1
|
Endo Y, Sasaki K, Ikewaki K. Bridging the Gap Between the Bench and Bedside: Clinical Applications of High-density Lipoprotein Function. J Atheroscler Thromb 2024; 31:1239-1248. [PMID: 38925924 PMCID: PMC11374562 DOI: 10.5551/jat.rv22020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Accepted: 05/29/2024] [Indexed: 06/28/2024] Open
Abstract
Decades of research have reshaped our understanding of high-density lipoprotein (HDL) , shifting our focus from cholesterol (C) levels to multifaceted functionalities. Epidemiological studies initially suggested an association between HDL-C levels and cardiovascular disease (CVD) risk; however, such a simple association has not been indicated by recent studies. Notably, genome-wide studies have highlighted discrepancies between HDL-C levels and CVD outcomes, urging a deeper exploration of the role of HDL. The key to this shift lies in elucidating the role of HDL in reverse cholesterol transport (RCT), which is a fundamental anti-atherosclerotic mechanism. Understanding RCT has led to the identification of therapeutic targets and novel interventions for atherosclerosis. However, clinical trials have underscored the limitations of HDL-C as a therapeutic target, prompting the re-evaluation of the role of HDL in disease prevention. Further investigations have revealed the involvement of HDL composition in various diseases other than CVD, including chronic kidney disease, Alzheimer's disease, and autoimmune diseases. The anti-inflammatory, antioxidative, and anti-infectious properties of HDL have emerged as crucial aspects of its protective function, opening new avenues for novel biomarkers and therapeutic targets. Omics technologies have provided insights into the diverse composition of HDL, revealing disease-specific alterations in the HDL proteome and lipidome. In addition, combining cell-based and cell-free assays has facilitated the evaluation of the HDL functionality across diverse populations, offering the potential for personalized medicine. Overall, a comprehensive understanding of HDL multifunctionality leads to promising prospects for future clinical applications and therapeutic developments, extending beyond cardiovascular health.
Collapse
Affiliation(s)
- Yasuhiro Endo
- Division of Anti-aging and Vascular Medicine, Department of Internal Medicine, National Defense Medical College, Saitama, Japan
- Division of Environmental Medicine, National Defense Medical College Research Institute, Saitama, Japan
| | - Kei Sasaki
- Division of Anti-aging and Vascular Medicine, Department of Internal Medicine, National Defense Medical College, Saitama, Japan
| | - Katsunori Ikewaki
- Division of Anti-aging and Vascular Medicine, Department of Internal Medicine, National Defense Medical College, Saitama, Japan
| |
Collapse
|
2
|
Sharma A, Sharma C, Sharma L, Wal P, Mishra P, Sachdeva N, Yadav S, Vargas De-La Cruz C, Arora S, Subramaniyan V, Rawat R, Behl T, Nandave M. Targeting the vivid facets of apolipoproteins as a cardiovascular risk factor in rheumatoid arthritis. Can J Physiol Pharmacol 2024; 102:305-317. [PMID: 38334084 DOI: 10.1139/cjpp-2023-0259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2024]
Abstract
Mostly, cardiovascular diseases are blamed for casualties in rheumatoid arthritis (RA) patients. Customarily, dyslipidemia is probably the most prevalent underlying cause of untimely demise in people suffering from RA as it hastens the expansion of atherosclerosis. The engagement of inflammatory cytokines like tumor necrosis factor-α (TNF-α), interleukin-1 (IL-1), interleukin-6 (IL-6), etc., is crucial in the progression and proliferation of both RA and abnormal lipid parameters. Thus, lipid abnormalities should be monitored frequently in patients with both primary and advanced RA stages. An advanced lipid profile examination, i.e., direct role of apolipoproteins associated with various lipid molecules is a more dependable approach for better understanding of the disease and selecting suitable therapeutic targets. Therefore, studying their apolipoproteins is more relevant than assessing RA patients' altered lipid profile levels. Among the various apolipoprotein classes, Apo A1 and Apo B are primarily being focused. In addition, it also addresses how calculating Apo B:Apo A1 ratio can aid in analyzing the disease's risk. The marketed therapies available to control lipid abnormalities are associated with many other risk factors. Hence, directly targeting Apo A1 and Apo B would provide a better and safer option.
Collapse
Affiliation(s)
- Aditi Sharma
- Department of Pharmacology, School of Pharmaceutical Sciences, Shoolini University, Solan, Himachal Pradesh, India
| | - Chakshu Sharma
- Department of Pharmacology, School of Pharmaceutical Sciences, Shoolini University, Solan, Himachal Pradesh, India
| | - Lalit Sharma
- Department of Pharmacology, School of Pharmaceutical Sciences, Shoolini University, Solan, Himachal Pradesh, India
| | - Pranay Wal
- Pranveer Singh Institute of Technology, Pharmacy, Kanpur, Uttar Pradesh, India
| | - Preeti Mishra
- Raja Balwant Singh Engineering Technical Campus, Bichpuri, Agra, India
| | - Nitin Sachdeva
- Department of Anesthesia, Mediclinic Aljowhara Hospital, Al Ain, United Arab Emirates
| | - Shivam Yadav
- School of Pharmacy, Babu Banarasi Das University, Lucknow, Uttar Pradesh, India
| | - Celia Vargas De-La Cruz
- Department of Pharmacology, Bromatology and Toxicology, Faculty of Pharmacy and Biochemistry, Universidad Nacional Mayor de San Marcos, Lima 15001, Peru
- E-Health Research Center, Universidad de Ciencias y Humanidades, Lima 15001, Peru
| | - Sandeep Arora
- Amity Institute of Pharmacy, Amity University, Noida, Uttar Pradesh, India
| | - Vetriselvan Subramaniyan
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University, Jalan Lagoon Selatan, Bandar Sunway, 47500 Selangor Darul Ehsan, Malaysia
- Centre for Transdisciplinary Research, Department of Pharmacology, Saveetha Dental College Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, Tamil Nadu 600077, India
| | - Ravi Rawat
- School of Health Sciences and Technology, University of Petroleum and Energy Studies, Bidholi, Dehradun, Uttarakhand, India
| | - Tapan Behl
- Amity School of Pharmaceutical Sciences, Amity University, Mohali, Punjab, India
| | - Mukesh Nandave
- Department of Pharmacology, Delhi Pharmaceutical Sciences and Research University, Pushp Vihar, Delhi, India
| |
Collapse
|
3
|
Li Y, Luo X, Hua Z, Xue X, Wang X, Pang M, Wang T, Lyu A, Liu Y. Apolipoproteins as potential communicators play an essential role in the pathogenesis and treatment of early atherosclerosis. Int J Biol Sci 2023; 19:4493-4510. [PMID: 37781031 PMCID: PMC10535700 DOI: 10.7150/ijbs.86475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 08/15/2023] [Indexed: 10/03/2023] Open
Abstract
Atherosclerosis as the leading cause of the cardiovascular disease is closely related to cholesterol deposition within subendothelial areas of the arteries. Significantly, early atherosclerosis intervention is the critical phase for its reversal. As atherosclerosis progresses, early foam cells formation may evolve into fibrous plaques and atheromatous plaque, ulteriorly rupture of atheromatous plaque increases risks of myocardial infarction and ischemic stroke, resulting in high morbidity and mortality worldwide. Notably, amphiphilic apolipoproteins (Apos) can concomitantly combine with lipids to form soluble lipoproteins that have been demonstrated to associate with atherosclerosis. Apos act as crucial communicators of lipoproteins, which not only can mediate lipids metabolism, but also can involve in pro-atherogenic and anti-atherogenic processes of atherosclerosis via affecting subendothelial retention and aggregation of low-density lipoprotein (LDL), oxidative modification of LDL, foam cells formation and reverse cholesterol transport (RCT) in macrophage cells. Correspondingly, Apos can be used as endogenous and/or exogenous targeting agents to effectively attenuate the development of atherosclerosis. The article reviews the classification, structure, and relationship between Apos and lipids, how Apos serve as communicators of lipoproteins to participate in the pathogenesis progression of early atherosclerosis, as well as how Apos as the meaningful targeting mass is used in early atherosclerosis treatment.
Collapse
Affiliation(s)
- Yang Li
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Xinyi Luo
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Zhenglai Hua
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Xiaoxia Xue
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Xiangpeng Wang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Mingshi Pang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Tieshan Wang
- Beijing Research Institute of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Aiping Lyu
- School of Chinese Medicine, Hong Kong Baptist University, Kowloon, Hong Kong 999077, China
| | - Yuanyan Liu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, China
| |
Collapse
|
4
|
Rani A, Marsche G. A Current Update on the Role of HDL-Based Nanomedicine in Targeting Macrophages in Cardiovascular Disease. Pharmaceutics 2023; 15:1504. [PMID: 37242746 PMCID: PMC10221824 DOI: 10.3390/pharmaceutics15051504] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 05/10/2023] [Accepted: 05/12/2023] [Indexed: 05/28/2023] Open
Abstract
High-density lipoproteins (HDL) are complex endogenous nanoparticles involved in important functions such as reverse cholesterol transport and immunomodulatory activities, ensuring metabolic homeostasis and vascular health. The ability of HDL to interact with a plethora of immune cells and structural cells places it in the center of numerous disease pathophysiologies. However, inflammatory dysregulation can lead to pathogenic remodeling and post-translational modification of HDL, rendering HDL dysfunctional or even pro-inflammatory. Monocytes and macrophages play a critical role in mediating vascular inflammation, such as in coronary artery disease (CAD). The fact that HDL nanoparticles have potent anti-inflammatory effects on mononuclear phagocytes has opened new avenues for the development of nanotherapeutics to restore vascular integrity. HDL infusion therapies are being developed to improve the physiological functions of HDL and to quantitatively restore or increase the native HDL pool. The components and design of HDL-based nanoparticles have evolved significantly since their initial introduction with highly anticipated results in an ongoing phase III clinical trial in subjects with acute coronary syndrome. The understanding of mechanisms involved in HDL-based synthetic nanotherapeutics is critical to their design, therapeutic potential and effectiveness. In this review, we provide a current update on HDL-ApoA-I mimetic nanotherapeutics, highlighting the scope of treating vascular diseases by targeting monocytes and macrophages.
Collapse
Affiliation(s)
- Alankrita Rani
- Division of Pharmacology, Otto Loewi Research Center, Medical University of Graz, Neue Stiftingtalstrasse 6, 8010 Graz, Austria;
- BioTechMed-Graz, Mozartgasse 12/II, 8010 Graz, Austria
| | - Gunther Marsche
- Division of Pharmacology, Otto Loewi Research Center, Medical University of Graz, Neue Stiftingtalstrasse 6, 8010 Graz, Austria;
- BioTechMed-Graz, Mozartgasse 12/II, 8010 Graz, Austria
| |
Collapse
|
5
|
Bhale AS, Venkataraman K. Leveraging knowledge of HDLs major protein ApoA1: Structure, function, mutations, and potential therapeutics. Biomed Pharmacother 2022; 154:113634. [PMID: 36063649 DOI: 10.1016/j.biopha.2022.113634] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 08/27/2022] [Accepted: 08/30/2022] [Indexed: 11/02/2022] Open
Abstract
Apolipoprotein A1 (ApoA1) is a member of the Apolipoprotein family of proteins. It's a vital protein that helps in the production of high-density lipoprotein (HDL) particles, which are crucial for reverse cholesterol transport (RCT). It also has anti-inflammatory, anti-atherogenic, anti-apoptotic, and anti-thrombotic properties. These functions interact to give HDL particles their cardioprotective characteristics. ApoA1 has recently been investigated for its potential role in atherosclerosis, diabetes, neurological diseases, cancer, and certain infectious diseases. Since ApoA1's discovery, numerous mutations have been reported that affect its structural integrity and alter its function. Hence these insights have led to the development of clinically relevant peptides and synthetic reconstituted HDL (rHDL) that mimics the function of ApoA1. As a result, this review has aimed to provide an organized explanation of our understanding of the ApoA1 protein structure and its role in various essential pathways. Furthermore, we have comprehensively reviewed the important ApoA1 mutations (24 mutations) that are reported to be involved in various diseases. Finally, we've focused on the therapeutic potentials of some of the beneficial mutations, small peptides, and synthetic rHDL that are currently being researched or developed, since these will aid in the development of novel therapeutics in the future.
Collapse
Affiliation(s)
- Aishwarya Sudam Bhale
- Centre for Bio-Separation Technology, Vellore Institute of Technology, Vellore 632014, Tamil Nadu, India
| | - Krishnan Venkataraman
- Centre for Bio-Separation Technology, Vellore Institute of Technology, Vellore 632014, Tamil Nadu, India.
| |
Collapse
|
6
|
HDL Mimetic Peptides. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1377:141-151. [DOI: 10.1007/978-981-19-1592-5_11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
7
|
Thakur R, Suri CR, Kaur IP, Rishi P. Review. Crit Rev Ther Drug Carrier Syst 2022; 40:49-100. [DOI: 10.1615/critrevtherdrugcarriersyst.2022040322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
8
|
B Uribe K, Benito-Vicente A, Martin C, Blanco-Vaca F, Rotllan N. (r)HDL in theranostics: how do we apply HDL's biology for precision medicine in atherosclerosis management? Biomater Sci 2021; 9:3185-3208. [PMID: 33949389 DOI: 10.1039/d0bm01838d] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
High-density lipoproteins (HDL) are key players in cholesterol metabolism homeostasis since they are responsible for transporting excess cholesterol from peripheral tissues to the liver. Imbalance in this process, due to either excessive accumulation or impaired clearance, results in net cholesterol accumulation and increases the risk of cardiovascular disease (CVD). Therefore, significant effort has been focused on the development of therapeutic tools capable of either directly or indirectly enhancing HDL-guided reverse cholesterol transport (RCT). More recently, in light of the emergence of precision nanomedicine, there has been renewed research interest in attempting to take advantage of the development of advanced recombinant HDL (rHDL) for both therapeutic and diagnostic purposes. In this review, we provide an update on the different approaches that have been developed using rHDL, focusing on the rHDL production methodology and rHDL applications in theranostics. We also compile a series of examples highlighting potential future perspectives in the field.
Collapse
Affiliation(s)
- Kepa B Uribe
- Center for Cooperative Research in Biomaterials (CIC biomaGUNE), Basque Research and Technology Alliance (BRTA), Paseo de Miramon 182, 20014, Donostia San Sebastián, Spain.
| | - Asier Benito-Vicente
- Instituto Biofisika (UPV/EHU, CSIC) and Departamento de Bioquímica, Universidad del País Vasco, Apdo.644, 48080 Bilbao, Spain.
| | - Cesar Martin
- Instituto Biofisika (UPV/EHU, CSIC) and Departamento de Bioquímica, Universidad del País Vasco, Apdo.644, 48080 Bilbao, Spain.
| | - Francisco Blanco-Vaca
- Servei de Bioquímica, Hospital Santa Creu i Sant Pau-Institut d'Investigacions Biomèdiques (IIB) Sant Pau, 08041 Barcelona, Spain. and CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Barcelona, Spain and Departament de Bioquímica i Biología Molecular, Universitat Autònoma de Barcelona, Spain and Institut de Recerca de l'Hospital Santa Creu i Sant Pau-Institut d'Investigacions Biomèdiques (IIB) Sant Pau, 08025 Barcelona, Spain.
| | - Noemi Rotllan
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Barcelona, Spain and Institut de Recerca de l'Hospital Santa Creu i Sant Pau-Institut d'Investigacions Biomèdiques (IIB) Sant Pau, 08025 Barcelona, Spain.
| |
Collapse
|
9
|
Wolska A, Reimund M, Sviridov DO, Amar MJ, Remaley AT. Apolipoprotein Mimetic Peptides: Potential New Therapies for Cardiovascular Diseases. Cells 2021; 10:597. [PMID: 33800446 PMCID: PMC8000854 DOI: 10.3390/cells10030597] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 03/01/2021] [Accepted: 03/02/2021] [Indexed: 12/13/2022] Open
Abstract
Since the seminal breakthrough of treating diabetic patients with insulin in the 1920s, there has been great interest in developing other proteins and their peptide mimetics as therapies for a wide variety of other medical disorders. Currently, there are at least 60 different peptides that have been approved for human use and over 150 peptides that are in various stages of clinical development. Peptides mimetic of the major proteins on lipoproteins, namely apolipoproteins, have also been developed first as tools for understanding apolipoprotein structure and more recently as potential therapeutics. In this review, we discuss the biochemistry, peptide mimetics design and clinical trials for peptides based on apoA-I, apoE and apoC-II. We primarily focus on applications of peptide mimetics related to cardiovascular diseases. We conclude with a discussion on the limitations of peptides as therapeutic agents and the challenges that need to be overcome before apolipoprotein mimetic peptides can be developed into new drugs.
Collapse
Affiliation(s)
- Anna Wolska
- Lipoprotein Metabolism Laboratory, Translational Vascular Medicine Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA; (M.R.); (D.O.S.); (M.J.A.); (A.T.R.)
| | | | | | | | | |
Collapse
|
10
|
Delk SC, Chattopadhyay A, Escola-Gil JC, Fogelman AM, Reddy ST. Apolipoprotein mimetics in cancer. Semin Cancer Biol 2020; 73:158-168. [PMID: 33188891 DOI: 10.1016/j.semcancer.2020.11.002] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 10/10/2020] [Accepted: 11/04/2020] [Indexed: 12/11/2022]
Abstract
Peptides have many advantages over traditional therapeutics, including small molecules and other biologics, because of their low toxicity and immunogenicity, while still exhibiting efficacy. This review discusses the benefits and mechanism of action of apolipoprotein mimetic peptides in tumor biology and their potential utility in treating various cancers. Among lipoproteins in the circulation, high-density lipoprotein (HDL) and its constituents including apolipoprotein A-I (apoA-I; the predominant protein in HDL), apoJ, and apoE, harbor anti-tumorigenic activities. Peptides that mimic apoA-I function have been developed through molecular mimicry of the amphipathic α-helices of apoA-I. Oral apoA-I mimetic peptides remodel HDL, promote cholesterol efflux, sequester oxidized lipids, and activate anti-inflammatory processes. ApoA-I and apoJ mimetic peptides ameliorate various metrics of cancer progression and have demonstrated efficacy in preclinical models in the inhibition of ovarian, colon, breast, and metastatic lung cancers. Apolipoprotein mimetic peptides are poorly absorbed when administered orally and rapidly degraded when injected into the circulation. The small intestine is the major site of action for apoA-I mimetic peptides and recent studies suggest that modulation of immune cells in the lamina propria of the small intestine is, in part, a potential mechanism of action. Finally, several recent studies underscore the use of reconstituted HDL as target-specific nanoparticles carrying poorly soluble or unstable therapeutics to tumors even across the blood-brain barrier. Preclinical studies suggest that these versatile recombinant lipoprotein based nanoparticles and apolipoprotein mimetics can serve as safe, novel drug delivery, and therapeutic agents for the treatment of a number of cancers.
Collapse
Affiliation(s)
- Samuel C Delk
- Molecular Toxicology Interdepartmental Degree Program, Fielding School of Public Health, University of California, Los Angeles, CA, 90095, USA; Department of Medicine, Division of Cardiology, David Geffen School of Medicine at UCLA, Los Angeles, CA, 90095, USA
| | - Arnab Chattopadhyay
- Department of Medicine, Division of Cardiology, David Geffen School of Medicine at UCLA, Los Angeles, CA, 90095, USA
| | - Joan Carles Escola-Gil
- Institut d'Investigacions Biomèdiques (IIB) Sant Pau, Sant Quintí 77, 08041, Barcelona, Spain; CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Monforte de Lemos 3-5, 28029, Madrid, Spain; Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, Antoni M. Claret 167, 08025, Barcelona, Spain
| | - Alan M Fogelman
- Department of Medicine, Division of Cardiology, David Geffen School of Medicine at UCLA, Los Angeles, CA, 90095, USA
| | - Srinivasa T Reddy
- Molecular Toxicology Interdepartmental Degree Program, Fielding School of Public Health, University of California, Los Angeles, CA, 90095, USA; Department of Medicine, Division of Cardiology, David Geffen School of Medicine at UCLA, Los Angeles, CA, 90095, USA; Molecular and Medical Pharmacology, David Geffen School of Medicine at UCLA, Los Angeles, CA, 90095, USA; Jonsson Comprehensive Cancer Center, David Geffen School of Medicine at UCLA, Los Angeles, CA, 90095, USA.
| |
Collapse
|
11
|
Souza ACF, Machado-Neves M, Bastos DSS, Couto Santos F, Guimarães Ervilha LO, Coimbra JLDP, Araújo LDS, Oliveira LLD, Guimarães SEF. Impact of prenatal arsenic exposure on the testes and epididymides of prepubertal rats. Chem Biol Interact 2020; 333:109314. [PMID: 33171135 DOI: 10.1016/j.cbi.2020.109314] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 10/14/2020] [Accepted: 11/04/2020] [Indexed: 01/08/2023]
Abstract
Arsenic is a pollutant widely found in the environment due to natural and anthropogenic sources. Exposure to arsenic forms in drinking water has been related with male reproductive dysfunctions in humans and experimental animals at adult age. However, the impact of this pollutant on postnatal reproductive development of male offspring exposed in utero to arsenic is still unknown. Therefore, this study aimed to investigate the effects of prenatal arsenic exposure on the postnatal development of the testes and epididymides of rats, during prepuberty. For this purpose, pregnant female Wistar rats were provided drinking water containing 0 or 10 mg/L sodium arsenite (AsNaO2) from gestational day 1 (GD 1) until GD 21 and the male offspring was evaluated in different periods of prepuberty. Our results showed that prenatal arsenic exposure affected the initial sexual development of male pups, reducing their body weight and relative anogenital distance at postnatal day 1. At different periods of prepuberty, male pups from arsenic exposed dams showed a reduction of body and reproductive organs weights, testosterone levels and testis morphometric parameters. Moreover, these pups presented changes in the expression of SOD1, SOD2, CAT and GSTK1 genes and in the activity of superoxide dismutase, catalase and glutathione s-transferase in the testes and epididymides during prepuberty. Taken together, our results show that prenatal arsenic exposure provoked reproductive disorders in prepubertal male rats, probably due to reproductive reprograming and oxidative stress induced by this pollutant.
Collapse
Affiliation(s)
- Ana Cláudia Ferreira Souza
- Department of Animal Biology, Universidade Federal Rural do Rio de Janeiro, Seropédica, Rio de Janeiro, Brazil; Department of Animal Science, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil.
| | - Mariana Machado-Neves
- Department of General Biology, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil
| | | | - Felipe Couto Santos
- Department of General Biology, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil
| | | | | | | | | | | |
Collapse
|
12
|
Gou S, Wang L, Zhong C, Chen X, Ouyang X, Li B, Bao G, Liu H, Zhang Y, Ni J. A novel apoA-I mimetic peptide suppresses atherosclerosis by promoting physiological HDL function in apoE -/- mice. Br J Pharmacol 2020; 177:4627-4644. [PMID: 32726461 DOI: 10.1111/bph.15213] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 06/28/2020] [Accepted: 07/13/2020] [Indexed: 01/06/2023] Open
Abstract
BACKGROUND AND PURPOSE Apolipoprotein A-I (apoA-I) mimetic peptides (AAMPs) are short peptides that can mimic the physiological effects of apoA-I, including the suppression of atherosclerosis by reversely transporting peripheral cholesterol to the liver. As the hydrophobicity of apoA-I is considered important for its lipid transport, novel AAMPs were designed and synthesized in this study by gradually increasing the hydrophobicity of the parent peptide, and their anti-atherosclerotic effects were tested. EXPERIMENTAL APPROACH Seventeen new AAMPs (P1-P17) with incrementally increased hydrophobicity were designed and synthesized by replacing the amino acids 221-240 of apoA-I (VLESFKVSFLSALEEYTKKL). Their effects on cholesterol efflux were evaluated. Their cytotoxicity and haemolytic activity were also measured. The in vitro mechanism of the action of the new peptides was explored. Adult apolipoprotein E-/- mice were used to evaluate the anti-atherosclerotic activity of the best candidate, and the mechanistic basis of its anti-atherosclerotic effects was explored. KEY RESULTS Seventeen new AAMPs (P1-P17) were synthesized, and their cholesterol efflux activity and cytotoxicity were closely related to their hydrophobicity. P12 (FLEKLKELLEHLKELLTKLL) was the best candidate and most strongly promoted cholesterol efflux among the non-toxic peptides (P1-P12). With its phospholipid affinity, P12 facilitated cholesterol transport through the ATP-binding cassette transporter A1. In vivo, P12 exhibited prominent anti-atherosclerotic activity via coupling with HDL. CONCLUSION AND IMPLICATIONS P12 featured adequate hydrophobicity, which ensured its efficient binding with cytomembrane phospholipids, cholesterol and HDL, and provided a basis for its ability to reversely transport cholesterol and treat atherosclerosis.
Collapse
Affiliation(s)
- Sanhu Gou
- Institute of Pharmaceutics, School of Pharmacy, Lanzhou University, Lanzhou, China
| | - Li Wang
- Institute of Pharmaceutics, School of Pharmacy, Lanzhou University, Lanzhou, China
| | - Chao Zhong
- Institute of Pharmaceutics, School of Pharmacy, Lanzhou University, Lanzhou, China.,Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China
| | - Xinyue Chen
- Institute of Pharmaceutics, School of Pharmacy, Lanzhou University, Lanzhou, China
| | - Xu Ouyang
- Institute of Pharmaceutics, School of Pharmacy, Lanzhou University, Lanzhou, China
| | - Beibei Li
- Institute of Pharmaceutics, School of Pharmacy, Lanzhou University, Lanzhou, China
| | - Guangjun Bao
- Institute of Biochemistry and Molecular Biology, School of Life Sciences, Lanzhou University, Lanzhou, China
| | - Hui Liu
- Institute of Pharmaceutics, School of Pharmacy, Lanzhou University, Lanzhou, China
| | - Yun Zhang
- Institute of Pharmaceutics, School of Pharmacy, Lanzhou University, Lanzhou, China
| | - Jingman Ni
- Institute of Pharmaceutics, School of Pharmacy, Lanzhou University, Lanzhou, China
| |
Collapse
|
13
|
Tano K, Suematsu Y, Tashiro K, Kumagai-Koyanagi N, Matsuo Y, Kuwano T, Miura SI. Ezetimibe Monotherapy Reduces Serum Levels of Platelet-Activating Factor Acetylhydrolase in Patients With Dyslipidemia. J Clin Med Res 2019; 11:676-681. [PMID: 31636781 PMCID: PMC6785278 DOI: 10.14740/jocmr3901] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Accepted: 08/20/2019] [Indexed: 11/11/2022] Open
Abstract
Background The combination of ezetimibe with statin therapy reduced cardiovascular events compared to statin monotherapy in IMPROVEIT study, and ezetimibe monotherapy attenuated atherosclerosis in basic study. We previously showed ezetimibe monotherapy was especially effective for metabolic syndrome (MetS) patients. We investigated the effects of ezetimibe monotherapy for high-density lipoprotein cholesterol (HDL-chol) function and platelet-activating factor acetylhydrolase (PAF-AH) activity. Methods Forty-two patients who initially received ezetimibe (10 mg/day) without statin treatment for 16 weeks from January 2009 to August 2011 were enrolled. Patients were divided into MetS and non-MetS groups, and serum levels of lipids, PAF-AH, and HDL-chol efflux capacity (HDL-CEC) at baseline and after 16 weeks of treatment were investigated. Serum PAF-AH, HDL-associated PAF-AH (HDL-PAF-AH), and LDL-associated PAF-AH (LDL-PAF-AH) were measured. Results In all patients, age, the percentages of males, and body mass index were 61.0 ± 8.8 years, 59.5% and 26.3 ± 3.4 kg/m2, respectively. Total cholesterol and low-density lipoprotein cholesterol (LDL-chol) were significantly decreased by ezetimibe monotherapy. Serum PAF-AH and LDL-PAF-AH were significantly decreased by ezetimibe monotherapy, whereas HDL-PAF-AH and HDL-CEC were not. There was no difference in the results of PAF-AH and HDL-CEC between MetS and non-MetS groups. Conclusions Ezetimibe monotherapy might prevent coronary heart disease (CHD) regardless of the presence of MetS, because PAF-AH was independent risk factor for CHD.
Collapse
Affiliation(s)
- Kanako Tano
- Department of Cardiology, Fukuoka University School of Medicine, Fukuoka, Japan.,These authors contributed equally to this manuscript
| | - Yasunori Suematsu
- Department of Cardiology, Fukuoka University School of Medicine, Fukuoka, Japan.,These authors contributed equally to this manuscript
| | - Kohei Tashiro
- Department of Cardiology, Fukuoka University School of Medicine, Fukuoka, Japan
| | - Naoko Kumagai-Koyanagi
- Department of Cardiology, Fukuoka University School of Medicine, Fukuoka, Japan.,Division of Cardiology, Sata Hospital, Fukuoka, Japan
| | - Yoshino Matsuo
- Department of Cardiology, Fukuoka University School of Medicine, Fukuoka, Japan
| | - Takashi Kuwano
- Department of Cardiology, Fukuoka University School of Medicine, Fukuoka, Japan
| | - Shin-Ichiro Miura
- Department of Cardiology, Fukuoka University School of Medicine, Fukuoka, Japan
| | | |
Collapse
|
14
|
Suematsu Y, Kawachi E, Idemoto Y, Matsuo Y, Kuwano T, Kitajima K, Imaizumi S, Kawamura A, Saku K, Uehara Y, Miura SI. Anti-atherosclerotic effects of an improved apolipoprotein A-I mimetic peptide. Int J Cardiol 2019; 297:111-117. [PMID: 31519377 DOI: 10.1016/j.ijcard.2019.08.043] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Revised: 08/01/2019] [Accepted: 08/20/2019] [Indexed: 01/23/2023]
Abstract
BACKGROUND Apolipoprotein (Apo)A-I is a major protein component of high-density lipoprotein (HDL) that causes cholesterol efflux from peripheral cells through ATP-binding cassette transporter A1 (ABCA1) and the generation of HDL. Furthermore, it has a possible protective function against atherosclerotic cardiovascular disease (ASCVD). We previously developed a novel ApoA-I mimetic peptide without phospholipids (Fukuoka University ApoA-I Mimetic Peptide, FAMP). According to our previous studies, FAMP had an anti-arteriosclerotic effect. Since the required dose and reaction time of conventional FAMP were relatively large and short, respectively, we newly developed an improved FAMP (i-FAMP). METHODS AND RESULTS We synthesized four candidate i-FAMPs, i-FAMP-D1, -D2, -D3 and -D4, and examined which i-FAMP has greater cholesterol efflux capacity than FAMP in A172 human glioblastoma cells transiently transfected with human ABCA1 cDNA. Only i-FAMP-D1 showed significantly greater cholesterol efflux capacity than conventional FAMP. i-FAMP-D1 formed stronger α-helical conformations than FAMP as assessed by circular dichroism spectra. Thus, we selected i-FAMP-D1 for further experiments. i-FAMP-D1 had a greater atheroprotective effect than FAMP in ApoE knockout mice. In addition, i-FAMP-D1 activated cholesterol efflux from macrophage to HDL more strongly than FAMP and increased cholesterol excretion from liver to feces. CONCLUSION These results suggest that i-FAMP-D1 has a stronger anti-atherosclerotic effect than conventional FAMP.
Collapse
Affiliation(s)
- Yasunori Suematsu
- Department of Cardiology, Fukuoka University School of Medicine, Japan
| | - Emi Kawachi
- Clinical Research and Ethics Center, Fukuoka University School of Medicine, Japan
| | - Yoshiaki Idemoto
- Department of Cardiology, Fukuoka University School of Medicine, Japan
| | - Yoshino Matsuo
- Department of Cardiology, Fukuoka University School of Medicine, Japan
| | - Takashi Kuwano
- Department of Cardiology, Fukuoka University School of Medicine, Japan
| | - Ken Kitajima
- Department of Cardiology, Fukuoka University School of Medicine, Japan
| | - Satoshi Imaizumi
- Clinical Research and Ethics Center, Fukuoka University School of Medicine, Japan
| | - Akira Kawamura
- Center for Graduate Clinical Practice, Fukuoka University Hospital, Fukuoka, Japan
| | - Keijiro Saku
- General Medical Research Center, Fukuoka University School of Medicine, Japan
| | - Yoshinari Uehara
- Graduate School of Sports and Health Sciences, Fukuoka University, Fukuoka, Japan.
| | - Shin-Ichiro Miura
- Department of Cardiology, Fukuoka University School of Medicine, Japan.
| |
Collapse
|
15
|
Pirillo A, Catapano AL, Norata GD. Biological Consequences of Dysfunctional HDL. Curr Med Chem 2019; 26:1644-1664. [PMID: 29848265 DOI: 10.2174/0929867325666180530110543] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Revised: 12/25/2017] [Accepted: 12/27/2017] [Indexed: 12/31/2022]
Abstract
Epidemiological studies have suggested an inverse correlation between high-density lipoprotein (HDL) cholesterol levels and the risk of cardiovascular disease. HDLs promote reverse cholesterol transport (RCT) and possess several putative atheroprotective functions, associated to the anti-inflammatory, anti-thrombotic and anti-oxidant properties as well as to the ability to support endothelial physiology. The assumption that increasing HDL-C levels would be beneficial on cardiovascular disease (CVD), however, has been questioned as, in most clinical trials, HDL-C-raising therapies did not result in improved cardiovascular outcomes. These findings, together with the observations from Mendelian randomization studies showing that polymorphisms mainly or solely associated with increased HDL-C levels did not decrease the risk of myocardial infarction, shift the focus from HDL-C levels toward HDL functional properties. Indeed, HDL from atherosclerotic patients not only exhibit impaired atheroprotective functions but also acquire pro-atherogenic properties and are referred to as "dysfunctional" HDL; this occurs even in the presence of normal or elevated HDL-C levels. Pharmacological approaches aimed at restoring HDL functions may therefore impact more significantly on CVD outcome than drugs used so far to increase HDL-C levels. The aim of this review is to discuss the pathological conditions leading to the formation of dysfunctional HDL and their role in atherosclerosis and beyond.
Collapse
Affiliation(s)
- Angela Pirillo
- Center for the Study of Atherosclerosis, Bassini Hospital, Cinisello Balsamo, Italy.,IRCCS Multimedica, Milan, Italy
| | - Alberico Luigi Catapano
- IRCCS Multimedica, Milan, Italy.,Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Milan, Italy
| | - Giuseppe Danilo Norata
- Center for the Study of Atherosclerosis, Bassini Hospital, Cinisello Balsamo, Italy.,Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Milan, Italy.,School of Biomedical Sciences, Curtin Health Innovation Research Institute, Curtin University, Perth, Western Australia
| |
Collapse
|
16
|
Filippatos TD, Liontos A, Christopoulou EC, Elisaf MS. Novel Hypolipidaemic Drugs: Mechanisms of Action and Main Metabolic Effects. Curr Vasc Pharmacol 2019; 17:332-340. [DOI: 10.2174/1570161116666180209112351] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Revised: 06/14/2018] [Accepted: 06/14/2018] [Indexed: 02/07/2023]
Abstract
Over the last 3 decades, hypolipidaemic treatment has significantly reduced both Cardiovascular
(CV) risk and events, with statins being the cornerstone of this achievement. Nevertheless, residual
CV risk and unmet goals in hypolipidaemic treatment make novel options necessary. Recently marketed
monoclonal antibodies against proprotein convertase subtilisin/kexin type 9 (PCSK9) have shown
the way towards innovation, while other ways of PCSK9 inhibition like small interfering RNA (Inclisiran)
are already being tested. Other effective and well tolerated drugs affect known paths of lipid
synthesis and metabolism, such as bempedoic acid blocking acetyl-coenzyme A synthesis at a different
level than statins, pemafibrate selectively acting on peroxisome proliferator-activated receptor (PPAR)-
alpha receptors and oligonucleotides against apolipoprotein (a). Additionally, other novel hypolipidaemic
drugs are in early phase clinical trials, such as the inhibitors of apolipoprotein C-III, which is located
on triglyceride (TG)-rich lipoproteins, or the inhibitors of angiopoietin-like 3 (ANGPTL3), which
plays a key role in lipid metabolism, aiming to beneficial effects on TG levels and glucose metabolism.
Among others, gene therapy substituting the loss of essential enzymes is already used for Lipoprotein
Lipase (LPL) deficiency in autosomal chylomicronaemia and is expected to eliminate the lack of Low-
Density Lipoprotein (LDL) receptors in patients with homozygous familial hypercholesterolaemia. Experimental
data of High-Density Lipoprotein (HDL) mimetics infusion therapy have shown a beneficial
effect on atherosclerotic plaques. Thus, many novel hypolipidaemic drugs targeting different aspects of
lipid metabolism are being investigated, although they need to be assessed in large trials to prove their
CV benefit and safety.
Collapse
Affiliation(s)
| | - Angelos Liontos
- Department of Internal Medicine, School of Medicine, University of Ioannina, Ioannina, Greece
| | - Eliza C. Christopoulou
- Department of Internal Medicine, School of Medicine, University of Ioannina, Ioannina, Greece
| | - Moses S. Elisaf
- Department of Internal Medicine, School of Medicine, University of Ioannina, Ioannina, Greece
| |
Collapse
|
17
|
Yu XH, Zhang DW, Zheng XL, Tang CK. Cholesterol transport system: An integrated cholesterol transport model involved in atherosclerosis. Prog Lipid Res 2018; 73:65-91. [PMID: 30528667 DOI: 10.1016/j.plipres.2018.12.002] [Citation(s) in RCA: 136] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Revised: 10/30/2018] [Accepted: 12/01/2018] [Indexed: 02/07/2023]
Abstract
Atherosclerosis, the pathological basis of most cardiovascular disease (CVD), is closely associated with cholesterol accumulation in the arterial intima. Excessive cholesterol is removed by the reverse cholesterol transport (RCT) pathway, representing a major antiatherogenic mechanism. In addition to the RCT, other pathways are required for maintaining the whole-body cholesterol homeostasis. Thus, we propose a working model of integrated cholesterol transport, termed the cholesterol transport system (CTS), to describe body cholesterol metabolism. The novel model not only involves the classical view of RCT but also contains other steps, such as cholesterol absorption in the small intestine, low-density lipoprotein uptake by the liver, and transintestinal cholesterol excretion. Extensive studies have shown that dysfunctional CTS is one of the major causes for hypercholesterolemia and atherosclerosis. Currently, several drugs are available to improve the CTS efficiently. There are also several therapeutic approaches that have entered into clinical trials and shown considerable promise for decreasing the risk of CVD. In recent years, a variety of novel findings reveal the molecular mechanisms for the CTS and its role in the development of atherosclerosis, thereby providing novel insights into the understanding of whole-body cholesterol transport and metabolism. In this review, we summarize the latest advances in this area with an emphasis on the therapeutic potential of targeting the CTS in CVD patients.
Collapse
Affiliation(s)
- Xiao-Hua Yu
- Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, Medical Research Experiment Center, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, Hunan 421001, China
| | - Da-Wei Zhang
- Department of Pediatrics and Group on the Molecular and Cell Biology of Lipids, University of Alberta, Alberta, Canada
| | - Xi-Long Zheng
- Department of Biochemistry and Molecular Biology, Libin Cardiovascular Institute of Alberta, Cumming School of Medicine, University of Calgary, Health Sciences Center, 3330 Hospital Dr NW, Calgary, Alberta T2N 4N1, Canada
| | - Chao-Ke Tang
- Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, Medical Research Experiment Center, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, Hunan 421001, China.
| |
Collapse
|
18
|
Kudinov VA, Zakharova TS, Torkhovskaya TI, Ipatova OM, Archakov AI. [Pharmacological targets for dislipidemies correction. Opportunities and prospects of therapeutic usage]. BIOMEDITSINSKAIA KHIMIIA 2018; 64:66-83. [PMID: 29460837 DOI: 10.18097/pbmc20186401066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Literature data on influence of existing and new groups of drug preparations for dyslipidemias correction are systemized, and molecular mechanisms of their effects are reviewed. The results of experimental and clinical investigations aimed at revealing of new pharmacological targets of dyslipidemias correction were analyzed. The approaches for activation of high density lipoproteins functionality are described. The implementation of alternative preparations with new alternative mechanisms of action may be suggested to improve the effectiveness of traditional treatment in the future.
Collapse
Affiliation(s)
- V A Kudinov
- Institute of Biomedical Chemistry, Moscow, Russia
| | | | | | - O M Ipatova
- Institute of Biomedical Chemistry, Moscow, Russia
| | - A I Archakov
- Institute of Biomedical Chemistry, Moscow, Russia
| |
Collapse
|
19
|
Recio C, Maione F, Iqbal AJ, Mascolo N, De Feo V. The Potential Therapeutic Application of Peptides and Peptidomimetics in Cardiovascular Disease. Front Pharmacol 2017; 7:526. [PMID: 28111551 PMCID: PMC5216031 DOI: 10.3389/fphar.2016.00526] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2016] [Accepted: 12/19/2016] [Indexed: 12/11/2022] Open
Abstract
Cardiovascular disease (CVD) remains a leading cause of mortality and morbidity worldwide. Numerous therapies are currently under investigation to improve pathological cardiovascular complications, but yet, there have been very few new medications approved for intervention/treatment. Therefore, new approaches to treat CVD are urgently required. Attempts to prevent vascular complications usually involve amelioration of contributing risk factors and underlying processes such as inflammation, obesity, hyperglycaemia, or hypercholesterolemia. Historically, the development of peptides as therapeutic agents has been avoided by the Pharmaceutical industry due to their low stability, size, rate of degradation, and poor delivery. However, more recently, resurgence has taken place in developing peptides and their mimetics for therapeutic intervention. As a result, increased attention has been placed upon using peptides that mimic the function of mediators involved in pathologic processes during vascular damage. This review will provide an overview on novel targets and experimental therapeutic approaches based on peptidomimetics for modulation in CVD. We aim to specifically examine apolipoprotein A-I (apoA-I) and apoE mimetic peptides and their role in cholesterol transport during atherosclerosis, suppressors of cytokine signaling (SOCS)1-derived peptides and annexin-A1 as potent inhibitors of inflammation, incretin mimetics and their function in glucose-insulin tolerance, among others. With improvements in technology and synthesis platforms the future looks promising for the development of novel peptides and mimetics for therapeutic use. However, within the area of CVD much more work is required to identify and improve our understanding of peptide structure, interaction, and function in order to select the best targets to take forward for treatment.
Collapse
Affiliation(s)
- Carlota Recio
- Sir William Dunn School of Pathology, University of Oxford Oxford, UK
| | - Francesco Maione
- Department of Pharmacy, University of Naples Federico II Naples, Italy
| | - Asif J Iqbal
- Sir William Dunn School of Pathology, University of Oxford Oxford, UK
| | - Nicola Mascolo
- Department of Pharmacy, University of Naples Federico II Naples, Italy
| | - Vincenzo De Feo
- Department of Pharmacy, University of Salerno Salerno, Italy
| |
Collapse
|
20
|
Hasegawa K, Kawachi E, Uehara Y, Yoshida T, Imaizumi S, Ogawa M, Miura SI, Saku K. Improved 68 Ga-labeling method using ethanol addition: Application to the α-helical peptide DOTA-FAMP. J Labelled Comp Radiopharm 2016; 60:55-61. [PMID: 27925294 DOI: 10.1002/jlcr.3474] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Revised: 09/29/2016] [Accepted: 10/21/2016] [Indexed: 01/10/2023]
Abstract
We examined the 68 Ga labeling of the α-helical peptide, DOTA-FAMP, and evaluated conformational changes during radiolabeling. 68 Ga-DOTA-FAMP is a positron emission tomography probe candidate for atherosclerotic plaques. The labeling yield achieved by Zhernosekov's method (using acetone for 68 Ga purification) was compared with that achieved by the original and 2 modified Mueller's methods (using NaCl solution). Modified method I involves desalting the 68 Ga prior to labeling, and modified method II involves the inclusion of ethanol in the labeling solution. The labeling yield using Zhernosekov's method was 62% ± 5.4%. In comparison, Mueller's original method gave 8.9% ± 1.7%. Modified method I gave a slight improvement of 32% ± 2.1%. Modified method II further increased the yield to 66% ± 3.4%. Conformational changes were determined by circular dichroism spectroscopy, revealing that these differences could be attributed to conformational changes. Heat treatment affects peptide conformation, which leads to aggregation and decreases the labeling yield. Mueller's method is simpler, but harsh conditions preclude its application to biomolecules. To suppress aggregation, we included a desalting process and added ethanol in the labeling solution. These changes significantly improved the labeling yield. Before use for imaging, conformational changes of biomolecules during radiolabeling should be evaluated by circular dichroism spectroscopy to ensure the homogeneity of the labeled product.
Collapse
Affiliation(s)
- Koki Hasegawa
- Center for Instrumental Analysis, Kyoto Pharmaceutical University, Kyoto, Japan
| | - Emi Kawachi
- Department of Cardiology, Faculty of Medicine, Fukuoka University, Fukuoka, Japan
| | - Yoshinari Uehara
- Department of Cardiology, Faculty of Medicine, Fukuoka University, Fukuoka, Japan.,Faculty of Sports and Health Science, Fukuoka University, Fukuoka, Japan
| | - Tsuyoshi Yoshida
- Department of Radiology, Koga Hospital 21, Kurume, Fukuoka, Japan
| | - Satoshi Imaizumi
- Department of Cardiology, Faculty of Medicine, Fukuoka University, Fukuoka, Japan
| | - Masahiro Ogawa
- Department of Cardiology, Faculty of Medicine, Fukuoka University, Fukuoka, Japan
| | - Shin-Ichiro Miura
- Department of Cardiology, Faculty of Medicine, Fukuoka University, Fukuoka, Japan
| | - Keijiro Saku
- Department of Cardiology, Faculty of Medicine, Fukuoka University, Fukuoka, Japan
| |
Collapse
|
21
|
Yang CJ, Yang J, Yang J, Fan ZX. Fukuoka University apolipoprotein A-I mimetic peptide (FAMP): A novel potential therapeutic for myocardial ischemia reperfusion injury. Int J Cardiol 2016; 222:1059-1060. [PMID: 26522995 DOI: 10.1016/j.ijcard.2015.10.198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2015] [Accepted: 10/25/2015] [Indexed: 11/25/2022]
Affiliation(s)
- Chao-Jun Yang
- Department of Cardiology, the First College of Clinical Medical Sciences, China Three Gorges University, Yichang 443000, Hubei Province, China; Institute of Cardiovascular Diseases, China Three Gorges University, Yichang 443000, Hubei Province, China
| | - Jun Yang
- Department of Cardiology, the First College of Clinical Medical Sciences, China Three Gorges University, Yichang 443000, Hubei Province, China; Institute of Cardiovascular Diseases, China Three Gorges University, Yichang 443000, Hubei Province, China.
| | - Jian Yang
- Department of Cardiology, the First College of Clinical Medical Sciences, China Three Gorges University, Yichang 443000, Hubei Province, China; Institute of Cardiovascular Diseases, China Three Gorges University, Yichang 443000, Hubei Province, China
| | - Zhi-Xing Fan
- Department of Cardiology, the First College of Clinical Medical Sciences, China Three Gorges University, Yichang 443000, Hubei Province, China; Institute of Cardiovascular Diseases, China Three Gorges University, Yichang 443000, Hubei Province, China
| |
Collapse
|
22
|
Takata K, Imaizumi S, Zhang B, Miura SI, Saku K. Stabilization of high-risk plaques. Cardiovasc Diagn Ther 2016; 6:304-21. [PMID: 27500090 DOI: 10.21037/cdt.2015.10.03] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The prevalence of atherosclerotic cardiovascular diseases (ASCVDs) is increasing globally and they have become the leading cause of death in most countries. Numerous experimental and clinical studies have been conducted to identify major risk factors and effective control strategies for ASCVDs. The development of imaging modalities with the ability to determine the plaque composition enables us to further identify high-risk plaque and evaluate the effectiveness of different treatment strategies. While intensive lipid-lowering by statins can stabilize or even regress plaque by various mechanisms, such as the reduction of lipid accumulation in a necrotic lipid core, the reduction of inflammation, and improvement of endothelial function, there are still considerable residual risks that need to be understood. We reviewed important findings regarding plaque vulnerability and some encouraging emerging approaches for plaque stabilization.
Collapse
Affiliation(s)
- Kohei Takata
- Department of Cardiology, Fukuoka University School of Medicine, Fukuoka 814-0180, Japan
| | - Satoshi Imaizumi
- Department of Cardiology, Fukuoka University School of Medicine, Fukuoka 814-0180, Japan
| | - Bo Zhang
- Department of Biochemistry, Fukuoka University School of Medicine, Fukuoka 814-0180, Japan
| | - Shin-Ichiro Miura
- Department of Cardiology, Fukuoka University School of Medicine, Fukuoka 814-0180, Japan
| | - Keijiro Saku
- Department of Cardiology, Fukuoka University School of Medicine, Fukuoka 814-0180, Japan
| |
Collapse
|
23
|
Tani S, Nagao K, Hirayama A. Association of systemic inflammation with the serum apolipoprotein A-1 level: A cross-sectional pilot study. J Cardiol 2016; 68:168-77. [DOI: 10.1016/j.jjcc.2015.08.016] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2015] [Revised: 08/06/2015] [Accepted: 08/27/2015] [Indexed: 12/18/2022]
|
24
|
Bhatt A, Rohatgi A. HDL Cholesterol Efflux Capacity: Cardiovascular Risk Factor and Potential Therapeutic Target. Curr Atheroscler Rep 2016; 18:2. [PMID: 26710794 DOI: 10.1007/s11883-015-0554-1] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Low high-density lipoprotein cholesterol (HDL-C) levels are associated with incident cardiovascular events; however, many therapies targeting increases in HDL-C have failed to show consistent clinical benefit. Thus, focus has recently shifted toward measuring high-density lipoprotein (HDL) function. HDL is the key mediator of reverse cholesterol transport, the process of cholesterol extraction from foam cells, and eventual excretion into the biliary system. Cholesterol efflux from peripheral macrophages to HDL particles has been associated with atherosclerosis in both animals and humans. We review the mechanism of cholesterol efflux and the emerging evidence on the association between cholesterol efflux capacity and cardiovascular disease in human studies. We also focus on the completed and ongoing trials of novel therapies targeting different aspects of HDL cholesterol efflux.
Collapse
Affiliation(s)
- Anish Bhatt
- Division of Cardiology, Department of Internal Medicine, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, TX, 75390-8830, USA.
| | - Anand Rohatgi
- Division of Cardiology, Department of Internal Medicine, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, TX, 75390-8830, USA.
| |
Collapse
|
25
|
Michalak A, Mosińska P, Fichna J. Common links between metabolic syndrome and inflammatory bowel disease: Current overview and future perspectives. Pharmacol Rep 2016; 68:837-46. [PMID: 27238750 DOI: 10.1016/j.pharep.2016.04.016] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2015] [Revised: 04/25/2016] [Accepted: 04/26/2016] [Indexed: 02/07/2023]
Abstract
Metabolic syndrome (MS) features a constellation of central obesity, dyslipidemia, impaired glucose metabolism and often hypertension joined by insulin resistance and chronic inflammation. All these elements greatly raise patient's risk of cardiovascular disease and type 2 diabetes, resulting in an increased mortality. Metabolic syndrome affects approximately 20-25% of the world's adult population and thus it is essential to study its pathophysiology and seek new pharmacological targets. There is a thoroughly studied link between MS and inflammatory diseases of the gastrointestinal (GI) system, i.e. steatohepatitis. However, recent findings also indicate similarities in pathophysiological features between MS and inflammatory bowel disease (IBD), including adipose tissue dysregulation, inadequate immune response, and inflammation. In this review we aim to outline the pathophysiology of MS and emphasize the aspects revealed recently, such as mineralocorticoid activity, involvement of sex hormones and an accompanying increase in prolactin secretion. More importantly, we focus on the common links between MS and IBD. Finally, we describe new strategies and drug targets that may be utilized in MS therapy, namely adiponectin mimetics, GLP-1-based multi agonists, ABCA1 agonists and possible role of miRNA. We also discuss the possible utility of selected agents as adjuvants in IBD therapy.
Collapse
Affiliation(s)
- Arkadiusz Michalak
- Department of Biochemistry, Faculty of Medicine, Medical University of Lodz, Łódź, Poland
| | - Paula Mosińska
- Department of Biochemistry, Faculty of Medicine, Medical University of Lodz, Łódź, Poland
| | - Jakub Fichna
- Department of Biochemistry, Faculty of Medicine, Medical University of Lodz, Łódź, Poland.
| |
Collapse
|
26
|
Abstract
The concept of lipoprotein mimetics was developed and extensively tested in the last three decades. Most lipoprotein mimetics were designed to recreate one or several functions of high-density lipoprotein (HDL) in the context of cardiovascular disease; however, the application of this approach is much broader. Lipoprotein mimetics should not just be seen as a set of compounds aimed at replenishing a deficiency or dysfunctionality of individual elements of lipoprotein metabolism but rather as a designer concept with remarkable flexibility and numerous applications in medicine and biology. In the present review, we discuss the fundamental design principles used to create lipoprotein mimetics, mechanisms of their action, medical indications and efficacy in animal models and human studies.
Collapse
|
27
|
Takata K, Imaizumi S, Kawachi E, Yahiro E, Suematsu Y, Shimizu T, Abe S, Matsuo Y, Nakajima K, Yasuno T, Jimi S, Zhang B, Uehara Y, Miura SI, Saku K. The ApoA-I mimetic peptide FAMP promotes recovery from hindlimb ischemia through a nitric oxide (NO)-related pathway. Int J Cardiol 2016; 207:317-25. [DOI: 10.1016/j.ijcard.2016.01.012] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2015] [Revised: 11/25/2015] [Accepted: 01/01/2016] [Indexed: 10/22/2022]
|
28
|
Ikenaga M, Higaki Y, Saku K, Uehara Y. High-Density Lipoprotein Mimetics: a Therapeutic Tool for Atherosclerotic Diseases. J Atheroscler Thromb 2016; 23:385-94. [PMID: 26830201 DOI: 10.5551/jat.33720] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Clinical trials and epidemiological studies have revealed a negative correlation between serum high-density lipoprotein (HDL) cholesterol levels and the risk of cardiovascular events. Currently, statin treatment is the standard therapy for cardiovascular diseases, reducing plasma low-density lipoprotein (LDL) cholesterol levels. However, more than half of the patients have not been able to receive the beneficial effects of this treatment.The reverse cholesterol transport pathway has several potential anti-atherogenic properties. An important approach to HDL-targeted therapy is the optimization of HDL cholesterol levels and function in the blood to enhance the removal of circulating cholesterol and to prevent or mitigate inflammation that causes atherosclerosis. Cholesteryl ester transfer protein inhibitors increase HDL cholesterol levels in humans, but whether they reduce the risk of atherosclerotic diseases is unknown. HDL therapies using HDL mimetics, including reconstituted HDL, apolipoprotein (Apo) A-IMilano, ApoA-I mimetic peptides, or full-length ApoA-I, are highly effective in animal models. In particular, the Fukuoka University ApoA-I-mimetic peptide (FAMP) effectively removes cholesterol via the ABCA1 transporter and acts as an anti-atherosclerotic agent by enhancing the biological functions of HDL without elevating HDL cholesterol levels.Our literature review suggests that HDL mimetics have significant atheroprotective potential and are a therapeutic tool for atherosclerotic diseases.
Collapse
|
29
|
Suematsu Y, Miura SI, Takata K, Shimizu T, Kuwano T, Imaizumi S, Matsuo Y, Yahiro E, Uehara Y, Saku K. A novel inducible cholesterol efflux peptide, FAMP, protects against myocardial ischemia reperfusion injury through a nitric oxide pathway. Int J Cardiol 2016; 202:810-6. [DOI: 10.1016/j.ijcard.2015.10.013] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2015] [Revised: 09/12/2015] [Accepted: 10/03/2015] [Indexed: 10/22/2022]
|
30
|
A functional proteomics approach to the comprehension of sarcoidosis. J Proteomics 2015; 128:375-87. [PMID: 26342673 DOI: 10.1016/j.jprot.2015.08.012] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2015] [Revised: 07/30/2015] [Accepted: 08/19/2015] [Indexed: 12/22/2022]
Abstract
Pulmonary sarcoidosis (Sar) is an idiopathic disease histologically typified by non-caseating epitheliod cell sarcoid granulomas. A cohort of 37 Sar patients with chronic persistent pulmonary disease was described in this study. BAL protein profiles from 9 of these Sar patients were compared with those from 8 smoker (SC) and 10 no-smoker controls (NSC) by proteomic approach. Principal Component Analysis was performed to clusterize the samples in the corresponding conditions highlighting a differential pattern profiles primarily in Sar than SC. Spot identification reveals thirty-four unique proteins involved in lipid, mineral, and vitamin Dmetabolism, and immuneregulation of macrophage function. Enrichment analysis has been elaborated by MetaCore, revealing 14-3-3ε, α1-antitrypsin, GSTP1, and ApoA1 as "central hubs". Process Network as well as Pathway Maps underline proteins involved in immune response and inflammation induced by complement system, innate inflammatory response and IL-6signalling. Disease Biomarker Network highlights Tuberculosis and COPD as pathologies that share biomarkers with sarcoidosis. In conclusion, Sar protein expression profile seems more similar to that of NSC than SC, conversely to other ILDs. Moreover, Disease Biomarker Network revealed several common features between Sar and TB, exhorting to orientate the future proteomics investigations also in comparative BALF analysis of Sar and TB.
Collapse
|
31
|
Newly developed apolipoprotein A-I mimetic peptide promotes macrophage reverse cholesterol transport in vivo. Int J Cardiol 2015; 192:82-8. [DOI: 10.1016/j.ijcard.2015.05.012] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2014] [Revised: 03/26/2015] [Accepted: 05/06/2015] [Indexed: 01/26/2023]
|
32
|
Du Y, Wang L, Hong B. High-density lipoprotein-based drug discovery for treatment of atherosclerosis. Expert Opin Drug Discov 2015; 10:841-55. [PMID: 26022101 DOI: 10.1517/17460441.2015.1051963] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
INTRODUCTION Although there has been great progress achieved by the use of intensive statin therapy, the burden of atherosclerotic cardiovascular disease (CVD) remains high. This has initiated the search for novel high-density lipoprotein (HDL)-based therapeutics. Recent years have witnessed a shift from traditional raising HDL-C levels to enhancing HDL functionality, in which the process of reverse cholesterol transport (RCT) has acquired much attention. AREAS COVERED In this review, the authors describe the key factors involved in RCT process for potential drug targets to reduce the CVD risk. Furthermore, the review provides a summary of the effective screening methods that have been developed to target RCT and their applications. This review also introduces some new strategies currently being clinically developed, which have the potential to improve HDL function in the RCT process. EXPERT OPINION It is rational that the functionality of HDL is more important than the plasma HDL-C level in the evaluation of pharmacological treatment in atherosclerosis. HDL-based strategies designed to promote macrophage RCT are a major area of current drug discovery and development for atherosclerotic diseases. A better understanding of the functionality of HDL and its relationship with atherosclerosis will expand our knowledge of the role of HDL in lipid metabolism, holding promise for a future successful HDL-based therapy.
Collapse
Affiliation(s)
- Yu Du
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College , No.1 Tiantan Xili, Beijing 100050 , China
| | | | | |
Collapse
|
33
|
Miura SI, Suematsu Y, Matsuo Y, Imaizumi S, Yahiro E, Uehara Y, Saku K. Induction of endothelial tube formation and anti-inflammation by newly developed apolipoprotein A-I mimetic peptide. ACTA ACUST UNITED AC 2014. [DOI: 10.1016/j.ijcme.2014.09.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
34
|
Uehara Y, Saku K. High-density lipoprotein and atherosclerosis: Roles of lipid transporters. World J Cardiol 2014; 6:1049-1059. [PMID: 25349649 PMCID: PMC4209431 DOI: 10.4330/wjc.v6.i10.1049] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/01/2014] [Revised: 02/10/2014] [Accepted: 08/31/2014] [Indexed: 02/06/2023] Open
Abstract
Various previous studies have found a negative correlation between the risk of cardiovascular events and serum high-density lipoprotein (HDL) cholesterol levels. The reverse cholesterol transport, a pathway of cholesterol from peripheral tissue to liver which has several potent antiatherogenic properties. For instance, the particles of HDL mediate to transport cholesterol from cells in arterial tissues, particularly from atherosclerotic plaques, to the liver. Both ATP-binding cassette transporters (ABC) A1 and ABCG1 are membrane cholesterol transporters and have been implicated in mediating cholesterol effluxes from cells in the presence of HDL and apolipoprotein A-I, a major protein constituent of HDL. Previous studies demonstrated that ABCA1 and ABCG1 or the interaction between ABCA1 and ABCG1 exerted antiatherosclerotic effects. As a therapeutic approach for increasing HDL cholesterol levels, much focus has been placed on increasing HDL cholesterol levels as well as enhancing HDL biochemical functions. HDL therapies that use injections of reconstituted HDL, apoA-I mimetics, or full-length apoA-I have shown dramatic effectiveness. In particular, a novel apoA-I mimetic peptide, Fukuoka University ApoA-I Mimetic Peptide, effectively removes cholesterol via specific ABCA1 and other transporters, such as ABCG1, and has an antiatherosclerotic effect by enhancing the biological functions of HDL without changing circulating HDL cholesterol levels. Thus, HDL-targeting therapy has significant atheroprotective potential, as it uses lipid transporter-targeting agents, and may prove to be a therapeutic tool for atherosclerotic cardiovascular diseases.
Collapse
|
35
|
Cimmino G, Ciccarelli G, Morello A, Ciccarelli M, Golino P. High Density Lipoprotein Cholesterol Increasing Therapy: The Unmet Cardiovascular Need. Transl Med UniSa 2014; 12:29-40. [PMID: 26535185 PMCID: PMC4592041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Despite aggressive strategies are now available to reduce LDL-cholesterol, the risk of cardiovascular events in patients with coronary artery disease remains substantial. Several preclinical and clinical studies have shown that drug therapy ultimately leads to a regression of the angiographic lesions but also results in a reduction in cardiovascular events. The dramatic failure of clinical trials evaluating the cholesterol ester transfer protein (CEPT) inhibitors, torcetrapib and dalcetrapib, has led to considerable doubt about the value of the current strategy to raise high-density lipoprotein cholesterol (HDL-C) as a treatment for cardiovascular disease. These clinical results, as well as animal studies, have revealed the complexity of HDL metabolism, assessing a more important role of functional quality compared to circulating quantity of HDL. As a result, HDL-based therapeutic interventions that maintain or enhance HDL functionality, such as improving its main property, the reverse cholesterol transport, require closer investigation. In this review, we will discuss HDL metabolism and function, clinical-trial data available for HDL-raising agents, and potential strategies for future HDL-based therapies.
Collapse
Affiliation(s)
- Giovanni Cimmino
- Department of Cardiothoracic and Respiratory Sciences, Second University of Naples, Italy;,Address for Correspondence: Giovanni Cimmino MD, Second University of Naples - Via L. Bianchi, 1, 80131 Naples, Italy, Tel. (39+) 0823 232547 Fax (39+) 0823 232395 E-mail:
| | - Giovanni Ciccarelli
- Department of Cardiothoracic and Respiratory Sciences, Second University of Naples, Italy
| | - Alberto Morello
- Department of Cardiothoracic and Respiratory Sciences, Second University of Naples, Italy
| | | | - Paolo Golino
- Department of Cardiothoracic and Respiratory Sciences, Second University of Naples, Italy
| |
Collapse
|
36
|
Abstract
PURPOSE OF REVIEW To summarize recent publications in the field of apolipoprotein mimetics. RECENT FINDINGS Apolipoprotein mimetic peptides continue to show efficacy in a number of animal models of disease and demonstrate properties that make them attractive as potential therapeutic agents. A number of new apolipoprotein mimetics have been described recently. A major site of action of apolipoprotein mimetic peptides was found to be in the small intestine in which they decrease the levels of proinflammatory bioactive lipids. A major problem related to the use of apolipoprotein mimetic peptides is their cost, particularly those that need to be generated by solid phase synthesis with chemical addition of end-blocking groups. Novel approaches to apolipoprotein mimetic therapy have emerged recently that show promise in overcoming these barriers. SUMMARY Despite the recent failure of therapies designed to raise HDL-cholesterol in humans, an approach to therapy using mimetics of HDL and its components continues to show promise.
Collapse
Affiliation(s)
- Srinivasa T. Reddy
- Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles CA 90095
- Department of Obstetrics and Gynecology, David Geffen School of Medicine at UCLA, Los Angeles CA 90095
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095
| | - Mohamad Navab
- Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles CA 90095
| | | | - Alan M. Fogelman
- Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles CA 90095
- Corresponding Author: Department of Medicine, 10833 Le Conte Avenue, Box 951736, Los Angele, CA 90095-1736, Telephone: 310-825-6058, Fax: 310-206-3489,
| |
Collapse
|
37
|
Tomkin GH, Owens D. Investigational therapies for the treatment of atherosclerosis. Expert Opin Investig Drugs 2014; 23:1411-21. [DOI: 10.1517/13543784.2014.922950] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
38
|
Yahiro E, Uehara Y, Kawachi E, Ando S, Miura SI, Saku K. Improved survival rate after myocardial infarction using an inducible cholesterol efflux (iCE) peptide: FAMP. INTERNATIONAL JOURNAL OF CARDIOLOGY. HEART & VESSELS 2014; 4:135-137. [PMID: 29450188 PMCID: PMC5801440 DOI: 10.1016/j.ijchv.2014.05.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/07/2013] [Revised: 05/13/2014] [Accepted: 05/18/2014] [Indexed: 10/31/2022]
Abstract
Background There have been no previous reports that apolipoprotein (apo) A-I mimetic peptide improves survival rate after myocardial infarction (MI). Method and results Male C57Bl/6J mice were subjected to left coronary artery permanent ligation as a model of MI. We synthesized a novel 24-amino acid apoA-I mimetic peptide-type5 (FAMP5), which potently removes cholesterol via specific ATP-binding cassette transporter A1 (ABCA1). FAMP5 was associated with a significantly improved survival rate by protecting against cardiac rupture compared to the control. mRNA levels for eNOS, Gata-4, CTGF and ANP were significantly increased in the hearts of the FAMP5-treated group, while that for MCP-1 decreased. Conclusion This is the first report that high-density lipoprotein (HDL) therapy with FAMP5 improved the survival rate after MI.
Collapse
Affiliation(s)
- Eiji Yahiro
- Department of Cardiology, Fukuoka University School of Medicine, Japan
| | - Yoshinari Uehara
- Department of Cardiology, Fukuoka University School of Medicine, Japan.,The AIG Collaborative Research Institute of Cardiovascular Medicine, Japan
| | - Emi Kawachi
- Department of Cardiology, Fukuoka University School of Medicine, Japan
| | - Setsuko Ando
- Department of Chemistry, Faculty of Science, Fukuoka University, Fukuoka, Japan
| | - Shin-Ichiro Miura
- Department of Cardiology, Fukuoka University School of Medicine, Japan.,The AIG Collaborative Research Institute of Cardiovascular Medicine, Japan
| | - Keijiro Saku
- Department of Cardiology, Fukuoka University School of Medicine, Japan.,The AIG Collaborative Research Institute of Cardiovascular Medicine, Japan
| |
Collapse
|
39
|
Rached FH, Chapman MJ, Kontush A. An overview of the new frontiers in the treatment of atherogenic dyslipidemias. Clin Pharmacol Ther 2014; 96:57-63. [PMID: 24727469 DOI: 10.1038/clpt.2014.85] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2014] [Accepted: 04/07/2014] [Indexed: 01/19/2023]
Abstract
Cardiovascular diseases (CVDs) are the leading cause of morbidity/mortality worldwide. Dyslipidemia is a major risk factor for premature atherosclerosis and CVD. Lowering low-density-lipoprotein cholesterol (LDL-C) levels is well established as an intervention for the reduction of CVDs. Statins are the first-line drugs for treatment of dyslipidemia, but they do not address all CVD risk. Development of novel therapies is ongoing and includes the following: (i) reduction of LDL-C concentrations using antibodies to proprotein convertase subtilisin/kexin-9, antisense oligonucleotide inhibitors of apolipoprotein B production, microsomal transfer protein (MTP) inhibitors, and acyl-coenzyme A cholesterol acyl transferase inhibitors; (ii) reduction in levels of triglyceride-rich lipoproteins with ω-3 fatty acids, MTP inhibitors, and diacylglycerol acyl transferase-1 inhibitors; and (iii) increase of high-density-lipoprotein (HDL) cholesterol levels, HDL particle numbers, and/or HDL functionality using cholesteryl ester transfer protein inhibitors, HDL-derived agents, apolipoprotein AI mimetic peptides, and microRNAs. Large prospective outcome trials of several of these emerging therapies are under way, and thrilling progress in the field of lipid management is anticipated.
Collapse
Affiliation(s)
- F H Rached
- 1] UMR INSERM-UPMC 1166 ICAN, National Institute for Health and Medical Research, Université Pierre et Marie Curie-Paris 6, AP-HP, Pitié-Salpétrière University Hospital, ICAN, Paris, France [2] Heart Institute-InCor, University of Sao Paulo Medical School Hospital, Sao Paulo, Brazil
| | - M J Chapman
- UMR INSERM-UPMC 1166 ICAN, National Institute for Health and Medical Research, Université Pierre et Marie Curie-Paris 6, AP-HP, Pitié-Salpétrière University Hospital, ICAN, Paris, France
| | - A Kontush
- UMR INSERM-UPMC 1166 ICAN, National Institute for Health and Medical Research, Université Pierre et Marie Curie-Paris 6, AP-HP, Pitié-Salpétrière University Hospital, ICAN, Paris, France
| |
Collapse
|
40
|
Abstract
PURPOSE OF REVIEW To examine the current and future therapeutic option of HDL-based therapies. RECENT FINDINGS The inverse association between plasma level of high-density lipoprotein cholesterol (HDL-C) is strong and coherent across the population studied. In-vitro and in-vivo studies show the strong biological plausibility for HDL as a therapeutic target. Mendelian randomization does not support HDL-C as a causal (protective) cardiovascular risk factor, and clinical data does not support the concept that raising HDL-cholesterol mass alters the outcomes. Better biomarkers of HDL function are being examined in the clinical trials. These include cellular cholesterol efflux, antioxidant and anti-inflammatory effects, effects on vascular endothelial cells (inflammation and nitric oxide release) and endothelial progenitor cells. Novel therapeutic agents that alter HDL function are in advanced phase 3 trials and in early preclinical trials. These include inhibitors of cholesteryl ester transfer protein, reconstituted proteoliposomes, apolipoprotein A-I and HDL mimetic peptides and small molecules that increase apo A-I production rate. SUMMARY Targeting HDL-C has, to date, not led to changes in the cardiovascular outcomes. Novel therapeutic advances target the HDL function. In keeping with the recent 2013 American College of Cardiology/American Heart Association Guideline on the treatment of blood cholesterol to reduce atherosclerotic cardiovascular risk in adults, the major focus of prevention lies with LDL-cholesterol reduction.
Collapse
Affiliation(s)
- Anouar Hafiane
- McGill University Health Center/Royal Victoria Hospital, Montreal, Quebec, Canada
| | | | | |
Collapse
|
41
|
Abstract
PURPOSE OF REVIEW This review focuses on the recent developments in the field of drugs that affect HDL metabolism. Additionally, some general (retrospective) thoughts on fighting cardiovascular disease through modulating circulating lipids are discussed. RECENT FINDINGS Recently, the large 'Atherothrombosis Intervention in Metabolic Syndrome with Low HDL/High Triglycerides: Impact on Global Health Outcomes', 'Treatment of HDL to Reduce the Incidence of Vascular Events' and dal-OUTCOMES studies have challenged the idea that raising HDL cholesterol (HDL-c) decreases cardiovascular disease risk. Concerning the failure of these trials, it may, however, be noted that patients with close to normal HDL-c levels were included. It is shown that anacetrapib and evacetrapib massively increase HDL-c, and both compounds are currently tested in phase-III clinical trials. More specific and stronger activators of liver X receptor and peroxisome proliferator-activated receptor (PPAR) are being developed and tested in a preclinical setting. RVX-208 treatment failed to decrease atheroma volume in coronary artery disease patients. Lecithin:cholesterol acyltransferase replacement therapy showed positive results in a patient with lecithin:cholesterol acyltransferase deficiency. SUMMARY Inhibition of cholesteryl ester transfer protein, antagomirs against microRNA-33, ApoA-I mimetics and PPARα or PPARα/δ agonists hold on the basis of the current data most promise. However, it will in our opinion be the key that patients with low HDL-c and increased triglyceride should be treated and not those at generally increased risk only. In the poststatin era, personalized medicine, which is inevitably on the horizon, is likely to be helpful for patients who do not reach the goals for LDL cholesterol and HDL-c according to the guidelines. Furthermore, functions of HDL will hopefully be identified as future pharmacological targets.
Collapse
Affiliation(s)
- Jan-Willem Balder
- aDepartment of Molecular Genetics, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands bUniversité de Lille 2 cInserm, U1011 dInstitut Pasteur de Lille eEuropean Genomic Institute for Diabetes (EGID), FR 3508, Lille, France
| | | | | |
Collapse
|
42
|
Zhang B, Kawachi E, Miura SI, Uehara Y, Matsunaga A, Kuroki M, Saku K. Therapeutic Approaches to the Regulation of Metabolism of High-Density Lipoprotein. Circ J 2013; 77:2651-63. [DOI: 10.1253/circj.cj-12-1584] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Bo Zhang
- Department of Biochemistry, Fukuoka University School of Medicine
- The AIG Collaborative Research Institute of Cardiovascular Medicine, Fukuoka University School of Medicine
| | - Emi Kawachi
- Department of Cardiology, Fukuoka University School of Medicine
| | - Shin-ichiro Miura
- The AIG Collaborative Research Institute of Cardiovascular Medicine, Fukuoka University School of Medicine
- Department of Cardiology, Fukuoka University School of Medicine
- Department of Molecular Cardiovascular Therapeutics, Fukuoka University School of Medicine
| | - Yoshinari Uehara
- The AIG Collaborative Research Institute of Cardiovascular Medicine, Fukuoka University School of Medicine
- Department of Cardiology, Fukuoka University School of Medicine
- Department of Molecular Cardiovascular Therapeutics, Fukuoka University School of Medicine
| | - Akira Matsunaga
- The AIG Collaborative Research Institute of Cardiovascular Medicine, Fukuoka University School of Medicine
- Department of Laboratory Medicine, Fukuoka University School of Medicine
| | - Masahide Kuroki
- Department of Biochemistry, Fukuoka University School of Medicine
| | - Keijiro Saku
- The AIG Collaborative Research Institute of Cardiovascular Medicine, Fukuoka University School of Medicine
- Department of Cardiology, Fukuoka University School of Medicine
- Department of Molecular Cardiovascular Therapeutics, Fukuoka University School of Medicine
| |
Collapse
|