1
|
Woo SD, Park HS, Yang EM, Ban GY, Park HS. 8-Iso-prostaglandin F2α as a biomarker of type 2 low airway inflammation and remodeling in adult asthma. Ann Allergy Asthma Immunol 2024; 133:73-80.e2. [PMID: 38615737 DOI: 10.1016/j.anai.2024.04.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 03/31/2024] [Accepted: 04/01/2024] [Indexed: 04/16/2024]
Abstract
BACKGROUND Although 8-iso-prostaglandin F2a has been proposed as a potential biomarker for oxidative stress in airway diseases, its specific role in asthma remains poorly understood. OBJECTIVE To evaluate the diagnostic potential of 8-iso-prostaglandin F2a in assessing airway inflammation, airway remodeling, airway hyperresponsiveness, and oxidative stress in asthma. METHODS Blood and urine concentrations of 8-iso-prostaglandin F2a were quantified using liquid chromatography-tandem mass spectrometry in 128 adults with asthma who had maintained antiasthma medications. Their correlations with clinical data, sputum cell counts, lung function parameters, and serum markers of epithelial/neutrophil activity and airway remodeling were then analyzed. RESULTS The urinary 8-iso-prostaglandin F2a concentrations were significantly higher in patients with noneosinophilic asthma than in those with eosinophilic asthma (P < .05). The area under the curve was 0.678, indicating moderate diagnostic accuracy for noneosinophilic asthma. There were significant correlations with neutrophilic inflammation markers and airway remodeling markers (all P < .05). Negative correlations were observed with forced expiratory volume in 1 second (%), forced expiratory volume in 1 second/forced vital capacity, forced expiratory flow at 25% to 75% of forced vital capacity, and serum club cell protein 16 levels (all P < .05). High 8-iso-prostaglandin F2a concentrations were also noted in obese and smoking subgroups (all P < .05). However, the serum 8-iso-prostaglandin F2a concentrations were not correlated with these asthma-related parameters. CONCLUSION Urinary 8-iso-prostaglandin F2a concentrations are a potential biomarker for phenotyping severe asthma, particularly noneosinophilic asthma, offering oxidative stress-induced epithelial inflammation/remodeling as an additional target in asthma management.
Collapse
Affiliation(s)
- Seong-Dae Woo
- Department of Pulmonary, Allergy, and Critical Care Medicine, Chungnam National University School of Medicine, Daejeon, Republic of Korea
| | - Hee Sun Park
- Department of Pulmonary, Allergy, and Critical Care Medicine, Chungnam National University School of Medicine, Daejeon, Republic of Korea
| | - Eun-Mi Yang
- Department of Allergy and Clinical Immunology, Ajou University School of Medicine, Suwon, Republic of Korea
| | - Ga-Young Ban
- Department of Pulmonary, Allergy, and Critical Care Medicine, Kangdong Sacred Heart Hospital, Hallym University College of Medicine Institute for Life Sciences, Seoul, Korea
| | - Hae-Sim Park
- Department of Allergy and Clinical Immunology, Ajou University School of Medicine, Suwon, Republic of Korea.
| |
Collapse
|
2
|
Fyksen TS, Seljeflot I, Vanberg P, Atar D, Halvorsen S. Platelet activity, coagulation, and fibrinolysis in long-term users of anabolic-androgenic steroids compared to strength-trained athletes. Thromb Res 2024; 238:60-66. [PMID: 38676967 DOI: 10.1016/j.thromres.2024.04.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 04/18/2024] [Accepted: 04/23/2024] [Indexed: 04/29/2024]
Abstract
INTRODUCTION Use of anabolic-androgenic steroids (AAS) is associated with adverse cardiovascular (CV) effects, including potential prothrombotic effects. This study aimed to assess platelet activation and aggregation, coagulation, and fibrinolysis, in long-term AAS users compared to non-using strength-trained athletes. MATERIALS AND METHODS Thirty-seven strength-trained men using AAS were compared to seventeen non-using professional strength-trained athletes at similar age (median 33 years). AAS use was verified by blood and urine analyses. Platelet Function Analyzer 100 (PFA-100) and whole blood impedance aggregometry with thrombin, arachidonic acid, and ADP as agonists, were performed to evaluate platelet aggregation. ELISA methods were used for markers of platelet activation. Fibrinogen, D-dimer, the coagulation inhibitors protein S and C activity, and antithrombin were measured by routine. Fibrinolysis was evaluated by Plasminogen Activator Inhibitor-1 (PAI-1) activity. RESULTS There were no significant differences in platelet aggregation between the two groups. Von Willebrand factor was lower among the AAS users (p < 0.01), and P-Selectin was slightly higher (p = 0.05), whereas CD40 Ligand, β-thromboglobulin, and thrombospondin did not differ significantly. No differences were found in the assessed coagulation inhibitors. Higher D-dimer levels (p < 0.01) and lower PAI-1 activity (p < 0.01) were found among the AAS users. CONCLUSIONS The investigated long-term users of AAS did not exhibit elevated platelet activity compared to strength-trained non-using athletes. However, AAS use was associated with higher D-dimer levels and lower PAI-1 activity. These findings suggest that any prothrombotic effect of long-term AAS use may predominantly involve other aspects of the hemostatic system than blood platelets.
Collapse
Affiliation(s)
- Tea Sætereng Fyksen
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway; Department of Cardiology, Oslo University Hospital Ullevål, Oslo, Norway.
| | - Ingebjørg Seljeflot
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway; Center for Clinical Heart Research, Department of Cardiology, Oslo University Hospital Ullevål, Oslo, Norway
| | - Paul Vanberg
- Department of Cardiology, Oslo University Hospital Ullevål, Oslo, Norway
| | - Dan Atar
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway; Department of Cardiology, Oslo University Hospital Ullevål, Oslo, Norway
| | - Sigrun Halvorsen
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway; Department of Cardiology, Oslo University Hospital Ullevål, Oslo, Norway
| |
Collapse
|
3
|
Barale C, Melchionda E, Tempesta G, Morotti A, Russo I. Impact of Physical Exercise on Platelets: Focus on Its Effects in Metabolic Chronic Diseases. Antioxidants (Basel) 2023; 12:1609. [PMID: 37627603 PMCID: PMC10451697 DOI: 10.3390/antiox12081609] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 08/10/2023] [Accepted: 08/11/2023] [Indexed: 08/27/2023] Open
Abstract
Chronic disorders are strongly linked to cardiovascular (CV) diseases, and it is unanimously accepted that regular exercise training is a key tool to improving CV risk factors, including diabetes, dyslipidemia, and obesity. Increased oxidative stress due to an imbalance between reactive oxygen species production and their scavenging by endogenous antioxidant capacity is the common ground among these metabolic disorders, and each of them affects platelet function. However, the correction of hyperglycemia in diabetes and lipid profile in dyslipidemia as well as the lowering of body weight in obesity all correlate with amelioration of platelet function. Habitual physical exercise triggers important mechanisms related to the exercise benefits for health improvement and protects against CV events. Platelets play an important role in many physiological and pathophysiological processes, including the development of arterial thrombosis, and physical (in)activity has been shown to interfere with platelet function. Although data reported by studies carried out on this topic show discrepancies, the current knowledge on platelet function affected by exercise mainly depends on the type of applied exercise intensity and whether acute or habitual, strenuous or moderate, thus suggesting that physical activity and exercise intensity may interfere with platelet function differently. Thus, this review is designed to cover the aspects of the relationship between physical exercise and vascular benefits, with an emphasis on the modulation of platelet function, especially in some metabolic diseases.
Collapse
Affiliation(s)
| | | | | | | | - Isabella Russo
- Department of Clinical and Biological Sciences of Turin University, Regione Gonzole, 10, Orbassano, I-10043 Turin, Italy; (C.B.); (E.M.); (G.T.); (A.M.)
| |
Collapse
|
4
|
Chang HC, Nfor ON, Ho CC, Chen PH, Liaw YP. Variations in high density cholesterol levels based on apolipoprotein E variant and exercise type. Front Genet 2023; 14:1136483. [PMID: 37388939 PMCID: PMC10300272 DOI: 10.3389/fgene.2023.1136483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 06/02/2023] [Indexed: 07/01/2023] Open
Abstract
In various cross-sectional and longitudinal studies, exercise has been associated with cardiometabolic outcomes, including high-density lipoprotein (HDL) cholesterol. Exercise-induced changes in HDL cholesterol seem to be affected by genetic polymorphisms. In this study, we examined whether variant APOE rs7412 is involved in the association between HDL cholesterol and exercise. From adults assessed in Taiwan Biobank (TWB) between 2008 and 2019, we analyzed data from 57,638 normolipidemic subjects. To examine the association between exercise, APOE rs7412, and HDL cholesterol, a multiple linear regression model was used. A higher HDL was associated with both aerobic exercise (regression coefficient [mg/dL] beta- (β), 1.112; 95% confidence interval (CI); 0.903-1.322) and resistance exercise (β, 2.530; 95% CI, 2.093-2.966). In comparison with the APOE rs7412-CC genotype, the β was 2.589 (95% CI, 2.329-2.848) among those with the CT + TT genotype. Compared to adults who had the CC genotype and did not exercise (the CC/no exercise group), the β-coefficient determined for the different genotype and exercise groups was 1.135 (95% CI, 0.911-1.359) for the CC genotype and aerobic exercise group, 2.753 (95% CI, 2.283-3.322) for the CC genotype and resistance exercise group, 2.705 (95% CI, 2.390-3.020) for the CT + TT genotype and no exercise group, 3.682 (95% CI, 3.218-4.146) for the CT + TT genotype and aerobic exercise group, and 3.855 (95% CI, 2.727-4.982) for the CT + TT genotype and resistance exercise group, respectively. This study demonstrates that self-reported aerobic and resistance exercise both raised HDL levels, yet resistance exercise was associated with a greater increase, particularly among Taiwanese subjects carrying the APOE rs7412-CT+TT genotype.
Collapse
Affiliation(s)
- Huan-Cheng Chang
- Division of Family Medicine, Department of Community Medicine, Landseed International Hospital, Taoyuan City, Taiwan
- Department of Health Business Management Administration, Hungkuang University, Taichung City, Taiwan
| | - Oswald Ndi Nfor
- Department of Public Health and Institute of Public Health, Chung Shan Medical University, Taichung City, Taiwan
| | - Chien-Chang Ho
- Department of Physical Education, Fu Jen Catholic University, New Taipei, Taiwan
- Research and Development Center for Physical Education, Health, and Information Technology, Fu Jen Catholic University, New Taipei, Taiwan
| | - Pei-Hsin Chen
- Department of Public Health and Institute of Public Health, Chung Shan Medical University, Taichung City, Taiwan
| | - Yung-Po Liaw
- Department of Public Health and Institute of Public Health, Chung Shan Medical University, Taichung City, Taiwan
- Department of Medical Imaging, Chung Shan Medical University Hospital, Taichung City, Taiwan
- Institute of Medicine, Chung Shan Medical University, Taichung City, Taiwan
| |
Collapse
|
5
|
Zhang J, Yang Y, Al-Ahmady ZS, Du W, Duan J, Liao Z, Sun Q, Wei Z, Hua J. Maternal exposure to PM 2.5 induces cognitive impairment in offspring via cerebellar neuroinflammation and oxidative stress. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 249:114425. [PMID: 38321695 DOI: 10.1016/j.ecoenv.2022.114425] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 12/09/2022] [Accepted: 12/10/2022] [Indexed: 09/02/2023]
Abstract
Available evidence suggest that exposure to PM2.5 during pregnancy is associated with reduced cognitive function in offspring. This study aimed to investigate the effects of maternal exposure to PM2.5 on offspring cognitive function and to elucidate the underlying mechanisms. In this work, pregnant C57BL/6 female mice were exposed to concentrated ambient PM2.5 or filtered air from day 0.5 (=vaginal plug) to day 15.5 in the Shanghai Meteorological and Environmental Animal Exposure System, and offspring cerebellar tissues were collected on embryonic day 15.5, as well as postnatal days 0, 10 and 42. The mean PM2.5 concentrations exposed to the pregnant mice were 73.06 ± 4.90 μg/m3 and 11.15 ± 2.71 μg/m3 in the concentrated ambient PM2.5 and filtered air chambers, respectively. Maternal concentrated PM2.5 exposure was negatively correlated with offspring spatial memory significantly as assessed by the Morris water maze. Compared with the filtered air group, PM2.5-exposed offspring mice had reduced cerebellar microglia. Both RNA and protein levels of IL-8 and TNF-α were elevated in the concentrated ambient PM2.5 group. PM2.5 exposure increased the level of 8-OHG in miRNA of microglia and Purkinje cells in 6-week-old offspring. The level of prostaglandin F2α (8-iso-PGF2Aα) in the cerebellum was increased at different growing stages of offspring after gestational exposure of PM2.5. These results suggested that maternal air pollution exposure might cause inflammatory damage and oxidative stress to the cerebellum, contributing to reduced cognitive performance in mice offspring.
Collapse
Affiliation(s)
- Jiajia Zhang
- Shanghai Key Laboratory of Maternal Fetal Medicine, Department of Women and Children's Health Care, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai 200092, China
| | - Yingying Yang
- Clinical Research Center, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai 200092, China
| | - Zahraa S Al-Ahmady
- Pharmacology Department, School of Science and Technology, Nottingham Trent University, Nottingham NG11 8NS, United Kingdom; Division of Pharmacy and Optometry, Faculty of Biology, Medicine and Health, AV Hill Building, The University of Manchester, Manchester M13 9PT, United Kingdom
| | - Wenchong Du
- NTU Psychology, School of Social Sciences, Nottingham Trent University, Nottingham NG1 1BU, United Kingdom
| | - Jinjin Duan
- Drug Discovery and Design Center, the Center for Chemical Biology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medical, Chinese Academy of Sciences, Shanghai 201203, China
| | - Zehuan Liao
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore; Department of Microbiology, Tumor and Cell Biology (MTC), Karolinska Institutet, Biomedicum, Solnavägen 9, SE-17177 Stockholm, Sweden
| | - Qinghua Sun
- School of Public Health, Zhejiang Chinese Medical University, Zhejiang 310053, China
| | - Zhiyun Wei
- Shanghai Key Laboratory of Maternal Fetal Medicine, Department of Women and Children's Health Care, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai 200092, China.
| | - Jing Hua
- Shanghai Key Laboratory of Maternal Fetal Medicine, Department of Women and Children's Health Care, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai 200092, China.
| |
Collapse
|
6
|
Dyslipidemia and Inflammation as Hallmarks of Oxidative Stress in COVID-19: A Follow-Up Study. Int J Mol Sci 2022; 23:ijms232315350. [PMID: 36499671 PMCID: PMC9736368 DOI: 10.3390/ijms232315350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Revised: 11/21/2022] [Accepted: 11/29/2022] [Indexed: 12/12/2022] Open
Abstract
Recent works have demonstrated a significant reduction in cholesterol levels and increased oxidative stress in patients with coronavirus disease 2019 (COVID-19). The cause of this alteration is not well known. This study aimed to comprehensively evaluate their possible association during the evolution of COVID-19. This is an observational prospective study. The primary endpoint was to analyze the association between lipid peroxidation, lipid, and inflammatory profiles in COVID-19 patients. A multivariate regression analysis was employed. The secondary endpoint included the long-term follow-up of lipid profiles. COVID-19 patients presented significantly lower values in their lipid profile (total, low, and high-density lipoprotein cholesterol) with greater oxidative stress and inflammatory response compared to the healthy controls. Lipid peroxidation was the unique oxidative parameter with a significant association with the total cholesterol (OR: 0.982; 95% CI: 0.969-0.996; p = 0.012), IL1-RA (OR: 0.999; 95% CI: 0.998-0.999; p = 0.021) IL-6 (OR: 1.062; 95% CI: 1.017-1.110; p = 0.007), IL-7 (OR: 0.653; 95% CI: 0.433-0.986; p = 0.042) and IL-17 (OR: 1.098; 95% CI: 1.010-1.193; p = 0.028). Lipid abnormalities recovered after the initial insult during long-term follow-up (IQR 514 days); however, those with high LPO levels at hospital admission had, during long-term follow-up, an atherogenic lipid profile. Our study suggests that oxidative stress in COVID-19 is associated with derangements of the lipid profile and inflammation. Survivors experienced a recovery in their lipid profiles during long-term follow-up, but those with stronger oxidative responses had an atherogenic lipid profile.
Collapse
|
7
|
Diab A, Valenzuela Ripoll C, Guo Z, Javaheri A. HDL Composition, Heart Failure, and Its Comorbidities. Front Cardiovasc Med 2022; 9:846990. [PMID: 35350538 PMCID: PMC8958020 DOI: 10.3389/fcvm.2022.846990] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Accepted: 02/09/2022] [Indexed: 12/24/2022] Open
Abstract
Although research on high-density lipoprotein (HDL) has historically focused on atherosclerotic coronary disease, there exists untapped potential of HDL biology for the treatment of heart failure. Anti-oxidant, anti-inflammatory, and endothelial protective properties of HDL could impact heart failure pathogenesis. HDL-associated proteins such as apolipoprotein A-I and M may have significant therapeutic effects on the myocardium, in part by modulating signal transduction pathways and sphingosine-1-phosphate biology. Furthermore, because heart failure is a complex syndrome characterized by multiple comorbidities, there are complex interactions between heart failure, its comorbidities, and lipoprotein homeostatic mechanisms. In this review, we will discuss the effects of heart failure and associated comorbidities on HDL, explore potential cardioprotective properties of HDL, and review novel HDL therapeutic targets in heart failure.
Collapse
|
8
|
Demir I, Toker A, Aksoy H, Tasyurek E, Zengin S. The Impact of Shift Type on Oxidative Stress, Inflammation, and Platelet Activation. J Occup Environ Med 2021; 63:e127-e131. [PMID: 33652448 DOI: 10.1097/jom.0000000000002124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
OBJECTIVE Rotating shift is known to disrupt circadian rhythms. The 12/24 shift system, with frequent day-night rotations and the ergonomic shift system (ESS), with 90% less rotations were compared for their impacts on oxidative stress, inflammation, and platelet activation by using pentraxin 3 (PTX3), urinary 15-isoprostane F2t, and 11-dehydrotromboxane B2 (11-DTB2). METHODS All tests were performed by enzyme linked immunosorbent assay (ELISA). Unpaired t test and Pearson correlation analysis were employed. RESULTS Two hundred twenty 12/24 and 198 ESS workers were included. Plasma PTX3 and urinary 15-isoprostane F2t levels were not different between groups. Urinary 11-DTB2 in 12/24 workers were found significantly higher compared with ESS workers (P < 0.0001). A weak but significant correlation was found between urinary 15-isoprostane F2t and urinary 11-DTB2 levels (r = 0.17, P = 0.001). CONCLUSIONS 12/24 rotating shift was found to cause platelet activation disturbances.
Collapse
Affiliation(s)
- Irfan Demir
- Independent Researcher (Dr Demir, Dr Aksoy, Dr Zengin); Hipokrat Laboratories, Department of Biochemistry, Istanbul (Dr Toker); Community Health Center, Karaman (Dr Tasyurek), Turkey
| | | | | | | | | |
Collapse
|
9
|
Peterson SJ, Choudhary A, Kalsi AK, Zhao S, Alex R, Abraham NG. OX-HDL: A Starring Role in Cardiorenal Syndrome and the Effects of Heme Oxygenase-1 Intervention. Diagnostics (Basel) 2020; 10:E976. [PMID: 33233550 PMCID: PMC7699797 DOI: 10.3390/diagnostics10110976] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 11/17/2020] [Accepted: 11/19/2020] [Indexed: 12/14/2022] Open
Abstract
In this review, we will evaluate how high-density lipoprotein (HDL) and the reverse cholesterol transport (RCT) pathway are critical for proper cardiovascular-renal physiology. We will begin by reviewing the basic concepts of HDL cholesterol synthesis and pathway regulation, followed by cardiorenal syndrome (CRS) pathophysiology. After explaining how the HDL and RCT pathways become dysfunctional through oxidative processes, we will elaborate on the potential role of HDL dysfunction in CRS. We will then present findings on how HDL function and the inducible antioxidant gene heme oxygenase-1 (HO-1) are interconnected and how induction of HO-1 is protective against HDL dysfunction and important for the proper functioning of the cardiovascular-renal system. This will substantiate the proposal of HO-1 as a novel therapeutic target to prevent HDL dysfunction and, consequently, cardiovascular disease, renal dysfunction, and the onset of CRS.
Collapse
Affiliation(s)
- Stephen J. Peterson
- Department of Medicine, Weill Cornell Medicine, New York, NY 10065, USA;
- Department of Medicine, New York Presbyterian Brooklyn Methodist Hospital, Brooklyn, NY 11215, USA; (A.C.); (A.K.K.); (S.Z.)
| | - Abu Choudhary
- Department of Medicine, New York Presbyterian Brooklyn Methodist Hospital, Brooklyn, NY 11215, USA; (A.C.); (A.K.K.); (S.Z.)
| | - Amardeep K. Kalsi
- Department of Medicine, New York Presbyterian Brooklyn Methodist Hospital, Brooklyn, NY 11215, USA; (A.C.); (A.K.K.); (S.Z.)
| | - Shuyang Zhao
- Department of Medicine, New York Presbyterian Brooklyn Methodist Hospital, Brooklyn, NY 11215, USA; (A.C.); (A.K.K.); (S.Z.)
| | - Ragin Alex
- Department of Medicine, New York Medical College, Valhalla, NY 10595, USA;
| | - Nader G. Abraham
- Department of Medicine, New York Medical College, Valhalla, NY 10595, USA;
- Department of Pharmacology, New York Medical College, Valhalla, NY 10595, USA
- Department of Medicine, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV 25701, USA
| |
Collapse
|
10
|
ROS in Platelet Biology: Functional Aspects and Methodological Insights. Int J Mol Sci 2020; 21:ijms21144866. [PMID: 32660144 PMCID: PMC7402354 DOI: 10.3390/ijms21144866] [Citation(s) in RCA: 96] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 06/26/2020] [Accepted: 07/07/2020] [Indexed: 12/22/2022] Open
Abstract
Reactive oxygen species (ROS) and mitochondria play a pivotal role in regulating platelet functions. Platelet activation determines a drastic change in redox balance and in platelet metabolism. Indeed, several signaling pathways have been demonstrated to induce ROS production by NAPDH oxidase (NOX) and mitochondria, upon platelet activation. Platelet-derived ROS, in turn, boost further ROS production and consequent platelet activation, adhesion and recruitment in an auto-amplifying loop. This vicious circle results in a platelet procoagulant phenotype and apoptosis, both accounting for the high thrombotic risk in oxidative stress-related diseases. This review sought to elucidate molecular mechanisms underlying ROS production upon platelet activation and the effects of an altered redox balance on platelet function, focusing on the main advances that have been made in platelet redox biology. Furthermore, given the increasing interest in this field, we also describe the up-to-date methods for detecting platelets, ROS and the platelet bioenergetic profile, which have been proposed as potential disease biomarkers.
Collapse
|
11
|
Trostchansky A, Moore-Carrasco R, Fuentes E. Oxidative pathways of arachidonic acid as targets for regulation of platelet activation. Prostaglandins Other Lipid Mediat 2019; 145:106382. [PMID: 31634570 DOI: 10.1016/j.prostaglandins.2019.106382] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Revised: 08/12/2019] [Accepted: 09/03/2019] [Indexed: 12/17/2022]
Abstract
Platelet activation plays an important role in acute and chronic cardiovascular disease states. Multiple pathways contribute to platelet activation including those dependent upon arachidonic acid. Arachidonic acid is released from the platelet membrane by phospholipase A2 action and is then metabolized in the cytosol by specific arachidonic acid oxidation enzymes including prostaglandin H synthase, 12-lipoxygenase, and cytochrome P450 to produce pro- and anti-inflammatory eicosanoids. This review aims to analyze the role of arachidonic acid oxidation on platelet activation, the enzymes that use it as a substrate associated as novel therapeutics target for antiplatelet drugs.
Collapse
Affiliation(s)
- Andres Trostchansky
- Departamento de Bioquimica and Centro de Investigaciones Biomédicas (CEINBIO), Facultad de Medicina, Universidad de la República, Montevideo, Uruguay.
| | - Rodrigo Moore-Carrasco
- Departamento de Bioquímica Clínica e Inmunohematología, Facultad de Ciencias de la Salud, Programa de Investigación Asociativa en Cáncer Gástrico (PIA-CG), Universidad de Talca, Chile
| | - Eduardo Fuentes
- Thrombosis Research Center, Medical Technology School, Department of Clinical Biochemistry and Immunohaematology, Faculty of Health Sciences, Interdisciplinary Center on Aging, Universidad de Talca, Talca, Chile.
| |
Collapse
|
12
|
Simeone P, Boccatonda A, Liani R, Santilli F. Significance of urinary 11-dehydro-thromboxane B 2 in age-related diseases: Focus on atherothrombosis. Ageing Res Rev 2018; 48:51-78. [PMID: 30273676 DOI: 10.1016/j.arr.2018.09.004] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Revised: 09/13/2018] [Accepted: 09/23/2018] [Indexed: 12/13/2022]
Abstract
Platelet activation plays a key role in atherogenesis and atherothrombosis. Biochemical evidence of increased platelet activation in vivo can be reliably obtained through non-invasive measurement of thromboxane metabolite (TXM) excretion. Persistent biosynthesis of TXA2 has been associated with several ageing-related diseases, including acute and chronic cardio-cerebrovascular diseases and cardiovascular risk factors, such as cigarette smoking, type 1 and type 2 diabetes mellitus, obesity, hypercholesterolemia, hyperhomocysteinemia, hypertension, chronic kidney disease, chronic inflammatory diseases. Given the systemic nature of TX excretion, involving predominantly platelet but also extraplatelet sources, urinary TXM may reflect either platelet cyclooxygenase-1 (COX-1)-dependent TX generation or COX-2-dependent biosynthesis by inflammatory cells and/or platelets, or a combination of the two, especially in clinical settings characterized by low-grade inflammation or enhanced platelet turnover. Although urinary 11-dehydro-TXB2 levels are largely suppressed with low-dose aspirin, incomplete TXM suppression by aspirin predicts the future risk of vascular events and death in high-risk patients and may identify individuals who might benefit from treatments that more effectively block in vivo TX production or activity. Several disease-modifying agents, including lifestyle intervention, antidiabetic drugs and antiplatelet agents besides aspirin have been shown to reduce TX biosynthesis. Taken together, these aspects may contribute to the development of promising mechanism-based therapeutic strategies to reduce the progression of atherothrombosis. We intended to critically review current knowledge on both the pathophysiological significance of urinary TXM excretion in clinical settings related to ageing and atherothrombosis, as well as its prognostic value as a biomarker of vascular events.
Collapse
Affiliation(s)
- Paola Simeone
- Department of Medicine and Aging, and Center of Aging Science and Translational Medicine (CESI-Met), Via Luigi Polacchi, Chieti, Italy
| | - Andrea Boccatonda
- Department of Medicine and Aging, and Center of Aging Science and Translational Medicine (CESI-Met), Via Luigi Polacchi, Chieti, Italy
| | - Rossella Liani
- Department of Medicine and Aging, and Center of Aging Science and Translational Medicine (CESI-Met), Via Luigi Polacchi, Chieti, Italy
| | - Francesca Santilli
- Department of Medicine and Aging, and Center of Aging Science and Translational Medicine (CESI-Met), Via Luigi Polacchi, Chieti, Italy.
| |
Collapse
|
13
|
Zhou Y, Liu M, Li J, Wu B, Tian W, Shi L, Zhang J, Sun Z. The inverted pattern of circulating miR-221-3p and miR-222-3p associated with isolated low HDL-C phenotype. Lipids Health Dis 2018; 17:188. [PMID: 30115076 PMCID: PMC6097213 DOI: 10.1186/s12944-018-0842-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Accepted: 08/03/2018] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND We investigated the baseline characterization of cardiovascular disease (CVD)-derived circulating miR-221-3p/222-3p in isolated low HDL-C phenotype (ILHP) to enhance our understanding on their molecular pathological pattern prior to disease onset. METHODS We screened 174 asymptomatic subjects with isolated low HDL-C phenotype (n = 88) and normal lipid phenotype (n = 86), and detected circulating levels of CVD-derived circulating miR-221-3p/222-3p using TaqMan miRNA Real-time PCR detection system. RESULTS We found the inverted pattern of decreased circulating miR-221-3p (0.415 [0.249, 1.004] vs 0.658 [0.347, 1.534], p = 0.002) versus increased miR-222-3p levels (0.379 [0.101, 0.701] vs 0.156 [0.043, 0.407], p < 0.001) in ILHP. The baseline levels of circulating miR-221-3p and miR-222-3p are correlated with serum HDL-C levels (miR-221-3p: r = 0.306, p < 0.001; miR-222-3p: r = - 0.201, p = 0.008). Gender-based analysis showed female-specific elevation of circulating miR-221-3p in asymptomatic individual. Multiple logistic regression analysis showed that circulating miR-222-3p is robustly independent factor (adjusted OR = 8.42, 95%CI: 2.53-27.98, p < 0.001) and significantly improved the performance of the predictive clinical model distinguished ILHP from normal lipid phenotype (AUC: 0.816, 95%CI (0.754, 0.879) vs AUC: 0.771, 95%CI (0.702, 0.840); Z = 2.169, p = 0.030). Moreover, the increased original Ct ratio of miR-221-3p to miR-222-3p in male ILHP (1.003 [0.927, 1.063] vs 0.927 [0.858, 0.967], p < 0.001) significantly enhanced the ability to classify male ILHP compared with the male predictive clinical model (AUC: 0.851, 95%CI (0.770, 0.933) vs AUC: 0.759, 95%CI (0.659, 0.859); Z = 2.474, p < 0.05). CONCLUSIONS The inverted pattern of circulating miR-221-3p and miR-222-3p are potentially clinically actionable signature for molecular pathology in isolated low HDL-C phenotype.
Collapse
Affiliation(s)
- Yuntao Zhou
- Tangshan Key Laboratory of Clinical Molecular Diagnosis and Treatment, Tangshan Gongren Hospital, No. 27 Wenhua Road, Tangshan, Hebei, 063000, People's Republic of China.
| | - Mengdi Liu
- Tangshan Key Laboratory of Clinical Molecular Diagnosis and Treatment, Tangshan Gongren Hospital, No. 27 Wenhua Road, Tangshan, Hebei, 063000, People's Republic of China
| | - Jinrong Li
- Tangshan Key Laboratory of Clinical Molecular Diagnosis and Treatment, Tangshan Gongren Hospital, No. 27 Wenhua Road, Tangshan, Hebei, 063000, People's Republic of China
| | - Bing Wu
- Tangshan Key Laboratory of Clinical Molecular Diagnosis and Treatment, Tangshan Gongren Hospital, No. 27 Wenhua Road, Tangshan, Hebei, 063000, People's Republic of China
| | - Wei Tian
- Tangshan Key Laboratory of Clinical Molecular Diagnosis and Treatment, Tangshan Gongren Hospital, No. 27 Wenhua Road, Tangshan, Hebei, 063000, People's Republic of China.
| | - Lu Shi
- Tangshan Key Laboratory of Clinical Molecular Diagnosis and Treatment, Tangshan Gongren Hospital, No. 27 Wenhua Road, Tangshan, Hebei, 063000, People's Republic of China
| | - Jing Zhang
- Tangshan Key Laboratory of Clinical Molecular Diagnosis and Treatment, Tangshan Gongren Hospital, No. 27 Wenhua Road, Tangshan, Hebei, 063000, People's Republic of China
| | - Zening Sun
- Tangshan Key Laboratory of Clinical Molecular Diagnosis and Treatment, Tangshan Gongren Hospital, No. 27 Wenhua Road, Tangshan, Hebei, 063000, People's Republic of China
| |
Collapse
|
14
|
Plasma Markers of Oxidative Stress in Patients with Gestational Diabetes Mellitus in the Second and Third Trimester. Obstet Gynecol Int 2016; 2016:3865454. [PMID: 27803713 PMCID: PMC5075618 DOI: 10.1155/2016/3865454] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2016] [Revised: 08/04/2016] [Accepted: 08/15/2016] [Indexed: 12/02/2022] Open
Abstract
Objective. To determine plasma markers of oxidative stress during the second and third trimester of pregnancy in patients with gestational diabetes mellitus (GDM). Study Design. We conducted a prospective nested case-control study involving 400 pregnant women, 22 of whom developed GDM. As control group, 30 normal pregnant women were chosen randomly. Plasma samples were analyzed for 8-iso-prostaglandin F2α (8-iso-PGF2α), advanced oxidative protein products (AOPPs), protein carbonyl (PCO), glutathione peroxidase-3 (GPX-3), and paraoxonase-1 (PON1) at 16–20 weeks, 24–28 weeks, and 32–36 weeks of gestation. Results. Compared to control subjects, the plasma levels of PCO, AOPPs, and 8-iso-PGF2α were elevated at 16–20 weeks' and 32–36 weeks' gestation in GDM. There was no significant difference in PCO and 8-iso-PGF2α at 24–28 weeks in GDM. GPX-3 was statistically significantly increased at 16–20 weeks and 32–36 weeks in GDM. PON1 reduced in patients with GDM. No significant differences were found at 24–28 and 32–36 weeks between the GDM and control groups. In GDM, PCO, AOPPs, and 8-iso-PGF2α levels were higher and GPX-3 and PON1 levels were lower in the second than the third trimester. Conclusion. Oxidation status increased in GDM, especially protein oxidation, which may contribute to the pathogenesis of GDM.
Collapse
|
15
|
Enhanced P-selectin expression on platelet-a marker of platelet activation, in young patients with angiographically proven coronary artery disease. Mol Cell Biochem 2016; 419:125-33. [DOI: 10.1007/s11010-016-2756-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Accepted: 06/21/2016] [Indexed: 01/19/2023]
|
16
|
Peterson SJ, Vanella L, Bialczak A, Schragenheim J, Li M, Bellner L, Shapiro JI, Abraham NG. Oxidized HDL and Isoprostane Exert a Potent Adipogenic Effect on Stem Cells: Where in the Lineage? ACTA ACUST UNITED AC 2016; 2. [PMID: 29430566 PMCID: PMC5807016 DOI: 10.16966/2472-6990.109] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Stephen J Peterson
- Weill Cornell Medical College, Department of Medicine, New York Methodist Hospital, Brooklyn, NY 11215, USA
| | - Luca Vanella
- Departments of Medicine & Pharmacology, New York Medical College, Valhalla, NY 10595, USA.,Marshall University, Joan C. Edwards School of Medicine, Huntington, WV 25701, USA
| | - Angelica Bialczak
- Departments of Medicine & Pharmacology, New York Medical College, Valhalla, NY 10595, USA
| | - Joseph Schragenheim
- Departments of Medicine & Pharmacology, New York Medical College, Valhalla, NY 10595, USA
| | - Ming Li
- Departments of Medicine & Pharmacology, New York Medical College, Valhalla, NY 10595, USA
| | - Lars Bellner
- Departments of Medicine & Pharmacology, New York Medical College, Valhalla, NY 10595, USA
| | - Joseph I Shapiro
- Marshall University, Joan C. Edwards School of Medicine, Huntington, WV 25701, USA
| | - Nader G Abraham
- Departments of Medicine & Pharmacology, New York Medical College, Valhalla, NY 10595, USA.,Marshall University, Joan C. Edwards School of Medicine, Huntington, WV 25701, USA
| |
Collapse
|
17
|
Ravi S, Johnson MS, Chacko BK, Kramer PA, Sawada H, Locy ML, Wilson LS, Barnes S, Marques MB, Darley-Usmar VM. Modification of platelet proteins by 4-hydroxynonenal: Potential Mechanisms for inhibition of aggregation and metabolism. Free Radic Biol Med 2016; 91:143-53. [PMID: 26475426 PMCID: PMC4761519 DOI: 10.1016/j.freeradbiomed.2015.10.408] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Revised: 10/06/2015] [Accepted: 10/10/2015] [Indexed: 01/23/2023]
Abstract
Platelet aggregation is an essential response to tissue injury and is associated with activation of pro-oxidant enzymes, such as cyclooxygenase, and is also a highly energetic process. The two central energetic pathways in the cell, glycolysis and mitochondrial oxidative phosphorylation, are susceptible to damage by reactive lipid species. Interestingly, how platelet metabolism is affected by the oxidative stress associated with aggregation is largely unexplored. To address this issue, we examined the response of human platelets to 4-hydroxynonenal (4-HNE), a reactive lipid species which is generated during thrombus formation and during oxidative stress. Elevated plasma 4-HNE has been associated with renal failure, septic shock and cardiopulmonary bypass surgery. In this study, we found that 4-HNE decreased thrombin stimulated platelet aggregation by approximately 60%. The metabolomics analysis demonstrated that underlying our previous observation of a stimulation of platelet energetics by thrombin glycolysis and TCA (Tricarboxylic acid) metabolites were increased. Next, we assessed the effect of both 4-HNE and alkyne HNE (A-HNE) on bioenergetics and targeted metabolomics, and found a stimulatory effect on glycolysis, associated with inhibition of bioenergetic parameters. In the presence of HNE and thrombin glycolysis was further stimulated but the levels of the TCA metabolites were markedly suppressed. Identification of proteins modified by A-HNE followed by click chemistry and mass spectrometry revealed essential targets in platelet activation including proteins involved in metabolism, adhesion, cytoskeletal reorganization, aggregation, vesicular transport, protein folding, antioxidant proteins, and small GTPases. In summary, the biological effects of 4-HNE can be more effectively explained in platelets by the integrated effects of the modification of an electrophile responsive proteome rather than the isolated effects of candidate proteins.
Collapse
Affiliation(s)
- Saranya Ravi
- Department of Pathology; UAB Mitochondrial Medicine Laboratory; Center for Free Radical Biology
| | - Michelle S Johnson
- Department of Pathology; UAB Mitochondrial Medicine Laboratory; Center for Free Radical Biology
| | - Balu K Chacko
- Department of Pathology; UAB Mitochondrial Medicine Laboratory; Center for Free Radical Biology
| | - Philip A Kramer
- Department of Pathology; UAB Mitochondrial Medicine Laboratory; Center for Free Radical Biology
| | - Hirotaka Sawada
- Department of Pathology; UAB Mitochondrial Medicine Laboratory; Center for Free Radical Biology
| | - Morgan L Locy
- Department of Pathology; UAB Mitochondrial Medicine Laboratory; Center for Free Radical Biology
| | | | - Stephen Barnes
- The Targeted Metabolomics and Proteomics Laboratory; Department of Pharmacology and Toxicology, University of Alabama at Birmingham, Birmingham, AL, USA
| | | | - Victor M Darley-Usmar
- Department of Pathology; UAB Mitochondrial Medicine Laboratory; Center for Free Radical Biology.
| |
Collapse
|
18
|
Gomaraschi M, Adorni MP, Banach M, Bernini F, Franceschini G, Calabresi L. Effects of established hypolipidemic drugs on HDL concentration, subclass distribution, and function. Handb Exp Pharmacol 2015; 224:593-615. [PMID: 25523003 DOI: 10.1007/978-3-319-09665-0_19] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
The knowledge of an inverse relationship between plasma high-density lipoprotein cholesterol (HDL-C) concentrations and rates of cardiovascular disease has led to the concept that increasing plasma HDL-C levels would be protective against cardiovascular events. Therapeutic interventions presently available to correct the plasma lipid profile have not been designed to specifically act on HDL, but have modest to moderate effects on plasma HDL-C concentrations. Statins, the first-line lipid-lowering drug therapy in primary and secondary cardiovascular prevention, have quite modest effects on plasma HDL-C concentrations (2-10%). Fibrates, primarily used to reduce plasma triglyceride levels, also moderately increase HDL-C levels (5-15%). Niacin is the most potent available drug in increasing HDL-C levels (up to 30%), but its use is limited by side effects, especially flushing.The present chapter reviews the effects of established hypolipidemic drugs (statins, fibrates, and niacin) on plasma HDL-C levels and HDL subclass distribution, and on HDL functions, including cholesterol efflux capacity, endothelial protection, and antioxidant properties.
Collapse
Affiliation(s)
- Monica Gomaraschi
- Center E. Grossi Paoletti, Department of Pharmacological and Biomolecular Sciences, University of Milano, Via Balzaretti 9, 20133, Milan, Italy,
| | | | | | | | | | | |
Collapse
|
19
|
Chan LW, Luo XP, Ni HC, Shi HM, Liu L, Wen ZC, Gu XY, Qiao J, Li J. High levels of LDL-C combined with low levels of HDL-C further increase platelet activation in hypercholesterolemic patients. ACTA ACUST UNITED AC 2014; 48:167-73. [PMID: 25466164 PMCID: PMC4321223 DOI: 10.1590/1414-431x20144182] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2014] [Accepted: 09/09/2014] [Indexed: 01/31/2023]
Abstract
High levels of low-density lipoprotein cholesterol (LDL-C) enhance platelet
activation, whereas high levels of high-density lipoprotein cholesterol (HDL-C) exert
a cardioprotective effect. However, the effects on platelet activation of high levels
of LDL-C combined with low levels of HDL-C (HLC) have not yet been reported. We aimed
to evaluate the platelet activation marker of HLC patients and investigate the
antiplatelet effect of atorvastatin on this population. Forty-eight patients with
high levels of LDL-C were enrolled. Among these, 23 had HLC and the other 25 had high
levels of LDL-C combined with normal levels of HDL-C (HNC). A total of 35
normocholesterolemic (NOMC) volunteers were included as controls. Whole blood flow
cytometry and platelet aggregation measurements were performed on all participants to
detect the following platelet activation markers: CD62p (P-selectin), PAC-1
(GPIIb/IIIa), and maximal platelet aggregation (MPAG). A daily dose of 20 mg
atorvastatin was administered to patients with high levels of LDL-C, and the above
assessments were obtained at baseline and after 1 and 2 months of treatment. The
expression of platelets CD62p and PAC-1 was increased in HNC patients compared to
NOMC volunteers (P<0.01 and P<0.05). Furthermore, the surface expression of
platelets CD62p and PAC-1 was greater among HLC patients than among HNC patients
(P<0.01 and P<0.05). Although the expression of CD62p and PAC-1 decreased
significantly after atorvastatin treatment, it remained higher in the HLC group than
in the HNC group (P<0.05 and P=0.116). The reduction of HDL-C further increased
platelet activation in patients with high levels of LDL-C. Platelet activation
remained higher among HLC patients regardless of atorvastatin treatment.
Collapse
Affiliation(s)
- L W Chan
- Department of Cardiology, Huashan Hospital, Fudan University, Shanghai, China
| | - X P Luo
- Department of Cardiology, Huashan Hospital, Fudan University, Shanghai, China
| | - H C Ni
- Department of Cardiology, Huashan Hospital, Fudan University, Shanghai, China
| | - H M Shi
- Department of Cardiology, Huashan Hospital, Fudan University, Shanghai, China
| | - L Liu
- Department of Cardiology, Huashan Hospital, Fudan University, Shanghai, China
| | - Z C Wen
- Department of Cardiology, Huashan Hospital, Fudan University, Shanghai, China
| | - X Y Gu
- Department of Laboratory Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - J Qiao
- Department of Neurology, Huashan Hospital, Fudan University, Shanghai, China
| | - J Li
- Department of Cardiology, Huashan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
20
|
Yin K, Agrawal DK. High-density lipoprotein: a novel target for antirestenosis therapy. Clin Transl Sci 2014; 7:500-11. [PMID: 25043950 DOI: 10.1111/cts.12186] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Restenosis is an integral pathological process central to the recurrent vessel narrowing after interventional procedures. Although the mechanisms for restenosis are diverse in different pathological conditions, endothelial dysfunction, inflammation, vascular smooth muscle cell (SMC) proliferation, and myofibroblasts transition have been thought to play crucial role in the development of restenosis. Indeed, there is an inverse relationship between high-density lipoprotein (HDL) levels and risk for coronary heart disease (CHD). However, relatively studies on the direct assessment of HDL effect on restenosis are limited. In addition to involvement in the cholesterol reverse transport, many vascular protective effects of HDL, including protection of endothelium, antiinflammation, antithrombus actions, inhibition of SMC proliferation, and regulation by adventitial effects may contribute to the inhibition of restenosis, though the exact relationships between HDL and restenosis remain to be elucidated. This review summarizes the vascular protective effects of HDL, emphasizing the potential role of HDL in intimal hyperplasia and vascular remodeling, which may provide novel prophylactic and therapeutic strategies for antirestenosis.
Collapse
Affiliation(s)
- Kai Yin
- Center for Clinical & Translational Science, Creighton University School of Medicine, Omaha, Nebraska, USA
| | | |
Collapse
|
21
|
Plasma 8-isoprostane levels are associated with endothelial dysfunction in resistant hypertension. Clin Chim Acta 2014; 433:179-83. [PMID: 24657423 DOI: 10.1016/j.cca.2014.03.009] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2013] [Revised: 03/10/2014] [Accepted: 03/11/2014] [Indexed: 02/07/2023]
Abstract
BACKGROUND Impaired endothelial function and arterial stiffness are associated with hypertension and are important risk factors for cardiovascular events. Reactive oxygen species reduce nitric oxide bioavailability and have a pivotal role in endothelial function. Resistant hypertension (RHTN) is characterized by blood pressure (BP) above goal (140/90mmHg) in spite of the concurrent use of ≥3 antihypertensive drugs of different classes. This study evaluated the association between 8-isoprostane levels, an oxidative stress marker, endothelial function and arterial stiffness, in RHTN. METHODS Ninety-four RHTN and 55 well-controlled hypertensive (HT) patients were included. Plasma 8-isoprostane levels were determined by ELISA. Also, flow-mediated dilation (FMD) and pulse wave velocity (PWV) were evaluated to determine endothelial function and arterial stiffness, respectively. RESULTS Levels of 8-isoprostane were markedly higher in RHTN compared to HT patients (22.5±11.2 vs. 17.3±9.8pg/ml, p<0.05, respectively). A significant inverse correlation was observed between FMD and 8-isoprostane (r=-0.35, p=0.001) in RHTN. Finally, multiple logistic regression revealed that 8-isoprostane was a significant predictor of endothelial dysfunction (FMD≤median) in RHTN group. CONCLUSION RHTN showed markedly higher oxidative stress measured by 8-isoprostane, compared to HT patients. Taken together, our findings suggest the involvement of oxidative stress in endothelial function in RHTN.
Collapse
|
22
|
Trojak A, Waluś-Miarka M, Woźniakiewicz E, Małecki MT, Idzior-Waluś B. Nonalcoholic fatty liver disease is associated with low HDL cholesterol and coronary angioplasty in patients with type 2 diabetes. Med Sci Monit 2013; 19:1167-72. [PMID: 24336007 PMCID: PMC3871489 DOI: 10.12659/msm.889649] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Background There is evidence that nonalcoholic fatty liver disease (NAFLD) is associated with increased cardiovascular risk. In this study we examined factors associated with the presence of NAFLD and the prevalence of macroangiopathy in patients with type 2 diabetes. Material/Methods Subjects were 101 consecutive patients with type 2 diabetes: 72 with NAFLD and 29 free of NAFLD. NAFLD was diagnosed by ultrasonography. Serum lipids were measured enzymatically and glycated hemoglobin HbA1c was measured by HPLC. Results The mean age of patients was 53.1±10.4 in the NAFLD group and 44.9±10.9 years in patients without NAFLD (p<0.001). The mean duration of diabetes was 10±6.3 years in patients with NAFLD and 15.1±7.8 years in those without NAFLD (p<0.001). Mean values of glycated hemoglobin A1c were similar in both groups. Patients with NAFLD were characterized by a significantly higher prevalence of coronary angioplasty (20.8% vs. 0%, p=0.008). Overweight and obesity were observed in a higher percentage of patients with NAFLD (p<0.001). Patients with NAFLD were characterized by significantly higher values of alanine transaminase (p=0.033), and lower serum concentrations of HDL-cholesterol (p<0.001) and creatinine (p=0.034). Logistic regression analysis (p<0.001) revealed that NAFLD was positively associated with waist circumference above normal (women >80 cm, men >94 cm) (p=0.0083) and alanine transaminase activity (p=0.0164), and negatively with creatinine concentration (p=0.0226). In a second logistic regression model (p<0.001), waist circumference (p<0.007) and total cholesterol (p<0.008) were positive predictors, while HDL-C (p<0.003) was a negative predictor of NAFLD. Conclusions The results of the study suggest that NAFLD is associated with visceral obesity and low HDL-cholesterol in patients with type 2 diabetes.
Collapse
Affiliation(s)
- Aleksandra Trojak
- Department of Metabolic Diseases, Medical College, Jagiellonian University, University Hospital, Kraków, Poland
| | - Małgorzata Waluś-Miarka
- Department of Metabolic Diseases, Medical College, Jagiellonian University, University Hospital, Kraków, Poland
| | - Ewa Woźniakiewicz
- Department of Metabolic Diseases, Medical College, Jagiellonian University, University Hospital, Kraków, Poland
| | - Maciej T Małecki
- Department of Metabolic Diseases, Medical College, Jagiellonian University, University Hospital, Kraków, Poland
| | - Barbara Idzior-Waluś
- Department of Metabolic Diseases, Medical College, Jagiellonian University, University Hospital, Kraków, Poland
| |
Collapse
|
23
|
Varol E, Aksoy F, Bas HA, Ari H, Ozaydin M. Mean platelet volume is elevated in patients with low high-density lipoprotein cholesterol. Angiology 2013; 65:733-6. [PMID: 24065627 DOI: 10.1177/0003319713504024] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
A low high-density lipoprotein cholesterol (HDL-C) level is a predictor of increased cardiovascular risk. We assessed the mean platelet volume (MPV) in patients with low HDL-C. We studied 59 patients with low HDL-C (HDL-C ≤35 mg/dL) and 56 control participants (HDL-C levels >35 mg/dL) with similar cardiovascular risk factors. As expected, HDL-C was significantly lower among the patients with low HDL-C than that of the control group (32 ± 3 vs 51 ± 5 mg/dL, respectively; P < .001). Platelet count was significantly lower among the patients with low HDL-C than that of the control group (213 ± 60 vs 285 ± 75 × 10(9)/L, respectively; P < .001). The MPV was significantly higher among the patients with low HDL-C than that of the control group (8.7 ± 0.6 vs 7.1 ± 0.5 fL, respectively; P < .001). We have shown that MPV was significantly elevated in patients with low HDL-C compared with control participants.
Collapse
Affiliation(s)
- Ercan Varol
- Department of Cardiology, Suleyman Demirel University, Isparta, Turkey
| | - Fatih Aksoy
- Department of Cardiology, Suleyman Demirel University, Isparta, Turkey
| | - Hasan Aydin Bas
- Department of Cardiology, Suleyman Demirel University, Isparta, Turkey
| | - Hatem Ari
- Department of Cardiology, Suleyman Demirel University, Isparta, Turkey
| | - Mehmet Ozaydin
- Department of Cardiology, Suleyman Demirel University, Isparta, Turkey
| |
Collapse
|