1
|
Lopuszynski J, Wang J, Zahid M. Beyond Transduction: Anti-Inflammatory Effects of Cell Penetrating Peptides. Molecules 2024; 29:4088. [PMID: 39274936 PMCID: PMC11397606 DOI: 10.3390/molecules29174088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 08/24/2024] [Accepted: 08/27/2024] [Indexed: 09/16/2024] Open
Abstract
One of the bottlenecks to bringing new therapies to the clinic has been a lack of vectors for delivering novel therapeutics in a targeted manner. Cell penetrating peptides (CPPs) have received a lot of attention and have been the subject of numerous developments since their identification nearly three decades ago. Known for their transduction abilities, they have generally been considered inert vectors. In this review, we present a schema for their classification, highlight what is known about their mechanism of transduction, and outline the existing literature as well as our own experience, vis a vis the intrinsic anti-inflammatory properties that certain CPPs exhibit. Given the inflammatory responses associated with viral vectors, CPPs represent a viable alternative to such vectors; furthermore, the anti-inflammatory properties of CPPs, mostly through inhibition of the NF-κB pathway, are encouraging. Much more work in relevant animal models, toxicity studies in large animal models, and ultimately human trials are needed before their potential is fully realized.
Collapse
Affiliation(s)
| | | | - Maliha Zahid
- Department of Cardiovascular Medicine, Guggenheim Gu 9-01B, Mayo Clinic, 200 First Street SW, Rochester, MN 55905, USA
| |
Collapse
|
2
|
Liu Y, Qiao H, Zienkiewicz J, Hawiger J. Anti-inflammatory control of human skin keratinocytes by targeting nuclear transport checkpoint. SKIN HEALTH AND DISEASE 2024; 4:e356. [PMID: 38846687 PMCID: PMC11150741 DOI: 10.1002/ski2.356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 02/10/2024] [Accepted: 02/21/2024] [Indexed: 06/09/2024]
Abstract
Background In the two common inflammatory skin diseases, Atopic Dermatitis (AD) and Psoriasis (Ps), keratinocytes (KCs) respond to immune insults through activation of proinflammatory transcription factors (TFs) and their translocation to the cell's nucleus. Therein, the TFs induce expression of genes encoding mediators of skin inflammation. The Nuclear Transport Checkpoint Inhibitors (NTCIs) were developed to regulate nuclear translocation of activated TFs, the essential step of inflammatory response. This new class of cell-penetrating peptide therapeutics controls inflammation caused by allergic, autoimmune, metabolic, and microbial insults. In preclinical model of AD, the treatment with NTCI, cSN50.1 peptide, suppressed the expression of Thymic Stromal Lymphopoietin (TSLP), the key gene in the development of allergic inflammation, among the 15 genes silenced by the NTCI. Here, we report the mechanism of anti-inflammatory action of NTCI in human skin-derived KCs. Objectives We aimed to determine whether the NTCI treatment can protect human KCs from harmful inflammatory insults. Methods Human primary KCs were pretreated with NTCI and challenged with the mix of cytokines Tumour Necrosis Factor alpha (TNF-α) and Interleukin (IL)-17A, or with Phorbol 12-Myristate 13-Acetate (PMA), and analysed for nuclear content of TFs and the expression of genes encoding mediators of inflammation. Results The nuclear import of TFs, Nuclear Factor ĸB (NF-ĸB) and Signal Transduction and Activator of Transcription 3 (STAT3), was inhibited in cells treated with NTCI. The expression of TSLP, along with genes encoding the core mediators of inflammation (TNF, IL1B, and IL6) was suppressed by NTCI. Noteworthy, NTCI silenced genes encoding Granulocyte-Macrophage Colony-Stimulating Factor (CSF2), and chemokine IL-8 (CXCL8), responsible for skin infiltration by the eosinophils and other myelomonocytic cells. Conclusion The control of inflammatory response in human KCs by NTCI is attributed to the inhibition of nuclear import of proinflammatory TFs. The protection of human KCs by NTCI, adds new perspectives to the completed Phase two clinical trial of the NTCI (AMTX-100 CF) for AD (NCT04313400).
Collapse
Affiliation(s)
- Yan Liu
- Department of MedicineDivision of AllergyPulmonary and Critical Care MedicineVanderbilt University School of MedicineNashvilleTennesseeUSA
- Department of Veterans AffairsTennessee Valley Health Care SystemNashvilleTennesseeUSA
| | - Huan Qiao
- Department of MedicineDivision of AllergyPulmonary and Critical Care MedicineVanderbilt University School of MedicineNashvilleTennesseeUSA
| | - Jozef Zienkiewicz
- Department of MedicineDivision of AllergyPulmonary and Critical Care MedicineVanderbilt University School of MedicineNashvilleTennesseeUSA
- Department of Veterans AffairsTennessee Valley Health Care SystemNashvilleTennesseeUSA
| | - Jacek Hawiger
- Department of MedicineDivision of AllergyPulmonary and Critical Care MedicineVanderbilt University School of MedicineNashvilleTennesseeUSA
- Department of Veterans AffairsTennessee Valley Health Care SystemNashvilleTennesseeUSA
- Department of Molecular Physiology and BiophysicsVanderbilt University School of MedicineNashvilleTennesseeUSA
| |
Collapse
|
3
|
Qiao H, Zienkiewicz J, Liu Y, Hawiger J. Activation of thousands of genes in the lungs and kidneys by sepsis is countered by the selective nuclear blockade. Front Immunol 2023; 14:1221102. [PMID: 37638006 PMCID: PMC10450963 DOI: 10.3389/fimmu.2023.1221102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 07/24/2023] [Indexed: 08/29/2023] Open
Abstract
The steady rise of sepsis globally has reached almost 49 million cases in 2017, and 11 million sepsis-related deaths. The genomic response to sepsis comprising multi-system stage of raging microbial inflammation has been reported in the whole blood, while effective treatment is lacking besides anti-microbial therapy and supportive measures. Here we show that, astoundingly, 6,237 significantly expressed genes in sepsis are increased or decreased in the lungs, the site of acute respiratory distress syndrome (ARDS). Moreover, 5,483 significantly expressed genes in sepsis are increased or decreased in the kidneys, the site of acute injury (AKI). This massive genomic response to polymicrobial sepsis is countered by the selective nuclear blockade with the cell-penetrating Nuclear Transport Checkpoint Inhibitor (NTCI). It controlled 3,735 sepsis-induced genes in the lungs and 1,951 sepsis-induced genes in the kidneys. The NTCI also reduced without antimicrobial therapy the bacterial dissemination: 18-fold in the blood, 11-fold in the lungs, and 9-fold in the spleen. This enhancement of bacterial clearance was not significant in the kidneys. Cumulatively, identification of the sepsis-responsive host's genes and their control by the selective nuclear blockade advances a better understanding of the multi-system mechanism of sepsis. Moreover, it spurs much-needed new diagnostic, therapeutic, and preventive approaches.
Collapse
Affiliation(s)
- Huan Qiao
- Department of Medicine, Division of Allergy, Pulmonary and Critical Care Medicine, Vanderbilt University School of Medicine, Nashville, Tennessee, TN, United States
| | - Jozef Zienkiewicz
- Department of Medicine, Division of Allergy, Pulmonary and Critical Care Medicine, Vanderbilt University School of Medicine, Nashville, Tennessee, TN, United States
- Department of Veterans Affairs, Tennessee Valley Health Care System, Nashville, Tennessee, TN, United States
| | - Yan Liu
- Department of Medicine, Division of Allergy, Pulmonary and Critical Care Medicine, Vanderbilt University School of Medicine, Nashville, Tennessee, TN, United States
- Department of Veterans Affairs, Tennessee Valley Health Care System, Nashville, Tennessee, TN, United States
| | - Jacek Hawiger
- Department of Medicine, Division of Allergy, Pulmonary and Critical Care Medicine, Vanderbilt University School of Medicine, Nashville, Tennessee, TN, United States
- Department of Veterans Affairs, Tennessee Valley Health Care System, Nashville, Tennessee, TN, United States
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, Tennessee, TN, United States
| |
Collapse
|
4
|
Senatus L, Egaña-Gorroño L, López-Díez R, Bergaya S, Aranda JF, Amengual J, Arivazhagan L, Manigrasso MB, Yepuri G, Nimma R, Mangar KN, Bernadin R, Zhou B, Gugger PF, Li H, Friedman RA, Theise ND, Shekhtman A, Fisher EA, Ramasamy R, Schmidt AM. DIAPH1 mediates progression of atherosclerosis and regulates hepatic lipid metabolism in mice. Commun Biol 2023; 6:280. [PMID: 36932214 PMCID: PMC10023694 DOI: 10.1038/s42003-023-04643-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 03/01/2023] [Indexed: 03/19/2023] Open
Abstract
Atherosclerosis evolves through dysregulated lipid metabolism interwoven with exaggerated inflammation. Previous work implicating the receptor for advanced glycation end products (RAGE) in atherosclerosis prompted us to explore if Diaphanous 1 (DIAPH1), which binds to the RAGE cytoplasmic domain and is important for RAGE signaling, contributes to these processes. We intercrossed atherosclerosis-prone Ldlr-/- mice with mice devoid of Diaph1 and fed them Western diet for 16 weeks. Compared to male Ldlr-/- mice, male Ldlr-/- Diaph1-/- mice displayed significantly less atherosclerosis, in parallel with lower plasma concentrations of cholesterol and triglycerides. Female Ldlr-/- Diaph1-/- mice displayed significantly less atherosclerosis compared to Ldlr-/- mice and demonstrated lower plasma concentrations of cholesterol, but not plasma triglycerides. Deletion of Diaph1 attenuated expression of genes regulating hepatic lipid metabolism, Acaca, Acacb, Gpat2, Lpin1, Lpin2 and Fasn, without effect on mRNA expression of upstream transcription factors Srebf1, Srebf2 or Mxlipl in male mice. We traced DIAPH1-dependent mechanisms to nuclear translocation of SREBP1 in a manner independent of carbohydrate- or insulin-regulated cues but, at least in part, through the actin cytoskeleton. This work unveils new regulators of atherosclerosis and lipid metabolism through DIAPH1.
Collapse
Affiliation(s)
- Laura Senatus
- Diabetes Research Program, Department of Medicine, NYU Grossman School of Medicine, NYU Langone Health, New York, NY, USA
| | - Lander Egaña-Gorroño
- Diabetes Research Program, Department of Medicine, NYU Grossman School of Medicine, NYU Langone Health, New York, NY, USA
| | - Raquel López-Díez
- Diabetes Research Program, Department of Medicine, NYU Grossman School of Medicine, NYU Langone Health, New York, NY, USA
| | - Sonia Bergaya
- The Leon H. Charney Division of Cardiology, Department of Medicine, The Marc and Ruti Bell Program in Vascular Biology, NYU Grossman School of Medicine, NYU Langone Health, New York, NY, USA
| | - Juan Francisco Aranda
- Diabetes Research Program, Department of Medicine, NYU Grossman School of Medicine, NYU Langone Health, New York, NY, USA
| | - Jaume Amengual
- The Leon H. Charney Division of Cardiology, Department of Medicine, The Marc and Ruti Bell Program in Vascular Biology, NYU Grossman School of Medicine, NYU Langone Health, New York, NY, USA
| | - Lakshmi Arivazhagan
- Diabetes Research Program, Department of Medicine, NYU Grossman School of Medicine, NYU Langone Health, New York, NY, USA
| | - Michaele B Manigrasso
- Diabetes Research Program, Department of Medicine, NYU Grossman School of Medicine, NYU Langone Health, New York, NY, USA
| | - Gautham Yepuri
- Diabetes Research Program, Department of Medicine, NYU Grossman School of Medicine, NYU Langone Health, New York, NY, USA
| | - Ramesh Nimma
- Diabetes Research Program, Department of Medicine, NYU Grossman School of Medicine, NYU Langone Health, New York, NY, USA
| | - Kaamashri N Mangar
- Diabetes Research Program, Department of Medicine, NYU Grossman School of Medicine, NYU Langone Health, New York, NY, USA
| | - Rollanda Bernadin
- Diabetes Research Program, Department of Medicine, NYU Grossman School of Medicine, NYU Langone Health, New York, NY, USA
| | - Boyan Zhou
- Department of Population Health, Division of Biostatistics, NYU Grossman School of Medicine, NYU Langone Health, New York, NY, USA
| | - Paul F Gugger
- Diabetes Research Program, Department of Medicine, NYU Grossman School of Medicine, NYU Langone Health, New York, NY, USA
| | - Huilin Li
- Department of Population Health, Division of Biostatistics, NYU Grossman School of Medicine, NYU Langone Health, New York, NY, USA
| | - Richard A Friedman
- Biomedical Informatics Shared Resource, Herbert Irving Comprehensive Cancer Center and Department of Biomedical Informatics, Columbia University Irving Medical Center, New York, NY, USA
| | - Neil D Theise
- Department of Pathology, NYU Grossman School of Medicine, NYU Langone Health, New York, USA
| | - Alexander Shekhtman
- Department of Chemistry, The State University of New York at Albany, Albany, NY, USA
| | - Edward A Fisher
- The Leon H. Charney Division of Cardiology, Department of Medicine, The Marc and Ruti Bell Program in Vascular Biology, NYU Grossman School of Medicine, NYU Langone Health, New York, NY, USA
| | - Ravichandran Ramasamy
- Diabetes Research Program, Department of Medicine, NYU Grossman School of Medicine, NYU Langone Health, New York, NY, USA
| | - Ann Marie Schmidt
- Diabetes Research Program, Department of Medicine, NYU Grossman School of Medicine, NYU Langone Health, New York, NY, USA.
| |
Collapse
|
5
|
Liu Y, Zienkiewicz J, Qiao H, Gibson-Corley KN, Boyd KL, Veach RA, Hawiger J. Genomic control of inflammation in experimental atopic dermatitis. Sci Rep 2022; 12:18891. [PMID: 36344555 PMCID: PMC9640569 DOI: 10.1038/s41598-022-23042-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 10/25/2022] [Indexed: 11/09/2022] Open
Abstract
Atopic Dermatitis (AD) or eczema, a recurrent allergic inflammation of the skin, afflicts 10-20% of children and 5% adults of all racial and ethnic groups globally. We report a new topical treatment of AD by a Nuclear Transport Checkpoint Inhibitor (NTCI), which targets two nuclear transport shuttles, importin α5 and importin β1. In the preclinical model of AD, induced by the active vitamin D3 analog MC903 (calcipotriol), NTCI suppressed the expression of keratinocyte-derived cytokine, Thymic Stromal Lymphopoietin (TSLP), the key gene in AD development. Moreover, the genes encoding mediators of TH2 response, IL-4 and its receptor IL-4Rα were also silenced together with the genes encoding cytokines IL-1β, IL-6, IL-13, IL-23α, IL-33, IFN-γ, GM-CSF, VEGF A, the chemokines RANTES and IL-8, and intracellular signal transducers COX-2 and iNOS. Consequently, NTCI suppressed skin infiltration by inflammatory cells (eosinophils, macrophages, and CD4 + T lymphocytes), and reduced MC903-evoked proliferation of Ki-67-positive cells. Thus, we highlight the mechanism of action and the potential utility of topical NTCI for treatment of AD undergoing Phase 1/2 clinical trial (AMTX-100 CF, NCT04313400).
Collapse
Affiliation(s)
- Yan Liu
- Department of Medicine, Division of Allergy, Pulmonary and Critical Care Medicine, Vanderbilt University School of Medicine, Vanderbilt University Medical Center, 21St Avenue South, T-1218, MCN, Nashville, TN, 37232, USA
- Department of Veterans Affairs, Tennessee Valley Health Care System, Nashville, TN, USA
| | - Jozef Zienkiewicz
- Department of Medicine, Division of Allergy, Pulmonary and Critical Care Medicine, Vanderbilt University School of Medicine, Vanderbilt University Medical Center, 21St Avenue South, T-1218, MCN, Nashville, TN, 37232, USA
- Department of Veterans Affairs, Tennessee Valley Health Care System, Nashville, TN, USA
| | - Huan Qiao
- Department of Medicine, Division of Allergy, Pulmonary and Critical Care Medicine, Vanderbilt University School of Medicine, Vanderbilt University Medical Center, 21St Avenue South, T-1218, MCN, Nashville, TN, 37232, USA
| | - Katherine N Gibson-Corley
- Department of Pathology, Microbiology and Immunology, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Kelli L Boyd
- Department of Pathology, Microbiology and Immunology, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Ruth Ann Veach
- Department of Medicine, Division of Nephrology, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Jacek Hawiger
- Department of Medicine, Division of Allergy, Pulmonary and Critical Care Medicine, Vanderbilt University School of Medicine, Vanderbilt University Medical Center, 21St Avenue South, T-1218, MCN, Nashville, TN, 37232, USA.
- Department of Veterans Affairs, Tennessee Valley Health Care System, Nashville, TN, USA.
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, TN, USA.
| |
Collapse
|
6
|
Carvalho-Gontijo R, Han C, Zhang L, Zhang V, Hosseini M, Mekeel K, Schnabl B, Loomba R, Karin M, Brenner DA, Kisseleva T. Metabolic Injury of Hepatocytes Promotes Progression of NAFLD and AALD. Semin Liver Dis 2022; 42:233-249. [PMID: 36001995 PMCID: PMC9662188 DOI: 10.1055/s-0042-1755316] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Nonalcoholic liver disease is a component of metabolic syndrome associated with obesity, insulin resistance, and hyperlipidemia. Excessive alcohol consumption may accelerate the progression of steatosis, steatohepatitis, and fibrosis. While simple steatosis is considered a benign condition, nonalcoholic steatohepatitis with inflammation and fibrosis may progress to cirrhosis, liver failure, and hepatocellular cancer. Studies in rodent experimental models and primary cell cultures have demonstrated several common cellular and molecular mechanisms in the pathogenesis and regression of liver fibrosis. Chronic injury and death of hepatocytes cause the recruitment of myeloid cells, secretion of inflammatory and fibrogenic cytokines, and activation of myofibroblasts, resulting in liver fibrosis. In this review, we discuss the role of metabolically injured hepatocytes in the pathogenesis of nonalcoholic steatohepatitis and alcohol-associated liver disease. Specifically, the role of chemokine production and de novo lipogenesis in the development of steatotic hepatocytes and the pathways of steatosis regulation are discussed.
Collapse
Affiliation(s)
- Raquel Carvalho-Gontijo
- Department of Medicine, University of California, San Diego School of Medicine, La Jolla,Department of Surgery, University of California, San Diego School of Medicine, La Jolla
| | - Cuijuan Han
- Department of Medicine, University of California, San Diego School of Medicine, La Jolla,Department of Surgery, University of California, San Diego School of Medicine, La Jolla
| | - Lei Zhang
- Department of Medicine, University of California, San Diego School of Medicine, La Jolla,Department of Surgery, University of California, San Diego School of Medicine, La Jolla
| | - Vivian Zhang
- Department of Medicine, University of California, San Diego School of Medicine, La Jolla,Department of Surgery, University of California, San Diego School of Medicine, La Jolla
| | - Mojgan Hosseini
- Department of Pathology, University of California, San Diego School of Medicine, La Jolla
| | - Kristin Mekeel
- Department of Surgery, University of California, San Diego School of Medicine, La Jolla
| | - Bernd Schnabl
- Department of Medicine, University of California, San Diego School of Medicine, La Jolla
| | - Rohit Loomba
- Department of Medicine, University of California, San Diego School of Medicine, La Jolla
| | - Michael Karin
- Department of Pharmacology, University of California, San Diego School of Medicine, La Jolla
| | - David A. Brenner
- Department of Medicine, University of California, San Diego School of Medicine, La Jolla
| | - Tatiana Kisseleva
- Department of Surgery, University of California, San Diego School of Medicine, La Jolla,Corresponding author: Tatiana Kisseleva, 9500 Gilman Drive, #0063, La Jolla, California 92093, USA. Phone: 858.822.5339,
| |
Collapse
|
7
|
Li J, Shen H, Owens GK, Guo LW. SREBP1 regulates Lgals3 activation in response to cholesterol loading. MOLECULAR THERAPY. NUCLEIC ACIDS 2022; 28:892-909. [PMID: 35694209 PMCID: PMC9168384 DOI: 10.1016/j.omtn.2022.05.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Accepted: 05/12/2022] [Indexed: 12/02/2022]
Abstract
Aberrant smooth muscle cell (SMC) plasticity is etiological to vascular diseases. Cholesterol induces SMC phenotypic transition featuring high LGALS3 (galectin-3) expression. This proatherogenic process is poorly understood for its molecular underpinnings, in particular, the mechanistic role of sterol regulatory-element binding protein-1 (SREBP1), a master regulator of lipid metabolism. Herein we show that cholesterol loading stimulated SREBP1 expression in mouse, rat, and human SMCs. SREBP1 positively regulated LGALS3 expression (and vice versa), whereas Krüppel-like factor-15 (KLF15) acted as a negative regulator. Both bound to the Lgals3 promoter, yet at discrete sites, as revealed by chromatin immunoprecipitation-qPCR and electrophoretic mobility shift assays. SREBP1 and LGALS3 each abated KLF15 protein, and blocking the bromo/extraterminal domain-containing proteins (BETs) family of acetyl-histone readers abolished cholesterol-stimulated SREBP1/LGALS3 protein production. Furthermore, silencing bromodomain protein 2 (BRD2; but not other BETs) reduced SREBP1; endogenous BRD2 co-immunoprecipitated with SREBP1's transcription-active domain, its own promoter DNA, and that of L gals 3. Thus, results identify a previously uncharacterized cholesterol-responsive dyad-SREBP1 and LGALS3, constituting a feedforward circuit that can be blocked by BETs inhibition. This study provides new insights into SMC phenotypic transition and potential interventional targets.
Collapse
Affiliation(s)
- Jing Li
- Department of Surgery, School of Medicine, University of Virginia, Charlottesville, VA 22908, USA
| | - Hongtao Shen
- Department of Surgery, School of Medicine, University of Virginia, Charlottesville, VA 22908, USA
| | - Gary K. Owens
- Department of Molecular Physiology and Biophysics, University of Virginia, Charlottesville, VA 22908, USA
- Robert M. Berne Cardiovascular Research Center, University of Virginia, Charlottesville, VA 22908, USA
| | - Lian-Wang Guo
- Department of Surgery, School of Medicine, University of Virginia, Charlottesville, VA 22908, USA
- Robert M. Berne Cardiovascular Research Center, University of Virginia, Charlottesville, VA 22908, USA
| |
Collapse
|
8
|
Bárcena B, Salamanca A, Pintado C, Mazuecos L, Villar M, Moltó E, Bonzón-Kulichenko E, Vázquez J, Andrés A, Gallardo N. Aging Induces Hepatic Oxidative Stress and Nuclear Proteomic Remodeling in Liver from Wistar Rats. Antioxidants (Basel) 2021; 10:antiox10101535. [PMID: 34679670 PMCID: PMC8533122 DOI: 10.3390/antiox10101535] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 09/23/2021] [Accepted: 09/24/2021] [Indexed: 12/13/2022] Open
Abstract
Aging is a continuous, universal, and irreversible process that determines progressive loss of adaptability. The liver is a critical organ that supports digestion, metabolism, immunity, detoxification, vitamin storage, and hormone signaling. Nevertheless, the relationship between aging and the development of liver diseases remains elusive. In fact, although prolonged fasting in adult rodents and humans delays the onset of the disease and increases longevity, whether prolonged fasting could exert adverse effects in old organisms remains incompletely understood. In this work, we aimed to characterize the oxidative stress and nuclear proteome in the liver of 3-month- and 24-month-old male Wistar rats upon 36 h of fasting and its adaptation in response to 30 min of refeeding. To this end, we analyzed the hepatic lipid peroxidation levels (TBARS) and the expression levels of genes associated with fat metabolism and oxidative stress during aging. In addition, to gain a better insight into the molecular and cellular processes that characterize the liver of old rats, the hepatic nuclear proteome was also evaluated by isobaric tag quantitation (iTRAQ) mass spectrometry-based proteomics. In old rats, aging combined with prolonged fasting had great impact on lipid peroxidation in the liver that was associated with a marked downregulation of antioxidant genes (Sod2, Fmo3, and Cyp2C11) compared to young rats. Besides, our proteomic study revealed that RNA splicing is the hepatic nuclear biological process markedly affected by aging and this modification persists upon refeeding. Our results suggest that aged-induced changes in the nuclear proteome could affect processes associated with the adaptative response to refeeding after prolonged fasting, such as those involved in the defense against oxidative stress.
Collapse
Affiliation(s)
- Brenda Bárcena
- Biochemistry Section, Regional Center for Biomedical Research (CRIB), Faculty of Sciences and Chemical Technologies, University of Castilla-La Mancha, Avda. Camilo Jose Cela 10, 13071 Ciudad Real, Spain; (B.B.); (A.S.); (L.M.); (A.A.)
| | - Aurora Salamanca
- Biochemistry Section, Regional Center for Biomedical Research (CRIB), Faculty of Sciences and Chemical Technologies, University of Castilla-La Mancha, Avda. Camilo Jose Cela 10, 13071 Ciudad Real, Spain; (B.B.); (A.S.); (L.M.); (A.A.)
| | - Cristina Pintado
- Biochemistry Section, Regional Center for Biomedical Research (CRIB), Faculty of Environmental Sciences and Biochemistry, University of Castilla-La Mancha, Avda. Carlos III s/n, 45071 Toledo, Spain; (C.P.); (E.M.)
| | - Lorena Mazuecos
- Biochemistry Section, Regional Center for Biomedical Research (CRIB), Faculty of Sciences and Chemical Technologies, University of Castilla-La Mancha, Avda. Camilo Jose Cela 10, 13071 Ciudad Real, Spain; (B.B.); (A.S.); (L.M.); (A.A.)
| | - Margarita Villar
- Biochemistry Section, Regional Center for Biomedical Research (CRIB), Faculty of Sciences and Chemical Technologies, University of Castilla-La Mancha, Avda. Camilo Jose Cela 10, 13071 Ciudad Real, Spain; (B.B.); (A.S.); (L.M.); (A.A.)
- SaBio, Instituto de Investigación en Recursos Cinegéticos IREC-CSIC-UCLM-JCCM, Ronda de Toledo s/n, 13005 Ciudad Real, Spain
- Correspondence: (M.V.); (N.G.)
| | - Eduardo Moltó
- Biochemistry Section, Regional Center for Biomedical Research (CRIB), Faculty of Environmental Sciences and Biochemistry, University of Castilla-La Mancha, Avda. Carlos III s/n, 45071 Toledo, Spain; (C.P.); (E.M.)
| | - Elena Bonzón-Kulichenko
- Cardiovascular Proteomics Laboratory, Centro Nacional de Investigaciones Cardiovasculares Carlos III and CIBER de Enfermedades Cardiovasculares (CIBERCV), 28029 Madrid, Spain; (E.B.-K.); (J.V.)
| | - Jesús Vázquez
- Cardiovascular Proteomics Laboratory, Centro Nacional de Investigaciones Cardiovasculares Carlos III and CIBER de Enfermedades Cardiovasculares (CIBERCV), 28029 Madrid, Spain; (E.B.-K.); (J.V.)
| | - Antonio Andrés
- Biochemistry Section, Regional Center for Biomedical Research (CRIB), Faculty of Sciences and Chemical Technologies, University of Castilla-La Mancha, Avda. Camilo Jose Cela 10, 13071 Ciudad Real, Spain; (B.B.); (A.S.); (L.M.); (A.A.)
| | - Nilda Gallardo
- Biochemistry Section, Regional Center for Biomedical Research (CRIB), Faculty of Sciences and Chemical Technologies, University of Castilla-La Mancha, Avda. Camilo Jose Cela 10, 13071 Ciudad Real, Spain; (B.B.); (A.S.); (L.M.); (A.A.)
- Correspondence: (M.V.); (N.G.)
| |
Collapse
|
9
|
Liu Y, Zienkiewicz J, Boyd KL, Smith TE, Xu ZQ, Hawiger J. Hyperlipidemic hypersensitivity to lethal microbial inflammation and its reversal by selective targeting of nuclear transport shuttles. Sci Rep 2021; 11:11907. [PMID: 34099795 PMCID: PMC8184916 DOI: 10.1038/s41598-021-91395-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2020] [Accepted: 05/25/2021] [Indexed: 01/07/2023] Open
Abstract
Hyperlipidemia, the hallmark of Metabolic Syndrome that afflicts millions of people worldwide, exacerbates life-threatening infections. We present a new evidence for the mechanism of hyperlipidemic hypersensitivity to microbial inflammation caused by pathogen-derived inducer, LPS. We demonstrate that hyperlipidemic animals succumbed to a non-lethal dose of LPS whereas normolipidemic controls survived. Strikingly, survival of hyperlipidemic animals was restored when the nuclear import of stress-responsive transcription factors (SRTFs), Sterol Regulatory Element-Binding Proteins (SREBPs), and Carbohydrate-Responsive Element-Binding Proteins (ChREBPs) was impeded by targeting the nuclear transport checkpoint with cell-penetrating, biselective nuclear transport modifier (NTM) peptide. Furthermore, the burst of proinflammatory cytokines and chemokines, microvascular endothelial injury in the liver, lungs, heart, and kidneys, and trafficking of inflammatory cells were also suppressed. To dissect the role of nuclear transport signaling pathways we designed and developed importin-selective NTM peptides. Selective targeting of the importin α5, ferrying SRTFs and ChREBPs, protected 70-100% hyperlipidemic animals. Targeting importin β1, that transports SREBPs, was only effective after 3-week treatment that lowered blood triglycerides, cholesterol, glucose, and averted fatty liver. Thus, the mechanism of hyperlipidemic hypersensitivity to lethal microbial inflammation depends on metabolic and proinflammatory transcription factors mobilization, which can be counteracted by targeting the nuclear transport checkpoint.
Collapse
Affiliation(s)
- Yan Liu
- Division of Allergy, Pulmonary and Critical Care Medicine, Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN, USA
- Department of Veterans Affairs, Tennessee Valley Health Care System, Nashville, TN, USA
| | - Jozef Zienkiewicz
- Division of Allergy, Pulmonary and Critical Care Medicine, Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN, USA
- Department of Veterans Affairs, Tennessee Valley Health Care System, Nashville, TN, USA
| | - Kelli L Boyd
- Department of Pathology, Microbiology and Immunology, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Taylor E Smith
- Division of Allergy, Pulmonary and Critical Care Medicine, Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN, USA
- Department of Veterans Affairs, Tennessee Valley Health Care System, Nashville, TN, USA
| | - Zhi-Qi Xu
- Division of Allergy, Pulmonary and Critical Care Medicine, Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN, USA
- Department of Veterans Affairs, Tennessee Valley Health Care System, Nashville, TN, USA
| | - Jacek Hawiger
- Division of Allergy, Pulmonary and Critical Care Medicine, Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN, USA.
- Department of Veterans Affairs, Tennessee Valley Health Care System, Nashville, TN, USA.
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, TN, USA.
- Vanderbilt University Medical Center, 21st Avenue South, T-1218, MCN, Nashville, TN, 37232, USA.
| |
Collapse
|
10
|
Liu Y, Veach RA, Zienkiewicz J, Boyd KL, Smith TE, Xu ZQ, Wylezinski LS, Hawiger J. Protection from Endotoxin Shock by Selective Targeting of Proinflammatory Signaling to the Nucleus Mediated by Importin Alpha 5. Immunohorizons 2019; 3:440-446. [PMID: 31533951 PMCID: PMC6768080 DOI: 10.4049/immunohorizons.1900064] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Accepted: 08/22/2019] [Indexed: 12/14/2022] Open
Abstract
Endotoxin shock is induced by LPS, one of the most potent virulence factors of the Gram-negative bacteria that cause sepsis. It remains unknown if either proinflammatory stress-responsive transcription factors (SRTFs), ferried to nucleus by importin α5, or lipid-regulating sterol regulatory element binding proteins (SREBPs), transported to the nucleus by importin β1, mediate endotoxin shock. A novel cell-penetrating peptide targeting importin α5 while sparing importin β1 protected 80% of animals from death in response to a high dose of LPS. This peptide suppresses inflammatory mediators, liver glycogen depletion, endothelial injury, neutrophil trafficking, and apoptosis caused by LPS. In d-galactosamine-pretreated mice challenged by 700-times lower dose of LPS, rapid death through massive apoptosis and hemorrhagic necrosis of the liver was also averted by the importin α5–selective peptide. Thus, using a new tool for selective suppression of nuclear transport, we demonstrate that SRTFs, rather than SREBPs, mediate endotoxin shock.
Collapse
Affiliation(s)
- Yan Liu
- Division of Allergy, Pulmonary and Critical Care Medicine, Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN 37232.,Department of Veterans Affairs, Tennessee Valley Health Care System, Nashville, TN 37212
| | - Ruth Ann Veach
- Department of Veterans Affairs, Tennessee Valley Health Care System, Nashville, TN 37212.,Division of Nephrology, Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN 37232
| | - Jozef Zienkiewicz
- Division of Allergy, Pulmonary and Critical Care Medicine, Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN 37232; .,Department of Veterans Affairs, Tennessee Valley Health Care System, Nashville, TN 37212
| | - Kelli L Boyd
- Department of Pathology, Microbiology and Immunology, Vanderbilt University School of Medicine, Nashville, TN 37232; and
| | - Taylor E Smith
- Division of Allergy, Pulmonary and Critical Care Medicine, Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN 37232.,Department of Veterans Affairs, Tennessee Valley Health Care System, Nashville, TN 37212
| | - Zhi-Qi Xu
- Division of Allergy, Pulmonary and Critical Care Medicine, Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN 37232
| | - Lukasz S Wylezinski
- Division of Allergy, Pulmonary and Critical Care Medicine, Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN 37232
| | - Jacek Hawiger
- Division of Allergy, Pulmonary and Critical Care Medicine, Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN 37232; .,Department of Veterans Affairs, Tennessee Valley Health Care System, Nashville, TN 37212.,Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, TN 37232
| |
Collapse
|
11
|
Hawiger J, Zienkiewicz J. Decoding inflammation, its causes, genomic responses, and emerging countermeasures. Scand J Immunol 2019; 90:e12812. [PMID: 31378956 PMCID: PMC6883124 DOI: 10.1111/sji.12812] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Revised: 07/03/2019] [Accepted: 07/29/2019] [Indexed: 12/11/2022]
Abstract
Inflammation is the mechanism of diseases caused by microbial, autoimmune, allergic, metabolic and physical insults that produce distinct types of inflammatory responses. This aetiologic view of inflammation informs its classification based on a cause‐dependent mechanism as well as a cause‐directed therapy and prevention. The genomic era ushered in a new understanding of inflammation by highlighting the cell's nucleus as the centre of the inflammatory response. Exogenous or endogenous inflammatory insults evoke genomic responses in immune and non‐immune cells. These genomic responses depend on transcription factors, which switch on and off a myriad of inflammatory genes through their regulatory networks. We discuss the transcriptional paradigm of inflammation based on denying transcription factors’ access to the nucleus. We present two approaches that control proinflammatory signalling to the nucleus. The first approach constitutes a novel intracellular protein therapy with bioengineered physiologic suppressors of cytokine signalling. The second approach entails control of proinflammatory transcriptional cascades by targeting nuclear transport with a cell‐penetrating peptide that inhibits the expression of 23 out of the 26 mediators of inflammation along with the nine genes required for metabolic responses. We compare these emerging anti‐inflammatory countermeasures to current therapies. The transcriptional paradigm of inflammation offers nucleocentric strategies for microbial, autoimmune, metabolic, physical and other types of inflammation afflicting millions of people worldwide.
Collapse
Affiliation(s)
- Jacek Hawiger
- Immunotherapy Program at Vanderbilt University School of Medicine, Nashville, TN, USA.,Division of Allergy, Pulmonary and Critical Care Medicine, Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN, USA.,Department of Veterans Affairs, Tennessee Valley Health Care System, Nashville, TN, USA.,Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Jozef Zienkiewicz
- Immunotherapy Program at Vanderbilt University School of Medicine, Nashville, TN, USA.,Division of Allergy, Pulmonary and Critical Care Medicine, Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN, USA.,Department of Veterans Affairs, Tennessee Valley Health Care System, Nashville, TN, USA
| |
Collapse
|
12
|
Kim JY, Shim SH. Medicinal Herbs Effective Against Atherosclerosis: Classification According to Mechanism of Action. Biomol Ther (Seoul) 2019; 27:254-264. [PMID: 30917628 PMCID: PMC6513182 DOI: 10.4062/biomolther.2018.231] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Revised: 02/23/2019] [Accepted: 02/27/2019] [Indexed: 11/06/2022] Open
Abstract
Atherosclerosis is a widespread and chronic progressive arterial disease that has been regarded as one of the major causes of death worldwide. It is caused by the deposition of cholesterol, fats, and other substances in the tunica intima which leads to narrowing of the blood vessels, loss of elasticity, and arterial wall thickening, thus causing difficulty in blood flow. Natural products have been used as one of the most important strategies for the treatment and prevention of cardiovascular diseases for a long time. In recent decades, as interests in natural products including medicinal herbs have increased, many studies regarding natural compounds that are effective against atherosclerosis have been conducted. The purpose of this review is to provide a brief over-view of the natural compounds that have been used for the treatment and prevention of atherosclerosis, and their mechanisms of action based on recent research.
Collapse
Affiliation(s)
- Jae-Yong Kim
- Colleage of Pharmacy, Duksung Woman's University, Seoul 01369, Republic of Korea
| | - Sang Hee Shim
- Colleage of Pharmacy, Duksung Woman's University, Seoul 01369, Republic of Korea
| |
Collapse
|
13
|
Jans DA, Martin AJ, Wagstaff KM. Inhibitors of nuclear transport. Curr Opin Cell Biol 2019; 58:50-60. [PMID: 30826604 DOI: 10.1016/j.ceb.2019.01.001] [Citation(s) in RCA: 106] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2018] [Revised: 12/11/2018] [Accepted: 01/02/2019] [Indexed: 12/21/2022]
Abstract
Central to eukaryotic cell function, transport into and out of the nucleus is largely mediated by members of the Importin (IMP) superfamily of transporters of α- and β-types. The first inhibitor of nuclear transport, leptomycin B (LMB), was shown to be a specific inhibitor of the IMPβ homologue Exportin 1 (EXP1) almost 20 years ago, but it has only been in the last five or so years that new inhibitors of nuclear export as well as import have been identified and characterised. Of utility in biological research, these inhibitors include those that target-specific EXPs/IMPs, with accompanying toxicity profiles, as well as agents that specifically target particular nuclear import cargoes. Both types of inhibitors have begun to be tested in preclinical/clinical studies, with particular focus on limiting various types of cancer or treating viral infection, and the most advanced agent targeting EXP1 (Selinexor) has progressed successfully through >40 clinical trials for a range of high-grade cancers and is approaching FDA approval for a number of indications. Selectively inhibiting the nucleocytoplasmic trafficking of specific proteins of interest remains a challenge, but progress in the area of the host-pathogen interface holds promise for the future.
Collapse
Affiliation(s)
- David A Jans
- Nuclear Signaling Laboratory, Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Melbourne, Australia.
| | - Alexander J Martin
- Nuclear Signaling Laboratory, Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Melbourne, Australia
| | - Kylie M Wagstaff
- Nuclear Signaling Laboratory, Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Melbourne, Australia
| |
Collapse
|
14
|
Veach RA, Liu Y, Zienkiewicz J, Wylezinski LS, Boyd KL, Wynn JL, Hawiger J. Survival, bacterial clearance and thrombocytopenia are improved in polymicrobial sepsis by targeting nuclear transport shuttles. PLoS One 2017; 12:e0179468. [PMID: 28628637 PMCID: PMC5476269 DOI: 10.1371/journal.pone.0179468] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2017] [Accepted: 05/31/2017] [Indexed: 12/29/2022] Open
Abstract
The rising tide of sepsis, a leading cause of death in the US and globally, is not adequately controlled by current antimicrobial therapies and supportive measures, thereby requiring new adjunctive treatments. Severe microvascular injury and multiple organ failure in sepsis are attributed to a "genomic storm" resulting from changes in microbial and host genomes encoding virulence factors and endogenous inflammatory mediators, respectively. This storm is mediated by stress-responsive transcription factors that are ferried to the nucleus by nuclear transport shuttles importins/karyopherins. We studied the impact of simultaneously targeting two of these shuttles, importin alpha 5 (Imp α5) and importin beta 1 (Imp β1), with a cell-penetrating Nuclear Transport Modifier (NTM) in a mouse model of polymicrobial sepsis. NTM reduced nuclear import of stress-responsive transcription factors nuclear factor kappa B, signal transducer and activator of transcription 1 alpha, and activator protein 1 in liver, which was also protected from sepsis-associated metabolic changes. Strikingly, NTM without antimicrobial therapy improved bacterial clearance in blood, spleen, and lungs, wherein a 700-fold reduction in bacterial burden was achieved while production of proinflammatory cytokines and chemokines in blood plasma was suppressed. Furthermore, NTM significantly improved thrombocytopenia, a prominent sign of microvascular injury in sepsis, inhibited neutrophil infiltration in the liver, decreased L-selectin, and normalized plasma levels of E-selectin and P-selectin, indicating reduced microvascular injury. Importantly, NTM combined with antimicrobial therapy extended the median time to death from 42 to 83 hours and increased survival from 30% to 55% (p = 0.022) as compared to antimicrobial therapy alone. This study documents the fundamental role of nuclear signaling mediated by Imp α5 and Imp β1 in the mechanism of polymicrobial sepsis and highlights the potential for targeting nuclear transport as an adjunctive therapy in sepsis management.
Collapse
Affiliation(s)
- Ruth Ann Veach
- Immunotherapy Program at Vanderbilt University School of Medicine, Nashville, Tennessee, United States of America
- Department of Medicine, Division of Allergy, Pulmonary and Critical Care Medicine, Vanderbilt University School of Medicine, Nashville, Tennessee, United States of America
| | - Yan Liu
- Immunotherapy Program at Vanderbilt University School of Medicine, Nashville, Tennessee, United States of America
- Department of Medicine, Division of Allergy, Pulmonary and Critical Care Medicine, Vanderbilt University School of Medicine, Nashville, Tennessee, United States of America
| | - Jozef Zienkiewicz
- Immunotherapy Program at Vanderbilt University School of Medicine, Nashville, Tennessee, United States of America
- Department of Medicine, Division of Allergy, Pulmonary and Critical Care Medicine, Vanderbilt University School of Medicine, Nashville, Tennessee, United States of America
- Department of Veterans Affairs, Tennessee Valley Health Care System, Nashville, Tennessee, United States of America
| | - Lukasz S. Wylezinski
- Immunotherapy Program at Vanderbilt University School of Medicine, Nashville, Tennessee, United States of America
- Department of Medicine, Division of Allergy, Pulmonary and Critical Care Medicine, Vanderbilt University School of Medicine, Nashville, Tennessee, United States of America
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, Tennessee, United States of America
| | - Kelli L. Boyd
- Department of Pathology, Microbiology and Immunology, Vanderbilt University School of Medicine, Nashville, Tennessee, United States of America
| | - James L. Wynn
- Department of Pediatrics, University of Florida, Gainesville, Florida, United States of America
- Department of Pathology, Immunology, and Laboratory Medicine, University of Florida, Gainesville, Florida, United States of America
| | - Jacek Hawiger
- Immunotherapy Program at Vanderbilt University School of Medicine, Nashville, Tennessee, United States of America
- Department of Medicine, Division of Allergy, Pulmonary and Critical Care Medicine, Vanderbilt University School of Medicine, Nashville, Tennessee, United States of America
- Department of Veterans Affairs, Tennessee Valley Health Care System, Nashville, Tennessee, United States of America
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, Tennessee, United States of America
| |
Collapse
|
15
|
Chaudhary SC, Tang X, Arumugam A, Li C, Srivastava RK, Weng Z, Xu J, Zhang X, Kim AL, McKay K, Elmets CA, Kopelovich L, Bickers DR, Athar M. Shh and p50/Bcl3 signaling crosstalk drives pathogenesis of BCCs in Gorlin syndrome. Oncotarget 2015; 6:36789-814. [PMID: 26413810 PMCID: PMC4742211 DOI: 10.18632/oncotarget.5103] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2015] [Accepted: 09/04/2015] [Indexed: 12/12/2022] Open
Abstract
Nevoid basal cell carcinoma syndrome (NBCCS) is a rare autosomal dominant disorder that is due, in large measure, to aberrant Shh signaling driven by mutations in the tumor suppressor gene Ptch1. Here, we describe the development of Ptch1+/-/ SKH-1 mice as a novel model of this disease. These animals manifest many features of NBCCS, including developmental anomalies and are remarkably sensitive to both ultraviolet (UVB) and ionizing radiation that drive the development of multiple BCCs. Just as in patients with NBCCS, Ptch1+/-/SKH-1 also spontaneously develops BCCs and other neoplasms such as rhabdomyomas/rhabdomyosarcomas. Administration of smoothened inhibitors (vismodegib/itraconazole/cyclopamine) or non-steroidal anti-inflammatory drug (sulindac/sulfasalazine) each result in partial resolution of BCCs in these animals. However, combined administration of these agents inhibits the growth of UVB-induced BCCs by >90%. Employing small molecule- and decoy-peptide-based approaches we further affirm that complete remission of BCCs could only be achieved by combined inhibition of p50-NFκB/Bcl3 and Shh signaling. We posit that Ptch1+/-/SKH-1 mice are a novel and relevant animal model for NBCCS. Understanding mechanisms that govern genetic predisposition to BCCs should facilitate our ability to identify and treat NBCCS gene carriers, including those at risk for sporadic BCCs while accelerating development of novel therapeutic modalities for these patients.
Collapse
Affiliation(s)
- Sandeep C. Chaudhary
- Department of Dermatology, University of Alabama at Birmingham, Birmingham, AL 35294-0019, USA
| | - Xiuwei Tang
- Department of Dermatology, College of Physicians & Surgeons, Columbia University, New York, NY 10032, USA
| | - Aadithya Arumugam
- Department of Dermatology, University of Alabama at Birmingham, Birmingham, AL 35294-0019, USA
| | - Changzhao Li
- Department of Dermatology, University of Alabama at Birmingham, Birmingham, AL 35294-0019, USA
| | - Ritesh K. Srivastava
- Department of Dermatology, University of Alabama at Birmingham, Birmingham, AL 35294-0019, USA
| | - Zhiping Weng
- Department of Dermatology, University of Alabama at Birmingham, Birmingham, AL 35294-0019, USA
| | - Jianmin Xu
- Department of Dermatology, University of Alabama at Birmingham, Birmingham, AL 35294-0019, USA
| | - Xiao Zhang
- Department of Biostatistics, University of Alabama at Birmingham, Birmingham, AL 35294-0019, USA
- Present address: Samuel Oschin Comprehensive Cancer Institute, Los Angeles, CA 90048, USA
| | - Arianna L. Kim
- Department of Dermatology, College of Physicians & Surgeons, Columbia University, New York, NY 10032, USA
| | - Kristopher McKay
- Division of Dermatopathology, Department of Dermatology, University of Alabama at Birmingham, Birmingham, AL 35294-4550, USA
| | - Craig A. Elmets
- Department of Dermatology, University of Alabama at Birmingham, Birmingham, AL 35294-0019, USA
| | - Levy Kopelovich
- Department of Medicine, Weill Cornell Medical College, New York, NY 10065, USA
| | - David R. Bickers
- Department of Dermatology, College of Physicians & Surgeons, Columbia University, New York, NY 10032, USA
| | - Mohammad Athar
- Department of Dermatology, University of Alabama at Birmingham, Birmingham, AL 35294-0019, USA
| |
Collapse
|
16
|
Hawiger J, Veach RA, Zienkiewicz J. New paradigms in sepsis: from prevention to protection of failing microcirculation. J Thromb Haemost 2015; 13:1743-56. [PMID: 26190521 PMCID: PMC5014149 DOI: 10.1111/jth.13061] [Citation(s) in RCA: 82] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2015] [Accepted: 07/06/2015] [Indexed: 12/24/2022]
Abstract
Sepsis, also known as septicemia, is one of the 10 leading causes of death worldwide. The rising tide of sepsis due to bacterial, fungal and viral infections cannot be stemmed by current antimicrobial therapies and supportive measures. New paradigms for the mechanism and resolution of sepsis and consequences for sepsis survivors are emerging. Consistent with Benjamin Franklin's dictum 'an ounce of prevention is worth a pound of cure', sepsis can be prevented by vaccinations against pneumococci and meningococci. Recently, the NIH NHLBI Panel redefined sepsis as 'severe endothelial dysfunction syndrome in response to intravascular and extravascular infections causing reversible or irreversible injury to the microcirculation responsible for multiple organ failure'. Microvascular endothelial injury underlies sepsis-associated hypotension, edema, disseminated intravascular coagulation, acute respiratory distress syndrome and acute kidney injury. Microbial genome products trigger 'genome wars' in sepsis that reprogram the human genome and culminate in a 'genomic storm' in blood and vascular cells. Sepsis can be averted experimentally by endothelial cytoprotection through targeting nuclear signaling that mediates inflammation and deranged metabolism. Endothelial 'rheostats' (e.g. inhibitors of NF-κB, A20 protein, CRADD/RAIDD protein and microRNAs) regulate endothelial signaling. Physiologic 'extinguishers' (e.g. suppressor of cytokine signaling 3) can be replenished through intracellular protein therapy. Lipid mediators (e.g. resolvin D1) hasten sepsis resolution. As sepsis cases rose from 387 330 in 1996 to 1.1 million in 2011, and are estimated to reach 2 million by 2020 in the US, mortality due to sepsis approaches that of heart attacks and exceeds deaths from stroke. More preventive vaccines and therapeutic measures are urgently needed.
Collapse
Affiliation(s)
- J Hawiger
- Immunotherapy Program at Vanderbilt University School of Medicine, Nashville, TN, USA
- Department of Medicine Division of Allergy Pulmonary and Critical Care Medicine, Vanderbilt University School of Medicine, Nashville, TN, USA
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - R A Veach
- Immunotherapy Program at Vanderbilt University School of Medicine, Nashville, TN, USA
- Department of Medicine Division of Allergy Pulmonary and Critical Care Medicine, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - J Zienkiewicz
- Immunotherapy Program at Vanderbilt University School of Medicine, Nashville, TN, USA
- Department of Medicine Division of Allergy Pulmonary and Critical Care Medicine, Vanderbilt University School of Medicine, Nashville, TN, USA
| |
Collapse
|
17
|
DiGiandomenico A, Veach RA, Zienkiewicz J, Moore DJ, Wylezinski LS, Hutchens MA, Hawiger J. The "genomic storm" induced by bacterial endotoxin is calmed by a nuclear transport modifier that attenuates localized and systemic inflammation. PLoS One 2014; 9:e110183. [PMID: 25329889 PMCID: PMC4203769 DOI: 10.1371/journal.pone.0110183] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2014] [Accepted: 09/09/2014] [Indexed: 12/21/2022] Open
Abstract
Lipopolysaccharide (LPS) is a potent microbial virulence factor that can trigger production of proinflammatory mediators involved in the pathogenesis of localized and systemic inflammation. Importantly, the role of nuclear transport of stress responsive transcription factors in this LPS-generated "genomic storm" remains largely undefined. We developed a new nuclear transport modifier (NTM) peptide, cell-penetrating cSN50.1, which targets nuclear transport shuttles importin α5 and importin β1, to analyze its effect in LPS-induced localized (acute lung injury) and systemic (lethal endotoxic shock) murine inflammation models. We analyzed a human genome database to match 46 genes that encode cytokines, chemokines and their receptors with transcription factors whose nuclear transport is known to be modulated by NTM. We then tested the effect of cSN50.1 peptide on proinflammatory gene expression in murine bone marrow-derived macrophages stimulated with LPS. This NTM suppressed a proinflammatory transcriptome of 37 out of 84 genes analyzed, without altering expression of housekeeping genes or being cytotoxic. Consistent with gene expression analysis in primary macrophages, plasma levels of 23 out of 26 LPS-induced proinflammatory cytokines, chemokines, and growth factors were significantly attenuated in a murine model of LPS-induced systemic inflammation (lethal endotoxic shock) while the anti-inflammatory cytokine, interleukin 10, was enhanced. This anti-inflammatory reprogramming of the endotoxin-induced genomic response was accompanied by complete protection against lethal endotoxic shock with prophylactic NTM treatment, and 75% protection when NTM was first administered after LPS exposure. In a murine model of localized lung inflammation caused by direct airway exposure to LPS, expression of cytokines and chemokines in the bronchoalveolar space was suppressed with a concomitant reduction of neutrophil trafficking. Thus, calming the LPS-triggered "genomic storm" by modulating nuclear transport with cSN50.1 peptide attenuates the systemic inflammatory response associated with lethal shock as well as localized lung inflammation.
Collapse
Affiliation(s)
- Antonio DiGiandomenico
- Department of Microbiology and Immunology Vanderbilt University School of Medicine, Nashville, Tennessee, United States of America
| | - Ruth Ann Veach
- Immunotherapy Program at Vanderbilt University School of Medicine, Nashville, Tennessee, United States of America
- Department of Medicine, Division of Allergy, Pulmonary and Critical Care Medicine, Vanderbilt University School of Medicine, Nashville, Tennessee, United States of America
| | - Jozef Zienkiewicz
- Immunotherapy Program at Vanderbilt University School of Medicine, Nashville, Tennessee, United States of America
- Department of Medicine, Division of Allergy, Pulmonary and Critical Care Medicine, Vanderbilt University School of Medicine, Nashville, Tennessee, United States of America
| | - Daniel J. Moore
- Immunotherapy Program at Vanderbilt University School of Medicine, Nashville, Tennessee, United States of America
- Department of Pediatrics, Ian Burr Division of Endocrinology and Diabetes, Vanderbilt University School of Medicine, Nashville, Tennessee, United States of America
- Department of Pathology, Microbiology and Immunology, Vanderbilt University School of Medicine, Nashville, Tennessee, United States of America
| | - Lukasz S. Wylezinski
- Immunotherapy Program at Vanderbilt University School of Medicine, Nashville, Tennessee, United States of America
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, Tennessee, United States of America
| | - Martha A. Hutchens
- Department of Microbiology and Immunology Vanderbilt University School of Medicine, Nashville, Tennessee, United States of America
- Immunotherapy Program at Vanderbilt University School of Medicine, Nashville, Tennessee, United States of America
| | - Jacek Hawiger
- Immunotherapy Program at Vanderbilt University School of Medicine, Nashville, Tennessee, United States of America
- Department of Medicine, Division of Allergy, Pulmonary and Critical Care Medicine, Vanderbilt University School of Medicine, Nashville, Tennessee, United States of America
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, Tennessee, United States of America
| |
Collapse
|
18
|
Duong T, Kim J, Ruley HE, Jo D. Cell-permeable parkin proteins suppress Parkinson disease-associated phenotypes in cultured cells and animals. PLoS One 2014; 9:e102517. [PMID: 25019626 PMCID: PMC4097392 DOI: 10.1371/journal.pone.0102517] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2014] [Accepted: 06/19/2014] [Indexed: 12/19/2022] Open
Abstract
Parkinson’s disease (PD) is a neurodegenerative disorder of complex etiology characterized by the selective loss of dopaminergic neurons, particularly in the substantia nigra. Parkin, a tightly regulated E3 ubiquitin ligase, promotes the survival of dopaminergic neurons in both PD and Parkinsonian syndromes induced by acute exposures to neurotoxic agents. The present study assessed the potential of cell-permeable parkin (CP-Parkin) as a neuroprotective agent. Cellular uptake and tissue penetration of recombinant, enzymatically active parkin was markedly enhanced by the addition of a hydrophobic macromolecule transduction domain (MTD). The resulting CP-Parkin proteins (HPM13 and PM10) suppressed dopaminergic neuronal toxicity in cells and mice exposed to 6-hydroxydopamine (6-OHDH) and 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP). These included enhanced survival and dopamine expression in cultured CATH.a and SH-SY5Y neuronal cells; and protection against MPTP-induced damage in mice, notably preservation of tyrosine hydroxylase-positive cells with enhanced dopamine expression in the striatum and midbrain, and preservation of gross motor function. These results demonstrate that CP-Parkin proteins can compensate for intrinsic limitations in the parkin response and provide a therapeutic strategy to augment parkin activity in vivo.
Collapse
Affiliation(s)
- Tam Duong
- Department of Biomedical Sciences, Chonnam National University Medical School, Kwangju, Korea
| | - Jaetaek Kim
- Division of Endocrinology and Metabolism, Department of Internal Medicine, College of Medicine, Chung-Ang University, Seoul, Korea
| | - H. Earl Ruley
- Department of Pathology, Microbiology & Immunology, Vanderbilt University School of Medicine, Nashville, Tennessee, United States of America
| | - Daewoong Jo
- Department of Biomedical Sciences, Chonnam National University Medical School, Kwangju, Korea
- ProCell R&D Institute, ProCell Therapeutics, Inc., Seoul, Korea
- * E-mail:
| |
Collapse
|
19
|
Zienkiewicz J, Armitage A, Hawiger J. Targeting nuclear import shuttles, importins/karyopherins alpha by a peptide mimicking the NFκB1/p50 nuclear localization sequence. J Am Heart Assoc 2013; 2:e000386. [PMID: 24042087 PMCID: PMC3835248 DOI: 10.1161/jaha.113.000386] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Background We recently reported that a bifunctional nuclear transport modifier (NTM), cSN50.1 peptide, reduced atherosclerosis, plasma cholesterol, triglycerides, and glucose along with liver fat and inflammatory markers, in a murine model of familial hypercholesterolemia. We determined that cSN50.1 improved lipid homeostasis by modulating nuclear transport of sterol regulatory element‐binding proteins through interaction with importin β. Previous studies established that cSN50.1 and related NTMs also modulate nuclear transport of proinflammatory transcription factors mediated by binding of their nuclear localization sequences (NLSs) to importins/karyopherins α. However, selectivity and specificity of NTMs for importins/karyopherins α were undetermined. Methods and Results We analyzed interaction of the NTM hydrophilic module, N50 peptide, derived from the NLS of NFκB1/p50, with endogenous human importins/karyopherins α to determine the mechanism of NTM modulation of importin α‐mediated nuclear transport. We show that N50 peptide forms stable complexes with multiple importins/karyopherins α. However, only interaction with importin α5 (Imp α5) displayed specific, high‐affinity binding. The 2:1 stoichiometry of the N50‐Imp α5 interaction (KD1=73 nmol/L, KD2=140 nmol/L) indicated occupancy of both major and minor NLS binding pockets. Utilizing in silico 3‐dimensional (3‐D) docking models and comparative structural analysis, we identified a structural component of the Imp α5 major NLS binding pocket that may stabilize N50 binding. Imp α5 also displayed rapid stimulus‐induced turnover, which could influence its availability for nuclear transport during the inflammatory response. Conclusions These results provide direct evidence that N50 peptide selectively targets Imp α5, encouraging further refinement of NLS‐derived peptides as new tools to modulate inflammatory disorders.
Collapse
Affiliation(s)
- Jozef Zienkiewicz
- Division of Allergy, Pulmonary and Critical Care Medicine, Department of Medicine, Vanderbilt University School of Medicine, Nashville, 37232, TN
| | | | | |
Collapse
|