1
|
Li Y, Zhang S, Liu J, Zhang Y, Zhang N, Cheng Q, Zhang H, Wu X. The pentraxin family in autoimmune disease. Clin Chim Acta 2023; 551:117592. [PMID: 37832905 DOI: 10.1016/j.cca.2023.117592] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 10/08/2023] [Accepted: 10/10/2023] [Indexed: 10/15/2023]
Abstract
The pentraxins represent a family of multifunctional proteins composed of long and short pentamers. The latter includes serum amyloid P component (SAP) and C-reactive protein (CRP) whereas the former includes neuronal PTX1 and PTX2 (NPTX1 and NPTX2, respectively), PTX3 and PTX4. These serve as a bridge between adaptive immunity and innate immunity and a link between inflammation and immunity. Similarities and differences between long and short pentamers are examined and their roles in autoimmune disease are discussed. Increased CRP and PTX3 could indicate the activity of rheumatoid arthritis, systemic lupus erythematosus or other autoimmune diseases. Mechanistically, CRP and PTX3 may predict target organ injury, regulate bone metabolic immunity and maintain homeostasis as well as participate in vascular endothelial remodeling. Interestingly, PTX3 is pleiotropic, being involved in inflammation and tissue repair. Given the therapeutic potential of PTX3 and CRP, targeting these factors to exert a beneficial effect is the focus of research efforts. Unfortunately, studies on NPTX1, NPTX2, PTX4 and SAP are scarce and more research is clearly needed to elaborate their potential roles in autoimmune disease.
Collapse
Affiliation(s)
- Yongzhen Li
- Department of Pediatrics, The Second Xiangya Hospital, Central South University, Changsha, Hunan, PR China
| | - Shouzan Zhang
- Department of Neurosurgery, Peking University Third Hospital, Beijing, PR China
| | - Jingqi Liu
- Department of Pediatrics, The Second Xiangya Hospital, Central South University, Changsha, Hunan, PR China
| | - Yudi Zhang
- Department of Pediatrics, The Second Xiangya Hospital, Central South University, Changsha, Hunan, PR China
| | - Nan Zhang
- College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
| | - Quan Cheng
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan, PR China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Hunan, PR China.
| | - Hao Zhang
- Department of Neurosurgery, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, PR China.
| | - Xiaochuan Wu
- Department of Pediatrics, The Second Xiangya Hospital, Central South University, Changsha, Hunan, PR China.
| |
Collapse
|
2
|
Coutelier M, Jacoupy M, Janer A, Renaud F, Auger N, Saripella GV, Ancien F, Pucci F, Rooman M, Gilis D, Larivière R, Sgarioto N, Valter R, Guillot-Noel L, Le Ber I, Sayah S, Charles P, Nümann A, Pauly MG, Helmchen C, Deininger N, Haack TB, Brais B, Brice A, Trégouët DA, El Hachimi KH, Shoubridge EA, Durr A, Stevanin G. NPTX1 mutations trigger endoplasmic reticulum stress and cause autosomal dominant cerebellar ataxia. Brain 2022; 145:1519-1534. [PMID: 34788392 DOI: 10.1093/brain/awab407] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 09/25/2021] [Accepted: 10/10/2021] [Indexed: 11/14/2022] Open
Abstract
With more than 40 causative genes identified so far, autosomal dominant cerebellar ataxias exhibit a remarkable genetic heterogeneity. Yet, half the patients are lacking a molecular diagnosis. In a large family with nine sampled affected members, we performed exome sequencing combined with whole-genome linkage analysis. We identified a missense variant in NPTX1, NM_002522.3:c.1165G>A: p.G389R, segregating with the phenotype. Further investigations with whole-exome sequencing and an amplicon-based panel identified four additional unrelated families segregating the same variant, for whom a common founder effect could be excluded. A second missense variant, NM_002522.3:c.980A>G: p.E327G, was identified in a fifth familial case. The NPTX1-associated phenotype consists of a late-onset, slowly progressive, cerebellar ataxia, with downbeat nystagmus, cognitive impairment reminiscent of cerebellar cognitive affective syndrome, myoclonic tremor and mild cerebellar vermian atrophy on brain imaging. NPTX1 encodes the neuronal pentraxin 1, a secreted protein with various cellular and synaptic functions. Both variants affect conserved amino acid residues and are extremely rare or absent from public databases. In COS7 cells, overexpression of both neuronal pentraxin 1 variants altered endoplasmic reticulum morphology and induced ATF6-mediated endoplasmic reticulum stress, associated with cytotoxicity. In addition, the p.E327G variant abolished neuronal pentraxin 1 secretion, as well as its capacity to form a high molecular weight complex with the wild-type protein. Co-immunoprecipitation experiments coupled with mass spectrometry analysis demonstrated abnormal interactions of this variant with the cytoskeleton. In agreement with these observations, in silico modelling of the neuronal pentraxin 1 complex evidenced a destabilizing effect for the p.E327G substitution, located at the interface between monomers. On the contrary, the p.G389 residue, located at the protein surface, had no predictable effect on the complex stability. Our results establish NPTX1 as a new causative gene in autosomal dominant cerebellar ataxias. We suggest that variants in NPTX1 can lead to cerebellar ataxia due to endoplasmic reticulum stress, mediated by ATF6, and associated to a destabilization of NP1 polymers in a dominant-negative manner for one of the variants.
Collapse
Affiliation(s)
- Marie Coutelier
- Sorbonne Université, Institut du Cerveau - Paris Brain Institute, ICM, INSERM U 1127, CNRS UMR 7225, APHP, Pitié-Salpêtrière University Hospital, 75013 Paris, France
| | - Maxime Jacoupy
- Sorbonne Université, Institut du Cerveau - Paris Brain Institute, ICM, INSERM U 1127, CNRS UMR 7225, APHP, Pitié-Salpêtrière University Hospital, 75013 Paris, France
- Department of Human Genetics, McGill University, H3A 0C7 Montreal, Canada
- Montreal Neurological Institute, McGill University, H3A 2B4 Montreal, Canada
| | - Alexandre Janer
- Department of Human Genetics, McGill University, H3A 0C7 Montreal, Canada
- Montreal Neurological Institute, McGill University, H3A 2B4 Montreal, Canada
| | - Flore Renaud
- CNRS UMR 9019, Gustave Roussy, Université Paris-Saclay, 94805 Villejuif, France
- Neurogenetics team, Ecole Pratique des Hautes Etudes (EPHE), Paris Sciences Lettres (PSL) Research University, 75014, Paris, France
| | - Nicolas Auger
- Sorbonne Université, Institut du Cerveau - Paris Brain Institute, ICM, INSERM U 1127, CNRS UMR 7225, APHP, Pitié-Salpêtrière University Hospital, 75013 Paris, France
- Neurogenetics team, Ecole Pratique des Hautes Etudes (EPHE), Paris Sciences Lettres (PSL) Research University, 75014, Paris, France
| | - Ganapathi-Varma Saripella
- ICAN Institute, Pitié-Salpêtrière University Hospital, INSERM, Sorbonne Université, 75013 Paris, France
| | - François Ancien
- Computational Biology and Bioinformatics, Université libre de Bruxelles, 1050 Bruxelles, Belgium
| | - Fabrizio Pucci
- Computational Biology and Bioinformatics, Université libre de Bruxelles, 1050 Bruxelles, Belgium
| | - Marianne Rooman
- Computational Biology and Bioinformatics, Université libre de Bruxelles, 1050 Bruxelles, Belgium
| | - Dimitri Gilis
- Computational Biology and Bioinformatics, Université libre de Bruxelles, 1050 Bruxelles, Belgium
| | - Roxanne Larivière
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, H3A 2B4 Montreal, Canada
| | - Nicolas Sgarioto
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, H3A 2B4 Montreal, Canada
| | - Rémi Valter
- Sorbonne Université, Institut du Cerveau - Paris Brain Institute, ICM, INSERM U 1127, CNRS UMR 7225, APHP, Pitié-Salpêtrière University Hospital, 75013 Paris, France
- Neurogenetics team, Ecole Pratique des Hautes Etudes (EPHE), Paris Sciences Lettres (PSL) Research University, 75014, Paris, France
| | - Léna Guillot-Noel
- Sorbonne Université, Institut du Cerveau - Paris Brain Institute, ICM, INSERM U 1127, CNRS UMR 7225, APHP, Pitié-Salpêtrière University Hospital, 75013 Paris, France
- Neurogenetics team, Ecole Pratique des Hautes Etudes (EPHE), Paris Sciences Lettres (PSL) Research University, 75014, Paris, France
| | - Isabelle Le Ber
- Sorbonne Université, Institut du Cerveau - Paris Brain Institute, ICM, INSERM U 1127, CNRS UMR 7225, APHP, Pitié-Salpêtrière University Hospital, 75013 Paris, France
| | - Sabrina Sayah
- Sorbonne Université, Institut du Cerveau - Paris Brain Institute, ICM, INSERM U 1127, CNRS UMR 7225, APHP, Pitié-Salpêtrière University Hospital, 75013 Paris, France
| | - Perrine Charles
- Department of Genetics, APHP, Pitié-Salpêtrière University Hospital, 75013 Paris, France
| | - Astrid Nümann
- Department of Neurology, Charité University Hospital Berlin, 10117 Berlin, Germany
| | - Martje G Pauly
- Department of Neurology, University Hospital Schleswig Holstein Campus Luebeck, 23562 Luebeck, Germany
- Institute of Neurogenetics, University of Luebeck, 23562 Luebeck, Germany
| | - Christoph Helmchen
- Department of Neurology, University Hospital Schleswig Holstein Campus Luebeck, 23562 Luebeck, Germany
| | - Natalie Deininger
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, 72076 Tuebingen, Germany
| | - Tobias B Haack
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, 72076 Tuebingen, Germany
- Centre for Rare Diseases, University of Tübingen, 72076 Tuebingen, Germany
| | - Bernard Brais
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, H3A 2B4 Montreal, Canada
| | - Alexis Brice
- Sorbonne Université, Institut du Cerveau - Paris Brain Institute, ICM, INSERM U 1127, CNRS UMR 7225, APHP, Pitié-Salpêtrière University Hospital, 75013 Paris, France
| | - David-Alexandre Trégouët
- ICAN Institute, Pitié-Salpêtrière University Hospital, INSERM, Sorbonne Université, 75013 Paris, France
- Université de Bordeaux, INSERM U1219, Bordeaux Population Health Research Center, 33076 Bordeaux, France
| | - Khalid H El Hachimi
- Sorbonne Université, Institut du Cerveau - Paris Brain Institute, ICM, INSERM U 1127, CNRS UMR 7225, APHP, Pitié-Salpêtrière University Hospital, 75013 Paris, France
- Neurogenetics team, Ecole Pratique des Hautes Etudes (EPHE), Paris Sciences Lettres (PSL) Research University, 75014, Paris, France
| | - Eric A Shoubridge
- Department of Human Genetics, McGill University, H3A 0C7 Montreal, Canada
- Montreal Neurological Institute, McGill University, H3A 2B4 Montreal, Canada
| | - Alexandra Durr
- Sorbonne Université, Institut du Cerveau - Paris Brain Institute, ICM, INSERM U 1127, CNRS UMR 7225, APHP, Pitié-Salpêtrière University Hospital, 75013 Paris, France
| | - Giovanni Stevanin
- Sorbonne Université, Institut du Cerveau - Paris Brain Institute, ICM, INSERM U 1127, CNRS UMR 7225, APHP, Pitié-Salpêtrière University Hospital, 75013 Paris, France
- Neurogenetics team, Ecole Pratique des Hautes Etudes (EPHE), Paris Sciences Lettres (PSL) Research University, 75014, Paris, France
| |
Collapse
|
3
|
Gómez de San José N, Massa F, Halbgebauer S, Oeckl P, Steinacker P, Otto M. Neuronal pentraxins as biomarkers of synaptic activity: from physiological functions to pathological changes in neurodegeneration. J Neural Transm (Vienna) 2022; 129:207-230. [PMID: 34460014 PMCID: PMC8866268 DOI: 10.1007/s00702-021-02411-2] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2021] [Accepted: 08/17/2021] [Indexed: 12/22/2022]
Abstract
The diagnosis of neurodegenerative disorders is often challenging due to the lack of diagnostic tools, comorbidities and shared pathological manifestations. Synaptic dysfunction is an early pathological event in many neurodegenerative disorders, but the underpinning mechanisms are still poorly characterised. Reliable quantification of synaptic damage is crucial to understand the pathophysiology of neurodegeneration, to track disease status and to obtain prognostic information. Neuronal pentraxins (NPTXs) are extracellular scaffolding proteins emerging as potential biomarkers of synaptic dysfunction in neurodegeneration. They are a family of proteins involved in homeostatic synaptic plasticity by recruiting post-synaptic receptors into synapses. Recent research investigates the dynamic changes of NPTXs in the cerebrospinal fluid (CSF) as an expression of synaptic damage, possibly related to cognitive impairment. In this review, we summarise the available data on NPTXs structure and expression patterns as well as on their contribution in synaptic function and plasticity and other less well-characterised roles. Moreover, we propose a mechanism for their involvement in synaptic damage and neurodegeneration and assess their potential as CSF biomarkers for neurodegenerative diseases.
Collapse
Affiliation(s)
| | - Federico Massa
- Department of Neurology, University of Ulm, Ulm, Germany
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DINOGMI), University of Genoa, Genoa, Italy
| | | | - Patrick Oeckl
- Department of Neurology, University of Ulm, Ulm, Germany
- German Center for Neurodegenerative Diseases (DZNE E.V.), Ulm, Germany
| | | | - Markus Otto
- Department of Neurology, University of Ulm, Ulm, Germany.
- Department of Neurology, Martin-Luther-University Halle-Wittenberg, Ernst-Grube-Str. 40, 06120, Halle (Saale), Germany.
| |
Collapse
|
4
|
Hwang Y, Kim HC, Shin EJ. Repeated exposure to microcystin-leucine-arginine potentiates excitotoxicity induced by a low dose of kainate. Toxicology 2021; 460:152887. [PMID: 34352349 DOI: 10.1016/j.tox.2021.152887] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 07/15/2021] [Accepted: 07/30/2021] [Indexed: 02/08/2023]
Abstract
Microcystin-leucine-arginine (MLCR) is a cyanobacterial toxin, and has been demonstrated to cause neurotoxicity. In addition, MCLR has been identified as an inhibitor of protein phosphatase (PP)1 and PP2A, which are known to regulate the phosphorylation of various molecules related to synaptic excitability. Thus, in the present study, we examined whether MCLR exposure affects seizures induced by a low dose of kainic acid (KA; 0.05 μg, i.c.v.) administration. KA-induced seizure occurrence and seizure score significantly increased after repeated exposure to MCLR (2.5 or 5.0 μg/kg, i.p., once a day for 10 days), but not after acute MCLR exposure (2.5 or 5.0 μg/kg, i.p., 2 h and 30 min prior to KA administration), and hippocampal neuronal loss was consistently facilitated by repeated exposure to MCLR. In addition, repeated MCLR significantly elevated the membrane expression of kainate receptor GluK2 subunits, p-pan-protein kinase C (PKC), and p-extracellular signal-related kinase (ERK) at 1 h after KA. However, KA-induced membrane expression of Ca2+/calmodulin-dependent kinase II (CaMKII) was significantly reduced by repeated MCLR exposure. Consistent with the enhanced seizures and neurodegeneration, MCLR exposure significantly potentiated KA-induced oxidative stress and microglial activation, which was accompanied by increased expression of p-ERK and p-PKCδ in the hippocampus. The combined results suggest that repeated MCLR exposure potentiates KA-induced excitotoxicity in the hippocampus by increasing membrane GluK2 expression and enhancing oxidative stress and neuroinflammation through the modulation of p-CaMKII, p-PKC, and p-ERK.
Collapse
Affiliation(s)
- Yeonggwang Hwang
- Neuropsychopharmacology and Toxicology Program, College of Pharmacy, Kangwon National University, Chuncheon, 24341, Republic of Korea
| | - Hyoung-Chun Kim
- Neuropsychopharmacology and Toxicology Program, College of Pharmacy, Kangwon National University, Chuncheon, 24341, Republic of Korea.
| | - Eun-Joo Shin
- Neuropsychopharmacology and Toxicology Program, College of Pharmacy, Kangwon National University, Chuncheon, 24341, Republic of Korea.
| |
Collapse
|
5
|
Al Rahim M, Thatipamula S, Pasinetti GM, Hossain MA. Neuronal Pentraxin 1 Promotes Hypoxic-Ischemic Neuronal Injury by Impairing Mitochondrial Biogenesis via Interactions With Active Bax[6A7] and Mitochondrial Hexokinase II. ASN Neuro 2021; 13:17590914211012888. [PMID: 34098747 PMCID: PMC8191073 DOI: 10.1177/17590914211012888] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Mitochondrial dysfunction is a key mechanism of cell death in hypoxic-ischemic brain injury. Neuronal pentraxin 1 (NP1) has been shown to play crucial roles in mitochondria-mediated neuronal death. However, the underlying mechanism(s) of NP1-induced mitochondrial dysfunction in hypoxia-ischemia (HI) remains obscure. Here, we report that NP1 induction following HI and its subsequent localization to mitochondria, leads to disruption of key regulatory proteins for mitochondrial biogenesis. Brain mitochondrial DNA (mtDNA) content and mtDNA-encoded subunit I of complex IV (mtCOX-1) expression was increased post-HI, but not the nuclear DNA-encoded subunit of complex II (nSDH-A). Up-regulation of mitochondrial proteins COXIV and HSP60 further supported enhanced mtDNA function. NP1 interaction with active Bax (Bax6A7) was increased in the brain after HI and in oxygen-glucose deprivation (OGD)-induced neuronal cultures. Importantly, NP1 colocalized with mitochondrial hexokinase II (mtHKII) following OGD leading to HKII dissociation from mitochondria. Knockdown of NP1 or SB216763, a GSK-3 inhibitor, prevented OGD-induced mtHKII dissociation and cellular ATP decrease. NP1 also modulated the expression of mitochondrial transcription factor A (Tfam) and peroxisome proliferator-activated receptor γ coactivator-1α (PGC-1α), regulators of mitochondrial biogenesis, following HI. Together, we reveal crucial roles of NP1 in mitochondrial biogenesis involving interactions with Bax[6A7] and mtHKII in HI brain injury.
Collapse
Affiliation(s)
- Md Al Rahim
- Hugo W. Moser Research Institute at Kennedy Krieger, Baltimore, Maryland, United States.,Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States.,Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, New York, United States
| | - Shabarish Thatipamula
- Hugo W. Moser Research Institute at Kennedy Krieger, Baltimore, Maryland, United States.,Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States
| | - Giulio M Pasinetti
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, New York, United States.,James J. Peters Veterans Affairs Medical Center, Bronx, New York, United States
| | - Mir Ahamed Hossain
- Hugo W. Moser Research Institute at Kennedy Krieger, Baltimore, Maryland, United States.,Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States
| |
Collapse
|
6
|
Liu Y, Chu S, Hu Y, Yang S, Li X, Zheng Q, Ai Q, Ren S, Wang H, Gong L, Xu X, Chen NH. Exogenous Adenosine Antagonizes Excitatory Amino Acid Toxicity in Primary Astrocytes. Cell Mol Neurobiol 2021; 41:687-704. [PMID: 32632892 DOI: 10.1007/s10571-020-00876-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Accepted: 05/12/2020] [Indexed: 12/29/2022]
Abstract
Excitatory toxicity is still a hot topic in the study of ischemic stroke, and related research has focused mainly on neurons. Adenosine is an important neuromodulator that is known as a "biosignature" in the central nervous system (CNS). The protective effect of exogenous adenosine on neurons has been confirmed, but its mechanism remains elusive. In this study, astrocytes were pretreated with adenosine, and the effects of an A2a receptor (A2aR) inhibitor (SCH58261) and A2b receptor (A2bR) inhibitor (PSB1115) on excitatory glutamate were investigated. An oxygen glucose deprivation/reoxygenation (OGD/R) and glutamate model was generated in vitro. Post-model assessment included expression levels of glutamate transporters (glt-1), gap junction protein (Cx43) and glutamate receptor (AMPAR), Na+-K+-ATPase activity, and diffusion distance of dyes. Glutamate and glutamine contents were determined at different time points. The results showed that (1) adenosine could improve the function of Na+-K+-ATPase, upregulate the expression of glt-1, and enhance the synthesis of glutamine in astrocytes. This effect was associated with A2aR activation but not with A2bR activation. (2) Adenosine could inhibit the expression of gap junction protein (Cx43) and reduce glutamate diffusion. Inhibition of A2aR attenuated adenosine inhibition of gap junction intercellular communication (GJIC) in the OGD/R model, while it enhanced adenosine inhibition of GJIC in the glutamate model, depending on the glutamate concentration. (3) Adenosine could cause AMPAR gradually entered the nucleus from the cytoplasm, thereby reducing the expression of AMPAR on the cell membrane. Taken together, the results indicate that adenosine plays a role of anti-excitatory toxicity effect in protection against neuronal death and the functional recovery of ischemic stroke mainly by targeting astrocytes, which are closely related to A2aR. The present study provided a scientific basis for adenosine prevention and ischemic stroke treatment, thereby providing a new approach for alleviating ischemic stroke.
Collapse
Affiliation(s)
- Yingjiao Liu
- College of Pharmacy, Hunan University of Chinese Medicine & Hunan Engineering Technology Center of Standardization and Function of Chinese Herbal Decoction Pieces, Changsha, 410208, China
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica & Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Shifeng Chu
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica & Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Yaomei Hu
- College of Pharmacy, Hunan University of Chinese Medicine & Hunan Engineering Technology Center of Standardization and Function of Chinese Herbal Decoction Pieces, Changsha, 410208, China
| | - Songwei Yang
- College of Pharmacy, Hunan University of Chinese Medicine & Hunan Engineering Technology Center of Standardization and Function of Chinese Herbal Decoction Pieces, Changsha, 410208, China
| | - Xun Li
- College of Pharmacy, Hunan University of Chinese Medicine & Hunan Engineering Technology Center of Standardization and Function of Chinese Herbal Decoction Pieces, Changsha, 410208, China
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica & Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Qinglian Zheng
- Institute for Brain Research and Rehabilitation, South China Normal University, Guangzhou, 510631, China
| | - Qidi Ai
- College of Pharmacy, Hunan University of Chinese Medicine & Hunan Engineering Technology Center of Standardization and Function of Chinese Herbal Decoction Pieces, Changsha, 410208, China
| | - Siyu Ren
- College of Pharmacy, Hunan University of Chinese Medicine & Hunan Engineering Technology Center of Standardization and Function of Chinese Herbal Decoction Pieces, Changsha, 410208, China
| | - Huiqin Wang
- College of Pharmacy, Hunan University of Chinese Medicine & Hunan Engineering Technology Center of Standardization and Function of Chinese Herbal Decoction Pieces, Changsha, 410208, China
| | - Limin Gong
- College of Pharmacy, Hunan University of Chinese Medicine & Hunan Engineering Technology Center of Standardization and Function of Chinese Herbal Decoction Pieces, Changsha, 410208, China
| | - Xin Xu
- Institute for Brain Research and Rehabilitation, South China Normal University, Guangzhou, 510631, China
| | - Nai-Hong Chen
- College of Pharmacy, Hunan University of Chinese Medicine & Hunan Engineering Technology Center of Standardization and Function of Chinese Herbal Decoction Pieces, Changsha, 410208, China.
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica & Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China.
- Institute for Brain Research and Rehabilitation, South China Normal University, Guangzhou, 510631, China.
| |
Collapse
|
7
|
Song W, Wang T, Shi B, Wu Z, Wang W, Yang Y. Neuroprotective effects of microRNA-140-5p on ischemic stroke in mice via regulation of the TLR4/NF-κB axis. Brain Res Bull 2021; 168:8-16. [PMID: 33246036 DOI: 10.1016/j.brainresbull.2020.10.020] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 10/14/2020] [Accepted: 10/20/2020] [Indexed: 02/09/2023]
Abstract
BACKGROUND AND AIM Ischemic stroke is one of the main causes of death worldwide and permanent global disability. On the basis of existing literature data, the study was carried out in an effort to explore how miR-140-5p affects ischemic stroke and whether the mechanism relates to toll-like receptor-4 (TLR4) and nuclear factor-kappa B (NF-κB). METHODS Firstly, middle cerebral artery occlusion (MCAO) was performed to establish mouse models of ischemic stroke in vivo, while primary neurons were exposed to oxygen-glucose deprivation (OGD) to set up an ischemic stroke model in vitro. RT-qPCR was then applied to detect the miR-140-5p expression patterns, whereas Western blot was adopted to detect the expression patterns of TLR4, NF-κB, and apoptosis-related factors. In addition, based gain-function of experiments using miR-140-5p mimic and TLR4 over-expression plasmid, neurological function score, TTC staining, TUNEL staining, as well as flow cytometry were carried out to evaluate the effects of miR-140-5p and TLR4 on MCAO mice and OGD neurons. Moreover, dual-luciferase reporter assay was applied to validate the targeting relationship between miR-140-5p and TLR4. RESULTS Initial findings revealed that miR-140-5p was poorly-expressed, while TLR4 was highly-expressed in ischemic stroke. It was verified that miR-140-5p targeted TLR4 and downregulated its expression. MiR-140-5p over-expression was observed to inhibit the apoptosis of neurons under OGD exposure and restrain the progression of ischemic stroke, while TLR4 over-expression promoted the apoptosis and disease progression. Besides, miR-140-5p over-expression led to a decrease in NF-κB protein levels, which were increased by TLR4 over-expression. CONCLUSION In conclusion, our data indicates that miR-140-5p over-expression may be instrumental for the therapeutic targeting of ischemic stroke by alleviating neuron injury with the involvement of the TLR4/NF-κB axis.
Collapse
Affiliation(s)
- Wenjun Song
- Department of Neurology, The Second Affiliated Hospital of Lanzhou University, Lanzhou, 730030, PR China.
| | - Tiancheng Wang
- Department of Neurology, The Second Affiliated Hospital of Lanzhou University, Lanzhou, 730030, PR China
| | - Bei Shi
- Department of Neurology, The Second Affiliated Hospital of Lanzhou University, Lanzhou, 730030, PR China
| | - Zhijun Wu
- Department of Neurology, The Second Affiliated Hospital of Lanzhou University, Lanzhou, 730030, PR China
| | - Wenjie Wang
- Department of Neurology, The Second Affiliated Hospital of Lanzhou University, Lanzhou, 730030, PR China
| | - Yanhong Yang
- Department of Neurology, The Second Affiliated Hospital of Lanzhou University, Lanzhou, 730030, PR China
| |
Collapse
|
8
|
Zhong L, Yan J, Li H, Meng L. HDAC9 Silencing Exerts Neuroprotection Against Ischemic Brain Injury via miR-20a-Dependent Downregulation of NeuroD1. Front Cell Neurosci 2021; 14:544285. [PMID: 33584204 PMCID: PMC7873949 DOI: 10.3389/fncel.2020.544285] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Accepted: 11/25/2020] [Indexed: 12/17/2022] Open
Abstract
Cerebral stroke is an acute cerebrovascular disease that is a leading cause of death and disability worldwide. Stroke includes ischemic stroke and hemorrhagic strokes, of which the incidence of ischemic stroke accounts for 60–70% of the total number of strokes. Existing preclinical evidence suggests that inhibitors of histone deacetylases (HDACs) are a promising therapeutic intervention for stroke. In this study, the purpose was to investigate the possible effect of HDAC9 on ischemic brain injury, with the underlying mechanism related to microRNA-20a (miR-20a)/neurogenic differentiation 1 (NeuroD1) explored. The expression of HDAC9 was first detected in the constructed middle cerebral artery occlusion (MCAO)-provoked mouse model and oxygen-glucose deprivation (OGD)-induced cell model. Next, primary neuronal apoptosis, expression of apoptosis-related factors (Bax, cleaved caspase3 and bcl-2), LDH leakage rate, as well as the release of inflammatory factors (TNF-α, IL-1β, and IL-6) were evaluated by assays of TUNEL, Western blot, and ELISA. The relationships among HDAC9, miR-20a, and NeuroD1 were validated by in silico analysis and ChIP assay. HDAC9 was highly-expressed in MCAO mice and OGD-stimulated cells. Silencing of HDAC9 inhibited neuronal apoptosis and inflammatory factor release in vitro. HDAC9 downregulated miR-20a by enriching in its promoter region, while silencing of HDCA9 promoted miR-20a expression. miR-20a targeted Neurod1 and down-regulated its expression. Silencing of HDAC9 diminished OGD-induced neuronal apoptosis and inflammatory factor release in vitro as well as ischemic brain injury in vivo by regulating the miR-20a/NeuroD1 signaling. Overall, our study revealed that HDAC9 silencing could retard ischemic brain injury through the miR-20a/Neurod1 signaling.
Collapse
Affiliation(s)
- Liangjun Zhong
- Department of Neurosurgery, Pingyin County People's Hospital, Jinan, China
| | - Jinxiang Yan
- Department of Neurosurgery, Ningyang No. 1 People's Hospital, Tai'an, China
| | - Haitao Li
- Department of Neurology, Qihe County People's Hospital, Dezhou, China
| | - Lei Meng
- Department of Neurosurgery, Shandong Provincial Hospital, Jinan, China
| |
Collapse
|
9
|
Hu J, Liu PL, Hua Y, Gao BY, Wang YY, Bai YL, Chen C. Constraint-induced movement therapy enhances AMPA receptor-dependent synaptic plasticity in the ipsilateral hemisphere following ischemic stroke. Neural Regen Res 2021; 16:319-324. [PMID: 32859791 PMCID: PMC7896237 DOI: 10.4103/1673-5374.290900] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Constraint-induced movement therapy (CIMT) can promote the recovery of motor function in injured upper limbs following stroke, which may be associated with upregulation of α-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid receptor (AMPAR) at synapses in the ipsilateral sensorimotor cortex in our previous study. However, AMPAR distribution is tightly regulated, and only AMPARs on the postsynaptic membrane can mediate synaptic transmission. We speculated that synaptic remodeling induced by movement-associated synaptic activity can promote functional recovery from stroke. To test this hypothesis, we compared AMPAR expression on the postsynaptic membrane surface in a rat model of ischemic stroke induced by middle cerebral artery occlusion (MCAO) with versus without CIMT, which consisted of daily running wheel training for 2 weeks starting on day 7 after MCAO. The results showed that CIMT increased the number of glutamate receptor (GluR)2-containing functional synapses in the ipsilateral sensorimotor cortex, and reduced non-GluR2 AMPARs in the ipsilateral sensorimotor cortex and hippocampal CA3 region. In addition, CIMT enhanced AMPAR expression on the surface of post-synaptic membrane in the ipsilateral sensorimotor cortex and hippocampus. Thus, CIMT promotes the recovery of motor function of injured upper limbs following stroke by enhancing AMPAR-mediated synaptic transmission in the ischemic hemisphere. These findings provide supporting evidence for the clinical value of CIMT for restoring limb movement in stroke patients. All experimental procedures and protocols were approved by the Department of Laboratory Animal Science of Fudan University, China (approval No. 201802173S) on March 3, 2018.
Collapse
Affiliation(s)
- Jian Hu
- Department of Rehabilitation Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Pei-Le Liu
- Department of Rehabilitation Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Yan Hua
- Department of Rehabilitation Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Bei-Yao Gao
- Department of Rehabilitation Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Yu-Yuan Wang
- Department of Rehabilitation Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Yu-Long Bai
- Department of Rehabilitation Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Chan Chen
- Department of Rehabilitation Medicine, Huashan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
10
|
Abstract
IMPACT STATEMENT Brain development and degeneration are highly complex processes that are regulated by a large number of molecules and signaling pathways the identities of which are being unraveled. Accumulating evidence points to histone deacetylases and epigenetic mechanisms as being important regulators of these processes. In this review, we describe that histone deacetylase-3 (HDAC3) is a particularly crucial regulator of both neurodevelopment and neurodegeneration. In addition, HDAC3 regulates memory formation, synaptic plasticity, and the cognitive impairment associated with normal aging. Understanding how HDAC3 functions contributes to the normal development and functioning of the brain while also promoting neurodegeneration could lead to the development of therapeutic approaches for neurodevelopmental, neuropsychiatric, and neurodegenerative disorders.
Collapse
|
11
|
Qu Z, D'Mello SR. Proteomic analysis identifies NPTX1 and HIP1R as potential targets of histone deacetylase-3-mediated neurodegeneration. Exp Biol Med (Maywood) 2018; 243:627-638. [PMID: 29486577 DOI: 10.1177/1535370218761149] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
A defining feature of neurodegenerative diseases is the abnormal and excessive loss of neurons. One molecule that is particularly important in promoting neuronal death in a variety of cell culture and in vivo models of neurodegeneration is histone deacetylase-3 (HDAC3), a member of the histone deacetylase family of proteins. As a step towards understanding how HDAC3 promotes neuronal death, we conducted a proteomic screen aimed at identifying proteins that were regulated by HDAC3. HDAC3 was overexpressed in cultured rat cerebellar granule neurons (CGNs) and protein lysates were analyzed by mass spectrometry. Of over 3000 proteins identified in the screen, only 21 proteins displayed a significant alteration in expression. Of these, 12 proteins were downregulated whereas 9 proteins were upregulated. The altered expression of five of these proteins, TEX10, NPTX1, TFG, TSC1, and NFL, along with another protein that was downregulated in the proteomic screen, HIP1R, was confirmed using Western blots and commercially available antibodies. Because antibodies were not available for some of the proteins and since HDAC3 is a transcriptional regulator of gene expression, we conducted RT-PCR analysis to confirm expression changes. In separate analyses, we also included other proteins that are known to regulate neurodegeneration, including HDAC9, HSF1, huntingtin, GAPDH, FUS, and p65/RELA. Based on our proteomic screen and candidate protein approach, we identify three genes, Nptx1, Hip1r, and Hdac9, all known to regulate neurodegeneration that are robustly regulated by HDAC3. Given their suggested roles in regulating neuronal death, these genes are likely to be involved in regulating HDAC3-mediated neurotoxicity. Impact statement Neurodegenerative diseases are a major medical, social, and economic problem. Recent studies by several laboratories have indicated that histone deacetylase-3 (HDAC3) plays a key role in promoting neuronal death. But the downstream mediators of HDAC3 neurotoxicity have yet to be identified. We conducted a proteomic screen to identify HDAC3 targets the results of which have been described in this report. Briefly, we identify Nptx1, Hip1r, and Hdac9 as genes whose expression is altered by HDAC3. Investigating how these genes are involved in HDAC3 neurotoxicity could shed valuable insight into neurodegenerative disease and identify molecules that can be targeted to treat these devastating disorders.
Collapse
Affiliation(s)
- Zhe Qu
- Department of Biological Sciences, Southern Methodist University, Dallas, TX 75275, USA
| | - Santosh R D'Mello
- Department of Biological Sciences, Southern Methodist University, Dallas, TX 75275, USA
| |
Collapse
|
12
|
Thatipamula S, Al Rahim M, Zhang J, Hossain MA. Genetic deletion of neuronal pentraxin 1 expression prevents brain injury in a neonatal mouse model of cerebral hypoxia-ischemia. Neurobiol Dis 2014; 75:15-30. [PMID: 25554688 DOI: 10.1016/j.nbd.2014.12.016] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2014] [Revised: 12/01/2014] [Accepted: 12/18/2014] [Indexed: 12/23/2022] Open
Abstract
Neonatal hypoxic-ischemic (HI) brain injury is a leading cause of mortality and morbidity in infants and children for which there is no promising therapy at present. Previously, we reported induction of neuronal pentraxin 1 (NP1), a novel neuronal protein of the long-pentraxin family, following HI injury in neonatal brain. Here, we report that genetic deletion of NP1 expression prevents HI injury in neonatal brain. Elevated expression of NP1 was observed in neurons, not in astrocytes, of the ipsilateral cortical layers (I-IV) and in the hippocampal CA1 and CA3 areas of WT brains following hypoxia-ischemia; brain areas that developed infarcts (at 24-48 h), showed significantly increased numbers of TUNEL-(+) cells and tissue loss (at 7 days). In contrast, NP1-KO mice showed no evidence of brain infarction and tissue loss after HI. The immunofluorescence staining of brain sections with mitochondrial protein COX IV and subcellular fractionation analysis showed increased accumulation of NP1 in mitochondria, pro-death protein Bax activation and NP1 co-localization with activated caspase-3 in WT, but not in the NP1-KO brains; corroborating NP1 interactions with the mitochondria-derived pro-death pathways. Disruption of NP1 translocation to mitochondria by NP1-siRNA in primary cortical cultures significantly reduced ischemic neuronal death. NP1 was immunoprecipitated with activated Bax [6A7] proteins; HI caused increased interactions of NP1 with Bax, thereby, facilitating Bax translocation to mitochondrial and neuronal death. To further delineate the specificity of NPs, we found that NP1 but not the NP2 induction is specifically involved in brain injury mechanisms and that knockdown of NP1 only results in neuroprotection. Furthermore, live in vivo T2-weighted magnetic resonance imaging (MRI) including fractional anisotropy (FA) mapping showed no sign of delayed brain injury or tissue loss in the NP1-KO mice as compared to the WT at different post-HI periods (4-24 weeks) examined; indicating a long-term neuroprotective efficacy of NP1 gene deletion. Collectively, our results demonstrate a novel mechanism of neuronal death and predict that inhibition of NP1 expression is a promising strategy to prevent hypoxic-ischemic injury in immature brain.
Collapse
Affiliation(s)
| | - Md Al Rahim
- Hugo W. Moser Research Institute at Kennedy Krieger, Baltimore, MD 21205, USA; Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Jiangyang Zhang
- Department of Radiology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Mir Ahamed Hossain
- Hugo W. Moser Research Institute at Kennedy Krieger, Baltimore, MD 21205, USA; Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.
| |
Collapse
|
13
|
Thatipamula S, Hossain MA. Critical role of extracellularly secreted neuronal pentraxin 1 in ischemic neuronal death. BMC Neurosci 2014; 15:133. [PMID: 25526743 PMCID: PMC4280030 DOI: 10.1186/s12868-014-0133-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2014] [Accepted: 12/11/2014] [Indexed: 01/27/2023] Open
Abstract
Background Developing brain is highly susceptible to hypoxic-ischemic injury leading to severe neurological disabilities in surviving infants and children. Previously we reported induction of neuronal pentraxin 1 (NP1) in hypoxic-ischemic injury in neonatal brain and NP1 co-localization with the excitatory AMPA receptors GluR1 at the synaptic sites. However, how NP1 contributes to hypoxic-ischemic neuronal injury is not completely understood. Results Here we report that extracellular secretion of NP1 is required for ischemic neuronal death. Primary cortical neurons at days in vitro (DIV) 12 were subjected to oxygen glucose deprivation (OGD), an in vitro model of ischemic stroke, for different time periods (2–8 h). Oxygen glucose deprivation showed characteristic morphological changes of dying cells, OGD time-dependent induction of NP1 (2-4-fold) and increased neuronal death. In contrast, the NP1-KO cortical neurons were healthy and showed no sign of dying cells under similar conditions. NP1gene silencing by NP1-specific small interfering RNA (NP1-siRNA) protected cortical neurons from OGD-induced death. Conditioned media (CM) collected from OGD exposed WT cortical cultures caused neurotoxicity when added to a subset of DIV 12 normoxia control WT cortical cultures. In contrast, CM from OGD-exposed NP1-KO cultures did not induce cell toxicity in control WT cultures, suggesting a role for extracellular NP1 in neuronal death. However, NP1-KO neurons, which showed normal neuronal morphology and protection against OGD, sustained enhanced death following incubation with CM from WT OGD-exposed cultures. Western blot analysis of OGD exposed WT CM showed temporal increase of NP1 protein levels in the CM. Most strikingly, in contrast to NP1-KO CM, incubation of normal cortical cultures with CM from OGD exposed NP2-KO cultures showed neurotoxicity similar to that observed with CM from OGD exposed WT neuronal cultures. Western immunoblotting further confirmed the increased presence of NP1 protein in OGD-exposed NP2-KO CM. Live immunofluorescence analysis show intense cell surface clustering of NP1 with AMPA GluR1 receptors. Conclusions Collectively, our results demonstrate that extracellular release of NP1 promote hypoxic-ischemic neuronal death possibly via surface clustering with GluR1 at synaptic sites and that NP1, not its family member NP2, is involved in the neuronal death mechanisms.
Collapse
Affiliation(s)
| | - Mir Ahamed Hossain
- Hugo W. Moser Research Institute at Kennedy Krieger, Baltimore, MD, 21205, USA. .,Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA. .,Department of Neurology, The Kennedy Krieger Institute, 707 North Broadway, Room 400-N, MD, 21205, Baltimore, USA.
| |
Collapse
|