1
|
Cao Zhang AM, Ziogos E, Harb T, Gerstenblith G, Leucker TM. Emerging clinical role of proprotein convertase subtilisin/kexin type 9 inhibition-Part one: Pleiotropic pro-atherosclerotic effects of PCSK9. Eur J Clin Invest 2024; 54:e14273. [PMID: 38922860 DOI: 10.1111/eci.14273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 05/20/2024] [Accepted: 06/10/2024] [Indexed: 06/28/2024]
Abstract
BACKGROUND Proprotein convertase subtilisin/kexin type 9 (PCSK9) is primarily recognized for its role in lipid metabolism, but recent evidence suggests that it may have broader implications due to its diverse tissue expression. OBJECTIVE This review aims to explore the multifaceted functions of PCSK9, highlighting its pro-atherosclerotic effects, including its impact on circulating lipoprotein variables, non-low-density lipoprotein receptors, and various cell types involved in atherosclerotic plaque development. CONCLUSIONS PCSK9 exhibits diverse roles beyond lipid metabolism, potentially contributing to atherosclerosis through multiple pathways. Understanding these mechanisms could offer new insights into therapeutic strategies targeting PCSK9 for cardiovascular disease management.
Collapse
Affiliation(s)
- Alexander M Cao Zhang
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Efthymios Ziogos
- Division of Cardiology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Tarek Harb
- Division of Cardiology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Gary Gerstenblith
- Division of Cardiology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Thorsten M Leucker
- Division of Cardiology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
2
|
Jiang Y, Zhu X, Jordan K, Li Y, Conley S, Tang H, Lerman A, Eirin A, Ou T, Lerman LO. Dyslipidemia-induced renal fibrosis related to ferroptosis and endoplasmic reticulum stress. J Lipid Res 2024; 65:100610. [PMID: 39094771 PMCID: PMC11401224 DOI: 10.1016/j.jlr.2024.100610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 07/18/2024] [Accepted: 07/20/2024] [Indexed: 08/04/2024] Open
Abstract
Dyslipidemia may induce chronic kidney disease and trigger both ferroptosis and endoplasmic reticulum (ER) stress, but the instigating factors are incompletely understood. We tested the hypothesis that different models of dyslipidemia engage distinct kidney injury mechanisms. Wild-type (WT) or proprotein-convertase subtilisin/kexin type-9 (PCSK9)-gain-of-function (GOF) Ossabaw pigs were fed with a 6-month normal diet (ND) or high-fat diet (HFD) (n = 5-6 each). Renal function and fat deposition were studied in vivo using CT, and blood and kidney tissue studied ex-vivo for lipid profile, systemic and renal vein FFAs levels, and renal injury mechanisms including lipid peroxidation, ferroptosis, and ER stress. Compared with WT-ND pigs, both HFD and PCSK9-GOF elevated triglyceride levels, which were highest in WT-HFD, whereas total and LDL cholesterol levels rose only in PCSK9-GOF pigs, particularly in PCSK9-GOF/HFD. The HFD groups had worse kidney function than the ND groups. The WT-HFD kidneys retained more FFA than other groups, but all kidneys developed fibrosis. Furthermore, HFD-induced ferroptosis in WT-HFD indicated by increased free iron, lipid peroxidation, and decreased glutathione peroxidase-4 mRNA expression, while PCSK9-GOF induced ER stress with upregulated GRP94 and CHOP protein expression. In vitro, pig kidney epithelial cells treated with palmitic acid and oxidized LDL to mimic HFD and PCSK9-GOF showed similar trends to those observed in vivo. Taken together, HFD-induced hypertriglyceridemia promotes renal FFA retention and ferroptosis, whereas PCSK9-GOF-induced hypercholesterolemia elicits ER stress, both resulting in renal fibrosis. These observations suggest different targets for preventing and treating renal fibrosis in subjects with specific types of dyslipidemia.
Collapse
Affiliation(s)
- Yamei Jiang
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, MN, USA; Department of Urology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Xiangyang Zhu
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, MN, USA
| | - Kyra Jordan
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, MN, USA
| | - Yongxin Li
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, MN, USA
| | - Sabena Conley
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, MN, USA
| | - Hui Tang
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, MN, USA
| | - Amir Lerman
- Department of Cardiovascular Diseases, Mayo Clinic, Rochester, MN, USA
| | - Alfonso Eirin
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, MN, USA
| | - Tongwen Ou
- Department of Urology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Lilach O Lerman
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, MN, USA.
| |
Collapse
|
3
|
Gao L, He Z, Wu Y. Advances in Anti-metabolic Disease Treatments Targeting CD47. Curr Pharm Des 2022; 28:3720-3728. [PMID: 36201266 DOI: 10.2174/1381612828666221006123144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 08/15/2022] [Accepted: 08/21/2022] [Indexed: 01/28/2023]
Abstract
Metabolic disorders include a cluster of conditions that result from hyperglycemia, hyperlipidemia, insulin resistance, obesity, and hepatic steatosis, which cause the dysfunction of immune cells and innate cells, such as macrophages, natural killer cells, vascular endothelial cells, hepatocytes, and human kidney tubular epithelial cells. Besides targeting the derangements in lipid metabolism, therapeutic modulations to regulate abnormal responses in the immune system and innate cell dysfunctions may prove to be promising strategies in the management of metabolic diseases. In recent years, several targets have been explored for the CD47 molecule (CD47), a glycosylated protein, which was originally reported to transmit an anti-phagocytic signal known as "don't eat me" in the atherosclerotic environment, hindering the efferocytosis of immune cells and promoting arterial plaque accumulation. Subsequently, the role of CD47 has been explored in obesity, fatty liver, and lipotoxic nephropathy, and its utility as a therapeutic target has been investigated using anti-CD47 antibodies or inhibitors of the THBS1/CD47 axis and the CD47/SIRPα signaling pathway. This review summarizes the mechanisms of action of CD47 in different cell types during metabolic diseases and the clinical research progress to date, providing a reference for the comprehensive targeting of CD47 to treat metabolic diseases and the devising of potential improvements to possible side effects.
Collapse
Affiliation(s)
- Li Gao
- Department of Nephropathy, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, China.,Center for Scientific Research of Anhui Medical University, Hefei 230022, China
| | - Zhe He
- Department of Nephropathy, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, China
| | - Yonggui Wu
- Department of Nephropathy, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, China.,Center for Scientific Research of Anhui Medical University, Hefei 230022, China
| |
Collapse
|
4
|
Kamato D, Ilyas I, Xu S, Little PJ. Non-Mouse Models of Atherosclerosis: Approaches to Exploring the Translational Potential of New Therapies. Int J Mol Sci 2022; 23:12964. [PMID: 36361754 PMCID: PMC9656683 DOI: 10.3390/ijms232112964] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 10/19/2022] [Accepted: 10/25/2022] [Indexed: 09/26/2023] Open
Abstract
Cardiovascular disease is the largest single cause of disease-related mortality worldwide and the major underlying pathology is atherosclerosis. Atherosclerosis develops as a complex process of vascular lipid deposition and retention by modified proteoglycans, endothelial dysfunction and unresolved chronic inflammation. There are a multitude of current therapeutic agents, most based on lowering plasma lipid levels, but, overall, they have a lower than optimum level of efficacy and many deaths continue to arise from cardiovascular disease world-wide. To identify and evaluate potential novel cardiovascular drugs, suitable animal models that reproduce human atherosclerosis with a high degree of fidelity are required as essential pre-clinical research tools. Commonly used animal models of atherosclerosis include mice (ApoE-/-, LDLR-/- mice and others), rabbits (WHHL rabbits and others), rats, pigs, hamster, zebrafish and non-human primates. Models based on various wild-type and genetically modified mice have been extensively reviewed but mice may not always be appropriate. Thus, here, we provide an overview of the advantages and shortcomings of various non-mouse animal models of atherosclerotic plaque formation, and plaque rupture, as well as commonly used interventional strategies. Taken together, the combinatorial selection of suitable animal models readily facilitates reproducible and rigorous translational research in discovering and validating novel anti-atherosclerotic drugs.
Collapse
Affiliation(s)
- Danielle Kamato
- Discovery Biology, Griffith Institute for Drug Discovery, School of Environment and Science, Griffith University, Brisbane, QLD 4111, Australia
- Pharmacy Australia Centre of Excellence, School of Pharmacy, University of Queensland, Woolloongabba, QLD 4102, Australia
| | - Iqra Ilyas
- Laboratory of Metabolics and Cardiovascular Diseases, University of Science and Technology of China, Hefei 230027, China
- Biomedical Sciences and Health Laboratory of Anhui Province, University of Science and Technology of China, Hefei 230027, China
| | - Suowen Xu
- Laboratory of Metabolics and Cardiovascular Diseases, University of Science and Technology of China, Hefei 230027, China
- Biomedical Sciences and Health Laboratory of Anhui Province, University of Science and Technology of China, Hefei 230027, China
- Department of Endocrinology, Institute of Endocrine and Metabolic Diseases, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, Clinical Research Hospital of Chinese Academy of Sciences (Hefei), University of Science and Technology of China, Hefei 230001, China
| | - Peter J. Little
- Pharmacy Australia Centre of Excellence, School of Pharmacy, University of Queensland, Woolloongabba, QLD 4102, Australia
- Sunshine Coast Health Institute and School of Health and Behavioural Sciences, University of the Sunshine Coast, Birtinya, QLD 4575, Australia
| |
Collapse
|
5
|
Recent Update on PCSK9 and Platelet Activation Experimental Research Methods: In Vitro and In Vivo Studies. J Cardiovasc Dev Dis 2022; 9:jcdd9080258. [PMID: 36005422 PMCID: PMC9409389 DOI: 10.3390/jcdd9080258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Revised: 07/31/2022] [Accepted: 08/04/2022] [Indexed: 11/17/2022] Open
Abstract
Proprotein convertase subtilisin/kexin type 9 (PCSK9) is a crucial factor in the development and progression of cardiovascular diseases. PCSK9 has been demonstrated to modify LDL plasma levels and increase platelet activation, which promotes atherosclerosis, a defining feature of nearly all cardiovascular diseases. Platelet activation has been shown to promote and maintain the response to atherosclerosis development, from beginning to progression and exacerbation, which can lead to advanced cardiovascular events including myocardial infarction (MI) or death. Research on PCSK9 and platelet activation is currently underway with the main goal of reducing the risk of advanced cardiovascular events by preventing or slowing down atherosclerosis progression. Both in vitro and in vivo studies have been used to explore PCSK9 functions to develop new drugs targeting PCSK9. Finding the most suitable study models that represent the pathological and physiological systems found in humans is very important to achieving the goal. This review aimed to present a current and comprehensive overview of the experimental models that have been used to investigate the role of PCSK9 in platelet activation-induced atherosclerotic cardiovascular diseases.
Collapse
|
6
|
Cluzel GL, Ryan PM, Herisson FM, Caplice NM. High-fidelity porcine models of metabolic syndrome: a contemporary synthesis. Am J Physiol Endocrinol Metab 2022; 322:E366-E381. [PMID: 35224983 DOI: 10.1152/ajpendo.00413.2021] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
This review aims to describe and compare porcine models of metabolic syndrome. This syndrome and its associated secondary comorbidities are set to become the greatest challenge to healthcare providers and policy makers in the coming century. However, an incomplete understanding of the pathogenesis has left significant knowledge gaps in terms of efficacious therapeutics. To further our comprehension and, in turn, management of metabolic syndrome, appropriate high-fidelity models of the disease complex are of great importance. In this context, our review aims to assess the most promising porcine models of metabolic syndrome currently available for their similarity to the human phenotype. In addition, we aim to highlight the strengths and shortcomings of each model in an attempt to identify the most appropriate application of each. Although no porcine model perfectly recapitulates the human metabolic syndrome, several pose satisfactory approximations. The Ossabaw miniature swine in particular represents a highly translatable model that develops each of the core parameters of the syndrome with many of the associated secondary comorbidities. Future high-fidelity porcine models of metabolic syndrome need to focus on secondary sequelae replication, which may require extended induction period to reveal.
Collapse
Affiliation(s)
- Gaston L Cluzel
- Centre for Research in Vascular Biology, University College Cork, Cork, Ireland
- APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Paul M Ryan
- Centre for Research in Vascular Biology, University College Cork, Cork, Ireland
- Department of Paediatrics, University of Toronto, Toronto, Ontario, Canada
| | - Florence M Herisson
- Centre for Research in Vascular Biology, University College Cork, Cork, Ireland
- APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Noel M Caplice
- Centre for Research in Vascular Biology, University College Cork, Cork, Ireland
- APC Microbiome Ireland, University College Cork, Cork, Ireland
| |
Collapse
|
7
|
Gaul S, Shahzad K, Medert R, Gadi I, Mäder C, Schumacher D, Wirth A, Ambreen S, Fatima S, Boeckel JN, Khawaja H, Haas J, Brune M, Nawroth PP, Isermann B, Laufs U, Freichel M. Novel Nongenetic Murine Model of Hyperglycemia and Hyperlipidemia-Associated Aggravated Atherosclerosis. Front Cardiovasc Med 2022; 9:813215. [PMID: 35350534 PMCID: PMC8957812 DOI: 10.3389/fcvm.2022.813215] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Accepted: 02/02/2022] [Indexed: 01/24/2023] Open
Abstract
Objective Atherosclerosis, the main pathology underlying cardiovascular diseases is accelerated in diabetic patients. Genetic mouse models require breeding efforts which are time-consuming and costly. Our aim was to establish a new nongenetic model of inducible metabolic risk factors that mimics hyperlipidemia, hyperglycemia, or both and allows the detection of phenotypic differences dependent on the metabolic stressor(s). Methods and Results Wild-type mice were injected with gain-of-function PCSK9D377Y (proprotein convertase subtilisin/kexin type 9) mutant adeno-associated viral particles (AAV) and streptozotocin and fed either a high-fat diet (HFD) for 12 or 20 weeks or a high-cholesterol/high-fat diet (Paigen diet, PD) for 8 weeks. To evaluate atherosclerosis, two different vascular sites (aortic sinus and the truncus of the brachiocephalic artery) were examined in the mice. Combined hyperlipidemic and hyperglycemic (HGHCi) mice fed a HFD or PD displayed characteristic features of aggravated atherosclerosis when compared to hyperlipidemia (HCi HFD or PD) mice alone. Atherosclerotic plaques of HGHCi HFD animals were larger, showed a less stable phenotype (measured by the increased necrotic core area, reduced fibrous cap thickness, and less α-SMA-positive area) and had more inflammation (increased plasma IL-1β level, aortic pro-inflammatory gene expression, and MOMA-2-positive cells in the BCA) after 20 weeks of HFD. Differences between the HGHCi and HCi HFD models were confirmed using RNA-seq analysis of aortic tissue, revealing that significantly more genes were dysregulated in mice with combined hyperlipidemia and hyperglycemia than in the hyperlipidemia-only group. The HGHCi-associated genes were related to pathways regulating inflammation (increased Cd68, iNos, and Tnfa expression) and extracellular matrix degradation (Adamts4 and Mmp14). When comparing HFD with PD, the PD aggravated atherosclerosis to a greater extent in mice and showed plaque formation after 8 weeks. Hyperlipidemic and hyperglycemic mice fed a PD (HGHCi PD) showed less collagen (Sirius red) and increased inflammation (CD68-positive cells) within aortic plaques than hyperlipidemic mice (HCi PD). HGHCi-PD mice represent a directly inducible hyperglycemic atherosclerosis model compared with HFD-fed mice, in which atherosclerosis is severe by 8 weeks. Conclusion We established a nongenetically inducible mouse model allowing comparative analyses of atherosclerosis in HCi and HGHCi conditions and its modification by diet, allowing analyses of multiple metabolic hits in mice.
Collapse
Affiliation(s)
- Susanne Gaul
- Klinik und Poliklinik für Kardiologie, Universitätsklinikum Leipzig, Leipzig, Germany
| | - Khurrum Shahzad
- Department of Diagnostics, Laboratory Medicine, Clinical Chemistry and Molecular Diagnostic, University Hospital Leipzig, Leipzig, Germany
| | - Rebekka Medert
- Institute of Pharmacology, Heidelberg University, Heidelberg, Germany
- DZHK (German Centre for Cardiovascular Research), partner site Heidelberg/Mannheim, Germany
| | - Ihsan Gadi
- Department of Diagnostics, Laboratory Medicine, Clinical Chemistry and Molecular Diagnostic, University Hospital Leipzig, Leipzig, Germany
| | - Christina Mäder
- Klinik und Poliklinik für Kardiologie, Universitätsklinikum Leipzig, Leipzig, Germany
| | - Dagmar Schumacher
- Institute of Pharmacology, Heidelberg University, Heidelberg, Germany
- DZHK (German Centre for Cardiovascular Research), partner site Heidelberg/Mannheim, Germany
| | - Angela Wirth
- Institute of Pharmacology, Heidelberg University, Heidelberg, Germany
| | - Saira Ambreen
- Department of Diagnostics, Laboratory Medicine, Clinical Chemistry and Molecular Diagnostic, University Hospital Leipzig, Leipzig, Germany
| | - Sameen Fatima
- Department of Diagnostics, Laboratory Medicine, Clinical Chemistry and Molecular Diagnostic, University Hospital Leipzig, Leipzig, Germany
| | - Jes-Niels Boeckel
- Klinik und Poliklinik für Kardiologie, Universitätsklinikum Leipzig, Leipzig, Germany
| | - Hamzah Khawaja
- Department of Diagnostics, Laboratory Medicine, Clinical Chemistry and Molecular Diagnostic, University Hospital Leipzig, Leipzig, Germany
| | - Jan Haas
- DZHK (German Centre for Cardiovascular Research), partner site Heidelberg/Mannheim, Germany
- Department of Internal Medicine III, Heidelberg University, Heidelberg, Germany
| | - Maik Brune
- Internal Medicine I and Clinical Chemistry, German Diabetes Center (DZD), Heidelberg University, Heidelberg, Germany
| | - Peter P. Nawroth
- Internal Medicine I and Clinical Chemistry, German Diabetes Center (DZD), Heidelberg University, Heidelberg, Germany
| | - Berend Isermann
- Department of Diagnostics, Laboratory Medicine, Clinical Chemistry and Molecular Diagnostic, University Hospital Leipzig, Leipzig, Germany
| | - Ulrich Laufs
- Klinik und Poliklinik für Kardiologie, Universitätsklinikum Leipzig, Leipzig, Germany
| | - Marc Freichel
- Institute of Pharmacology, Heidelberg University, Heidelberg, Germany
- DZHK (German Centre for Cardiovascular Research), partner site Heidelberg/Mannheim, Germany
| |
Collapse
|
8
|
Li G, Li X, Zhuang S, Wang L, Zhu Y, Chen Y, Sun W, Wu Z, Zhou Z, Chen J, Huang X, Wang J, Li D, Li W, Wang H, Wei W. Gene editing and its applications in biomedicine. SCIENCE CHINA. LIFE SCIENCES 2022; 65:660-700. [PMID: 35235150 PMCID: PMC8889061 DOI: 10.1007/s11427-021-2057-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Accepted: 12/06/2021] [Indexed: 02/06/2023]
Abstract
The steady progress in genome editing, especially genome editing based on the use of clustered regularly interspaced short palindromic repeats (CRISPR) and programmable nucleases to make precise modifications to genetic material, has provided enormous opportunities to advance biomedical research and promote human health. The application of these technologies in basic biomedical research has yielded significant advances in identifying and studying key molecular targets relevant to human diseases and their treatment. The clinical translation of genome editing techniques offers unprecedented biomedical engineering capabilities in the diagnosis, prevention, and treatment of disease or disability. Here, we provide a general summary of emerging biomedical applications of genome editing, including open challenges. We also summarize the tools of genome editing and the insights derived from their applications, hoping to accelerate new discoveries and therapies in biomedicine.
Collapse
Affiliation(s)
- Guanglei Li
- School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Xiangyang Li
- School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Songkuan Zhuang
- Department of Clinical Laboratory, Shenzhen Institute of Translational Medicine, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen, 518035, China
| | - Liren Wang
- Shanghai Frontiers Science Research Base of Genome Editing and Cell Therapy, Shanghai Key Laboratory of Regulatory Biology, School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Yifan Zhu
- Shanghai Frontiers Science Research Base of Genome Editing and Cell Therapy, Shanghai Key Laboratory of Regulatory Biology, School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Yangcan Chen
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
- Institute for Stem Cell and Regenerative Medicine, Chinese Academy of Sciences, Beijing, 100101, China
| | - Wen Sun
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- Institute for Stem Cell and Regenerative Medicine, Chinese Academy of Sciences, Beijing, 100101, China
| | - Zeguang Wu
- Biomedical Pioneering Innovation Center, Beijing Advanced Innovation Center for Genomics, Peking-Tsinghua Center for Life Sciences, Peking University Genome Editing Research Center, State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing, 100871, China
| | - Zhuo Zhou
- Biomedical Pioneering Innovation Center, Beijing Advanced Innovation Center for Genomics, Peking-Tsinghua Center for Life Sciences, Peking University Genome Editing Research Center, State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing, 100871, China
| | - Jia Chen
- Gene Editing Center, School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China.
| | - Xingxu Huang
- School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China.
| | - Jin Wang
- Department of Clinical Laboratory, Shenzhen Institute of Translational Medicine, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen, 518035, China.
| | - Dali Li
- Shanghai Frontiers Science Research Base of Genome Editing and Cell Therapy, Shanghai Key Laboratory of Regulatory Biology, School of Life Sciences, East China Normal University, Shanghai, 200241, China.
| | - Wei Li
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
- Institute for Stem Cell and Regenerative Medicine, Chinese Academy of Sciences, Beijing, 100101, China.
- Bejing Institute for Stem Cell and Regenerative Medicine, Beijing, 100101, China.
- HIT Center for Life Sciences, Harbin Institute of Technology, Harbin, 150001, China.
| | - Haoyi Wang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
- Institute for Stem Cell and Regenerative Medicine, Chinese Academy of Sciences, Beijing, 100101, China.
| | - Wensheng Wei
- Biomedical Pioneering Innovation Center, Beijing Advanced Innovation Center for Genomics, Peking-Tsinghua Center for Life Sciences, Peking University Genome Editing Research Center, State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing, 100871, China.
| |
Collapse
|
9
|
Cao G, Xuan X, Zhang R, Hu J, Dong H. Gene Therapy for Cardiovascular Disease: Basic Research and Clinical Prospects. Front Cardiovasc Med 2021; 8:760140. [PMID: 34805315 PMCID: PMC8602679 DOI: 10.3389/fcvm.2021.760140] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Accepted: 10/11/2021] [Indexed: 12/16/2022] Open
Abstract
In recent years, the vital role of genetic factors in human diseases have been widely recognized by scholars with the deepening of life science research, accompanied by the rapid development of gene-editing technology. In early years, scientists used homologous recombination technology to establish gene knock-out and gene knock-in animal models, and then appeared the second-generation gene-editing technology zinc-finger nucleases (ZFNs) and transcription activator-like effector nucleases (TALENs) that relied on nucleic acid binding proteins and endonucleases and the third-generation gene-editing technology that functioned through protein-nucleic acids complexes-CRISPR/Cas9 system. This holds another promise for refractory diseases and genetic diseases. Cardiovascular disease (CVD) has always been the focus of clinical and basic research because of its high incidence and high disability rate, which seriously affects the long-term survival and quality of life of patients. Because some inherited cardiovascular diseases do not respond well to drug and surgical treatment, researchers are trying to use rapidly developing genetic techniques to develop initial attempts. However, significant obstacles to clinical application of gene therapy still exists, such as insufficient understanding of the nature of cardiovascular disease, limitations of genetic technology, or ethical concerns. This review mainly introduces the types and mechanisms of gene-editing techniques, ethical concerns of gene therapy, the application of gene therapy in atherosclerosis and inheritable cardiovascular diseases, in-stent restenosis, and delivering systems.
Collapse
Affiliation(s)
- Genmao Cao
- Department of Vascular Surgery, The Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Xuezhen Xuan
- Department of Vascular Surgery, The Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Ruijing Zhang
- Department of Nephrology, The Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Jie Hu
- Department of Vascular Surgery, The Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Honglin Dong
- Department of Vascular Surgery, The Second Hospital of Shanxi Medical University, Taiyuan, China
| |
Collapse
|
10
|
Abstract
Dyslipidemias are a group of diseases, which are characterized by abnormal blood concentrations of cholesterol, triglycerides and/or low-density lipoprotein-cholesterol (LDL-c). Dyslipidemia is a determinant condition for the progress of an atherosclerotic plaque formation. The resulting atherogenicity is due to at least two mechanisms: first, to the accumulation in the plasma of lipid particles that have the capacity to alter the function of the endothelium and deposit at the atheromatous plaque, and second, at an insufficient concentration of multifactorial type of high density lipoprotein-cholesterol (HDL-c), whose function is to protect against the development of atherosclerosis. Its highest prevalence is encountered among individuals with diabetes, hypertension or overweight. Hyperlipidemia is one of the main predisposing factors for the development of cardiovascular disease. Hyperlipidemia can be the result of a genetic condition, the secondary expression of a primary process or the consequence of exogenous factors (food, cultural, socio-economic, etc.), all of which lead to the elevation of plasma lipid levels. The objective of this study was to carry out an analysis of the genes involved in the development of dyslipidemias that lead to cardiovascular disease with special emphasis on the proprotein convertase subtilin/kexin type 9 (PCSK9) gene. The PCSK9 gene participates in the development of primary dyslipidemias, mainly familial hypercholesterolemia, currently the pharmacological treatment of choice to reduce LDL-c are statins, however, it has been observed that these have been insufficient to eliminate cardiovascular risk, especially in subjects with primary forms of hypercholesterolemia related to genetic mutations, or statin intolerance.
Collapse
|
11
|
Sofias AM, De Lorenzi F, Peña Q, Azadkhah Shalmani A, Vucur M, Wang JW, Kiessling F, Shi Y, Consolino L, Storm G, Lammers T. Therapeutic and diagnostic targeting of fibrosis in metabolic, proliferative and viral disorders. Adv Drug Deliv Rev 2021; 175:113831. [PMID: 34139255 PMCID: PMC7611899 DOI: 10.1016/j.addr.2021.113831] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 05/30/2021] [Accepted: 06/10/2021] [Indexed: 02/07/2023]
Abstract
Fibrosis is a common denominator in many pathologies and crucially affects disease progression, drug delivery efficiency and therapy outcome. We here summarize therapeutic and diagnostic strategies for fibrosis targeting in atherosclerosis and cardiac disease, cancer, diabetes, liver diseases and viral infections. We address various anti-fibrotic targets, ranging from cells and genes to metabolites and proteins, primarily focusing on fibrosis-promoting features that are conserved among the different diseases. We discuss how anti-fibrotic therapies have progressed over the years, and how nanomedicine formulations can potentiate anti-fibrotic treatment efficacy. From a diagnostic point of view, we discuss how medical imaging can be employed to facilitate the diagnosis, staging and treatment monitoring of fibrotic disorders. Altogether, this comprehensive overview serves as a basis for developing individualized and improved treatment strategies for patients suffering from fibrosis-associated pathologies.
Collapse
Affiliation(s)
- Alexandros Marios Sofias
- Department of Nanomedicine and Theranostics, Institute for Experimental Molecular Imaging, Faculty of Medicine, RWTH Aachen University, Aachen, Germany; Mildred Scheel School of Oncology (MSSO), Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf (CIO(ABCD)), University Hospital Aachen, Aachen, Germany; Department of Circulation and Medical Imaging, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology (NTNU), Trondheim, Norway.
| | - Federica De Lorenzi
- Department of Nanomedicine and Theranostics, Institute for Experimental Molecular Imaging, Faculty of Medicine, RWTH Aachen University, Aachen, Germany
| | - Quim Peña
- Department of Nanomedicine and Theranostics, Institute for Experimental Molecular Imaging, Faculty of Medicine, RWTH Aachen University, Aachen, Germany
| | - Armin Azadkhah Shalmani
- Department of Nanomedicine and Theranostics, Institute for Experimental Molecular Imaging, Faculty of Medicine, RWTH Aachen University, Aachen, Germany
| | - Mihael Vucur
- Department of Gastroenterology, Hepatology and Infectious Diseases, University Hospital Duesseldorf, Medical Faculty at Heinrich-Heine-University, Duesseldorf, Germany
| | - Jiong-Wei Wang
- Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore; Cardiovascular Research Institute, National University Heart Centre Singapore, Singapore, Singapore; Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore; Nanomedicine Translational Research Programme, Centre for NanoMedicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Fabian Kiessling
- Department of Nanomedicine and Theranostics, Institute for Experimental Molecular Imaging, Faculty of Medicine, RWTH Aachen University, Aachen, Germany
| | - Yang Shi
- Department of Nanomedicine and Theranostics, Institute for Experimental Molecular Imaging, Faculty of Medicine, RWTH Aachen University, Aachen, Germany
| | - Lorena Consolino
- Department of Nanomedicine and Theranostics, Institute for Experimental Molecular Imaging, Faculty of Medicine, RWTH Aachen University, Aachen, Germany.
| | - Gert Storm
- Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore; Nanomedicine Translational Research Programme, Centre for NanoMedicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore; Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, the Netherlands; Department of Targeted Therapeutics, University of Twente, Enschede, the Netherlands.
| | - Twan Lammers
- Department of Nanomedicine and Theranostics, Institute for Experimental Molecular Imaging, Faculty of Medicine, RWTH Aachen University, Aachen, Germany; Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, the Netherlands; Department of Targeted Therapeutics, University of Twente, Enschede, the Netherlands.
| |
Collapse
|
12
|
PCSK9: A Multi-Faceted Protein That Is Involved in Cardiovascular Biology. Biomedicines 2021; 9:biomedicines9070793. [PMID: 34356856 PMCID: PMC8301306 DOI: 10.3390/biomedicines9070793] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 07/02/2021] [Accepted: 07/05/2021] [Indexed: 12/29/2022] Open
Abstract
Pro-protein convertase subtilisin/kexin type 9 (PCSK9) is secreted mostly by hepatocytes and to a lesser extent by the intestine, pancreas, kidney, adipose tissue, and vascular cells. PCSK9 has been known to interact with the low-density lipoprotein receptor (LDLR) and chaperones the receptor to its degradation. In this manner, targeting PCSK9 is a novel attractive approach to reduce hyperlipidaemia and the risk for cardiovascular diseases. Recently, it has been recognised that the effects of PCSK9 in relation to cardiovascular complications are not only LDLR related, but that various LDLR-independent pathways and processes are also influenced. In this review, the various LDLR dependent and especially independent effects of PCSK9 on the cardiovascular system are discussed, followed by an overview of related PCSK9-polymorphisms and currently available and future therapeutic approaches to manipulate PCSK9 expression.
Collapse
|
13
|
Maxeiner J, Sharma R, Amrhein C, Gervais F, Duda M, Ward J, Mikkelsen LF, Forster R, Malewicz M, Krishnan J. Genomics Integrated Systems Transgenesis (GENISYST) for gain-of-function disease modelling in Göttingen Minipigs. J Pharmacol Toxicol Methods 2021; 108:106956. [PMID: 33609731 DOI: 10.1016/j.vascn.2021.106956] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 02/03/2021] [Accepted: 02/08/2021] [Indexed: 12/26/2022]
Abstract
Göttingen Minipigs show several anatomical, physiological, and pathogenetical similarities to humans and serve an important role in translational studies for example as large animal models of disease. In recent years, the number of transgenic Göttingen Minipigs models has increased, as advanced genetic techniques simplify the generation of animals with precisely tailored modifications. These modifications are designed to replicate genetic alterations responsible for human disease. In addition to serving as valuable large animal disease models, transgenic Göttingen Minipigs are also considered promising donors for xenotransplantation. Current technologies for generation of transgenic minipigs demand a long development and production time of typically 2-3 years. To overcome this limitation and expand the use of Göttingen Minipigs for disease modelling and drug testing, we developed the GENISYST (Genomics Integrated Systems Transgenesis) technology platform for rapid and efficient generation of minipigs based transgenic disease models. As proof of concept, we report the successful generation of transgenic minipigs expressing green fluorescent protein (GFP) in multiple disease-relevant tissues including liver, heart, kidney, lungs, and the central nervous system (CNS). Our data demonstrates the feasibility, efficiency, and utility of GENISYST for rapid one-step generation of transgenic minipigs for human disease modelling in drug discovery and development.
Collapse
Affiliation(s)
- Joachim Maxeiner
- Genome Biologics, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany
| | - Rahul Sharma
- Genome Biologics, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany; Institute of Cardiovascular Regeneration, Centre for Molecular Medicine, Goethe-University Frankfurt, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany
| | - Carolin Amrhein
- Genome Biologics, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany
| | | | - Maria Duda
- Genome Biologics, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany
| | - Jonathan Ward
- Genome Biologics, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany
| | | | - Roy Forster
- Citoxlab France, BP563, 27000 Evreux, France.
| | - Michal Malewicz
- Genome Biologics, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany.
| | - Jaya Krishnan
- Genome Biologics, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany; Institute of Cardiovascular Regeneration, Centre for Molecular Medicine, Goethe-University Frankfurt, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany.
| |
Collapse
|
14
|
Kaiser RA, Carlson DF, Allen KL, Webster DA, VanLith CJ, Nicolas CT, Hillin LG, Yu Y, Kaiser CW, Wahoff WR, Hickey RD, Watson AL, Winn SR, Thöny B, Kern DR, Harding CO, Lillegard JB. Development of a porcine model of phenylketonuria with a humanized R408W mutation for gene editing. PLoS One 2021; 16:e0245831. [PMID: 33493163 PMCID: PMC7833140 DOI: 10.1371/journal.pone.0245831] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Accepted: 01/08/2021] [Indexed: 12/15/2022] Open
Abstract
Phenylketonuria (PKU) is a metabolic disorder whereby phenylalanine metabolism is deficient due to allelic variations in the gene for phenylalanine hydroxylase (PAH). There is no cure for PKU other than orthotopic liver transplantation, and the standard of care for patients is limited to dietary restrictions and key amino acid supplementation. Therefore, Pah was edited in pig fibroblasts for the generation of PKU clone piglets that harbor a common and severe human mutation, R408W. Additionally, the proximal region to the mutation was further humanized by introducing 5 single nucleotide polymorphisms (SNPs) to allow for development of gene editing machinery that could be translated directly from the pig model to human PKU patients that harbor at least one classic R408W allele. Resulting piglets were hypopigmented (a single Ossabaw piglet) and had low birthweight (all piglets). The piglets had similar levels of PAH expression, but no detectable enzymatic activity, consistent with the human phenotype. The piglets were fragile and required extensive neonatal care to prevent failure to thrive and early demise. Phenylalanine levels rose sharply when dietary Phe was unrestricted but could be rapidly reduced with a low Phe diet. Fibroblasts isolated from R408W piglets show susceptibility to correction using CRISPR or TALEN, with subsequent homology-directed recombination to correct Pah. This pig model of PKU provides a powerful new tool for development of all classes of therapeutic candidates to treat or cure PKU, as well as unique value for proof-of-concept studies for in vivo human gene editing platforms in the context of this humanized PKU allele.
Collapse
Affiliation(s)
- Robert A. Kaiser
- Department of Surgery, Mayo Clinic, Rochester, Minnesota, United States of America
- Midwest Fetal Care Center, Children’s Hospitals and Clinics of Minnesota, Minneapolis, Minnesota, United States of America
| | | | - Kari L. Allen
- Department of Surgery, Mayo Clinic, Rochester, Minnesota, United States of America
| | | | - Caitlin J. VanLith
- Department of Surgery, Mayo Clinic, Rochester, Minnesota, United States of America
| | - Clara T. Nicolas
- Department of Surgery, Mayo Clinic, Rochester, Minnesota, United States of America
- Faculty of Medicine, University of Barcelona, Barcelona, Spain
| | - Lori G. Hillin
- Department of Surgery, Mayo Clinic, Rochester, Minnesota, United States of America
| | - Yue Yu
- Department of Surgery, Mayo Clinic, Rochester, Minnesota, United States of America
| | - Catherine W. Kaiser
- Department of Surgery, Mayo Clinic, Rochester, Minnesota, United States of America
| | - William R. Wahoff
- Department of Surgery, Mayo Clinic, Rochester, Minnesota, United States of America
| | - Raymond D. Hickey
- Department of Surgery, Mayo Clinic, Rochester, Minnesota, United States of America
- Department of Molecular Medicine, Mayo Clinic, Rochester, Minnesota, United States of America
| | | | - Shelley R. Winn
- Department of Molecular and Medical Genetics, Oregon Health & Science University, Portland, Oregon, United States of America
| | - Beat Thöny
- Department of Pediatrics, University of Zurich, Zurich, Switzerland
| | - Douglas R. Kern
- Recombinetics, Inc., St. Paul, Minnesota, United States of America
| | - Cary O. Harding
- Department of Molecular and Medical Genetics, Oregon Health & Science University, Portland, Oregon, United States of America
| | - Joseph B. Lillegard
- Department of Surgery, Mayo Clinic, Rochester, Minnesota, United States of America
- Midwest Fetal Care Center, Children’s Hospitals and Clinics of Minnesota, Minneapolis, Minnesota, United States of America
- Pediatric Surgical Associates, Minneapolis, Minnesota, United States of America
- * E-mail:
| |
Collapse
|
15
|
Shim JT, Schmidt N, Nogales P, Larsen T, Sørensen CB, Bentzon JF. Effects of castration on atherosclerosis in Yucatan minipigs with genetic hypercholesterolemia. PLoS One 2020; 15:e0234131. [PMID: 32502216 PMCID: PMC7274396 DOI: 10.1371/journal.pone.0234131] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Accepted: 05/19/2020] [Indexed: 12/20/2022] Open
Abstract
Background Low plasma testosterone, either spontaneous or as a result of androgen deprivation therapy for prostate cancer, is associated with an increased risk of cardiovascular events. The underlying mechanism in humans is not understood. Experimental studies in mice have shown that castration facilitates atherogenesis and may increase signs of plaque vulnerability. Pigs used for translational atherosclerosis research have frequently been castrated for practical or commercial reasons, but the effect of castration on atherosclerosis has never been systematically evaluated in pigs. Objective To study the effect of castration on atherosclerotic plaque burden and type in genetically modified minipigs with hypercholesterolemia. Methods Newborn male Yucatan minipigs with transgenic overexpression of a human gain-of-function mutant of proprotein convertase subtilisin/kexin type 9 were randomized to undergo orchiectomy (n = 8) or serve as controls (n = 6). Minipigs were started on high-fat diet at 3 months of age and the amount and composition of atherosclerotic lesions were analyzed at 12 months of age. Plasma lipid profiles and behavioral parameters were also assessed. Results Plasma lipids were slightly affected to a more atherogenic profile by orchiectomy, but atherosclerotic lesion size was unaltered in the LAD, thoracic aorta, abdominal aorta, and iliac arteries. The distribution of lesion types (xanthomas, pathological intimal thickening and fibroatheromas) were also not statistically different between groups in any of the examined vascular territories. The abdominal aorta developed the most advanced stages of disease with reproducible fibroatheroma formation, and here it was found that the area of necrotic core was significantly increased in orchiectomized pigs compared with controls. Orchiectomy also reduced aggressive behavior. Conclusions Castration does not alter the burden of atherosclerosis in hypercholesterolemic Yucatan minipigs, but may increase necrotic core area in fibroatheromas.
Collapse
Affiliation(s)
- Jeong T. Shim
- Department of Clinical Medicine, Heart Diseases, Aarhus University, Aarhus, Denmark
- Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain
| | - Nikolaj Schmidt
- Department of Clinical Medicine, Heart Diseases, Aarhus University, Aarhus, Denmark
| | - Paula Nogales
- Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain
| | - Torben Larsen
- Department of Animal Science, Aarhus University, Aarhus, Denmark
| | | | - Jacob F. Bentzon
- Department of Clinical Medicine, Heart Diseases, Aarhus University, Aarhus, Denmark
- Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain
- * E-mail:
| |
Collapse
|
16
|
Wang D, Xu X, Zhao M, Wang X. Accelerated miniature swine models of advanced atherosclerosis: A review based on morphology. Cardiovasc Pathol 2020; 49:107241. [PMID: 32554057 DOI: 10.1016/j.carpath.2020.107241] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 04/27/2020] [Accepted: 05/06/2020] [Indexed: 12/31/2022] Open
Abstract
In order to accelerate development of atherosclerosis(AS) in miniature swine models, varieties of strategies and methods have been explored. In addition to traditional methods such as high cholesterol feeding and balloon injury, new methods such as familial hypercholesterolemia induced by gene editing and intramural injection have been applied in recent years. Although it has been claimed that these methods have successfully aggravated lesion areas and stenosis, lesion features induced by different strategies have shown heterogeneity in morphology. In addition, time consumption, high cost, and unavailability are problems that restrict application of these AS models. Here, we summarize strategies and methods to accelerate AS models and further analyze their values, advantages, and shortcomings.
Collapse
Affiliation(s)
- Dayang Wang
- Cardiovascular Department, Dongzhimen Hospital of Beijing University of Chinese Medicine, Beijing, China.
| | - Xiaoqing Xu
- Third Department of Neurology, Dongzhimen Hospital of Beijing University of Chinese Medicine, Beijing, China.
| | - Mingjing Zhao
- Key Laboratory of Chinese Internal Medicine of Ministry of Education and Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China.
| | - Xian Wang
- Cardiovascular Insititute, Dongzhimen Hospital of Beijing University of Chinese Medicine, Beijing, China.
| |
Collapse
|
17
|
Uceda DE, Zhu XY, Woollard JR, Ferguson CM, Patras I, Carlson DF, Asirvatham SJ, Lerman A, Lerman LO. Accumulation of Pericardial Fat Is Associated With Alterations in Heart Rate Variability Patterns in Hypercholesterolemic Pigs. Circ Arrhythm Electrophysiol 2020; 13:e007614. [PMID: 32189516 DOI: 10.1161/circep.119.007614] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
BACKGROUND Heart rate variability (HRV) and pulse rate variability are indices of autonomic cardiac modulation. Increased pericardial fat is associated with worse cardiovascular outcomes. We hypothesized that progressive increases in pericardial fat volume and inflammation prospectively dampen HRV in hypercholesterolemic pigs. METHODS WT (wild type) or PCSK9 (proprotein convertase subtilisin-like/kexin type-9) gain-of-function Ossabaw mini-pigs were studied in vivo before and after 3 and 6 months of a normal diet (WT-normal diet, n=4; PCSK9-normal diet, n=6) or high-fat diet (HFD; WT-HFD, n=3; PCSK9-HFD, n=6). The arterial pulse waveform was obtained from an arterial telemetry transmitter to analyze HRV indices, including SD (SD of all pulse-to-pulse intervals over a single 5-minute period), root mean square of successive differences, proportion >50 ms of normal-to-normal R-R intervals, and the calculated ratio of low-to-high frequency distributions (low-frequency power/high-frequency power). Pericardial fat volumes were evaluated using multidetector computed tomography and its inflammation by gene expression of TNF (tumor necrosis factor)-α. Plasma lipid panel and norepinephrine level were also measured. RESULTS At diet completion, hypercholesterolemic PCSK9-HFD had significantly (P<0.05 versus baseline) depressed HRV (SD of all pulse-to-pulse intervals over a single 5-minute period, root mean square of successive differences, proportion >50 ms, high-frequency power, low-frequency power), and both HFD groups had higher sympathovagal balance (SD of all pulse-to-pulse intervals over a single 5-minute period/root mean square of successive differences, low-frequency power/high-frequency power) compared with normal diet. Pericardial fat volumes and LDL (low-density lipoprotein) cholesterol concentrations correlated inversely with HRV and directly with sympathovagal balance, while sympathovagal balance correlated directly with plasma norepinephrine. Pericardial fat TNF-α expression was upregulated in PCSK9-HFD, colocalized with nerve fibers, and correlated inversely with root mean square of successive differences and proportion >50 ms. CONCLUSIONS Progressive pericardial fat expansion and inflammation are associated with a fall in HRV in Ossabaw mini-pigs, implying aggravated autonomic imbalance. Hence, pericardial fat accumulation is associated with alterations in HRV and the autonomic nervous system. Visual Overview: A visual overview is available for this article.
Collapse
Affiliation(s)
- Domingo E Uceda
- Division of Nephrology and Hypertension (D.E.U., X.-Y.Z., J.R.W., C.M.F., I.P., L.O.L.), Mayo Clinic, Rochester, MN
| | - Xiang-Yang Zhu
- Division of Nephrology and Hypertension (D.E.U., X.-Y.Z., J.R.W., C.M.F., I.P., L.O.L.), Mayo Clinic, Rochester, MN
| | - John R Woollard
- Division of Nephrology and Hypertension (D.E.U., X.-Y.Z., J.R.W., C.M.F., I.P., L.O.L.), Mayo Clinic, Rochester, MN
| | - Christopher M Ferguson
- Division of Nephrology and Hypertension (D.E.U., X.-Y.Z., J.R.W., C.M.F., I.P., L.O.L.), Mayo Clinic, Rochester, MN
| | - Ioannis Patras
- Division of Nephrology and Hypertension (D.E.U., X.-Y.Z., J.R.W., C.M.F., I.P., L.O.L.), Mayo Clinic, Rochester, MN
| | | | - Samuel J Asirvatham
- Department of Cardiovascular Diseases (S.J.A., A.L., L.O.L.), Mayo Clinic, Rochester, MN
| | - Amir Lerman
- Department of Cardiovascular Diseases (S.J.A., A.L., L.O.L.), Mayo Clinic, Rochester, MN
| | - Lilach O Lerman
- Division of Nephrology and Hypertension (D.E.U., X.-Y.Z., J.R.W., C.M.F., I.P., L.O.L.), Mayo Clinic, Rochester, MN.,Department of Cardiovascular Diseases (S.J.A., A.L., L.O.L.), Mayo Clinic, Rochester, MN
| |
Collapse
|
18
|
Abstract
Swine disease models are essential for mimicry of human metabolic and vascular pathophysiology, thereby enabling high-fidelity translation to human medicine. The worldwide epidemic of obesity, metabolic disease, and diabetes has prompted the focus on these diseases in this review. We highlight the remarkable similarity between Ossabaw miniature swine and humans with metabolic syndrome and atherosclerosis. Although the evidence is strongest for swine models of coronary artery disease, findings are generally applicable to any vascular bed. We discuss the major strengths and weaknesses of swine models. The development of vascular imaging is an example of optimal vascular engineering in swine. Although challenges regarding infrastructure and training of engineers in the use of swine models exist, opportunities are ripe for gene editing, studies of molecular mechanisms, and use of swine in coronary artery imaging and testing of devices that can move quickly to human clinical studies.
Collapse
Affiliation(s)
- Michael Sturek
- Department of Anatomy, Cell Biology, and Physiology, Indiana University School of Medicine, Indianapolis, Indiana 46202-5120, USA; .,Weldon School of Biomedical Engineering, Purdue University, West Lafayette, Indiana 46907, USA
| | - Mouhamad Alloosh
- Department of Anatomy, Cell Biology, and Physiology, Indiana University School of Medicine, Indianapolis, Indiana 46202-5120, USA;
| | - Frank W Sellke
- Division of Cardiothoracic Surgery, Department of Surgery, Cardiovascular Research Center, Rhode Island Hospital and Warren Alpert Medical School of Brown University, Providence, Rhode Island 02903, USA
| |
Collapse
|
19
|
Porcine models for studying complications and organ crosstalk in diabetes mellitus. Cell Tissue Res 2020; 380:341-378. [PMID: 31932949 DOI: 10.1007/s00441-019-03158-9] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Accepted: 11/28/2019] [Indexed: 02/06/2023]
Abstract
The worldwide prevalence of diabetes mellitus and obesity is rapidly increasing not only in adults but also in children and adolescents. Diabetes is associated with macrovascular complications increasing the risk for cardiovascular disease and stroke, as well as microvascular complications leading to diabetic nephropathy, retinopathy and neuropathy. Animal models are essential for studying disease mechanisms and for developing and testing diagnostic procedures and therapeutic strategies. Rodent models are most widely used but have limitations in translational research. Porcine models have the potential to bridge the gap between basic studies and clinical trials in human patients. This article provides an overview of concepts for the development of porcine models for diabetes and obesity research, with a focus on genetically engineered models. Diabetes-associated ocular, cardiovascular and renal alterations observed in diabetic pig models are summarized and their similarities with complications in diabetic patients are discussed. Systematic multi-organ biobanking of porcine models of diabetes and obesity and molecular profiling of representative tissue samples on different levels, e.g., on the transcriptome, proteome, or metabolome level, is proposed as a strategy for discovering tissue-specific pathomechanisms and their molecular key drivers using systems biology tools. This is exemplified by a recent study providing multi-omics insights into functional changes of the liver in a transgenic pig model for insulin-deficient diabetes mellitus. Collectively, these approaches will provide a better understanding of organ crosstalk in diabetes mellitus and eventually reveal new molecular targets for the prevention, early diagnosis and treatment of diabetes mellitus and its associated complications.
Collapse
|
20
|
Cicha I, Chauvierre C, Texier I, Cabella C, Metselaar JM, Szebeni J, Dézsi L, Alexiou C, Rouzet F, Storm G, Stroes E, Bruce D, MacRitchie N, Maffia P, Letourneur D. From design to the clinic: practical guidelines for translating cardiovascular nanomedicine. Cardiovasc Res 2019; 114:1714-1727. [PMID: 30165574 DOI: 10.1093/cvr/cvy219] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Accepted: 08/23/2018] [Indexed: 12/20/2022] Open
Abstract
Cardiovascular diseases (CVD) account for nearly half of all deaths in Europe and almost 30% of global deaths. Despite the improved clinical management, cardiovascular mortality is predicted to rise in the next decades due to the increasing impact of aging, obesity, and diabetes. The goal of emerging cardiovascular nanomedicine is to reduce the burden of CVD using nanoscale medical products and devices. However, the development of novel multicomponent nano-sized products poses multiple technical, ethical, and regulatory challenges, which often obstruct their road to successful approval and use in clinical practice. This review discusses the rational design of nanoparticles, including safety considerations and regulatory issues, and highlights the steps needed to achieve efficient clinical translation of promising nanomedicinal products for cardiovascular applications.
Collapse
Affiliation(s)
- Iwona Cicha
- Cardiovascular Nanomedicine Unit, Section of Experimental Oncology und Nanomedicine (SEON), ENT-Department, University Hospital Erlangen, Glückstr. 10a, Erlangen, Germany
| | - Cédric Chauvierre
- INSERM U1148, LVTS, Paris Diderot University, Paris 13 University, X. Bichat Hospital, 46 rue H. Huchard, Paris, France
| | | | - Claudia Cabella
- Centro Ricerche Bracco, Bracco Imaging Spa, Colleretto Giacosa, Italy
| | - Josbert M Metselaar
- Department of Experimental Molecular Imaging, University Clinic and Helmholtz Institute for Biomedical Engineering, RWTH-Aachen University, Aachen, Germany
| | - János Szebeni
- Nanomedicine Research and Education Center, Department of Pathophysiology, Semmelweis University, Budapest, Hungary
| | - László Dézsi
- Nanomedicine Research and Education Center, Department of Pathophysiology, Semmelweis University, Budapest, Hungary
| | - Christoph Alexiou
- Cardiovascular Nanomedicine Unit, Section of Experimental Oncology und Nanomedicine (SEON), ENT-Department, University Hospital Erlangen, Glückstr. 10a, Erlangen, Germany
| | - François Rouzet
- INSERM U1148, LVTS, Paris Diderot University, Paris 13 University, X. Bichat Hospital, 46 rue H. Huchard, Paris, France.,Department of Nuclear Medicine, X. Bichat Hospital, Paris, France
| | - Gert Storm
- Department of Pharmaceutics, University of Utrecht, Utrecht, The Netherlands.,Department of Biomaterials Science and Technology, University of Twente, Enschede, The Netherlands
| | - Erik Stroes
- Department of Vascular Medicine, Amsterdam Medical Center, Amsterdam, The Netherlands
| | | | - Neil MacRitchie
- Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - Pasquale Maffia
- Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK.,Institute of Cardiovascular and Medical Sciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK.,Department of Pharmacy, University of Naples Federico II, Naples, Italy
| | - Didier Letourneur
- INSERM U1148, LVTS, Paris Diderot University, Paris 13 University, X. Bichat Hospital, 46 rue H. Huchard, Paris, France
| |
Collapse
|
21
|
Cheng S, Zhang X, Feng Q, Chen J, Shen L, Yu P, Yang L, Chen D, Zhang H, Sun W, Chen X. Astragaloside IV exerts angiogenesis and cardioprotection after myocardial infarction via regulating PTEN/PI3K/Akt signaling pathway. Life Sci 2019; 227:82-93. [DOI: 10.1016/j.lfs.2019.04.040] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Revised: 04/08/2019] [Accepted: 04/16/2019] [Indexed: 12/27/2022]
|