1
|
Lv R, Hu G, Zhang S, Zhang Z, Chen J, Wang K, Wang Z, Jin Z. Assessing abdominal aortic aneurysm growth using radiomic features of perivascular adipose tissue after endovascular repair. Insights Imaging 2024; 15:232. [PMID: 39349886 PMCID: PMC11442904 DOI: 10.1186/s13244-024-01804-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Accepted: 08/27/2024] [Indexed: 10/04/2024] Open
Abstract
OBJECTIVES The study aimed to investigate the relationship between the radiomic features of perivascular adipose tissue (PVAT) and abdominal aortic aneurysm (AAA) growth after endovascular aneurysm repair (EVAR). METHODS Patients with sub-renal AAA who underwent regular follow-up after EVAR between March 2014 and March 2024 were retrospectively collected. Two radiologists segmented aneurysms and PVAT. Patients were categorised into growing and non-growing groups based on volumetric changes observed in two follow-up computed tomography examinations. One hundred seven radiomic features were automatically extracted from the PVAT region. Univariable and multivariable logistic regression was performed to analyse radiomic features and clinical characteristics. Furthermore, the performance of the integrated clinico-radiological model was compared with models using only radiomic features or clinical characteristics separately. RESULTS A total of 79 patients (68 ± 9 years, 89% men) were enroled in this study, 19 of whom had a growing aneurysm. Compared to the non-growing group, PVAT of growing AAA showed a higher surface area to volume ratio (non-growing vs growing, 0.63 vs 0.70, p = 0.04), and a trend of low dependence and high dispersion manifested by texture features (p < 0.05). The area under the curve of the integrated clinico-radiological model was 0.78 (95% confidence intervals 0.65-0.91), with a specificity of 87%. The integrated model outperformed models using only radiomic or clinical features separately (0.78 vs 0.69 vs 0.69). CONCLUSIONS Higher surface area to volume ratio and more heterogeneous texture presentation of PVAT were associated with aneurysm dilation after EVAR. Radiomic features of PVAT have the potential to predict AAA progression. CLINICAL RELEVANCE STATEMENT Radiomic features of PVAT are associated with AAA progression and can be an independent risk factor for aneurysm dilatation to assist clinicians in postoperative patient surveillance and management. KEY POINTS After EVAR for AAA, patients require monitoring for progression. PVAT surrounding growing AAA after EVAR exhibits a more heterogeneous texture. Integrating PVAT-related features and clinical features results in better predictive performance.
Collapse
Affiliation(s)
- Rui Lv
- Department of Radiology, State Key Laboratory of Complex Severe and Rare Disease, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Ge Hu
- Theranostics and Translational Research Center, National Infrastructures for Translational Medicine, Institute of Clinical Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Shenbo Zhang
- Department of Radiology, State Key Laboratory of Complex Severe and Rare Disease, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Zhe Zhang
- Department of Radiology, State Key Laboratory of Complex Severe and Rare Disease, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jin Chen
- Department of Radiology, State Key Laboratory of Complex Severe and Rare Disease, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Kefei Wang
- Department of Radiology, State Key Laboratory of Complex Severe and Rare Disease, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Zhiwei Wang
- Department of Radiology, State Key Laboratory of Complex Severe and Rare Disease, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| | - Zhengyu Jin
- Department of Radiology, State Key Laboratory of Complex Severe and Rare Disease, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| |
Collapse
|
2
|
Momenzadeh A, Kreimer S, Guo D, Ayres M, Berman D, Chyu KY, Shah PK, Milewicz D, Azizzadeh A, Meyer JG, Parker S. Differentiation between Descending Thoracic Aortic Diseases using Machine Learning and Plasma Proteomic Signatures. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.26.538468. [PMID: 37162892 PMCID: PMC10168345 DOI: 10.1101/2023.04.26.538468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Background Descending thoracic aortic aneurysms and dissections can go undetected until severe and catastrophic, and few clinical indices exist to screen for aneurysms or predict risk of dissection. Methods This study generated a plasma proteomic dataset from 75 patients with descending type B dissection (Type B) and 62 patients with descending thoracic aortic aneurysm (DTAA). Standard statistical approaches were compared to supervised machine learning (ML) algorithms to distinguish Type B from DTAA cases. Quantitatively similar proteins were clustered based on linkage distance from hierarchical clustering and ML models were trained with uncorrelated protein lists across various linkage distances with hyperparameter optimization using 5-fold cross validation. Permutation importance (PI) was used for ranking the most important predictor proteins of ML classification between disease states and the proteins among the top 10 PI protein groups were submitted for pathway analysis. Results Of the 1,549 peptides and 198 proteins used in this study, no peptides and only one protein, hemopexin (HPX), were significantly different at an adjusted p-value <0.01 between Type B and DTAA cases. The highest performing model on the training set (Support Vector Classifier) and its corresponding linkage distance (0.5) were used for evaluation of the test set, yielding a precision-recall area under the curve of 0.7 to classify between Type B from DTAA cases. The five proteins with the highest PI scores were immunoglobulin heavy variable 6-1 (IGHV6-1), lecithin-cholesterol acyltransferase (LCAT), coagulation factor 12 (F12), HPX, and immunoglobulin heavy variable 4-4 (IGHV4-4). All proteins from the top 10 most important correlated groups generated the following significantly enriched pathways in the plasma of Type B versus DTAA patients: complement activation, humoral immune response, and blood coagulation. Conclusions We conclude that ML may be useful in differentiating the plasma proteome of highly similar disease states that would otherwise not be distinguishable using statistics, and, in such cases, ML may enable prioritizing important proteins for model prediction.
Collapse
Affiliation(s)
- Amanda Momenzadeh
- Department of Computational Biomedicine, Cedars Sinai Medical Center, Los Angeles, California, USA
- Advanced Clinical Biosystems Research Institute, Cedars Sinai Medical Center, Los Angeles, California, USA
- Smidt Heart Institute, Cedars Sinai Medical Center, Los Angeles, California, USA
| | - Simion Kreimer
- Advanced Clinical Biosystems Research Institute, Cedars Sinai Medical Center, Los Angeles, California, USA
- Smidt Heart Institute, Cedars Sinai Medical Center, Los Angeles, California, USA
| | - Dongchuan Guo
- Department of Internal Medicine, McGovern Medical School, University of Texas Health Science Center, Houston, Texas
| | - Matthew Ayres
- Advanced Clinical Biosystems Research Institute, Cedars Sinai Medical Center, Los Angeles, California, USA
| | - Daniel Berman
- Smidt Heart Institute, Cedars Sinai Medical Center, Los Angeles, California, USA
- Cedars-Sinai Imaging Department, Cedars Sinai Medical Center, Lost Angeles, California, USA
| | - Kuang-Yuh Chyu
- Smidt Heart Institute, Cedars Sinai Medical Center, Los Angeles, California, USA
| | - Prediman K Shah
- Smidt Heart Institute, Cedars Sinai Medical Center, Los Angeles, California, USA
| | - Dianna Milewicz
- Department of Internal Medicine, McGovern Medical School, University of Texas Health Science Center, Houston, Texas
| | - Ali Azizzadeh
- Smidt Heart Institute, Cedars Sinai Medical Center, Los Angeles, California, USA
| | - Jesse G. Meyer
- Department of Computational Biomedicine, Cedars Sinai Medical Center, Los Angeles, California, USA
- Advanced Clinical Biosystems Research Institute, Cedars Sinai Medical Center, Los Angeles, California, USA
- Smidt Heart Institute, Cedars Sinai Medical Center, Los Angeles, California, USA
| | - Sarah Parker
- Advanced Clinical Biosystems Research Institute, Cedars Sinai Medical Center, Los Angeles, California, USA
- Smidt Heart Institute, Cedars Sinai Medical Center, Los Angeles, California, USA
- Department of Biomedical Sciences, Cedars Sinai Medical Center, Los Angeles California, USA
| |
Collapse
|
3
|
Monsour M, Croci DM, Grüter BE, Taussky P, Marbacher S, Agazzi S. Cerebral Aneurysm and Interleukin-6: a Key Player in Aneurysm Generation and Rupture or Just One of the Multiple Factors? Transl Stroke Res 2023; 14:631-639. [PMID: 36042111 DOI: 10.1007/s12975-022-01079-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 08/08/2022] [Accepted: 08/25/2022] [Indexed: 10/14/2022]
Abstract
Intracranial aneurysm (IA) rupture is a common cause of subarachnoid hemorrhage (SAH) with high mortality and morbidity. Inflammatory interleukins (IL), such as IL-6, play an important role in the occurrence and rupture of IA causing SAH. With this review we aim to elucidate the specific role of IL-6 in aneurysm formation and rupture in preclinical and clinical studies. IL-6 is a novel cytokine in that it has pro-inflammatory and anti-inflammatory signaling pathways. In preclinical and clinical studies of IA formation, elevated and reduced levels of IL-6 are reported. Poor post-rupture prognosis and increased rupture risk, however, are associated with higher levels of IL-6. By better understanding the relationships between IL-6 and IA formation and rupture, IL-6 may serve as a biomarker in high-risk populations. Furthermore, by better understanding the IL-6 signaling mechanisms in IA formation and rupture, IL-6 may optimize surveillance and treatment strategies. This review examines the association between IL-6 and IA, while also suggesting future research directions.
Collapse
Affiliation(s)
- Molly Monsour
- Morsani College of Medicine, University of South Florida, 12901 Bruce B. Downs Blvd, Tampa, FL, 33612, USA
| | - Davide Marco Croci
- Department of Neurosurgery and Brain Repair, Morsani College of Medicine, University of South Florida, Tampa, FL, USA.
| | - Basil E Grüter
- Program for Regenerative Neuroscience, Department for BioMedical Research, University of Bern, Bern, Switzerland
- Department of Neurosurgery, Kantonsspital Aarau, c/o NeuroResearch Office, Tellstrasse 1, 5001, Aarau, Switzerland
| | - Philipp Taussky
- Department of Neurosurgery, Clinical Neurosciences Center, University of Utah, 175 N Medical Drive East, Salt Lake City, UT, 84132, USA
| | - Serge Marbacher
- Program for Regenerative Neuroscience, Department for BioMedical Research, University of Bern, Bern, Switzerland
- Department of Neurosurgery, Kantonsspital Aarau, c/o NeuroResearch Office, Tellstrasse 1, 5001, Aarau, Switzerland
| | - Siviero Agazzi
- Department of Neurosurgery and Brain Repair, Morsani College of Medicine, University of South Florida, Tampa, FL, USA
| |
Collapse
|
4
|
Zhang K, Zhang J, Kan C, Tian H, Ma Y, Huang N, Han F, Hou N, Sun X. Role of dysfunctional peri-organ adipose tissue in metabolic disease. Biochimie 2023; 212:12-20. [PMID: 37019205 DOI: 10.1016/j.biochi.2023.03.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Revised: 03/21/2023] [Accepted: 03/30/2023] [Indexed: 04/07/2023]
Abstract
Metabolic disease is a complex disorder defined by a group with interrelated factors. There is growing evidence that obesity can lead to a variety of metabolic diseases, including diabetes and cardiovascular disease. Excessive adipose tissue (AT) deposition and ectopic accumulation can lead to increased peri-organ AT thickness. Dysregulation of peri-organ (perivascular, perirenal, and epicardial) AT is strongly associated with metabolic disease and its complications. The mechanisms include secretion of cytokines, activation of immunocytes, infiltration of inflammatory cells, involvement of stromal cells, and abnormal miRNA expression. This review discusses the associations and mechanisms by which various types of peri-organ AT affect metabolic diseases while addressing it as a potential future treatment strategy.
Collapse
Affiliation(s)
- Kexin Zhang
- Department of Endocrinology and Metabolism, Affiliated Hospital of Weifang Medical University, Weifang, China; Clinical Research Center, Affiliated Hospital of Weifang Medical University, Weifang, China
| | - Jingwen Zhang
- Department of Endocrinology and Metabolism, Affiliated Hospital of Weifang Medical University, Weifang, China; Clinical Research Center, Affiliated Hospital of Weifang Medical University, Weifang, China
| | - Chengxia Kan
- Department of Endocrinology and Metabolism, Affiliated Hospital of Weifang Medical University, Weifang, China; Clinical Research Center, Affiliated Hospital of Weifang Medical University, Weifang, China
| | - Hongzhan Tian
- Department of Endocrinology and Metabolism, Affiliated Hospital of Weifang Medical University, Weifang, China; Clinical Research Center, Affiliated Hospital of Weifang Medical University, Weifang, China
| | - Yanhui Ma
- Department of Endocrinology and Metabolism, Affiliated Hospital of Weifang Medical University, Weifang, China; Clinical Research Center, Affiliated Hospital of Weifang Medical University, Weifang, China; Department of Pathology, Affiliated Hospital of Weifang Medical University, Weifang, China
| | - Na Huang
- Department of Endocrinology and Metabolism, Affiliated Hospital of Weifang Medical University, Weifang, China; Clinical Research Center, Affiliated Hospital of Weifang Medical University, Weifang, China
| | - Fang Han
- Department of Endocrinology and Metabolism, Affiliated Hospital of Weifang Medical University, Weifang, China; Clinical Research Center, Affiliated Hospital of Weifang Medical University, Weifang, China; Department of Pathology, Affiliated Hospital of Weifang Medical University, Weifang, China
| | - Ningning Hou
- Department of Endocrinology and Metabolism, Affiliated Hospital of Weifang Medical University, Weifang, China; Clinical Research Center, Affiliated Hospital of Weifang Medical University, Weifang, China.
| | - Xiaodong Sun
- Department of Endocrinology and Metabolism, Affiliated Hospital of Weifang Medical University, Weifang, China; Clinical Research Center, Affiliated Hospital of Weifang Medical University, Weifang, China.
| |
Collapse
|
5
|
Ahmed A, Bibi A, Valoti M, Fusi F. Perivascular Adipose Tissue and Vascular Smooth Muscle Tone: Friends or Foes? Cells 2023; 12:cells12081196. [PMID: 37190105 DOI: 10.3390/cells12081196] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Revised: 04/09/2023] [Accepted: 04/15/2023] [Indexed: 05/17/2023] Open
Abstract
Perivascular adipose tissue (PVAT) is a specialized type of adipose tissue that surrounds most mammalian blood vessels. PVAT is a metabolically active, endocrine organ capable of regulating blood vessel tone, endothelium function, vascular smooth muscle cell growth and proliferation, and contributing critically to cardiovascular disease onset and progression. In the context of vascular tone regulation, under physiological conditions, PVAT exerts a potent anticontractile effect by releasing a plethora of vasoactive substances, including NO, H2S, H2O2, prostacyclin, palmitic acid methyl ester, angiotensin 1-7, adiponectin, leptin, and omentin. However, under certain pathophysiological conditions, PVAT exerts pro-contractile effects by decreasing the production of anticontractile and increasing that of pro-contractile factors, including superoxide anion, angiotensin II, catecholamines, prostaglandins, chemerin, resistin, and visfatin. The present review discusses the regulatory effect of PVAT on vascular tone and the factors involved. In this scenario, dissecting the precise role of PVAT is a prerequisite to the development of PVAT-targeted therapies.
Collapse
Affiliation(s)
- Amer Ahmed
- Department of Life Sciences, University of Siena, Via Aldo Moro 2, 53100 Siena, Italy
| | - Aasia Bibi
- Nanotechnology Institute, CNR-NANOTEC, Via Monteroni, 73100 Lecce, Italy
| | - Massimo Valoti
- Department of Life Sciences, University of Siena, Via Aldo Moro 2, 53100 Siena, Italy
| | - Fabio Fusi
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Via Aldo Moro 2, 53100 Siena, Italy
| |
Collapse
|
6
|
Kugo H, Sugiura Y, Fujishima R, Jo S, Mishima H, Sugamoto E, Tanaka H, Yamaguchi S, Ikeda Y, Hirano KI, Moriyama T, Zaima N. Tricaprin can prevent the development of AAA by attenuating aortic degeneration. Biomed Pharmacother 2023; 160:114299. [PMID: 36724640 DOI: 10.1016/j.biopha.2023.114299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 01/20/2023] [Accepted: 01/20/2023] [Indexed: 01/31/2023] Open
Abstract
Medical therapeutic options to prevent rupture of abdominal aortic aneurysm (AAA), a critical event, must be developed. Moreover, further understanding of the process of AAA development and rupture is crucial. Previous studies have revealed that aortic hypoperfusion can induce the development of AAA, and we successfully developed a hypoperfusion-induced AAA animal model. In this study, we examined the effects of medium-chain triglycerides (MCTs), tricaprylin (C8-TG) and tricaprin (C10-TG), on hypoperfusion-induced AAA rat model. We estimated the effects of MCTs on aortic pathologies, mechanical properties of the aorta, and development of AAA. C10-TG, but not C8-TG, significantly suppressed AAA development and completely prevented the rupture. We observed that C10-TG prevented the development and rupture of AAA, but not C8-TG. Additionally, regression of AAA diameter was observed in the C10-TG group. Pathological analysis revealed C10-TG improved the hypoperfusion-induced increase in hypoxia-inducible factor-1α levels, medial smooth muscle cells (SMCs) loss, degeneration of aortic elastin and collagen fibers, and loss of aortic wall elasticity. In addition, regression of the formed AAA was observed by administration of C10-TG after AAA formation. C10-TG administration after AAA formation improved degeneration of AAA wall including degradation of aortic elastin and collagen fibers, stenosis of vasa vasorum, and loss of medial SMCs. These data suggest C10-TG can prevent AAA by attenuating aortic hypoperfusion and degeneration. Considering the clinical safety of C10-TG, C10-TG can be a promising AAA drug candidate.
Collapse
Affiliation(s)
- Hirona Kugo
- Department of Applied Biological Chemistry, Graduate School of Agriculture, Kindai University, 204-3327 Nakamachi, Nara City, Nara 631-8505, Japan
| | - Yuki Sugiura
- Department of Biochemistry, Keio University School of Medicine, 35 Shinanomachi, Shinjyuku-ku, Tokyo 160-8582, Japan
| | - Rena Fujishima
- Department of Applied Biological Chemistry, Graduate School of Agriculture, Kindai University, 204-3327 Nakamachi, Nara City, Nara 631-8505, Japan
| | - Shintou Jo
- Department of Applied Biological Chemistry, Graduate School of Agriculture, Kindai University, 204-3327 Nakamachi, Nara City, Nara 631-8505, Japan
| | - Hirotaka Mishima
- Department of Applied Biological Chemistry, Graduate School of Agriculture, Kindai University, 204-3327 Nakamachi, Nara City, Nara 631-8505, Japan
| | - Erina Sugamoto
- Department of Applied Biological Chemistry, Graduate School of Agriculture, Kindai University, 204-3327 Nakamachi, Nara City, Nara 631-8505, Japan
| | - Hiroki Tanaka
- Department of Medical Physiology, Hamamatsu University School of Medicine, Hamamatsu 431-3192, Japan
| | - Satoshi Yamaguchi
- Laboratory of Cardiovascular Disease, Novel, Non-Invasive, and Nutritional Therapeutics (CNT), Department of Triglyceride Science, Graduate School of Medicine, Osaka University, 6-2-3 Furuedai, Suita, Osaka 565-0874, Japan
| | - Yoshihiko Ikeda
- Laboratory of Cardiovascular Disease, Novel, Non-Invasive, and Nutritional Therapeutics (CNT), Department of Triglyceride Science, Graduate School of Medicine, Osaka University, 6-2-3 Furuedai, Suita, Osaka 565-0874, Japan; Department of Pathology, National Cerebral and Cardiovascular Center, Suita, Osaka 564-8565, Japan
| | - Ken-Ichi Hirano
- Laboratory of Cardiovascular Disease, Novel, Non-Invasive, and Nutritional Therapeutics (CNT), Department of Triglyceride Science, Graduate School of Medicine, Osaka University, 6-2-3 Furuedai, Suita, Osaka 565-0874, Japan
| | - Tatsuya Moriyama
- Department of Applied Biological Chemistry, Graduate School of Agriculture, Kindai University, 204-3327 Nakamachi, Nara City, Nara 631-8505, Japan; Agricultural Technology and Innovation Research Institute, Kindai University, 204-3327 Nakamachi, Nara City, Nara 631-8505, Japan
| | - Nobuhiro Zaima
- Department of Applied Biological Chemistry, Graduate School of Agriculture, Kindai University, 204-3327 Nakamachi, Nara City, Nara 631-8505, Japan; Agricultural Technology and Innovation Research Institute, Kindai University, 204-3327 Nakamachi, Nara City, Nara 631-8505, Japan.
| |
Collapse
|
7
|
Weaver LM, Loftin CD, Zhan CG. Development of pharmacotherapies for abdominal aortic aneurysms. Biomed Pharmacother 2022; 153:113340. [PMID: 35780618 PMCID: PMC9514980 DOI: 10.1016/j.biopha.2022.113340] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Revised: 06/13/2022] [Accepted: 06/24/2022] [Indexed: 11/23/2022] Open
Abstract
The cardiovascular field is still searching for a treatment for abdominal aortic aneurysms (AAA). This inflammatory disease often goes undiagnosed until a late stage and associated rupture has a high mortality rate. No pharmacological treatment options are available. Three hallmark factors of AAA pathology include inflammation, extracellular matrix remodeling, and vascular smooth muscle dysfunction. Here we discuss drugs for AAA treatment that have been studied in clinical trials by examining the drug targets and data present for each drug's ability to regulate the aforementioned three hallmark pathways in AAA progression. Historically, drugs that were examined in interventional clinical trials for treatment of AAA were repurposed therapeutics. Novel treatments (biologics, small-molecule compounds etc.) have not been able to reach the clinic, stalling out in pre-clinical studies. Here we discuss the backgrounds of previous investigational drugs in hopes of better informing future development of potential therapeutics. Overall, the highlighted themes discussed here stress the importance of both centralized anti-inflammatory drug targets and rigor of translatability. Exceedingly few murine studies have examined an intervention-based drug treatment in halting further growth of an established AAA despite interventional treatment being the therapeutic approach taken to treat AAA in a clinical setting. Additionally, data suggest that a potentially successful drug target may be a central inflammatory biomarker. Specifically, one that can effectively modulate all three hallmark factors of AAA formation, not just inflammation. It is suggested that inhibiting PGE2 formation with an mPGES-1 inhibitor is a leading drug target for AAA treatment to this end.
Collapse
Affiliation(s)
- Lauren M Weaver
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, 789 South Limestone Street, Lexington, KY 40536, USA.
| | - Charles D Loftin
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, 789 South Limestone Street, Lexington, KY 40536, USA.
| | - Chang-Guo Zhan
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, 789 South Limestone Street, Lexington, KY 40536, USA; Molecular Modeling and Biopharmaceutical Center, College of Pharmacy, University of Kentucky, 789 South Limestone Street, Lexington, KY 40536, USA.
| |
Collapse
|
8
|
Gao H, Wang L, Ren J, Liu Y, Liang S, Zhang B, Sun X. Interleukin 2 receptor subunit beta as a novel hub gene plays a potential role in the immune microenvironment of abdominal aortic aneurysms. Gene 2022; 827:146472. [PMID: 35381314 DOI: 10.1016/j.gene.2022.146472] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 03/23/2022] [Accepted: 03/31/2022] [Indexed: 12/14/2022]
Abstract
BACKGROUND Abdominal aortic aneurysm (AAA) is potentially life threatening and characterized by immune-inflammatory cell infiltration and extracellular matrix degradation. Currently, pharmacotherapy mainly aims to control risk factors without reversion of the dilated aorta. This study analyzed the immune-inflammatory response and identified the immune-related hub genes of AAA. METHOD Gene Expression Omnibus datasets (GSE57691, GSE47472 and GSE7084) were downloaded. After identification of GSE57691 differentially expressed genes (DEGs), weighted gene co-expression network analysis of the DEGs was performed. Through enrichment analysis of each module and screening in Immunology Database and Analysis Portal, immune-related hub genes were identified via protein-protein interaction (PPI) network construction and lasso regression. CIBERSORT was utilized to analyze AAA immune infiltration. The correlations between the immune-related hub genes and infiltrating immune cells were investigated. Receiver operating characteristic (ROC) curve analysis was performed to determine immune-related hub gene cutoff values, which were validated in GSE47472 and GSE7084. RESULT In GSE57691, 1,018 DEGs were identified. Five modules were identified in the co-expression network. The blue and green modules were found to be related to immune-inflammatory responses, and 61 immune-related genes were identified. PPI and lasso regression analyses identified FOS, IL-6 and IL2RB as AAA immune-related hub genes. CIBERSORT analysis indicated significantly increased infiltration of naive B cells, memory activated CD4 T cells, follicular helper T cells, monocytes and M1 macrophages and significantly decreased infiltration of M2 macrophages in AAA compared with normal samples. IL2RB was more strongly associated with immune infiltration in AAA than were FOS and IL6. The IL2RB area under the ROC curve (AUC) value was > 0.9 in both the training and validation set, demonstrating its strong, stable diagnostic value in AAA. CONCLUSION AAA and normal samples had different immune infiltration statuses. IL2RB was identified as an immune-related hub gene and a potential hub gene with significant diagnostic value in AAA.
Collapse
Affiliation(s)
- Haoyu Gao
- Department of Cardiovascular Surgery, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Luchen Wang
- Department of Cardiovascular Surgery, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jie Ren
- Department of Cardiovascular Surgery, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yanxiang Liu
- Department of Cardiovascular Surgery, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Shenghua Liang
- Department of Cardiovascular Surgery, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Bowen Zhang
- Department of Cardiovascular Surgery, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xiaogang Sun
- Department of Cardiovascular Surgery, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| |
Collapse
|
9
|
Bezhaeva T, Karper J, Quax PHA, de Vries MR. The Intriguing Role of TLR Accessory Molecules in Cardiovascular Health and Disease. Front Cardiovasc Med 2022; 9:820962. [PMID: 35237675 PMCID: PMC8884272 DOI: 10.3389/fcvm.2022.820962] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Accepted: 01/19/2022] [Indexed: 12/12/2022] Open
Abstract
Activation of Toll like receptors (TLR) plays an important role in cardiovascular disease development, progression and outcomes. Complex TLR mediated signaling affects vascular and cardiac function including tissue remodeling and repair. Being central components of both innate and adaptive arms of the immune system, TLRs interact as pattern recognition receptors with a series of exogenous ligands and endogenous molecules or so-called danger associated molecular patterns (DAMPs) that are released upon tissue injury and cellular stress. Besides immune cells, a number of structural cells within the cardiovascular system, including endothelial cells, smooth muscle cells, fibroblasts and cardiac myocytes express TLRs and are able to release or sense DAMPs. Local activation of TLR-mediated signaling cascade induces cardiovascular tissue repair but in a presence of constant stimuli can overshoot and cause chronic inflammation and tissue damage. TLR accessory molecules are essential in guiding and dampening these responses toward an adequate reaction. Furthermore, accessory molecules assure specific and exclusive TLR-mediated signal transduction for distinct cells and pathways involved in the pathogenesis of cardiovascular diseases. Although much has been learned about TLRs activation in cardiovascular remodeling, the exact role of TLR accessory molecules is not entirely understood. Deeper understanding of the role of TLR accessory molecules in cardiovascular system may open therapeutic avenues aiming at manipulation of inflammatory response in cardiovascular disease. The present review outlines accessory molecules for membrane TLRs that are involved in cardiovascular disease progression. We first summarize the up-to-date knowledge on TLR signaling focusing on membrane TLRs and their ligands that play a key role in cardiovascular system. We then survey the current evidence of the contribution of TLRs accessory molecules in vascular and cardiac remodeling including myocardial infarction, heart failure, stroke, atherosclerosis, vein graft disease and arterio-venous fistula failure.
Collapse
Affiliation(s)
- Taisiya Bezhaeva
- Department of Surgery and Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, Netherlands
| | - Jacco Karper
- Department of Cardiology, Wilhelmina Hospital Assen, Assen, Netherlands
| | - Paul H. A. Quax
- Department of Surgery and Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, Netherlands
| | - Margreet R. de Vries
- Department of Surgery and Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, Netherlands
- *Correspondence: Margreet R. de Vries
| |
Collapse
|
10
|
Kessler V, Klopf J, Eilenberg W, Neumayer C, Brostjan C. AAA Revisited: A Comprehensive Review of Risk Factors, Management, and Hallmarks of Pathogenesis. Biomedicines 2022; 10:94. [PMID: 35052774 PMCID: PMC8773452 DOI: 10.3390/biomedicines10010094] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 12/30/2021] [Indexed: 01/27/2023] Open
Abstract
Despite declining incidence and mortality rates in many countries, the abdominal aortic aneurysm (AAA) continues to represent a life-threatening cardiovascular condition with an overall prevalence of about 2-3% in the industrialized world. While the risk of AAA development is considerably higher for men of advanced age with a history of smoking, screening programs serve to detect the often asymptomatic condition and prevent aortic rupture with an associated death rate of up to 80%. This review summarizes the current knowledge on identified risk factors, the multifactorial process of pathogenesis, as well as the latest advances in medical treatment and surgical repair to provide a perspective for AAA management.
Collapse
Affiliation(s)
| | | | | | | | - Christine Brostjan
- Department of General Surgery, Division of Vascular Surgery, Medical University of Vienna, Vienna General Hospital, 1090 Vienna, Austria; (V.K.); (J.K.); (W.E.); (C.N.)
| |
Collapse
|
11
|
Qiu R, Chen S, Hua F, Bian S, Chen J, Li G, Wu X. Betanin Prevents Experimental Abdominal Aortic Aneurysm Progression by Modulating the TLR4/NF-κB and Nrf2/HO-1 Pathways. Biol Pharm Bull 2021; 44:1254-1262. [PMID: 34471054 DOI: 10.1248/bpb.b21-00042] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Betanin, a bioactive ingredient mostly isolated from beetroots, exhibits a protective effect against cardiovascular diseases. However, its effects on abdominal aortic aneurysm (AAA) have not been elucidated. In this study, an AAA model was constructed by infusion of porcine pancreatic elastase in C57BL/6 mice. Mice were then administered with betanin or saline intragastrically once daily for 14 d. Our results showed that treatment with betanin remarkably limited AAA enlargement and mitigated the infiltration of inflammatory cells in the adventitia. The increased expression of proinflammatory cytokines and matrix metalloproteinases (MMPs) was also significantly alleviated following betanin treatment. Furthermore, betanin suppressed the activation of toll-like receptor 4 (TLR4)/nuclear factor-kappaB (NF-κB) signaling in the aortic wall, and downregulated the levels of tissue-reactive oxygen species as well as circulating 8-isoprostane by stimulating the nuclear factor-E2-related factor 2 (Nrf2)/heme oxygenase-1 (HO-1) pathway. Taken together, these data suggest that betanin may attenuate AAA progression and may be used as a therapeutic drug against AAA.
Collapse
Affiliation(s)
- Renfeng Qiu
- Department of Vascular Surgery, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University.,Department of Vascular Surgery, Shouguang People Hospital
| | - Shuxiao Chen
- Department of Vascular Surgery, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University
| | - Fang Hua
- Department of Clinical Laboratory, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University
| | - Shuai Bian
- Department of Vascular Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University
| | - Jianfeng Chen
- Department of Vascular Surgery, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University
| | - Gang Li
- Department of Vascular Surgery, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University.,Department of Vascular Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University
| | - Xuejun Wu
- Department of Vascular Surgery, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University.,Department of Vascular Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University
| |
Collapse
|
12
|
Chen Y, Qin Z, Wang Y, Li X, Zheng Y, Liu Y. Role of Inflammation in Vascular Disease-Related Perivascular Adipose Tissue Dysfunction. Front Endocrinol (Lausanne) 2021; 12:710842. [PMID: 34456867 PMCID: PMC8385491 DOI: 10.3389/fendo.2021.710842] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Accepted: 07/21/2021] [Indexed: 12/12/2022] Open
Abstract
Perivascular adipose tissue (PVAT) is the connective tissue around most blood vessels throughout the body. It provides mechanical support and maintains vascular homeostasis in a paracrine/endocrine manner. Under physiological conditions, PVAT has anti-inflammatory effects, improves free fatty acid metabolism, and regulates vasodilation. In pathological conditions, PVAT is dysfunctional, secretes many anti-vasodilator factors, and participates in vascular inflammation through various cells and mediators; thus, it causes dysfunction involving vascular smooth muscle cells and endothelial cells. Inflammation is an important pathophysiological event in many vascular diseases, such as vascular aging, atherosclerosis, and hypertension. Therefore, the pro-inflammatory crosstalk between PVAT and blood vessels may comprise a novel therapeutic target for the prevention and treatment of vascular diseases. In this review, we summarize findings concerning PVAT function and inflammation in different pathophysiological backgrounds, focusing on the secretory functions of PVAT and the crosstalk between PVAT and vascular inflammation in terms of vascular aging, atherosclerosis, hypertension, diabetes mellitus, and other diseases. We also discuss anti-inflammatory treatment for potential vascular diseases involving PVAT.
Collapse
Affiliation(s)
- Yaozhi Chen
- Center for Cardiovascular Medicine, First Hospital of Jilin University, Changchun, China
| | - Zeyu Qin
- Department of Respiratory Medicine, First Hospital of Jilin University, Changchun, China
| | - Yaqiong Wang
- Department of Endocrinology and Metabolism, First Hospital of Jilin University, Changchun, China
| | - Xin Li
- Center for Cardiovascular Medicine, First Hospital of Jilin University, Changchun, China
| | - Yang Zheng
- Center for Cardiovascular Medicine, First Hospital of Jilin University, Changchun, China
- *Correspondence: Yunxia Liu, ; Yang Zheng,
| | - Yunxia Liu
- Center for Cardiovascular Medicine, First Hospital of Jilin University, Changchun, China
- *Correspondence: Yunxia Liu, ; Yang Zheng,
| |
Collapse
|
13
|
Ye T, Zhang G, Liu H, Shi J, Qiu H, Liu Y, Han F, Hou N. Relationships Between Perivascular Adipose Tissue and Abdominal Aortic Aneurysms. Front Endocrinol (Lausanne) 2021; 12:704845. [PMID: 34194399 PMCID: PMC8236981 DOI: 10.3389/fendo.2021.704845] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Accepted: 05/25/2021] [Indexed: 02/05/2023] Open
Abstract
Abdominal aortic aneurysms (AAAs) are typically asymptomatic, and there is a high mortality rate associated with aneurysm rupture. AAA pathogenesis involves extracellular matrix degradation, vascular smooth muscle cell phenotype switching, inflammation, and oxidative stress. There is increasing evidence of excessive adipocyte accumulation in ruptured AAA walls. These excessive numbers of adipocytes in the vascular wall have been closely linked with AAA progression. Perivascular adipose tissue (PVAT), a unique type of adipose tissue, can be involved in adipocyte accumulation in the AAA wall. PVAT produces various chemokines and adipocytokines around vessels to maintain vascular homeostasis through paracrine and autocrine mechanisms in normal physiological conditions. Nevertheless, PVAT loses its normal function and promotes the progression of vascular diseases in pathological conditions. There is evidence of significantly reduced AAA diameter in vessel walls of removed PVAT. There is a need to highlight the critical roles of cytokines, cells, and microRNA derived from PVAT in the regulation of AAA development. PVAT may constitute an important therapeutic target for the prevention and treatment of AAAs. In this review, we discuss the relationship between PVAT and AAA development; we also highlight the potential for PVAT-derived factors to serve as a therapeutic target in the treatment of AAAs.
Collapse
Affiliation(s)
- Tongtong Ye
- Department of Endocrinology, Affiliated Hospital of Weifang Medical University, Weifang, China
- Clinical Research Center, Affiliated Hospital of Weifang Medical University, Weifang, China
| | - Guangdong Zhang
- Department of Endocrinology, Affiliated Hospital of Weifang Medical University, Weifang, China
| | - Hangyu Liu
- Department of Ophthalmology, Weifang Eye Hospital, Weifang, China
| | - Junfeng Shi
- Department of Endocrinology, Affiliated Hospital of Weifang Medical University, Weifang, China
- Clinical Research Center, Affiliated Hospital of Weifang Medical University, Weifang, China
| | - Hongyan Qiu
- Department of Endocrinology, Affiliated Hospital of Weifang Medical University, Weifang, China
- Clinical Research Center, Affiliated Hospital of Weifang Medical University, Weifang, China
| | - Yongping Liu
- Department of Endocrinology, Affiliated Hospital of Weifang Medical University, Weifang, China
- Clinical Research Center, Affiliated Hospital of Weifang Medical University, Weifang, China
| | - Fang Han
- Department of Pathology, Affiliated Hospital of Weifang Medical University, Weifang, China
- *Correspondence: Ningning Hou, ; Fang Han,
| | - Ningning Hou
- Department of Endocrinology, Affiliated Hospital of Weifang Medical University, Weifang, China
- *Correspondence: Ningning Hou, ; Fang Han,
| |
Collapse
|
14
|
Chen S, Yang D, Liu B, Chen Y, Ye W, Chen M, Zheng Y. Identification of crucial genes mediating abdominal aortic aneurysm pathogenesis based on gene expression profiling of perivascular adipose tissue by WGCNA. ANNALS OF TRANSLATIONAL MEDICINE 2021; 9:52. [PMID: 33553345 PMCID: PMC7859787 DOI: 10.21037/atm-20-3758] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Background With a mortality rate of 65–85%, a ruptured abdominal aortic aneurysm (AAA) can have catastrophic consequences for patients. However, few effective pharmaceutical treatments are available to treat this condition. Therefore, elucidating the pathogenesis of AAA and finding the potential molecular targets for medical therapies are vital lines of research. Methods An mRNA microarray dataset of perivascular adipose tissue (PVAT) in AAA patients was downloaded and differentially expressed gene (DEG) screening was performed. Weighted gene co-expression networks for dilated and non-dilated PVAT samples were constructed via weighted correlation network analysis (WGCNA) and used to detect gene modules. Functional annotation analysis was performed for the DEGs and gene modules. We identified the hub genes of the modules and created a DEG co-expression network. We then mined crucial genes based on this network using Molecular Complex Detection (MCODE) in Cytoscape. Crucial genes with top-6 degree in the crucial gene cluster were visualized, and their potential clinical significance was determined. Results Of the 173 DEGs screened, 99 were upregulated and 74 were downregulated. Co-expression networks were built and we detected 6 and 5 modules for dilated and non-dilated PVAT samples, respectively. The turquoise and black modules for dilated PVAT samples were related to inflammation and immune response. MAP4K1 and PROK2 were the hub genes of these 2 modules, respectively. Then a DEG co-expression network with 112 nodes and 953 edges was created. PLAU was the crucial gene with the highest connectivity and showed potential clinical significance. Conclusions Using WGCNA, gene modules were detected and hub genes and crucial genes were identified. These crucial genes might be potential targets for pharmaceutic therapies and have potential clinical significance. Future in vitro and in vivo experiments are required to more comprehensively explore the biological mechanisms by which these genes affect AAA pathogenesis
Collapse
Affiliation(s)
- Siliang Chen
- Department of Vascular Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Dan Yang
- Department of Computational Biology and Bioinformatics, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Bao Liu
- Department of Vascular Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yuexin Chen
- Department of Vascular Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - We Ye
- Department of Vascular Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Mengyin Chen
- Department of Vascular Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yuehong Zheng
- Department of Vascular Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
15
|
Nie H, Qiu J, Wen S, Zhou W. Combining Bioinformatics Techniques to Study the Key Immune-Related Genes in Abdominal Aortic Aneurysm. Front Genet 2020; 11:579215. [PMID: 33362847 PMCID: PMC7758434 DOI: 10.3389/fgene.2020.579215] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Accepted: 11/10/2020] [Indexed: 12/28/2022] Open
Abstract
Approximately 13,000 people die of an abdominal aortic aneurysm (AAA) every year. This study aimed to identify the immune response-related genes that play important roles in AAA using bioinformatics approaches. We downloaded the GSE57691 and GSE98278 datasets related to AAA from the Gene Expression Omnibus database, which included 80 AAA and 10 normal vascular samples. CIBERSORT was used to analyze the samples and detect the infiltration of 22 types of immune cells and their differences and correlations. The principal component analysis showed significant differences in the infiltration of immune cells between normal vascular and AAA samples. High proportions of CD4+ T cells, activated mast cells, resting natural killer cells, and 12 other types of immune cells were found in normal vascular tissues, whereas high proportions of macrophages, CD8+ T cells, resting mast cells, and six other types of immune cells were found in AAA tissues. In the selected samples, we identified 39 upregulated (involved in growth factor activity, hormone receptor binding, and cytokine receptor activity) and 133 downregulated genes (involved in T cell activation, cell chemotaxis, and regulation of immune response mediators). The key differentially expressed immune response-related genes were screened using the STRING database and Cytoscape software. Two downregulated genes, PI3 and MAP2K1, and three upregulated genes, SSTR1, GPER1, and CCR10, were identified by constructing a protein-protein interaction network. Functional enrichment of the differentially expressed genes was analyzed, and the expression of the five key genes in AAA samples was verified using quantitative polymerase chain reaction, which revealed that MAP2K1 was downregulated in AAA, whereas SSTR1, GEPR1, and CCR10 were upregulated; there was no significant difference in PI3 expression. Our study shows that normal vascular and AAA samples can be distinguished via the infiltration of immune cells. Five genes, PI3, MAP2K1, SSTR1, GPER1, and CCR10, may play important roles in the development, diagnosis, and treatment of AAA.
Collapse
Affiliation(s)
- Han Nie
- Department of Vascular Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Jiacong Qiu
- Divison of Vascular Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Si Wen
- Xinjian District People's Hospital of Jiangxi Province, Jiangxi, China
| | - Weimin Zhou
- Department of Vascular Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| |
Collapse
|
16
|
Knappich C, Spin JM, Eckstein HH, Tsao PS, Maegdefessel L. Involvement of Myeloid Cells and Noncoding RNA in Abdominal Aortic Aneurysm Disease. Antioxid Redox Signal 2020; 33:602-620. [PMID: 31989839 PMCID: PMC7455479 DOI: 10.1089/ars.2020.8035] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Significance: Abdominal aortic aneurysm (AAA) is a potentially fatal condition, featuring the possibility of high-mortality rupture. To date, prophylactic surgery by means of open surgical repair or endovascular aortic repair at specific thresholds is considered standard therapy. Both surgical options hold different risk profiles of short- and long-term morbidity and mortality. Targeting early stages of AAA development to decelerate disease progression is desirable. Recent Advances: Understanding the pathomechanisms that initiate formation, maintain growth, and promote rupture of AAA is crucial to developing new medical therapeutic options. Inflammatory cells, in particular macrophages, have been investigated for their contribution to AAA disease for decades, whereas evidence on lymphocytes, mast cells, and neutrophils is sparse. Recently, there has been increasing interest in noncoding RNAs (ncRNAs) and their involvement in disease development, including AAA. Critical Issues: The current evidence on myeloid cells and ncRNAs in AAA largely originates from small animal models, making clinical extrapolation difficult. Although it is feasible to collect surgical human AAA samples, these tissues reflect end-stage disease, preventing examination of critical mechanisms behind early AAA formation. Future Directions: Gaining more insight into how myeloid cells and ncRNAs contribute to AAA disease, particularly in early stages, might suggest nonsurgical AAA treatment options. The utilization of large animal models might be helpful in this context to help bridge translational results to humans.
Collapse
Affiliation(s)
- Christoph Knappich
- Department for Vascular and Endovascular Surgery, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Joshua M Spin
- Division of Cardiovascular Medicine, Stanford University School of Medicine, Stanford, California, USA
| | - Hans-Henning Eckstein
- Department for Vascular and Endovascular Surgery, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Philip S Tsao
- Division of Cardiovascular Medicine, Stanford University School of Medicine, Stanford, California, USA
| | - Lars Maegdefessel
- Department for Vascular and Endovascular Surgery, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany.,Department of Medicine, Karolinska Institute, Stockholm, Sweden
| |
Collapse
|
17
|
Characterization and Significance of Monocytes in Acute Stanford Type B Aortic Dissection. J Immunol Res 2020; 2020:9670360. [PMID: 32509885 PMCID: PMC7245667 DOI: 10.1155/2020/9670360] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Accepted: 02/05/2020] [Indexed: 01/16/2023] Open
Abstract
Acute aortic dissection (AAD) is one of the most common fatal diseases noted in vascular surgery. Human monocytes circulate in dynamic equilibrium and display a considerable heterogeneity. However, the role of monocytes in AAD remains elusive. In our recent study, we firstly obtained blood samples from 22 patients with Stanford type B AAD and 44 age-, sex-, and comorbidity-matched control subjects. And the monocyte proportions were evaluated by flow cytometry. Results showed that the percentage of total CD14+ monocytes in the blood samples of Stanford AAD patients was increased significantly compared with that of normal volunteers (P < 0.0005), and the absolute numbers of CD14brightCD16+ and CD14brightCD16− monocytes both increased significantly regardless of the percentage of PBMC or CD14+ cells, while CD14dimCD16+ monocytes displayed the opposite tendency. However, the percentage of CD14+ cells and its three subsets demonstrated no correlation with D-dimer (DD) and C-reactive protein (CRP). Then, blood mononuclear cell (PBMC) samples were collected by Ficoll density gradient centrifugation, followed with CD14+ magnetic bead sorting. After the purity of CD14+ cells was validated over 90%, AAD-related genes were concentrated in CD14+ monocytes. There were no significant differences observed with regard to the mRNA expression levels of MMP1 (P = 0.0946), MMP2 (P = 0.3941), MMP9 (P = 0.2919), IL-6 (P = 0.4223), and IL-10 (P = 0.3375) of the CD14+ monocytes in Stanford type B AAD patients compared with those of normal volunteers. The expression levels of IL-17 (P < 0.05) was higher in Stanford type B AAD patients, while the expression levels of TIMP1(P<0.05), TIMP2(P<0.01), TGF-β1 (P < 0.01), SMAD3 (P < 0.01), ACTA2 (P < 0.001), and ADAMTS-1 (P < 0.001) decreased. The data suggested that monocytes might play an important role in the development of Stanford type B AAD. Understanding of the production, differentiation, and function of monocyte subsets might dictate future therapeutic avenues for Stanford type B AAD treatment and can aid the identification of novel biomarkers or potential therapeutic targets for decreasing inflammation in AAD.
Collapse
|
18
|
Liu B, Granville DJ, Golledge J, Kassiri Z. Pathogenic mechanisms and the potential of drug therapies for aortic aneurysm. Am J Physiol Heart Circ Physiol 2020; 318:H652-H670. [PMID: 32083977 PMCID: PMC7099451 DOI: 10.1152/ajpheart.00621.2019] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Revised: 02/13/2020] [Accepted: 02/13/2020] [Indexed: 12/14/2022]
Abstract
Aortic aneurysm is a permanent focal dilation of the aorta. It is usually an asymptomatic disease but can lead to sudden death due to aortic rupture. Aortic aneurysm-related mortalities are estimated at ∼200,000 deaths per year worldwide. Because no pharmacological treatment has been found to be effective so far, surgical repair remains the only treatment for aortic aneurysm. Aortic aneurysm results from changes in the aortic wall structure due to loss of smooth muscle cells and degradation of the extracellular matrix and can form in different regions of the aorta. Research over the past decade has identified novel contributors to aneurysm formation and progression. The present review provides an overview of cellular and noncellular factors as well as enzymes that process extracellular matrix and regulate cellular functions (e.g., matrix metalloproteinases, granzymes, and cathepsins) in the context of aneurysm pathogenesis. An update of clinical trials focusing on therapeutic strategies to slow abdominal aortic aneurysm growth and efforts underway to develop effective pharmacological treatments is also provided.
Collapse
Affiliation(s)
- Bo Liu
- University of Wisconsin, Madison, Department of Surgery, Madison Wisconsin
| | - David J Granville
- International Collaboration on Repair Discoveries Centre and University of British Columbia Centre for Heart Lung Innovation, Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Jonathan Golledge
- The Queensland Research Centre for Peripheral Vascular Disease, College of Medicine and Dentistry, James Cook University, Department of Vascular and Endovascular Surgery, Townsville Hospital and Health Services, Townsville, Queensland, Australia
| | - Zamaneh Kassiri
- University of Alberta, Department of Physiology, Cardiovascular Research Center, Faculty of Medicine and Dentistry, Edmonton, Alberta, Canada
| |
Collapse
|
19
|
Ren J, Han Y, Ren T, Fang H, Xu X, Lun Y, Jiang H, Xin S, Zhang J. AEBP1 Promotes the Occurrence and Development of Abdominal Aortic Aneurysm by Modulating Inflammation via the NF-κB Pathway. J Atheroscler Thromb 2020; 27:255-270. [PMID: 31462616 PMCID: PMC7113137 DOI: 10.5551/jat.49106] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2019] [Accepted: 06/13/2019] [Indexed: 01/03/2023] Open
Abstract
AIM Inflammation plays a significant role in the pathogenesis of human abdominal aortic aneurysm (AAA). AEBP1 can promote activation of the NF-κB pathway, subsequently affecting the expression of NF-κB target genes, including inflammatory cytokines and matrix metalloproteinases (MMPs). Our objective was to examine the role of AEBP1 in the development of AAA and characterize the underlying mechanism. METHODS ITRAQ, RT-PCR, western blot, immunohistochemistry, and ELISA were used to compare different experimental groups with the controls and to determine the differentially expressed genes. We generated an AAA model using porcine pancreatic elastase in Sprague-Dawley rats and silenced their AEBP1 in vivo by adenoviruses injected intra-adventitially. We also silenced or overexpressed AEBP1 in human vascular smooth muscle cells in vitro in the presence and in the absence of NF-κB inhibitor BAY 11-7082. RESULTS Proteome iTRAQ revealed a high expression of AEBP1 in AAA patients, which was verified by qRT-PCR, western blot, immunohistochemistry, and ELISA. The mean expression level of AEBP1 in AAA patients was higher than that in controls. Along with AEBP1 upregulation, we also verified mis-activation of NF-κB in human AAA samples. The in vivo studies indicated that AEBP1 knockdown suppressed AAA progression. Finally, the in vitro studies illustrated that AEBP1 promotes activation of the NF-κB pathway, subsequently upregulating pro-inflammatory factors and MMPs. CONCLUSIONS Our results indicate a role of AEBP1 in the pathogenesis of AAA and provide a novel insight into how AEBP1 causes the development of AAA by activating the NF-κB pathway.
Collapse
Affiliation(s)
- Jiancong Ren
- Department of Vascular & Thyroid Surgery, the First Hospital, China Medical University, Shenyang, China
| | - Yanshuo Han
- Department of General Surgery, Shengjing Hospital, China Medical University, Shenyang, China
| | - Tongming Ren
- Department of Anatomy Laboratory, Xinxiang Medical College, Xinxiang, China
| | - Hong Fang
- Department of Pancreatic Surgery, the First Hospital, China Medical University, Shenyang, China
| | - Xiaohan Xu
- Department of Anesthesiology, the First Hospital, China Medical University, Shenyang, China
| | - Yu Lun
- Department of Vascular & Thyroid Surgery, the First Hospital, China Medical University, Shenyang, China
| | - Han Jiang
- Department of Vascular & Thyroid Surgery, the First Hospital, China Medical University, Shenyang, China
| | - Shijie Xin
- Department of Vascular & Thyroid Surgery, the First Hospital, China Medical University, Shenyang, China
| | - Jian Zhang
- Department of Vascular & Thyroid Surgery, the First Hospital, China Medical University, Shenyang, China
| |
Collapse
|
20
|
Kugo H, Moriyama T, Zaima N. The role of perivascular adipose tissue in the appearance of ectopic adipocytes in the abdominal aortic aneurysmal wall. Adipocyte 2019; 8:229-239. [PMID: 31250691 PMCID: PMC6768265 DOI: 10.1080/21623945.2019.1636625] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Abdominal aortic aneurysm (AAA) is a vascular disease characterized by the dilation of the abdominal aorta, resulting in a high mortality rate caused by vascular rupture. Previous studies have suggested that the abnormal appearance of adipocytes in the vascular wall is associated with the development of AAA. However, the mechanisms underlying the appearance of the ectopic adipocytes remain unknown. In this study, we showed that CD44+CD90+ MSCs express adipogenic transcription factors in the AAA wall of a hypoperfusion-induced AAA model. The number of CD44+CD90+ cells and adipocytes in the AAA wall significantly decreased in the perivascular adipose tissue (PVAT)-removed vascular wall. The AAA diameter significantly decreased in the PVAT-removed vascular wall compared with that in the vascular wall with PVAT. These data suggested that PVAT plays important roles in the differentiation of MSCs into adipocytes in response to vascular hypoperfusion. The decreased number of adipocytes in the PVAT-removed vascular wall might be associated with the decreased AAA diameter.
Collapse
Affiliation(s)
- Hirona Kugo
- Department of Applied Biological Chemistry, Graduate School of Agriculture, Kindai University, Nara, Japan
| | - Tatsuya Moriyama
- Department of Applied Biological Chemistry, Graduate School of Agriculture, Kindai University, Nara, Japan
- Agricultural Technology and Innovation Research Institute, Kindai University, Nara, Japan
| | - Nobuhiro Zaima
- Department of Applied Biological Chemistry, Graduate School of Agriculture, Kindai University, Nara, Japan
- Agricultural Technology and Innovation Research Institute, Kindai University, Nara, Japan
| |
Collapse
|
21
|
microRNA-331-3p maintains the contractile type of vascular smooth muscle cells by regulating TNF-α and CD14 in intracranial aneurysm. Neuropharmacology 2019; 164:107858. [PMID: 31785262 DOI: 10.1016/j.neuropharm.2019.107858] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Revised: 11/07/2019] [Accepted: 11/20/2019] [Indexed: 01/31/2023]
Abstract
Dysfunction of vascular smooth muscle cells (VSMCs) may be linked to intracranial aneurysm (IA) formation. VSMCs possess a phenotypic plasticity, capable of changing from a mature, contractile to a less differentiated, synthetic phenotype. In this study, we identify a microRNA candidate miR-331-3p that participates in regulating differentiation properties of VSMCs. The expression of TNF-α and CD14 was quantified in IA wall tissues obtained from 96 IA patients and their associations with clinicopathological features of IA were assessed. Then the interactions between miR-331-3p, TNF-α and CD14 were evaluated by determination of luciferase activity. Differentiated properties of VSMCs were assessed from phenotypic markers of contractile VSMCs, a-SMA and E-cadherin, and of synthetic VSMCs, ICAM-1, MCP-1, IL-6, MMP-2 and MMP-9. Rat IA models by ligation of left carotid artery and left renal artery and histological analysis of induced IAs were performed. The TNF-α and CD14 was highly expressed in IA wall tissues and associated with the type and diameter of aneurysm. Depletion of TNF-α or CD14 retarded VSMC apoptosis and transformation to the synthetic type but facilitated cell proliferation. Elevations in miR-331-3p, a direct negative regulator of both TNF-α and CD14, also reduced VSMC apoptosis and prevented VSMCs from synthetic type and increase their proliferation. Furthermore, miR-331-3p was demonstrated to inhibit the formation of IA by down-regulating TNF-α and CD14 in vivo. In conclusion, miR-331-3p maintains the contractile type of VSMCs, thus possibly inhibiting the progression of IA. These findings provide potential new strategies for the clinical treatment of IA.
Collapse
|
22
|
Sagan A, Mikolajczyk TP, Mrowiecki W, MacRitchie N, Daly K, Meldrum A, Migliarino S, Delles C, Urbanski K, Filip G, Kapelak B, Maffia P, Touyz R, Guzik TJ. T Cells Are Dominant Population in Human Abdominal Aortic Aneurysms and Their Infiltration in the Perivascular Tissue Correlates With Disease Severity. Front Immunol 2019; 10:1979. [PMID: 31552015 PMCID: PMC6736986 DOI: 10.3389/fimmu.2019.01979] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Accepted: 08/05/2019] [Indexed: 12/22/2022] Open
Abstract
Abdominal Aortic Aneurysm (AAA) is a major cause of cardiovascular mortality. Adverse changes in vascular phenotype act in concert with chronic inflammation to promote AAA progression. Perivascular adipose tissue (PVAT) helps maintain vascular homeostasis but when inflamed and dysfunctional, can also promote vascular pathology. Previous studies suggested that PVAT may be an important site of vascular inflammation in AAA; however, a detailed assessment of leukocyte populations in human AAA, their anatomic location in the vessel wall and correlation to AAA size remain undefined. Accordingly, we performed in depth immunophenotyping of cells infiltrating the pathologically altered perivascular tissue (PVT) and vessel wall in AAA samples at the site of maximal dilatation (n = 51 patients). Flow cytometry revealed that T cells, rather than macrophages, are the major leukocyte subset in AAA and that their greatest accumulations occur in PVT. Both CD4+ and CD8+ T cell populations are highly activated in both compartments, with CD4+ T cells displaying the highest activation status within the AAA wall. Finally, we observed a positive relationship between T cell infiltration in PVT and AAA wall. Interestingly, only PVT T cell infiltration was strongly related to tertiles of AAA size. In summary, this study highlights an important role for PVT as a reservoir of T lymphocytes and potentially as a key site in modulating the underlying inflammation in AAA.
Collapse
Affiliation(s)
- Agnieszka Sagan
- BHF Cardiovascular Research Centre, Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, United Kingdom.,Department of Internal and Agricultural Medicine, Jagiellonian University Medical College, Kraków, Poland
| | - Tomasz P Mikolajczyk
- Department of Internal and Agricultural Medicine, Jagiellonian University Medical College, Kraków, Poland.,Centre for Immunobiology, Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, United Kingdom
| | - Wojciech Mrowiecki
- Department of Vascular Surgery, CUMRiK, University Hospital, Kraków, Poland
| | - Neil MacRitchie
- Centre for Immunobiology, Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, United Kingdom
| | - Kevin Daly
- Department of Vascular Surgery, Queen Elizabeth University Hospital, Glasgow, United Kingdom
| | - Alan Meldrum
- Department of Vascular Surgery, Queen Elizabeth University Hospital, Glasgow, United Kingdom
| | - Serena Migliarino
- BHF Cardiovascular Research Centre, Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Christian Delles
- BHF Cardiovascular Research Centre, Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Karol Urbanski
- Department of Internal and Agricultural Medicine, Jagiellonian University Medical College, Kraków, Poland
| | - Grzegorz Filip
- Department of Cardiovascular Surgery and Transplantology, John Paul II Hospital, Kraków, Poland
| | - Boguslaw Kapelak
- Department of Cardiovascular Surgery and Transplantology, John Paul II Hospital, Kraków, Poland.,Institute of Cardiology, Jagiellonian University Medical College, Kraków, Poland
| | - Pasquale Maffia
- BHF Cardiovascular Research Centre, Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, United Kingdom.,Centre for Immunobiology, Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, United Kingdom.,Department of Pharmacy, University of Naples Federico II, Naples, Italy
| | - Rhian Touyz
- BHF Cardiovascular Research Centre, Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Tomasz J Guzik
- BHF Cardiovascular Research Centre, Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, United Kingdom.,Department of Internal and Agricultural Medicine, Jagiellonian University Medical College, Kraków, Poland
| |
Collapse
|
23
|
Wu Z, Zhang Z, Lei Z, Lei P. CD14: Biology and role in the pathogenesis of disease. Cytokine Growth Factor Rev 2019; 48:24-31. [PMID: 31296363 DOI: 10.1016/j.cytogfr.2019.06.003] [Citation(s) in RCA: 143] [Impact Index Per Article: 28.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Accepted: 06/21/2019] [Indexed: 12/22/2022]
Abstract
Human monocyte differentiation antigen CD14 is a pattern recognition receptor (PRR) that enhances innate immune responses. CD14 was first identified as a marker of monocytes to signal intracellular responses upon bacterial encounters. Given the absence of an intracellular tail, CD14 was doubted to have the signaling capacities. Later CD14 was confirmed as the TLR co-receptor for the detection of pathogen-associated molecular patterns. However, CD14 has been revealed as a multi-talented receptor. In last decade, CD14 was identified to activate NFAT to regulate the life cycle of myeloid cells in a TLR4-independent manner and to transport inflammatory lipids to induce phagocyte hyperactivation. And its influences on multiple related diseases have been further considered. In this review, we summarize advancements in the basic biology of the CD14 including its structure, binding ligands, signaling pathways, and its roles in the pathogenesis of inflammation, atherosclerosis, tumor and metabolic diseases. We also discuss the therapeutic potential of targeting the CD14 in related diseases.
Collapse
Affiliation(s)
- Zhenghao Wu
- Department of Immunology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China; Department of Breast and Thyroid Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Zhenxiong Zhang
- Department of Immunology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China; Department of Biliary-Pancreatic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030 China
| | - Zehua Lei
- Department of Immunology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China; Department of Orthopaedic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Ping Lei
- Department of Immunology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| |
Collapse
|
24
|
Yuwen L, Ciqiu Y, Yi S, Ruilei L, Yuanhui L, Bo L, Songqi L, Weiming L, Jie L. A Pilot Study of Protein Microarray for Simultaneous Analysis of 274 Cytokines Between Abdominal Aortic Aneurysm and Normal Aorta. Angiology 2019; 70:830-837. [PMID: 31018647 DOI: 10.1177/0003319719844678] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Cytokines play an important role in the pathogenesis of abdominal aortic aneurysm (AAA). We evaluated the cytokine expression profile of large AAA walls using a 274-cytokine protein array. We hypothesized that AAAs are characterized by an inflammatory, chemotactic cytokine profile. We investigated the cytokine expression profile of 12 patients with AAA and 6 nonaneurysmal controls using an antibody-based protein array. The array generated antibodies against homogenized human aortic tissues to validate the cytokines differentially expressed in AAAs and normal aortas. Data were quantified using fluorescent signal intensities and statistically analyzed by the t test. Fifty-nine cytokines were differentially expressed between the AAA and control samples. Of the 35 selected cytokines that had relative expression >1000, 29 were significantly higher and 6 were lower in AAA samples than in controls. They respectively belonged to CC chemokines, CXC chemokines, pro-inflammatory cytokines, growth factors, proteolytic proteins and inhibitors, and cell adhesion cytokines. Our results show that distinct cytokines are involved in AAAs and suggest that the pathways involving these cytokines may be associated with the pathogenesis and development of AAAs. These findings, if confirmed by larger studies, may suggest treatment targets.
Collapse
Affiliation(s)
- Li Yuwen
- Department of Gastroenterology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong Province, China
| | - Yang Ciqiu
- Department of Breast Cancer, Cancer Center, Guangdong Provincial People’s Hospital & Guangdong Academy of Medical Sciences, Guangzhou, Guangdong Province, China
| | - Shi Yi
- Division of Vascular Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong Province, China
| | - Liu Ruilei
- Department of Breast and Thyroid Surgery, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong Province, China
| | - Lai Yuanhui
- Division of Vascular Surgery, The Eastern Hospital of the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong Province, China
| | - Lin Bo
- Department of Breast and Thyroid Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong Province, China
| | - Li Songqi
- Department of Breast and Thyroid Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong Province, China
| | - Lv Weiming
- Department of Breast and Thyroid Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong Province, China
| | - Li Jie
- Department of Breast and Thyroid Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong Province, China
| |
Collapse
|
25
|
Forrester SJ, Booz GW, Sigmund CD, Coffman TM, Kawai T, Rizzo V, Scalia R, Eguchi S. Angiotensin II Signal Transduction: An Update on Mechanisms of Physiology and Pathophysiology. Physiol Rev 2018; 98:1627-1738. [PMID: 29873596 DOI: 10.1152/physrev.00038.2017] [Citation(s) in RCA: 663] [Impact Index Per Article: 110.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The renin-angiotensin-aldosterone system plays crucial roles in cardiovascular physiology and pathophysiology. However, many of the signaling mechanisms have been unclear. The angiotensin II (ANG II) type 1 receptor (AT1R) is believed to mediate most functions of ANG II in the system. AT1R utilizes various signal transduction cascades causing hypertension, cardiovascular remodeling, and end organ damage. Moreover, functional cross-talk between AT1R signaling pathways and other signaling pathways have been recognized. Accumulating evidence reveals the complexity of ANG II signal transduction in pathophysiology of the vasculature, heart, kidney, and brain, as well as several pathophysiological features, including inflammation, metabolic dysfunction, and aging. In this review, we provide a comprehensive update of the ANG II receptor signaling events and their functional significances for potential translation into therapeutic strategies. AT1R remains central to the system in mediating physiological and pathophysiological functions of ANG II, and participation of specific signaling pathways becomes much clearer. There are still certain limitations and many controversies, and several noteworthy new concepts require further support. However, it is expected that rigorous translational research of the ANG II signaling pathways including those in large animals and humans will contribute to establishing effective new therapies against various diseases.
Collapse
Affiliation(s)
- Steven J Forrester
- Cardiovascular Research Center, Lewis Katz School of Medicine at Temple University , Philadelphia, Pennsylvania ; Department of Pharmacology and Toxicology, School of Medicine, University of Mississippi Medical Center , Jackson, Mississippi ; Department of Pharmacology, Center for Hypertension Research, Roy J. and Lucille A. Carver College of Medicine, University of Iowa , Iowa City, Iowa ; and Duke-NUS, Singapore and Department of Medicine, Duke University Medical Center , Durham, North Carolina
| | - George W Booz
- Cardiovascular Research Center, Lewis Katz School of Medicine at Temple University , Philadelphia, Pennsylvania ; Department of Pharmacology and Toxicology, School of Medicine, University of Mississippi Medical Center , Jackson, Mississippi ; Department of Pharmacology, Center for Hypertension Research, Roy J. and Lucille A. Carver College of Medicine, University of Iowa , Iowa City, Iowa ; and Duke-NUS, Singapore and Department of Medicine, Duke University Medical Center , Durham, North Carolina
| | - Curt D Sigmund
- Cardiovascular Research Center, Lewis Katz School of Medicine at Temple University , Philadelphia, Pennsylvania ; Department of Pharmacology and Toxicology, School of Medicine, University of Mississippi Medical Center , Jackson, Mississippi ; Department of Pharmacology, Center for Hypertension Research, Roy J. and Lucille A. Carver College of Medicine, University of Iowa , Iowa City, Iowa ; and Duke-NUS, Singapore and Department of Medicine, Duke University Medical Center , Durham, North Carolina
| | - Thomas M Coffman
- Cardiovascular Research Center, Lewis Katz School of Medicine at Temple University , Philadelphia, Pennsylvania ; Department of Pharmacology and Toxicology, School of Medicine, University of Mississippi Medical Center , Jackson, Mississippi ; Department of Pharmacology, Center for Hypertension Research, Roy J. and Lucille A. Carver College of Medicine, University of Iowa , Iowa City, Iowa ; and Duke-NUS, Singapore and Department of Medicine, Duke University Medical Center , Durham, North Carolina
| | - Tatsuo Kawai
- Cardiovascular Research Center, Lewis Katz School of Medicine at Temple University , Philadelphia, Pennsylvania ; Department of Pharmacology and Toxicology, School of Medicine, University of Mississippi Medical Center , Jackson, Mississippi ; Department of Pharmacology, Center for Hypertension Research, Roy J. and Lucille A. Carver College of Medicine, University of Iowa , Iowa City, Iowa ; and Duke-NUS, Singapore and Department of Medicine, Duke University Medical Center , Durham, North Carolina
| | - Victor Rizzo
- Cardiovascular Research Center, Lewis Katz School of Medicine at Temple University , Philadelphia, Pennsylvania ; Department of Pharmacology and Toxicology, School of Medicine, University of Mississippi Medical Center , Jackson, Mississippi ; Department of Pharmacology, Center for Hypertension Research, Roy J. and Lucille A. Carver College of Medicine, University of Iowa , Iowa City, Iowa ; and Duke-NUS, Singapore and Department of Medicine, Duke University Medical Center , Durham, North Carolina
| | - Rosario Scalia
- Cardiovascular Research Center, Lewis Katz School of Medicine at Temple University , Philadelphia, Pennsylvania ; Department of Pharmacology and Toxicology, School of Medicine, University of Mississippi Medical Center , Jackson, Mississippi ; Department of Pharmacology, Center for Hypertension Research, Roy J. and Lucille A. Carver College of Medicine, University of Iowa , Iowa City, Iowa ; and Duke-NUS, Singapore and Department of Medicine, Duke University Medical Center , Durham, North Carolina
| | - Satoru Eguchi
- Cardiovascular Research Center, Lewis Katz School of Medicine at Temple University , Philadelphia, Pennsylvania ; Department of Pharmacology and Toxicology, School of Medicine, University of Mississippi Medical Center , Jackson, Mississippi ; Department of Pharmacology, Center for Hypertension Research, Roy J. and Lucille A. Carver College of Medicine, University of Iowa , Iowa City, Iowa ; and Duke-NUS, Singapore and Department of Medicine, Duke University Medical Center , Durham, North Carolina
| |
Collapse
|
26
|
Kugo H, Tanaka H, Moriyama T, Zaima N. Pathological Implication of Adipocytes in AAA Development and the Rupture. Ann Vasc Dis 2018; 11:159-168. [PMID: 30116407 PMCID: PMC6094042 DOI: 10.3400/avd.ra.17-00130] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Accepted: 02/23/2018] [Indexed: 12/21/2022] Open
Abstract
Abdominal aortic aneurysm (AAA) is a vascular disease that involves the gradual dilation of the abdominal aorta followed by its rupture. AAA is closely associated with weakening of the vascular wall due to oxidative stress, chronic inflammation, and degradation of the extracellular matrix. No effective drug therapy is currently available for preventing aneurysm progression or rupture. Adipocytes in the vascular wall are reportedly closely associated with AAA development and rupture. Fiber degradation in the aneurysm wall is enhanced by increased numbers of adipocytes, and rupture risk may increase as well. Recent studies suggested that appropriate control of adipocytes in the vascular wall may be an important strategy to prevent AAA rupture, and further studies may aid in the establishment of a method for preventing AAA rupture by therapeutic drugs or functional foods. In this review, we summarize adipocyte function and the correlation between AAA and adipocytes.
Collapse
Affiliation(s)
- Hirona Kugo
- Department of Applied Biological Chemistry, Graduate School of Agriculture, Kindai University, Nara, Japan
| | - Hiroki Tanaka
- Department of Medical Physiology, Hamamatsu University School of Medicine, Shizuoka, Japan
| | - Tatsuya Moriyama
- Department of Applied Biological Chemistry, Graduate School of Agriculture, Kindai University, Nara, Japan
| | - Nobuhiro Zaima
- Department of Applied Biological Chemistry, Graduate School of Agriculture, Kindai University, Nara, Japan
| |
Collapse
|
27
|
Shen M, Hu M, Fedak PWM, Oudit GY, Kassiri Z. Cell-Specific Functions of ADAM17 Regulate the Progression of Thoracic Aortic Aneurysm. Circ Res 2018; 123:372-388. [PMID: 29930147 DOI: 10.1161/circresaha.118.313181] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Revised: 06/03/2018] [Accepted: 06/20/2018] [Indexed: 12/31/2022]
Abstract
RATIONALE ADAM17 (a disintegrin and metalloproteinase-17) is a membrane-bound enzyme that regulates bioavailability of multiple transmembrane proteins by proteolytic processing. ADAM17 has been linked to several pathologies, but its role in thoracic aortic aneurysm (TAA) has not been determined. OBJECTIVE The objective of this study was to explore the cell-specific functions of vascular ADAM17 in the pathogenesis and progression of TAA. METHODS AND RESULTS In aneurysmal thoracic aorta from patients, ADAM17 was increased in tunica media and intima. To determine the function of ADAM17 in the major cells types within these regions, we generated mice lacking ADAM17 in smooth muscle cells (SMC; Adam17f/f/Sm22Cre/+ ) or endothelial cells (Adam17f/f/Tie2Cre/+ ). ADAM17 deficiency in either cell type was sufficient to suppress TAA dilation markedly and adverse remodeling in males and females (in vivo) although through different mechanisms. ADAM17 deficiency in SMCs prevented the contractile-to-synthetic phenotypic switching in these cells after TAA induction, preventing perivascular fibrosis, inflammation, and adverse aortic remodeling. Loss of ADAM17 in endothelial cells protected the integrity of the intimal barrier by preserving the adherens junction (vascular endothelial-cadherin) and tight junctions (junctional adhesion molecule-A and claudin). In vitro studies on primary mouse thoracic SMCs and human primary aortic SMCs and endothelial cells (±ADAM17 small interfering RNA) confirmed the cell-specific functions of ADAM17 and demonstrated the cross-species validity of these findings. To determine the impact of ADAM17 inhibition in treating TAA, we used an ADAM17-selective inhibitor (PF-548) before or 3 days after TAA induction. In both cases, ADAM17 inhibition prevented progression of aneurysmal growth. CONCLUSIONS We have identified distinct cell-specific functions of ADAM17 in TAA progression, promoting pathological remodeling of SMC and impairing integrity of the intimal endothelial cell barrier. The dual impact of ADAM17 deficiency (or inhibition) in protecting 2 major cell types in the aortic wall highlights the unique position of this proteinase as a critical treatment target for TAA.
Collapse
Affiliation(s)
- Mengcheng Shen
- From the Department of Physiology (M.S., M.H., Z.K.).,Faculty of Medicine and Dentistry (M.S., M.H., G.Y.O., Z.K.)
| | - Mei Hu
- From the Department of Physiology (M.S., M.H., Z.K.).,Faculty of Medicine and Dentistry (M.S., M.H., G.Y.O., Z.K.)
| | - Paul W M Fedak
- Cardiovascular Research Centre, Mazankowski Alberta Heart Institute, University of Alberta, Edmonton, Canada; Section of Cardiac Surgery, Department of Cardiac Sciences, University of Calgary, Libin Cardiovascular Institute of Alberta, Canada (P.W.M.F.).,Division of Cardiac Surgery, Bluhm Cardiovascular Institute, Northwestern Memorial Hospital, Chicago, IL (P.W.M.F.)
| | - Gavin Y Oudit
- Department of Medicine (G.Y.O.).,Faculty of Medicine and Dentistry (M.S., M.H., G.Y.O., Z.K.)
| | - Zamaneh Kassiri
- From the Department of Physiology (M.S., M.H., Z.K.) .,Faculty of Medicine and Dentistry (M.S., M.H., G.Y.O., Z.K.)
| |
Collapse
|
28
|
Modulation of Immune-Inflammatory Responses in Abdominal Aortic Aneurysm: Emerging Molecular Targets. J Immunol Res 2018; 2018:7213760. [PMID: 29967801 PMCID: PMC6008668 DOI: 10.1155/2018/7213760] [Citation(s) in RCA: 81] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Revised: 03/18/2018] [Accepted: 03/31/2018] [Indexed: 12/24/2022] Open
Abstract
Abdominal aortic aneurysm (AAA), a deadly vascular disease in human, is a chronic degenerative process of the abdominal aorta. In this process, inflammatory responses and immune system work efficiently by inflammatory cell attraction, proinflammatory factor secretion and subsequently MMP upregulation. Previous studies have demonstrated various inflammatory cell types in AAA of human and animals. The majority of cells, such as macrophages, CD4+ T cells, and B cells, play an important role in the diseased aortic wall through phenotypic modulation. Furthermore, immunoglobulins also greatly affect the functions and differentiation of immune cells in AAA. Recent evidence suggests that innate immune system, especially Toll-like receptors, chemokine receptors, and complements are involved in the progression of AAAs. We discussed the innate immune system, inflammatory cells, immunoglobulins, immune-mediated mechanisms, and key cytokines in the pathogenesis of AAA and particularly emphasis on a further trend and application of these interventions. This current understanding may offer new insights into the role of inflammation and immune response in AAA.
Collapse
|
29
|
Wang SK, Green LA, Gutwein AR, Gupta AK, Babbey CM, Motaganahalli RL, Fajardo A, Murphy MP. Osteopontin may be a driver of abdominal aortic aneurysm formation. J Vasc Surg 2018; 68:22S-29S. [PMID: 29402664 DOI: 10.1016/j.jvs.2017.10.068] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Accepted: 10/04/2017] [Indexed: 10/18/2022]
Abstract
OBJECTIVE Previous in vitro and animal studies have suggested that osteopontin (OPN), an inflammatory extracellular matrix protein, is involved in the formation and growth of abdominal aortic aneurysms (AAAs). However, the mechanism by which this occurs continues to be nebulous. The relationship between OPN and inflammation-suppressing lymphocytes present in the human AAA condition was investigated and presented herein. METHODS Serum OPN concentrations were measured in healthy, risk factor-matched non-AAA and AAA patients by enzyme-linked immunosorbent assay (ELISA). Immunohistochemistry was used to determine the source of OPN secretion using aortic tissue collected from multiorgan donors and AAA patients undergoing open surgical repair. Vascular smooth muscle cells (VSMCs) were exposed to various inflammatory mediators, and OPN expression was evaluated by quantitative reverse transcriptase-polymerase chain reaction and ELISA. The inflammatory nature of OPN and the aortic wall was determined using a TR1 suppressor cell induction assay as a surrogate and characterized by ELISA and fluorescence-activated cell sorting. RESULTS OPN was found to be elevated in both the plasma and aortic homogenate of AAA patients compared with controls. On immunohistochemistry, OPN localized to the tunica media of the diseased aorta but was minimally expressed in healthy aorta. In vitro, cigarette smoke extract was the most potent stimulator of OPN secretion by VSMCs and increased both messenger RNA and supernatant concentrations. OPN demonstrated an ability to inhibit the induction of interleukin 10-secreting TR1 lymphocytes, a depleted population in the AAA patient, from naive precursors. Last, neutralizing receptor targets of OPN in the setting of AAA homogenate coincubation abrogated the inhibition of TR1 induction. CONCLUSIONS OPN, secreted by the VSMCs of the tunica media, is elevated in the circulating plasma and aortic wall of patients with AAA. It can inhibit the induction of the TR1 suppressor cell, leading to an overall proinflammatory state contributing to progressive aortic wall breakdown and dilation.
Collapse
Affiliation(s)
- S Keisin Wang
- Division of Vascular Surgery, Department of Surgery, Indiana University School of Medicine, Richard Roudebush VA Medical Center, Indianapolis, Ind
| | - Linden A Green
- Division of Vascular Surgery, Department of Surgery, Indiana University School of Medicine, Richard Roudebush VA Medical Center, Indianapolis, Ind
| | - Ashley R Gutwein
- Division of Vascular Surgery, Department of Surgery, Indiana University School of Medicine, Richard Roudebush VA Medical Center, Indianapolis, Ind
| | - Alok K Gupta
- Division of Vascular Surgery, Department of Surgery, Indiana University School of Medicine, Richard Roudebush VA Medical Center, Indianapolis, Ind
| | - Clifford M Babbey
- Division of Vascular Surgery, Department of Surgery, Indiana University School of Medicine, Richard Roudebush VA Medical Center, Indianapolis, Ind
| | - Raghu L Motaganahalli
- Division of Vascular Surgery, Department of Surgery, Indiana University School of Medicine, Richard Roudebush VA Medical Center, Indianapolis, Ind
| | - Andres Fajardo
- Division of Vascular Surgery, Department of Surgery, Indiana University School of Medicine, Richard Roudebush VA Medical Center, Indianapolis, Ind
| | - Michael P Murphy
- Division of Vascular Surgery, Department of Surgery, Indiana University School of Medicine, Richard Roudebush VA Medical Center, Indianapolis, Ind.
| |
Collapse
|
30
|
Horimatsu T, Kim HW, Weintraub NL. The Role of Perivascular Adipose Tissue in Non-atherosclerotic Vascular Disease. Front Physiol 2017; 8:969. [PMID: 29234289 PMCID: PMC5712360 DOI: 10.3389/fphys.2017.00969] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Accepted: 11/14/2017] [Indexed: 12/30/2022] Open
Abstract
Perivascular adipose tissue (PVAT) surrounds most large blood vessels and plays an important role in vascular homeostasis. PVAT releases various chemokines and adipocytokines, functioning in an endocrine and paracrine manner to regulate vascular signaling and inflammation. Mounting evidence suggests that PVAT plays an important role in atherosclerosis and hypertension; however, the role of PVAT in non-atherosclerotic vascular diseases, including neointimal formation, aortic aneurysm, arterial stiffness and vasculitis, has received far less attention. Increasing evidence suggests that PVAT responds to mechanical endovascular injury and regulates the subsequent formation of neointima via factors that promote smooth muscle cell growth, adventitial inflammation and neovascularization. Circumstantial evidence also links PVAT to the pathogenesis of aortic aneurysms and vasculitic syndromes, such as Takayasu's arteritis, where infiltration and migration of inflammatory cells from PVAT into the vascular wall may play a contributory role. Moreover, in obesity, PVAT has been implicated to promote stiffness of elastic arteries via the production of reactive oxygen species. This review will discuss the growing body of data and mechanisms linking PVAT to the pathogenesis of non-atherosclerotic vascular diseases in experimental animal models and in humans.
Collapse
Affiliation(s)
- Tetsuo Horimatsu
- Division of Cardiology, Department of Medicine, Vascular Biology Center, Medical College of Georgia at Augusta University, Augusta, GA, United States
| | - Ha Won Kim
- Division of Cardiology, Department of Medicine, Vascular Biology Center, Medical College of Georgia at Augusta University, Augusta, GA, United States
| | - Neal L Weintraub
- Division of Cardiology, Department of Medicine, Vascular Biology Center, Medical College of Georgia at Augusta University, Augusta, GA, United States
| |
Collapse
|
31
|
A carvedilol-responsive microRNA, miR-125b-5p protects the heart from acute myocardial infarction by repressing pro-apoptotic bak1 and klf13 in cardiomyocytes. J Mol Cell Cardiol 2017; 114:72-82. [PMID: 29122578 DOI: 10.1016/j.yjmcc.2017.11.003] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Revised: 09/22/2017] [Accepted: 11/05/2017] [Indexed: 12/21/2022]
Abstract
BACKGROUND Cardiac injury is accompanied by dynamic changes in the expression of microRNAs (miRs), small non-coding RNAs that post-transcriptionally regulate target genes. MiR-125b-5p is downregulated in patients with end-stage dilated and ischemic cardiomyopathy, and has been proposed as a biomarker of heart failure. We previously reported that the β-blocker carvedilol promotes cardioprotection via β-arrestin-biased agonism of β1-adrenergic receptor while stimulating miR-125b-5p processing in the mouse heart. We hypothesize that β1-adrenergic receptor/β-arrestin1-responsive miR-125b-5p confers the improvement of cardiac function and structure after acute myocardial infarction. METHODS AND RESULTS Using cultured cardiomyocyte (CM) and in vivo approaches, we show that miR-125b-5p is an ischemic stress-responsive protector against CM apoptosis. CMs lacking miR-125b-5p exhibit increased susceptibility to stress-induced apoptosis, while CMs overexpressing miR-125b-5p have increased phospho-AKT pro-survival signaling. Moreover, we demonstrate that loss-of-function of miR-125b-5p in the mouse heart causes abnormalities in cardiac structure and function after acute myocardial infarction. Mechanistically, the improvement of cardiac function and structure elicited by miR-125b-5p is in part attributed to repression of the pro-apoptotic genes Bak1 and Klf13 in CMs. CONCLUSIONS In conclusion, these findings reveal a pivotal role for miR-125b-5p in regulating CM survival during acute myocardial infarction.
Collapse
|
32
|
Effect of AMPK signal pathway on pathogenesis of abdominal aortic aneurysms. Oncotarget 2017; 8:92827-92840. [PMID: 29190959 PMCID: PMC5696225 DOI: 10.18632/oncotarget.21608] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2016] [Accepted: 08/26/2017] [Indexed: 12/13/2022] Open
Abstract
Background and aims Determine the effect of AMPK activation and inhibition on the development of AAA (abdominal aortic aneurysm). Methods AAA was induced in ApoE−/− mice by Ang II (Angiotensin II)-infusion. AICAR (5-aminoimidazole-4-carboxamide-1-β-d-ribofuranoside) was used as AMPK activator and Compound C was used as AMPK inhibitor. We further investigate the effect of metformin, a widely used anti-diabetic drug which could activate AMPK signal pathway, on the pathogenesis of aneurysm. Results Phospho-AMPK level was significantly decreased in AAA tissue compared with control aortas. AICAR significantly reduced the incidence, severity and mortality of aneurysm in the Ang II-infusion model. AICAR also alleviated macrophage infiltration and neovascularity in Ang II infusion model at day 28. The expression of pro-inflammatory factors, angiogenic factors and the activity of MMPs were also alleviated by AICAR during AAA induction. On the other hand, Compound C treatment did not exert obvious protective effect. AMPK activation may inhibit the activation of nuclear factor-κB (NF-κB) and signal transducer and activator of transcription-3 (STAT-3) during AAA induction. Administration of metformin also activated AMPK signal pathway and retarded AAA progression in Ang II infusion model. Conclusions Activation of AMPK signaling pathway may inhibit the Ang II-induced AAA in mice. Metformin may be a promising approach to the treatment of AAA.
Collapse
|
33
|
Wang SK, Green LA, Gutwein AR, Drucker NA, Motaganahalli RL, Fajardo A, Babbey CM, Murphy MP. Rationale and Design of the ARREST Trial Investigating Mesenchymal Stem Cells in the Treatment of Small Abdominal Aortic Aneurysm. Ann Vasc Surg 2017; 47:230-237. [PMID: 28916304 DOI: 10.1016/j.avsg.2017.08.044] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Revised: 08/21/2017] [Accepted: 08/27/2017] [Indexed: 10/18/2022]
Abstract
BACKGROUND Abdominal aortic aneurysms (AAAs) are a major source of morbidity and mortality despite continuing advances in surgical technique and care. Although the inciting factors for AAA development continue to be elusive, accumulating evidence suggests a significant periaortic inflammatory response leading to degradation and dilation of the aortic wall. Previous human trials have demonstrated safety and efficacy of mesenchymal stem cells (MSCs) in the treatment of inflammation-related pathologies such as rheumatoid arthritis, graft versus host disease, and transplant rejection. Therefore, herein, we describe the Aortic Aneurysm Repression with Mesenchymal Stem Cells (ARREST) trial, a phase I investigation into the safety of MSC infusion for patients with small AAA and the cells' effects on modulation of AAA-related inflammation. METHODS ARREST is a phase I, single-center, double-blind, randomized controlled trial (RCT) investigating infusion both dilute and concentrated MSCs compared to placebo in 36 small AAA (35-45 mm) patients. Subjects will be followed by study personnel for 12 months to ascertain incidence of adverse events, immune cell phenotype expression, peripheral cytokine profile, and periaortic inflammation. Maximum transverse aortic diameter will be assessed regularly for 5 years by a combination of computed tomography and duplex sonography. RESULTS Four patients have thus far been enrolled, randomized, and treated per protocol. We anticipate the conclusion of the treatment phase within the next 24 months with ongoing long-term follow-up. CONCLUSIONS ARREST will be pivotal in assessing the safety of MSC infusion and provide preliminary data on the ability of MSCs to favorably modulate the pathogenic AAA host immune response. The data gleaned from this phase I trial will provide the groundwork for a larger, phase III RCT which may provide the first pharmaceutical intervention for AAA.
Collapse
Affiliation(s)
- S Keisin Wang
- Division of Vascular Surgery, Department of Surgery, IU Health Center for Aortic Disease, Indiana University School of Medicine, Indianapolis, IN; VA Center for Molecular and Cellular Therapeutics in Cardiovascular Disease, Richard L. Roudebush VA Medical Center, Indianapolis, IN
| | - Linden A Green
- Division of Vascular Surgery, Department of Surgery, IU Health Center for Aortic Disease, Indiana University School of Medicine, Indianapolis, IN; VA Center for Molecular and Cellular Therapeutics in Cardiovascular Disease, Richard L. Roudebush VA Medical Center, Indianapolis, IN
| | - Ashley R Gutwein
- Division of Vascular Surgery, Department of Surgery, IU Health Center for Aortic Disease, Indiana University School of Medicine, Indianapolis, IN; VA Center for Molecular and Cellular Therapeutics in Cardiovascular Disease, Richard L. Roudebush VA Medical Center, Indianapolis, IN
| | - Natalie A Drucker
- Division of Vascular Surgery, Department of Surgery, IU Health Center for Aortic Disease, Indiana University School of Medicine, Indianapolis, IN; VA Center for Molecular and Cellular Therapeutics in Cardiovascular Disease, Richard L. Roudebush VA Medical Center, Indianapolis, IN
| | - Raghu L Motaganahalli
- Division of Vascular Surgery, Department of Surgery, IU Health Center for Aortic Disease, Indiana University School of Medicine, Indianapolis, IN; VA Center for Molecular and Cellular Therapeutics in Cardiovascular Disease, Richard L. Roudebush VA Medical Center, Indianapolis, IN
| | - Andres Fajardo
- Division of Vascular Surgery, Department of Surgery, IU Health Center for Aortic Disease, Indiana University School of Medicine, Indianapolis, IN; VA Center for Molecular and Cellular Therapeutics in Cardiovascular Disease, Richard L. Roudebush VA Medical Center, Indianapolis, IN
| | - Clifford M Babbey
- Division of Vascular Surgery, Department of Surgery, IU Health Center for Aortic Disease, Indiana University School of Medicine, Indianapolis, IN; VA Center for Molecular and Cellular Therapeutics in Cardiovascular Disease, Richard L. Roudebush VA Medical Center, Indianapolis, IN
| | - Michael P Murphy
- Division of Vascular Surgery, Department of Surgery, IU Health Center for Aortic Disease, Indiana University School of Medicine, Indianapolis, IN; VA Center for Molecular and Cellular Therapeutics in Cardiovascular Disease, Richard L. Roudebush VA Medical Center, Indianapolis, IN.
| |
Collapse
|
34
|
Abstract
Abdominal aortic aneurysm (AAA) is a life-threatening disease associated with high morbidity, and high mortality in the event of aortic rupture. Major advances in open surgical and endovascular repair of AAA have been achieved during the past 2 decades. However, drug-based therapies are still lacking, highlighting a real need for better understanding of the molecular and cellular mechanisms involved in AAA formation and progression. The main pathological features of AAA include extracellular matrix remodelling associated with degeneration and loss of vascular smooth muscle cells and accumulation and activation of inflammatory cells. The inflammatory process has a crucial role in AAA and substantially influences many determinants of aortic wall remodelling. In this Review, we focus specifically on the involvement of monocytes and macrophages, summarizing current knowledge on the roles, origin, and functions of these cells in AAA development and its complications. Furthermore, we show and propose that distinct monocyte and macrophage subsets have critical and differential roles in initiation, progression, and healing of the aneurysmal process. On the basis of experimental and clinical studies, we review potential translational applications to detect, assess, and image macrophage subsets in AAA, and discuss the relevance of these applications for clinical practice.
Collapse
|
35
|
Porphyromonas gingivalis gingipains cause defective macrophage migration towards apoptotic cells and inhibit phagocytosis of primary apoptotic neutrophils. Cell Death Dis 2017; 8:e2644. [PMID: 28252646 PMCID: PMC5386511 DOI: 10.1038/cddis.2016.481] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2016] [Revised: 12/06/2016] [Accepted: 12/07/2016] [Indexed: 01/17/2023]
Abstract
Periodontal disease is a prevalent chronic inflammatory condition characterised by an aberrant host response to a pathogenic plaque biofilm resulting in local tissue damage and frustrated healing that can result in tooth loss. Cysteine proteases (gingipains) from the key periodontal pathogen Porphyromonas gingivalis have been implicated in periodontal disease pathogenesis by inhibiting inflammation resolution and are linked with systemic chronic inflammatory conditions such as rheumatoid arthritis. Efficient clearance of apoptotic cells is essential for the resolution of inflammation and tissue restoration. Here we sought to characterise the innate immune clearance of apoptotic cells and its modulation by gingipains. We examined the capacity of gingipain-treated macrophages to migrate towards and phagocytose apoptotic cells. Lysine gingipain treatment of macrophages impaired macrophage migration towards apoptotic neutrophils. Furthermore, lysine gingipain treatment reduced surface expression levels of CD14, a key macrophage receptor for apoptotic cells, which resulted in reduced macrophage interactions with apoptotic cells. Additionally, while apoptotic cells and their derived secretome were shown to inhibit TNF-α-induced expression by P. gingivalis lipopolysaccharide, we demonstrated that gingipain preparations induced a rapid inflammatory response in macrophages that was resistant to the anti-inflammatory effects of apoptotic cells or their secretome. Taken together, these data indicate that P. gingivalis may promote the chronic inflammation seen in periodontal disease patients by multiple mechanisms, including rapid, potent gingipain-mediated inflammation, coupled with receptor cleavage leading to defective clearance of apoptotic cells and reduced anti-inflammatory responses. Thus, gingipains represent a potential therapeutic target for intervention in the management of chronic periodontal disease.
Collapse
|
36
|
Church JS, Milich LM, Lerch JK, Popovich PG, McTigue DM. E6020, a synthetic TLR4 agonist, accelerates myelin debris clearance, Schwann cell infiltration, and remyelination in the rat spinal cord. Glia 2017; 65:883-899. [PMID: 28251686 DOI: 10.1002/glia.23132] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2016] [Revised: 02/02/2017] [Accepted: 02/03/2017] [Indexed: 12/26/2022]
Abstract
Oligodendrocyte progenitor cells (OPCs) are present throughout the adult brain and spinal cord and can replace oligodendrocytes lost to injury, aging, or disease. Their differentiation, however, is inhibited by myelin debris, making clearance of this debris an important step for cellular repair following demyelination. In models of peripheral nerve injury, TLR4 activation by lipopolysaccharide (LPS) promotes macrophage phagocytosis of debris. Here we tested whether the novel synthetic TLR4 agonist E6020, a Lipid A mimetic, promotes myelin debris clearance and remyelination in spinal cord white matter following lysolecithin-induced demyelination. In vitro, E6020 induced TLR4-dependent cytokine expression (TNFα, IL1β, IL-6) and NF-κB signaling, albeit at ∼10-fold reduced potency compared to LPS. Microinjection of E6020 into the intact rat spinal cord gray/white matter border induced macrophage activation, OPC proliferation, and robust oligodendrogenesis, similar to what we described previously using an intraspinal LPS microinjection model. Finally, a single co-injection of E6020 with lysolecithin into spinal cord white matter increased axon sparing, accelerated myelin debris clearance, enhanced Schwann cell infiltration into demyelinated lesions, and increased the number of remyelinated axons. In vitro assays confirmed that direct stimulation of macrophages by E6020 stimulates myelin phagocytosis. These data implicate TLR4 signaling in promoting repair after CNS demyelination, likely by stimulating phagocytic activity of macrophages, sparing axons, recruiting myelinating cells, and promoting remyelination. This work furthers our understanding of immune-myelin interactions and identifies a novel synthetic TLR4 agonist as a potential therapeutic avenue for white matter demyelinating conditions such as spinal cord injury and multiple sclerosis.
Collapse
Affiliation(s)
- Jamie S Church
- Neuroscience Graduate Program, The Ohio State University, Columbus, Ohio, USA.,Center for Brain and Spinal Cord Repair, The Ohio State University, Columbus, Ohio, USA
| | - Lindsay M Milich
- Department of Neuroscience, The Ohio State University, Columbus, Ohio, USA
| | - Jessica K Lerch
- Center for Brain and Spinal Cord Repair, The Ohio State University, Columbus, Ohio, USA.,Department of Neuroscience, The Ohio State University, Columbus, Ohio, USA
| | - Phillip G Popovich
- Center for Brain and Spinal Cord Repair, The Ohio State University, Columbus, Ohio, USA.,Department of Neuroscience, The Ohio State University, Columbus, Ohio, USA
| | - Dana M McTigue
- Center for Brain and Spinal Cord Repair, The Ohio State University, Columbus, Ohio, USA.,Department of Neuroscience, The Ohio State University, Columbus, Ohio, USA
| |
Collapse
|
37
|
Pope NH, Salmon M, Davis JP, Chatterjee A, Su G, Conte MS, Ailawadi G, Upchurch GR. D-series resolvins inhibit murine abdominal aortic aneurysm formation and increase M2 macrophage polarization. FASEB J 2016; 30:4192-4201. [PMID: 27619672 DOI: 10.1096/fj.201600144rr] [Citation(s) in RCA: 82] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2016] [Accepted: 09/01/2016] [Indexed: 12/31/2022]
Abstract
The role of resolvins in abdominal aortic aneurysm (AAA) has not been established. We hypothesized that treatment with D-series resolvins (RvD2 or RvD1) would attenuate murine AAA formation through alterations in macrophage polarization and cytokine expression. Male C57/B6 mice (n = 9 per group) 8 to 12 wk old received RvD2 (100 ng/kg/treatment), RvD1 (100 ng/kg/treatment), or vehicle only every third day beginning 3 d before abdominal aortic perfusion with elastase as prevention. Aortas were collected 14 d after elastase perfusion. Cytokine analysis (n = 5 per group) or confocal microscopy (n = 4 per group) was performed. In a separate experiment, RvD2 was provided to mice with small AAAs 3 d after elastase treatment (n = 8 per group). Additionally, apolipoprotein E knockout mice treated with angiotensin II (1000 ng/kg) were treated with RvD2 or vehicle alone (n = 10 per group) in a nonsurgical model of AAA. To determine the effect of RvD2 on macrophage polarization, confocal staining for macrophages, M1 and M2 macrophage subtypes, α-actin, and DAPI was performed. Mean aortic dilation was 96 ± 13% for vehicle-treated mice, 57 ± 9.7% for RvD2-treated mice, and 61 ± 11% for RvD1-treated mice (P < 0.0001). Proinflammatory cytokines macrophage chemotactic protein 1, C-X-C motif ligand 1, and IL-1β were significantly elevated in control animals compared to RvD2- and RvD1-treated animals (P < 0.05), resulting in a reduction of matrix metalloproteinase 2 and 9 activity in resolvin-treated mice in both elastase and angiotensin II models. Treatment of existing small AAAs with RvD2 demonstrated a 25% reduction in aneurysm size at d 14 compared to vehicle alone (P = 0.018). Confocal histology demonstrated a prevalence of M2 macrophages within the aortic medium in mice treated with RvD2. Resolvin D2 exhibits a potent protective effect against experimental AAA formation. Treatment with RvD2 significantly influences macrophage polarization and decreases several important proinflammatory cytokines. Resolvins and the alteration of macrophage polarization represent potential future targets for prevention of AAA.-Pope, N. H., Salmon, M., Davis, J. P., Chatterjee, A., Su, G., Conte, M. S., Ailawadi, G., Upchurch, G. R., Jr. D-series resolvins inhibit murine abdominal aortic aneurysm formation and increase M2 macrophage polarization.
Collapse
Affiliation(s)
- Nicolas H Pope
- Department of Surgery, University of Virginia, Charlottesville, Virginia, USA; and
| | - Morgan Salmon
- Department of Surgery, University of Virginia, Charlottesville, Virginia, USA; and
| | - John P Davis
- Department of Surgery, University of Virginia, Charlottesville, Virginia, USA; and
| | - Anuran Chatterjee
- Department of Surgery, Division of Vascular and Endovascular Surgery, University of California, San Francisco, San Francisco, California, USA
| | - Gang Su
- Department of Surgery, University of Virginia, Charlottesville, Virginia, USA; and
| | - Michael S Conte
- Department of Surgery, Division of Vascular and Endovascular Surgery, University of California, San Francisco, San Francisco, California, USA
| | - Gorav Ailawadi
- Department of Surgery, University of Virginia, Charlottesville, Virginia, USA; and
| | - Gilbert R Upchurch
- Department of Surgery, University of Virginia, Charlottesville, Virginia, USA; and
| |
Collapse
|
38
|
Yang L, Shen L, Li G, Yuan H, Jin X, Wu X. Silencing of hypoxia inducible factor-1α gene attenuated angiotensin Ⅱ-induced abdominal aortic aneurysm in apolipoprotein E-deficient mice. Atherosclerosis 2016; 252:40-49. [PMID: 27497884 DOI: 10.1016/j.atherosclerosis.2016.07.010] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2016] [Revised: 07/02/2016] [Accepted: 07/07/2016] [Indexed: 02/05/2023]
Abstract
BACKGROUND AND AIMS We aimed to determine the effect of HIF-1α, the main regulatory subunit of the hypoxia inducible factor 1 (HIF-1), on the development of the abdominal aortic aneurysm (AAA). METHODS AAA was induced in ApoE(-/-) mice by angiotensinⅡ (AngⅡ) infusion. In vivo silencing of HIF-1α was achieved by transfection of lentivirus expressing HIF-1α shRNA. RESULTS Time course analysis of the AngⅡ infusion model revealed that HIF-1α was persistently upregulated during a 28-day period of AAA development. Silencing of the HIF-1α gene reduced the aneurysm size (2.84 ± 1.96 mm vs. 1.41 ± 0.85 mm respectively at day 28, p = 0.0002). Silencing of HIF-1α also alleviated infiltration of macrophages (38.8 ± 14.7 vs. 11.4 ± 4.4 macrophages/0.1 mm(2), p = 0.0006) and neovascularity (5.56 ± 2.14 vs. 1.27 ± 1.05 microvessels/0.1 mm(2), p = 0.0008) in the AngⅡ infusion model, at day 28. The activity of MMP-2 and MMP-9 was also decreased by knockdown of HIF-1α. The early increased expression of pro-inflammatory factors, angiogenic factors, and MMPs during AAA induction was alleviated by HIF-1α silencing. CONCLUSIONS Activation of HIF-1 signaling pathway participates in the Ang Ⅱ-induced AAA formation in mice.
Collapse
Affiliation(s)
- Le Yang
- Department of Vascular Surgery, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, China
| | - Lin Shen
- Department of Ophthalmology, QiLu Hospital to Shandong University, Jinan, China
| | - Gang Li
- Department of Vascular Surgery, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, China
| | - Hai Yuan
- Department of Vascular Surgery, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, China
| | - Xing Jin
- Department of Vascular Surgery, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, China.
| | - Xuejun Wu
- Department of Vascular Surgery, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, China.
| |
Collapse
|
39
|
Xie J, Jones TJ, Feng D, Cook TG, Jester AA, Yi R, Jawed YT, Babbey C, March KL, Murphy MP. Human Adipose-Derived Stem Cells Suppress Elastase-Induced Murine Abdominal Aortic Inflammation and Aneurysm Expansion Through Paracrine Factors. Cell Transplant 2016; 26:173-189. [PMID: 27436185 DOI: 10.3727/096368916x692212] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Abdominal aortic aneurysm (AAA) is a potentially lethal disease associated with immune activation-induced aortic degradation. We hypothesized that xenotransplantation of human adipose-derived stem cells (hADSCs) would reduce aortic inflammation and attenuate expansion in a murine AAA model. Modulatory effects of ADSCs on immune cell subtypes associated with AAA progression were investigated using human peripheral blood mononuclear cells (hPBMNCs) cocultured with ADSCs. Murine AAA was induced through elastase application to the abdominal aorta in C57BL/6 mice. ADSCs were administered intravenously, and aortic changes were determined by ultrasonography and videomicrometry. Circulating monocytes, aortic neutrophils, CD28- T cells, FoxP3+ regulatory T cells (Tregs), and CD206+ M2 macrophages were assessed at multiple terminal time points. In vitro, ADSCs induced M2 macrophage and Treg phenotypes while inhibiting neutrophil transmigration and lymphocyte activation without cellular contact. Intravenous ADSC delivery reduced aneurysmal expansion starting from day 4 [from baseline: 54.8% (saline) vs. 16.9% (ADSCs), n = 10 at baseline, n = 4 at day 4, p < 0.001], and the therapeutic effect persists through day 14 (from baseline: 64.1% saline vs. 24.6% ADSCs, n = 4, p < 0.01). ADSC administration increased aortic Tregs by 20-fold (n = 5, p < 0.01), while decreasing CD4+CD28- (-28%), CD8+CD28- T cells (-61%), and Ly6G/C+ neutrophils (-43%, n = 5, p < 0.05). Circulating CD115+CXCR1-LY6C+-activated monocytes decreased in the ADSC-treated group by day 7 (-60%, n = 10, p < 0.05), paralleled by an increase in aortic CD206+ M2 macrophages by 2.4-fold (n = 5, p < 0.05). Intravenously injected ADSCs transiently engrafted in the lung on day 1 without aortic engraftment at any time point. In conclusion, ADSCs exhibit pleiotropic immunomodulatory effects in vitro as well as in vivo during the development of AAA. The temporal evolution of these effects systemically as well as in aortic tissue suggests that ADSCs induce a sequence of anti-inflammatory cellular events mediated by paracrine factors, which leads to amelioration of AAA progression.
Collapse
|
40
|
Wang KC, Li YH, Shi GY, Tsai HW, Luo CY, Cheng MH, Ma CY, Hsu YY, Cheng TL, Chang BI, Lai CH, Wu HL. Membrane-Bound Thrombomodulin Regulates Macrophage Inflammation in Abdominal Aortic Aneurysm. Arterioscler Thromb Vasc Biol 2015; 35:2412-22. [DOI: 10.1161/atvbaha.115.305529] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2015] [Accepted: 08/18/2015] [Indexed: 01/30/2023]
Abstract
Objective—
Thrombomodulin (TM), a glycoprotein constitutively expressed in the endothelium, is well known for its anticoagulant and anti-inflammatory properties. Paradoxically, we recently found that monocytic membrane-bound TM (ie, endogenous TM expression in monocytes) triggers lipopolysaccharide- and gram-negative bacteria–induced inflammatory responses. However, the significance of membrane-bound TM in chronic sterile vascular inflammation and the development of abdominal aortic aneurysm (AAA) remains undetermined.
Approach and Results—
Implicating a potential role for membrane-bound TM in AAA, we found that TM signals were predominantly localized to macrophages and vascular smooth muscle cells in human aneurysm specimens. Characterization of the CaCl
2
-induced AAA in mice revealed that during aneurysm development, TM expression was mainly localized in infiltrating macrophages and vascular smooth muscle cells. To investigate the function of membrane-bound TM in vivo, transgenic mice with myeloid- (LysMcre/TM
flox/flox
) and vascular smooth muscle cell–specific (SM22-cre
tg
/TM
flox/flox
) TM ablation and their respective wild-type controls (TM
flox/flox
and SM22-cre
tg
/TM
+/+
) were generated. In the mouse CaCl
2
-induced AAA model, deficiency of myeloid TM, but not vascular smooth muscle cell TM, inhibited macrophage accumulation, attenuated proinflammatory cytokine and matrix metalloproteinase-9 production, and finally mitigated elastin destruction and aortic dilatation. In vitro TM-deficient monocytes/macrophages, versus TM wild-type counterparts, exhibited attenuation of proinflammatory mediator expression, adhesion to endothelial cells, and generation of reactive oxygen species. Consistently, myeloid TM–deficient hyperlipidemic mice (ApoE
−/−
/LysMcre/TM
flox/flox
) were resistant to AAA formation induced by angiotensin II infusion, along with reduced macrophage infiltration, suppressed matrix metalloproteinase activities, and diminished oxidative stress.
Conclusions—
Membrane-bound TM in macrophages plays an essential role in the development of AAA by enhancing proinflammatory mediator elaboration, macrophage recruitment, and oxidative stress.
Collapse
Affiliation(s)
- Kuan-Chieh Wang
- From the Department of Biochemistry and Molecular Biology (K.-C.W., G.-Y.S., M.-H.C., C.-Y.M., Y.-Y.H., B.-I.C., H.-L.W.), Institute of Basic Medical Sciences (K.-C.W.), Cardiovascular Research Center (K.-C.W., Y.-H.L., G.-Y.S., C.-Y.L., C.-Y.M., Y.-Y.H., B.-I.C., C.-H.L., H.-L.W.), Department of Internal Medicine (Y.-H.L.), Department of Pathology (H.-W.T.), and Department of Surgery (C.-Y.L., C.-H.L.), National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University,
| | - Yi-Heng Li
- From the Department of Biochemistry and Molecular Biology (K.-C.W., G.-Y.S., M.-H.C., C.-Y.M., Y.-Y.H., B.-I.C., H.-L.W.), Institute of Basic Medical Sciences (K.-C.W.), Cardiovascular Research Center (K.-C.W., Y.-H.L., G.-Y.S., C.-Y.L., C.-Y.M., Y.-Y.H., B.-I.C., C.-H.L., H.-L.W.), Department of Internal Medicine (Y.-H.L.), Department of Pathology (H.-W.T.), and Department of Surgery (C.-Y.L., C.-H.L.), National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University,
| | - Guey-Yueh Shi
- From the Department of Biochemistry and Molecular Biology (K.-C.W., G.-Y.S., M.-H.C., C.-Y.M., Y.-Y.H., B.-I.C., H.-L.W.), Institute of Basic Medical Sciences (K.-C.W.), Cardiovascular Research Center (K.-C.W., Y.-H.L., G.-Y.S., C.-Y.L., C.-Y.M., Y.-Y.H., B.-I.C., C.-H.L., H.-L.W.), Department of Internal Medicine (Y.-H.L.), Department of Pathology (H.-W.T.), and Department of Surgery (C.-Y.L., C.-H.L.), National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University,
| | - Hung-Wen Tsai
- From the Department of Biochemistry and Molecular Biology (K.-C.W., G.-Y.S., M.-H.C., C.-Y.M., Y.-Y.H., B.-I.C., H.-L.W.), Institute of Basic Medical Sciences (K.-C.W.), Cardiovascular Research Center (K.-C.W., Y.-H.L., G.-Y.S., C.-Y.L., C.-Y.M., Y.-Y.H., B.-I.C., C.-H.L., H.-L.W.), Department of Internal Medicine (Y.-H.L.), Department of Pathology (H.-W.T.), and Department of Surgery (C.-Y.L., C.-H.L.), National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University,
| | - Chawn-Yau Luo
- From the Department of Biochemistry and Molecular Biology (K.-C.W., G.-Y.S., M.-H.C., C.-Y.M., Y.-Y.H., B.-I.C., H.-L.W.), Institute of Basic Medical Sciences (K.-C.W.), Cardiovascular Research Center (K.-C.W., Y.-H.L., G.-Y.S., C.-Y.L., C.-Y.M., Y.-Y.H., B.-I.C., C.-H.L., H.-L.W.), Department of Internal Medicine (Y.-H.L.), Department of Pathology (H.-W.T.), and Department of Surgery (C.-Y.L., C.-H.L.), National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University,
| | - Min-Hua Cheng
- From the Department of Biochemistry and Molecular Biology (K.-C.W., G.-Y.S., M.-H.C., C.-Y.M., Y.-Y.H., B.-I.C., H.-L.W.), Institute of Basic Medical Sciences (K.-C.W.), Cardiovascular Research Center (K.-C.W., Y.-H.L., G.-Y.S., C.-Y.L., C.-Y.M., Y.-Y.H., B.-I.C., C.-H.L., H.-L.W.), Department of Internal Medicine (Y.-H.L.), Department of Pathology (H.-W.T.), and Department of Surgery (C.-Y.L., C.-H.L.), National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University,
| | - Chih-Yuan Ma
- From the Department of Biochemistry and Molecular Biology (K.-C.W., G.-Y.S., M.-H.C., C.-Y.M., Y.-Y.H., B.-I.C., H.-L.W.), Institute of Basic Medical Sciences (K.-C.W.), Cardiovascular Research Center (K.-C.W., Y.-H.L., G.-Y.S., C.-Y.L., C.-Y.M., Y.-Y.H., B.-I.C., C.-H.L., H.-L.W.), Department of Internal Medicine (Y.-H.L.), Department of Pathology (H.-W.T.), and Department of Surgery (C.-Y.L., C.-H.L.), National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University,
| | - Yun-Yan Hsu
- From the Department of Biochemistry and Molecular Biology (K.-C.W., G.-Y.S., M.-H.C., C.-Y.M., Y.-Y.H., B.-I.C., H.-L.W.), Institute of Basic Medical Sciences (K.-C.W.), Cardiovascular Research Center (K.-C.W., Y.-H.L., G.-Y.S., C.-Y.L., C.-Y.M., Y.-Y.H., B.-I.C., C.-H.L., H.-L.W.), Department of Internal Medicine (Y.-H.L.), Department of Pathology (H.-W.T.), and Department of Surgery (C.-Y.L., C.-H.L.), National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University,
| | - Tsung-Lin Cheng
- From the Department of Biochemistry and Molecular Biology (K.-C.W., G.-Y.S., M.-H.C., C.-Y.M., Y.-Y.H., B.-I.C., H.-L.W.), Institute of Basic Medical Sciences (K.-C.W.), Cardiovascular Research Center (K.-C.W., Y.-H.L., G.-Y.S., C.-Y.L., C.-Y.M., Y.-Y.H., B.-I.C., C.-H.L., H.-L.W.), Department of Internal Medicine (Y.-H.L.), Department of Pathology (H.-W.T.), and Department of Surgery (C.-Y.L., C.-H.L.), National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University,
| | - Bi-Ing Chang
- From the Department of Biochemistry and Molecular Biology (K.-C.W., G.-Y.S., M.-H.C., C.-Y.M., Y.-Y.H., B.-I.C., H.-L.W.), Institute of Basic Medical Sciences (K.-C.W.), Cardiovascular Research Center (K.-C.W., Y.-H.L., G.-Y.S., C.-Y.L., C.-Y.M., Y.-Y.H., B.-I.C., C.-H.L., H.-L.W.), Department of Internal Medicine (Y.-H.L.), Department of Pathology (H.-W.T.), and Department of Surgery (C.-Y.L., C.-H.L.), National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University,
| | - Chao-Han Lai
- From the Department of Biochemistry and Molecular Biology (K.-C.W., G.-Y.S., M.-H.C., C.-Y.M., Y.-Y.H., B.-I.C., H.-L.W.), Institute of Basic Medical Sciences (K.-C.W.), Cardiovascular Research Center (K.-C.W., Y.-H.L., G.-Y.S., C.-Y.L., C.-Y.M., Y.-Y.H., B.-I.C., C.-H.L., H.-L.W.), Department of Internal Medicine (Y.-H.L.), Department of Pathology (H.-W.T.), and Department of Surgery (C.-Y.L., C.-H.L.), National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University,
| | - Hua-Lin Wu
- From the Department of Biochemistry and Molecular Biology (K.-C.W., G.-Y.S., M.-H.C., C.-Y.M., Y.-Y.H., B.-I.C., H.-L.W.), Institute of Basic Medical Sciences (K.-C.W.), Cardiovascular Research Center (K.-C.W., Y.-H.L., G.-Y.S., C.-Y.L., C.-Y.M., Y.-Y.H., B.-I.C., C.-H.L., H.-L.W.), Department of Internal Medicine (Y.-H.L.), Department of Pathology (H.-W.T.), and Department of Surgery (C.-Y.L., C.-H.L.), National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University,
| |
Collapse
|
41
|
Villacorta L, Chang L. The role of perivascular adipose tissue in vasoconstriction, arterial stiffness, and aneurysm. Horm Mol Biol Clin Investig 2015; 21:137-47. [PMID: 25719334 DOI: 10.1515/hmbci-2014-0048] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2014] [Accepted: 01/14/2015] [Indexed: 12/12/2022]
Abstract
Since the "rediscovery" of brown adipose tissue in adult humans, significant scientific efforts are being pursued to identify the molecular mechanisms to promote a phenotypic change of white adipocytes into brown-like cells, a process called "browning". It is well documented that white adipose tissue (WAT) mass and factors released from WAT influence the vascular function and positively correlate with cardiac arrest, stroke, and other cardiovascular complications. Similar to other fat depots, perivascular adipose tissue (PVAT) is an active endocrine organ and anatomically surrounds vessels. Both brown-like and white-like PVAT secrete various adipokines, cytokines, and growth factors that either prevent or promote the development of cardiovascular diseases (CVDs) depending on the relative abundance of each type and their bioactivity in the neighboring vasculature. Notably, pathophysiological conditions, such as obesity, hypertension, or diabetes, induce the imbalance of PVAT-derived vasoactive products that promote the infiltration of inflammatory cells. This then triggers derangements in vascular smooth muscle cells and endothelial cell dysfunction, resulting in the development of vascular diseases. In this review, we discuss the recent advances on the contribution of PVAT in CVDs. Specifically, we summarize the current proposed roles of PVAT in relationship with vascular contractility, endothelial dysfunction, neointimal formation, arterial stiffness, and aneurysm.
Collapse
|
42
|
Parvizi M, Harmsen MC. Therapeutic Prospect of Adipose-Derived Stromal Cells for the Treatment of Abdominal Aortic Aneurysm. Stem Cells Dev 2015; 24:1493-505. [DOI: 10.1089/scd.2014.0517] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Affiliation(s)
- Mojtaba Parvizi
- Department of Pathology and Medical Biology, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Martin C. Harmsen
- Department of Pathology and Medical Biology, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| |
Collapse
|
43
|
Abstract
The vasculature plays an indispensible role in organ development and maintenance of tissue homeostasis, such that disturbances to it impact greatly on developmental and postnatal health. Although cell turnover in healthy blood vessels is low, it increases considerably under pathological conditions. The principle sources for this phenomenon have long been considered to be the recruitment of cells from the peripheral circulation and the re-entry of mature cells in the vessel wall back into cell cycle. However, recent discoveries have also uncovered the presence of a range of multipotent and lineage-restricted progenitor cells in the mural layers of postnatal blood vessels, possessing high proliferative capacity and potential to generate endothelial, smooth muscle, hematopoietic or mesenchymal cell progeny. In particular, the tunica adventitia has emerged as a progenitor-rich compartment with niche-like characteristics that support and regulate vascular wall progenitor cells. Preliminary data indicate the involvement of some of these vascular wall progenitor cells in vascular disease states, adding weight to the notion that the adventitia is integral to vascular wall pathogenesis, and raising potential implications for clinical therapies. This review discusses the current body of evidence for the existence of vascular wall progenitor cell subpopulations from development to adulthood and addresses the gains made and significant challenges that lie ahead in trying to accurately delineate their identities, origins, regulatory pathways, and relevance to normal vascular structure and function, as well as disease.
Collapse
Affiliation(s)
- Peter J Psaltis
- From the Department of Medicine, University of Adelaide and Heart Health Theme, South Australian Health and Medical Research Institute, Adelaide, South Australia, Australia (P.J.P.); Monash Cardiovascular Research Centre, Monash University, Clayton, Victoria, Australia (P.J.P.); and Department of Internal Medicine, University of Kansas School of Medicine (R.D.S.)
| | - Robert D Simari
- From the Department of Medicine, University of Adelaide and Heart Health Theme, South Australian Health and Medical Research Institute, Adelaide, South Australia, Australia (P.J.P.); Monash Cardiovascular Research Centre, Monash University, Clayton, Victoria, Australia (P.J.P.); and Department of Internal Medicine, University of Kansas School of Medicine (R.D.S.).
| |
Collapse
|
44
|
Dale MA, Ruhlman MK, Baxter BT. Inflammatory cell phenotypes in AAAs: their role and potential as targets for therapy. Arterioscler Thromb Vasc Biol 2015; 35:1746-55. [PMID: 26044582 DOI: 10.1161/atvbaha.115.305269] [Citation(s) in RCA: 173] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2015] [Accepted: 05/11/2015] [Indexed: 02/06/2023]
Abstract
Abdominal aortic aneurysms (AAAs) are characterized by chronic inflammatory cell infiltration. AAA is typically an asymptomatic disease and caused ≈15 000 deaths annually in the United States. Previous studies have examined both human and murine aortic tissue for the presence of various inflammatory cell types. Studies show that in both human and experimental AAAs, prominent inflammatory cell infiltration, such as CD4(+) T cells and macrophages, occurs in the damaged aortic wall. These cells have the ability to undergo phenotypic modulation based on microenvironmental cues, potentially influencing disease progression. Proinflammatory CD4(+) T cells and classically activated macrophages dominate the landscape of aortic infiltrates. The skew to proinflammatory phenotypes alters disease progression and plays a role in causing chronic inflammation. The local cytokine production and presence of inflammatory mediators, such as extracellular matrix breakdown products, influence the uneven balance of the inflammatory infiltrate phenotypes. Understanding and developing new strategies that target the proinflammatory phenotype could provide useful therapeutic targets for a disease with no current pharmacological intervention.
Collapse
Affiliation(s)
- Matthew A Dale
- From the Department of Pathology and Microbiology (M.A.D.) and Department of Surgery, University of Nebraska Medical Center, Omaha (M.A.D., M.K.R., B.T.B.)
| | - Melissa K Ruhlman
- From the Department of Pathology and Microbiology (M.A.D.) and Department of Surgery, University of Nebraska Medical Center, Omaha (M.A.D., M.K.R., B.T.B.)
| | - B Timothy Baxter
- From the Department of Pathology and Microbiology (M.A.D.) and Department of Surgery, University of Nebraska Medical Center, Omaha (M.A.D., M.K.R., B.T.B.)
| |
Collapse
|
45
|
Tang Y, Wang Y, Park KM, Hu Q, Teoh JP, Broskova Z, Ranganathan P, Jayakumar C, Li J, Su H, Tang Y, Ramesh G, Kim IM. MicroRNA-150 protects the mouse heart from ischaemic injury by regulating cell death. Cardiovasc Res 2015; 106:387-97. [PMID: 25824147 DOI: 10.1093/cvr/cvv121] [Citation(s) in RCA: 96] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2014] [Accepted: 03/14/2015] [Indexed: 12/14/2022] Open
Abstract
AIMS Cardiac injury is accompanied by dynamic changes in the expression of microRNAs (miRs). For example, miR-150 is down-regulated in patients with acute myocardial infarction, atrial fibrillation, dilated and ischaemic cardiomyopathy as well as in various mouse heart failure (HF) models. Circulating miR-150 has been recently proposed as a better biomarker of HF than traditional clinical markers such as brain natriuretic peptide. We recently showed using the β-arrestin-biased β-blocker, carvedilol that β-arrestin1-biased β1-adrenergic receptor cardioprotective signalling stimulates the processing of miR-150 in the heart. However, the potential role of miR-150 in ischaemic injury and HF is unknown. METHODS AND RESULTS Here, we show that genetic deletion of miR-150 in mice causes abnormalities in cardiac structural and functional remodelling after MI. The cardioprotective roles of miR-150 during ischaemic injury were in part attributed to direct repression of the pro-apoptotic genes egr2 (zinc-binding transcription factor induced by ischaemia) and p2x7r (pro-inflammatory ATP receptor) in cardiomyocytes. CONCLUSION These findings reveal a pivotal role for miR-150 as a regulator of cardiomyocyte survival during cardiac injury.
Collapse
Affiliation(s)
- Yaoping Tang
- Vascular Biology Center, Medical College of Georgia, Georgia Regents University, Augusta, GA, USA
| | - Yongchao Wang
- Vascular Biology Center, Medical College of Georgia, Georgia Regents University, Augusta, GA, USA
| | - Kyoung-Mi Park
- Vascular Biology Center, Medical College of Georgia, Georgia Regents University, Augusta, GA, USA
| | - Qiuping Hu
- Vascular Biology Center, Medical College of Georgia, Georgia Regents University, Augusta, GA, USA
| | - Jian-Peng Teoh
- Vascular Biology Center, Medical College of Georgia, Georgia Regents University, Augusta, GA, USA
| | - Zuzana Broskova
- Vascular Biology Center, Medical College of Georgia, Georgia Regents University, Augusta, GA, USA
| | - Punithavathi Ranganathan
- Vascular Biology Center, Medical College of Georgia, Georgia Regents University, Augusta, GA, USA
| | - Calpurnia Jayakumar
- Vascular Biology Center, Medical College of Georgia, Georgia Regents University, Augusta, GA, USA
| | - Jie Li
- Vascular Biology Center, Medical College of Georgia, Georgia Regents University, Augusta, GA, USA
| | - Huabo Su
- Vascular Biology Center, Medical College of Georgia, Georgia Regents University, Augusta, GA, USA
| | - Yaoliang Tang
- Vascular Biology Center, Medical College of Georgia, Georgia Regents University, Augusta, GA, USA
| | - Ganesan Ramesh
- Vascular Biology Center, Medical College of Georgia, Georgia Regents University, Augusta, GA, USA
| | - Il-Man Kim
- Vascular Biology Center, Medical College of Georgia, Georgia Regents University, Augusta, GA, USA Department of Biochemistry and Molecular Biology, Medical College of Georgia, Georgia Regents University CB-3717, 1459 Laney Walker Blvd, Augusta, GA, USA
| |
Collapse
|
46
|
Wang Q, Shu C, Su J, Li X. A crosstalk triggered by hypoxia and maintained by MCP-1/miR-98/IL-6/p38 regulatory loop between human aortic smooth muscle cells and macrophages leads to aortic smooth muscle cells apoptosis via Stat1 activation. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2015; 8:2670-2679. [PMID: 26045772 PMCID: PMC4440081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 12/20/2014] [Accepted: 02/21/2015] [Indexed: 06/04/2023]
Abstract
Hypoxia and inflammation are central characteristics of the abdominal aortic aneurysm (AAA), but the mechanisms for their relationship and actual role remain far from full understood. Here, we showed MCP-1 (monocyte chemotactic protein-1) induced by hypoxia in primary human Aortic Smooth Muscle Cells (hASMCs) increased the chemotaxis of THP-1 macrophages and MCP-1 induced IL-6 expression in THP-1 cells via downregulating miR-98 which directly targets IL-6. In addition, IL-6 positively feedback regulated MCP-1 expression in hASMCs via p38 signal that is independent on hypoxia, and inhibition of p38 signal blocked the effect of IL-6 on MCP-1 expression regulation. Moreover, IL-6 exposure time-dependently induces phASMCs apoptosis via Stat1 activation. Collectively, our data provide compelling evidence on the association between hypoxia and inflammation triggered by hypoxia and then mediated by MCP-1/miR-98/IL-6/p38 regulatory loop, which leads to hASMCs apoptosis via Stat1 activation to contribute to AAA formation and progression.
Collapse
MESH Headings
- Aorta/metabolism
- Aorta/pathology
- Aortic Aneurysm, Abdominal/metabolism
- Aortic Aneurysm, Abdominal/pathology
- Apoptosis/physiology
- Blotting, Western
- Cell Hypoxia
- Cells, Cultured
- Chemokine CCL2/metabolism
- Enzyme-Linked Immunosorbent Assay
- Humans
- Interleukin-6/metabolism
- MAP Kinase Signaling System/physiology
- Macrophages/metabolism
- MicroRNAs/metabolism
- Muscle, Smooth, Vascular/metabolism
- Muscle, Smooth, Vascular/pathology
- Myocytes, Smooth Muscle/metabolism
- Myocytes, Smooth Muscle/pathology
- Real-Time Polymerase Chain Reaction
- Receptor Cross-Talk/physiology
- STAT1 Transcription Factor/metabolism
- Transfection
Collapse
Affiliation(s)
- Qing Wang
- Department of Vascular Surgery, The 2 Xiangya Hospital, Central South University139 Renmin Middle Road, Changsha 410011, Hunan, People’s Republic of China
| | - Chang Shu
- Department of Vascular Surgery, The 2 Xiangya Hospital, Central South University139 Renmin Middle Road, Changsha 410011, Hunan, People’s Republic of China
| | - Jing Su
- Hunan Tumor HospitalChangsha, Hunan, People’s Republic of China
| | - Xin Li
- Department of Vascular Surgery, The 2 Xiangya Hospital, Central South University139 Renmin Middle Road, Changsha 410011, Hunan, People’s Republic of China
| |
Collapse
|
47
|
Vascular dysfunctions in the isolated aorta of double-transgenic hypertensive mice developing aortic aneurysm. Pflugers Arch 2014; 467:1945-63. [PMID: 25385304 DOI: 10.1007/s00424-014-1644-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2014] [Revised: 10/29/2014] [Accepted: 10/31/2014] [Indexed: 01/09/2023]
Abstract
Angiotensin-II and oxidative stress are involved in the genesis of aortic aneurysms, a phenomenon exacerbated by endothelial nitric oxide synthase (eNOS) deletion or uncoupling. The purpose of this work was to study the endothelial function in wild-type C57BL/6 (BL) and transgenic mice expressing the h-angiotensinogen and h-renin genes (AR) subjected to either a control, or a high-salt diet plus a treatment with a NO-synthase inhibitor, N-ω-nitro-L-arginine-methyl-ester (L-NAME; BLSL and ARSL). BLSL showed a moderate increase in blood pressure, while ARSL became severely hypertensive. Seventy-five percent of ARSL developed aortic aneurysms, characterized by major histo-morphological changes and associated with an increase in NADP(H) oxidase-2 (NOX2) expression. Contractile responses (KCl, norepinephrine, U-46619) were similar in the four groups of mice, and relaxations were not affected in BLSL and AR. However, in ARSL, endothelium-dependent relaxations (acetylcholine, UK-14304) were significantly reduced, and this dysfunction was similar in aortae without or with aneurysms. The endothelial impairment was unaffected by catalase, superoxide-dismutase mimetic, radical scavengers, cyclooxygenase inhibition, or TP-receptor blockade and could not be attributed to sGC oxidation. Thus, ARSL is a severe hypertension model developing aortic aneurysm. A vascular dysfunction, involving both endothelial (reduced role of NO) and smooth muscle cells, precedes aneurysms formation and, paradoxically, does not appear to involve oxidative stress.
Collapse
|
48
|
Cheng J, Koenig SN, Kuivaniemi HS, Garg V, Hans CP. Pharmacological inhibitor of notch signaling stabilizes the progression of small abdominal aortic aneurysm in a mouse model. J Am Heart Assoc 2014; 3:e001064. [PMID: 25349182 PMCID: PMC4338693 DOI: 10.1161/jaha.114.001064] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Background The progression of abdominal aortic aneurysm (AAA) involves a sustained influx of proinflammatory macrophages, which exacerbate tissue injury by releasing cytokines, chemokines, and matrix metalloproteinases. Previously, we showed that Notch deficiency reduces the development of AAA in the angiotensin II–induced mouse model by preventing infiltration of macrophages. Here, we examined whether Notch inhibition in this mouse model prevents progression of small AAA and whether these effects are associated with altered macrophage differentiation. Methods and Results Treatment with pharmacological Notch inhibitor (DAPT [N‐(N‐[3,5‐difluorophenacetyl]‐L‐alanyl)‐S‐phenylglycine t‐butyl ester]) at day 3 or 8 of angiotensin II infusion arrested the progression of AAA in Apoe−/− mice, as demonstrated by a decreased luminal diameter and aortic width. The abdominal aortas of Apoe−/− mice treated with DAPT showed decreased expression of matrix metalloproteinases and presence of elastin precursors including tropoelastin and hyaluronic acid. Marginal adventitial thickening observed in the aorta of DAPT‐treated Apoe−/− mice was not associated with increased macrophage content, as observed in the mice treated with angiotensin II alone. Instead, DAPT‐treated abdominal aortas showed increased expression of Cd206‐positive M2 macrophages and decreased expression of Il12‐positive M1 macrophages. Notch1 deficiency promoted M2 differentiation of macrophages by upregulating transforming growth factor β2 in bone marrow–derived macrophages at basal levels and in response to IL4. Protein expression of transforming growth factor β2 and its downstream effector pSmad2 also increased in DAPT‐treated Apoe−/− mice, indicating a potential link between Notch and transforming growth factor β2 signaling in the M2 differentiation of macrophages. Conclusions Pharmacological inhibitor of Notch signaling prevents the progression of AAA by macrophage differentiation–dependent mechanisms. The study also provides insights for novel therapeutic strategies to prevent the progression of small AAA.
Collapse
Affiliation(s)
- Jeeyun Cheng
- Center for Cardiovascular and Pulmonary Research and The Heart Center, Nationwide Children's Hospital, The Ohio State University, Columbus, OH (J.C., S.N.K., V.G., C.P.H.)
| | - Sara N Koenig
- Center for Cardiovascular and Pulmonary Research and The Heart Center, Nationwide Children's Hospital, The Ohio State University, Columbus, OH (J.C., S.N.K., V.G., C.P.H.)
| | - Helena S Kuivaniemi
- The Sigfried and Janet Weis Center for Research, Geisinger Health System, Danville, PA (H.S.K.)
| | - Vidu Garg
- Center for Cardiovascular and Pulmonary Research and The Heart Center, Nationwide Children's Hospital, The Ohio State University, Columbus, OH (J.C., S.N.K., V.G., C.P.H.) Department of Pediatrics, The Ohio State University, Columbus, OH (V.G., C.P.H.) Department of Molecular Genetics, The Ohio State University, Columbus, OH (V.G.)
| | - Chetan P Hans
- Center for Cardiovascular and Pulmonary Research and The Heart Center, Nationwide Children's Hospital, The Ohio State University, Columbus, OH (J.C., S.N.K., V.G., C.P.H.) Department of Pediatrics, The Ohio State University, Columbus, OH (V.G., C.P.H.)
| |
Collapse
|
49
|
Psaltis PJ, Puranik AS, Spoon DB, Chue CD, Hoffman SJ, Witt TA, Delacroix S, Kleppe LS, Mueske CS, Pan S, Gulati R, Simari RD. Characterization of a resident population of adventitial macrophage progenitor cells in postnatal vasculature. Circ Res 2014; 115:364-75. [PMID: 24906644 DOI: 10.1161/circresaha.115.303299] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
RATIONALE Macrophages regulate blood vessel structure and function in health and disease. The origins of tissue macrophages are diverse, with evidence for local production and circulatory renewal. OBJECTIVE We identified a vascular adventitial population containing macrophage progenitor cells and investigated their origins and fate. METHODS AND RESULTS Single-cell disaggregates from adult C57BL/6 mice were prepared from different tissues and tested for their capacity to form hematopoietic colony-forming units. Aorta showed a unique predilection for generating macrophage colony-forming units. Aortic macrophage colony-forming unit progenitors coexpressed stem cell antigen-1 and CD45 and were adventitially located, where they were the predominant source of proliferating cells in the aortic wall. Aortic Sca-1(+)CD45(+) cells were transcriptionally and phenotypically distinct from neighboring cells lacking stem cell antigen-1 or CD45 and contained a proliferative (Ki67(+)) Lin(-)c-Kit(+)CD135(-)CD115(+)CX3CR1(+)Ly6C(+)CD11b(-) subpopulation, consistent with the immunophenotypic profile of macrophage progenitors. Adoptive transfer studies revealed that Sca-1(+)CD45(+) adventitial macrophage progenitor cells were not replenished via the circulation from bone marrow or spleen, nor was their prevalence diminished by depletion of monocytes or macrophages by liposomal clodronate treatment or genetic deficiency of macrophage colony-stimulating factor. Rather adventitial macrophage progenitor cells were upregulated in hyperlipidemic ApoE(-/-) and LDL-R(-/-) mice, with adventitial transfer experiments demonstrating their durable contribution to macrophage progeny particularly in the adventitia, and to a lesser extent the atheroma, of atherosclerotic carotid arteries. CONCLUSIONS The discovery and characterization of resident vascular adventitial macrophage progenitor cells provides new insight into adventitial biology and its participation in atherosclerosis and provokes consideration of the broader existence of local macrophage progenitors in other tissues.
Collapse
Affiliation(s)
- Peter J Psaltis
- From the Division of Cardiovascular Diseases, Mayo Clinic, Rochester, MN (P.J.P., A.S.P., D.B.S., C.D.C., S.J.H., T.A.W., S.D., L.S.K., C.S.M., S.P., R.G., R.D.S.); Monash Cardiovascular Research Centre, Monash University, Clayton, Victoria, Australia (P.J.P.); Department of Medicine, University of Adelaide, Adelaide, South Australia, Australia (P.J.P., S.D.); and Kansas University Medical Center, The University of Kansas, Kansas City (R.D.S)
| | - Amrutesh S Puranik
- From the Division of Cardiovascular Diseases, Mayo Clinic, Rochester, MN (P.J.P., A.S.P., D.B.S., C.D.C., S.J.H., T.A.W., S.D., L.S.K., C.S.M., S.P., R.G., R.D.S.); Monash Cardiovascular Research Centre, Monash University, Clayton, Victoria, Australia (P.J.P.); Department of Medicine, University of Adelaide, Adelaide, South Australia, Australia (P.J.P., S.D.); and Kansas University Medical Center, The University of Kansas, Kansas City (R.D.S)
| | - Daniel B Spoon
- From the Division of Cardiovascular Diseases, Mayo Clinic, Rochester, MN (P.J.P., A.S.P., D.B.S., C.D.C., S.J.H., T.A.W., S.D., L.S.K., C.S.M., S.P., R.G., R.D.S.); Monash Cardiovascular Research Centre, Monash University, Clayton, Victoria, Australia (P.J.P.); Department of Medicine, University of Adelaide, Adelaide, South Australia, Australia (P.J.P., S.D.); and Kansas University Medical Center, The University of Kansas, Kansas City (R.D.S)
| | - Colin D Chue
- From the Division of Cardiovascular Diseases, Mayo Clinic, Rochester, MN (P.J.P., A.S.P., D.B.S., C.D.C., S.J.H., T.A.W., S.D., L.S.K., C.S.M., S.P., R.G., R.D.S.); Monash Cardiovascular Research Centre, Monash University, Clayton, Victoria, Australia (P.J.P.); Department of Medicine, University of Adelaide, Adelaide, South Australia, Australia (P.J.P., S.D.); and Kansas University Medical Center, The University of Kansas, Kansas City (R.D.S)
| | - Scott J Hoffman
- From the Division of Cardiovascular Diseases, Mayo Clinic, Rochester, MN (P.J.P., A.S.P., D.B.S., C.D.C., S.J.H., T.A.W., S.D., L.S.K., C.S.M., S.P., R.G., R.D.S.); Monash Cardiovascular Research Centre, Monash University, Clayton, Victoria, Australia (P.J.P.); Department of Medicine, University of Adelaide, Adelaide, South Australia, Australia (P.J.P., S.D.); and Kansas University Medical Center, The University of Kansas, Kansas City (R.D.S)
| | - Tyra A Witt
- From the Division of Cardiovascular Diseases, Mayo Clinic, Rochester, MN (P.J.P., A.S.P., D.B.S., C.D.C., S.J.H., T.A.W., S.D., L.S.K., C.S.M., S.P., R.G., R.D.S.); Monash Cardiovascular Research Centre, Monash University, Clayton, Victoria, Australia (P.J.P.); Department of Medicine, University of Adelaide, Adelaide, South Australia, Australia (P.J.P., S.D.); and Kansas University Medical Center, The University of Kansas, Kansas City (R.D.S)
| | - Sinny Delacroix
- From the Division of Cardiovascular Diseases, Mayo Clinic, Rochester, MN (P.J.P., A.S.P., D.B.S., C.D.C., S.J.H., T.A.W., S.D., L.S.K., C.S.M., S.P., R.G., R.D.S.); Monash Cardiovascular Research Centre, Monash University, Clayton, Victoria, Australia (P.J.P.); Department of Medicine, University of Adelaide, Adelaide, South Australia, Australia (P.J.P., S.D.); and Kansas University Medical Center, The University of Kansas, Kansas City (R.D.S)
| | - Laurel S Kleppe
- From the Division of Cardiovascular Diseases, Mayo Clinic, Rochester, MN (P.J.P., A.S.P., D.B.S., C.D.C., S.J.H., T.A.W., S.D., L.S.K., C.S.M., S.P., R.G., R.D.S.); Monash Cardiovascular Research Centre, Monash University, Clayton, Victoria, Australia (P.J.P.); Department of Medicine, University of Adelaide, Adelaide, South Australia, Australia (P.J.P., S.D.); and Kansas University Medical Center, The University of Kansas, Kansas City (R.D.S)
| | - Cheryl S Mueske
- From the Division of Cardiovascular Diseases, Mayo Clinic, Rochester, MN (P.J.P., A.S.P., D.B.S., C.D.C., S.J.H., T.A.W., S.D., L.S.K., C.S.M., S.P., R.G., R.D.S.); Monash Cardiovascular Research Centre, Monash University, Clayton, Victoria, Australia (P.J.P.); Department of Medicine, University of Adelaide, Adelaide, South Australia, Australia (P.J.P., S.D.); and Kansas University Medical Center, The University of Kansas, Kansas City (R.D.S)
| | - Shuchong Pan
- From the Division of Cardiovascular Diseases, Mayo Clinic, Rochester, MN (P.J.P., A.S.P., D.B.S., C.D.C., S.J.H., T.A.W., S.D., L.S.K., C.S.M., S.P., R.G., R.D.S.); Monash Cardiovascular Research Centre, Monash University, Clayton, Victoria, Australia (P.J.P.); Department of Medicine, University of Adelaide, Adelaide, South Australia, Australia (P.J.P., S.D.); and Kansas University Medical Center, The University of Kansas, Kansas City (R.D.S)
| | - Rajiv Gulati
- From the Division of Cardiovascular Diseases, Mayo Clinic, Rochester, MN (P.J.P., A.S.P., D.B.S., C.D.C., S.J.H., T.A.W., S.D., L.S.K., C.S.M., S.P., R.G., R.D.S.); Monash Cardiovascular Research Centre, Monash University, Clayton, Victoria, Australia (P.J.P.); Department of Medicine, University of Adelaide, Adelaide, South Australia, Australia (P.J.P., S.D.); and Kansas University Medical Center, The University of Kansas, Kansas City (R.D.S)
| | - Robert D Simari
- From the Division of Cardiovascular Diseases, Mayo Clinic, Rochester, MN (P.J.P., A.S.P., D.B.S., C.D.C., S.J.H., T.A.W., S.D., L.S.K., C.S.M., S.P., R.G., R.D.S.); Monash Cardiovascular Research Centre, Monash University, Clayton, Victoria, Australia (P.J.P.); Department of Medicine, University of Adelaide, Adelaide, South Australia, Australia (P.J.P., S.D.); and Kansas University Medical Center, The University of Kansas, Kansas City (R.D.S).
| |
Collapse
|