1
|
Albokhari D, Bailey CR, Hwang F, Weiss CR, Forsberg J, Sobreira N. Venous malformation may be a feature of EXT1-related hereditary multiple exostoses: A report of two unrelated probands. Am J Med Genet A 2023; 191:1570-1575. [PMID: 36869625 DOI: 10.1002/ajmg.a.63158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 02/07/2023] [Accepted: 02/09/2023] [Indexed: 03/05/2023]
Abstract
Hereditary multiple exostoses (HME), also known as hereditary multiple osteochondroma (HMO), is an autosomal dominant disorder caused by pathogenic variants in exostosin-1 or -2 (EXT1 or EXT2). It is characterized by the formation of multiple benign growing osteochondromas (exostoses) that most commonly affect the long bones; however, it may also occur throughout the body. Although many of these lesions are clinically asymptomatic, some can lead to chronic pain and skeletal deformities and interfere with adjacent neurovascular structures. Here, we report two unrelated probands that presented with a clinical and molecular diagnosis of HME with venous malformation, a clinical feature not previously reported in individuals with HME.
Collapse
Affiliation(s)
- Daniah Albokhari
- McKusick-Nathans Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.,Department of Pediatrics, Taibah University, College of Medicine, Madinah, Saudi Arabia
| | - Christopher R Bailey
- Division of Interventional Radiology, The Russell H. Morgan Department of Radiology and Radiologic Science, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Francis Hwang
- Department of Orthopedic Surgery, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Clifford R Weiss
- Division of Interventional Radiology, The Russell H. Morgan Department of Radiology and Radiologic Science, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Jonathan Forsberg
- Department of Orthopedic Surgery, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Nara Sobreira
- McKusick-Nathans Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
2
|
Li L, Cook C, Liu Y, Li J, Jiang J, Li S. Endothelial glycocalyx in hepatopulmonary syndrome: An indispensable player mediating vascular changes. Front Immunol 2022; 13:1039618. [PMID: 36618396 PMCID: PMC9815560 DOI: 10.3389/fimmu.2022.1039618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Accepted: 12/06/2022] [Indexed: 12/24/2022] Open
Abstract
Hepatopulmonary syndrome (HPS) is a serious pulmonary vascular complication that causes respiratory insufficiency in patients with chronic liver diseases. HPS is characterized by two central pathogenic features-intrapulmonary vascular dilatation (IPVD) and angiogenesis. Endothelial glycocalyx (eGCX) is a gel-like layer covering the luminal surface of blood vessels which is involved in a variety of physiological and pathophysiological processes including controlling vascular tone and angiogenesis. In terms of lung disorders, it has been well established that eGCX contributes to dysregulated vascular contraction and impaired blood-gas barrier and fluid clearance, and thus might underlie the pathogenesis of HPS. Additionally, pharmacological interventions targeting eGCX are dramatically on the rise. In this review, we aim to elucidate the potential role of eGCX in IPVD and angiogenesis and describe the possible degradation-reconstitution equilibrium of eGCX during HPS through a highlight of recent literature. These studies strongly underscore the therapeutic rationale in targeting eGCX for the treatment of HPS.
Collapse
Affiliation(s)
- Liang Li
- Department of Thoracic Surgery, the Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China,*Correspondence: Liang Li, ; Shaomin Li,
| | - Christopher Cook
- Division of Immunology and Pathogenesis, Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, United States
| | - Yale Liu
- Department of Dermatology, the Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China
| | - Jianzhong Li
- Department of Thoracic Surgery, the Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China
| | - Jiantao Jiang
- Department of Thoracic Surgery, the Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China
| | - Shaomin Li
- Department of Thoracic Surgery, the Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China,*Correspondence: Liang Li, ; Shaomin Li,
| |
Collapse
|
3
|
Oppelaar JJ, Rorije NMG, Olde Engberink RHG, Chahid Y, van Vlies N, Verberne HJ, van den Born BJH, Vogt L. Perturbed body fluid distribution and osmoregulation in response to high salt intake in patients with hereditary multiple exostoses. Mol Genet Metab Rep 2021; 29:100797. [PMID: 34815940 PMCID: PMC8591465 DOI: 10.1016/j.ymgmr.2021.100797] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Accepted: 08/24/2021] [Indexed: 11/26/2022] Open
Abstract
Background Hereditary Multiple Exostoses (HME) is a rare autosomal disorder characterized by the presence of multiple exostoses (osteochondromas) caused by a heterozygous loss of function mutation in EXT1 or EXT2; genes involved in heparan sulfate (HS) chain elongation. Considering that HS and other glycosaminoglycans play an important role in sodium and water homeostasis, we hypothesized that HME patients have perturbed whole body volume regulation and osmolality in response to high sodium conditions. Methods We performed a randomized cross-over study in 7 male HME patients and 12 healthy controls, matched for age, BMI, blood pressure and renal function. All subjects followed both an 8-day low sodium diet (LSD, <50 mmol/d) and high sodium diet (HSD, >200 mmol/d) in randomized order. After each diet, blood and urine samples were collected. Body fluid compartment measurements were performed by using the distribution curve of iohexol and 125I-albumin. Results In HME patients, HSD resulted in significant increase of intracellular fluid volume (ICFV) (1.2 L, p = 0.01). In this group, solute-mediated water clearance was significantly lower after HSD, and no changes in interstitial fluid volume (IFV), plasma sodium, and effective osmolality were observed. In healthy controls, HSD did not influence ICFV, but expanded IFV (1.8 L, p = 0.058) and increased plasma sodium and effective osmolality. Conclusion HME patients show altered body fluid distribution and osmoregulation after HSD compared to controls. Our results might indicate reduced interstitial sodium accumulation capacity in HME, leading to ICFV increase. Therefore, this study provides additional support that HS is crucial for maintaining constancy of the internal environment.
Collapse
Key Words
- BMI, Body mass index
- BP, Blood pressure
- ECFV, Extracellular fluid volume
- EXT1/EXT2, Extosin-1 / Extosin-2
- GAG, Glycosaminoglycan
- Glycosaminoglycans
- HME, Hereditary Multiple Exostoses
- HSD, High sodium diet
- Heparan sulfate
- Hereditary Multiple Exostoses
- ICFV, Intracellular fluid volume
- IFV, Interstital fluid volume
- LSD, Low sodium diet
- Osmoregulation
- PV, Plasma volume
- Sodium
- TBW, Total body water
- Water balance
Collapse
Affiliation(s)
- Jetta J Oppelaar
- Amsterdam UMC, University of Amsterdam, Department of Internal Medicine, Section of Nephrology, Amsterdam Cardiovascular Sciences, Meibergdreef 9, Amsterdam, the Netherlands
| | - Nienke M G Rorije
- Amsterdam UMC, University of Amsterdam, Department of Internal Medicine, Section of Nephrology, Amsterdam Cardiovascular Sciences, Meibergdreef 9, Amsterdam, the Netherlands
| | - Rik H G Olde Engberink
- Amsterdam UMC, University of Amsterdam, Department of Internal Medicine, Section of Nephrology, Amsterdam Cardiovascular Sciences, Meibergdreef 9, Amsterdam, the Netherlands
| | - Youssef Chahid
- Amsterdam UMC, University of Amsterdam, Department of Radiology and Nuclear Medicine, Meibergdreef 9, Amsterdam, the Netherlands
| | - Naomi van Vlies
- Amsterdam UMC, University of Amsterdam, Laboratory Genetic Metabolic Diseases, Meibergdreef 9, Amsterdam, the Netherlands
| | - Hein J Verberne
- Amsterdam UMC, University of Amsterdam, Department of Radiology and Nuclear Medicine, Meibergdreef 9, Amsterdam, the Netherlands
| | - Bert-Jan H van den Born
- Amsterdam UMC, University of Amsterdam, Department of Internal Medicine, Section of Vascular Medicine, Amsterdam Cardiovascular Sciences, Meibergdreef 9, Amsterdam, the Netherlands
| | - Liffert Vogt
- Amsterdam UMC, University of Amsterdam, Department of Internal Medicine, Section of Nephrology, Amsterdam Cardiovascular Sciences, Meibergdreef 9, Amsterdam, the Netherlands
| |
Collapse
|
4
|
Duan T, Zhang J, Kong R, Song R, Huang W, Xiang D. The effectiveness of alprostadil in treating coronary microcirculation dysfunction following ST-segment elevation myocardial infarction in a pig model. Exp Ther Med 2021; 22:1449. [PMID: 34721691 PMCID: PMC8549090 DOI: 10.3892/etm.2021.10884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Accepted: 11/19/2020] [Indexed: 11/25/2022] Open
Abstract
Though alprostadil has been reported to improve the impaired microcirculation of patients with pulmonary arterial hypertension, its effectiveness as a treatment for coronary microvasculature dysfunction (CMD) following ST-segment elevation myocardial infarction (STEMI) is unknown. A total of 18 miniature pigs with CMD following STEMI were randomized into three groups that received an intracoronary injection of 5 ml of normal saline, 2 mg of nicorandil or 10 µg of alprostadil immediately after measurement of the index of microcirculatory resistance (IMR) and then an intravenous drip containing 5 ml of normal saline, 2 mg of nicorandil or 10 µg of alprostadil once a day for 6 days. The IMR, cardiac function using ultrasound, infarct areas and heparanase levels in infarct areas were measured and compared between the three groups. The IMR decreased markedly 10 min after alprostadil or nicorandil intracoronary injection (both P<0.05) but not following saline injection (P>0.05). After 7 days, the IMR was substantially lower in the alprostadil and nicorandil groups compared with the saline group (both P<0.05) and the ejection fraction was considerably higher in the alprostadil and nicorandil groups compared with the saline group (both P<0.05). Differences in infarct areas and the relative heparanase expression levels among the 3 groups were similar to the differences in the ejection fraction. No significant differences in the above assessment indexes were identified in the alprostadil and nicorandil groups. Alprostadil infusion improved coronary microcirculation function, reduced the infarct area and limited left ventricular dilatation in a pig coronary microvasculature dysfunction model following STEMI.
Collapse
Affiliation(s)
- Tianbing Duan
- Department of Cardiology, General Hospital of Southern Theater Command, Guangzhou, Guangdong 510010, P.R. China
| | - Jinxia Zhang
- Department of Cardiology, General Hospital of Southern Theater Command, Guangzhou, Guangdong 510010, P.R. China
| | - Ranran Kong
- Department of Cardiology, General Hospital of Southern Theater Command, Guangzhou, Guangdong 510010, P.R. China
| | - Rui Song
- Department of Cardiology, General Hospital of Southern Theater Command, Guangzhou, Guangdong 510010, P.R. China
| | - Weilong Huang
- Department of Ultrasonography, General Hospital of Southern Theater Command, Guangzhou, Guangdong 510010, P.R. China
| | - Dingcheng Xiang
- Department of Cardiology, General Hospital of Southern Theater Command, Guangzhou, Guangdong 510010, P.R. China
| |
Collapse
|
5
|
Patel VN, Pineda DL, Berenstein E, Hauser BR, Choi S, Prochazkova M, Zheng C, Goldsmith CM, van Kuppevelt TH, Kulkarni A, Song Y, Linhardt RJ, Chibly AM, Hoffman MP. Loss of Hs3st3a1 or Hs3st3b1 enzymes alters heparan sulfate to reduce epithelial morphogenesis and adult salivary gland function. Matrix Biol 2021; 103-104:37-57. [PMID: 34653670 DOI: 10.1016/j.matbio.2021.10.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Revised: 09/10/2021] [Accepted: 10/04/2021] [Indexed: 12/25/2022]
Abstract
Heparan sulfate 3-O-sulfotransferases generate highly sulfated but rare 3-O-sulfated heparan sulfate (HS) epitopes on cell surfaces and in the extracellular matrix. Previous ex vivo experiments suggested functional redundancy exists among the family of seven enzymes but that Hs3st3a1 and Hs3st3b1 sulfated HS increases epithelial FGFR signaling and morphogenesis. Single-cell RNAseq analysis of control SMGs identifies increased expression of Hs3st3a1 and Hs3st3b1 in endbud and myoepithelial cells, both of which are progenitor cells during development and regeneration. To analyze their in vivo functions, we generated both Hs3st3a1-/- and Hs3st3b1-/- single knockout mice, which are viable and fertile. Salivary glands from both mice have impaired fetal epithelial morphogenesis when cultured with FGF10. Hs3st3b1-/- mice have reduced intact SMG branching morphogenesis and reduced 3-O-sulfated HS in the basement membrane. Analysis of HS biosynthetic enzyme transcription highlighted some compensatory changes in sulfotransferases expression early in development. The overall glycosaminoglycan composition of adult control and KO mice were similar, although HS disaccharide analysis showed increased N- and non-sulfated disaccharides in Hs3st3a1-/- HS. Analysis of adult KO gland function revealed normal secretory innervation, but without stimulation there was an increase in frequency of drinking behavior in both KO mice, suggesting basal salivary hypofunction, possibly due to myoepithelial dysfunction. Understanding how 3-O-sulfation regulates myoepithelial progenitor function will be important to manipulate HS-binding growth factors to enhance tissue function and regeneration.
Collapse
Affiliation(s)
- Vaishali N Patel
- Matrix and Morphogenesis Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD 20892, USA
| | - Dallas L Pineda
- Matrix and Morphogenesis Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD 20892, USA
| | - Elsa Berenstein
- Matrix and Morphogenesis Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD 20892, USA
| | - Belinda R Hauser
- Matrix and Morphogenesis Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD 20892, USA
| | - Sophie Choi
- Matrix and Morphogenesis Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD 20892, USA
| | - Michaela Prochazkova
- Functional Genomics Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD 20892, USA
| | - Changyu Zheng
- Translational Research Core, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD 20892, USA
| | - Corinne M Goldsmith
- Translational Research Core, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD 20892, USA
| | - Toin H van Kuppevelt
- Department of Biochemistry, Radboud Institute for Molecular Life Sciences, Radboud university medical Centre, Nijmegen, Netherlands
| | - Ashok Kulkarni
- Functional Genomics Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD 20892, USA
| | - Yuefan Song
- Department of Chemical and Biological Engineering, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, 12180, USA
| | - Robert J Linhardt
- Department of Chemical and Biological Engineering, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, 12180, USA
| | - Alejandro M Chibly
- Matrix and Morphogenesis Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD 20892, USA
| | - Matthew P Hoffman
- Matrix and Morphogenesis Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
6
|
Methods to Analyze the Effect of Diet-Derived Metabolites on Endothelial Inflammation and Cell Surface Glycosaminoglycans. Methods Mol Biol 2021. [PMID: 34626401 DOI: 10.1007/978-1-0716-1398-6_37] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
The glycocalyx is a biologically active barrier that covers the luminal side of the vascular endothelium and it is comprised of proteoglycans [core proteins with glycosaminoglycans (GAG) side chains], glycoproteins, and plasma proteins. Evidence shows that the disruption in the structure and function of the endothelial glycocalyx exacerbates vascular inflammation and atherosclerosis. The GAG components of the glycocalyx undergo remodeling in the setting of diabetes and these alterations in endothelial GAGs negatively impact the vascular function. Hence, the preservation and restoration of GAGs in altered vasculature may be a novel strategy to ameliorate vascular complications in diabetes and metabolic syndrome. Human studies support the beneficial vascular effects of flavonoids which are widely found in fruits and vegetables. Flavonoids are extensively metabolized by the intestinal microbiota and digestive enzymes in humans, suggesting that their biological activities may be mediated by their circulating metabolites. Studies indicate that counteracting the damage to GAGs using dietary compounds improve vascular complications. In this article, we describe the methods to analyze the effect of diet-derived metabolites such as metabolites of flavonoids on endothelial inflammation and cell surface glycosaminoglycans.
Collapse
|
7
|
Protectin conjugates in tissue regeneration 1 restores lipopolysaccharide-induced pulmonary endothelial glycocalyx loss via ALX/SIRT1/NF-kappa B axis. Respir Res 2021; 22:193. [PMID: 34217286 PMCID: PMC8254367 DOI: 10.1186/s12931-021-01793-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 06/30/2021] [Indexed: 12/28/2022] Open
Abstract
Background Endothelial glycocalyx loss is integral to increased pulmonary vascular permeability in sepsis-related acute lung injury. Protectin conjugates in tissue regeneration 1 (PCTR1) is a novel macrophage-derived lipid mediator exhibiting potential anti-inflammatory and pro-resolving benefits. Methods PCTR1 was administrated intraperitoneally with 100 ng/mouse after lipopolysaccharide (LPS) challenged. Survival rate and lung function were used to evaluate the protective effects of PCTR1. Lung inflammation response was observed by morphology and inflammatory cytokines level. Endothelial glycocalyx and its related key enzymes were measured by immunofluorescence, ELISA, and Western blot. Afterward, related-pathways inhibitors were used to identify the mechanism of endothelial glycocalyx response to PCTR1 in mice and human umbilical vein endothelial cells (HUVECs) after LPS administration. Results In vivo, we show that PCTR1 protects mice against lipopolysaccharide (LPS)-induced sepsis, as shown by enhanced the survival and pulmonary function, decreased the inflammatory response in lungs and peripheral levels of inflammatory cytokines such as tumor necrosis factor-α, interleukin-6, and interleukin-1β. Moreover, PCTR1 restored lung vascular glycocalyx and reduced serum heparin sulphate (HS), syndecan-1 (SDC-1), and hyaluronic acid (HA) levels. Furthermore, we found that PCTR1 downregulated heparanase (HPA) expression to inhibit glycocalyx degradation and upregulated exostosin-1 (EXT-1) protein expression to promote glycocalyx reconstitution. Besides, we observed that BAY11-7082 blocked glycocalyx loss induced by LPS in vivo and in vitro, and BOC-2 (ALX antagonist) or EX527 (SIRT1 inhibitor) abolished the restoration of HS in response to PCTR1. Conclusion PCTR1 protects endothelial glycocalyx via ALX receptor by regulating SIRT1/NF-κB pathway, suggesting PCTR1 may be a significant therapeutic target for sepsis-related acute lung injury.
Collapse
|
8
|
Li YX, Wei Y, Zhong R, Li L, Pang HB. Transportan Peptide Stimulates the Nanomaterial Internalization into Mammalian Cells in the Bystander Manner through Macropinocytosis. Pharmaceutics 2021; 13:552. [PMID: 33920021 PMCID: PMC8070997 DOI: 10.3390/pharmaceutics13040552] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 04/07/2021] [Accepted: 04/09/2021] [Indexed: 01/12/2023] Open
Abstract
Covalent coupling with cell-penetrating peptides (CPPs) has been a common strategy to facilitate the cell entry of nanomaterial and other macromolecules. Though efficient, this strategy requires chemical modifications on nanomaterials, which is not always desired for their applications. Recent studies on a few cationic CPPs have revealed that they can stimulate the cellular uptake of nanoparticles (NPs) simply via co-administration (bystander manner), which bypasses the requirement of chemical modification. In this study, we investigated the other classes of CPPs and discovered that transportan (TP) peptide, an amphiphilic CPP, also exhibited such bystander activities. When simply co-administered, TP peptide enabled the cells to engulf a variety of NPs, as well as common solute tracers, while these payloads had little or no ability to enter the cells by themselves. This result was validated in vitro and ex vivo, and TP peptide showed no physical interaction with co-administered NPs (bystander cargo). We further explored the cell entry mechanism for TP peptide and its bystander cargo, and showed that it was mediated by a receptor-dependent macropinocytosis process. Together, our findings improve the understanding of TP-assisted cell entry, and open up a new avenue to apply this peptide for nanomaterial delivery.
Collapse
Affiliation(s)
- Yue-Xuan Li
- Department of Pharmaceutics, University of Minnesota, Minneapolis, MN 55455, USA; (Y.-X.L.); (Y.W.)
| | - Yushuang Wei
- Department of Pharmaceutics, University of Minnesota, Minneapolis, MN 55455, USA; (Y.-X.L.); (Y.W.)
| | - Rui Zhong
- Department of Experimental and Clinical Pharmacology, University of Minnesota, Minneapolis, MN 55455, USA; (R.Z.); (L.L.)
| | - Ling Li
- Department of Experimental and Clinical Pharmacology, University of Minnesota, Minneapolis, MN 55455, USA; (R.Z.); (L.L.)
| | - Hong-Bo Pang
- Department of Pharmaceutics, University of Minnesota, Minneapolis, MN 55455, USA; (Y.-X.L.); (Y.W.)
| |
Collapse
|
9
|
Hilhorst M, Anders HJ. Glomerular Exostosin Deposits in Membranous Lupus Nephritis-a Dialogue. J Am Soc Nephrol 2021; 32:525-526. [PMID: 33495239 PMCID: PMC7920182 DOI: 10.1681/asn.2020121810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Affiliation(s)
- Marc Hilhorst
- Section of Nephrology, Department of Internal Medicine, Amsterdam University Medical Center, Amsterdam, The Netherlands
| | - Hans-Joachim Anders
- Renal Division, Department of Medicine IV, University Hospital of the Ludwig Maximilian University, Munich, Germany
| |
Collapse
|
10
|
Transcapillary escape rate of 125I-albumin in relation to timing of blood sampling: the need for standardization. EJNMMI Radiopharm Chem 2021; 6:9. [PMID: 33591459 PMCID: PMC7886925 DOI: 10.1186/s41181-021-00125-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Accepted: 02/03/2021] [Indexed: 11/10/2022] Open
Abstract
Background Increased vascular permeability is an early sign of vascular damage and can be measured with the transcapillary escape rate of albumin (TERalb). Although TERalb has a multi-exponential kinetic model, most published TERalb data are based on mono-exponential kinetic models with variation in blood sampling schemes. Aim of this posthoc study was to evaluate the influence of variation in blood sampling schemes and the impact of mono- or bi-exponential analyses on the calculation of TERalb. Study participants were part of a cross-over intervention study protocol, investigating effects of sodium loading on blood pressure, endothelial surface layer and microcirculation. Multiple blood samples were drawn between 3 and 60 min after injection of radioactive iodide labeled human serum albumin (rHSA). Results In total 27 male participants with 54 measurements were included. For all participants the maximum serum radioactivity was reached within 20 min, while 85% of the participants had their maximum serum activity within 10 min. The TERalb calculated with the subsequently chosen T20–60 min reference scheme (6.19 ± 0.49%/h) was significantly lower compared to the TERalb of the T3–60 min, T5–60 min, and Tmax – 60 min schemes. There was no significant difference between the T20–60 min reference scheme and the T10–60 min and T15–60 min schemes. Bi-exponential kinetic modeling did not result in significant different observations compared to the mono-exponential kinetic analysis. Conclusions As there is variation in the timing of the maximum serum radioactivity of rHSA, blood sampling schemes starting before 10 min after administration of rHSA will result in a significant overestimation of TERalb. In addition, variation in kinetic modeling did not result in significant changes in TERalb. Therefore, we emphasize the need to standardize TERalb and for practical and logistical reasons advocate the use of a mono-exponential model with blood sampling starting 20 min after rHSA administration.
Collapse
|
11
|
Gopal S, Arokiasamy S, Pataki C, Whiteford JR, Couchman JR. Syndecan receptors: pericellular regulators in development and inflammatory disease. Open Biol 2021; 11:200377. [PMID: 33561383 PMCID: PMC8061687 DOI: 10.1098/rsob.200377] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Accepted: 01/19/2021] [Indexed: 02/06/2023] Open
Abstract
The syndecans are the major family of transmembrane proteoglycans, usually bearing multiple heparan sulfate chains. They are present on virtually all nucleated cells of vertebrates and are also present in invertebrates, indicative of a long evolutionary history. Genetic models in both vertebrates and invertebrates have shown that syndecans link to the actin cytoskeleton and can fine-tune cell adhesion, migration, junction formation, polarity and differentiation. Although often associated as co-receptors with other classes of receptors (e.g. integrins, growth factor and morphogen receptors), syndecans can nonetheless signal to the cytoplasm in discrete ways. Syndecan expression levels are upregulated in development, tissue repair and an array of human diseases, which has led to the increased appreciation that they may be important in pathogenesis not only as diagnostic or prognostic agents, but also as potential targets. Here, their functions in development and inflammatory diseases are summarized, including their potential roles as conduits for viral pathogen entry into cells.
Collapse
Affiliation(s)
- Sandeep Gopal
- Development and Stem Cells Program, Monash Biomedicine Discovery Institute and Department of Anatomy and Developmental Biology, Monash University, Melbourne, Victoria 3800, Australia
| | - Samantha Arokiasamy
- William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK
| | - Csilla Pataki
- Biotech Research and Innovation Centre, University of Copenhagen, Biocentre 1.3.16, Ole Maaløes Vej 5, 2200 Copenhagen N, Denmark
| | - James R. Whiteford
- William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK
| | - John R. Couchman
- Biotech Research and Innovation Centre, University of Copenhagen, Biocentre 1.3.16, Ole Maaløes Vej 5, 2200 Copenhagen N, Denmark
| |
Collapse
|
12
|
Wenstedt EFE, Oppelaar JJ, Besseling S, Rorije NMG, Olde Engberink RHG, Oosterhof A, van Kuppevelt TH, van den Born BJH, Aten J, Vogt L. Distinct osmoregulatory responses to sodium loading in patients with altered glycosaminoglycan structure: a randomized cross-over trial. J Transl Med 2021; 19:38. [PMID: 33472641 PMCID: PMC7816310 DOI: 10.1186/s12967-021-02700-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2020] [Accepted: 01/06/2021] [Indexed: 01/21/2023] Open
Abstract
Background By binding to negatively charged polysaccharides called glycosaminoglycans, sodium can be stored in the body—particularly in the skin—without concurrent water retention. Concordantly, individuals with changed glycosaminoglycan structure (e.g. type 1 diabetes (DM1) and hereditary multiple exostosis (HME) patients) may have altered sodium and water homeostasis. Methods We investigated responses to acute (30-min infusion) and chronic (1-week diet) sodium loading in 8 DM1 patients and 7 HME patients in comparison to 12 healthy controls. Blood samples, urine samples, and skin biopsies were taken to investigate glycosaminoglycan sulfation patterns and both systemic and cellular osmoregulatory responses. Results Hypertonic sodium infusion increased plasma sodium in all groups, but more in DM1 patients than in controls. High sodium diet increased expression of nuclear factor of activated t-cells 5 (NFAT5)—a transcription factor responsive to changes in osmolarity—and moderately sulfated heparan sulfate in skin of healthy controls. In HME patients, skin dermatan sulfate, rather than heparan sulfate, increased in response to high sodium diet, while in DM1 patients, no changes were observed. Conclusion DM1 and HME patients show distinct osmoregulatory responses to sodium loading when comparing to controls with indications for reduced sodium storage capacity in DM1 patients, suggesting that intact glycosaminoglycan biosynthesis is important in sodium and water homeostasis. Trial registration These trials were registered with the Netherlands trial register with registration numbers: NTR4095 (https://www.trialregister.nl/trial/3933 at 2013-07-29) and NTR4788 (https://www.trialregister.nl/trial/4645 at 2014-09-12).
Collapse
Affiliation(s)
- Eliane F E Wenstedt
- Department of Internal Medicine, Section of Nephrology, Amsterdam Cardiovascular Sciences, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, Amsterdam, The Netherlands
| | - Jetta J Oppelaar
- Department of Internal Medicine, Section of Nephrology, Amsterdam Cardiovascular Sciences, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, Amsterdam, The Netherlands
| | - Stijn Besseling
- Department of Internal Medicine, Section of Nephrology, Amsterdam Cardiovascular Sciences, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, Amsterdam, The Netherlands
| | - Nienke M G Rorije
- Department of Internal Medicine, Section of Nephrology, Amsterdam Cardiovascular Sciences, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, Amsterdam, The Netherlands
| | - Rik H G Olde Engberink
- Department of Internal Medicine, Section of Nephrology, Amsterdam Cardiovascular Sciences, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, Amsterdam, The Netherlands
| | - Arie Oosterhof
- Department of Biochemistry, Radboud UMC, Geert Grooteplein Zuid 10, Nijmegen, The Netherlands
| | - Toin H van Kuppevelt
- Department of Biochemistry, Radboud UMC, Geert Grooteplein Zuid 10, Nijmegen, The Netherlands
| | - Bert-Jan H van den Born
- Department of Internal Medicine, Section of Vascular Medicine, Amsterdam Cardiovascular Sciences, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, Amsterdam, The Netherlands
| | - Jan Aten
- Department of Pathology, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, Amsterdam, The Netherlands
| | - Liffert Vogt
- Department of Internal Medicine, Section of Nephrology, Amsterdam Cardiovascular Sciences, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, Amsterdam, The Netherlands. .,Department of Internal Medicine, Section of Nephrology, Amsterdam UMC, Room D3-324, Meibergdreef 9, P.O. Box 22660, 1100 DD, Amsterdam, The Netherlands.
| |
Collapse
|
13
|
Bray MA, Sartain SE, Gollamudi J, Rumbaut RE. Microvascular thrombosis: experimental and clinical implications. Transl Res 2020; 225:105-130. [PMID: 32454092 PMCID: PMC7245314 DOI: 10.1016/j.trsl.2020.05.006] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 05/12/2020] [Accepted: 05/17/2020] [Indexed: 02/07/2023]
Abstract
A significant amount of clinical and research interest in thrombosis is focused on large vessels (eg, stroke, myocardial infarction, deep venous thrombosis, etc.); however, thrombosis is often present in the microcirculation in a variety of significant human diseases, such as disseminated intravascular coagulation, thrombotic microangiopathy, sickle cell disease, and others. Further, microvascular thrombosis has recently been demonstrated in patients with COVID-19, and has been proposed to mediate the pathogenesis of organ injury in this disease. In many of these conditions, microvascular thrombosis is accompanied by inflammation, an association referred to as thromboinflammation. In this review, we discuss endogenous regulatory mechanisms that prevent thrombosis in the microcirculation, experimental approaches to induce microvascular thrombi, and clinical conditions associated with microvascular thrombosis. A greater understanding of the links between inflammation and thrombosis in the microcirculation is anticipated to provide optimal therapeutic targets for patients with diseases accompanied by microvascular thrombosis.
Collapse
Key Words
- adamts13, a disintegrin-like and metalloproteinase with thrombospondin type 1 motif 13
- ap, alternate pathway
- apc, activated protein c
- aps, antiphospholipid syndrome
- caps, catastrophic aps
- asfa, american society for apheresis
- atp, adenosine triphosphate
- cfh, complement factor h
- con a, concavalin a
- cox, cyclooxygenase
- damp, damage-associated molecular pattern
- dic, disseminated intravascular coagulation
- gbm, glomerular basement membrane
- hellp, hemolysis, elevated liver enzymes, low platelets
- hitt, heparin-induced thrombocytopenia and thrombosis
- hlh, hemophagocytic lymphohistiocytosis
- hus, hemolytic-uremic syndrome
- isth, international society for thrombosis and haemostasis
- ivig, intravenous immunoglobulin
- ldh, lactate nos, nitric oxide synthase
- net, neutrophil extracellular trap
- pai-1, plasminogen activator inhibitor 1
- pf4, platelet factor 4
- prr, pattern recognition receptor
- rbc, red blood cell
- scd, sickle cell disease
- sle, systemic lupus erythematosus
- tlr, toll-like receptor
- tf, tissue factor
- tfpi, tissue factor pathway inhibitor
- tma, thrombotic microangiopathy
- tnf-α, tumor necrosis factor-α
- tpe, therapeutic plasma exchange
- ulc, ultra large heparin-pf4 complexes
- ulvwf, ultra-large von willebrand factor
- vwf, von willebrand factor
Collapse
Affiliation(s)
- Monica A Bray
- Center for Translational Research on Inflammatory Diseases (CTRID), Michael E. DeBakey VA Medical Center, Houston, Texas; Baylor College of Medicine, Houston, Texas
| | - Sarah E Sartain
- Center for Translational Research on Inflammatory Diseases (CTRID), Michael E. DeBakey VA Medical Center, Houston, Texas; Baylor College of Medicine, Houston, Texas
| | - Jahnavi Gollamudi
- Center for Translational Research on Inflammatory Diseases (CTRID), Michael E. DeBakey VA Medical Center, Houston, Texas; Baylor College of Medicine, Houston, Texas
| | - Rolando E Rumbaut
- Center for Translational Research on Inflammatory Diseases (CTRID), Michael E. DeBakey VA Medical Center, Houston, Texas; Baylor College of Medicine, Houston, Texas.
| |
Collapse
|
14
|
Stress-induced RNA-chromatin interactions promote endothelial dysfunction. Nat Commun 2020; 11:5211. [PMID: 33060583 PMCID: PMC7566596 DOI: 10.1038/s41467-020-18957-w] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Accepted: 09/11/2020] [Indexed: 01/06/2023] Open
Abstract
Chromatin-associated RNA (caRNA) has been proposed as a type of epigenomic modifier. Here, we test whether environmental stress can induce cellular dysfunction through modulating RNA-chromatin interactions. We induce endothelial cell (EC) dysfunction with high glucose and TNFα (H + T), that mimic the common stress in diabetes mellitus. We characterize the H + T-induced changes in gene expression by single cell (sc)RNA-seq, DNA interactions by Hi-C, and RNA-chromatin interactions by iMARGI. H + T induce inter-chromosomal RNA-chromatin interactions, particularly among the super enhancers. To test the causal relationship between H + T-induced RNA-chromatin interactions and the expression of EC dysfunction-related genes, we suppress the LINC00607 RNA. This suppression attenuates the expression of SERPINE1, a critical pro-inflammatory and pro-fibrotic gene. Furthermore, the changes of the co-expression gene network between diabetic and healthy donor-derived ECs corroborate the H + T-induced RNA-chromatin interactions. Taken together, caRNA-mediated dysregulation of gene expression modulates EC dysfunction, a crucial mechanism underlying numerous diseases. Global interaction of chromatin-associated RNAs and DNA can be identified in situ. Here the authors report the genome-wide increase of interchromosomal RNA-DNA interactions and demonstrate the importance of such RNA-DNA contacts exemplified by LINC00607 RNA and SERPINE1 gene’s super enhancer in dysfunctional endothelial cell models.
Collapse
|
15
|
Abou-Arab O, Kamel S, Beyls C, Huette P, Bar S, Lorne E, Galmiche A, Guinot PG. Vasoplegia After Cardiac Surgery Is Associated With Endothelial Glycocalyx Alterations. J Cardiothorac Vasc Anesth 2020; 34:900-905. [DOI: 10.1053/j.jvca.2019.09.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Revised: 08/29/2019] [Accepted: 09/04/2019] [Indexed: 02/05/2023]
|
16
|
Olde Engberink RHG, de Vos J, van Weert A, Zhang Y, van Vlies N, van den Born BJH, Titze JM, van Bavel E, Vogt L. Abnormal sodium and water homeostasis in mice with defective heparan sulfate polymerization. PLoS One 2019; 14:e0220333. [PMID: 31365577 PMCID: PMC6668793 DOI: 10.1371/journal.pone.0220333] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2019] [Accepted: 07/12/2019] [Indexed: 01/09/2023] Open
Abstract
Glycosaminoglycans in the skin interstitium and endothelial surface layer have been shown to be involved in local sodium accumulation without commensurate water retention. Dysfunction of heparan sulfate glycosaminoglycans may therefore disrupt sodium and water homeostasis. In this study, we investigated the effects of combined heterozygous loss of heparan sulfate polymerization genes (exostosin glycosyltransferase 1 and 2; Ext1+/-Ext2+/-) on sodium and water homeostasis. Sodium storage capacity was decreased in Ext1+/-Ext2+/- mice as reflected by a 77% reduction in endothelial surface layer thickness and a lower skin sodium-to-glycosaminoglycan ratio. Also, these mice were characterized by a higher heart rate, increased fluid intake, increased plasma osmolality and a decreased skin water and sodium content, suggesting volume depletion. Upon chronic high sodium intake, the initial volume depletion was restored but no blood pressure increase was observed. Acute hypertonic saline infusion resulted in a distinct blood pressure response: we observed a significant 15% decrease in control mice whereas blood pressure did not change in Ext1+/-Ext2+/- mice. This differential blood pressure response may be explained by the reduced capacity for sodium storage and/or the impaired vasodilation response, as measured by wire myography, which was observed in Ext1+/-Ext2+/- mice. Together, these data demonstrate that defective heparan sulfate glycosaminoglycan synthesis leads to abnormal sodium and water homeostasis and an abnormal response to sodium loading, most likely caused by inadequate capacity for local sodium storage.
Collapse
Affiliation(s)
- Rik H. G. Olde Engberink
- Department of Internal Medicine, section Nephrology, Amsterdam UMC, University of Amsterdam, Amsterdam Cardiovascular Sciences, Amsterdam, The Netherlands
- * E-mail:
| | - Judith de Vos
- Department of Biomedical Engineering and Physics, Amsterdam UMC, University of Amsterdam, Amsterdam Cardiovascular Sciences, Amsterdam, the Netherlands
| | - Angela van Weert
- Department of Biomedical Engineering and Physics, Amsterdam UMC, University of Amsterdam, Amsterdam Cardiovascular Sciences, Amsterdam, the Netherlands
| | - Yahua Zhang
- Department of Clinical Pharmacology, Vanderbilt University, Nashville, Tennessee, United States of America
| | - Naomi van Vlies
- Laboratory of Genetic Metabolic Disease, Amsterdam UMC, University of Amsterdam, Amsterdam Cardiovascular Sciences, Amsterdam University Medical Centre, Amsterdam, the Netherlands
| | - Bert-Jan H. van den Born
- Department of Internal Medicine, section Vascular Medicine, Amsterdam UMC, University of Amsterdam, Amsterdam Cardiovascular Sciences, Amsterdam, The Netherlands
| | - Jens M. Titze
- Department of Clinical Pharmacology, Vanderbilt University, Nashville, Tennessee, United States of America
| | - Ed van Bavel
- Department of Biomedical Engineering and Physics, Amsterdam UMC, University of Amsterdam, Amsterdam Cardiovascular Sciences, Amsterdam, the Netherlands
| | - Liffert Vogt
- Department of Internal Medicine, section Nephrology, Amsterdam UMC, University of Amsterdam, Amsterdam Cardiovascular Sciences, Amsterdam, The Netherlands
| |
Collapse
|
17
|
Napoli C, Schiano C, Soricelli A. Increasing evidence of pathogenic role of the Mediator (MED) complex in the development of cardiovascular diseases. Biochimie 2019; 165:1-8. [PMID: 31255603 DOI: 10.1016/j.biochi.2019.06.014] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Accepted: 06/24/2019] [Indexed: 12/20/2022]
Abstract
Cardiovascular diseases (CVDs) are the first cause of death in the World. Mediator (MED) is an evolutionarily conserved protein complex, which mediates distinct protein-protein interactions. Pathogenic events in MED subunit have been associated with human diseases. Novel increasing evidence showed that missense mutations in MED13L gene are associated with transposition of great arteries while MED12, MED13, MED15, and MED30, have been correlated with heart development. Moreover, MED23 and MED25 have been associated with heart malformations in humans. Relevantly, MED1, MED13, MED14, MED15, MED23, MED25, and CDK8, were found modify glucose and/or lipid metabolism. Indeed, MED1, MED15, MED25, and CDK8 interact in the PPAR- and SREBP-mediated signaling pathways. MED1, MED14 and MED23 are involved in adipocyte differentiation, whereas MED23 mediates smooth muscle cell differentiation. MED12, MED19, MED23, and MED30 regulate endothelial differentiation by alternative splicing mechanism. Thus, MEDs have a central role in early pathogenic events involved in CVDs representing novel targets for clinical prevention and therapeutic approaches.
Collapse
Affiliation(s)
- C Napoli
- University Department of Advanced Medical and Surgical Sciences, Clinical Department of Internal Medicine and Specialistic Units, University of Campania "L. Vanvitelli", 80138, Naples, Italy
| | | | - A Soricelli
- IRCCS SDN, 80143, Naples, Italy; Department of Motor Sciences and Healthiness, University of Naples Parthenope, 80134, Naples, Italy
| |
Collapse
|
18
|
Surendran RP, Udayyapan SD, Clemente-Postigo M, Havik SR, Schimmel AWM, Tinahones F, Nieuwdorp M, Dallinga-Thie GM. Decreased GPIHBP1 protein levels in visceral adipose tissue partly underlie the hypertriglyceridemic phenotype in insulin resistance. PLoS One 2018; 13:e0205858. [PMID: 30408040 PMCID: PMC6224034 DOI: 10.1371/journal.pone.0205858] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Accepted: 10/02/2018] [Indexed: 01/29/2023] Open
Abstract
GPIHBP1 is a protein localized at the endothelial cell surface that facilitates triglyceride (TG) lipolysis by binding lipoprotein lipase (LPL). Whether Glycosyl Phosphatidyl Inositol high density lipoprotein binding protein 1 (GPIHBP1) function is impaired and may underlie the hyperTG phenotype observed in type 2 diabetes is not yet established. To elucidate the mechanism underlying impaired TG homeostasis in insulin resistance state we studied the effect of insulin on GPIHBP1 protein expression in human microvascular endothelial cells (HMVEC) under flow conditions. Next, we assessed visceral adipose tissue GPIHBP1 protein expression in type 2 diabetes Leprdb/db mouse model as well as in subjects with ranging levels of insulin resistance. We report that insulin reduces the expression of GPIHBP1 protein in HMVECs. Furthermore, GPIHBP1 protein expression in visceral adipose tissue in Leprdb/db mice is significantly reduced as is the active monomeric form of GPIHBP1 as compared to Leprdb/m mice. A similar decrease in GPIHBP1 protein was observed in subjects with increased body weight. GPIHBP1 protein expression was negatively associated with insulin and HOMA-IR. In conclusion, our data suggest that decreased GPIHBP1 availability in insulin resistant state may hamper peripheral lipolysis capacity.
Collapse
Affiliation(s)
- R. Preethi Surendran
- Department of Experimental Vascular Medicine, Amsterdam University Medical Center, location AMC, Amsterdam, The Netherlands
| | - Shanti D. Udayyapan
- Department of Experimental Vascular Medicine, Amsterdam University Medical Center, location AMC, Amsterdam, The Netherlands
| | - Mercedes Clemente-Postigo
- Unidad de Gestión Clínica Endocrinología y Nutrición, Instituto de Investigación Biomédica de Málaga (IBIMA), Complejo Hospitalario de Málaga (Virgen de la Victoria)/Universidad de Malaga, Malaga, Spain
- CIBER Fisiopatologia de la Obesidad y Nutrición (CB06/03), Barcelona, Spain
| | - Stefan R. Havik
- Department of Experimental Vascular Medicine, Amsterdam University Medical Center, location AMC, Amsterdam, The Netherlands
| | - Alinda W. M. Schimmel
- Department of Experimental Vascular Medicine, Amsterdam University Medical Center, location AMC, Amsterdam, The Netherlands
| | - Fransisco Tinahones
- Unidad de Gestión Clínica Endocrinología y Nutrición, Instituto de Investigación Biomédica de Málaga (IBIMA), Complejo Hospitalario de Málaga (Virgen de la Victoria)/Universidad de Malaga, Malaga, Spain
- CIBER Fisiopatologia de la Obesidad y Nutrición (CB06/03), Barcelona, Spain
| | - Max Nieuwdorp
- Department of Vascular Medicine, Amsterdam University Medical Center, location AMC, Amsterdam, The Netherlands
| | - Geesje M. Dallinga-Thie
- Department of Experimental Vascular Medicine, Amsterdam University Medical Center, location AMC, Amsterdam, The Netherlands
- Unidad de Gestión Clínica Endocrinología y Nutrición, Instituto de Investigación Biomédica de Málaga (IBIMA), Complejo Hospitalario de Málaga (Virgen de la Victoria)/Universidad de Malaga, Malaga, Spain
- * E-mail:
| |
Collapse
|
19
|
Shendre A, Wiener HW, Irvin MR, Aouizerat BE, Overton ET, Lazar J, Liu C, Hodis HN, Limdi NA, Weber KM, Gange SJ, Zhi D, Floris-Moore MA, Ofotokun I, Qi Q, Hanna DB, Kaplan RC, Shrestha S. Genome-wide admixture and association study of subclinical atherosclerosis in the Women's Interagency HIV Study (WIHS). PLoS One 2017; 12:e0188725. [PMID: 29206233 PMCID: PMC5714351 DOI: 10.1371/journal.pone.0188725] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2016] [Accepted: 11/12/2017] [Indexed: 12/20/2022] Open
Abstract
Cardiovascular disease (CVD) is a major comorbidity among HIV-infected individuals. Common carotid artery intima-media thickness (cCIMT) is a valid and reliable subclinical measure of atherosclerosis and is known to predict CVD. We performed genome-wide association (GWA) and admixture analysis among 682 HIV-positive and 288 HIV-negative Black, non-Hispanic women from the Women’s Interagency HIV study (WIHS) cohort using a combined and stratified analysis approach. We found some suggestive associations but none of the SNPs reached genome-wide statistical significance in our GWAS analysis. The top GWAS SNPs were rs2280828 in the region intergenic to mediator complex subunit 30 and exostosin glycosyltransferase 1 (MED30 | EXT1) among all women, rs2907092 in the catenin delta 2 (CTNND2) gene among HIV-positive women, and rs7529733 in the region intergenic to family with sequence similarity 5, member C and regulator of G-protein signaling 18 (FAM5C | RGS18) genes among HIV-negative women. The most significant local European ancestry associations were in the region intergenic to the zinc finger and SCAN domain containing 5D gene and NADH: ubiquinone oxidoreductase complex assembly factor 1 (ZSCAN5D | NDUF1) pseudogene on chromosome 19 among all women, in the region intergenic to vomeronasal 1 receptor 6 pseudogene and zinc finger protein 845 (VN1R6P | ZNF845) gene on chromosome 19 among HIV-positive women, and in the region intergenic to the SEC23-interacting protein and phosphatidic acid phosphatase type 2 domain containing 1A (SEC23IP | PPAPDC1A) genes located on chromosome 10 among HIV-negative women. A number of previously identified SNP associations with cCIMT were also observed and included rs2572204 in the ryanodine receptor 3 (RYR3) and an admixture region in the secretion-regulating guanine nucleotide exchange factor (SERGEF) gene. We report several SNPs and gene regions in the GWAS and admixture analysis, some of which are common across HIV-positive and HIV-negative women as demonstrated using meta-analysis, and also across the two analytic approaches (i.e., GWA and admixture). These findings suggest that local European ancestry plays an important role in genetic associations of cCIMT among black women from WIHS along with other environmental factors that are related to CVD and may also be triggered by HIV. These findings warrant confirmation in independent samples.
Collapse
Affiliation(s)
- Aditi Shendre
- Department of Epidemiology, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Howard W. Wiener
- Department of Epidemiology, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Marguerite R. Irvin
- Department of Epidemiology, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Bradley E. Aouizerat
- Bluestone Center for Clinical Research, New York University, New York, New York, United States of America
- Department of Oral and Maxillofacial Surgery, New York University, New York, New York, United States of America
| | - Edgar T. Overton
- Division of Infectious Diseases, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Jason Lazar
- Department of Medicine, State University of New York, Downstate Medical Center, Brooklyn, New York, United States of America
| | - Chenglong Liu
- Department of Medicine, Georgetown University Medical Center, Washington, DC, United States of America
| | - Howard N. Hodis
- Atherosclerosis Research Unit, University of Southern California, Los Angeles, California, United States of America
| | - Nita A. Limdi
- Department of Neurology, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Kathleen M. Weber
- Cook County Health and Hospital System/Hektoen Institute of Medicine, Chicago, Illnois, United States of America
| | - Stephen J. Gange
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, United States of America
| | - Degui Zhi
- Department of Biostatistics, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Michelle A. Floris-Moore
- Division of Infectious Diseases, Department of Medicine, University of North Carolina School of Medicine, Chapel Hill, North Carolina, United States of America
| | - Ighovwerha Ofotokun
- Department of Medicine/Infectious Diseases, Emory University, and Grady Healthcare System, Atlanta, Georgia, United States of America
| | - Qibin Qi
- Department of Epidemiology and Population Health, Albert Einstein College of Medicine, Bronx, New York, United States of America
| | - David B. Hanna
- Department of Epidemiology and Population Health, Albert Einstein College of Medicine, Bronx, New York, United States of America
| | - Robert C. Kaplan
- Department of Epidemiology and Population Health, Albert Einstein College of Medicine, Bronx, New York, United States of America
| | - Sadeep Shrestha
- Department of Epidemiology, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
- * E-mail:
| |
Collapse
|
20
|
Beltrami G, Ristori G, Scoccianti G, Tamburini A, Capanna R. Hereditary Multiple Exostoses: a review of clinical appearance and metabolic pattern. ACTA ACUST UNITED AC 2016; 13:110-118. [PMID: 27920806 DOI: 10.11138/ccmbm/2016.13.2.110] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Hereditary multiple exostoses (HME) is an inherited genetic condition characterized by the presence of multiple exostoses (osteochondromas). MHE is a relatively rare autosomal dominant disorder, mainly caused by loss of function mutations in two genes: exostosin-1 (EXT1) and exostosin-2 (EXT2). These genes are linked to heparan sulfate (HS) synthesis, but the specific molecular mechanism leading to the disruption of the cartilage structure and the consequent exostoses formation is still not resolved. The aim of this paper is to encounter the main aspects of HME reviewing the literature, in order to improve clinical features and evolution, and the metabolic-pathogenetic mechanisms underlying. Although MHE may be asymptomatic, a wide spectrum of clinical manifestations is found in paediatric patients with this disorder. Pain is experienced by the majority of patients, even restricted motion of the joint is often encountered. Sometimes exostoses can interfere with normal development of the growth plate, giving rise to limb deformities, low stature and scoliosis. Other many neurovascular and associated disorders can lead to surgery. The most feared complication is the malignant transformation of an existing osteochondroma into a secondary peripheral chondrosarcoma, during adulthood. The therapeutic approach to HME is substantially surgical, whereas the medical one is still at an experimental level. In conclusion, HME is a complex disease where the paediatrician, the geneticist and the orthopaedic surgeon play an interchangeable role in diagnosis, research and therapy. We are waiting for new studies able to explain better the role of HS in signal transduction, because it plays a role in other bone and cartilage diseases (in particular malignant degeneration) as well as in skeletal embryology.
Collapse
Affiliation(s)
- Giovanni Beltrami
- Department of Orthopaedic Oncology and Reconstructive Surgery, "Azienda Ospedaliera Universitaria Careggi", Firenze, Italy
| | - Gabriele Ristori
- Department of Orthopaedic Oncology and Reconstructive Surgery, "Azienda Ospedaliera Universitaria Careggi", Firenze, Italy
| | - Guido Scoccianti
- Department of Orthopaedic Oncology and Reconstructive Surgery, "Azienda Ospedaliera Universitaria Careggi", Firenze, Italy
| | - Angela Tamburini
- Hematology-Oncology Service, Department of Pediatrics, "Azienda Ospedaliera Universitaria Meyer", Firenze, Italy
| | - Rodolfo Capanna
- Department of Orthopaedic Oncology and Reconstructive Surgery, "Azienda Ospedaliera Universitaria Careggi", Firenze, Italy
| |
Collapse
|