1
|
An C, Zhao Y, Guo L, Zhang Z, Yan C, Zhang S, Zhang Y, Shao F, Qi Y, wang X, Wang H, Zhang L. Innovative approaches to boost mesenchymal stem cells efficacy in myocardial infarction therapy. Mater Today Bio 2025; 31:101476. [PMID: 39896290 PMCID: PMC11787032 DOI: 10.1016/j.mtbio.2025.101476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 12/25/2024] [Accepted: 01/08/2025] [Indexed: 02/04/2025] Open
Abstract
Stem cell-based therapy has emerged as a promising approach for heart repair, potentially regenerating damaged heart tissue and improving outcomes for patients with heart disease. However, the efficacy of stem cell-based therapies remains limited by several challenges, including poor cell survival, low retention rates, poor integration, and limited functional outcomes. This article reviews current enhancement strategies to optimize mesenchymal stem cell therapy for cardiac repair. Key approaches include optimizing cell delivery methods, enhancing cell engraftment, promoting cell functions through genetic and molecular modifications, enhancing the paracrine effects of stem cells, and leveraging biomaterials and tissue engineering techniques. By focusing on these enhancement techniques, the paper highlights innovative approaches that can potentially transform stem cell therapy into a more viable and effective treatment option for cardiac repair. The ongoing research and technological advancements continue to push the boundaries, hoping to make stem cell therapy a mainstream treatment for heart disease.
Collapse
Affiliation(s)
- Chuanfeng An
- Ophthalmology and Transformational Innovation Research Center, Faculty of Medicine of Dalian University of Technology&Dalian Third People's Hospital, Dalian, 116033, PR China
- Third People's Hospital of Dalian, Dalian Eye Hospital, Dalian, 116033, PR China
| | - Yuan Zhao
- MOE Key Laboratory of Bio-Intelligent Manufacturing, Dalian Key Laboratory of Artificial Organ and Regenerative Medicine, School of Bioengineering, Dalian University of Technology, Liaoning, Dalian, 116024, PR China
| | - Lipeng Guo
- Ophthalmology and Transformational Innovation Research Center, Faculty of Medicine of Dalian University of Technology&Dalian Third People's Hospital, Dalian, 116033, PR China
- Third People's Hospital of Dalian, Dalian Eye Hospital, Dalian, 116033, PR China
| | - Zhijian Zhang
- Department of Ophthalmology, Third People's Hospital of Dalian, Dalian Medical University, Dalian, 116033, PR China
| | - Chunxiao Yan
- Department of Ophthalmology, Third People's Hospital of Dalian, Dalian Medical University, Dalian, 116033, PR China
| | - Shiying Zhang
- School of Dentistry, Shenzhen University, Shenzhen, 518060, PR China
| | - Yujie Zhang
- MOE Key Laboratory of Bio-Intelligent Manufacturing, Dalian Key Laboratory of Artificial Organ and Regenerative Medicine, School of Bioengineering, Dalian University of Technology, Liaoning, Dalian, 116024, PR China
| | - Fei Shao
- MOE Key Laboratory of Bio-Intelligent Manufacturing, Dalian Key Laboratory of Artificial Organ and Regenerative Medicine, School of Bioengineering, Dalian University of Technology, Liaoning, Dalian, 116024, PR China
| | - Yuanyuan Qi
- Ophthalmology and Transformational Innovation Research Center, Faculty of Medicine of Dalian University of Technology&Dalian Third People's Hospital, Dalian, 116033, PR China
- Third People's Hospital of Dalian, Dalian Eye Hospital, Dalian, 116033, PR China
| | - Xun wang
- Ophthalmology and Transformational Innovation Research Center, Faculty of Medicine of Dalian University of Technology&Dalian Third People's Hospital, Dalian, 116033, PR China
- Third People's Hospital of Dalian, Dalian Eye Hospital, Dalian, 116033, PR China
| | - Huanan Wang
- MOE Key Laboratory of Bio-Intelligent Manufacturing, Dalian Key Laboratory of Artificial Organ and Regenerative Medicine, School of Bioengineering, Dalian University of Technology, Liaoning, Dalian, 116024, PR China
| | - Lijun Zhang
- Ophthalmology and Transformational Innovation Research Center, Faculty of Medicine of Dalian University of Technology&Dalian Third People's Hospital, Dalian, 116033, PR China
- Third People's Hospital of Dalian, Dalian Eye Hospital, Dalian, 116033, PR China
| |
Collapse
|
2
|
Barcena AJR, Owens TC, Melancon S, Workeneh I, Tran Cao HS, Vauthey JN, Huang SY. Current Perspectives and Progress in Preoperative Portal Vein Embolization with Stem Cell Augmentation (PVESA). Stem Cell Rev Rep 2024; 20:1236-1251. [PMID: 38613627 PMCID: PMC11222268 DOI: 10.1007/s12015-024-10719-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/03/2024] [Indexed: 04/15/2024]
Abstract
Portal vein embolization with stem cell augmentation (PVESA) is an emerging approach for enhancing the growth of the liver segment that will remain after surgery (i.e., future liver remnant, FLR) in patients with liver cancer. Conventional portal vein embolization (PVE) aims to induce preoperative FLR growth, but it has a risk of failure in patients with underlying liver dysfunction and comorbid illnesses. PVESA combines PVE with stem cell therapy to potentially improve FLR size and function more effectively and efficiently. Various types of stem cells can help improve liver growth by secreting paracrine signals for hepatocyte growth or by transforming into hepatocytes. Mesenchymal stem cells (MSCs), unrestricted somatic stem cells, and small hepatocyte-like progenitor cells have been used to augment liver growth in preclinical animal models, while clinical studies have demonstrated the benefit of CD133 + bone marrow-derived MSCs and hematopoietic stem cells. These investigations have shown that PVESA is generally safe and enhances liver growth after PVE. However, optimizing the selection, collection, and application of stem cells remains crucial to maximize benefits and minimize risks. Additionally, advanced stem cell technologies, such as priming, genetic modification, and extracellular vesicle-based therapy, that could further enhance efficacy outcomes should be evaluated. Despite its potential, PVESA requires more investigations, particularly mechanistic studies that involve orthotopic animal models of liver cancer with concomitant liver injury as well as larger human trials.
Collapse
Affiliation(s)
- Allan John R Barcena
- Department of Interventional Radiology, Division of Diagnostic Imaging, The University of Texas MD Anderson Cancer Center, 1400 Pressler St, Unit, Houston, TX, 1471, 77030, United States
- College of Medicine, University of the Philippines Manila, Manila, NCR, 1000, Philippines
| | - Tyler C Owens
- Department of Interventional Radiology, Division of Diagnostic Imaging, The University of Texas MD Anderson Cancer Center, 1400 Pressler St, Unit, Houston, TX, 1471, 77030, United States
| | - Sophie Melancon
- Department of Interventional Radiology, Division of Diagnostic Imaging, The University of Texas MD Anderson Cancer Center, 1400 Pressler St, Unit, Houston, TX, 1471, 77030, United States
| | - Isias Workeneh
- Department of Interventional Radiology, Division of Diagnostic Imaging, The University of Texas MD Anderson Cancer Center, 1400 Pressler St, Unit, Houston, TX, 1471, 77030, United States
| | - Hop S Tran Cao
- Department of Surgical Oncology, Division of Surgery, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, United States
| | - Jean-Nicolas Vauthey
- Department of Surgical Oncology, Division of Surgery, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, United States
| | - Steven Y Huang
- Department of Interventional Radiology, Division of Diagnostic Imaging, The University of Texas MD Anderson Cancer Center, 1400 Pressler St, Unit, Houston, TX, 1471, 77030, United States.
| |
Collapse
|
3
|
Matta A, Ohlmann P, Nader V, Moussallem N, Carrié D, Roncalli J. A review of therapeutic approaches for post-infarction left ventricular remodeling. Curr Probl Cardiol 2024; 49:102562. [PMID: 38599556 DOI: 10.1016/j.cpcardiol.2024.102562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Accepted: 04/07/2024] [Indexed: 04/12/2024]
Abstract
Left ventricular remodeling is an adaptive process initially developed in response to acute myocardial infarction (AMI), but it ends up with negative adverse outcomes such as infarcted wall thinning, ventricular dilation, and cardiac dysfunction. A prolonged excessive inflammatory reaction to cardiomyocytes death and necrosis plays the crucial role in the pathophysiological mechanisms. The pharmacological treatment includes nitroglycerine, β-blockers, ACEi/ARBs, SGLT2i, mineralocorticoid receptor antagonists, and some miscellaneous aspects. Stem cells therapy, CD34+ cells transplantation and gene therapy constitute the promissing therapeutic approaches for post AMI cardiac remodeling, thereby enhancing angiogenesis, cardiomyocytes differenciation and left ventricular function on top of inhibiting apoptosis, inflammation, and collagen deposition. All these lead to reduce infarct size, scar formation and myocardial fibrosis.
Collapse
Affiliation(s)
- Anthony Matta
- Department of Cardiology, Civilian Hospitals of Colmar, Colmar, France; School of Medicine and Medical Sciences, Holy Spirit University of Kaslik, P.O.Box 446, Jounieh, Lebanon.
| | - Patrick Ohlmann
- Department of Cardiology, Strasbourg University Hospital, Strasbourg, France
| | - Vanessa Nader
- Department of Cardiology, Civilian Hospitals of Colmar, Colmar, France
| | - Nicolas Moussallem
- School of Medicine and Medical Sciences, Holy Spirit University of Kaslik, P.O.Box 446, Jounieh, Lebanon
| | - Didier Carrié
- Department of Cardiology, Toulouse University Hospital, Toulouse, France
| | - Jerome Roncalli
- Department of Cardiology, Toulouse University Hospital, Toulouse, France
| |
Collapse
|
4
|
Quizon MJ, Deppen JN, Barber GF, Kalelkar PP, Coronel MM, Levit RD, García AJ. VEGF-delivering PEG hydrogels promote vascularization in the porcine subcutaneous space. J Biomed Mater Res A 2024; 112:866-880. [PMID: 38189109 PMCID: PMC10984793 DOI: 10.1002/jbm.a.37666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 12/21/2023] [Accepted: 12/24/2023] [Indexed: 01/09/2024]
Abstract
For cell therapies, the subcutaneous space is an attractive transplant site due to its large surface area and accessibility for implantation, monitoring, biopsy, and retrieval. However, its poor vascularization has catalyzed research to induce blood vessel formation within the site to enhance cell revascularization and survival. Most studies focus on the subcutaneous space of rodents, which does not recapitulate important anatomical features and vascularization responses of humans. Herein, we evaluate biomaterial-driven vascularization in the porcine subcutaneous space. Additionally, we report the first use of cost-effective fluorescent microspheres to quantify perfusion in the porcine subcutaneous space. We investigate the vascularization-inducing efficacy of vascular endothelial growth factor (VEGF)-delivering synthetic hydrogels based on 4-arm poly(ethylene) glycol macromers with terminal maleimides (PEG-4MAL). We compare three groups: a non-degradable hydrogel with a VEGF-releasing PEG-4MAL gel coating (Core+VEGF gel); an uncoated, non-degradable hydrogel (Core-only); and naïve tissue. After 2 weeks, Core+VEGF gel has significantly higher tissue perfusion, blood vessel area, blood vessel density, and number of vessels compared to both Core-only and naïve tissue. Furthermore, healthy vital signs during surgery and post-procedure metrics demonstrate the safety of hydrogel delivery. We demonstrate that VEGF-delivering synthetic hydrogels induce robust vascularization and perfusion in the porcine subcutaneous space.
Collapse
Affiliation(s)
- Michelle J. Quizon
- Woodruff School of Mechanical Engineering and Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, 315 Ferst Dr. NW, Atlanta, GA 30332, USA
| | - Juline N. Deppen
- Division of Cardiology, Emory University School of Medicine, 1440 Clifton Rd, Atlanta, GA 30322, USA
| | - Graham F. Barber
- Woodruff School of Mechanical Engineering and Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, 315 Ferst Dr. NW, Atlanta, GA 30332, USA
| | - Pranav P. Kalelkar
- Woodruff School of Mechanical Engineering and Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, 315 Ferst Dr. NW, Atlanta, GA 30332, USA
| | - María M. Coronel
- Woodruff School of Mechanical Engineering and Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, 315 Ferst Dr. NW, Atlanta, GA 30332, USA
| | - Rebecca D. Levit
- Division of Cardiology, Emory University School of Medicine, 1440 Clifton Rd, Atlanta, GA 30322, USA
| | - Andrés J. García
- Woodruff School of Mechanical Engineering and Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, 315 Ferst Dr. NW, Atlanta, GA 30332, USA
| |
Collapse
|
5
|
Deppen JN, Ginn SC, Tang EO, Wang L, Brockman ML, Levit RD. Alginate-Encapsulated Mesenchymal Stromal Cells Improve Hind Limb Ischemia in a Translational Swine Model. J Am Heart Assoc 2024; 13:e029880. [PMID: 38639336 PMCID: PMC11179867 DOI: 10.1161/jaha.123.029880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 03/01/2024] [Indexed: 04/20/2024]
Abstract
BACKGROUND Cellular therapies have been investigated to improve blood flow and prevent amputation in peripheral artery disease with limited efficacy in clinical trials. Alginate-encapsulated mesenchymal stromal cells (eMSCs) demonstrated improved retention and survival and promoted vascular generation in murine hind limb ischemia through their secretome, but large animal evaluation is necessary for human applicability. We sought to determine the efficacy of eMSCs for peripheral artery disease-induced limb ischemia through assessment in our durable swine hind limb ischemia model. METHODS AND RESULTS Autologous bone marrow eMSCs or empty alginate capsules were intramuscularly injected 2 weeks post-hind limb ischemia establishment (N=4/group). Improvements were quantified for 4 weeks through walkway gait analysis, contrast angiography, blood pressures, fluorescent microsphere perfusion, and muscle morphology and histology. Capsules remained intact with mesenchymal stromal cells retained for 4 weeks. Adenosine-induced perfusion deficits and muscle atrophy in ischemic limbs were significantly improved by eMSCs versus empty capsules (mean±SD, 1.07±0.19 versus 0.41±0.16, P=0.002 for perfusion ratios and 2.79±0.12 versus 1.90±0.62 g/kg, P=0.029 for ischemic muscle mass). Force- and temporal-associated walkway parameters normalized (ratio, 0.63±0.35 at week 3 versus 1.02±0.19 preligation; P=0.17), and compensatory footfall patterning was diminished in eMSC-administered swine (12.58±8.46% versus 34.85±15.26%; P=0.043). Delivery of eMSCs was associated with trending benefits in collateralization, local neovascularization, and muscle fibrosis. Hypoxia-cultured porcine mesenchymal stromal cells secreted vascular endothelial growth factor and tissue inhibitor of metalloproteinase 2. CONCLUSIONS This study demonstrates the promise of the mesenchymal stromal cell secretome at improving peripheral artery disease outcomes and the potential for this novel swine model to serve as a component of the preclinical pipeline for advanced therapies.
Collapse
Affiliation(s)
- Juline N. Deppen
- Wallace H. Coulter Department of Biomedical EngineeringGeorgia Institute of Technology and Emory UniversityAtlantaGA
- Division of CardiologyEmory University School of MedicineAtlantaGA
| | - Sydney C. Ginn
- Wallace H. Coulter Department of Biomedical EngineeringGeorgia Institute of Technology and Emory UniversityAtlantaGA
- Division of CardiologyEmory University School of MedicineAtlantaGA
| | - Erica O. Tang
- Division of CardiologyEmory University School of MedicineAtlantaGA
| | - Lanfang Wang
- Division of CardiologyEmory University School of MedicineAtlantaGA
| | | | - Rebecca D. Levit
- Division of CardiologyEmory University School of MedicineAtlantaGA
| |
Collapse
|
6
|
Kollampally SCR, Zhang X, Moskwa N, Nelson DA, Sharfstein ST, Larsen M, Xie Y. Evaluation of Alginate Hydrogel Microstrands for Stromal Cell Encapsulation and Maintenance. Bioengineering (Basel) 2024; 11:375. [PMID: 38671796 PMCID: PMC11048715 DOI: 10.3390/bioengineering11040375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 04/09/2024] [Accepted: 04/11/2024] [Indexed: 04/28/2024] Open
Abstract
Mesenchymal stromal cells (MSCs) have displayed potential in regenerating organ function due to their anti-fibrotic, anti-inflammatory, and regenerative properties. However, there is a need for delivery systems to enhance MSC retention while maintaining their anti-fibrotic characteristics. This study investigates the feasibility of using alginate hydrogel microstrands as a cell delivery vehicle to maintain MSC viability and phenotype. To accommodate cell implantation needs, we invented a Syringe-in-Syringe approach to reproducibly fabricate microstrands in small numbers with a diameter of around 200 µm and a porous structure, which would allow for transporting nutrients to cells by diffusion. Using murine NIH 3T3 fibroblasts and primary embryonic 16 (E16) salivary mesenchyme cells as primary stromal cell models, we assessed cell viability, growth, and expression of mesenchymal and fibrotic markers in microstrands. Cell viability remained higher than 90% for both cell types. To determine cell number within the microstrands prior to in vivo implantation, we have further optimized the alamarBlue assay to measure viable cell growth in microstrands. We have shown the effect of initial cell seeding density and culture period on cell viability and growth to accommodate future stromal cell delivery and implantation. Additionally, we confirmed homeostatic phenotype maintenance for E16 mesenchyme cells in microstrands.
Collapse
Affiliation(s)
- Sujith Chander Reddy Kollampally
- Department of Nanoscale Science and Engineering, College of Nanotechnology, Science, and Engineering, University at Albany, State University of New York, 257 Fuller Road, Albany, NY 12203, USA; (S.C.R.K.); (X.Z.); (S.T.S.)
| | - Xulang Zhang
- Department of Nanoscale Science and Engineering, College of Nanotechnology, Science, and Engineering, University at Albany, State University of New York, 257 Fuller Road, Albany, NY 12203, USA; (S.C.R.K.); (X.Z.); (S.T.S.)
| | - Nicholas Moskwa
- Department of Biological Sciences and The RNA Institute, University at Albany, State University of New York, 1400 Washington Ave., Albany, NY 12222, USA; (N.M.); (D.A.N.); (M.L.)
- The Jackson Laboratory of Genomic Medicine, 10 Discovery Drive, Farmington, CT 06032, USA
| | - Deirdre A. Nelson
- Department of Biological Sciences and The RNA Institute, University at Albany, State University of New York, 1400 Washington Ave., Albany, NY 12222, USA; (N.M.); (D.A.N.); (M.L.)
| | - Susan T. Sharfstein
- Department of Nanoscale Science and Engineering, College of Nanotechnology, Science, and Engineering, University at Albany, State University of New York, 257 Fuller Road, Albany, NY 12203, USA; (S.C.R.K.); (X.Z.); (S.T.S.)
| | - Melinda Larsen
- Department of Biological Sciences and The RNA Institute, University at Albany, State University of New York, 1400 Washington Ave., Albany, NY 12222, USA; (N.M.); (D.A.N.); (M.L.)
| | - Yubing Xie
- Department of Nanoscale Science and Engineering, College of Nanotechnology, Science, and Engineering, University at Albany, State University of New York, 257 Fuller Road, Albany, NY 12203, USA; (S.C.R.K.); (X.Z.); (S.T.S.)
| |
Collapse
|
7
|
Peng C, Yan J, Jiang Y, Wu L, Li M, Fan X. Exploring Cutting-Edge Approaches to Potentiate Mesenchymal Stem Cell and Exosome Therapy for Myocardial Infarction. J Cardiovasc Transl Res 2024; 17:356-375. [PMID: 37819538 DOI: 10.1007/s12265-023-10438-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 09/12/2023] [Indexed: 10/13/2023]
Abstract
Cardiovascular diseases (CVDs) continue to be a significant global health concern. Many studies have reported promising outcomes from using MSCs and their secreted exosomes in managing various cardiovascular-related diseases like myocardial infarction (MI). MSCs and exosomes have demonstrated considerable potential in promoting regeneration and neovascularization, as well as exerting beneficial effects against apoptosis, remodeling, and inflammation in cases of myocardial infarction. Nonetheless, ensuring the durability and effectiveness of MSCs and exosomes following in vivo transplantation remains a significant concern. Recently, novel methods have emerged to improve their effectiveness and robustness, such as employing preconditioning statuses, modifying MSC and their exosomes, targeted drug delivery with exosomes, biomaterials, and combination therapy. Herein, we summarize the novel approaches that intensify the therapeutic application of MSC and their derived exosomes in treating MI.
Collapse
Affiliation(s)
- Chendong Peng
- Department of Cardiology, the Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, China
| | - Jie Yan
- Department of Cardiology, the Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, China
| | - Yu'ang Jiang
- Department of Cardiology, the Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, China
| | - Lin Wu
- Key Laboratory of Medical Electrophysiology of Ministry of Education and Medical Electrophysiological, Collaborative Innovation Center for Prevention and Treatment of Cardiovascular Disease, Institute of Cardiovascular Research, Key Laboratory of Sichuan Province, Southwest Medical University, Luzhou, 646000, Sichuan, China
- Department of Cardiology, Peking University First Hospital, Beijing, 100000, China
| | - Miaoling Li
- Department of Cardiology, the Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, China.
- Key Laboratory of Medical Electrophysiology of Ministry of Education and Medical Electrophysiological, Collaborative Innovation Center for Prevention and Treatment of Cardiovascular Disease, Institute of Cardiovascular Research, Key Laboratory of Sichuan Province, Southwest Medical University, Luzhou, 646000, Sichuan, China.
| | - Xinrong Fan
- Department of Cardiology, the Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, China.
| |
Collapse
|
8
|
Shi Q, Xia Y, Wu M, Pan Y, Wu S, Lin J, Kong Y, Yu Z, Zan X, Liu P, Xia J. Mi-BMSCs alleviate inflammation and fibrosis in CCl 4-and TAA-induced liver cirrhosis by inhibiting TGF-β/Smad signaling. Mater Today Bio 2024; 25:100958. [PMID: 38327975 PMCID: PMC10847164 DOI: 10.1016/j.mtbio.2024.100958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 01/08/2024] [Accepted: 01/15/2024] [Indexed: 02/09/2024] Open
Abstract
Cirrhosis is an aggressive disease, and over 80 % of liver cancer patients are complicated by cirrhosis, which lacks effective therapies. Transplantation of mesenchymal stem cells (MSCs) is a promising option for treating liver cirrhosis. However, this therapeutic approach is often challenged by the low homing ability and short survival time of transplanted MSCs in vivo. Therefore, a novel and efficient cell delivery system for MSCs is urgently required. This new system can effectively extend the persistence and duration of MSCs in vivo. In this study, we present novel porous microspheres with microfluidic electrospray technology for the encapsulation of bone marrow-derived MSCs (BMSCs) in the treatment of liver cirrhosis. Porous microspheres loaded with BMSCs (Mi-BMSCs) exhibit good biocompatibility and demonstrate better anti-inflammatory properties than BMSCs alone. Mi-BMSCs significantly increase the duration of BMSCs and exert potent anti-inflammatory and anti-fibrosis effects against CCl4 and TAA-induced liver cirrhosis by targeting the TGF-β/Smad signaling pathway to ameliorate cirrhosis, which highlight the potential of Mi-BMSCs as a promising therapeutic approach for early liver cirrhosis.
Collapse
Affiliation(s)
- Qing Shi
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang, China
| | - Yuhan Xia
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang, China
| | - Minmin Wu
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang, China
| | - Yating Pan
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang, China
| | - Shiyi Wu
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang, China
| | - Jiawei Lin
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang, China
| | - Yifan Kong
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang, China
| | - Zhijie Yu
- Wenzhou Key Laboratory of Hematology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang, China
| | - Xingjie Zan
- Wenzhou Institute, Wenzhou Key Laboratory of Perioperative Medicine, University of Chinese Academy of Sciences, Wenzhou, 325001, China
| | - Pixu Liu
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang, China
| | - Jinglin Xia
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang, China
- Liver Cancer Institute, Zhongshan Hospital of Fudan University, Shanghai, 200032, China
- National Clinical Research Center for Interventional Medicine, Shanghai, 200032, China
| |
Collapse
|
9
|
Kavand A, Noverraz F, Gerber-Lemaire S. Recent Advances in Alginate-Based Hydrogels for Cell Transplantation Applications. Pharmaceutics 2024; 16:469. [PMID: 38675129 PMCID: PMC11053880 DOI: 10.3390/pharmaceutics16040469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 03/19/2024] [Accepted: 03/20/2024] [Indexed: 04/28/2024] Open
Abstract
With its exceptional biocompatibility, alginate emerged as a highly promising biomaterial for a large range of applications in regenerative medicine. Whether in the form of microparticles, injectable hydrogels, rigid scaffolds, or bioinks, alginate provides a versatile platform for encapsulating cells and fostering an optimal environment to enhance cell viability. This review aims to highlight recent studies utilizing alginate in diverse formulations for cell transplantation, offering insights into its efficacy in treating various diseases and injuries within the field of regenerative medicine.
Collapse
Affiliation(s)
| | | | - Sandrine Gerber-Lemaire
- Group for Functionalized Biomaterials, Institute of Chemical Sciences and Engineering, Ecole Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland; (A.K.); (F.N.)
| |
Collapse
|
10
|
Motta I, Soccio M, Guidotti G, Lotti N, Pasquinelli G. Hydrogels for Cardio and Vascular Tissue Repair and Regeneration. Gels 2024; 10:196. [PMID: 38534614 DOI: 10.3390/gels10030196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 02/29/2024] [Accepted: 03/06/2024] [Indexed: 03/28/2024] Open
Abstract
Cardiovascular disease (CVD), the leading cause of death globally, affects the heart and arteries with a variety of clinical manifestations, the most dramatic of which are myocardial infarction (MI), abdominal aortic aneurysm (AAA), and intracranial aneurysm (IA) rupture. In MI, necrosis of the myocardium, scar formation, and loss of cardiomyocytes result from insufficient blood supply due to coronary artery occlusion. Beyond stenosis, the arteries that are structurally and functionally connected to the cardiac tissue can undergo pathological dilation, i.e., aneurysmal dilation, with high risk of rupture. Aneurysms of the intracranial arteries (IAs) are more commonly seen in young adults, whereas those of the abdominal aorta (AAA) are predominantly seen in the elderly. IAs, unpredictably, can undergo rupture and cause life-threatening hemorrhage, while AAAs can result in rupture, internal bleeding and high mortality rate. In this clinical context, hydrogels, three-dimensional networks of water-seizing polymers, have emerged as promising biomaterials for cardiovascular tissue repair or protection due to their biocompatibility, tunable properties, and ability to encapsulate and release bioactive molecules. This review provides an overview of the current state of research on the use of hydrogels as an innovative platform to promote cardiovascular-specific tissue repair in MI and functional recovery or protection in aneurysmal dilation.
Collapse
Affiliation(s)
- Ilenia Motta
- Alma Mater Institute on Healthy Planet, University of Bologna, Via Massarenti 11, 40138 Bologna, Italy
| | - Michelina Soccio
- Civil, Chemical, Environmental and Materials Engineering Department, University of Bologna, Via Terracini 28, 40131 Bologna, Italy
| | - Giulia Guidotti
- Civil, Chemical, Environmental and Materials Engineering Department, University of Bologna, Via Terracini 28, 40131 Bologna, Italy
| | - Nadia Lotti
- Civil, Chemical, Environmental and Materials Engineering Department, University of Bologna, Via Terracini 28, 40131 Bologna, Italy
| | - Gianandrea Pasquinelli
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, Via Massarenti 9, 40138 Bologna, Italy
- Pathology Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy
| |
Collapse
|
11
|
Dai Y, Qiao K, Li D, Isingizwe P, Liu H, Liu Y, Lim K, Woodfield T, Liu G, Hu J, Yuan J, Tang J, Cui X. Plant-Derived Biomaterials and Their Potential in Cardiac Tissue Repair. Adv Healthc Mater 2023; 12:e2202827. [PMID: 36977522 DOI: 10.1002/adhm.202202827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 02/19/2023] [Indexed: 03/30/2023]
Abstract
Cardiovascular disease remains the leading cause of mortality worldwide. The inability of cardiac tissue to regenerate after an infarction results in scar tissue formation, leading to cardiac dysfunction. Therefore, cardiac repair has always been a popular research topic. Recent advances in tissue engineering and regenerative medicine offer promising solutions combining stem cells and biomaterials to construct tissue substitutes that could have functions similar to healthy cardiac tissue. Among these biomaterials, plant-derived biomaterials show great promise in supporting cell growth due to their inherent biocompatibility, biodegradability, and mechanical stability. More importantly, plant-derived materials have reduced immunogenic properties compared to popular animal-derived materials (e.g., collagen and gelatin). In addition, they also offer improved wettability compared to synthetic materials. To date, limited literature is available to systemically summarize the progression of plant-derived biomaterials in cardiac tissue repair. Herein, this paper highlights the most common plant-derived biomaterials from both land and marine plants. The beneficial properties of these materials for tissue repair are further discussed. More importantly, the applications of plant-derived biomaterials in cardiac tissue engineering, including tissue-engineered scaffolds, bioink in 3D biofabrication, delivery vehicles, and bioactive molecules, are also summarized using the latest preclinical and clinical examples.
Collapse
Affiliation(s)
- Yichen Dai
- Cardiac and Osteochondral Tissue Engineering (COTE) Group, School of Medicine, The Chinese University of Hong Kong, Shenzhen, Guangdong, 51817, China
| | - Kai Qiao
- Cardiac and Osteochondral Tissue Engineering (COTE) Group, School of Medicine, The Chinese University of Hong Kong, Shenzhen, Guangdong, 51817, China
| | - Demin Li
- Department of Cardiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China
| | - Phocas Isingizwe
- Cardiac and Osteochondral Tissue Engineering (COTE) Group, School of Medicine, The Chinese University of Hong Kong, Shenzhen, Guangdong, 51817, China
| | - Haohao Liu
- Cardiac and Osteochondral Tissue Engineering (COTE) Group, School of Medicine, The Chinese University of Hong Kong, Shenzhen, Guangdong, 51817, China
| | - Yu Liu
- Cardiac and Osteochondral Tissue Engineering (COTE) Group, School of Medicine, The Chinese University of Hong Kong, Shenzhen, Guangdong, 51817, China
| | - Khoon Lim
- Christchurch Regenerative Medicine and Tissue Engineering (CReaTE) Group, Department of Orthopaedic Surgery, University of Otago, Christchurch, 8011, New Zealand
- School of Medical Sciences, University of Sydney, Sydney, NSW, 2006, Australia
| | - Tim Woodfield
- Christchurch Regenerative Medicine and Tissue Engineering (CReaTE) Group, Department of Orthopaedic Surgery, University of Otago, Christchurch, 8011, New Zealand
| | - Guozhen Liu
- Cardiac and Osteochondral Tissue Engineering (COTE) Group, School of Medicine, The Chinese University of Hong Kong, Shenzhen, Guangdong, 51817, China
| | - Jinming Hu
- CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, Anhui, 230052, China
| | - Jie Yuan
- Department of Cardiology, Shenzhen People's Hospital, Shenzhen, Guangdong, 518001, China
| | - Junnan Tang
- Department of Cardiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China
| | - Xiaolin Cui
- Cardiac and Osteochondral Tissue Engineering (COTE) Group, School of Medicine, The Chinese University of Hong Kong, Shenzhen, Guangdong, 51817, China
- Christchurch Regenerative Medicine and Tissue Engineering (CReaTE) Group, Department of Orthopaedic Surgery, University of Otago, Christchurch, 8011, New Zealand
| |
Collapse
|
12
|
van Schaik TA, Moreno-Lama L, Aligholipour Farzani T, Wang M, Chen KS, Li W, Cai L, Zhang YS, Shah K. Engineered cell-based therapies in ex vivo ready-made CellDex capsules have therapeutic efficacy in solid tumors. Biomed Pharmacother 2023; 162:114665. [PMID: 37062216 PMCID: PMC10165501 DOI: 10.1016/j.biopha.2023.114665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 03/24/2023] [Accepted: 04/03/2023] [Indexed: 04/18/2023] Open
Abstract
Encapsulated cell-based therapies for solid tumors have shown promising results in pre-clinical settings. However, the inability to culture encapsulated therapeutic cells prior to their transplantation has limited their translation into clinical settings. In this study, we created a wide variety of engineered therapeutic cells (ThC) loaded in micropore-forming gelatin methacryloyl (GelMA) hydrogel (CellDex) capsules that can be cultured in vitro prior to their transplantation in surgically debulked solid tumors. We show that both allogeneic and autologous engineered cells, such as stem cells (SCs), macrophages, NK cells, and T cells, proliferate within CellDex capsules and migrate out of the gel in vitro and in vivo. Furthermore, tumor cell specific therapeutic proteins and oncolytic viruses released from CellDex capsules retain and prolong their anti-tumor effects. In vivo, ThCs in pre-manufactured Celldex capsules persist long-term and track tumor cells. Moreover, chimeric antigen receptor (CAR) T cell bearing CellDex (T-CellDex) and human SC releasing therapeutic proteins (hSC-CellDex) capsules show therapeutic efficacy in metastatic and primary brain tumor resection models that mimic standard of care of tumor resection in patients. Overall, this unique approach of pre-manufactured micropore-forming CellDex capsules offers an effective off-the-shelf clinically viable strategy to treat solid tumors locally.
Collapse
Affiliation(s)
- Thijs A van Schaik
- Center for Stem Cell and Translational Immunotherapy, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA; Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Lucia Moreno-Lama
- Center for Stem Cell and Translational Immunotherapy, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA; Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Touraj Aligholipour Farzani
- Center for Stem Cell and Translational Immunotherapy, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA; Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Mian Wang
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA 02139, USA
| | - Kok-Siong Chen
- Center for Stem Cell and Translational Immunotherapy, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA; Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Wanlu Li
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA 02139, USA
| | - Ling Cai
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA 02139, USA
| | - Yu Shrike Zhang
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA 02139, USA
| | - Khalid Shah
- Center for Stem Cell and Translational Immunotherapy, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA; Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA; Harvard Stem Cell Institute, Harvard University, Cambridge, MA 02138, USA.
| |
Collapse
|
13
|
Sharma R, Malviya R, Singh S, Prajapati B. A Critical Review on Classified Excipient Sodium-Alginate-Based Hydrogels: Modification, Characterization, and Application in Soft Tissue Engineering. Gels 2023; 9:gels9050430. [PMID: 37233021 DOI: 10.3390/gels9050430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Revised: 05/12/2023] [Accepted: 05/15/2023] [Indexed: 05/27/2023] Open
Abstract
Alginates are polysaccharides that are produced naturally and can be isolated from brown sea algae and bacteria. Sodium alginate (SA) is utilized extensively in the field of biological soft tissue repair and regeneration owing to its low cost, high biological compatibility, and quick and moderate crosslinking. In addition to their high printability, SA hydrogels have found growing popularity in tissue engineering, particularly due to the advent of 3D bioprinting. There is a developing curiosity in tissue engineering with SA-based composite hydrogels and their potential for further improvement in terms of material modification, the molding process, and their application. This has resulted in numerous productive outcomes. The use of 3D scaffolds for growing cells and tissues in tissue engineering and 3D cell culture is an innovative technique for developing in vitro culture models that mimic the in vivo environment. Especially compared to in vivo models, in vitro models were more ethical and cost-effective, and they stimulate tissue growth. This article discusses the use of sodium alginate (SA) in tissue engineering, focusing on SA modification techniques and providing a comparative examination of the properties of several SA-based hydrogels. This review also covers hydrogel preparation techniques, and a catalogue of patents covering different hydrogel formulations is also discussed. Finally, SA-based hydrogel applications and future research areas concerning SA-based hydrogels in tissue engineering were examined.
Collapse
Affiliation(s)
- Rishav Sharma
- Department of Pharmacy, School of Medical and Allied Sciences, Galgotias University, Greater Noida 203201, India
| | - Rishabha Malviya
- Department of Pharmacy, School of Medical and Allied Sciences, Galgotias University, Greater Noida 203201, India
| | - Sudarshan Singh
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Bhupendra Prajapati
- Shree S. K. Patel College of Pharmaceutical Education and Research, Ganpat University, Kherva 384012, India
| |
Collapse
|
14
|
Kabat M, Bobkov I, Grumet M. A rapid and sensitive method to measure numbers of live cells in alginate capsules following depolymerization with ethylenediaminetetraacetic acid. Biotechniques 2023; 74:179-185. [PMID: 37129002 DOI: 10.2144/btn-2022-0092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2023] Open
Abstract
Cell encapsulation in alginate prevents migration and extends cell survival in vivo while allowing the secretion of factors across semipermeable capsules. Confocal microscopy is used to measure numbers of cells/capsule, but is time-consuming and limited to capsule diameters <0.4 mm for accurate counting. A rapid, accurate and inexpensive method for measuring the number of cells per capsule by using 50 mM ethylenediaminetetraacetic acid to collapse capsules into a single plane was developed. This assay was used to accurately count the number of live cells/capsule for capsules crosslinked with 50 mM BaCl2 with diameters up to 0.8 mm. This assay is ideal for counting cells/capsule during optimization to scale up the production of encapsulated cells, and for determining dosing in translational studies.
Collapse
Affiliation(s)
- Maciej Kabat
- Department of Biomedical Engineering, Rutgers University, Piscataway, NJ 08854, USA
| | - Ivan Bobkov
- Department of Cell Biology & Neuroscience, Rutgers University, Piscataway, NJ 08854, USA
| | - Martin Grumet
- Department of Cell Biology & Neuroscience, Rutgers University, Piscataway, NJ 08854, USA
- W. M. Keck Center for Collaborative Neuroscience, Allison Rd, Piscataway, NJ 08854, USA
- Rutgers Stem Cell Research Center, 604 Allison Rd Piscataway, NJ 08854, USA
| |
Collapse
|
15
|
Pereira B, Duque K, Ramos-Gonzalez G, Díaz-Solano D, Wittig O, Zamora M, Gledhill T, Cardier JE. Wound healing by transplantation of mesenchymal stromal cells loaded on polyethylene terephthalate scaffold: Implications for skin injury treatment. Injury 2023; 54:1071-1081. [PMID: 36801131 DOI: 10.1016/j.injury.2023.02.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 01/25/2023] [Accepted: 02/10/2023] [Indexed: 02/23/2023]
Abstract
BACKGROUND Several clinical studies have shown that cellular therapy based on mesenchymal stromal cells (MSCs) transplantation may accelerate wound healing. One major challenge is the delivery system used for MSCs transplantation. In this work, we evaluated the capacity of a scaffold based on polyethylene terephthalate (PET) to maintain the viability and biological functions of MSCs, in vitro. We examined the capacity of MSCs loaded on PET (MSCs/PET) to induce wound healing in an experimental model of full-thickness wound. METHODS Human MSCs were seeded and cultured on PET membranes at 37 °C for 48 h. Adhesion, viability, proliferation, migration, multipotential differentiation and chemokine production were evaluated in cultures of MSCs/PET. The possible therapeutic effect of MSCs/PET on the re-epithelialization of full thickness wounds was examined at day 3 post-wounding in C57BL/6 mice. Histological and immunohistochemical (IH) studies were performed to evaluate wound re-epithelialization and the presence of epithelial progenitor cells (EPC). As controls, wounds without treatment or treated with PET were established. RESULTS We observed MSCs adhered to PET membranes and maintained their viability, proliferation and migration. They preserved their multipotential capacity of differentiation and ability of chemokine production. MSCs/PET implants promoted an accelerated wound re-epithelialization, after three days post-wounding. It was associated with the presence of EPC Lgr6+ and K6+. DISCUSSION Our results show that MSCs/PET implants induce a rapid re-epithelialization of deep- and full-thickness wounds. MSCs/PET implants constitute a potential clinical therapy for treating cutaneous wounds.
Collapse
Affiliation(s)
- Betzabeth Pereira
- Unidad de Terapia Celular - Laboratorio de Patología Celular y Molecular, Centro de Medicina Regenerativa, Instituto Venezolano de Investigaciones Científicas (IVIC), Apartado 21827, Caracas 1020-A, Venezuela; Laboratorio de Neurofarmacología Celular, Centro de Biofísica y Bioquímica, Instituto Venezolano de Investigaciones Científicas (IVIC), Apartado 21827, Caracas 1020-A, Venezuela
| | - Kharelys Duque
- Unidad de Terapia Celular - Laboratorio de Patología Celular y Molecular, Centro de Medicina Regenerativa, Instituto Venezolano de Investigaciones Científicas (IVIC), Apartado 21827, Caracas 1020-A, Venezuela
| | - Giselle Ramos-Gonzalez
- Unidad de Terapia Celular - Laboratorio de Patología Celular y Molecular, Centro de Medicina Regenerativa, Instituto Venezolano de Investigaciones Científicas (IVIC), Apartado 21827, Caracas 1020-A, Venezuela
| | - Dylana Díaz-Solano
- Unidad de Terapia Celular - Laboratorio de Patología Celular y Molecular, Centro de Medicina Regenerativa, Instituto Venezolano de Investigaciones Científicas (IVIC), Apartado 21827, Caracas 1020-A, Venezuela
| | - Olga Wittig
- Unidad de Terapia Celular - Laboratorio de Patología Celular y Molecular, Centro de Medicina Regenerativa, Instituto Venezolano de Investigaciones Científicas (IVIC), Apartado 21827, Caracas 1020-A, Venezuela
| | - Mariela Zamora
- Departamento de Dermatologia, Hospital Militar "Dr Carlos Arvelo, Venezuela
| | - Teresa Gledhill
- Servicio de Anatomía Patológica, Hospital Vargas, Caracas 1010-A, Venezuela
| | - José E Cardier
- Unidad de Terapia Celular - Laboratorio de Patología Celular y Molecular, Centro de Medicina Regenerativa, Instituto Venezolano de Investigaciones Científicas (IVIC), Apartado 21827, Caracas 1020-A, Venezuela.
| |
Collapse
|
16
|
Michalaki E, Rudd JM, Liebman L, Wadhwani R, Wood LB, Willett NJ, Dixon JB. Lentiviral overexpression of VEGFC in transplanted MSCs leads to resolution of swelling in a mouse tail lymphedema model. Microcirculation 2023; 30:e12792. [PMID: 36369987 PMCID: PMC10680019 DOI: 10.1111/micc.12792] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 10/12/2022] [Accepted: 11/08/2022] [Indexed: 11/14/2022]
Abstract
BACKGROUND Dysfunction of the lymphatic system following injury, disease, or cancer treatment can lead to lymphedema, a debilitating condition with no cure. Despite the various physical therapy and surgical options available, most treatments are palliative and fail to address the underlying lymphatic vascular insufficiency driving lymphedema progression. Stem cell therapy provides a promising alternative in the treatment of various chronic diseases with a wide range of therapeutic effects that reduce inflammation, fibrosis, and oxidative stress, while promoting lymphatic vessel (LV) regeneration. Specifically, stem cell transplantation is suggested to promote LV restoration, rebuild lymphatic circulation, and thus potentially be utilized towards an effective lymphedema treatment. In addition to stem cells, studies have proposed the administration of vascular endothelial growth factor C (VEGFC) to promote lymphangiogenesis and decrease swelling in lymphedema. AIMS Here, we seek to combine the benefits of stem cell therapy, which provides a cellular therapeutic approach that can respond to the tissue environment, and VEGFC administration to restore lymphatic drainage. MATERIALS & METHODS Specifically, we engineered mesenchymal stem cells (MSCs) to overexpress VEGFC using a lentiviral vector (hVEGFC MSC) and investigated their therapeutic efficacy in improving LV function and tissue swelling using near infrared (NIR) imaging, and lymphatic regeneration in a single LV ligation mouse tail lymphedema model. RESULTS First, we showed that overexpression of VEGFC using lentiviral transduction led to an increase in VEGFC protein synthesis in vitro. Then, we demonstrated hVEGFC MSC administration post-injury significantly increased the lymphatic contraction frequency 14-, 21-, and 28-days post-surgery compared to the control animals (MSC administration) in vivo, while also reducing tail swelling 28-days post-surgery compared to controls. CONCLUSION Our results suggest a therapeutic potential of hVEGFC MSC in alleviating the lymphatic dysfunction observed during lymphedema progression after secondary injury and could provide a promising approach to enhancing autologous cell therapy for treating lymphedema.
Collapse
Affiliation(s)
- Eleftheria Michalaki
- George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, Georgia, USA
| | - Josephine M Rudd
- George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, Georgia, USA
| | - Lauren Liebman
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia, USA
| | - Rahul Wadhwani
- Neuroscience Department, Georgia Institute of Technology, Atlanta, Georgia, USA
| | - Levi B Wood
- George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, Georgia, USA
| | - Nick J Willett
- Phil and Penny Knight Campus for Accelerating Scientific Impact, University of Oregon, Eugene, Oregon, USA
- The Veterans Affairs Portland Health Care System, Portland, Oregon, USA
| | - J Brandon Dixon
- George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, Georgia, USA
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia, USA
- Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia, USA
| |
Collapse
|
17
|
Modification, 3D printing process and application of sodium alginate based hydrogels in soft tissue engineering: A review. Int J Biol Macromol 2023; 232:123450. [PMID: 36709808 DOI: 10.1016/j.ijbiomac.2023.123450] [Citation(s) in RCA: 55] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 12/26/2022] [Accepted: 01/24/2023] [Indexed: 01/27/2023]
Abstract
Sodium alginate (SA) is an inexpensive and biocompatible biomaterial with fast and gentle crosslinking that has been widely used in biological soft tissue repair/regeneration. Especially with the advent of 3D bioprinting technology, SA hydrogels have been applied more deeply in tissue engineering due to their excellent printability. Currently, the research on material modification, molding process and application of SA-based composite hydrogels has become a hot topic in tissue engineering, and a lot of fruitful results have been achieved. To better help readers have a comprehensive understanding of the development status of SA based hydrogels and their molding process in tissue engineering, in this review, we summarized SA modification methods, and provided a comparative analysis of the characteristics of various SA based hydrogels. Secondly, various molding methods of SA based hydrogels were introduced, the processing characteristics and the applications of different molding methods were analyzed and compared. Finally, the applications of SA based hydrogels in tissue engineering were reviewed, the challenges in their applications were also analyzed, and the future research directions were prospected. We believe this review is of great helpful for the researchers working in biomedical and tissue engineering.
Collapse
|
18
|
Sayegh MN, Cooney KA, Han WM, Cicka M, Strobel F, Wang L, García AJ, Levit RD. Hydrogel delivery of purinergic enzymes improves cardiac ischemia/reperfusion injury. J Mol Cell Cardiol 2023; 176:98-109. [PMID: 36764383 PMCID: PMC10006353 DOI: 10.1016/j.yjmcc.2023.02.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 01/23/2023] [Accepted: 02/05/2023] [Indexed: 02/11/2023]
Abstract
RATIONALE The innate immune response contributes to cardiac injury in myocardial ischemia/reperfusion (MI/R). Neutrophils are an important early part of the innate immune response to MI/R. Adenosine, an endogenous purine, is a known innate immune modulator and inhibitor of neutrophil activation. However, its delivery to the heart is limited by its short half-life (<30 s) and off-target side effects. CD39 and CD73 are anti-inflammatory homeostatic enzymes that can generate adenosine from phosphorylated adenosine substrate such as ATP released from injured tissue. OBJECTIVE We hypothesize that hydrogel-delivered CD39 and CD73 target the local early innate immune response, reduce neutrophil activation, and preserve cardiac function in MI/R injury. METHODS AND RESULTS We engineered a poly(ethylene) glycol (PEG) hydrogel loaded with the adenosine-generating enzymes CD39 and CD73. We incubated the hydrogels with neutrophils in vitro and showed a reduction in hydrogen peroxide production using Amplex Red. We demonstrated availability of substrate for the enzymes in the myocardium in MI/R by LC/MS, and tested release kinetics from the hydrogel. On echocardiography, global longitudinal strain (GLS) was preserved in MI/R hearts treated with the loaded hydrogel. Delivery of purinergic enzymes via this synthetic hydrogel resulted in lower innate immune infiltration into the myocardium post-MI/R, decreased markers of macrophage and neutrophil activation (NETosis), and decreased leukocyte-platelet complexes in circulation. CONCLUSIONS In a rat model of MI/R injury, CD39 and CD73 delivered via a hydrogel preserve cardiac function by modulating the innate immune response.
Collapse
Affiliation(s)
- Michael N Sayegh
- Division of Cardiology, Department of Medicine, Emory University, Atlanta, GA, United States of America; Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA, United States of America
| | - Kimberly A Cooney
- Division of Cardiology, Department of Medicine, Emory University, Atlanta, GA, United States of America; Department of Biological Sciences, Tennessee State University, Nashville, TN, United States of America
| | - Woojin M Han
- Woodruff School of Mechanical Engineering, Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA, United States of America; Department of Orthopedics, Icahn School of Medicine at Mount Sinai, New York, NY, United States of America
| | - Markus Cicka
- Division of Cardiology, Department of Medicine, Emory University, Atlanta, GA, United States of America
| | - Frederick Strobel
- Department of Chemistry, Emory University, Atlanta, GA, United States of America
| | - Lanfang Wang
- Division of Cardiology, Department of Medicine, Emory University, Atlanta, GA, United States of America
| | - Andrés J García
- Woodruff School of Mechanical Engineering, Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA, United States of America
| | - Rebecca D Levit
- Division of Cardiology, Department of Medicine, Emory University, Atlanta, GA, United States of America; Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA, United States of America.
| |
Collapse
|
19
|
Bharti S, Anant PS, Kumar A. Nanotechnology in stem cell research and therapy. JOURNAL OF NANOPARTICLE RESEARCH 2023; 25:6. [DOI: 10.1007/s11051-022-05654-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Accepted: 12/14/2022] [Indexed: 01/04/2025]
|
20
|
Kojima H, Kushige H, Yagi H, Nishijima T, Moritoki N, Nagoshi N, Nakano Y, Tanaka M, Hori S, Hasegawa Y, Abe Y, Kitago M, Nakamura M, Kitagawa Y. Combinational Treatment Involving Decellularized Extracellular Matrix Hydrogels With Mesenchymal Stem Cells Increased the Efficacy of Cell Therapy in Pancreatitis. Cell Transplant 2023; 32:9636897231170437. [PMID: 37191199 PMCID: PMC10192953 DOI: 10.1177/09636897231170437] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 03/17/2023] [Accepted: 03/27/2023] [Indexed: 05/17/2023] Open
Abstract
Cell transplantation using mesenchymal stem cells (MSCs) has emerged as a promising approach to repairing and regenerating injured or impaired organs. However, the survival and retention of MSCs following transplantation remain a challenge. Therefore, we investigated the efficacy of co-transplantation of MSCs and decellularized extracellular matrix (dECM) hydrogels, which have high cytocompatibility and biocompatibility. The dECM solution was prepared by enzymatic digestion of an acellular porcine liver scaffold. It could be gelled and formed into porous fibrillar microstructures at physiological temperatures. MSCs expanded three-dimensionally in the hydrogel without cell death. Compared to the 2-dimensional cell culture, MSCs cultured in the hydrogel showed increased secretion of hepatocyte growth factor (HGF) and tumor necrosis factor-inducible gene 6 protein (TSG-6), both of which are major anti-inflammatory and anti-fibrotic paracrine factors of MSCs, under TNFα stimulation. In vivo experiments showed that the co-transplantation of MSCs with dECM hydrogel improved the survival rate of engrafted cells compared to those administered without the hydrogel. MSCs also demonstrated therapeutic effects in improving inflammation and fibrosis of pancreatic tissue in a dibutyltin dichloride (DBTC)-induced rat pancreatitis model. Combinational use of dECM hydrogel with MSCs is a new strategy to overcome the challenges of cell therapy using MSCs and can be used for treating chronic inflammatory diseases in clinical settings.
Collapse
Affiliation(s)
- Hideaki Kojima
- Department of Surgery, Keio University
School of Medicine, Tokyo, Japan
| | - Hiroko Kushige
- Department of Surgery, Keio University
School of Medicine, Tokyo, Japan
| | - Hiroshi Yagi
- Department of Surgery, Keio University
School of Medicine, Tokyo, Japan
| | - Takayuki Nishijima
- Department of Orthopaedic Surgery, Keio
University School of Medicine, Tokyo, Japan
| | - Nobuko Moritoki
- Electron Microscope Laboratory, Keio
University School of Medicine, Tokyo, Japan
| | - Narihito Nagoshi
- Department of Orthopaedic Surgery, Keio
University School of Medicine, Tokyo, Japan
| | - Yutaka Nakano
- Department of Surgery, Keio University
School of Medicine, Tokyo, Japan
| | - Masayuki Tanaka
- Department of Surgery, Keio University
School of Medicine, Tokyo, Japan
| | - Shutaro Hori
- Department of Surgery, Keio University
School of Medicine, Tokyo, Japan
| | - Yasushi Hasegawa
- Department of Surgery, Keio University
School of Medicine, Tokyo, Japan
| | - Yuta Abe
- Department of Surgery, Keio University
School of Medicine, Tokyo, Japan
| | - Minoru Kitago
- Department of Surgery, Keio University
School of Medicine, Tokyo, Japan
| | - Masaya Nakamura
- Department of Orthopaedic Surgery, Keio
University School of Medicine, Tokyo, Japan
| | - Yuko Kitagawa
- Department of Surgery, Keio University
School of Medicine, Tokyo, Japan
| |
Collapse
|
21
|
Hypothermic Preservation of Adipose-Derived Mesenchymal Stromal Cells as a Viable Solution for the Storage and Distribution of Cell Therapy Products. BIOENGINEERING (BASEL, SWITZERLAND) 2022; 9:bioengineering9120805. [PMID: 36551011 PMCID: PMC9774331 DOI: 10.3390/bioengineering9120805] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 12/01/2022] [Accepted: 12/12/2022] [Indexed: 12/23/2022]
Abstract
Cell and gene therapies (CGT) have reached new therapeutic targets but have noticeably high prices. Solutions to reduce production costs might be found in CGT storage and transportation since they typically involve cryopreservation, which is a heavily burdened process. Encapsulation at hypothermic temperatures (e.g., 2-8 °C) could be a feasible alternative. Adipose tissue-derived mesenchymal stromal cells (MSC(AT)) expanded using fetal bovine serum (FBS)- (MSC-FBS) or human platelet lysate (HPL)-supplemented mediums (MSC-HPL) were encapsulated in alginate beads for 30 min, 5 days, and 12 days. After bead release, cell recovery and viability were determined to assess encapsulation performance. MSC identity was verified by flow cytometry, and a set of assays was performed to evaluate functionality. MSC(AT) were able to survive encapsulated for a standard transportation period of 5 days, with recovery values of 56 ± 5% for MSC-FBS and 77 ± 6% for MSC-HPL (which is a negligible drop compared to earlier timepoints). Importantly, MSC function did not suffer from encapsulation, with recovered cells showing robust differentiation potential, expression of immunomodulatory molecules, and hematopoietic support capacity. MSC(AT) encapsulation was proven possible for a remarkable 12 day period. There is currently no solution to completely replace cryopreservation in CGT logistics and supply chain, although encapsulation has shown potential to act as a serious competitor.
Collapse
|
22
|
Cao Y, Tan J, Zhao H, Deng T, Hu Y, Zeng J, Li J, Cheng Y, Tang J, Hu Z, Hu K, Xu B, Wang Z, Wu Y, Lobie PE, Ma S. Bead-jet printing enabled sparse mesenchymal stem cell patterning augments skeletal muscle and hair follicle regeneration. Nat Commun 2022; 13:7463. [PMID: 36460667 PMCID: PMC9718784 DOI: 10.1038/s41467-022-35183-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Accepted: 11/22/2022] [Indexed: 12/05/2022] Open
Abstract
Transplantation of mesenchymal stem cells (MSCs) holds promise to repair severe traumatic injuries. However, current transplantation practices limit the potential of this technique, either by losing the viable MSCs or reducing the performance of resident MSCs. Herein, we design a "bead-jet" printer, specialized for high-throughput intra-operative formulation and printing of MSCs-laden Matrigel beads. We show that high-density encapsulation of MSCs in Matrigel beads is able to augment MSC function, increasing MSC proliferation, migration, and extracellular vesicle production, compared with low-density bead or high-density bulk encapsulation of the equivalent number of MSCs. We find that the high-density MSCs-laden beads in sparse patterns demonstrate significantly improved therapeutic performance, by regenerating skeletal muscles approaching native-like cell density with reduced fibrosis, and regenerating skin with hair follicle growth and increased dermis thickness. MSC proliferation within 1-week post-transplantation and differentiation at 3 - 4 weeks post-transplantation are suggested to contribute therapy augmentation. We expect this "bead-jet" printing system to strengthen the potential of MSC transplantation.
Collapse
Affiliation(s)
- Yuanxiong Cao
- Tsinghua Shenzhen International Graduate School (SIGS), Tsinghua University, 518055, Shenzhen, China
- Tsinghua-Berkeley Shenzhen Institute (TBSI), 518055, Shenzhen, China
| | - Jiayi Tan
- Tsinghua Shenzhen International Graduate School (SIGS), Tsinghua University, 518055, Shenzhen, China
- Tsinghua-Berkeley Shenzhen Institute (TBSI), 518055, Shenzhen, China
| | - Haoran Zhao
- Tsinghua Shenzhen International Graduate School (SIGS), Tsinghua University, 518055, Shenzhen, China
- Tsinghua-Berkeley Shenzhen Institute (TBSI), 518055, Shenzhen, China
| | - Ting Deng
- Tsinghua Shenzhen International Graduate School (SIGS), Tsinghua University, 518055, Shenzhen, China
- Tsinghua-Berkeley Shenzhen Institute (TBSI), 518055, Shenzhen, China
| | - Yunxia Hu
- Tsinghua Shenzhen International Graduate School (SIGS), Tsinghua University, 518055, Shenzhen, China
- Tsinghua-Berkeley Shenzhen Institute (TBSI), 518055, Shenzhen, China
| | - Junhong Zeng
- Tsinghua Shenzhen International Graduate School (SIGS), Tsinghua University, 518055, Shenzhen, China
- Tsinghua-Berkeley Shenzhen Institute (TBSI), 518055, Shenzhen, China
| | - Jiawei Li
- Tsinghua Shenzhen International Graduate School (SIGS), Tsinghua University, 518055, Shenzhen, China
- Tsinghua-Berkeley Shenzhen Institute (TBSI), 518055, Shenzhen, China
| | - Yifan Cheng
- Tsinghua Shenzhen International Graduate School (SIGS), Tsinghua University, 518055, Shenzhen, China
- Tsinghua-Berkeley Shenzhen Institute (TBSI), 518055, Shenzhen, China
| | - Jiyuan Tang
- Tsinghua Shenzhen International Graduate School (SIGS), Tsinghua University, 518055, Shenzhen, China
- Tsinghua-Berkeley Shenzhen Institute (TBSI), 518055, Shenzhen, China
| | - Zhiwei Hu
- Tsinghua Shenzhen International Graduate School (SIGS), Tsinghua University, 518055, Shenzhen, China
- Tsinghua-Berkeley Shenzhen Institute (TBSI), 518055, Shenzhen, China
| | - Keer Hu
- Tsinghua Shenzhen International Graduate School (SIGS), Tsinghua University, 518055, Shenzhen, China
- Tsinghua-Berkeley Shenzhen Institute (TBSI), 518055, Shenzhen, China
| | - Bing Xu
- Tsinghua Shenzhen International Graduate School (SIGS), Tsinghua University, 518055, Shenzhen, China
- Tsinghua-Berkeley Shenzhen Institute (TBSI), 518055, Shenzhen, China
- Shenzhen Bay Laboratory, 518055, Shenzhen, China
| | - Zitian Wang
- Tsinghua Shenzhen International Graduate School (SIGS), Tsinghua University, 518055, Shenzhen, China
- Tsinghua-Berkeley Shenzhen Institute (TBSI), 518055, Shenzhen, China
| | - Yaojiong Wu
- Tsinghua Shenzhen International Graduate School (SIGS), Tsinghua University, 518055, Shenzhen, China
- Tsinghua-Berkeley Shenzhen Institute (TBSI), 518055, Shenzhen, China
| | - Peter E Lobie
- Tsinghua Shenzhen International Graduate School (SIGS), Tsinghua University, 518055, Shenzhen, China
- Tsinghua-Berkeley Shenzhen Institute (TBSI), 518055, Shenzhen, China
- Shenzhen Bay Laboratory, 518055, Shenzhen, China
| | - Shaohua Ma
- Tsinghua Shenzhen International Graduate School (SIGS), Tsinghua University, 518055, Shenzhen, China.
- Tsinghua-Berkeley Shenzhen Institute (TBSI), 518055, Shenzhen, China.
- Shenzhen Bay Laboratory, 518055, Shenzhen, China.
- Institute for Brain and Cognitive Sciences, Tsinghua University, 100084, Beijing, China.
| |
Collapse
|
23
|
Kumar S, Kabat M, Basak S, Babiarz J, Berthiaume F, Grumet M. Anti-Inflammatory Effects of Encapsulated Human Mesenchymal Stromal/Stem Cells and a Method to Scale-Up Cell Encapsulation. Biomolecules 2022; 12:biom12121803. [PMID: 36551231 PMCID: PMC9775968 DOI: 10.3390/biom12121803] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 11/23/2022] [Accepted: 11/28/2022] [Indexed: 12/05/2022] Open
Abstract
Mesenchymal stem/stromal cells (MSC) promote recovery in a wide range of animal models of injury and disease. They can act in vivo by differentiating and integrating into tissues, secreting factors that promote cell growth and control inflammation, and interacting directly with host effector cells. We focus here on MSC secreted factors by encapsulating the cells in alginate microspheres, which restrict cells from migrating out while allowing diffusion of factors including cytokines across the capsules. One week after intrathecal lumbar injection of human bone marrow MSC encapsulated in alginate (eMSC), rat IL-10 expression was upregulated in distant rat spinal cord injury sites. Detection of human IL-10 protein in rostrally derived cerebrospinal fluid (CSF) indicated distribution of this human MSC-secreted cytokine throughout rat spinal cord CSF. Intraperitoneal (IP) injection of eMSC in a rat model for endotoxemia reduced serum levels of inflammatory cytokines within 5 h. Detection of human IL-6 in sera after injection of human eMSC indicates rapid systemic distribution of this human MSC-secreted cytokine. Despite proof of concept for eMSC in various disorders using animal models, translation of encapsulation technology has not been feasible primarily because methods for scale-up are not available. To scale-up production of eMSC, we developed a rapid, semi-continuous, capsule collection system coupled to an electrosprayer. This system can produce doses of encapsulated cells sufficient for use in clinical translation.
Collapse
Affiliation(s)
- Suneel Kumar
- Department of Biomedical Engineering, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
- W. M. Keck Center for Collaborative Neuroscience, Rutgers Stem Cell Research Center, Department of Cell Biology and Neuroscience, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Maciej Kabat
- Department of Biomedical Engineering, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
- W. M. Keck Center for Collaborative Neuroscience, Rutgers Stem Cell Research Center, Department of Cell Biology and Neuroscience, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Sayantani Basak
- W. M. Keck Center for Collaborative Neuroscience, Rutgers Stem Cell Research Center, Department of Cell Biology and Neuroscience, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Joanne Babiarz
- W. M. Keck Center for Collaborative Neuroscience, Rutgers Stem Cell Research Center, Department of Cell Biology and Neuroscience, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Francois Berthiaume
- Department of Biomedical Engineering, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Martin Grumet
- W. M. Keck Center for Collaborative Neuroscience, Rutgers Stem Cell Research Center, Department of Cell Biology and Neuroscience, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
- Correspondence: ; Tel.: +1-917-597-2597; Fax: +1-732-445-2063
| |
Collapse
|
24
|
Three-Dimensional Bio-Printed Cardiac Patch for Sustained Delivery of Extracellular Vesicles from the Interface. Gels 2022; 8:gels8120769. [PMID: 36547293 PMCID: PMC9777613 DOI: 10.3390/gels8120769] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 11/18/2022] [Accepted: 11/22/2022] [Indexed: 11/29/2022] Open
Abstract
Cardiac tissue engineering has emerged as a promising strategy to treat infarcted cardiac tissues by replacing the injured region with an ex vivo fabricated functional cardiac patch. Nevertheless, integration of the transplanted patch with the host tissue is still a burden, limiting its clinical application. Here, a bi-functional, 3D bio-printed cardiac patch (CP) design is proposed, composed of a cell-laden compartment at its core and an extracellular vesicle (EV)-laden compartment at its shell for better integration of the CP with the host tissue. Alginate-based bioink solutions were developed for each compartment and characterized rheologically, examined for printability and their effect on residing cells or EVs. The resulting 3D bio-printed CP was examined for its mechanical stiffness, showing an elastic modulus between 4-5 kPa at day 1 post-printing, suitable for transplantation. Affinity binding of EVs to alginate sulfate (AlgS) was validated, exhibiting dissociation constant values similar to those of EVs with heparin. The incorporation of AlgS-EVs complexes within the shell bioink sustained EV release from the CP, with 88% cumulative release compared with 92% without AlgS by day 4. AlgS also prolonged the release profile by an additional 2 days, lasting 11 days overall. This CP design comprises great potential at promoting more efficient patch assimilation with the host.
Collapse
|
25
|
Li S, Wang S, Liu W, Zhang C, Song J. Current strategies for enhancement of the bioactivity of artificial ligaments: A mini-review. J Orthop Translat 2022; 36:205-215. [PMID: 36263385 PMCID: PMC9576487 DOI: 10.1016/j.jot.2022.07.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 07/14/2022] [Accepted: 07/26/2022] [Indexed: 11/08/2022] Open
Abstract
Background and objective Anterior cruciate ligament (ACL) reconstruction calls for artificial ligaments with better bioactivity, however systematic reviews regarding bioactivity enhancement strategies, technologies, and perspectives of artificial ligaments have been rarely found. Methods Research papers, reviews, and clinical reports related to artificial ligaments were searched and summarized the current status and research trends of artificial ligaments through a systematic analysis. Results Having experienced ups and downs since the very first record of clinical application, artificial ligaments differing in material, and fabrication methods have been reported with different clinical performances. Various manufacturing technologies have developed and realized scaffold- and cell-based strategies. Despite encouraging in-vivo and in-vitro test results, the clinical results of such new designs need further clinical examinations. Conclusion As the demand for ACL reconstruction dramatically increases, novel artificial ligaments with better osteoinductivity and mechanical performance are promising. The translational potential of this article To develop novel artificial ligaments simultaneously possessing excellent osteoinductivity and satisfactory mechanical performance, it is important to grab a glance at recent research advances. This systematic analysis provides researchers and clinicians with comprehensive and comparable information on artificial ligaments, thus being of clinical translational significance.
Collapse
Affiliation(s)
- Shenglin Li
- School of Biomedical Engineering, Shenzhen Campus of Sun Yat-sen University, Shenzhen, 518107, China,Shenzhen Institute for Drug Control, Shenzhen Testing Center of Medical Devices, Shenzhen, 518057, China
| | - Shuhan Wang
- Shenzhen Institute for Drug Control, Shenzhen Testing Center of Medical Devices, Shenzhen, 518057, China
| | - Wenliang Liu
- Shenzhen Institute for Drug Control, Shenzhen Testing Center of Medical Devices, Shenzhen, 518057, China
| | - Chao Zhang
- School of Biomedical Engineering, Shenzhen Campus of Sun Yat-sen University, Shenzhen, 518107, China
| | - Jian Song
- School of Biomedical Engineering, Shenzhen Campus of Sun Yat-sen University, Shenzhen, 518107, China,Corresponding author.
| |
Collapse
|
26
|
Zhang Y, Mu W, Zhang Y, He X, Wang Y, Ma H, Zhu T, Li A, Hou Q, Yang W, Ding Y, Ramakrishna S, Li H. Recent Advances in Cardiac Patches: Materials, Preparations, and Properties. ACS Biomater Sci Eng 2022; 8:3659-3675. [PMID: 36037313 DOI: 10.1021/acsbiomaterials.2c00348] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Cardiac patches are biomaterials that can be used for transplantation and repair of damaged myocardium by combining seed cells with the ability to form cardiomyocytes and suitable scaffold materials. On the one hand, they provide temporary support to the infarcted area, and on the other hand, they repair the damaged myocardium by delivering cells or bioactive factors to integrate with the host, which have gradually become a hot research topic in recent years. This paper summarizes the structural properties of natural myocardium and reviews the recent research progress of cardiac patches, including the seed cells and scaffold materials used in patch preparation, as well as the main methods of scaffold preparation and the structure properties of various scaffolds. In addition, a comprehensive analysis of the problems faced in the clinical implementation of cardiac patches is presented. Finally, we look forward to the development of cardiac patches and point out that precisely tunable anisotropic tissue engineering scaffolds close to natural myocardial tissue will become an important direction for future research.
Collapse
Affiliation(s)
- Yi Zhang
- College of Mechanical and Electrical Engineering, Beijing University of Chemical Technology, Beijing, 100029, China.,Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Wenying Mu
- Beijing Anzhen Hospital, Capital Medical University, Beijing, 100000, China
| | - Yanping Zhang
- Interdisciplinary Nanoscience Center, Aarhus University, Aarhus, DK-8000, Denmark
| | - Xuetao He
- College of Mechanical and Electrical Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Yiming Wang
- College of Mechanical and Electrical Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Hongyu Ma
- College of Mechanical and Electrical Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Tianyang Zhu
- College of Mechanical and Electrical Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Aoyuan Li
- College of Mechanical and Electrical Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Qinzheng Hou
- College of Mechanical and Electrical Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Weimin Yang
- College of Mechanical and Electrical Engineering, Beijing University of Chemical Technology, Beijing, 100029, China.,Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing, 100029, China.,State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Yumei Ding
- College of Mechanical and Electrical Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Seeram Ramakrishna
- Center for Nanofibers & Nanotechnology, National University of Singapore, Singapore, 119077, Singapore
| | - Haoyi Li
- College of Mechanical and Electrical Engineering, Beijing University of Chemical Technology, Beijing, 100029, China.,Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing, 100029, China.,State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing, 100029, China
| |
Collapse
|
27
|
Marikar SN, El-Osta A, Johnston A, Such G, Al-Hasani K. Microencapsulation-based cell therapies. Cell Mol Life Sci 2022; 79:351. [PMID: 35674842 PMCID: PMC9177480 DOI: 10.1007/s00018-022-04369-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 04/06/2022] [Accepted: 05/10/2022] [Indexed: 11/25/2022]
Abstract
Mapping a new therapeutic route can be fraught with challenges, but recent developments in the preparation and properties of small particles combined with significant improvements to tried and tested techniques offer refined cell targeting with tremendous translational potential. Regenerating new cells through the use of compounds that regulate epigenetic pathways represents an attractive approach that is gaining increased attention for the treatment of several diseases including Type 1 Diabetes and cardiomyopathy. However, cells that have been regenerated using epigenetic agents will still encounter immunological barriers as well as limitations associated with their longevity and potency during transplantation. Strategies aimed at protecting these epigenetically regenerated cells from the host immune response include microencapsulation. Microencapsulation can provide new solutions for the treatment of many diseases. In particular, it offers an advantageous method of administering therapeutic materials and molecules that cannot be substituted by pharmacological substances. Promising clinical findings have shown the potential beneficial use of microencapsulation for islet transplantation as well as for cardiac, hepatic, and neuronal repair. For the treatment of diseases such as type I diabetes that requires insulin release regulated by the patient's metabolic needs, microencapsulation may be the most effective therapeutic strategy. However, new materials need to be developed, so that transplanted encapsulated cells are able to survive for longer periods in the host. In this article, we discuss microencapsulation strategies and chart recent progress in nanomedicine that offers new potential for this area in the future.
Collapse
Affiliation(s)
- Safiya Naina Marikar
- Epigenetics in Human Health and Disease, Department of Diabetes, Central Clinical School, Monash University, Melbourne, VIC, 3004, Australia
| | - Assam El-Osta
- Epigenetics in Human Health and Disease, Department of Diabetes, Central Clinical School, Monash University, Melbourne, VIC, 3004, Australia
| | - Angus Johnston
- Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, 3052, Australia
| | - Georgina Such
- School of Chemistry, The University of Melbourne, Parkville, VIC, 3010, Australia
| | - Keith Al-Hasani
- Epigenetics in Human Health and Disease, Department of Diabetes, Central Clinical School, Monash University, Melbourne, VIC, 3004, Australia.
| |
Collapse
|
28
|
McKinney JM, Pucha KA, Doan TN, Wang L, Weinstock LD, Tignor BT, Fowle KL, Levit RD, Wood LB, Willett NJ. Sodium alginate microencapsulation of human mesenchymal stromal cells modulates paracrine signaling response and enhances efficacy for treatment of established osteoarthritis. Acta Biomater 2022; 141:315-332. [PMID: 34979327 DOI: 10.1016/j.actbio.2021.12.034] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Revised: 12/23/2021] [Accepted: 12/27/2021] [Indexed: 01/15/2023]
Abstract
Mesenchymal stromal cells (MSCs) have shown promise as osteoarthritis (OA) treatments; however, effective translation has been limited by high variability and heterogeneity of MSCs, suboptimal delivery strategies, and poor understanding of critical quality and potency attributes. Furthermore, most pre-clinical studies of MSC therapeutics for OA have focused on delaying OA development and not on treating established OA, which brings added clinical relevance. Thus, the objective of the current study was to assess the effects of sodium alginate microencapsulation on human MSC (hMSC) secretion of immunomodulatory cytokines in an OA microenvironment and therapeutic efficacy in treating established OA. A Medial Meniscal Transection (MMT) pre-clinical model of OA was implemented. Three weeks post-surgery, after OA was established, intra-articular injections of encapsulated hMSCs or nonencapsulated hMSCs were administered. Six weeks post-surgery, microstructural changes in the knee joint were quantified using microCT. Encapsulated hMSCs reduced articular cartilage degeneration and subchondral bone remodeling. A multiplexed immunoassay panel was used to profile the in vitro secretome of hMSCs in response to IL-1β. Nonencapsulated hMSCs showed an indiscriminate increase in all cytokines in response to IL-1β while encapsulated hMSCs showed a targeted secretory response with increased expression of pro-inflammatory (IL-1β, IL-6, IL-7, IL-8), anti-inflammatory (IL-1RA), and chemotactic (G-CSF, MDC, IP10) cytokines. These data show that sodium alginate microencapsulation can modulate hMSC paracrine signaling and enhance the therapeutic efficacy of the hMSCs in treating established OA. This cytokine profile provides a foundation for the identification of key factors affecting the overall potency of hMSC therapeutics for OA. STATEMENT OF SIGNIFICANCE: While there has been considerable interest in material based MSC encapsulation for treatment of OA, there are critical gaps in our translational understanding of these biomaterial-based technologies for OA. More specifically, previous studies have several important limitations: (1) they have been largely focused on preventing OA development, which limits their translational utility and (2) little prior work has been done to delineate potential routes/mechanisms by which material encapsulation alters MSC therapeutic action. In our manuscript, we aimed to fill these gaps in knowledge by testing the hypotheses that: (1) hMSC encapsulation can attenuate established disease progression, which is a more clinically relevant scenario and (2) hMSC encapsulation significantly changes the secreted paracrine factors from hMSCs.
Collapse
Affiliation(s)
- Jay M McKinney
- Research Division, VA Medical Center, 1670 Clairmont Rd, Decatur, GA 30033, USA; Department of Orthopaedics, Emory University, 49 Jesse Hill Jr Dr SE, Atlanta, GA 30303, USA; Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, 313 Ferst Dr NW, Atlanta, GA 30332, USA
| | - Krishna A Pucha
- Research Division, VA Medical Center, 1670 Clairmont Rd, Decatur, GA 30033, USA
| | - Thanh N Doan
- Research Division, VA Medical Center, 1670 Clairmont Rd, Decatur, GA 30033, USA; Department of Orthopaedics, Emory University, 49 Jesse Hill Jr Dr SE, Atlanta, GA 30303, USA
| | - Lanfang Wang
- Department of Medicine, Division of Cardiology, Emory University, 101 Woodruff Circle, Atlanta, GA 30322, USA
| | - Laura D Weinstock
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, 313 Ferst Dr NW, Atlanta, GA 30332, USA; Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, 315 Ferst Dr NW, Atlanta, GA 30332, USA
| | - Benjamin T Tignor
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, 313 Ferst Dr NW, Atlanta, GA 30332, USA
| | - Kelsey L Fowle
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, 313 Ferst Dr NW, Atlanta, GA 30332, USA
| | - Rebecca D Levit
- Department of Medicine, Division of Cardiology, Emory University, 101 Woodruff Circle, Atlanta, GA 30322, USA
| | - Levi B Wood
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, 313 Ferst Dr NW, Atlanta, GA 30332, USA; Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, 315 Ferst Dr NW, Atlanta, GA 30332, USA; George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, North Ave NW, Atlanta, GA 30332, USA.
| | - Nick J Willett
- Research Division, VA Medical Center, 1670 Clairmont Rd, Decatur, GA 30033, USA; Department of Orthopaedics, Emory University, 49 Jesse Hill Jr Dr SE, Atlanta, GA 30303, USA; Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, 313 Ferst Dr NW, Atlanta, GA 30332, USA; Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, 315 Ferst Dr NW, Atlanta, GA 30332, USA; Phil and Penny Knight Campus for Accelerating Scientific Impact, 6231 University of Oregon, Eugene, Oregon, USA.
| |
Collapse
|
29
|
From Biomedical Applications of Alginate towards CVD Implications Linked to COVID-19. Pharmaceuticals (Basel) 2022; 15:ph15030318. [PMID: 35337116 PMCID: PMC8955152 DOI: 10.3390/ph15030318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 02/28/2022] [Accepted: 03/04/2022] [Indexed: 12/12/2022] Open
Abstract
In the past year, researchers have focused their attention on developing new strategies for understanding how the coronavirus affects human health and developing novel biomaterials to help patients with cardiovascular disease, which greatly increases the risk of complications from the virus. Natural biopolymers have been investigated, and it has been proven that alginate-based materials have important features. This review presents an overview of alginate-based materials used for developing innovative biomaterial platforms for biomedical applications to mitigate the effects of the coronavirus. As presented in this review, COVID-19 affects the cardiovascular system, not only the lungs. The first part of the review presents an introduction to cardiovascular diseases and describes how they have become an important problem worldwide. In the second part of the review, the origin and unique properties of the alginate biopolymer are presented. Among the properties of alginate, the most important are its biocompatibility, biodegradability, low cost, nontoxicity, unique structure, and interesting features after chemical modification. The third section of the review illustrates some of the functions of alginate in biomedical, pharmaceutical, and drug delivery applications. Researchers are using alginate to develop new devices and materials for repairing heart tissues that have been damaged by the coronavirus. Further, insights regarding how cardiovascular disease affects COVID-19 patients are also discussed. Finally, we conclude the review by presenting a summary of the impacts of COVID-19 on cardiovascular patients, their implications, and several hypothetical alginate-based treatments for infected patients.
Collapse
|
30
|
Araszkiewicz AM, Oliveira EP, Svendsen T, Drela K, Rogujski P, Malysz-Cymborska I, Fiedorowicz M, Reis RL, Oliveira JM, Walczak P, Janowski M, Lukomska B, Stanaszek L. Manganese-Labeled Alginate Hydrogels for Image-Guided Cell Transplantation. Int J Mol Sci 2022; 23:ijms23052465. [PMID: 35269609 PMCID: PMC8910205 DOI: 10.3390/ijms23052465] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 02/18/2022] [Accepted: 02/18/2022] [Indexed: 02/04/2023] Open
Abstract
Cell transplantation has been studied extensively as a therapeutic strategy for neurological disorders. However, to date, its effectiveness remains unsatisfactory due to low precision and efficacy of cell delivery; poor survival of transplanted cells; and inadequate monitoring of their fate in vivo. Fortunately, different bio-scaffolds have been proposed as cell carriers to improve the accuracy of cell delivery, survival, differentiation, and controlled release of embedded stem cells. The goal of our study was to establish hydrogel scaffolds suitable for stem cell delivery that also allow non-invasive magnetic resonance imaging (MRI). We focused on alginate-based hydrogels due to their natural origin, biocompatibility, resemblance to the extracellular matrix, and easy manipulation of gelation processes. We optimized the properties of alginate-based hydrogels, turning them into suitable carriers for transplanted cells. Human adipose-derived stem cells embedded in these hydrogels survived for at least 14 days in vitro. Alginate-based hydrogels were also modified successfully to allow their injectability via a needle. Finally, supplementing alginate hydrogels with Mn ions or Mn nanoparticles allowed for their visualization in vivo using manganese-enhanced MRI. We demonstrated that modified alginate-based hydrogels can support therapeutic cells as MRI-detectable matrices.
Collapse
Affiliation(s)
- Antonina M. Araszkiewicz
- NeuroRepair Department, Mossakowski Medical Research Institute, Polish Academy of Sciences, 02-106 Warsaw, Poland; (A.M.A.); (P.R.); (B.L.)
| | - Eduarda P. Oliveira
- 3B’s Research Group, I3Bs—Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, 4805-017 Guimarães, Portugal; (E.P.O.); (R.L.R.); (J.M.O.)
- ICVS/3B’s—PT Government Associated Laboratory, 4710-057 Guimarães, Portugal
| | | | | | - Piotr Rogujski
- NeuroRepair Department, Mossakowski Medical Research Institute, Polish Academy of Sciences, 02-106 Warsaw, Poland; (A.M.A.); (P.R.); (B.L.)
| | - Izabela Malysz-Cymborska
- Department of Neurosurgery, School of Medicine, Collegium Medicum, University of Warmia and Mazury, 10-082 Olsztyn, Poland;
| | - Michal Fiedorowicz
- Small Animal Magnetic Resonance Imaging Laboratory, Mossakowski Medical Research Institute, Polish Academy of Sciences, 02-106 Warsaw, Poland;
| | - Rui L. Reis
- 3B’s Research Group, I3Bs—Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, 4805-017 Guimarães, Portugal; (E.P.O.); (R.L.R.); (J.M.O.)
- ICVS/3B’s—PT Government Associated Laboratory, 4710-057 Guimarães, Portugal
| | - Joaquim Miguel Oliveira
- 3B’s Research Group, I3Bs—Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, 4805-017 Guimarães, Portugal; (E.P.O.); (R.L.R.); (J.M.O.)
- ICVS/3B’s—PT Government Associated Laboratory, 4710-057 Guimarães, Portugal
| | - Piotr Walczak
- Program for Image Guided Neurointerventions, Department of Diagnostic Radiology and Nuclear Medicine, Center for Advanced Imaging Research, University of Maryland Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland, Baltimore, MD 21201, USA; (P.W.); (M.J.)
| | - Miroslaw Janowski
- Program for Image Guided Neurointerventions, Department of Diagnostic Radiology and Nuclear Medicine, Center for Advanced Imaging Research, University of Maryland Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland, Baltimore, MD 21201, USA; (P.W.); (M.J.)
| | - Barbara Lukomska
- NeuroRepair Department, Mossakowski Medical Research Institute, Polish Academy of Sciences, 02-106 Warsaw, Poland; (A.M.A.); (P.R.); (B.L.)
| | - Luiza Stanaszek
- NeuroRepair Department, Mossakowski Medical Research Institute, Polish Academy of Sciences, 02-106 Warsaw, Poland; (A.M.A.); (P.R.); (B.L.)
- Correspondence: ; Tel.: +48-226-086-529
| |
Collapse
|
31
|
Gokce C, Gurcan C, Delogu LG, Yilmazer A. 2D Materials for Cardiac Tissue Repair and Regeneration. Front Cardiovasc Med 2022; 9:802551. [PMID: 35224044 PMCID: PMC8873146 DOI: 10.3389/fcvm.2022.802551] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 01/13/2022] [Indexed: 12/12/2022] Open
Abstract
Cardiovascular diseases (CVDs) have a massive impact on human health. Due to the limited regeneration capacity of adult heart tissue, CVDs are the leading cause of death and disability worldwide. Even though there are surgical and pharmacological treatments for CVDs, regenerative strategies are the most promising approaches and have the potential to benefit millions of people. As in any other tissue engineering approach, the repair and regeneration of damaged cardiac tissues generally involve scaffolds made up of biodegradable and biocompatible materials, cellular components such as stem cells, and growth factors. This review provides an overview of biomaterial-based tissue engineering approaches for CVDs with a specific focus on the potential of 2D materials. It is essential to consider both physicochemical and immunomodulatory properties for evaluating the applicability of 2D materials in cardiac tissue repair and regeneration. As new members of the 2D materials will be explored, they will quickly become part of cardiac tissue engineering technologies.
Collapse
Affiliation(s)
- Cemile Gokce
- Department of Biomedical Engineering, Ankara University, Ankara, Turkey
| | - Cansu Gurcan
- Department of Biomedical Engineering, Ankara University, Ankara, Turkey
- Stem Cell Institute, Ankara University, Ankara, Turkey
| | | | - Acelya Yilmazer
- Department of Biomedical Engineering, Ankara University, Ankara, Turkey
- Stem Cell Institute, Ankara University, Ankara, Turkey
- *Correspondence: Acelya Yilmazer
| |
Collapse
|
32
|
Zou Y, Li L, Li Y, Chen S, Xie X, Jin X, Wang X, Ma C, Fan G, Wang W. Restoring Cardiac Functions after Myocardial Infarction-Ischemia/Reperfusion via an Exosome Anchoring Conductive Hydrogel. ACS APPLIED MATERIALS & INTERFACES 2021; 13:56892-56908. [PMID: 34823355 DOI: 10.1021/acsami.1c16481] [Citation(s) in RCA: 70] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Both myocardial infarction (MI) and the follow-up reperfusion will lead to an inevitable injury to myocardial tissues, such as cardiac dysfunctions, fibrosis, and reduction of intercellular cell-to-cell interactions. Recently, exosomes (Exo) derived from stem cells have demonstrated a robust capability to promote angiogenesis and tissue repair. However, the short half-life of Exo and rapid clearance lead to insufficient therapeutic doses in the lesion area. Herein, an injectable conductive hydrogel is constructed to bind Exo derived from human umbilical cord mesenchymal stem cells to treat myocardial injuries after myocardial infarction-ischemia/reperfusion (MI-I/R). To this end, a hyperbranched epoxy macromer (EHBPE) grafted by an aniline tetramer (AT) was synthesized to cross-link thiolated hyaluronic acid (HA-SH) and thiolated Exo anchoring a CP05 peptide via an epoxy/thiol "click" reaction. The resulting Gel@Exo composite system possesses multiple features, such as controllable gelation kinetics, shear-thinning injectability, conductivity matching the native myocardium, soft and dynamic stability adapting to heartbeats, and excellent cytocompatibility. After being injected into injured hearts of rats, the hydrogel effectively prolongs the retention of Exo in the ischemic myocardium. The cardiac functions have been considerably improved by Gel@Exo administration, as indicated by the enhancing ejection fraction and fractional shortening, and reducing fibrosis area. Immunofluorescence staining and reverse transcription-polymerase chain reaction (RT-PCR) results demonstrate that the expression of cardiac-related proteins (Cx43, Ki67, CD31, and α-SMA) and genes (VEGF-A, VEGF-B, vWF, TGF-β1, MMP-9, and Serca2a) are remarkably upregulated. The conductive Gel@Exo system can significantly improve cell-to-cell interactions, promote cell proliferation and angiogenesis, and result in a prominent therapeutic effect on MI-I/R, providing a promising therapeutic method for injured myocardial tissues.
Collapse
Affiliation(s)
- Yang Zou
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
- School of Materials Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials, Tianjin University, Tianjin 300350, China
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou 311215, China
| | - Lan Li
- Tianjin Key Laboratory of Translational Research of TCM Prescription and Syndrome, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China
- State Key Laboratory of Component-based Chinese Medicine; Key Laboratory of Pharmacology of Traditional Chinese Medicine Formulae, Ministry of Education; Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Yuan Li
- School of Materials Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials, Tianjin University, Tianjin 300350, China
| | - Si Chen
- School of Materials Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials, Tianjin University, Tianjin 300350, China
| | - Xianhua Xie
- School of Materials Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials, Tianjin University, Tianjin 300350, China
| | - Xin Jin
- School of Materials Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials, Tianjin University, Tianjin 300350, China
| | - Xiaodan Wang
- State Key Laboratory of Component-based Chinese Medicine; Key Laboratory of Pharmacology of Traditional Chinese Medicine Formulae, Ministry of Education; Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Chuanrui Ma
- State Key Laboratory of Component-based Chinese Medicine; Key Laboratory of Pharmacology of Traditional Chinese Medicine Formulae, Ministry of Education; Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Guanwei Fan
- Tianjin Key Laboratory of Translational Research of TCM Prescription and Syndrome, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China
- State Key Laboratory of Component-based Chinese Medicine; Key Laboratory of Pharmacology of Traditional Chinese Medicine Formulae, Ministry of Education; Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Wei Wang
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
- School of Materials Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials, Tianjin University, Tianjin 300350, China
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou 311215, China
| |
Collapse
|
33
|
Chang T, Liu C, Lu K, Wu Y, Xu M, Yu Q, Shen Z, Jiang T, Zhang Y. Biomaterials based cardiac patches for the treatment of myocardial infarction. JOURNAL OF MATERIALS SCIENCE & TECHNOLOGY 2021; 94:77-89. [DOI: 10.1016/j.jmst.2021.03.062] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
34
|
Hansen L, Joseph G, Valdivia A, Taylor WR. Satellite Cell Expression of RAGE (Receptor for Advanced Glycation end Products) Is Important for Collateral Vessel Formation. J Am Heart Assoc 2021; 10:e022127. [PMID: 34689598 PMCID: PMC8751830 DOI: 10.1161/jaha.120.022127] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Background The growth and remodeling of vascular networks is an important component of the prognosis for patients with peripheral artery disease. One protein that has been previously implicated to play a role in this process is RAGE (receptor for advanced glycation end products). This study sought to determine the cellular source of RAGE in the ischemic hind limb and the role of RAGE signaling in this cell type. Methods and Results Using a hind limb ischemia model of vascular growth, this study found skeletal muscle satellite cells to be a novel major cellular source of RAGE in ischemic tissue by both staining and cellular sorting. Although wild-type satellite cells increased tumor necrosis factor-α and monocyte chemoattractant protein-1 production in response to ischemia in vivo and a RAGE ligand in vitro, satellite cells from RAGE knockout mice lacked the increase in cytokine production both in vivo in response to ischemia and in vitro after stimuli with the RAGE ligand high-mobility group box 1. Furthermore, encapsulated wild-type satellite cells improved perfusion after hind limb ischemia surgery by both perfusion staining and vessel quantification, but RAGE knockout satellite cells provided no improvement over empty capsules. Conclusions Thus, RAGE expression and signaling in satellite cells is crucial for their response to stimuli and angiogenic and arteriogenic functions.
Collapse
Affiliation(s)
- Laura Hansen
- Division of Cardiology Department of Medicine Emory University Atlanta GA.,Division of Cardiology Atlanta Veterans Affairs Medical Center Decatur GA
| | - Giji Joseph
- Division of Cardiology Department of Medicine Emory University Atlanta GA
| | - Alejandra Valdivia
- Division of Cardiology Department of Medicine Emory University Atlanta GA
| | - W Robert Taylor
- Division of Cardiology Department of Medicine Emory University Atlanta GA.,Division of Cardiology Atlanta Veterans Affairs Medical Center Decatur GA.,The Wallace H. Coulter Department of Biomedical Engineering Georgia Institute of Technology and Emory University Atlanta GA
| |
Collapse
|
35
|
Báez-Díaz C, Blanco-Blázquez V, Sánchez-Margallo FM, López E, Martín H, Espona-Noguera A, Casado JG, Ciriza J, Pedraz JL, Crisóstomo V. Intrapericardial Delivery of APA-Microcapsules as Promising Stem Cell Therapy Carriers in an Experimental Acute Myocardial Infarction Model. Pharmaceutics 2021; 13:1824. [PMID: 34834235 PMCID: PMC8626005 DOI: 10.3390/pharmaceutics13111824] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 10/15/2021] [Accepted: 10/26/2021] [Indexed: 01/08/2023] Open
Abstract
The administration of cardiosphere-derived cells (CDCs) after acute myocardial infarction (AMI) is very promising. CDC encapsulation in alginate-poly-l-lysine-alginate (APA) could increase cell survival and adherence. The intrapericardial (IP) approach potentially achieves high concentrations of the therapeutic agent in the infarcted area. We aimed to evaluate IP therapy using a saline vehicle as a control (CON), a dose of 30 × 106 CDCs (CDCs) or APA microcapsules containing 30 × 106 CDCs (APA-CDCs) at 72 h in a porcine AMI model. Magnetic resonance imaging (MRI) was used to determine the left ventricular ejection fraction (LVEF), infarct size (IS), and indexed end diastolic and systolic volumes (EDVi; ESVi) pre- and 10 weeks post-injection. Programmed electrical stimulation (PES) was performed to test arrhythmia inducibility before euthanasia. Histopathological analysis was carried out afterwards. The IP infusion was successful in all animals. At 10 weeks, MRI revealed significantly higher LVEF in the APA-CDC group compared with CON. No significant differences were observed among groups in IS, EDVi, ESVi, PES and histopathological analyses. In conclusion, the IP injection of CDCs (microencapsulated or not) was feasible and safe 72 h post-AMI in the porcine model. Moreover, CDCs APA encapsulation could have a beneficial effect on cardiac function, reflected by a higher LVEF at 10 weeks.
Collapse
Affiliation(s)
- Claudia Báez-Díaz
- CIBERCV, Instituto de Salud Carlos III, 28029 Madrid, Spain; (V.B.-B.); (F.M.S.-M.); (V.C.)
- Fundación Centro de Cirugía de Mínima Invasión Jesús Usón, 10071 Cáceres, Spain; (E.L.); (H.M.)
| | - Virginia Blanco-Blázquez
- CIBERCV, Instituto de Salud Carlos III, 28029 Madrid, Spain; (V.B.-B.); (F.M.S.-M.); (V.C.)
- Fundación Centro de Cirugía de Mínima Invasión Jesús Usón, 10071 Cáceres, Spain; (E.L.); (H.M.)
| | - Francisco Miguel Sánchez-Margallo
- CIBERCV, Instituto de Salud Carlos III, 28029 Madrid, Spain; (V.B.-B.); (F.M.S.-M.); (V.C.)
- Fundación Centro de Cirugía de Mínima Invasión Jesús Usón, 10071 Cáceres, Spain; (E.L.); (H.M.)
| | - Esther López
- Fundación Centro de Cirugía de Mínima Invasión Jesús Usón, 10071 Cáceres, Spain; (E.L.); (H.M.)
| | - Helena Martín
- Fundación Centro de Cirugía de Mínima Invasión Jesús Usón, 10071 Cáceres, Spain; (E.L.); (H.M.)
| | - Albert Espona-Noguera
- Centro de Investigaciones y Estudios Avanzados Lucio Lascaray (CIEA), Laboratorio de Desarrollo y Evaluación de Medicamentos, 01006 Vitoria Gasteiz, Spain; (A.E.-N.); (J.L.P.)
- CIBER bbn, Instituto de Salud Carlos III, 28029 Madrid, Spain;
| | - Javier G. Casado
- Immunology Unit-Institute of Molecular Pathology Biomarkers, Veterinary Faculty, University of Extremadura, 10003 Cáceres, Spain;
| | - Jesús Ciriza
- CIBER bbn, Instituto de Salud Carlos III, 28029 Madrid, Spain;
- Tissue Microenvironment (TME) Lab, Aragón Institute of Engineering Research (I3A), University of Zaragoza, 50018 Zaragoza, Spain
| | - José Luis Pedraz
- Centro de Investigaciones y Estudios Avanzados Lucio Lascaray (CIEA), Laboratorio de Desarrollo y Evaluación de Medicamentos, 01006 Vitoria Gasteiz, Spain; (A.E.-N.); (J.L.P.)
- CIBER bbn, Instituto de Salud Carlos III, 28029 Madrid, Spain;
| | - Verónica Crisóstomo
- CIBERCV, Instituto de Salud Carlos III, 28029 Madrid, Spain; (V.B.-B.); (F.M.S.-M.); (V.C.)
- Fundación Centro de Cirugía de Mínima Invasión Jesús Usón, 10071 Cáceres, Spain; (E.L.); (H.M.)
| |
Collapse
|
36
|
Whitaker R, Hernaez-Estrada B, Hernandez RM, Santos-Vizcaino E, Spiller KL. Immunomodulatory Biomaterials for Tissue Repair. Chem Rev 2021; 121:11305-11335. [PMID: 34415742 DOI: 10.1021/acs.chemrev.0c00895] [Citation(s) in RCA: 133] [Impact Index Per Article: 33.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
All implanted biomaterials are targets of the host's immune system. While the host inflammatory response was once considered a detrimental force to be blunted or avoided, in recent years, it has become a powerful force to be leveraged to augment biomaterial-tissue integration and tissue repair. In this review, we will discuss the major immune cells that mediate the inflammatory response to biomaterials, with a focus on how biomaterials can be designed to modulate immune cell behavior to promote biomaterial-tissue integration. In particular, the intentional activation of monocytes and macrophages with controlled timing, and modulation of their interactions with other cell types involved in wound healing, have emerged as key strategies to improve biomaterial efficacy. To this end, careful design of biomaterial structure and controlled release of immunomodulators can be employed to manipulate macrophage phenotype for the maximization of the wound healing response with enhanced tissue integration and repair, as opposed to a typical foreign body response characterized by fibrous encapsulation and implant isolation. We discuss current challenges in the clinical translation of immunomodulatory biomaterials, such as limitations in the use of in vitro studies and animal models to model the human immune response. Finally, we describe future directions and opportunities for understanding and controlling the biomaterial-immune system interface, including the application of new imaging tools, new animal models, the discovery of new cellular targets, and novel techniques for in situ immune cell reprogramming.
Collapse
Affiliation(s)
- Ricardo Whitaker
- School of Biomedical Engineering, Science, and Health Systems, Drexel University, Philadelphia, Pennsylvania 19104, United States
| | - Beatriz Hernaez-Estrada
- School of Biomedical Engineering, Science, and Health Systems, Drexel University, Philadelphia, Pennsylvania 19104, United States.,NanoBioCel Group, Laboratory of Pharmaceutics, School of Pharmacy, University of the Basque Country (UPV/EHU), Vitoria-Gasteiz 01006, Spain
| | - Rosa Maria Hernandez
- NanoBioCel Group, Laboratory of Pharmaceutics, School of Pharmacy, University of the Basque Country (UPV/EHU), Vitoria-Gasteiz 01006, Spain.,Biomedical Research Networking Centre in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Vitoria-Gasteiz 01006, Spain
| | - Edorta Santos-Vizcaino
- NanoBioCel Group, Laboratory of Pharmaceutics, School of Pharmacy, University of the Basque Country (UPV/EHU), Vitoria-Gasteiz 01006, Spain.,Biomedical Research Networking Centre in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Vitoria-Gasteiz 01006, Spain
| | - Kara L Spiller
- School of Biomedical Engineering, Science, and Health Systems, Drexel University, Philadelphia, Pennsylvania 19104, United States
| |
Collapse
|
37
|
Correa S, Grosskopf AK, Lopez Hernandez H, Chan D, Yu AC, Stapleton LM, Appel EA. Translational Applications of Hydrogels. Chem Rev 2021; 121:11385-11457. [PMID: 33938724 PMCID: PMC8461619 DOI: 10.1021/acs.chemrev.0c01177] [Citation(s) in RCA: 413] [Impact Index Per Article: 103.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Indexed: 12/17/2022]
Abstract
Advances in hydrogel technology have unlocked unique and valuable capabilities that are being applied to a diverse set of translational applications. Hydrogels perform functions relevant to a range of biomedical purposes-they can deliver drugs or cells, regenerate hard and soft tissues, adhere to wet tissues, prevent bleeding, provide contrast during imaging, protect tissues or organs during radiotherapy, and improve the biocompatibility of medical implants. These capabilities make hydrogels useful for many distinct and pressing diseases and medical conditions and even for less conventional areas such as environmental engineering. In this review, we cover the major capabilities of hydrogels, with a focus on the novel benefits of injectable hydrogels, and how they relate to translational applications in medicine and the environment. We pay close attention to how the development of contemporary hydrogels requires extensive interdisciplinary collaboration to accomplish highly specific and complex biological tasks that range from cancer immunotherapy to tissue engineering to vaccination. We complement our discussion of preclinical and clinical development of hydrogels with mechanical design considerations needed for scaling injectable hydrogel technologies for clinical application. We anticipate that readers will gain a more complete picture of the expansive possibilities for hydrogels to make practical and impactful differences across numerous fields and biomedical applications.
Collapse
Affiliation(s)
- Santiago Correa
- Materials
Science & Engineering, Stanford University, Stanford, California 94305, United States
| | - Abigail K. Grosskopf
- Chemical
Engineering, Stanford University, Stanford, California 94305, United States
| | - Hector Lopez Hernandez
- Materials
Science & Engineering, Stanford University, Stanford, California 94305, United States
| | - Doreen Chan
- Chemistry, Stanford University, Stanford, California 94305, United States
| | - Anthony C. Yu
- Materials
Science & Engineering, Stanford University, Stanford, California 94305, United States
| | | | - Eric A. Appel
- Materials
Science & Engineering, Stanford University, Stanford, California 94305, United States
- Bioengineering, Stanford University, Stanford, California 94305, United States
- Pediatric
Endocrinology, Stanford University School
of Medicine, Stanford, California 94305, United States
- ChEM-H Institute, Stanford
University, Stanford, California 94305, United States
- Woods
Institute for the Environment, Stanford
University, Stanford, California 94305, United States
| |
Collapse
|
38
|
Poudel BK, Robert MC, Simpson FC, Malhotra K, Jacques L, LaBarre P, Griffith M. In situ Tissue Regeneration in the Cornea from Bench to Bedside. Cells Tissues Organs 2021; 211:506-526. [PMID: 34380144 DOI: 10.1159/000514690] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Accepted: 01/22/2021] [Indexed: 11/19/2022] Open
Abstract
Corneal blindness accounts for 5.1% of visual deficiency and is the fourth leading cause of blindness globally. An additional 1.5-2 million people develop corneal blindness each year, including many children born with or who later develop corneal infections. Over 90% of corneal blind people globally live in low- and middle-income regions (LMIRs), where corneal ulcers are approximately 10-fold higher compared to high-income countries. While corneal transplantation is an effective option for patients in high-income countries, there is a considerable global shortage of corneal graft tissue and limited corneal transplant programs in many LMIRs. In situ tissue regeneration aims to restore diseases or damaged tissues by inducing organ regeneration. This can be achieved in the cornea using biomaterials based on extracellular matrix (ECM) components like collagen, hyaluronic acid, and silk. Solid corneal implants based on recombinant human collagen type III were successfully implanted into patients resulting in regeneration of the corneal epithelium, stroma, and sub-basal nerve plexus. As ECM crosslinking and manufacturing methods improve, the focus of biomaterial development has shifted to injectable, in situ gelling formulations. Collagen, collagen-mimetic, and gelatin-based in situ gelling formulas have shown the ability to repair corneal wounds, surgical incisions, and perforations in in-vivo models. Biomaterial approaches may not be sufficient to treat inflammatory conditions, so other cell-free therapies such as treatment with tolerogenic exosomes and extracellular vesicles may improve treatment outcomes. Overall, many of the technologies described here show promise as future medical devices or combination products with cell or drug-based therapies. In situ tissue regeneration, particularly with liquid formulas, offers the ability to triage and treat corneal injuries and disease with a single regenerative solution, providing alternatives to organ transplantation and improving patient outcomes.
Collapse
Affiliation(s)
- Bijay K Poudel
- Département d'Ophtalmologie, Université de Montréal, Montréal, Québec, Canada.,Centre de Recherche, Hôpital Maisonneuve-Rosemont, Montréal, Québec, Canada
| | - Marie-Claude Robert
- Département d'Ophtalmologie, Université de Montréal, Montréal, Québec, Canada.,Centre de Recherche, Hôpital Maisonneuve-Rosemont, Montréal, Québec, Canada.,Département d'Opthalmologie, Centre hospitalier de l'Université de Montréal, Montréal, Québec, Canada
| | - Fiona C Simpson
- Département d'Ophtalmologie, Université de Montréal, Montréal, Québec, Canada.,Centre de Recherche, Hôpital Maisonneuve-Rosemont, Montréal, Québec, Canada.,Département d'Opthalmologie, Centre hospitalier de l'Université de Montréal, Montréal, Québec, Canada.,Institut du Génie Biomédicale, Université de Montréal, Montréal, Québec, Canada
| | - Kamal Malhotra
- Département d'Ophtalmologie, Université de Montréal, Montréal, Québec, Canada.,Centre de Recherche, Hôpital Maisonneuve-Rosemont, Montréal, Québec, Canada.,Département d'Opthalmologie, Centre hospitalier de l'Université de Montréal, Montréal, Québec, Canada
| | - Ludovic Jacques
- Département d'Ophtalmologie, Université de Montréal, Montréal, Québec, Canada.,Centre de Recherche, Hôpital Maisonneuve-Rosemont, Montréal, Québec, Canada
| | | | - May Griffith
- Département d'Ophtalmologie, Université de Montréal, Montréal, Québec, Canada.,Centre de Recherche, Hôpital Maisonneuve-Rosemont, Montréal, Québec, Canada.,Département d'Opthalmologie, Centre hospitalier de l'Université de Montréal, Montréal, Québec, Canada.,Institut du Génie Biomédicale, Université de Montréal, Montréal, Québec, Canada
| |
Collapse
|
39
|
Doron G, Temenoff JS. Culture Substrates for Improved Manufacture of Mesenchymal Stromal Cell Therapies. Adv Healthc Mater 2021; 10:e2100016. [PMID: 33930252 DOI: 10.1002/adhm.202100016] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 03/22/2021] [Indexed: 02/06/2023]
Abstract
Recent developments in mesenchymal stromal cell (MSC) therapies have increased the demand for tools to improve their manufacture, including the selection of optimal culture substrate materials. While many clinical manufacturers use planar tissue culture plastic (TCP) surfaces for MSC production, others have begun exploring the use of alternative culture substrates that present a variety of spatial, mechanical, and biochemical cues that influence cell expansion and resulting cell quality. In this review, the effects of culture and material properties distinct from traditional planar TCP surfaces on MSC proliferation, surface marker expression, and commonly used indications for therapeutic potency are examined. The different properties summarized include the use of alternative culture formats such as cellular aggregates or 3D scaffolds, as well as the effects of culture substrate stiffness and presentation of specific adhesive ligands and topographical cues. Specific substrate properties can be related to greater cell expansion and improvement in specific therapeutic functionalities, demonstrating the utility of culture materials in further improving the clinical-scale manufacture of highly secretory MSC products.
Collapse
Affiliation(s)
- Gilad Doron
- Wallace H. Coulter Department of Biomedical Engineering Georgia Institute of Technology and Emory University 313 Ferst Drive Atlanta GA 30332 USA
- Parker H. Petit Institute for Bioengineering and Bioscience Georgia Institute of Technology Atlanta GA 30332 USA
| | - Johnna S. Temenoff
- Wallace H. Coulter Department of Biomedical Engineering Georgia Institute of Technology and Emory University 313 Ferst Drive Atlanta GA 30332 USA
- Parker H. Petit Institute for Bioengineering and Bioscience Georgia Institute of Technology Atlanta GA 30332 USA
| |
Collapse
|
40
|
Yang VK, Meola DM, Davis A, Barton B, Hoffman AM. Intravenous administration of allogeneic Wharton jelly-derived mesenchymal stem cells for treatment of dogs with congestive heart failure secondary to myxomatous mitral valve disease. Am J Vet Res 2021; 82:487-493. [PMID: 34032485 DOI: 10.2460/ajvr.82.6.487] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
OBJECTIVE To evaluate whether mesenchymal stem cells (MSCs) can be safely administered IV to dogs with congestive heart failure (CHF) secondary to myxomatous mitral valve disease (MMVD) to improve cardiac function and prolong survival time. ANIMALS 10 client-owned dogs with CHF secondary to MMVD. PROCEDURES Dogs with an initial episode of CHF secondary to MMVD were enrolled in a double-blind, placebo-controlled clinical trial. Five dogs in the MSC group received allogeneic Wharton jelly-derived MSCs (2 × 106 cells/kg, IV), and 5 dogs in the placebo group received a 1% solution of autologous serum (IV) for 3 injections 3 weeks apart. Cell-release criteria included trilineage differentiation, expression of CD44 and CD90 and not CD34 and major histocompatability complex class II, normal karyotype, and absence of contamination by pathogenic microorganisms. Patients were followed for 6 months or until death or euthanasia. Echocardiographic data, ECG findings, serum cardiac biomarker concentrations, CBC, and serum biochemical analysis results were obtained prior to and 4 hours after the first injection and every 3 months after the final injection. RESULTS Lymphocyte and eosinophil counts decreased significantly 4 hours after injection, and monocytes decreased significantly only in dogs that received an MSC injection. No significant differences were seen in the echocardiographic variables, ECG results, serum cardiac biomarker concentrations, survival time, and time to first diuretic drug dosage escalation between the 2 groups. CONCLUSIONS AND CLINICAL RELEVANCE This study showed that MSCs can be easily collected from canine Wharton jelly as an allogeneic source of MSCs and can be safely delivered IV to dogs with CHF secondary to MMVD.
Collapse
|
41
|
Ghanta RK, Aghlara-Fotovat S, Pugazenthi A, Ryan CT, Singh VP, Mathison M, Jarvis MI, Mukherjee S, Hernandez A, Veiseh O. Immune-modulatory alginate protects mesenchymal stem cells for sustained delivery of reparative factors to ischemic myocardium. Biomater Sci 2021; 8:5061-5070. [PMID: 32797143 DOI: 10.1039/d0bm00855a] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Paracrine factors secreted by mesenchymal stem cells (MSCs) have been previously shown to improve cardiac function following acute myocardial infarction (MI). However, cell therapy activates the innate immune response, leading to the rapid elimination of transplanted cells and only short-term therapeutic delivery. Herein, we describe a new strategy to deliver sustained paracrine-mediated MSC therapy to ischemic myocardium. Using an immune evasive, small molecule modified alginate, we encapsulated rat MSC cells in a core-shell hydrogel capsule and implanted them in the pericardial sac of post-MI rats. Encapsulated cells allowed diffusion of reparative paracrine factors at levels similar to non-encapsulated cells in vitro. Encapsulation enabled sustained cell survival with localization over the heart for 2 weeks. The effect of the experimental group on ventricular function and fibrosis was compared with blank (cell free) capsules and unencapsulated MSCs injected into infarcted myocardium. MSC capsules improved post-MI ventricular function ∼2.5× greater than MSC injection. After 4 weeks, post-MI fibrosis was reduced ∼2/3 with MSC capsules, but unchanged with MSC injection. MSC encapsulation with alginate core-shell capsules sustains cell survival and potentiates efficacy of therapy.
Collapse
Affiliation(s)
- Ravi K Ghanta
- Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, TX, USA.
| | | | - Aarthi Pugazenthi
- Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, TX, USA.
| | - Christopher T Ryan
- Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, TX, USA.
| | - Vivek P Singh
- Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, TX, USA.
| | - Megumi Mathison
- Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, TX, USA.
| | - Maria I Jarvis
- Department of Bioengineering, Rice University, Houston, TX, USA.
| | - Sudip Mukherjee
- Department of Bioengineering, Rice University, Houston, TX, USA.
| | - Andrea Hernandez
- Department of Bioengineering, Rice University, Houston, TX, USA.
| | - Omid Veiseh
- Department of Bioengineering, Rice University, Houston, TX, USA.
| |
Collapse
|
42
|
Static and dynamic culture of human endothelial cells encapsulated inside alginate-gelatin microspheres. Microvasc Res 2021; 137:104174. [PMID: 33971187 DOI: 10.1016/j.mvr.2021.104174] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 04/28/2021] [Accepted: 04/30/2021] [Indexed: 01/01/2023]
Abstract
This study aimed to explore the angiogenesis potential of human endothelial cells encapsulated inside alginate-gelatin microspheres under static and dynamic culture systems after 7 days. Human umbilical vein endothelial cells were encapsulated inside alginate (1%) and gelatin (1.2%) using an electrostatic encapsulation method. Cells were incubated for 7 days in vitro. The cell survival rate was measured using the MTT assay. The expression of VEGFR-2 and von Willebrand factor genes was studied by real-time PCR assay. Using western blot analysis, we monitored the protein contents of VEGFR-2, vWF, and Caspase 3. The levels of SOD and GPx enzymes were calculated using biochemical kits. Angiogenesis potential was assessed using in vitro Matrigel assay. Data showed an increased survival rate in encapsulated cells cultured under the static condition compared to the conventional 2D condition (p < 0.05). The culture of encapsulated cells under a dynamic bioreactor system did not alter cell viability. Compared to the dynamic culture system, the incubation of encapsulated cells in the static culture system swelled the microspheres (p < 0.05). Both dynamic and static culture models increased the expression of VEGFR-2 and von Willebrand factor in encapsulated cells compared to 2D culture (p < 0.05), showing enhanced functional maturation. Data showed a significant increase of vWF and reduction of apoptosis marker Caspase in the dynamic culture system (p < 0.05). The levels of SOD and GPx were significantly increased in dynamic and static culture models as compared to the control 2D group (p < 0.05). In vitro tubulogenesis assay showed significant induction of angiogenesis in dynamic encapsulated HUVECs indicated with a large number of vascular tubes and arborized ECs compared to the control and static encapsulated HUVECs (p < 0.05). The current study suggests a bioreactor dynamic system is a reliable approach, similar to a static condition, for the expansion of encapsulated human ECs in a 3D milieu.
Collapse
|
43
|
Cho S, Lee C, Skylar-Scott MA, Heilshorn SC, Wu JC. Reconstructing the heart using iPSCs: Engineering strategies and applications. J Mol Cell Cardiol 2021; 157:56-65. [PMID: 33895197 DOI: 10.1016/j.yjmcc.2021.04.006] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 04/07/2021] [Accepted: 04/19/2021] [Indexed: 12/14/2022]
Abstract
Induced pluripotent stem cells (iPSCs) have emerged as a key component of cardiac tissue engineering, enabling studies of cardiovascular disease mechanisms, drug responses, and developmental processes in human 3D tissue models assembled from isogenic cells. Since the very first engineered heart tissues were introduced more than two decades ago, a wide array of iPSC-derived cardiac spheroids, organoids, and heart-on-a-chip models have been developed incorporating the latest available technologies and materials. In this review, we will first outline the fundamental biological building blocks required to form a functional unit of cardiac muscle, including iPSC-derived cells differentiated by soluble factors (e.g., small molecules), extracellular matrix scaffolds, and exogenous biophysical maturation cues. We will then summarize the different fabrication approaches and strategies employed to reconstruct the heart in vitro at varying scales and geometries. Finally, we will discuss how these platforms, with continued improvements in scalability and tissue maturity, can contribute to both basic cardiovascular research and clinical applications in the future.
Collapse
Affiliation(s)
- Sangkyun Cho
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA 94025, USA; Department of Medicine, Division of Cardiovascular Medicine, Stanford University School of Medicine, Stanford, CA 94025, USA
| | - Chelsea Lee
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA 94025, USA; Department of Medicine, Division of Cardiovascular Medicine, Stanford University School of Medicine, Stanford, CA 94025, USA
| | - Mark A Skylar-Scott
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA 94025, USA; Betty Irene Moore Children's Heart Center, Stanford Children's Health, Stanford, CA 94025, USA
| | - Sarah C Heilshorn
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA 94025, USA; Department of Materials Science and Engineering, Stanford University, Stanford, CA 94025, USA
| | - Joseph C Wu
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA 94025, USA; Department of Medicine, Division of Cardiovascular Medicine, Stanford University School of Medicine, Stanford, CA 94025, USA.
| |
Collapse
|
44
|
Wechsler ME, Rao VV, Borelli AN, Anseth KS. Engineering the MSC Secretome: A Hydrogel Focused Approach. Adv Healthc Mater 2021; 10:e2001948. [PMID: 33594836 PMCID: PMC8035320 DOI: 10.1002/adhm.202001948] [Citation(s) in RCA: 73] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 01/21/2021] [Indexed: 02/06/2023]
Abstract
The therapeutic benefits of exogenously delivered mesenchymal stromal/stem cells (MSCs) have been largely attributed to their secretory properties. However, clinical translation of MSC-based therapies is hindered due to loss of MSC regenerative properties during large-scale expansion and low survival/retention post-delivery. These limitations might be overcome by designing hydrogel culture platforms to modulate the MSC microenvironment. Hydrogel systems could be engineered to i) promote MSC proliferation and maintain regenerative properties (i.e., stemness and secretion) during ex vivo expansion, ii) improve MSC survival, retention, and engraftment in vivo, and/or iii) direct the MSC secretory profile using tailored biochemical and biophysical cues. Herein, it is reviewed how hydrogel material properties (i.e., matrix modulus, viscoelasticity, dimensionality, cell adhesion, and porosity) influence MSC secretion, mediated through cell-matrix and cell-cell interactions. In addition, it is highlighted how biochemical cues (i.e., small molecules, peptides, and proteins) can improve and direct the MSC secretory profile. Last, the authors' perspective is provided on future work toward the understanding of how microenvironmental cues influence the MSC secretome, and designing the next generation of biomaterials, with optimized biophysical and biochemical cues, to direct the MSC secretory profile for improved clinical translation outcomes.
Collapse
Affiliation(s)
- Marissa E Wechsler
- Department of Chemical and Biological Engineering, University of Colorado-Boulder, 3415 Colorado Avenue, Boulder, CO, 80303, USA
- BioFrontiers Institute, University of Colorado-Boulder, 3415 Colorado Avenue, Boulder, CO, 80303, USA
| | - Varsha V Rao
- Department of Chemical and Biological Engineering, University of Colorado-Boulder, 3415 Colorado Avenue, Boulder, CO, 80303, USA
- BioFrontiers Institute, University of Colorado-Boulder, 3415 Colorado Avenue, Boulder, CO, 80303, USA
| | - Alexandra N Borelli
- Department of Chemical and Biological Engineering, University of Colorado-Boulder, 3415 Colorado Avenue, Boulder, CO, 80303, USA
- BioFrontiers Institute, University of Colorado-Boulder, 3415 Colorado Avenue, Boulder, CO, 80303, USA
| | - Kristi S Anseth
- Department of Chemical and Biological Engineering, University of Colorado-Boulder, 3415 Colorado Avenue, Boulder, CO, 80303, USA
- BioFrontiers Institute, University of Colorado-Boulder, 3415 Colorado Avenue, Boulder, CO, 80303, USA
| |
Collapse
|
45
|
Maynard SA, Pchelintseva E, Zwi-Dantsis L, Nagelkerke A, Gopal S, Korchev YE, Shevchuk A, Stevens MM. IL-1β mediated nanoscale surface clustering of integrin α5β1 regulates the adhesion of mesenchymal stem cells. Sci Rep 2021; 11:6890. [PMID: 33767269 PMCID: PMC7994456 DOI: 10.1038/s41598-021-86315-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Accepted: 03/10/2021] [Indexed: 12/18/2022] Open
Abstract
Clinical use of human mesenchymal stem cells (hMSCs) is limited due to their rapid clearance, reducing their therapeutic efficacy. The inflammatory cytokine IL-1β activates hMSCs and is known to enhance their engraftment. Consequently, understanding the molecular mechanism of this inflammation-triggered adhesion is of great clinical interest to improving hMSC retention at sites of tissue damage. Integrins are cell-matrix adhesion receptors, and clustering of integrins at the nanoscale underlies cell adhesion. Here, we found that IL-1β enhances adhesion of hMSCs via increased focal adhesion contacts in an α5β1 integrin-specific manner. Further, through quantitative super-resolution imaging we elucidated that IL-1β specifically increases nanoscale integrin α5β1 availability and clustering at the plasma membrane, whilst conserving cluster area. Taken together, these results demonstrate that hMSC adhesion via IL-1β stimulation is partly regulated through integrin α5β1 spatial organization at the cell surface. These results provide new insight into integrin clustering in inflammation and provide a rational basis for design of therapies directed at improving hMSC engraftment.
Collapse
Affiliation(s)
- Stephanie A. Maynard
- grid.7445.20000 0001 2113 8111Department of Materials, Department of Bioengineering and Institute of Biomedical Engineering, Imperial College London, London, SW7 2AZ UK
| | - Ekaterina Pchelintseva
- grid.7445.20000 0001 2113 8111Department of Materials, Department of Bioengineering and Institute of Biomedical Engineering, Imperial College London, London, SW7 2AZ UK
| | - Limor Zwi-Dantsis
- grid.7445.20000 0001 2113 8111Department of Materials, Department of Bioengineering and Institute of Biomedical Engineering, Imperial College London, London, SW7 2AZ UK
| | - Anika Nagelkerke
- grid.7445.20000 0001 2113 8111Department of Materials, Department of Bioengineering and Institute of Biomedical Engineering, Imperial College London, London, SW7 2AZ UK
| | - Sahana Gopal
- grid.7445.20000 0001 2113 8111Department of Materials, Department of Bioengineering and Institute of Biomedical Engineering, Imperial College London, London, SW7 2AZ UK ,grid.7445.20000 0001 2113 8111Department of Medicine, Imperial College London, London, W12 0NN UK
| | - Yuri E. Korchev
- grid.7445.20000 0001 2113 8111Department of Medicine, Imperial College London, London, W12 0NN UK
| | - Andrew Shevchuk
- grid.7445.20000 0001 2113 8111Department of Medicine, Imperial College London, London, W12 0NN UK
| | - Molly M. Stevens
- grid.7445.20000 0001 2113 8111Department of Materials, Department of Bioengineering and Institute of Biomedical Engineering, Imperial College London, London, SW7 2AZ UK
| |
Collapse
|
46
|
Peng H, Chelvarajan L, Donahue R, Gottipati A, Cahall CF, Davis KA, Tripathi H, Al-Darraji A, Elsawalhy E, Dobrozsi N, Srinivasan A, Levitan BM, Kong R, Gao E, Abdel-Latif A, Berron BJ. Polymer Cell Surface Coating Enhances Mesenchymal Stem Cell Retention and Cardiac Protection. ACS APPLIED BIO MATERIALS 2021; 4:1655-1667. [PMID: 35014513 DOI: 10.1021/acsabm.0c01473] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Mesenchymal stem cell (MSC) therapy has been widely tested in clinical trials to promote healing post-myocardial infarction. However, low cell retention and the need for a large donor cell number in human studies remain a key challenge for clinical translation. Natural biomaterials such as gelatin are ideally suited as scaffolds to deliver and enhance cell engraftment after transplantation. A potential drawback of MSC encapsulation in the hydrogel is that the bulky matrix may limit their biological function and interaction with the surrounding tissue microenvironment that conveys important injury signals. To overcome this limitation, we adopted a gelatin methacrylate (gelMA) cell-coating technique that photocross-links gelatin on the individual cell surface at the nanoscale. The present study investigated the cardiac protection of gelMA coated, hypoxia preconditioned MSCs (gelMA-MSCs) in a murine myocardial infarction (MI) model. We demonstrate that the direct injection of gelMA-MSC results in significantly higher myocardial engraftment 7 days after MI compared to uncoated MSCs. GelMA-MSC further amplified MSC benefits resulting in enhanced cardioprotection as measured by cardiac function, scar size, and angiogenesis. Improved MSC cardiac retention also led to a greater cardiac immunomodulatory function after injury. Taken together, this study demonstrated the efficacy of gelMA-MSCs in treating cardiac injury with a promising potential to reduce the need for donor MSCs through enhanced myocardial engraftment.
Collapse
Affiliation(s)
- Hsuan Peng
- Gill Heart and Vascular Institute and Division of Cardiovascular Medicine, University of Kentucky and the Lexington VA Medical Center, Lexington, Kentucky 40508, United States
| | - Lakshman Chelvarajan
- Gill Heart and Vascular Institute and Division of Cardiovascular Medicine, University of Kentucky and the Lexington VA Medical Center, Lexington, Kentucky 40508, United States
| | - Renee Donahue
- Gill Heart and Vascular Institute and Division of Cardiovascular Medicine, University of Kentucky and the Lexington VA Medical Center, Lexington, Kentucky 40508, United States
| | - Anuhya Gottipati
- Department of Chemical and Materials Engineering, University of Kentucky, Lexington, Kentucky 40506, United States
| | - Calvin F Cahall
- Department of Chemical and Materials Engineering, University of Kentucky, Lexington, Kentucky 40506, United States
| | - Kara A Davis
- Department of Chemical and Materials Engineering, University of Kentucky, Lexington, Kentucky 40506, United States
| | - Himi Tripathi
- Gill Heart and Vascular Institute and Division of Cardiovascular Medicine, University of Kentucky and the Lexington VA Medical Center, Lexington, Kentucky 40508, United States
| | - Ahmed Al-Darraji
- Gill Heart and Vascular Institute and Division of Cardiovascular Medicine, University of Kentucky and the Lexington VA Medical Center, Lexington, Kentucky 40508, United States
| | - Eman Elsawalhy
- Gill Heart and Vascular Institute and Division of Cardiovascular Medicine, University of Kentucky and the Lexington VA Medical Center, Lexington, Kentucky 40508, United States
| | - Nicholas Dobrozsi
- Gill Heart and Vascular Institute and Division of Cardiovascular Medicine, University of Kentucky and the Lexington VA Medical Center, Lexington, Kentucky 40508, United States
| | - Amrita Srinivasan
- Gill Heart and Vascular Institute and Division of Cardiovascular Medicine, University of Kentucky and the Lexington VA Medical Center, Lexington, Kentucky 40508, United States
| | - Bryana M Levitan
- Gill Heart and Vascular Institute and Division of Cardiovascular Medicine, University of Kentucky and the Lexington VA Medical Center, Lexington, Kentucky 40508, United States.,Department of Physiology, University of Kentucky, Lexington, Kentucky 40508, United States
| | - Raymond Kong
- MilliporeSigma, Seattle, Washington 98119, United States
| | - Erhe Gao
- The Center for Translational Medicine, Temple University School of Medicine, Philadelphia, Pennsylvania 19140, United States
| | - Ahmed Abdel-Latif
- Gill Heart and Vascular Institute and Division of Cardiovascular Medicine, University of Kentucky and the Lexington VA Medical Center, Lexington, Kentucky 40508, United States
| | - Brad J Berron
- Department of Chemical and Materials Engineering, University of Kentucky, Lexington, Kentucky 40506, United States
| |
Collapse
|
47
|
Majid QA, Fricker ATR, Gregory DA, Davidenko N, Hernandez Cruz O, Jabbour RJ, Owen TJ, Basnett P, Lukasiewicz B, Stevens M, Best S, Cameron R, Sinha S, Harding SE, Roy I. Natural Biomaterials for Cardiac Tissue Engineering: A Highly Biocompatible Solution. Front Cardiovasc Med 2020; 7:554597. [PMID: 33195451 PMCID: PMC7644890 DOI: 10.3389/fcvm.2020.554597] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Accepted: 09/10/2020] [Indexed: 02/06/2023] Open
Abstract
Cardiovascular diseases (CVD) constitute a major fraction of the current major global diseases and lead to about 30% of the deaths, i.e., 17.9 million deaths per year. CVD include coronary artery disease (CAD), myocardial infarction (MI), arrhythmias, heart failure, heart valve diseases, congenital heart disease, and cardiomyopathy. Cardiac Tissue Engineering (CTE) aims to address these conditions, the overall goal being the efficient regeneration of diseased cardiac tissue using an ideal combination of biomaterials and cells. Various cells have thus far been utilized in pre-clinical studies for CTE. These include adult stem cell populations (mesenchymal stem cells) and pluripotent stem cells (including autologous human induced pluripotent stem cells or allogenic human embryonic stem cells) with the latter undergoing differentiation to form functional cardiac cells. The ideal biomaterial for cardiac tissue engineering needs to have suitable material properties with the ability to support efficient attachment, growth, and differentiation of the cardiac cells, leading to the formation of functional cardiac tissue. In this review, we have focused on the use of biomaterials of natural origin for CTE. Natural biomaterials are generally known to be highly biocompatible and in addition are sustainable in nature. We have focused on those that have been widely explored in CTE and describe the original work and the current state of art. These include fibrinogen (in the context of Engineered Heart Tissue, EHT), collagen, alginate, silk, and Polyhydroxyalkanoates (PHAs). Amongst these, fibrinogen, collagen, alginate, and silk are isolated from natural sources whereas PHAs are produced via bacterial fermentation. Overall, these biomaterials have proven to be highly promising, displaying robust biocompatibility and, when combined with cells, an ability to enhance post-MI cardiac function in pre-clinical models. As such, CTE has great potential for future clinical solutions and hence can lead to a considerable reduction in mortality rates due to CVD.
Collapse
Affiliation(s)
- Qasim A. Majid
- Faculty of Medicine, National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - Annabelle T. R. Fricker
- Department of Material Science and Engineering, Faculty of Engineering, University of Sheffield, Sheffield, United Kingdom
| | - David A. Gregory
- Department of Material Science and Engineering, Faculty of Engineering, University of Sheffield, Sheffield, United Kingdom
| | - Natalia Davidenko
- Department of Materials Science and Metallurgy, Cambridge Centre for Medical Materials, University of Cambridge, Cambridge, United Kingdom
| | - Olivia Hernandez Cruz
- Faculty of Medicine, National Heart and Lung Institute, Imperial College London, London, United Kingdom
- Department of Bioengineering, Department of Materials, IBME, Faculty of Engineering, Imperial College London, United Kingdom
| | - Richard J. Jabbour
- Faculty of Medicine, National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - Thomas J. Owen
- Faculty of Medicine, National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - Pooja Basnett
- Applied Biotechnology Research Group, School of Life Sciences, College of Liberal Arts and Sciences, University of Westminster, London, United Kingdom
| | - Barbara Lukasiewicz
- Applied Biotechnology Research Group, School of Life Sciences, College of Liberal Arts and Sciences, University of Westminster, London, United Kingdom
| | - Molly Stevens
- Department of Bioengineering, Department of Materials, IBME, Faculty of Engineering, Imperial College London, United Kingdom
| | - Serena Best
- Department of Materials Science and Metallurgy, Cambridge Centre for Medical Materials, University of Cambridge, Cambridge, United Kingdom
| | - Ruth Cameron
- Department of Materials Science and Metallurgy, Cambridge Centre for Medical Materials, University of Cambridge, Cambridge, United Kingdom
| | - Sanjay Sinha
- Wellcome-MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, United Kingdom
| | - Sian E. Harding
- Faculty of Medicine, National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - Ipsita Roy
- Faculty of Medicine, National Heart and Lung Institute, Imperial College London, London, United Kingdom
- Department of Material Science and Engineering, Faculty of Engineering, University of Sheffield, Sheffield, United Kingdom
| |
Collapse
|
48
|
Su T, Huang K, Mathews KG, Scharf VF, Hu S, Li Z, Frame BN, Cores J, Dinh PU, Daniele MA, Ligler FS, Cheng K. Cardiac Stromal Cell Patch Integrated with Engineered Microvessels Improves Recovery from Myocardial Infarction in Rats and Pigs. ACS Biomater Sci Eng 2020; 6:6309-6320. [PMID: 33449654 DOI: 10.1021/acsbiomaterials.0c00942] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The vascularized cardiac patch strategy is promising for ischemic heart repair after myocardial infarction (MI), but current fabrication processes are quite complicated. Vascularized cardiac patches that can promote concurrent restoration of both the myocardium and vasculature at the injured site in a large animal model remain elusive. The safety and therapeutic benefits of a cardiac stromal cell patch integrated with engineered biomimetic microvessels (BMVs) were determined for treating MI. By leveraging a microfluidic method employing hydrodynamic focusing, we constructed the endothelialized microvessels and then encapsulated them together with therapeutic cardiosphere-derived stromal cells (CSCs) in a fibrin gel to generate a prevascularized cardiac stromal cell patch (BMV-CSC patch). We showed that BMV-CSC patch transplantation significantly promoted cardiac function, reduced scar size, increased viable myocardial tissue, promoted neovascularization, and suppressed inflammation in rat and porcine MI models, demonstrating enhanced therapeutic efficacy compared to conventional cardiac stromal cell patches. BMV-CSC patches did not increase renal and hepatic toxicity or exhibit immunogenicity. We noted a significant increase in endogenous progenitor cell recruitment to the peri-infarct region of the porcine hearts treated with BMV-CSC patch as compared to those that received control treatments. These findings establish the BMV-CSC patch as a novel engineered-tissue therapeutic for ischemic tissue repair.
Collapse
Affiliation(s)
- Teng Su
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Raleigh, North Carolina 27695, United States.,Department of Molecular Biomedical Sciences and Comparative Medicine Institute, North Carolina State University, Raleigh, North Carolina 27607, United States
| | - Ke Huang
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Raleigh, North Carolina 27695, United States.,Department of Molecular Biomedical Sciences and Comparative Medicine Institute, North Carolina State University, Raleigh, North Carolina 27607, United States
| | - Kyle G Mathews
- Department of Clinical Sciences, North Carolina State University, Raleigh, North Carolina 27607, United States
| | - Valery F Scharf
- Department of Clinical Sciences, North Carolina State University, Raleigh, North Carolina 27607, United States
| | - Shiqi Hu
- Department of Molecular Biomedical Sciences and Comparative Medicine Institute, North Carolina State University, Raleigh, North Carolina 27607, United States
| | - Zhenhua Li
- Department of Molecular Biomedical Sciences and Comparative Medicine Institute, North Carolina State University, Raleigh, North Carolina 27607, United States
| | - Brianna N Frame
- Division of Cardiothoracic Surgery, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Jhon Cores
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Raleigh, North Carolina 27695, United States.,Department of Molecular Biomedical Sciences and Comparative Medicine Institute, North Carolina State University, Raleigh, North Carolina 27607, United States
| | - Phuong-Uyen Dinh
- Department of Molecular Biomedical Sciences and Comparative Medicine Institute, North Carolina State University, Raleigh, North Carolina 27607, United States
| | - Michael A Daniele
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Raleigh, North Carolina 27695, United States.,Department of Electrical and Computer Engineering, North Carolina State University, Raleigh, North Carolina 27695, United States
| | - Frances S Ligler
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Raleigh, North Carolina 27695, United States
| | - Ke Cheng
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Raleigh, North Carolina 27695, United States.,Department of Molecular Biomedical Sciences and Comparative Medicine Institute, North Carolina State University, Raleigh, North Carolina 27607, United States.,Divison of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| |
Collapse
|
49
|
Levy O, Kuai R, Siren EMJ, Bhere D, Milton Y, Nissar N, De Biasio M, Heinelt M, Reeve B, Abdi R, Alturki M, Fallatah M, Almalik A, Alhasan AH, Shah K, Karp JM. Shattering barriers toward clinically meaningful MSC therapies. SCIENCE ADVANCES 2020; 6:eaba6884. [PMID: 32832666 PMCID: PMC7439491 DOI: 10.1126/sciadv.aba6884] [Citation(s) in RCA: 385] [Impact Index Per Article: 77.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Accepted: 06/05/2020] [Indexed: 05/11/2023]
Abstract
More than 1050 clinical trials are registered at FDA.gov that explore multipotent mesenchymal stromal cells (MSCs) for nearly every clinical application imaginable, including neurodegenerative and cardiac disorders, perianal fistulas, graft-versus-host disease, COVID-19, and cancer. Several companies have or are in the process of commercializing MSC-based therapies. However, most of the clinical-stage MSC therapies have been unable to meet primary efficacy end points. The innate therapeutic functions of MSCs administered to humans are not as robust as demonstrated in preclinical studies, and in general, the translation of cell-based therapy is impaired by a myriad of steps that introduce heterogeneity. In this review, we discuss the major clinical challenges with MSC therapies, the details of these challenges, and the potential bioengineering approaches that leverage the unique biology of MSCs to overcome the challenges and achieve more potent and versatile therapies.
Collapse
Affiliation(s)
- Oren Levy
- Center for Nanomedicine and Division of Engineering in Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Harvard-MIT Division of Health Sciences and Technology, Boston, MA, USA
| | - Rui Kuai
- Center for Nanomedicine and Division of Engineering in Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Harvard-MIT Division of Health Sciences and Technology, Boston, MA, USA
- BWH Center of Excellence for Biomedicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Erika M. J. Siren
- Center for Nanomedicine and Division of Engineering in Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Harvard-MIT Division of Health Sciences and Technology, Boston, MA, USA
| | - Deepak Bhere
- BWH Center of Excellence for Biomedicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
- Center for Stem Cell Therapeutics and Imaging, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Yuka Milton
- Center for Nanomedicine and Division of Engineering in Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Harvard-MIT Division of Health Sciences and Technology, Boston, MA, USA
| | - Nabeel Nissar
- Center for Stem Cell Therapeutics and Imaging, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Michael De Biasio
- Center for Nanomedicine and Division of Engineering in Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Harvard-MIT Division of Health Sciences and Technology, Boston, MA, USA
| | - Martina Heinelt
- Center for Nanomedicine and Division of Engineering in Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Harvard-MIT Division of Health Sciences and Technology, Boston, MA, USA
| | - Brock Reeve
- Harvard Stem Cell Institute, Harvard University, Cambridge, MA, USA
| | - Reza Abdi
- Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Meshael Alturki
- National Center of Pharmaceutical Technology, Life Science and Environment Research Institute, King Abdulaziz City for Science and Technology (KACST), Riyadh, Saudi Arabia
- KACST Center of Excellence for Biomedicine, Joint Centers of Excellence Program, King Abdulaziz City for Science and Technology (KACST), Riyadh, Saudi Arabia
| | - Mohanad Fallatah
- KACST Center of Excellence for Biomedicine, Joint Centers of Excellence Program, King Abdulaziz City for Science and Technology (KACST), Riyadh, Saudi Arabia
| | - Abdulaziz Almalik
- National Center of Pharmaceutical Technology, Life Science and Environment Research Institute, King Abdulaziz City for Science and Technology (KACST), Riyadh, Saudi Arabia
- KACST Center of Excellence for Biomedicine, Joint Centers of Excellence Program, King Abdulaziz City for Science and Technology (KACST), Riyadh, Saudi Arabia
| | - Ali H. Alhasan
- National Center of Pharmaceutical Technology, Life Science and Environment Research Institute, King Abdulaziz City for Science and Technology (KACST), Riyadh, Saudi Arabia
- KACST Center of Excellence for Biomedicine, Joint Centers of Excellence Program, King Abdulaziz City for Science and Technology (KACST), Riyadh, Saudi Arabia
| | - Khalid Shah
- BWH Center of Excellence for Biomedicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
- Center for Stem Cell Therapeutics and Imaging, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
- Harvard Stem Cell Institute, Harvard University, Cambridge, MA, USA
| | - Jeffrey M. Karp
- Center for Nanomedicine and Division of Engineering in Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Harvard-MIT Division of Health Sciences and Technology, Boston, MA, USA
- BWH Center of Excellence for Biomedicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
- Harvard Stem Cell Institute, Harvard University, Cambridge, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| |
Collapse
|
50
|
Barre A, Naudot M, Colin F, Sevestre H, Collet L, Devauchelle B, Lack S, Marolleau JP, Le Ricousse S. An Alginate-Based Hydrogel with a High Angiogenic Capacity and a High Osteogenic Potential. Biores Open Access 2020; 9:174-182. [PMID: 32642332 PMCID: PMC7337169 DOI: 10.1089/biores.2020.0010] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/28/2020] [Indexed: 12/22/2022] Open
Abstract
In bone tissue engineering, autologous cells are combined with osteoconductive scaffolds and implanted into bone defects. The major challenge is the lack of post-implantation vascular growth into biomaterial. The objective of the present study was to develop a new alginate-based hydrogel that enhances the regeneration of bone defects after surgery. The viability of human bone marrow-derived mesenchymal stem cells (BM-MSCs) or human endothelial cells (ECs) cultured alone or together on the hydrogel was analyzed for 24 and 96 h. After seeding, the cells self-assembled and aggregated to form clusters. For functional validation, empty or cellularized hydrogel matrices were implanted ectopically at subcutaneous sites in nude mice. After 2 months, the matrices were explanted. Transplanted human cells were present, and we observed vessels expressing human von Willebrand factor (resulting from the incorporation of transplanted ECs into neovessels and/or the differentiation of BM-MSCs into ECs). The addition of BM-MSCs improved host vascularization and neovessel formation from human cells, relative to ECs alone. Although we did not observe bone formation, the transplanted BM-MSCs were able to differentiate into osteoblasts. This new biomaterial provided an appropriate three-dimensional environment for transplanted cells and has a high angiogenic capacity and an osteogenic potential.
Collapse
Affiliation(s)
- Anaïs Barre
- EA7516, CHIMERE, Jules Verne University of Picardie, Amiens, France
| | - Marie Naudot
- EA7516, CHIMERE, Jules Verne University of Picardie, Amiens, France
| | | | - Henri Sevestre
- Department of Pathology and Anatomy, Amiens University Medical Center, Amiens, France
| | - Louison Collet
- EA4666 HEMATIM, Jules Verne University of Picardie, Amiens, France
| | - Bernard Devauchelle
- EA7516, CHIMERE, Jules Verne University of Picardie, Amiens, France.,Department of Maxillofacial Surgery, Amiens University Medical Center, Amiens, France.,Facing Faces Institute, Amiens, France
| | | | - Jean-Pierre Marolleau
- EA4666 HEMATIM, Jules Verne University of Picardie, Amiens, France.,Facing Faces Institute, Amiens, France.,Department of Hematology, Amiens University Medical Center, Amiens, France
| | - Sophie Le Ricousse
- EA7516, CHIMERE, Jules Verne University of Picardie, Amiens, France.,Facing Faces Institute, Amiens, France
| |
Collapse
|