtalstraße 6, OST V, 8010, Graz, Austria
| | - Amin El-Heliebi
- Division of Cell Biology, Histology and Embryology, Gottfried Schatz Research Center, Medical University of Graz, Neue Stiftingtalstraße 6, OST V, 8010, Graz, Austria
- Center for Biomarker Research in Medicine (CBmed), Graz, Austria
| | - Lilli Bonstingl
- Division of Cell Biology, Histology and Embryology, Gottfried Schatz Research Center, Medical University of Graz, Neue Stiftingtalstraße 6, OST V, 8010, Graz, Austria
- Center for Biomarker Research in Medicine (CBmed), Graz, Austria
| | - Gerit Moser
- Division of Cell Biology, Histology and Embryology, Gottfried Schatz Research Center, Medical University of Graz, Neue Stiftingtalstraße 6, OST V, 8010, Graz, Austria
| | - Giovanny Rodriguez-Blanco
- Clinical Institute for Medical and Chemical Laboratory Diagnosis, Medical University of Graz, Graz, Austria
| | - Olaf A Bachkönig
- Division of Molecular Biology and Biochemistry, Gottfried Schatz Research Center, Medical University of Graz, Graz, Austria
| | - Benjamin Gottschalk
- Division of Molecular Biology and Biochemistry, Gottfried Schatz Research Center, Medical University of Graz, Graz, Austria
| | - Michael Gruber
- Division of Cell Biology, Histology and Embryology, Gottfried Schatz Research Center, Medical University of Graz, Neue Stiftingtalstraße 6, OST V, 8010, Graz, Austria
| | - Olivia Nonn
- Division of Cell Biology, Histology and Embryology, Gottfried Schatz Research Center, Medical University of Graz, Neue Stiftingtalstraße 6, OST V, 8010, Graz, Austria
- Experimental and Clinical Research Center, a cooperation between the Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association and the Charité-Universitätsmedizin Berlin, Berlin, Germany
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
- Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Florian Herse
- Experimental and Clinical Research Center, a cooperation between the Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association and the Charité-Universitätsmedizin Berlin, Berlin, Germany
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
- Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Stefan Verlohren
- Department of Obstetrics and Gynaecology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Clinic for Obstetrics, Charité Berlin, Berlin, Germany
| | | | | | | | - Herbert Fluhr
- Department of Obstetrics and Gynaecology, Medical University of Graz, Graz, Austria
| | - Gernot Desoye
- Department of Obstetrics and Gynaecology, Medical University of Graz, Graz, Austria
| | - Martin Gauster
- Division of Cell Biology, Histology and Embryology, Gottfried Schatz Research Center, Medical University of Graz, Neue Stiftingtalstraße 6, OST V, 8010, Graz, Austria.
| |
Collapse
|
12
|
Forstner D, Guettler J, Brugger BA, Lyssy F, Neuper L, Daxboeck C, Cvirn G, Fuchs J, Kraeker K, Frolova A, Valdes DS, Stern C, Hirschmugl B, Fluhr H, Wadsack C, Huppertz B, Nonn O, Herse F, Gauster M. CD39 abrogates platelet-derived factors induced IL-1β expression in the human placenta. Front Cell Dev Biol 2023; 11:1183793. [PMID: 37325567 PMCID: PMC10264854 DOI: 10.3389/fcell.2023.1183793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 05/16/2023] [Indexed: 06/17/2023] Open
Abstract
Tissue insults in response to inflammation, hypoxia and ischemia are accompanied by the release of ATP into the extracellular space. There, ATP modulates several pathological processes, including chemotaxis, inflammasome induction and platelet activation. ATP hydrolysis is significantly enhanced in human pregnancy, suggesting that increased conversion of extracellular ATP is an important anti-inflammatory process in preventing exaggerated inflammation, platelet activation and hemostasis in gestation. Extracellular ATP is converted into AMP, and subsequently into adenosine by the two major nucleotide-metabolizing enzymes CD39 and CD73. Here, we aimed to elucidate developmental changes of placental CD39 and CD73 over gestation, compared their expression in placental tissue from patients with preeclampsia and healthy controls, and analyzed their regulation in response to platelet-derived factors and different oxygen conditions in placental explants as well as the trophoblast cell line BeWo. Linear regression analysis showed a significant increase in placental CD39 expression, while at the same time CD73 levels declined at term of pregnancy. Neither maternal smoking during first trimester, fetal sex, maternal age, nor maternal BMI revealed any effects on placental CD39 and CD73 expression. Immunohistochemistry detected both, CD39 and CD73, predominantly in the syncytiotrophoblast layer. Placental CD39 and CD73 expression were significantly increased in pregnancies complicated with preeclampsia, when compared to controls. Cultivation of placental explants under different oxygen conditions had no effect on the ectonucleotidases, whereas presence of platelet releasate from pregnant women led to deregulated CD39 expression. Overexpression of recombinant human CD39 in BeWo cells decreased extracellular ATP levels after culture in presence of platelet-derived factors. Moreover, platelet-derived factors-induced upregulation of the pro-inflammatory cytokine, interleukin-1β, was abolished by CD39 overexpression. Our study shows that placental CD39 is upregulated in preeclampsia, suggesting an increasing demand for extracellular ATP hydrolysis at the utero-placental interface. Increased placental CD39 in response to platelet-derived factors may lead to enhanced conversion of extracellular ATP levels, which in turn could represent an important anti-coagulant defense mechanism of the placenta.
Collapse
Affiliation(s)
- Désirée Forstner
- Division of Cell Biology, Histology and Embryology, Gottfried Schatz Research Center, Medical University of Graz, Graz, Austria
| | - Jacqueline Guettler
- Division of Cell Biology, Histology and Embryology, Gottfried Schatz Research Center, Medical University of Graz, Graz, Austria
| | - Beatrice A. Brugger
- Division of Cell Biology, Histology and Embryology, Gottfried Schatz Research Center, Medical University of Graz, Graz, Austria
| | - Freya Lyssy
- Division of Cell Biology, Histology and Embryology, Gottfried Schatz Research Center, Medical University of Graz, Graz, Austria
| | - Lena Neuper
- Division of Cell Biology, Histology and Embryology, Gottfried Schatz Research Center, Medical University of Graz, Graz, Austria
| | - Christine Daxboeck
- Division of Cell Biology, Histology and Embryology, Gottfried Schatz Research Center, Medical University of Graz, Graz, Austria
| | - Gerhard Cvirn
- Division of Medicinal Chemistry, Otto Loewi Research Center, Medical University of Graz, Graz, Austria
| | - Julia Fuchs
- Division of Medical Physics and Biophysics, Gottfried Schatz Research Center, Medical University of Graz, Graz, Austria
| | - Kristin Kraeker
- Experimental and Clinical Research Center, A Cooperation Between the Max‐Delbrück‐Center for Molecular Medicine in the Helmholtz Association and the Charité—Universitätsmedizin Berlin, Berlin, Germany
- Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt‐Universität zu Berlin, Berlin, Germany
| | - Alina Frolova
- Experimental and Clinical Research Center, A Cooperation Between the Max‐Delbrück‐Center for Molecular Medicine in the Helmholtz Association and the Charité—Universitätsmedizin Berlin, Berlin, Germany
- Max‐Delbrück‐Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
- Institute of Molecular Biology and Genetic of NASU, Kyiv, Ukraine
| | - Daniela S. Valdes
- Experimental and Clinical Research Center, A Cooperation Between the Max‐Delbrück‐Center for Molecular Medicine in the Helmholtz Association and the Charité—Universitätsmedizin Berlin, Berlin, Germany
- Max‐Delbrück‐Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
| | - Christina Stern
- Department of Obstetrics and Gynecology, Medical University of Graz, Graz, Austria
| | - Birgit Hirschmugl
- Department of Obstetrics and Gynecology, Medical University of Graz, Graz, Austria
| | - Herbert Fluhr
- Department of Obstetrics and Gynecology, Medical University of Graz, Graz, Austria
| | - Christian Wadsack
- Department of Obstetrics and Gynecology, Medical University of Graz, Graz, Austria
| | - Berthold Huppertz
- Division of Cell Biology, Histology and Embryology, Gottfried Schatz Research Center, Medical University of Graz, Graz, Austria
| | - Olivia Nonn
- Division of Cell Biology, Histology and Embryology, Gottfried Schatz Research Center, Medical University of Graz, Graz, Austria
- Experimental and Clinical Research Center, A Cooperation Between the Max‐Delbrück‐Center for Molecular Medicine in the Helmholtz Association and the Charité—Universitätsmedizin Berlin, Berlin, Germany
| | - Florian Herse
- Experimental and Clinical Research Center, A Cooperation Between the Max‐Delbrück‐Center for Molecular Medicine in the Helmholtz Association and the Charité—Universitätsmedizin Berlin, Berlin, Germany
- Max‐Delbrück‐Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
| | - Martin Gauster
- Division of Cell Biology, Histology and Embryology, Gottfried Schatz Research Center, Medical University of Graz, Graz, Austria
| |
Collapse
|
13
|
Wang Y, Bai X, Guo X, Gao X, Chen Y, Li H, Fan W, Han C. Bioinformatics analysis combined with clinical sample screening reveals that leptin may be a biomarker of preeclampsia. Front Physiol 2023; 13:1031950. [PMID: 36685185 PMCID: PMC9846503 DOI: 10.3389/fphys.2022.1031950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 12/12/2022] [Indexed: 01/06/2023] Open
Abstract
Introduction: Preeclampsia (PE) is a gestational hypertensive disease with unclear pathogenesis. This study aimed to identify the genes that play an important role in determining the pathogenesis of PE using bioinformatics analysis and fundamental researches. Materials and methods: Datasets from the Gene Expression Omnibus (GEO) database were used to screen for differentially expressed genes (DEGs). The NCBI, SangerBox, and other databases were used to analyze the functions of the DEGs. Targetscan7, miRWalk, ENCORI, DIANA TOOLS, CircBank databases, and the Cytoscape tool were used to construct the lncRNA/circRNA-miRNA- LEP network. SRAMP, RPISeq, RBPsuite, and catRPAID were used to analyze the RNA modifications of LEP. Immune cell infiltration was analyzed using the dataset GSE75010. Placental tissues from normal pregnant women and PE patients were collected, screened for gene expression using reverse transcription quantitative polymerase chain reaction (RT-qPCR) and western blotting. The results were further verified in HTR-8/SVneo cell line hypoxia model and PE mouse model. Results: Our analyses revealed that LEP was significantly upregulated in eight datasets. Kyoto Encyclopedia of Genes and Genomes (KEGG) and Gene Ontology (GO) analyses indicated that LEP was involved in the JAK/STAT signaling pathway, angiogenesis, and placental development. Immune cell infiltration analysis showed that M1 and M2 macrophages differed between normal pregnancies and those in PE patients. A competing endogenous RNA (ceRNA) network was constructed, and proteins interacting with LEP were identified. RNA modification sites of LEP were also identified. Finally, the overexpression of LEP in PE was confirmed in clinical samples, HTR-8/SVneo cell line and PE mouse model. Conclusion: Our results indicate that LEP overexpression is associated with PE and may be a potential diagnostic marker and therapeutic target.
Collapse
Affiliation(s)
- Yajuan Wang
- Department of Gynecology and Obstetrics, Tianjin Medical University General Hospital, Tianjin, China,Tianjin Key Laboratory of Female Reproductive Health and Eugenics, Tianjin Medical University General Hospital, Tianjin, China
| | - Xuening Bai
- Department of Gynecology and Obstetrics, Tianjin Medical University General Hospital, Tianjin, China,Tianjin Key Laboratory of Female Reproductive Health and Eugenics, Tianjin Medical University General Hospital, Tianjin, China
| | - Xin Guo
- Department of Gynecology and Obstetrics, Tianjin Medical University General Hospital, Tianjin, China,Tianjin Key Laboratory of Female Reproductive Health and Eugenics, Tianjin Medical University General Hospital, Tianjin, China
| | - Xiaoli Gao
- Department of Gynecology and Obstetrics, Tianjin Medical University General Hospital, Tianjin, China,Tianjin Key Laboratory of Female Reproductive Health and Eugenics, Tianjin Medical University General Hospital, Tianjin, China
| | - Yuanyuan Chen
- Department of Gynecology and Obstetrics, Tianjin Medical University General Hospital, Tianjin, China,Tianjin Key Laboratory of Female Reproductive Health and Eugenics, Tianjin Medical University General Hospital, Tianjin, China
| | - Huanrong Li
- Department of Gynecology and Obstetrics, Tianjin Medical University General Hospital, Tianjin, China,Tianjin Key Laboratory of Female Reproductive Health and Eugenics, Tianjin Medical University General Hospital, Tianjin, China
| | - Wenjun Fan
- Department of Gynecology and Obstetrics, Tianjin Medical University General Hospital, Tianjin, China,Tianjin Key Laboratory of Female Reproductive Health and Eugenics, Tianjin Medical University General Hospital, Tianjin, China
| | - Cha Han
- Department of Gynecology and Obstetrics, Tianjin Medical University General Hospital, Tianjin, China,Tianjin Key Laboratory of Female Reproductive Health and Eugenics, Tianjin Medical University General Hospital, Tianjin, China,*Correspondence: Cha Han,
| |
Collapse
|
14
|
Neuper L, Kummer D, Forstner D, Guettler J, Ghaffari-Tabrizi-Wizsy N, Fischer C, Juch H, Nonn O, Gauster M. Candesartan Does Not Activate PPARγ and Its Target Genes in Early Gestation Trophoblasts. Int J Mol Sci 2022; 23:ijms232012326. [PMID: 36293183 PMCID: PMC9603971 DOI: 10.3390/ijms232012326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 10/08/2022] [Accepted: 10/10/2022] [Indexed: 11/30/2022] Open
Abstract
Angiotensin II receptor 1 blockers are commonly used to treat hypertension in women of childbearing age. While the fetotoxic effects of these drugs in the second and third trimesters of pregnancy are well documented, their possible impacts on placenta development in early gestation are unknown. Candesartan, a member of this group, also acts as a peroxisome proliferator-activated receptor gamma (PPARγ) agonist, a key regulator shown to be important for placental development. We have previously shown that trophoblasts do not express the candesartan target-receptor angiotensin II type 1 receptor AGTR1. This study investigated the possible role of candesartan on trophoblastic PPARγ and its hallmark target genes in early gestation. Candesartan did not affect the PPARγ protein expression or nuclear translocation of PPARγ. To mimic extravillous trophoblasts (EVTs) and cytotrophoblast/syncytiotrophoblast (CTB/SCT) responses to candesartan, we used trophoblast cell models BeWo (for CTB/SCT) and SGHPL-4 (EVT) cells as well as placental explants. In vitro, the RT-qPCR analysis showed no effect of candesartan treatment on PPARγ target genes in BeWo or SGHPL-4 cells. Treatment with positive control rosiglitazone, another PPARγ agonist, led to decreased expressions of LEP and PPARG1 in BeWo cells and an increased expression of PPARG1 in SGHPL-4 cells. Our previous data showed early gestation-placental AGTR1 expression in fetal myofibroblasts only. In a CAM assay, AGTR1 was stimulated with angiotensin II and showed increased on-plant vessel outgrowth. These results suggest candesartan does not negatively affect PPARγ or its target genes in human trophoblasts. More likely, candesartan from maternal serum may first act on fetal-placental AGTR1 and influence angiogenesis in the placenta, warranting further research.
Collapse
Affiliation(s)
- Lena Neuper
- Division of Cell Biology, Histology and Embryology, Gottfried Schatz Research Center, Medical University of Graz, 8010 Graz, Austria
| | - Daniel Kummer
- Division of Cell Biology, Histology and Embryology, Gottfried Schatz Research Center, Medical University of Graz, 8010 Graz, Austria
| | - Désirée Forstner
- Division of Cell Biology, Histology and Embryology, Gottfried Schatz Research Center, Medical University of Graz, 8010 Graz, Austria
| | - Jacqueline Guettler
- Division of Cell Biology, Histology and Embryology, Gottfried Schatz Research Center, Medical University of Graz, 8010 Graz, Austria
| | - Nassim Ghaffari-Tabrizi-Wizsy
- Division of Immunology, Otto Loewi Research Center for Vascular Biology, Immunology and Inflammation, Medical University of Graz, 8010 Graz, Austria
| | - Cornelius Fischer
- Institute for Medical Systems Biology (BIMSB), 10115 Berlin, Germany
| | - Herbert Juch
- Division of Cell Biology, Histology and Embryology, Gottfried Schatz Research Center, Medical University of Graz, 8010 Graz, Austria
- Diagnostic and Research Institute for Human Genetics, Diagnostic and Research Center for Molecular BioMedicine, Medical University of Graz, 8010 Graz, Austria
| | - Olivia Nonn
- Division of Cell Biology, Histology and Embryology, Gottfried Schatz Research Center, Medical University of Graz, 8010 Graz, Austria
- Experimental and Clinical Research Center, a Cooperation between the Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association and the Charité—Universitätsmedizin Berlin, 13125 Berlin, Germany
- Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt—Universität zu Berlin, 10117 Berlin, Germany
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), 13125 Berlin, Germany
- Correspondence:
| | - Martin Gauster
- Division of Cell Biology, Histology and Embryology, Gottfried Schatz Research Center, Medical University of Graz, 8010 Graz, Austria
| |
Collapse
|
15
|
Shangguan Y, Wang Y, Shi W, Guo R, Zeng Z, Hu W, Cai W, Yan Q, Xu Y, Tang D, Dai Y. Systematic proteomics analysis of lysine acetylation reveals critical features of placental proteins in pregnant women with preeclampsia. J Cell Mol Med 2021; 25:10614-10626. [PMID: 34697885 PMCID: PMC8581308 DOI: 10.1111/jcmm.16997] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 09/01/2021] [Accepted: 09/30/2021] [Indexed: 12/14/2022] Open
Abstract
Preeclampsia (PE) is a dangerous hypertensive disorder that occurs during pregnancy. The specific aetiology and pathogenesis of PE have yet to be clarified. To better reveal the specific pathogenesis of PE, we characterized the proteome and acetyl proteome (acetylome) profile of placental tissue from PE and normal-term pregnancy by label-free quantification proteomics technology and PRM analysis. In this research, 373 differentially expressed proteins (DEPs) were identified by proteome analysis. Functional enrichment analysis revealed significant enrichment of DEPs related to angiogenesis and the immune system. COL12A1, C4BPA and F13A1 may be potential biomarkers for PE diagnosis and new therapeutic targets. Additionally, 700 Kac sites were identified on 585 differentially acetylated proteins (DAPs) by acetylome analyses. These DAPs may participate in the occurrence and development of PE by affecting the complement and coagulation cascades pathway, which may have important implications for better understand the pathogenesis of PE. In conclusion, this study systematically analysed the reveals critical features of placental proteins in pregnant women with PE, providing a resource for exploring the contribution of lysine acetylation modification to PE.
Collapse
Affiliation(s)
- Yu Shangguan
- Clinical Medical Research CenterGuangdong Provincial Engineering Research Center of Autoimmune Disease Precision MedicineShenzhen Engineering Research Center of Autoimmune DiseaseThe Second Clinical Medical College of Jinan University, The First Affiliated Hospital of Southern University of Science and TechnologyShenzhen People's HospitalShenzhenChina
- Guangxi Key Laboratory of Metabolic Disease ResearchNephrology Department924st HospitalGuilinChina
- College of Life ScienceGuangxi Normal UniversityGuilinChina
| | - Yinglan Wang
- Clinical Medical Research CenterGuangdong Provincial Engineering Research Center of Autoimmune Disease Precision MedicineShenzhen Engineering Research Center of Autoimmune DiseaseThe Second Clinical Medical College of Jinan University, The First Affiliated Hospital of Southern University of Science and TechnologyShenzhen People's HospitalShenzhenChina
| | - Wei Shi
- Clinical Medical Research CenterGuangdong Provincial Engineering Research Center of Autoimmune Disease Precision MedicineShenzhen Engineering Research Center of Autoimmune DiseaseThe Second Clinical Medical College of Jinan University, The First Affiliated Hospital of Southern University of Science and TechnologyShenzhen People's HospitalShenzhenChina
| | - Ruonan Guo
- Clinical Medical Research CenterGuangdong Provincial Engineering Research Center of Autoimmune Disease Precision MedicineShenzhen Engineering Research Center of Autoimmune DiseaseThe Second Clinical Medical College of Jinan University, The First Affiliated Hospital of Southern University of Science and TechnologyShenzhen People's HospitalShenzhenChina
| | - Zhipeng Zeng
- Clinical Medical Research CenterGuangdong Provincial Engineering Research Center of Autoimmune Disease Precision MedicineShenzhen Engineering Research Center of Autoimmune DiseaseThe Second Clinical Medical College of Jinan University, The First Affiliated Hospital of Southern University of Science and TechnologyShenzhen People's HospitalShenzhenChina
| | - Wenlong Hu
- Clinical Medical Research CenterGuangdong Provincial Engineering Research Center of Autoimmune Disease Precision MedicineShenzhen Engineering Research Center of Autoimmune DiseaseThe Second Clinical Medical College of Jinan University, The First Affiliated Hospital of Southern University of Science and TechnologyShenzhen People's HospitalShenzhenChina
| | - Wanxia Cai
- Clinical Medical Research CenterGuangdong Provincial Engineering Research Center of Autoimmune Disease Precision MedicineShenzhen Engineering Research Center of Autoimmune DiseaseThe Second Clinical Medical College of Jinan University, The First Affiliated Hospital of Southern University of Science and TechnologyShenzhen People's HospitalShenzhenChina
| | - Qiang Yan
- Guangxi Key Laboratory of Metabolic Disease ResearchNephrology Department924st HospitalGuilinChina
- College of Life ScienceGuangxi Normal UniversityGuilinChina
| | - Yong Xu
- Clinical Medical Research CenterGuangdong Provincial Engineering Research Center of Autoimmune Disease Precision MedicineShenzhen Engineering Research Center of Autoimmune DiseaseThe Second Clinical Medical College of Jinan University, The First Affiliated Hospital of Southern University of Science and TechnologyShenzhen People's HospitalShenzhenChina
| | - Donge Tang
- Clinical Medical Research CenterGuangdong Provincial Engineering Research Center of Autoimmune Disease Precision MedicineShenzhen Engineering Research Center of Autoimmune DiseaseThe Second Clinical Medical College of Jinan University, The First Affiliated Hospital of Southern University of Science and TechnologyShenzhen People's HospitalShenzhenChina
| | - Yong Dai
- Clinical Medical Research CenterGuangdong Provincial Engineering Research Center of Autoimmune Disease Precision MedicineShenzhen Engineering Research Center of Autoimmune DiseaseThe Second Clinical Medical College of Jinan University, The First Affiliated Hospital of Southern University of Science and TechnologyShenzhen People's HospitalShenzhenChina
- Guangxi Key Laboratory of Metabolic Disease ResearchNephrology Department924st HospitalGuilinChina
| |
Collapse
|
16
|
Inno R, Kikas T, Lillepea K, Laan M. Coordinated Expressional Landscape of the Human Placental miRNome and Transcriptome. Front Cell Dev Biol 2021; 9:697947. [PMID: 34368147 PMCID: PMC8334369 DOI: 10.3389/fcell.2021.697947] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Accepted: 06/28/2021] [Indexed: 12/12/2022] Open
Abstract
Placenta is a unique organ that serves its own function, and contributes to maternal gestational adaptation and fetal development. Coordination of its transcriptome to satisfy all the maternal-fetal needs across gestation is not fully understood. MicroRNAs are powerful transcriptome modulators capable to adjust rapidly the expression level and dynamics of large gene sets. This MiR-Seq based study presents a multi-omics investigation of the human placental miRNome and its synergy with the transcriptome. The analysis included 52 placentas representing three trimesters of normal pregnancy, and term cases of late-onset preeclampsia (LO-PE), gestational diabetes and affected fetal growth. Gestational-age dependent differential expression (FDR < 0.05) was detected for 319 of 417 tested miRNAs (76.5%). A shared list of target genes of dynamic miRNAs suggested their coordinated action. The most abundant miR-143-3p revealed as a marker for pregnancy progression. The data suggested critical, but distinct roles of placenta-specific imprinted C19MC and C14MC miRNA clusters. Paternally encoded primate-specific C19MC was highly transcribed during first trimester, potentially fine-tuning the early placental transcriptome in dosage-sensitive manner. Maternally encoded eutherian C14MC showed high expression until term, underlining its key contribution across gestation. A major shift in placental miRNome (16% miRNAs) was observed in LO-PE, but not in other term pregnancy complications. Notably, 13/38 upregulated miRNAs were transcribed from C19MC and only one from C14MC, whereas 11/28 downregulated miRNAs represented C14MC and none C19MC. miR-210-3p, miR-512-5p, miR-32-5p, miR-19a-3p, miR-590-3p, miR-379-5p were differentially expressed in LO-PE and cases of small-for-gestational-age newborns, supporting a shared etiology. Expression correlation analysis with the RNA-Seq data (16,567 genes) of the same samples clustered PE-linked miRNAs into five groups. Large notable clusters of miRNA–gene pairs showing directly and inversely correlated expression dynamics suggested potential functional relationships in both scenarios. The first genome-wide study of placental miR-eQTLs identified 66 placental SNVs associated with the expression of neighboring miRNAs, including PE-linked miRNAs miR-30a-5p, miR-210-3p, miR-490-3p and miR-518-5p. This study provided a rich catalog of miRNAs for further in-depth investigations of their individual and joint effect on placental transcriptome. Several highlighted miRNAs may serve as potential biomarkers for pregnancy monitoring and targets to prevent or treat gestational disorders.
Collapse
Affiliation(s)
- Rain Inno
- Human Genetics Research Group, Institute of Biomedicine and Translational Medicine, Faculty of Medicine, University of Tartu, Tartu, Estonia
| | - Triin Kikas
- Human Genetics Research Group, Institute of Biomedicine and Translational Medicine, Faculty of Medicine, University of Tartu, Tartu, Estonia
| | - Kristiina Lillepea
- Human Genetics Research Group, Institute of Biomedicine and Translational Medicine, Faculty of Medicine, University of Tartu, Tartu, Estonia
| | - Maris Laan
- Human Genetics Research Group, Institute of Biomedicine and Translational Medicine, Faculty of Medicine, University of Tartu, Tartu, Estonia
| |
Collapse
|
17
|
Sun Y, Tan L, Neuman RI, Broekhuizen M, Schoenmakers S, Lu X, Danser AHJ. Megalin, Proton Pump Inhibitors and the Renin-Angiotensin System in Healthy and Pre-Eclamptic Placentas. Int J Mol Sci 2021; 22:ijms22147407. [PMID: 34299027 PMCID: PMC8306182 DOI: 10.3390/ijms22147407] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 07/06/2021] [Accepted: 07/08/2021] [Indexed: 12/22/2022] Open
Abstract
Soluble Fms-like tyrosine kinase-1 (sFlt-1) is increased in pre-eclampsia. The proton pump inhibitor (PPI) lowers sFlt-1, while angiotensin increases it. To investigate whether PPIs lower sFlt-1 by suppressing placental renin–angiotensin system (RAS) activity, we studied gene expression and protein abundance of RAS components, including megalin, a novel endocytic receptor for prorenin and renin, in placental tissue obtained from healthy pregnant women and women with early-onset pre-eclampsia. Renin, ACE, ACE2, and the angiotensin receptors were expressed at identical levels in healthy and pre-eclamptic placentas, while both the (pro)renin receptor and megalin were increased in the latter. Placental prorenin levels were upregulated in pre-eclamptic pregnancies. Angiotensinogen protein, but not mRNA, was detectable in placental tissue, implying that it originates from maternal blood. Ex vivo placental perfusion revealed a complete washout of angiotensinogen, while prorenin release remained constant. The PPI esomeprazole dose-dependently reduced megalin/(pro)renin receptor-mediated renin uptake in Brown Norway yolk sac epithelial cells and decreased sFlt-1 secretion from placental villous explants. Megalin inhibition blocked angiotensinogen uptake in epithelial cells. In conclusion, our data suggest that placental RAS activity depends on angiotensinogen taken up from the maternal systemic circulation. PPIs might interfere with placental (pro)renin-AGT uptake/transport, thereby reducing angiotensin formation as well as angiotensin-induced sFlt-1 synthesis.
Collapse
Affiliation(s)
- Yuan Sun
- Division of Pharmacology and Vascular Medicine, Department of Internal Medicine, Erasmus MC, 3015 CN Rotterdam, The Netherlands; (Y.S.); (L.T.); (R.I.N.); (M.B.)
- Department of Pharmacology, College of Pharmacy, Shenzhen Technology University, Shenzhen 518118, China
- Health Science Center, Department of Physiology, Shenzhen University, Shenzhen 518061, China;
| | - Lunbo Tan
- Division of Pharmacology and Vascular Medicine, Department of Internal Medicine, Erasmus MC, 3015 CN Rotterdam, The Netherlands; (Y.S.); (L.T.); (R.I.N.); (M.B.)
- Health Science Center, Department of Physiology, Shenzhen University, Shenzhen 518061, China;
| | - Rugina I. Neuman
- Division of Pharmacology and Vascular Medicine, Department of Internal Medicine, Erasmus MC, 3015 CN Rotterdam, The Netherlands; (Y.S.); (L.T.); (R.I.N.); (M.B.)
| | - Michelle Broekhuizen
- Division of Pharmacology and Vascular Medicine, Department of Internal Medicine, Erasmus MC, 3015 CN Rotterdam, The Netherlands; (Y.S.); (L.T.); (R.I.N.); (M.B.)
- Division of Neonatology, Department of Pediatrics, Erasmus MC, 3015 CN Rotterdam, The Netherlands
| | - Sam Schoenmakers
- Department of Obstetrics and Gynaecology, Erasmus MC, 3015 CN Rotterdam, The Netherlands;
| | - Xifeng Lu
- Health Science Center, Department of Physiology, Shenzhen University, Shenzhen 518061, China;
| | - A. H. Jan Danser
- Division of Pharmacology and Vascular Medicine, Department of Internal Medicine, Erasmus MC, 3015 CN Rotterdam, The Netherlands; (Y.S.); (L.T.); (R.I.N.); (M.B.)
- Correspondence: ; Tel.: +31-10-7043540
| |
Collapse
|
18
|
Obesity-associated cardiovascular risk in women: hypertension and heart failure. Clin Sci (Lond) 2021; 135:1523-1544. [PMID: 34160010 DOI: 10.1042/cs20210384] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 05/14/2021] [Accepted: 06/07/2021] [Indexed: 02/07/2023]
Abstract
The pathogenesis of obesity-associated cardiovascular diseases begins long prior to the presentation of a cardiovascular event. In both men and women, cardiovascular events, and their associated hospitalizations and mortality, are often clinically predisposed by the presentation of a chronic cardiovascular risk factor. Obesity increases the risk of cardiovascular diseases in both sexes, however, the clinical prevalence of obesity, as well as its contribution to crucial cardiovascular risk factors is dependent on sex. The mechanisms via which obesity leads to cardiovascular risk is also discrepant in women between their premenopausal, pregnancy and postmenopausal phases of life. Emerging data indicate that at all reproductive statuses and ages, the presentation of a cardiovascular event in obese women is strongly associated with hypertension and its subsequent chronic risk factor, heart failure with preserved ejection fraction (HFpEF). In addition, emerging evidence indicates that obesity increases the risk of both hypertension and heart failure in pregnancy. This review will summarize clinical and experimental data on the female-specific prevalence and mechanisms of hypertension and heart failure in women across reproductive stages and highlight the particular risks in pregnancy as well as emerging data in a high-risk ethnicity in women of African ancestry (AA).
Collapse
|