1
|
Luo X, Zhang N, Liu Y, Du B, Wang X, Zhao T, Liu B, Zhao S, Qiu J, Wang G. Resolving the developmental mechanisms of cardiac microthrombosis of SARS-CoV-2 based on single-cell transcriptome analysis. SCIENCE CHINA. LIFE SCIENCES 2025; 68:103-115. [PMID: 39470924 DOI: 10.1007/s11427-023-2624-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 05/21/2024] [Indexed: 11/01/2024]
Abstract
The coronavirus disease 2019 (COVID-19) outbreak caused by the severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) developed into a global health emergency. Systemic microthrombus caused by SARS-CoV-2 infection is a common complication in patients with COVID-19. Cardiac microthrombosis as a complication of SARS-CoV-2 infection is the primary cause of cardiac injury and death in patietns with severe COVID-19. In this study, we performed single-cell sequencing analysis of the right ventricular free wall tissue from healthy donors, patients who died during the hypercoagulable period of characteristic coagulation abnormality (CAC), and patients who died during the fibrinolytic period of CAC. We collected 61,187 cells enriched in 24 immune cell subsets and 13 cardiac-resident cell subsets. We found that in the course of SARS-CoV-2 infected heart microthrombus, MYO1EhighRASGEF1Bhighmonocyte-derived macrophages promoted hyperactivation of the immune system and initiated the extrinsic coagulation pathway by activating chemokines CCL3, CCL5. This series of events is the main cause of cardiac microthrombi following SARS-CoV-2 infection. In a SARS-CoV-2 infected heart microthrombus, excessive immune activation is accompanied by an increase in cellular iron content, which in turn promotes oxidative stress and intensifies intercellular competition. This induces cells to alter their metabolic environment, resulting in increased sugar uptake via the glycosaminoglycan synthesis pathway. In addition, high levels of reactive oxygen species generated by elevated iron levels promote increased endogenous malondialdehyde synthesis in a subpopulation of cardiac endothelial cells. This exacerbates endothelial cell dysfunction and exacerbates the coagulopathy process.
Collapse
Affiliation(s)
- Xizi Luo
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, College of Basic Medicine, Jilin University, Changchun, 130012, China
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, 130062, China
| | - Nan Zhang
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, College of Basic Medicine, Jilin University, Changchun, 130012, China
- College of Mathematics, Jilin University, Changchun, 130021, China
| | - Yuntao Liu
- Bioinformatic Lab, School of Mathematics, Shandong University, Jinan, 250100, China
| | - Beibei Du
- Department of Cardiology, China-Japan Union Hospital, Jilin University, Changchun, 130033, China
| | - Xuan Wang
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, College of Basic Medicine, Jilin University, Changchun, 130012, China
| | - Tianxu Zhao
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, College of Basic Medicine, Jilin University, Changchun, 130012, China
| | - Bingqiang Liu
- Bioinformatic Lab, School of Mathematics, Shandong University, Jinan, 250100, China
| | - Shishun Zhao
- College of Mathematics, Jilin University, Changchun, 130021, China
| | - Jiazhang Qiu
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, 130062, China.
| | - Guoqing Wang
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, College of Basic Medicine, Jilin University, Changchun, 130012, China.
| |
Collapse
|
2
|
Oh Y, Abid R, Dababneh S, Bakr M, Aslani T, Cook DP, Vanderhyden BC, Park JG, Munshi NV, Hui CC, Kim KH. Transcriptional regulation of the postnatal cardiac conduction system heterogeneity. Nat Commun 2024; 15:6550. [PMID: 39095365 PMCID: PMC11297185 DOI: 10.1038/s41467-024-50849-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 07/23/2024] [Indexed: 08/04/2024] Open
Abstract
The cardiac conduction system (CCS) is a network of specialized cardiomyocytes that coordinates electrical impulse generation and propagation for synchronized heart contractions. Although the components of the CCS, including the sinoatrial node, atrioventricular node, His bundle, bundle branches, and Purkinje fibers, were anatomically discovered more than 100 years ago, their molecular constituents and regulatory mechanisms remain incompletely understood. Here, we demonstrate the transcriptomic landscape of the postnatal mouse CCS at a single-cell resolution with spatial information. Integration of single-cell and spatial transcriptomics uncover region-specific markers and zonation patterns of expression. Network inference shows heterogeneous gene regulatory networks across the CCS. Notably, region-specific gene regulation is recapitulated in vitro using neonatal mouse atrial and ventricular myocytes overexpressing CCS-specific transcription factors, Tbx3 and/or Irx3. This finding is supported by ATAC-seq of different CCS regions, Tbx3 ChIP-seq, and Irx motifs. Overall, this study provides comprehensive molecular profiles of the postnatal CCS and elucidates gene regulatory mechanisms contributing to its heterogeneity.
Collapse
Affiliation(s)
- Yena Oh
- University of Ottawa Heart Institute, Ottawa, ON, Canada
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Rimshah Abid
- University of Ottawa Heart Institute, Ottawa, ON, Canada
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Saif Dababneh
- University of Ottawa Heart Institute, Ottawa, ON, Canada
- Department of Cellular and Physiological Sciences, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Marwan Bakr
- University of Ottawa Heart Institute, Ottawa, ON, Canada
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, ON, Canada
| | - Termeh Aslani
- University of Ottawa Heart Institute, Ottawa, ON, Canada
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
| | - David P Cook
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
- Cancer Therapeutics Program, Ottawa Hospital Research Institute, Ottawa, ON, Canada
| | - Barbara C Vanderhyden
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
- Cancer Therapeutics Program, Ottawa Hospital Research Institute, Ottawa, ON, Canada
| | - Jin G Park
- Virginia G. Piper Center for Personalized Diagnostics, Biodesign Institute, Arizona State University, Tempe, AZ, USA
| | - Nikhil V Munshi
- Department of Internal Medicine, Division of Cardiology, UT Southwestern Medical Center, Dallas, TX, USA
- Department of Molecular Biology, UT Southwestern Medical Center, Dallas, TX, USA
- McDermott Center for Human Growth and Development, UT Southwestern Medical Center, Dallas, TX, USA
- Center for Regenerative Science and Medicine, UT Southwestern Medical Center, Dallas, TX, USA
| | - Chi-Chung Hui
- Program in Developmental & Stem Cell Biology, The Hospital for Sick Children, Toronto, ON, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Kyoung-Han Kim
- University of Ottawa Heart Institute, Ottawa, ON, Canada.
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada.
| |
Collapse
|
3
|
Ninni S, Algalarrondo V, Brette F, Lemesle G, Fauconnier J. Left atrial cardiomyopathy: Pathophysiological insights, assessment methods and clinical implications. Arch Cardiovasc Dis 2024; 117:283-296. [PMID: 38490844 DOI: 10.1016/j.acvd.2024.02.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Revised: 02/01/2024] [Accepted: 02/06/2024] [Indexed: 03/17/2024]
Abstract
Atrial cardiomyopathy is defined as any complex of structural, architectural, contractile or electrophysiological changes affecting atria, with the potential to produce clinically relevant manifestations. Most of our knowledge about the mechanistic aspects of atrial cardiomyopathy is derived from studies investigating animal models of atrial fibrillation and atrial tissue samples obtained from individuals who have a history of atrial fibrillation. Several noninvasive tools have been reported to characterize atrial cardiomyopathy in patients, which may be relevant for predicting the risk of incident atrial fibrillation and its related outcomes, such as stroke. Here, we provide an overview of the pathophysiological mechanisms involved in atrial cardiomyopathy, and discuss the complex interplay of these mechanisms, including aging, left atrial pressure overload, metabolic disorders and genetic factors. We discuss clinical tools currently available to characterize atrial cardiomyopathy, including electrocardiograms, cardiac imaging and serum biomarkers. Finally, we discuss the clinical impact of atrial cardiomyopathy, and its potential role for predicting atrial fibrillation, stroke, heart failure and dementia. Overall, this review aims to highlight the critical need for a clinically relevant definition of atrial cardiomyopathy to improve treatment strategies.
Collapse
Affiliation(s)
- Sandro Ninni
- CHU de Lille, Université de Lille, 59000 Lille, France.
| | - Vincent Algalarrondo
- Department of Cardiology, Bichat University Hospital, AP-HP, 75018 Paris, France
| | - Fabien Brette
- PhyMedExp, University of Montpellier, INSERM, CNRS, 34093 Montpellier, France
| | | | - Jérémy Fauconnier
- PhyMedExp, University of Montpellier, INSERM, CNRS, 34093 Montpellier, France
| |
Collapse
|
4
|
Tubeeckx MRL, De Keulenaer GW, Heidbuchel H, Segers VFM. Pathophysiology and clinical relevance of atrial myopathy. Basic Res Cardiol 2024; 119:215-242. [PMID: 38472506 DOI: 10.1007/s00395-024-01038-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 02/01/2024] [Accepted: 02/02/2024] [Indexed: 03/14/2024]
Abstract
Atrial myopathy is a condition that consists of electrical, structural, contractile, and autonomic remodeling of the atria and is the substrate for development of atrial fibrillation, the most common arrhythmia. Pathophysiologic mechanisms driving atrial myopathy are inflammation, oxidative stress, atrial stretch, and neurohormonal signals, e.g., angiotensin-II and aldosterone. These mechanisms initiate the structural and functional remodeling of the atrial myocardium. Novel therapeutic strategies are being developed that target the pathophysiologic mechanisms of atrial myopathy. In this review, we will discuss the pathophysiology of atrial myopathy, as well as diagnostic and therapeutic strategies.
Collapse
Affiliation(s)
- Michiel R L Tubeeckx
- Laboratory of Physiopharmacology, Universiteitsplein 1, Building T (2nd Floor), 2610, Antwerp, Belgium.
| | - Gilles W De Keulenaer
- Laboratory of Physiopharmacology, Universiteitsplein 1, Building T (2nd Floor), 2610, Antwerp, Belgium
- Department of Cardiology, ZNA Middelheim Hospital Antwerp, Antwerp, Belgium
| | - Hein Heidbuchel
- Research Group Cardiovascular Diseases, GENCOR, University of Antwerp, Antwerp, Belgium
- Department of Cardiology, University Hospital Antwerp, Antwerp, Belgium
| | - Vincent F M Segers
- Laboratory of Physiopharmacology, Universiteitsplein 1, Building T (2nd Floor), 2610, Antwerp, Belgium
- Department of Cardiology, University Hospital Antwerp, Antwerp, Belgium
| |
Collapse
|
5
|
Burnham HV, Cizauskas HE, Barefield DY. Fine tuning contractility: atrial sarcomere function in health and disease. Am J Physiol Heart Circ Physiol 2024; 326:H568-H583. [PMID: 38156887 PMCID: PMC11221815 DOI: 10.1152/ajpheart.00252.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 12/20/2023] [Accepted: 12/21/2023] [Indexed: 01/03/2024]
Abstract
The molecular mechanisms of sarcomere proteins underlie the contractile function of the heart. Although our understanding of the sarcomere has grown tremendously, the focus has been on ventricular sarcomere isoforms due to the critical role of the ventricle in health and disease. However, atrial-specific or -enriched myofilament protein isoforms, as well as isoforms that become expressed in disease, provide insight into ways this complex molecular machine is fine-tuned. Here, we explore how atrial-enriched sarcomere protein composition modulates contractile function to fulfill the physiological requirements of atrial function. We review how atrial dysfunction negatively affects the ventricle and the many cardiovascular diseases that have atrial dysfunction as a comorbidity. We also cover the pathophysiology of mutations in atrial-enriched contractile proteins and how they can cause primary atrial myopathies. Finally, we explore what is known about contractile function in various forms of atrial fibrillation. The differences in atrial function in health and disease underscore the importance of better studying atrial contractility, especially as therapeutics currently in development to modulate cardiac contractility may have different effects on atrial sarcomere function.
Collapse
Affiliation(s)
- Hope V Burnham
- Department of Cell and Molecular Physiology, Loyola University Chicago, Maywood, Illinois, United States
| | - Hannah E Cizauskas
- Department of Cell and Molecular Physiology, Loyola University Chicago, Maywood, Illinois, United States
| | - David Y Barefield
- Department of Cell and Molecular Physiology, Loyola University Chicago, Maywood, Illinois, United States
| |
Collapse
|
6
|
Bajpai AK, Gu Q, Orgil BO, Alberson NR, Towbin JA, Martinez HR, Lu L, Purevjav E. Exploring the Regulation and Function of Rpl3l in the Development of Early-Onset Dilated Cardiomyopathy and Congestive Heart Failure Using Systems Genetics Approach. Genes (Basel) 2023; 15:53. [PMID: 38254943 PMCID: PMC10815855 DOI: 10.3390/genes15010053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 12/25/2023] [Accepted: 12/27/2023] [Indexed: 01/24/2024] Open
Abstract
BACKGROUND Cardiomyopathies, diseases affecting the myocardium, are common causes of congestive heart failure (CHF) and sudden cardiac death. Recently, biallelic variants in ribosomal protein L3-like (RPL3L) have been reported to be associated with severe neonatal dilated cardiomyopathy (DCM) and CHF. This study employs a systems genetics approach to gain understanding of the regulatory mechanisms underlying the role of RPL3L in DCM. METHODS Genetic correlation, expression quantitative trait loci (eQTL) mapping, differential expression analysis and comparative functional analysis were performed using cardiac gene expression data from the patients and murine genetic reference populations (GRPs) of BXD mice (recombinant inbred strains from a cross of C57BL/6J and DBA/2J mice). Additionally, immune infiltration analysis was performed to understand the relationship between DCM, immune cells and RPL3L expression. RESULTS Systems genetics analysis identified high expression of Rpl3l mRNA, which ranged from 11.31 to 12.16 across murine GRPs of BXD mice, with an ~1.8-fold difference. Pathways such as "diabetic cardiomyopathy", "focal adhesion", "oxidative phosphorylation" and "DCM" were significantly associated with Rpl3l. eQTL mapping suggested Myl4 (Chr 11) and Sdha (Chr 13) as the upstream regulators of Rpl3l. The mRNA expression of Rpl3l, Myl4 and Sdha was significantly correlated with multiple echocardiography traits in BXD mice. Immune infiltration analysis revealed a significant association of RPL3L and SDHA with seven immune cells (CD4, CD8-naive T cell, CD8 T cell, macrophages, cytotoxic T cell, gamma delta T cell and exhausted T cell) that were also differentially infiltrated between heart samples obtained from DCM patients and normal individuals. CONCLUSIONS RPL3L is highly expressed in the heart tissue of humans and mice. Expression of Rpl3l and its upstream regulators, Myl4 and Sdha, correlate with multiple cardiac function traits in murine GRPs of BXD mice, while RPL3L and SDHA correlate with immune cell infiltration in DCM patient hearts, suggesting important roles for RPL3L in DCM and CHF pathogenesis via immune inflammation, necessitating experimental validations of Myl4 and Sdha in Rpl3l regulation.
Collapse
Affiliation(s)
- Akhilesh K. Bajpai
- Department of Genetics, Genomics and Informatics, University of Tennessee Health Science Center, Memphis, TN 38103, USA; (A.K.B.); (Q.G.)
| | - Qingqing Gu
- Department of Genetics, Genomics and Informatics, University of Tennessee Health Science Center, Memphis, TN 38103, USA; (A.K.B.); (Q.G.)
| | - Buyan-Ochir Orgil
- The Heart Institute, Le Bonheur Children’s Hospital, University of Tennessee Health and Science Center, Memphis, TN 38103, USA; (B.-O.O.); (N.R.A.); (J.A.T.); (H.R.M.)
- Children’s Foundation Research Institute, Le Bonheur Children’s Hospital, Memphis, TN 38103, USA
| | - Neely R. Alberson
- The Heart Institute, Le Bonheur Children’s Hospital, University of Tennessee Health and Science Center, Memphis, TN 38103, USA; (B.-O.O.); (N.R.A.); (J.A.T.); (H.R.M.)
- Children’s Foundation Research Institute, Le Bonheur Children’s Hospital, Memphis, TN 38103, USA
| | - Jeffrey A. Towbin
- The Heart Institute, Le Bonheur Children’s Hospital, University of Tennessee Health and Science Center, Memphis, TN 38103, USA; (B.-O.O.); (N.R.A.); (J.A.T.); (H.R.M.)
- Children’s Foundation Research Institute, Le Bonheur Children’s Hospital, Memphis, TN 38103, USA
- Cardiology, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
| | - Hugo R. Martinez
- The Heart Institute, Le Bonheur Children’s Hospital, University of Tennessee Health and Science Center, Memphis, TN 38103, USA; (B.-O.O.); (N.R.A.); (J.A.T.); (H.R.M.)
- Children’s Foundation Research Institute, Le Bonheur Children’s Hospital, Memphis, TN 38103, USA
| | - Lu Lu
- Department of Genetics, Genomics and Informatics, University of Tennessee Health Science Center, Memphis, TN 38103, USA; (A.K.B.); (Q.G.)
| | - Enkhsaikhan Purevjav
- The Heart Institute, Le Bonheur Children’s Hospital, University of Tennessee Health and Science Center, Memphis, TN 38103, USA; (B.-O.O.); (N.R.A.); (J.A.T.); (H.R.M.)
- Children’s Foundation Research Institute, Le Bonheur Children’s Hospital, Memphis, TN 38103, USA
| |
Collapse
|
7
|
Lim KS, Cheng J, Tuggle C, Dyck M, Canada P, Fortin F, Harding J, Plastow G, Dekkers J. Genetic analysis of the blood transcriptome of young healthy pigs to improve disease resilience. Genet Sel Evol 2023; 55:90. [PMID: 38087235 PMCID: PMC10714454 DOI: 10.1186/s12711-023-00860-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 11/22/2023] [Indexed: 12/18/2023] Open
Abstract
BACKGROUND Disease resilience is the ability of an animal to maintain productive performance under disease conditions and is an important selection target. In pig breeding programs, disease resilience must be evaluated on selection candidates without exposing them to disease. To identify potential genetic indicators for disease resilience that can be measured on selection candidates, we focused on the blood transcriptome of 1594 young healthy pigs with subsequent records on disease resilience. Transcriptome data were obtained by 3'mRNA sequencing and genotype data were from a 650 K genotyping array. RESULTS Heritabilities of the expression of 16,545 genes were estimated, of which 5665 genes showed significant estimates of heritability (p < 0.05), ranging from 0.05 to 0.90, with or without accounting for white blood cell composition. Genes with heritable expression levels were spread across chromosomes, but were enriched in the swine leukocyte antigen region (average estimate > 0.2). The correlation of heritability estimates with the corresponding estimates obtained for genes expressed in human blood was weak but a sizable number of genes with heritable expression levels overlapped. Genes with heritable expression levels were significantly enriched for biological processes such as cell activation, immune system process, stress response, and leukocyte activation, and were involved in various disease annotations such as RNA virus infection, including SARS-Cov2, as well as liver disease, and inflammation. To estimate genetic correlations with disease resilience, 3205 genotyped pigs, including the 1594 pigs with transcriptome data, were evaluated for disease resilience following their exposure to a natural polymicrobial disease challenge. Significant genetic correlations (p < 0.05) were observed with all resilience phenotypes, although few exceeded expected false discovery rates. Enrichment analysis of genes ranked by estimates of genetic correlations with resilience phenotypes revealed significance for biological processes such as regulation of cytokines, including interleukins and interferons, and chaperone mediated protein folding. CONCLUSIONS These results suggest that expression levels in the blood of young healthy pigs for genes in biological pathways related to immunity and endoplasmic reticulum stress have potential to be used as genetic indicator traits to select for disease resilience.
Collapse
Affiliation(s)
- Kyu-Sang Lim
- Department of Animal Science, Iowa State University, Ames, IA, USA
- Department of Animal Resource Science, Kongju National University, Yesan, Chungnam, Republic of Korea
| | - Jian Cheng
- Department of Animal Science, Iowa State University, Ames, IA, USA
| | | | - Michael Dyck
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB, Canada
| | - PigGen Canada
- PigGen Canada Research Consortium, Guelph, ON, Canada
| | - Frederic Fortin
- Centre de Développement du Porc du Québec Inc. (CDPQ), Québec City, QC, Canada
| | - John Harding
- Department of Large Animal Clinical Sciences, University of Saskatchewan, Saskatoon, SK, Canada
| | - Graham Plastow
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB, Canada
| | - Jack Dekkers
- Department of Animal Science, Iowa State University, Ames, IA, USA.
| |
Collapse
|
8
|
Marcoux E, Sosnowski D, Ninni S, Mackasey M, Cadrin-Tourigny J, Roberts JD, Olesen MS, Fatkin D, Nattel S. Genetic Atrial Cardiomyopathies: Common Features, Specific Differences, and Broader Relevance to Understanding Atrial Cardiomyopathy. Circ Arrhythm Electrophysiol 2023; 16:675-698. [PMID: 38018478 DOI: 10.1161/circep.123.003750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2023]
Abstract
Atrial cardiomyopathy is a condition that causes electrical and contractile dysfunction of the atria, often along with structural and functional changes. Atrial cardiomyopathy most commonly occurs in conjunction with ventricular dysfunction, in which case it is difficult to discern the atrial features that are secondary to ventricular dysfunction from those that arise as a result of primary atrial abnormalities. Isolated atrial cardiomyopathy (atrial-selective cardiomyopathy [ASCM], with minimal or no ventricular function disturbance) is relatively uncommon and has most frequently been reported in association with deleterious rare genetic variants. The genes involved can affect proteins responsible for various biological functions, not necessarily limited to the heart but also involving extracardiac tissues. Atrial enlargement and atrial fibrillation are common complications of ASCM and are often the predominant clinical features. Despite progress in identifying disease-causing rare variants, an overarching understanding and approach to the molecular pathogenesis, phenotypic spectrum, and treatment of genetic ASCM is still lacking. In this review, we aim to analyze the literature relevant to genetic ASCM to understand the key features of this rather rare condition, as well as to identify distinct characteristics of ASCM and its arrhythmic complications that are related to specific genotypes. We outline the insights that have been gained using basic research models of genetic ASCM in vitro and in vivo and correlate these with patient outcomes. Finally, we provide suggestions for the future investigation of patients with genetic ASCM and improvements to basic scientific models and systems. Overall, a better understanding of the genetic underpinnings of ASCM will not only provide a better understanding of this condition but also promises to clarify our appreciation of the more commonly occurring forms of atrial cardiomyopathy associated with ventricular dysfunction.
Collapse
Affiliation(s)
- Edouard Marcoux
- Research Center, Montreal Heart Institute, Université de Montréal. (E.M., D.S., S. Ninni, M.M., S. Nattel)
- Faculty of Pharmacy, Université de Montréal. (E.M.)
| | - Deanna Sosnowski
- Research Center, Montreal Heart Institute, Université de Montréal. (E.M., D.S., S. Ninni, M.M., S. Nattel)
- Department of Pharmacology and Therapeutics, McGill University, Montreal, Canada (D.S., M.M., S. Nattel)
| | - Sandro Ninni
- Research Center, Montreal Heart Institute, Université de Montréal. (E.M., D.S., S. Ninni, M.M., S. Nattel)
- Université de Lille, Inserm, CHU Lille, Institut Pasteur de Lille, France (S. Ninni)
| | - Martin Mackasey
- Research Center, Montreal Heart Institute, Université de Montréal. (E.M., D.S., S. Ninni, M.M., S. Nattel)
- Department of Pharmacology and Therapeutics, McGill University, Montreal, Canada (D.S., M.M., S. Nattel)
| | - Julia Cadrin-Tourigny
- Cardiovascular Genetics Center, Montreal Heart Institute, Faculty of Medicine, Université de Montréal. (J.C.-T.)
| | - Jason D Roberts
- Population Health Research Institute, McMaster University and Hamilton Health Sciences, Canada (J.D.R.)
| | - Morten Salling Olesen
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark (M.S.O.)
| | - Diane Fatkin
- Victor Chang Cardiac Research Institute, Darlinghurst (D.F.)
- School of Clinical Medicine, Faculty of Medicine and Health, UNSW Sydney, Kensington (D.F.)
- Department of Cardiology, St Vincent's Hospital, Darlinghurst, NSW, Australia (D.F.)
| | - Stanley Nattel
- Research Center, Montreal Heart Institute, Université de Montréal. (E.M., D.S., S. Ninni, M.M., S. Nattel)
- Department of Pharmacology and Physiology, Faculty of Medicine, Université de Montréal. (S. Nattel.)
- Department of Pharmacology and Therapeutics, McGill University, Montreal, Canada (D.S., M.M., S. Nattel)
- Institute of Pharmacology. West German Heart and Vascular Center, University Duisburg-Essen, Germany (S. Nattel)
- IHU LYRIC & Fondation Bordeaux Université de Bordeaux, France (S. Nattel)
| |
Collapse
|
9
|
Zhou Y, Wu Q, Li Y, Feng Y, Wang Y, Cheng W. Low-dose of polystyrene microplastics induce cardiotoxicity in mice and human-originated cardiac organoids. ENVIRONMENT INTERNATIONAL 2023; 179:108171. [PMID: 37669592 DOI: 10.1016/j.envint.2023.108171] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Revised: 08/09/2023] [Accepted: 08/24/2023] [Indexed: 09/07/2023]
Abstract
Microplastic particles (MP) are prevalent in both industrial production and the natural environment, posing a significant concern for human health. Daily diet, air inhalation, and skin contact are major routines of MP intake in human. The main injury target systems of MPs include the digestive system, respiratory system, and cardiovascular system. However, the study on MPs' adverse effects on the heart is less than other target organs. Previous in vivo studies have demonstrated that MPs can induce heart injuries, including abnormal heart rate, apoptosis of cardiomyocytes, mitochondrial membrane potential change, and fibrin overexpression. To address animal welfare concerns and overcome inter-species variations, this study employed a human pluripotent stem cell-derived in vitro three-dimensional cardiac organoid (CO) model to investigate the adverse effects of MPs on the human heart. The distinct cavities of COs allowed for the observation of MPs' aggregation and spatial distribution following polystyrene-MP (PS) exposure in a dynamic exposure system. After exposure to various concentrations of PS (0.025, 0.25 and 2.5 µg/mL, with the lowest concentration equivalent to human internal exposure levels), the COs exhibited increased oxidative stress, inflammatory response, apoptosis, and collagen accumulation. These findings were consistent with in vivo observations, in terms of increases in the interventricular septal thickness. The expression of hypertrophic-related genes of COs (MYH7B/ANP/BNP/COL1A1) changed noticeably and the cardiac-specific markers MYL2/MYL4/CX43 were also markedly elevated. Our findings revealed the PS could induced cardiac hypertrophy in vivo and in vitro, indicating that MP may be an under-recognized risk factor for cardiovascular system.
Collapse
Affiliation(s)
- Yue Zhou
- The Ninth People's Hospital of Shanghai Jiao Tong University School of Medicine, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Qian Wu
- School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Yan Li
- School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yan Feng
- School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Yan Wang
- The Ninth People's Hospital of Shanghai Jiao Tong University School of Medicine, School of Public Health, Collaborative Innovation Center for Clinical and Translational Science by Ministry of Education & Shanghai, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Wei Cheng
- School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
10
|
Zhong Y, Tang K, Nattel S, Zhai M, Gong S, Yu Q, Zeng Y, E G, Maimaitiaili N, Wang J, Xu Y, Peng W, Li H. Myosin light-chain 4 gene-transfer attenuates atrial fibrosis while correcting autophagic flux dysregulation. Redox Biol 2023; 60:102606. [PMID: 36645977 PMCID: PMC9860351 DOI: 10.1016/j.redox.2023.102606] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 01/06/2023] [Accepted: 01/09/2023] [Indexed: 01/12/2023] Open
Abstract
OBJECTIVES To determine the role of MYL4 regulation of lysosomal function and its disturbance in fibrotic atrial cardiomyopathy. BACKGROUND We have previously demonstrated that the atrial-specific essential light chain protein MYL4 is required for atrial contractile, electrical, and structural integrity. MYL4 mutation/dysfunction leads to atrial fibrosis, standstill, and dysrhythmia. However, the underlying pathogenic mechanisms remain unclear. METHODS AND RESULTS Rats subjected to knock-in of a pathogenic MYL4 mutant (p.E11K) developed fibrotic atrial cardiomyopathy. Proteome analysis and single-cell RNA sequencing indicate enrichment of autophagy pathways in mutant-MYL4 atrial dysfunction. Immunofluorescence and electron microscopy revealed undegraded autophagic vesicles accumulated in MYL4p.E11K rat atrium. Next, we identified that dysfunctional MYL4 protein impairs autophagy flux in vitro and in vivo. Cardiac lysosome positioning and mobility were regulated by MYL4 in cardiomyocytes, which affected lysosomal acidification and maturation of lysosomal cathepsins. We then examined the effects of MYL4 overexpression via adenoviral gene-transfer on atrial cardiomyopathy induced by MYL4 mutation: MYL4 protein overexpression attenuated atrial structural remodeling and autophagy dysfunction. CONCLUSIONS MYL4 regulates autophagic flux in atrial cardiomyocytes via lysosomal mobility. MYL4 overexpression attenuates MYL4 p.E11K induced fibrotic atrial cardiomyopathy, while correcting autophagy and lysosomal function. These results provide a molecular basis for MYL4-mutant induced fibrotic atrial cardiomyopathy and identify a potential biological-therapy approach for the treatment of atrial fibrosis.
Collapse
Affiliation(s)
- Yuan Zhong
- Department of Cardiology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Kai Tang
- Department of Cardiology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Stanley Nattel
- Department of Medicine, Montreal Heart Institute, Montreal, Quebec, Canada; Université de Montréal, Quebec, Canada; Department of Pharmacology and Therapeutics, McGill University, Montreal, Quebec, Canada; Institute of Pharmacology, West German Heart and Vascular Center, University Duisburg-Essen, Essen, Germany; HIU LYRIC and Fondation Bordeaux Université de Bordeaux, France
| | - Ming Zhai
- Department of Cardiology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Shiyu Gong
- Department of Cardiology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Qing Yu
- Department of Cardiology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Yanxi Zeng
- Department of Cardiology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Guangxi E
- Department of Cardiology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Nuerbiyemu Maimaitiaili
- Department of Cardiology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Jun Wang
- Department of Pediatrics, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Yawei Xu
- Department of Cardiology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China.
| | - Wenhui Peng
- Department of Cardiology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China.
| | - Hailing Li
- Department of Cardiology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China.
| |
Collapse
|
11
|
Chen K, Zhu CY, Bai JY, Xiao F, Tan S, Zhou Q, Zeng L. Identification of Feature Genes and Key Biological Pathways in Immune-Mediated Necrotizing Myopathy: High-Throughput Sequencing and Bioinformatics Analysis. Comput Struct Biotechnol J 2023; 21:2228-2240. [PMID: 37035552 PMCID: PMC10074409 DOI: 10.1016/j.csbj.2023.03.019] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2023] [Revised: 03/07/2023] [Accepted: 03/13/2023] [Indexed: 03/17/2023] Open
Abstract
Background Immune-mediated necrotizing myopathy (IMNM), a subgroup of idiopathic inflammatory myopathies (IIMs), is characterized by severe proximal muscle weakness and prominent necrotic fibers but no infiltration of inflammatory cells. IMNM pathogenesis is unclear. This study investigated key biomarkers and potential pathways for IMNM using high-throughput sequencing and bioinformatics technology. Methods RNA sequencing was conducted in 18 IMNM patients and 10 controls. A combination of weighted gene coexpression network analysis (WGCNA) and differentially expressed gene (DEG) analysis was conducted to identify IMNM-related DEGs. Feature genes were screened out by employing the protein-protein interaction (PPI) network, support vector machine-recursive feature elimination (SVM-RFE), and least absolute shrinkage selection operator (LASSO). Quantitative real-time polymerase chain reaction (qRT-PCR) was performed to verify their differential expression, and the receiver operating characteristic curve (ROC) was used to evaluate their diagnostic efficiency. Functional enrichment analysis was applied to reveal the hidden functions of feature genes. Furthermore, 28 immune cell abundance patterns in IMNM samples were measured. Results We identified 193 IMNM-related DEGs that were aberrantly upregulated in the IMNM population and were closely associated with immune-inflammatory responses, regulation of skeletal and cardiac muscle contraction, and lipoprotein metabolism. With the help of the PPI network and the LASSO and SVM-RFE algorithms, three feature genes, LTK, MYBPH, and MYL4, were identified and further confirmed by qRT-PCR. ROC curves among IMNM, dermatomyositis (DM), inclusion body myositis (IBM), and polymyositis (PM) samples validated the LTK and MYL4 genes as IMNM-specific feature markers. In addition, all three genes had a notable association with the autophagy-lysosome pathway and immune-inflammatory responses. Ultimately, IMNM displayed a marked immune-cell infiltrative microenvironment. The most significant correlation was found between CD4 T cells, CD8 T cells, macrophages, natural killer (NK) cells, and dendritic cells (DCs). Conclusions LTK, MYBPH, and MYL4 were identified as potential key molecules for IMNM and are believed to play a role in the autophagy-lysosome pathway and muscle inflammation.
Collapse
Affiliation(s)
- Kai Chen
- Department of Neurology, Sichuan Academy of Medical Science and Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Chun-yan Zhu
- Department of Neurology, Sichuan Academy of Medical Science and Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Jia-ying Bai
- Department of Neurology, Sichuan Academy of Medical Science and Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Feng Xiao
- Department of Neurology, Sichuan Academy of Medical Science and Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Song Tan
- Department of Neurology, Sichuan Academy of Medical Science and Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, China
- Sichuan Provincial Key Laboratory for Human Disease Gene Study, Chengdu, China
| | - Qiao Zhou
- Department of Rheumatology and Immunology, Sichuan Academy of Medical Science and Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, China
- Clinical Immunology Translational Medicine Key Laboratory of Sichuan Province, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, China
- Corresponding author at: Department of Rheumatology and Immunology, Sichuan Academy of Medical Science and Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, China.
| | - Li Zeng
- Department of Neurology, Sichuan Academy of Medical Science and Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, China
- Corresponding author.
| |
Collapse
|
12
|
Yu Y, Fang R, Jin H, Wang B, Gao F, He B. Correlation between Serum Myosin Light Chain 4 Levels and Recurrence after Radiofrequency Ablation in Patients with Atrial Fibrillation. Int Heart J 2023; 64:632-640. [PMID: 37518344 DOI: 10.1536/ihj.22-560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 08/01/2023]
Abstract
Atrial fibrillation (AF) is the most common arrhythmia that is harmful to human health. This study aims to explore the relationship between myosin light chain 4 (MYL4) and AF recurrence after radiofrequency ablation (RFA). Patients with AF (n = 85) were enrolled, and healthy subjects (n = 90) with normal sinus rhythm and no previous history of AF were selected as controls. The serum levels of MYL4, transforming growth factor (TGF) -β1, and procollagen type-I C-terminal propeptide (PICP) were determined. The correlation between MYL4 and atrial fibrosis remodeling indicators (TGF-β1/PICP) and left atrial diameter (LAD) was analyzed. The influence of MYL4 on AF recurrence after RFA was evaluated, and the independent correlation between them was assessed. Patients with AF and the controls showed no significant differences in age, gender, body mass index, systolic blood pressure, diastolic blood pressure, left ventricular ejection fraction, triglycerides, total cholesterol, high-density lipoprotein, low-density lipoprotein, white blood cell count, neutrophil/lymphocyte ratio, brain natriuretic peptide, and history of smoking, drinking, hypertension, and diabetes (P > 0.05), but with increased LAD in patients with AF (P < 0.01). Serum MYL4 level was reduced in patients with AF (0.6 ± 0.2) compared with that of controls (0.1 ± 0.6) (P < 0.01), and it was negatively correlated with TGF-β1, PICP, and LAD (r = -0.2389, P < 0.05; r = -0.5174, P < 0.01; r = -0.3191; P < 0.01). Low levels of MYL4 increased the risk of AF recurrence after RFA (χ2 = 16.64; P < 0.0001). A low MYL4 level in patients with AF showed a poorer prognosis. Serum MYL4 level and AF type were independent risk factors affecting AF recurrence after RFA.
Collapse
Affiliation(s)
- Yibo Yu
- Department of Cardiology, Ningbo First Hospital
| | | | - He Jin
- Department of Cardiology, Ningbo First Hospital
| | - Binhao Wang
- Department of Cardiology, Ningbo First Hospital
| | - Fang Gao
- Department of Cardiology, Ningbo First Hospital
| | - Bin He
- Department of Cardiology, Ningbo First Hospital
| |
Collapse
|
13
|
Li S, Ma J, Pang X, Liang Y, Li X, Wang M, Yuan J, Pan Y, Fu Y, Laher I. Time-dependent Effects of Moderate- and High-intensity Exercises on Myocardial Transcriptomics. Int J Sports Med 2022; 43:1214-1225. [PMID: 36063823 DOI: 10.1055/a-1885-4115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The heart is a highly adaptable organ that responds to changes in functional requirements due to exposure to internal and external stimuli. Physical exercise has unique stimulatory effects on the myocardium in both healthy individuals and those with health disorders, where the effects are primarily determined by the intensity and recovery time of exercise. We investigated the time-dependent effects of different exercise intensities on myocardial transcriptional expression in rats. Moderate intensity exercise induced more differentially expressed genes in the myocardium than high intensity exercise, while 16 differentially expressed genes were down-regulated by moderate intensity exercise but up-regulated by high intensity exercise at 12 h post- exercise. Both Gene Ontology and Kyoto Encyclopedia of Genes and Genomes analysis indicated that moderate intensity exercise specifically regulated gene expression related to heart adaptation, energy metabolism, and oxidative stress, while high intensity exercise specifically regulated gene expression related to immunity, inflammation, and apoptosis. Moreover, there was increased expression of Tbx5, Casq1, Igsf1, and Ddah1 at all time points after moderate intensity exercise, while there was increased expression of Card9 at all time points after high intensity exercise. Our study provides a better understanding of the intensity dependent effects of physical exercise of the molecular mechanisms of cardiac adaptation to physical exercise.
Collapse
Affiliation(s)
- Shunchang Li
- Institute of Sports Medicine and Health, Chengdu Sport University, Chengdu, China
| | - Jiacheng Ma
- Institute of Sports Medicine and Health, Chengdu Sport University, Chengdu, China
| | - Xiaoli Pang
- Institute of Sports Medicine and Health, Chengdu Sport University, Chengdu, China
| | - Yu Liang
- Institute of Sports Medicine and Health, Chengdu Sport University, Chengdu, China
| | - Xiaole Li
- Institute of Sports Medicine and Health, Chengdu Sport University, Chengdu, China
| | - Manda Wang
- Institute of Sports Medicine and Health, Chengdu Sport University, Chengdu, China
| | - Jinghan Yuan
- Institute of Sports Medicine and Health, Chengdu Sport University, Chengdu, China
| | - Yanrong Pan
- Institute of Sports Medicine and Health, Chengdu Sport University, Chengdu, China
| | - Yu Fu
- Institute of Sports Medicine and Health, Chengdu Sport University, Chengdu, China
| | - Ismail Laher
- Anesthesiology, Pharmacology and Therapeutics, The University of British Columbia, Vancouver, Canada
| |
Collapse
|
14
|
Hu H, Wang L, Li H, Li H, Chen X, Peng W, Wang J, Zhao Y, Liu M, Li D. Long-term amelioration of an early-onset familial atrial fibrillation model with AAV-mediated in vivo gene therapy. FUNDAMENTAL RESEARCH 2022; 2:829-835. [PMID: 38933375 PMCID: PMC11197581 DOI: 10.1016/j.fmre.2022.05.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 04/05/2022] [Accepted: 05/05/2022] [Indexed: 10/18/2022] Open
Abstract
Atrial fibrillation (AF) is a common cardiac disease with high prevalence in the general population. Despite a mild manifestation at the onset stage, it causes serious consequences, including sudden death, when the disease progresses to the late stage. Most available treatments of AF focus on symptom management or alleviation, due to a lack of fundamental knowledge and the fact that considerable variations of AF exist. With the popularisation of the next-generation sequencing technology, several causal genetic factors, including MYL4, have been discovered to contribute to AF, giving hope to developing its gene therapies. In this study, we attempted to treat a previously established rat AF model, which carried Myl4E11K/E11K loss of function mutation, via overexpression of exogenous wild-type Myl4 by AAV9 vectors. Our results showed that delivery of Myl4 expressing AAV9 to postnatal rat models rescued the symptoms of AF, indicating the therapeutic potential that early gene therapy intervention can achieve long-term effects in treating cardiac arrhythmias caused by gene mutations.
Collapse
Affiliation(s)
- Handan Hu
- Shanghai Frontiers Science Center of Genome Editing and Cell Therapy, Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Liren Wang
- Shanghai Frontiers Science Center of Genome Editing and Cell Therapy, Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Huiying Li
- Shanghai Frontiers Science Center of Genome Editing and Cell Therapy, Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai 200241, China
- Southern Medical University Affiliated Fengxian Hospital, Shanghai 201499, China
| | - Hailing Li
- The Department of Cardiology, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai 200072, China
| | - Xi Chen
- Shanghai Frontiers Science Center of Genome Editing and Cell Therapy, Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Wenhui Peng
- The Department of Cardiology, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai 200072, China
| | - Jun Wang
- Department of Pediatrics, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX 77030, United States
| | - Yongxiang Zhao
- National Center for International Biotargeting Theranostics, Guangxi Key Laboratory of Biotargeting Theranostics, Collaborative Innovation Center for Targeting Tumor Theranostics, Guangxi Medical University, Guangxi 530021, China
| | - Mingyao Liu
- Shanghai Frontiers Science Center of Genome Editing and Cell Therapy, Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Dali Li
- Shanghai Frontiers Science Center of Genome Editing and Cell Therapy, Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai 200241, China
| |
Collapse
|
15
|
Shen R, Zuo D, Chen K, Yin Y, Tang K, Hou S, Han B, Xu Y, Liu Z, Chen H. K2P1 leak cation channels contribute to ventricular ectopic beats and sudden death under hypokalemia. FASEB J 2022; 36:e22455. [PMID: 35899468 DOI: 10.1096/fj.202200707r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 06/28/2022] [Accepted: 07/06/2022] [Indexed: 11/11/2022]
Abstract
Hypokalemia causes ectopic heartbeats, but the mechanisms underlying such cardiac arrhythmias are not understood. In reduced serum K+ concentrations that occur under hypokalemia, K2P1 two-pore domain K+ channels change ion selectivity and switch to conduct inward leak cation currents, which cause aberrant depolarization of resting potential and induce spontaneous action potential of human cardiomyocytes. K2P1 is expressed in the human heart but not in mouse hearts. We test the hypothesis that K2P1 leak cation channels contribute to ectopic heartbeats under hypokalemia, by analysis of transgenic mice, which conditionally express induced K2P1 specifically in hearts, mimicking K2P1 channels in the human heart. Conditional expression of induced K2P1 specifically in the heart of hypokalemic mice results in multiple types of ventricular ectopic beats including single and multiple ventricular premature beats as well as ventricular tachycardia and causes sudden death. In isolated mouse hearts that express induced K2P1, sustained ventricular fibrillation occurs rapidly after perfusion with low K+ concentration solutions that mimic hypokalemic conditions. These observed phenotypes occur rarely in control mice or in the hearts that lack K2P1 expression. K2P1-expressing mouse cardiomyocytes of transgenic mice much more frequently fire abnormal single and/or rhythmic spontaneous action potential in hypokalemic conditions, compared to wild type mouse cardiomyocytes without K2P1 expression. These findings confirm that K2P1 leak cation channels induce ventricular ectopic beats and sudden death of transgenic mice with hypokalemia and imply that K2P1 leak cation channels may play a critical role in human ectopic heartbeats under hypokalemia.
Collapse
Affiliation(s)
- Rongrong Shen
- Department of Cardiology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China.,Pan-Vascular Research Institute, Heart, Lung, and Blood Center, Tongji University School of Medicine, Shanghai, China
| | - Dongchuan Zuo
- Key Laboratory of Medical Electrophysiology, Institute of Cardiovascular Research, Ministry of Education, Collaborative Innovation Center for Prevention and Treatment of Cardiovascular Disease, Southwest Medical University, Luzhou, China.,Department of Biological Sciences, University at Albany, State University of New York, Albany, New York, USA
| | - Kuihao Chen
- Department of Biological Sciences, University at Albany, State University of New York, Albany, New York, USA.,Department of Pharmacology, Ningbo University School of Medicine, Ningbo, China
| | - Yiheng Yin
- Department of Cardiology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China.,Pan-Vascular Research Institute, Heart, Lung, and Blood Center, Tongji University School of Medicine, Shanghai, China
| | - Kai Tang
- Department of Cardiology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China.,Pan-Vascular Research Institute, Heart, Lung, and Blood Center, Tongji University School of Medicine, Shanghai, China
| | - Shangwei Hou
- Key Laboratory for Translational Research and Innovative Therapeutics of Gastrointestinal Oncology, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Bo Han
- Key Laboratory for Translational Research and Innovative Therapeutics of Gastrointestinal Oncology, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yawei Xu
- Department of Cardiology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China.,Pan-Vascular Research Institute, Heart, Lung, and Blood Center, Tongji University School of Medicine, Shanghai, China
| | - Zheng Liu
- Department of Cardiology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China.,Pan-Vascular Research Institute, Heart, Lung, and Blood Center, Tongji University School of Medicine, Shanghai, China.,Cryo-Electron Microscopy Center, Southern University of Science and Technology, Shenzhen, China
| | - Haijun Chen
- Department of Biological Sciences, University at Albany, State University of New York, Albany, New York, USA
| |
Collapse
|
16
|
Kreimer F, Gotzmann M. Left Atrial Cardiomyopathy - A Challenging Diagnosis. Front Cardiovasc Med 2022; 9:942385. [PMID: 35845077 PMCID: PMC9280085 DOI: 10.3389/fcvm.2022.942385] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 06/14/2022] [Indexed: 01/08/2023] Open
Abstract
Left atrial cardiomyopathy (LACM) has been an ongoing focus of research for several years. There is evidence that LACM is responsible for atrial fibrillation and embolic strokes of undetermined sources. Therefore, the correct diagnosis of LACM is of clinical importance. Various techniques, including electrocardiography, echocardiography, cardiac magnetic resonance imaging, computed tomography, electroanatomic mapping, genetic testing, and biomarkers, can both identify and quantify structural, mechanical as well as electrical dysfunction in the atria. However, the question arises whether these techniques can reliably diagnose LACM. Because of its heterogeneity, clinical diagnosis is challenging. To date, there are no recommendations for standardized diagnosis of suspected LACM. However, standardization could help to classify LACM more precisely and derive therapeutic directions to improve individual patient management. In addition, uniform diagnostic criteria for LACM could be important for future studies. Combining several parameters and relating them seems beneficial to approach the diagnosis of LACM. This review provides an overview of the current evidence regarding the diagnosis of LACM, in which several potential parameters are discussed and, consequently, a proposal for a diagnostic algorithm is presented.
Collapse
Affiliation(s)
- Fabienne Kreimer
- University Hospital St. Josef-Hospital Bochum, Cardiology and Rhythmology, Ruhr University Bochum, Bochum, Germany
| | - Michael Gotzmann
- University Hospital St. Josef-Hospital Bochum, Cardiology and Rhythmology, Ruhr University Bochum, Bochum, Germany
| |
Collapse
|
17
|
Relationship between Serum miR-106 and MYL4 Levels and the Prevalence, Risk Stratification, and Prognosis of Atrial Fibrillation. J Immunol Res 2022; 2022:1069866. [PMID: 35874900 PMCID: PMC9303158 DOI: 10.1155/2022/1069866] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Revised: 05/16/2022] [Accepted: 06/14/2022] [Indexed: 11/17/2022] Open
Abstract
Objective To analyze the predictive value of serum microRNA-106 (miRNA-106), miR-106, and myosin light chain 4 (MYL4) levels on the prevalence of atrial fibrillation and to explore the relationship between serum miR-106 and MYL4 and the risk stratification and prognosis of atrial fibrillation, thereby providing basis for them to become clinical targets for the treatment of atrial fibrillation in the future. Methods 300 patients with atrial fibrillation treated in our hospital from May 2017 to March 2019 were selected as the atrial fibrillation group, and 300 healthy people who came to our hospital for physical examination in the same period were selected as the control group. The general data of the subjects in the two groups were collected. The serum miR-106 level of the subjects in the two groups was detected by fluorescence quantitative polymerase chain reaction (PCR), and the level of MYL4 was detected by enzyme-linked immunosorbent assay (ELISA). The expression of miR-106 and MYL4 in the myocardium was observed by immunohistochemistry. The relationship between the levels of serum miR-106 and MYL4 and the prevalence of atrial fibrillation and the score of atrial fibrillation thromboembolism risk stratification scoring system (cha2ds2) was compared between the two groups. The relationship between serum level of miR-106 and prognosis of patients with atrial fibrillation was analyzed. Results The systolic blood pressure, diastolic blood pressure, total cholesterol (TC), triglyceride (TG), low-density lipoprotein cholesterol (LDL-C), and left anterior descending artery (LAD) in the atrial fibrillation group were significantly higher than those in the control group, while HDL-C and left ventricular ejection fraction (LVEF) were significantly lower than those in the control group (P < 0.01). The level of serum miR-106 in patients with atrial fibrillation was significantly higher than that in the control group, whereas the level of MYL4 was significantly lower than that in the control group (P < 0.01). miR-106 was mainly localized in the cytoplasm, and the positive expression rate of miR-106 was 71.43% (81/115) in patients with atrial fibrillation and 21.74% (25/115) in patients with sinus rhythm. MYL4 was mainly located in the cell membrane and the positive expression rate of MYL4 was 24.35% (28/115) in patients with atrial fibrillation and 64.35% (74/115) in patients with sinus rhythm. With the increase of the severity of atrial fibrillation, the level of serum miR-106 gradually increased and the level of MYL4 gradually decreased, which were statistically significant compared with the control group (P < 0.05). With the increase of miR-106 level and the decrease of MYL4 level, the prevalence of atrial fibrillation gradually increased. With the increase of cha2ds2 score, the level of serum miR-106 increased and the level of MYL4 decreased. The survival rate of patients with miR − 106 ≤ 1.96 was significantly higher than that of patients with miR − 106 > 1.96. The survival rate of patients with MYL4 ≥ 0.24 was significantly higher than that of patients with MYL4 < 0.24. At the same time, TC and LDL-C were included in the analysis. The results showed that the survival rate of patients with TC ≤ 4.5 mmol/L was significantly higher than that of patients with TC > 4.5 mmol/L, and that of patients with LDL-C ≤ 2.6 mmol/L was significantly higher than that of patients with LDL-C > 2.6 mmol/L. Conclusion Serum miR-106 and MYL4 levels are closely related to the prevalence of atrial fibrillation, which can reflect the risk of thromboembolism in patients with atrial fibrillation and can be used as a biological indicator to predict the prognosis of patients with atrial fibrillation.
Collapse
|
18
|
Cunha PS, Laranjo S, Heijman J, Oliveira MM. The Atrium in Atrial Fibrillation - A Clinical Review on How to Manage Atrial Fibrotic Substrates. Front Cardiovasc Med 2022; 9:879984. [PMID: 35859594 PMCID: PMC9289204 DOI: 10.3389/fcvm.2022.879984] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Accepted: 06/03/2022] [Indexed: 12/27/2022] Open
Abstract
Atrial fibrillation (AF) is the most common sustained arrhythmia in the population and is associated with a significant clinical and economic burden. Rigorous assessment of the presence and degree of an atrial arrhythmic substrate is essential for determining treatment options, predicting long-term success after catheter ablation, and as a substrate critical in the pathophysiology of atrial thrombogenesis. Catheter ablation of AF has developed into an essential rhythm-control strategy. Nowadays is one of the most common cardiac ablation procedures performed worldwide, with its success inversely related to the extent of atrial structural disease. Although atrial substrate evaluation remains complex, several diagnostic resources allow for a more comprehensive assessment and quantification of the extent of left atrial structural remodeling and the presence of atrial fibrosis. In this review, we summarize the current knowledge on the pathophysiology, etiology, and electrophysiological aspects of atrial substrates promoting the development of AF. We also describe the risk factors for its development and how to diagnose its presence using imaging, electrocardiograms, and electroanatomic voltage mapping. Finally, we discuss recent data regarding fibrosis biomarkers that could help diagnose atrial fibrotic substrates.
Collapse
Affiliation(s)
- Pedro Silva Cunha
- Arrhythmology, Pacing and Electrophysiology Unit, Cardiology Service, Santa Marta Hospital, Central Lisbon Hospital University Center, Lisbon, Portugal
- Lisbon School of Medicine, Universidade de Lisboa, Lisbon, Portugal
- Comprehensive Health Research Center, Universidade NOVA de Lisboa, Lisbon, Portugal
| | - Sérgio Laranjo
- Arrhythmology, Pacing and Electrophysiology Unit, Cardiology Service, Santa Marta Hospital, Central Lisbon Hospital University Center, Lisbon, Portugal
- Lisbon School of Medicine, Universidade de Lisboa, Lisbon, Portugal
- Comprehensive Health Research Center, Universidade NOVA de Lisboa, Lisbon, Portugal
| | - Jordi Heijman
- Department of Cardiology, Cardiovascular Research Institute Maastricht, Maastricht University, Maastricht, Netherlands
| | - Mário Martins Oliveira
- Arrhythmology, Pacing and Electrophysiology Unit, Cardiology Service, Santa Marta Hospital, Central Lisbon Hospital University Center, Lisbon, Portugal
- Lisbon School of Medicine, Universidade de Lisboa, Lisbon, Portugal
- Comprehensive Health Research Center, Universidade NOVA de Lisboa, Lisbon, Portugal
| |
Collapse
|
19
|
Aung N, Vargas JD, Yang C, Fung K, Sanghvi MM, Piechnik SK, Neubauer S, Manichaikul A, Rotter JI, Taylor KD, Lima JAC, Bluemke DA, Kawut SM, Petersen SE, Munroe PB. Genome-wide association analysis reveals insights into the genetic architecture of right ventricular structure and function. Nat Genet 2022; 54:783-791. [PMID: 35697868 DOI: 10.1038/s41588-022-01083-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Accepted: 04/22/2022] [Indexed: 01/03/2023]
Abstract
Right ventricular (RV) structure and function influence the morbidity and mortality from coronary artery disease (CAD), dilated cardiomyopathy (DCM), pulmonary hypertension and heart failure. Little is known about the genetic basis of RV measurements. Here we perform genome-wide association analyses of four clinically relevant RV phenotypes (RV end-diastolic volume, RV end-systolic volume, RV stroke volume, RV ejection fraction) from cardiovascular magnetic resonance images, using a state-of-the-art deep learning algorithm in 29,506 UK Biobank participants. We identify 25 unique loci associated with at least one RV phenotype at P < 2.27 ×10-8, 17 of which are validated in a combined meta-analysis (n = 41,830). Several candidate genes overlap with Mendelian cardiomyopathy genes and are involved in cardiac muscle contraction and cellular adhesion. The RV polygenic risk scores (PRSs) are associated with DCM and CAD. The findings substantially advance our understanding of the genetic underpinning of RV measurements.
Collapse
Affiliation(s)
- Nay Aung
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK.,National Institute for Health Research, Barts Cardiovascular Biomedical Research Centre, Queen Mary University of London, London, UK.,Barts Heart Centre, St Bartholomew's Hospital, Barts Health NHS Trust, West Smithfield, London, UK
| | - Jose D Vargas
- Veterans Affairs Medical Center, Washington, DC, USA.,Georgetown University, Washington, DC, USA
| | - Chaojie Yang
- Center for Public Health Genomics, University of Virginia, Charlottesville, VA, USA
| | - Kenneth Fung
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK.,National Institute for Health Research, Barts Cardiovascular Biomedical Research Centre, Queen Mary University of London, London, UK.,Barts Heart Centre, St Bartholomew's Hospital, Barts Health NHS Trust, West Smithfield, London, UK
| | - Mihir M Sanghvi
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK.,National Institute for Health Research, Barts Cardiovascular Biomedical Research Centre, Queen Mary University of London, London, UK.,Barts Heart Centre, St Bartholomew's Hospital, Barts Health NHS Trust, West Smithfield, London, UK
| | - Stefan K Piechnik
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Stefan Neubauer
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Ani Manichaikul
- Center for Public Health Genomics, University of Virginia, Charlottesville, VA, USA
| | - Jerome I Rotter
- The Institute for Translational Genomics and Population Sciences, Department of Pediatrics, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA, USA
| | - Kent D Taylor
- The Institute for Translational Genomics and Population Sciences, Department of Pediatrics, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA, USA
| | - Joao A C Lima
- Division of Cardiology, Johns Hopkins University, Baltimore, MD, USA
| | - David A Bluemke
- Department of Radiology, University of Wisconsin, Madison, WI, USA
| | - Steven M Kawut
- Department of Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Steffen E Petersen
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK. .,National Institute for Health Research, Barts Cardiovascular Biomedical Research Centre, Queen Mary University of London, London, UK. .,Barts Heart Centre, St Bartholomew's Hospital, Barts Health NHS Trust, West Smithfield, London, UK.
| | - Patricia B Munroe
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK. .,National Institute for Health Research, Barts Cardiovascular Biomedical Research Centre, Queen Mary University of London, London, UK.
| |
Collapse
|
20
|
Hashimoto K, Kodama A, Ohira M, Kimoto M, Nakagawa R, Usui Y, Ujihara Y, Hanashima A, Mohri S. Postnatal expression of cell cycle promoter Fam64a causes heart dysfunction by inhibiting cardiomyocyte differentiation through repression of Klf15. iScience 2022; 25:104337. [PMID: 35602953 PMCID: PMC9118685 DOI: 10.1016/j.isci.2022.104337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 04/07/2022] [Accepted: 04/26/2022] [Indexed: 12/03/2022] Open
Abstract
Introduction of fetal cell cycle genes into damaged adult hearts has emerged as a promising strategy for stimulating proliferation and regeneration of postmitotic adult cardiomyocytes. We have recently identified Fam64a as a fetal-specific cell cycle promoter in cardiomyocytes. Here, we analyzed transgenic mice maintaining cardiomyocyte-specific postnatal expression of Fam64a when endogenous expression was abolished. Despite an enhancement of cardiomyocyte proliferation, these mice showed impaired cardiomyocyte differentiation during postnatal development, resulting in cardiac dysfunction in later life. Mechanistically, Fam64a inhibited cardiomyocyte differentiation by repressing Klf15, leading to the accumulation of undifferentiated cardiomyocytes. In contrast, introduction of Fam64a in differentiated adult wildtype hearts improved functional recovery upon injury with augmented cell cycle and no dedifferentiation in cardiomyocytes. These data demonstrate that Fam64a inhibits cardiomyocyte differentiation during early development, but does not induce de-differentiation in once differentiated cardiomyocytes, illustrating a promising potential of Fam64a as a cell cycle promoter to attain heart regeneration. Overexpression of cell cycle promoter Fam64a in cardiomyocytes causes heart failure Fam64a inhibits cardiomyocyte differentiation during development by repressing Klf15 Transient and local induction of Fam64a in adult hearts improves recovery upon injury Fam64a activates cardiomyocyte cell cycle without dedifferentiation upon injury
Collapse
Affiliation(s)
- Ken Hashimoto
- First Department of Physiology, Kawasaki Medical School, Kurashiki 701-0192, Japan
| | - Aya Kodama
- First Department of Physiology, Kawasaki Medical School, Kurashiki 701-0192, Japan
| | - Momoko Ohira
- First Department of Physiology, Kawasaki Medical School, Kurashiki 701-0192, Japan
| | - Misaki Kimoto
- First Department of Physiology, Kawasaki Medical School, Kurashiki 701-0192, Japan
| | - Reiko Nakagawa
- Laboratory for Phyloinformatics, RIKEN Center for Biosystems Dynamics Research (BDR), Kobe 650-0047, Japan
| | - Yuu Usui
- First Department of Physiology, Kawasaki Medical School, Kurashiki 701-0192, Japan
| | - Yoshihiro Ujihara
- Department of Electrical and Mechanical Engineering, Nagoya Institute of Technology, Nagoya 466-8555, Japan
| | - Akira Hanashima
- First Department of Physiology, Kawasaki Medical School, Kurashiki 701-0192, Japan
| | - Satoshi Mohri
- First Department of Physiology, Kawasaki Medical School, Kurashiki 701-0192, Japan
| |
Collapse
|
21
|
Sato M, Nakamura S, Inada E, Takabayashi S. Recent Advances in the Production of Genome-Edited Rats. Int J Mol Sci 2022; 23:ijms23052548. [PMID: 35269691 PMCID: PMC8910656 DOI: 10.3390/ijms23052548] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 02/17/2022] [Accepted: 02/21/2022] [Indexed: 12/14/2022] Open
Abstract
The rat is an important animal model for understanding gene function and developing human disease models. Knocking out a gene function in rats was difficult until recently, when a series of genome editing (GE) technologies, including zinc-finger nucleases (ZFNs), transcription activator-like effector nucleases (TALENs), and the type II bacterial clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated Cas9 (CRISPR/Cas9) systems were successfully applied for gene modification (as exemplified by gene-specific knockout and knock-in) in the endogenous target genes of various organisms including rats. Owing to its simple application for gene modification and its ease of use, the CRISPR/Cas9 system is now commonly used worldwide. The most important aspect of this process is the selection of the method used to deliver GE components to rat embryos. In earlier stages, the microinjection (MI) of GE components into the cytoplasm and/or nuclei of a zygote was frequently employed. However, this method is associated with the use of an expensive manipulator system, the skills required to operate it, and the egg transfer (ET) of MI-treated embryos to recipient females for further development. In vitro electroporation (EP) of zygotes is next recognized as a simple and rapid method to introduce GE components to produce GE animals. Furthermore, in vitro transduction of rat embryos with adeno-associated viruses is potentially effective for obtaining GE rats. However, these two approaches also require ET. The use of gene-engineered embryonic stem cells or spermatogonial stem cells appears to be of interest to obtain GE rats; however, the procedure itself is difficult and laborious. Genome-editing via oviductal nucleic acids delivery (GONAD) (or improved GONAD (i-GONAD)) is a novel method allowing for the in situ production of GE zygotes existing within the oviductal lumen. This can be performed by the simple intraoviductal injection of GE components and subsequent in vivo EP toward the injected oviducts and does not require ET. In this review, we describe the development of various approaches for producing GE rats together with an assessment of their technical advantages and limitations, and present new GE-related technologies and current achievements using those rats in relation to human diseases.
Collapse
Affiliation(s)
- Masahiro Sato
- Department of Genome Medicine, National Center for Child Health and Development, Tokyo 157-8535, Japan
- Correspondence: (M.S.); (S.T.); Tel.: +81-3-3416-0181 (M.S.); +81-53-435-2001 (S.T.)
| | - Shingo Nakamura
- Division of Biomedical Engineering, National Defense Medical College Research Institute, Saitama 359-8513, Japan;
| | - Emi Inada
- Department of Pediatric Dentistry, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima 890-8544, Japan;
| | - Shuji Takabayashi
- Laboratory Animal Facilities & Services, Preeminent Medical Photonics Education & Research Center, Hamamatsu University School of Medicine, Hamamatsu, Shizuoka 431-3192, Japan
- Correspondence: (M.S.); (S.T.); Tel.: +81-3-3416-0181 (M.S.); +81-53-435-2001 (S.T.)
| |
Collapse
|
22
|
Chahine Y, Askari-Atapour B, Kwan KT, Anderson CA, Macheret F, Afroze T, Bifulco SF, Cham MD, Ordovas K, Boyle PM, Akoum N. Epicardial adipose tissue is associated with left atrial volume and fibrosis in patients with atrial fibrillation. Front Cardiovasc Med 2022; 9:1045730. [PMID: 36386377 PMCID: PMC9664066 DOI: 10.3389/fcvm.2022.1045730] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Accepted: 10/17/2022] [Indexed: 11/07/2022] Open
Abstract
Background Obesity is a risk factor for atrial fibrillation (AF) and strongly influences the response to treatment. Atrial fibrosis shows similar associations. Epicardial adipose tissue (EAT) may be a link between these associations. We sought to assess whether EAT is associated with body mass index (BMI), left atrial (LA) fibrosis and volume. Methods LA fibrosis and EAT were assessed using late gadolinium enhancement, and Dixon MRI sequences, respectively. We derived 3D models incorporating fibrosis and EAT, then measured the distance of fibrotic and non-fibrotic areas to the nearest EAT to assess spatial colocalization. Results One hundred and three AF patients (64% paroxysmal, 27% female) were analyzed. LA volume index was 54.9 (41.2, 69.7) mL/m2, LA EAT index was 17.4 (12.7, 22.9) mL/m2, and LA fibrosis was 17.1 (12.4, 23.1)%. LA EAT was significantly correlated with BMI (R = 0.557, p < 0.001); as well as with LA volume and LA fibrosis after BSA adjustment (R = 0.579 and R = 0.432, respectively, p < 0.001 for both). Multivariable analysis showed LA EAT to be independently associated with LA volume and fibrosis. 3D registration of fat and fibrosis around the LA showed no clear spatial overlap between EAT and fibrotic LA regions. Conclusion LA EAT is associated with obesity (BMI) as well as LA volume and fibrosis. Regions of LA EAT did not colocalize with fibrotic areas, suggesting a systemic or paracrine mechanism rather than EAT infiltration of fibrotic areas.
Collapse
Affiliation(s)
- Yaacoub Chahine
- Division of Cardiology, University of Washington, Seattle, WA, United States
| | | | - Kirsten T Kwan
- Department of Bioengineering, University of Washington, Seattle, WA, United States
| | - Carter A Anderson
- Department of Bioengineering, University of Washington, Seattle, WA, United States
| | - Fima Macheret
- Division of Cardiology, University of Washington, Seattle, WA, United States
| | - Tanzina Afroze
- Division of Cardiology, University of Washington, Seattle, WA, United States
| | - Savannah F Bifulco
- Department of Bioengineering, University of Washington, Seattle, WA, United States
| | - Matthew D Cham
- Department of Radiology, University of Washington, Seattle, WA, United States
| | - Karen Ordovas
- Department of Radiology, University of Washington, Seattle, WA, United States
| | - Patrick M Boyle
- Department of Bioengineering, University of Washington, Seattle, WA, United States.,Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA, United States.,Center for Cardiovascular Biology, University of Washington, Seattle, WA, United States
| | - Nazem Akoum
- Division of Cardiology, University of Washington, Seattle, WA, United States.,Department of Bioengineering, University of Washington, Seattle, WA, United States
| |
Collapse
|
23
|
Mohenska M, Tan NM, Tokolyi A, Furtado MB, Costa MW, Perry AJ, Hatwell-Humble J, van Duijvenboden K, Nim HT, Ji YMM, Charitakis N, Bienroth D, Bolk F, Vivien C, Knaupp AS, Powell DR, Elliott DA, Porrello ER, Nilsson SK, Del Monte-Nieto G, Rosenthal NA, Rossello FJ, Polo JM, Ramialison M. 3D-cardiomics: A spatial transcriptional atlas of the mammalian heart. J Mol Cell Cardiol 2021; 163:20-32. [PMID: 34624332 DOI: 10.1016/j.yjmcc.2021.09.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Revised: 09/03/2021] [Accepted: 09/28/2021] [Indexed: 12/13/2022]
Abstract
Understanding the spatial gene expression and regulation in the heart is key to uncovering its developmental and physiological processes, during homeostasis and disease. Numerous techniques exist to gain gene expression and regulation information in organs such as the heart, but few utilize intuitive true-to-life three-dimensional representations to analyze and visualise results. Here we combined transcriptomics with 3D-modelling to interrogate spatial gene expression in the mammalian heart. For this, we microdissected and sequenced transcriptome-wide 18 anatomical sections of the adult mouse heart. Our study has unveiled known and novel genes that display complex spatial expression in the heart sub-compartments. We have also created 3D-cardiomics, an interface for spatial transcriptome analysis and visualization that allows the easy exploration of these data in a 3D model of the heart. 3D-cardiomics is accessible from http://3d-cardiomics.erc.monash.edu/.
Collapse
Affiliation(s)
- Monika Mohenska
- Department of Anatomy and Developmental Biology, Monash University, Wellington Road, Clayton, Victoria, Australia; Development and Stem Cells Program, Monash Biomedicine Discovery Institute, Wellington Road, Clayton, Victoria, Australia; Australian Regenerative Medicine Institute, Monash University, Wellington Road, Clayton, Victoria, Australia
| | - Nathalia M Tan
- Department of Anatomy and Developmental Biology, Monash University, Wellington Road, Clayton, Victoria, Australia; Development and Stem Cells Program, Monash Biomedicine Discovery Institute, Wellington Road, Clayton, Victoria, Australia; Australian Regenerative Medicine Institute, Monash University, Wellington Road, Clayton, Victoria, Australia
| | - Alex Tokolyi
- Australian Regenerative Medicine Institute, Monash University, Wellington Road, Clayton, Victoria, Australia
| | - Milena B Furtado
- Australian Regenerative Medicine Institute, Monash University, Wellington Road, Clayton, Victoria, Australia; The Jackson Laboratory, Bar Harbor, ME, USA
| | - Mauro W Costa
- Australian Regenerative Medicine Institute, Monash University, Wellington Road, Clayton, Victoria, Australia; The Jackson Laboratory, Bar Harbor, ME, USA
| | - Andrew J Perry
- Monash Bioinformatics Platform, Monash University, Wellington Road, Clayton, Victoria, Australia
| | - Jessica Hatwell-Humble
- Australian Regenerative Medicine Institute, Monash University, Wellington Road, Clayton, Victoria, Australia; Biomedical Manufacturing, CSIRO Manufacturing, Bag 10, Clayton South, Australia
| | | | - Hieu T Nim
- Australian Regenerative Medicine Institute, Monash University, Wellington Road, Clayton, Victoria, Australia; Faculty of Information Technology, Monash University, Clayton, Victoria, Australia; Murdoch Children's Research Institute, Royal Children's Hospital, Melbourne 3052, VIC, Australia; Systems Biology Institute Australia, Clayton, Victoria, Australia
| | - Yuan M M Ji
- Australian Regenerative Medicine Institute, Monash University, Wellington Road, Clayton, Victoria, Australia
| | - Natalie Charitakis
- Murdoch Children's Research Institute, Royal Children's Hospital, Melbourne 3052, VIC, Australia; Department of Paediatrics, University of Melbourne, Parkville, VIC, Australia
| | - Denis Bienroth
- Murdoch Children's Research Institute, Royal Children's Hospital, Melbourne 3052, VIC, Australia
| | - Francesca Bolk
- Murdoch Children's Research Institute, Royal Children's Hospital, Melbourne 3052, VIC, Australia; Melbourne Centre for Cardiovascular Genomics and Regenerative Medicine, The Royal Children's Hospital, Melbourne 3052, VIC, Australia
| | - Celine Vivien
- Murdoch Children's Research Institute, Royal Children's Hospital, Melbourne 3052, VIC, Australia
| | - Anja S Knaupp
- Department of Anatomy and Developmental Biology, Monash University, Wellington Road, Clayton, Victoria, Australia; Development and Stem Cells Program, Monash Biomedicine Discovery Institute, Wellington Road, Clayton, Victoria, Australia; Australian Regenerative Medicine Institute, Monash University, Wellington Road, Clayton, Victoria, Australia
| | - David R Powell
- Monash Bioinformatics Platform, Monash University, Wellington Road, Clayton, Victoria, Australia
| | - David A Elliott
- Australian Regenerative Medicine Institute, Monash University, Wellington Road, Clayton, Victoria, Australia; Murdoch Children's Research Institute, Royal Children's Hospital, Melbourne 3052, VIC, Australia; Department of Paediatrics, University of Melbourne, Parkville, VIC, Australia
| | - Enzo R Porrello
- Murdoch Children's Research Institute, Royal Children's Hospital, Melbourne 3052, VIC, Australia; Melbourne Centre for Cardiovascular Genomics and Regenerative Medicine, The Royal Children's Hospital, Melbourne 3052, VIC, Australia; Department of Anatomy and Physiology, School of Biomedical Sciences, The University of Melbourne, Melbourne 3010, VIC, Australia
| | - Susan K Nilsson
- Australian Regenerative Medicine Institute, Monash University, Wellington Road, Clayton, Victoria, Australia; Biomedical Manufacturing, CSIRO Manufacturing, Bag 10, Clayton South, Australia
| | - Gonzalo Del Monte-Nieto
- Australian Regenerative Medicine Institute, Monash University, Wellington Road, Clayton, Victoria, Australia
| | - Nadia A Rosenthal
- Australian Regenerative Medicine Institute, Monash University, Wellington Road, Clayton, Victoria, Australia; The Jackson Laboratory, Bar Harbor, ME, USA; National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - Fernando J Rossello
- Department of Anatomy and Developmental Biology, Monash University, Wellington Road, Clayton, Victoria, Australia; Development and Stem Cells Program, Monash Biomedicine Discovery Institute, Wellington Road, Clayton, Victoria, Australia; Australian Regenerative Medicine Institute, Monash University, Wellington Road, Clayton, Victoria, Australia; University of Melbourne Centre for Cancer Research, University of Melbourne, Melbourne, Victoria, Australia.
| | - Jose M Polo
- Department of Anatomy and Developmental Biology, Monash University, Wellington Road, Clayton, Victoria, Australia; Development and Stem Cells Program, Monash Biomedicine Discovery Institute, Wellington Road, Clayton, Victoria, Australia; Australian Regenerative Medicine Institute, Monash University, Wellington Road, Clayton, Victoria, Australia.
| | - Mirana Ramialison
- Australian Regenerative Medicine Institute, Monash University, Wellington Road, Clayton, Victoria, Australia; The Jackson Laboratory, Bar Harbor, ME, USA; Murdoch Children's Research Institute, Royal Children's Hospital, Melbourne 3052, VIC, Australia; Systems Biology Institute Australia, Clayton, Victoria, Australia.
| |
Collapse
|
24
|
Hong L, Zhang M, Ly OT, Chen H, Sridhar A, Lambers E, Chalazan B, Youn SW, Maienschein-Cline M, Feferman L, Ong SG, Wu JC, Rehman J, Darbar D. Human induced pluripotent stem cell-derived atrial cardiomyocytes carrying an SCN5A mutation identify nitric oxide signaling as a mediator of atrial fibrillation. Stem Cell Reports 2021; 16:1542-1554. [PMID: 34019817 PMCID: PMC8190590 DOI: 10.1016/j.stemcr.2021.04.019] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Revised: 04/25/2021] [Accepted: 04/26/2021] [Indexed: 12/13/2022] Open
Abstract
Mutations in SCN5A, encoding the cardiac sodium channel, are linked with familial atrial fibrillation (AF) but the underlying pathophysiologic mechanisms and implications for therapy remain unclear. To characterize the pathogenesis of AF-linked SCN5A mutations, we generated patient-specific induced pluripotent stem cell-derived atrial cardiomyocytes (iPSC-aCMs) from two kindreds carrying SCN5A mutations (E428K and N470K) and isogenic controls using CRISPR-Cas9 gene editing. We showed that mutant AF iPSC-aCMs exhibited spontaneous arrhythmogenic activity with beat-to-beat irregularity, prolonged action potential duration, and triggered-like beats. Single-cell recording revealed enhanced late sodium currents (INa,L) in AF iPSC-aCMs that were absent in a heterologous expression model. Gene expression profiling of AF iPSC-aCMs showed differential expression of the nitric oxide (NO)-mediated signaling pathway underlying enhanced INa,L. We showed that patient-specific AF iPSC-aCMs exhibited striking in vitro electrophysiological phenotype of AF-linked SCN5A mutations, and transcriptomic analyses supported that the NO signaling pathway modulated the INa,L and triggered AF.
Collapse
Affiliation(s)
- Liang Hong
- Division of Cardiology, Department of Medicine, Chicago, IL, USA.
| | - Meihong Zhang
- Division of Cardiology, Department of Medicine, Chicago, IL, USA
| | - Olivia Thao Ly
- Division of Cardiology, Department of Medicine, Chicago, IL, USA
| | - Hanna Chen
- Division of Cardiology, Department of Medicine, Chicago, IL, USA
| | - Arvind Sridhar
- Division of Cardiology, Department of Medicine, Chicago, IL, USA
| | - Erin Lambers
- Division of Cardiology, Department of Medicine, Chicago, IL, USA
| | - Brandon Chalazan
- Division of Cardiology, Department of Medicine, Chicago, IL, USA
| | - Seock-Won Youn
- Division of Cardiology, Department of Medicine, Chicago, IL, USA
| | | | - Leonid Feferman
- Research Informatics Core, Research Resources Center, Chicago, IL, USA
| | - Sang-Ging Ong
- Division of Cardiology, Department of Medicine, Chicago, IL, USA; Department of Pharmacology, University of Illinois at Chicago, Chicago, IL, USA
| | - Joseph C Wu
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, USA
| | - Jalees Rehman
- Division of Cardiology, Department of Medicine, Chicago, IL, USA; Department of Pharmacology, University of Illinois at Chicago, Chicago, IL, USA
| | - Dawood Darbar
- Division of Cardiology, Department of Medicine, Chicago, IL, USA; Department of Pharmacology, University of Illinois at Chicago, Chicago, IL, USA; Jesse Brown Veterans Administration Medical Center, Chicago, IL, USA.
| |
Collapse
|
25
|
Fonseca AC, Coelho P. Update on Biomarkers Associated to Cardioembolic Stroke: A Narrative Review. Life (Basel) 2021; 11:life11050448. [PMID: 34067554 PMCID: PMC8156147 DOI: 10.3390/life11050448] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 05/13/2021] [Accepted: 05/15/2021] [Indexed: 12/15/2022] Open
Abstract
Background: In the last years, several studies were conducted that evaluated biomarkers that could be helpful for cardioembolic stroke diagnosis, prognosis, and the determination of risk of stroke recurrence. Methods: We performed a narrative review of the main studies that evaluated biomarkers related to specific cardioembolic causes: atrial fibrillation, patent foramen ovale, atrial cardiomyopathy, and left ventricular wall motion abnormalities. Results: BNP and NT-proBNP are, among all biomarkers of cardioembolic stroke, the ones that have the highest amount of evidence for their use. NT-proBNP is currently used for the selection of patients that will be included in clinical trials that aim to evaluate the use of anticoagulation in patients suspected of having a cardioembolic stroke and for the selection of patients to undergo cardiac monitoring. NT-proBNP has also been incorporated in tools used to predict the risk of stroke recurrence (ABC-stroke score). Conclusions: NT-proBNP and BNP continue to be the biomarkers most widely studied in the context of cardioembolic stroke. The possibility of using other biomarkers in clinical practice is still distant, mainly because of the low methodological quality of the studies in which they were evaluated. Both internal and external validation studies are rarely performed for most biomarkers.
Collapse
Affiliation(s)
- Ana Catarina Fonseca
- Department of Neurology, Hospital de Santa Maria, 1640-035 Lisboa, Portugal;
- Institute of Molecular Medicine, 1649-028 Lisboa, Portugal
- Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisboa, Portugal
- Correspondence:
| | - Pedro Coelho
- Department of Neurology, Hospital de Santa Maria, 1640-035 Lisboa, Portugal;
| |
Collapse
|
26
|
Kany S, Reissmann B, Metzner A, Kirchhof P, Darbar D, Schnabel RB. Genetics of atrial fibrillation-practical applications for clinical management: if not now, when and how? Cardiovasc Res 2021; 117:1718-1731. [PMID: 33982075 PMCID: PMC8208749 DOI: 10.1093/cvr/cvab153] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Indexed: 12/12/2022] Open
Abstract
The prevalence and economic burden of atrial fibrillation (AF) are predicted to more than double over the next few decades. In addition to anticoagulation and treatment of concomitant cardiovascular conditions, early and standardized rhythm control therapy reduces cardiovascular outcomes as compared with a rate control approach, favouring the restoration, and maintenance of sinus rhythm safely. Current therapies for rhythm control of AF include antiarrhythmic drugs (AADs) and catheter ablation (CA). However, response in an individual patient is highly variable with some remaining free of AF for long periods on antiarrhythmic therapy, while others require repeat AF ablation within weeks. The limited success of rhythm control therapy for AF is in part related to incomplete understanding of the pathophysiological mechanisms and our inability to predict responses in individual patients. Thus, a major knowledge gap is predicting which patients with AF are likely to respond to rhythm control approach. Over the last decade, tremendous progress has been made in defining the genetic architecture of AF with the identification of rare mutations in cardiac ion channels, signalling molecules, and myocardial structural proteins associated with familial (early-onset) AF. Conversely, genome-wide association studies have identified common variants at over 100 genetic loci and the development of polygenic risk scores has identified high-risk individuals. Although retrospective studies suggest that response to AADs and CA is modulated in part by common genetic variation, the development of a comprehensive clinical and genetic risk score may enable the translation of genetic data to the bedside care of AF patients. Given the economic impact of the AF epidemic, even small changes in therapeutic efficacy may lead to substantial improvements for patients and health care systems.
Collapse
Affiliation(s)
- Shinwan Kany
- Department of Cardiology, University Heart and Vascular Center, University Medical Center Hamburg Eppendorf, Martinistraße 52, 20251 Hamburg, Hamburg, Germany.,German Center for Cardiovascular Research (DZHK), partner site Hamburg/Kiel/Lübeck, Martinistraße 52, 20251 Hamburg, Hamburg, Germany
| | - Bruno Reissmann
- Department of Cardiology, University Heart and Vascular Center, University Medical Center Hamburg Eppendorf, Martinistraße 52, 20251 Hamburg, Hamburg, Germany
| | - Andreas Metzner
- Department of Cardiology, University Heart and Vascular Center, University Medical Center Hamburg Eppendorf, Martinistraße 52, 20251 Hamburg, Hamburg, Germany
| | - Paulus Kirchhof
- Department of Cardiology, University Heart and Vascular Center, University Medical Center Hamburg Eppendorf, Martinistraße 52, 20251 Hamburg, Hamburg, Germany.,German Center for Cardiovascular Research (DZHK), partner site Hamburg/Kiel/Lübeck, Martinistraße 52, 20251 Hamburg, Hamburg, Germany.,The Institute of Cardiovascular Sciences, University of Birmingham, Edgbaston Birmingham B15 2TT, UK
| | - Dawood Darbar
- Division of Cardiology, Departments of Medicine, University of Illinois at Chicago and Jesse Brown Veterans Administration, 840 South Wood Street, Suite 928 M/C 715, Chicago, IL 60612, USA
| | - Renate B Schnabel
- Department of Cardiology, University Heart and Vascular Center, University Medical Center Hamburg Eppendorf, Martinistraße 52, 20251 Hamburg, Hamburg, Germany.,German Center for Cardiovascular Research (DZHK), partner site Hamburg/Kiel/Lübeck, Martinistraße 52, 20251 Hamburg, Hamburg, Germany
| |
Collapse
|
27
|
Chenouard V, Remy S, Tesson L, Ménoret S, Ouisse LH, Cherifi Y, Anegon I. Advances in Genome Editing and Application to the Generation of Genetically Modified Rat Models. Front Genet 2021; 12:615491. [PMID: 33959146 PMCID: PMC8093876 DOI: 10.3389/fgene.2021.615491] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Accepted: 02/22/2021] [Indexed: 12/13/2022] Open
Abstract
The rat has been extensively used as a small animal model. Many genetically engineered rat models have emerged in the last two decades, and the advent of gene-specific nucleases has accelerated their generation in recent years. This review covers the techniques and advances used to generate genetically engineered rat lines and their application to the development of rat models more broadly, such as conditional knockouts and reporter gene strains. In addition, genome-editing techniques that remain to be explored in the rat are discussed. The review also focuses more particularly on two areas in which extensive work has been done: human genetic diseases and immune system analysis. Models are thoroughly described in these two areas and highlight the competitive advantages of rat models over available corresponding mouse versions. The objective of this review is to provide a comprehensive description of the advantages and potential of rat models for addressing specific scientific questions and to characterize the best genome-engineering tools for developing new projects.
Collapse
Affiliation(s)
- Vanessa Chenouard
- CHU Nantes, Inserm, Centre de Recherche en Transplantation et Immunologie, UMR 1064, ITUN, Université de Nantes, Nantes, France
- genOway, Lyon, France
| | - Séverine Remy
- CHU Nantes, Inserm, Centre de Recherche en Transplantation et Immunologie, UMR 1064, ITUN, Université de Nantes, Nantes, France
| | - Laurent Tesson
- CHU Nantes, Inserm, Centre de Recherche en Transplantation et Immunologie, UMR 1064, ITUN, Université de Nantes, Nantes, France
| | - Séverine Ménoret
- CHU Nantes, Inserm, Centre de Recherche en Transplantation et Immunologie, UMR 1064, ITUN, Université de Nantes, Nantes, France
- CHU Nantes, Inserm, CNRS, SFR Santé, Inserm UMS 016, CNRS UMS 3556, Nantes Université, Nantes, France
| | - Laure-Hélène Ouisse
- CHU Nantes, Inserm, Centre de Recherche en Transplantation et Immunologie, UMR 1064, ITUN, Université de Nantes, Nantes, France
| | | | - Ignacio Anegon
- CHU Nantes, Inserm, Centre de Recherche en Transplantation et Immunologie, UMR 1064, ITUN, Université de Nantes, Nantes, France
| |
Collapse
|
28
|
Rienstra M, Siland JE, Ellinor PT. Role of genetics in atrial fibrillation management. Europace 2021; 23:ii4-ii8. [PMID: 33837754 PMCID: PMC8035706 DOI: 10.1093/europace/euaa366] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Accepted: 11/13/2020] [Indexed: 01/17/2023] Open
Abstract
Atrial fibrillation (AF) management has significantly improved during the career of professor Crijns. Research was implemented into guidelines and clinical practice. However, despite advances in AF management, large differences between individual treatment responses still exist and the mechanisms underlying initiation and perpetuation of AF are not completely understood. International collaborations have revealed the genetic contribution to AF and steps towards improving AF management are being made. In this short review, the most important paradigms shifts in the field of AF genetics are recognized and the future role of genetics in personalized management of AF is discussed.
Collapse
Affiliation(s)
- Michiel Rienstra
- Department of Cardiology, University of Groningen, University Medical Center Groningen, PO Box 30.001, 9700 RB Groningen, The Netherlands
| | - Joylene E Siland
- Department of Cardiology, University of Groningen, University Medical Center Groningen, PO Box 30.001, 9700 RB Groningen, The Netherlands
| | - Patrick T Ellinor
- Cardiovascular Disease Initiative, The Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Cardiovascular Research Center, Massachusetts General Hospital, Boston, MA, USA
- Cardiac Arrhythmia Service, Massachusetts General Hospital, Boston, MA, USA
| |
Collapse
|
29
|
Nattel S, Sager PT, Hüser J, Heijman J, Dobrev D. Why translation from basic discoveries to clinical applications is so difficult for atrial fibrillation and possible approaches to improving it. Cardiovasc Res 2021; 117:1616-1631. [PMID: 33769493 DOI: 10.1093/cvr/cvab093] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 02/05/2021] [Indexed: 02/06/2023] Open
Abstract
Atrial fibrillation (AF) is the most common sustained clinical arrhythmia, with a lifetime incidence of up to 37%, and is a major contributor to population morbidity and mortality. Important components of AF management include control of cardiac rhythm, rate, and thromboembolic risk. In this narrative review article, we focus on rhythm-control therapy. The available therapies for cardiac rhythm control include antiarrhythmic drugs and catheter-based ablation procedures; both of these are presently neither optimally effective nor safe. In order to develop improved treatment options, it is necessary to use preclinical models, both to identify novel mechanism-based therapeutic targets and to test the effects of putative therapies before initiating clinical trials. Extensive research over the past 30 years has provided many insights into AF mechanisms that can be used to design new rhythm-maintenance approaches. However, it has proven very difficult to translate these mechanistic discoveries into clinically applicable safe and effective new therapies. The aim of this article is to explore the challenges that underlie this phenomenon. We begin by considering the basic problem of AF, including its clinical importance, the current therapeutic landscape, the drug development pipeline, and the notion of upstream therapy. We then discuss the currently available preclinical models of AF and their limitations, and move on to regulatory hurdles and considerations and then review industry concerns and strategies. Finally, we evaluate potential paths forward, attempting to derive insights from the developmental history of currently used approaches and suggesting possible paths for the future. While the introduction of successful conceptually innovative new treatments for AF control is proving extremely difficult, one significant breakthrough is likely to revolutionize both AF management and the therapeutic development landscape.
Collapse
Affiliation(s)
- Stanley Nattel
- Department of Medicine, Montreal Heart Institute and Université de Montréal, Montreal, Canada.,Department of Pharmacology and Therapeutics, McGill University, Montreal, Canada.,IHU LIYRC Institute, Bordeaux, France.,Faculty of Medicine, Institute of Pharmacology, West German Heart and Vascular Center, University Duisburg-Essen, Hufelandstrasse 55, 45122 Essen, Germany
| | - Philip T Sager
- Department of Medicine, Cardiovascuar Research Institute, Stanford University, Palo Alto, CA, USA
| | - Jörg Hüser
- Research and Development, Preclinical Research, Cardiovascular Diseases, Bayer AG, Wuppertal, Germany
| | - Jordi Heijman
- Faculty of Medicine, Institute of Pharmacology, West German Heart and Vascular Center, University Duisburg-Essen, Hufelandstrasse 55, 45122 Essen, Germany.,Department of Cardiology, Cardiovascular Research Institute Maastricht, Faculty of Health, Medicine, and Life Sciences, Maastricht University, Universiteitssingel 50, 6229 ER Maastricht, The Netherlands
| | - Dobromir Dobrev
- Department of Medicine, Montreal Heart Institute and Université de Montréal, Montreal, Canada.,Faculty of Medicine, Institute of Pharmacology, West German Heart and Vascular Center, University Duisburg-Essen, Hufelandstrasse 55, 45122 Essen, Germany.,Department of Molecular Physiology & Biophysics, Baylor College of Medicine, Houston, USA
| |
Collapse
|
30
|
Clausen AG, Vad OB, Andersen JH, Olesen MS. Loss-of-Function Variants in the SYNPO2L Gene Are Associated With Atrial Fibrillation. Front Cardiovasc Med 2021; 8:650667. [PMID: 33768119 PMCID: PMC7985167 DOI: 10.3389/fcvm.2021.650667] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Accepted: 02/18/2021] [Indexed: 11/21/2022] Open
Abstract
Multiple genome-wide association studies (GWAS) have identified numerous loci associated with atrial fibrillation (AF). However, the genes driving these associations and how they contribute to the AF pathogenesis remains poorly understood. To identify genes likely to be driving the observed association, we searched the FinnGen study consisting of 12,859 AF cases and 73,341 controls for rare genetic variants predicted to cause loss-of-function. A specific splice site variant was found in the SYNPO2L gene, located in an AF associated locus on chromosome 10. This variant was associated with an increased risk of AF with a relatively high odds ratio of 3.5 (p = 9.9 × 10-8). SYNPO2L is an important gene involved in the structural development and function of the cardiac myocyte and our findings thus support the recent suggestions that AF can present as atrial cardiomyopathy.
Collapse
Affiliation(s)
- Alexander Guldmann Clausen
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Oliver Bundgaard Vad
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Julie Husted Andersen
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Morten Salling Olesen
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Laboratory for Molecular Cardiology, Department of Cardiology, The Heart Centre, Rigshospitalet, University Hospital of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
31
|
RNAseq shows an all-pervasive day-night rhythm in the transcriptome of the pacemaker of the heart. Sci Rep 2021; 11:3565. [PMID: 33574422 PMCID: PMC7878777 DOI: 10.1038/s41598-021-82202-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Accepted: 01/01/2021] [Indexed: 12/12/2022] Open
Abstract
Physiological systems vary in a day-night manner anticipating increased demand at a particular time. Heart is no exception. Cardiac output is primarily determined by heart rate and unsurprisingly this varies in a day-night manner and is higher during the day in the human (anticipating increased day-time demand). Although this is attributed to a day-night rhythm in post-translational ion channel regulation in the heart's pacemaker, the sinus node, by the autonomic nervous system, we investigated whether there is a day-night rhythm in transcription. RNAseq revealed that ~ 44% of the sinus node transcriptome (7134 of 16,387 transcripts) has a significant day-night rhythm. The data revealed the oscillating components of an intrinsic circadian clock. Presumably this clock (or perhaps the master circadian clock in the suprachiasmatic nucleus) is responsible for the rhythm observed in the transcriptional machinery, which in turn is responsible for the rhythm observed in the transcriptome. For example, there is a rhythm in transcripts responsible for the two principal pacemaker mechanisms (membrane and Ca2+ clocks), transcripts responsible for receptors and signalling pathways known to control pacemaking, transcripts from genes identified by GWAS as determinants of resting heart rate, and transcripts from genes responsible for familial and acquired sick sinus syndrome.
Collapse
|
32
|
Atrial fibrillation-a complex polygenetic disease. Eur J Hum Genet 2020; 29:1051-1060. [PMID: 33279945 PMCID: PMC8298566 DOI: 10.1038/s41431-020-00784-8] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 10/27/2020] [Accepted: 11/17/2020] [Indexed: 12/19/2022] Open
Abstract
Atrial fibrillation (AF) is the most common type of arrhythmia. Epidemiological studies have documented a substantial genetic component. More than 160 genes have been associated with AF during the last decades. Some of these were discovered by classical linkage studies while the majority relies on functional studies or genome-wide association studies. In this review, we will evaluate the genetic basis of AF and the role of both common and rare genetic variants in AF. Rare variants in multiple ion-channel genes as well as gap junction and transcription factor genes have been associated with AF. More recently, a growing body of evidence has implicated structural genes with AF. An increased burden of atrial fibrosis in AF patients compared with non-AF patients has also been reported. These findings challenge our traditional understanding of AF being an electrical disease. We will focus on several quantitative landmark papers, which are transforming our understanding of AF by implicating atrial cardiomyopathies in the pathogenesis. This new AF research field may enable better diagnostics and treatment in the future.
Collapse
|
33
|
Szpirer C. Rat models of human diseases and related phenotypes: a systematic inventory of the causative genes. J Biomed Sci 2020; 27:84. [PMID: 32741357 PMCID: PMC7395987 DOI: 10.1186/s12929-020-00673-8] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Accepted: 07/09/2020] [Indexed: 12/13/2022] Open
Abstract
The laboratory rat has been used for a long time as the model of choice in several biomedical disciplines. Numerous inbred strains have been isolated, displaying a wide range of phenotypes and providing many models of human traits and diseases. Rat genome mapping and genomics was considerably developed in the last decades. The availability of these resources has stimulated numerous studies aimed at discovering causal disease genes by positional identification. Numerous rat genes have now been identified that underlie monogenic or complex diseases and remarkably, these results have been translated to the human in a significant proportion of cases, leading to the identification of novel human disease susceptibility genes, helping in studying the mechanisms underlying the pathological abnormalities and also suggesting new therapeutic approaches. In addition, reverse genetic tools have been developed. Several genome-editing methods were introduced to generate targeted mutations in genes the function of which could be clarified in this manner [generally these are knockout mutations]. Furthermore, even when the human gene causing a disease had been identified without resorting to a rat model, mutated rat strains (in particular KO strains) were created to analyze the gene function and the disease pathogenesis. Today, over 350 rat genes have been identified as underlying diseases or playing a key role in critical biological processes that are altered in diseases, thereby providing a rich resource of disease models. This article is an update of the progress made in this research and provides the reader with an inventory of these disease genes, a significant number of which have similar effects in rat and humans.
Collapse
Affiliation(s)
- Claude Szpirer
- Université Libre de Bruxelles, B-6041, Gosselies, Belgium.
- , Waterloo, Belgium.
| |
Collapse
|
34
|
Early-onset atrial fibrillation patients show reduced left ventricular ejection fraction and increased atrial fibrosis. Sci Rep 2020; 10:10039. [PMID: 32572052 PMCID: PMC7308347 DOI: 10.1038/s41598-020-66671-w] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Accepted: 05/26/2020] [Indexed: 11/08/2022] Open
Abstract
Atrial fibrillation (AF) has traditionally been considered an electrical heart disease. However, genetic studies have revealed that the structural architecture of the heart also play a significant role. We evaluated the functional and structural consequences of harboring a titin-truncating variant (TTNtv) in AF patients, using cardiac magnetic resonance (CMR). Seventeen early-onset AF cases carrying a TTNtv, were matched 1:1 with non-AF controls and a replication cohort of early-onset AF cases without TTNtv, and underwent CMR. Cardiac volumes and left atrial late gadolinium enhancement (LA LGE), as a fibrosis proxy, were measured by a blinded operator. Results: AF cases with TTNtv had significantly reduced left ventricular ejection fraction (LVEF) compared with controls (57 ± 4 vs 64 ± 5%, P < 0.001). We obtained similar findings in early-onset AF patients without TTNtv compared with controls (61 ± 4 vs 64 ± 5%, P = 0.02). We furthermore found a statistically significant increase in LA LGE when comparing early-onset AF TTNtv cases with controls. Using state-of-the-art CMR, we found that early-onset AF patients, irrespective of TTNtv carrier status, had reduced LVEF, indicating that early-onset AF might not be as benign as previously thought.
Collapse
|
35
|
Darlington A, McCauley MD. Atrial Cardiomyopathy: An Unexplored Limb of Virchow's Triad for AF Stroke Prophylaxis. Front Cardiovasc Med 2020; 7:11. [PMID: 32133372 PMCID: PMC7039862 DOI: 10.3389/fcvm.2020.00011] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Accepted: 01/27/2020] [Indexed: 01/14/2023] Open
Abstract
The most dreaded complication of atrial fibrillation is stroke, and 70–80% of patients with AF-related stroke die or become disabled. The mechanisms of thromboembolism in AF are multifactorial, with evidence demonstrating that all three criteria of Virchow's triad are satisfied in AF: abnormal stasis of blood, endothelial damage, and hypercoagulability. Mechanistic insights into the latter two limbs have resulted in effective stroke prophylactic therapies (left atrial appendage occlusion and oral anticoagulants); however, despite these advances, there remains an excess of stroke in the AF population that may be due, in part, to a lack of mechanistic understanding of atrial hypocontractility resulting in abnormal stasis of blood within the atrium. These observations support the emerging concept of atrial cardiomyopathy as a cause of stroke. In this Review, we evaluate molecular, translational, and clinical evidence for atrial cardiomyopathy as a cause for stroke from AF, and present a rationale for further investigation of this largely unaddressed limb of Virchow's triad in AF.
Collapse
Affiliation(s)
- Ashley Darlington
- Division of Cardiology, Department of Medicine, College of Medicine, University of Illinois at Chicago, Chicago, IL, United States.,Jesse Brown VA Medical Center, Chicago, IL, United States
| | - Mark D McCauley
- Division of Cardiology, Department of Medicine, College of Medicine, University of Illinois at Chicago, Chicago, IL, United States.,Jesse Brown VA Medical Center, Chicago, IL, United States.,Department of Physiology and Biophysics, University of Illinois at Chicago, Chicago, IL, United States
| |
Collapse
|
36
|
Ghazizadeh Z, Kiviniemi T, Olafsson S, Plotnick D, Beerens ME, Zhang K, Gillon L, Steinbaugh MJ, Barrera V, Sui SH, Werdich AA, Kapur S, Eranti A, Gunn J, Jalkanen J, Airaksinen J, Kleber AG, Hollmén M, MacRae CA. Metastable Atrial State Underlies the Primary Genetic Substrate for MYL4 Mutation-Associated Atrial Fibrillation. Circulation 2019; 141:301-312. [PMID: 31735076 DOI: 10.1161/circulationaha.119.044268] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
BACKGROUND Atrial fibrillation (AF) is the most common clinical arrhythmia and is associated with heart failure, stroke, and increased mortality. The myocardial substrate for AF is poorly understood because of limited access to primary human tissue and mechanistic questions around existing in vitro or in vivo models. METHODS Using an MYH6:mCherry knock-in reporter line, we developed a protocol to generate and highly purify human pluripotent stem cell-derived cardiomyocytes displaying physiological and molecular characteristics of atrial cells. We modeled human MYL4 mutants, one of the few definitive genetic causes of AF. To explore non-cell-autonomous components of AF substrate, we also created a zebrafish Myl4 knockout model, which exhibited molecular, cellular, and physiologic abnormalities that parallel those in humans bearing the cognate mutations. RESULTS There was evidence of increased retinoic acid signaling in both human embryonic stem cells and zebrafish mutant models, as well as abnormal expression and localization of cytoskeletal proteins, and loss of intracellular nicotinamide adenine dinucleotide and nicotinamide adenine dinucleotide + hydrogen. To identify potentially druggable proximate mechanisms, we performed a chemical suppressor screen integrating multiple human cellular and zebrafish in vivo endpoints. This screen identified Cx43 (connexin 43) hemichannel blockade as a robust suppressor of the abnormal phenotypes in both models of MYL4 (myosin light chain 4)-related atrial cardiomyopathy. Immunofluorescence and coimmunoprecipitation studies revealed an interaction between MYL4 and Cx43 with altered localization of Cx43 hemichannels to the lateral membrane in MYL4 mutants, as well as in atrial biopsies from unselected forms of human AF. The membrane fraction from MYL4-/- human embryonic stem cell derived atrial cells demonstrated increased phospho-Cx43, which was further accentuated by retinoic acid treatment and by the presence of risk alleles at the Pitx2 locus. PKC (protein kinase C) was induced by retinoic acid, and PKC inhibition also rescued the abnormal phenotypes in the atrial cardiomyopathy models. CONCLUSIONS These data establish a mechanistic link between the transcriptional, metabolic and electrical pathways previously implicated in AF substrate and suggest novel avenues for the prevention or therapy of this common arrhythmia.
Collapse
Affiliation(s)
- Zaniar Ghazizadeh
- Cardiovascular Medicine Division (Z.G., T.K., S.O., D.P., M.E.B., K.Z., L.G., A.A.W., S.K., C.A.M.), Brigham and Women's Hospital, Harvard Medical School, Boston, MA
| | - Tuomas Kiviniemi
- Cardiovascular Medicine Division (Z.G., T.K., S.O., D.P., M.E.B., K.Z., L.G., A.A.W., S.K., C.A.M.), Brigham and Women's Hospital, Harvard Medical School, Boston, MA
- Heart Center, Turku University Hospital (T.K., A.E., J.G., J.A.), Harvard T.H
- University of Turku, Finland (T.K., A.E., J.G., J.A.). Harvard T.H
| | - Sigurast Olafsson
- Cardiovascular Medicine Division (Z.G., T.K., S.O., D.P., M.E.B., K.Z., L.G., A.A.W., S.K., C.A.M.), Brigham and Women's Hospital, Harvard Medical School, Boston, MA
| | - David Plotnick
- Cardiovascular Medicine Division (Z.G., T.K., S.O., D.P., M.E.B., K.Z., L.G., A.A.W., S.K., C.A.M.), Brigham and Women's Hospital, Harvard Medical School, Boston, MA
| | - Manu E Beerens
- Cardiovascular Medicine Division (Z.G., T.K., S.O., D.P., M.E.B., K.Z., L.G., A.A.W., S.K., C.A.M.), Brigham and Women's Hospital, Harvard Medical School, Boston, MA
| | - Kun Zhang
- Cardiovascular Medicine Division (Z.G., T.K., S.O., D.P., M.E.B., K.Z., L.G., A.A.W., S.K., C.A.M.), Brigham and Women's Hospital, Harvard Medical School, Boston, MA
| | - Leah Gillon
- Cardiovascular Medicine Division (Z.G., T.K., S.O., D.P., M.E.B., K.Z., L.G., A.A.W., S.K., C.A.M.), Brigham and Women's Hospital, Harvard Medical School, Boston, MA
| | | | - Victor Barrera
- Chan School of Public Health, Boston, MA (M.J.S., V.B., S.H.S.)
| | - Shannan Ho Sui
- Chan School of Public Health, Boston, MA (M.J.S., V.B., S.H.S.)
| | - Andreas A Werdich
- Cardiovascular Medicine Division (Z.G., T.K., S.O., D.P., M.E.B., K.Z., L.G., A.A.W., S.K., C.A.M.), Brigham and Women's Hospital, Harvard Medical School, Boston, MA
| | - Sunil Kapur
- Cardiovascular Medicine Division (Z.G., T.K., S.O., D.P., M.E.B., K.Z., L.G., A.A.W., S.K., C.A.M.), Brigham and Women's Hospital, Harvard Medical School, Boston, MA
| | - Antti Eranti
- Heart Center, Turku University Hospital (T.K., A.E., J.G., J.A.), Harvard T.H
- University of Turku, Finland (T.K., A.E., J.G., J.A.). Harvard T.H
| | - Jarmo Gunn
- Heart Center, Turku University Hospital (T.K., A.E., J.G., J.A.), Harvard T.H
- University of Turku, Finland (T.K., A.E., J.G., J.A.). Harvard T.H
| | - Juho Jalkanen
- Medicity Research Laboratories (J.J., M.H.), Harvard T.H
| | - Juhani Airaksinen
- Heart Center, Turku University Hospital (T.K., A.E., J.G., J.A.), Harvard T.H
- University of Turku, Finland (T.K., A.E., J.G., J.A.). Harvard T.H
| | - Andre G Kleber
- Department of Pathology, Beth Israel Deaconess Medical Center Harvard Medical School, Boston, MA (A.G.K.)
| | - Maija Hollmén
- Medicity Research Laboratories (J.J., M.H.), Harvard T.H
| | - Calum A MacRae
- Cardiovascular Medicine Division (Z.G., T.K., S.O., D.P., M.E.B., K.Z., L.G., A.A.W., S.K., C.A.M.), Brigham and Women's Hospital, Harvard Medical School, Boston, MA
- Genetics and Network Medicine Divisions (C.A.M.), Brigham and Women's Hospital, Harvard Medical School, Boston, MA
- Harvard Stem Cell Institute, Boston, MA (C.A.M.)
| |
Collapse
|
37
|
Zhong Y, Tang K, Li H, Zhao D, Kou W, Xu S, Zhang J, Yang H, Li S, Guo R, Peng W, Xu Y. Rs4968309 in Myosin Light Chain 4 (MYL4) Associated With Atrial Fibrillation Onset and Predicts Clinical Outcomes After Catheter Ablation in Atrial Fibrillation Patients Without Structural Heart Disease. Circ J 2019; 83:1994-2001. [PMID: 31406021 DOI: 10.1253/circj.cj-19-0415] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
BACKGROUND Atrial fibrillation (AF) is the most common arrhythmia with serious complications and a high rate of recurrence after catheter ablation. Recently, mutation ofMYL4was reported as responsible for familial atrial cardiomyopathy and AF. This study aimed to determine the association between polymorphism inMYL4with the onset and recurrence of AF. METHODS AND RESULTS A total of 7 single-nucleotide polymorphisms were selected by linkage disequilibrium and genotyped in 510 consecutive AF patients and 192 controls without structural heart disease. A total of 246 AF patients who underwent cryoballoon ablation had a 1-year scheduled follow-up study for AF recurrence. C allele and CC genotype of rs4968309 and A allele of rs1515751were associated with AF onset both before and after adjustment of covariation (age, sex, hypertension, and diabetes). AF type and left atrial size were different among the genotypes of rs4968309. Moreover, CC genotype of rs4968309 increased susceptibly of AF recurrence after cryoballoon ablation. The prevalence of hypertension was associated with rs1515752, and left atrial size was associated with the genotype of rs2071438. CONCLUSIONS C allele and CC genotype of rs4968309 inMYL4were associated with AF onset and recurrence. Moreover, the A allele of rs1515751 had a significant association with AF onset. The polymorphisms ofMYL4can predict AF onset and prognosis after ablation in AF patients without structural heart disease.
Collapse
Affiliation(s)
- Yuan Zhong
- Department of Cardiology, Shanghai Tenth People's Hospital, Tongji University School of Medicine
| | - Kai Tang
- Department of Cardiology, Shanghai Tenth People's Hospital, Tongji University School of Medicine
| | - Hailing Li
- Department of Cardiology, Shanghai Tenth People's Hospital, Tongji University School of Medicine
| | - Dongdong Zhao
- Department of Cardiology, Shanghai Tenth People's Hospital, Tongji University School of Medicine
| | - Wenxin Kou
- Department of Cardiology, Shanghai Tenth People's Hospital, Tongji University School of Medicine
| | - Shaojie Xu
- Department of Cardiology, Shanghai Tenth People's Hospital, Tongji University School of Medicine
| | - Jun Zhang
- Department of Cardiology, Shanghai Tenth People's Hospital, Tongji University School of Medicine
| | - Haotian Yang
- Department of Cardiology, Shanghai Tenth People's Hospital, Tongji University School of Medicine
| | - Shuang Li
- Department of Cardiology, Shanghai Tenth People's Hospital, Tongji University School of Medicine
| | - Rong Guo
- Department of Cardiology, Shanghai Tenth People's Hospital, Tongji University School of Medicine
| | - Wenhui Peng
- Department of Cardiology, Shanghai Tenth People's Hospital, Tongji University School of Medicine
| | - Yawei Xu
- Department of Cardiology, Shanghai Tenth People's Hospital, Tongji University School of Medicine
| |
Collapse
|
38
|
Kalstø SM, Siland JE, Rienstra M, Christophersen IE. Atrial Fibrillation Genetics Update: Toward Clinical Implementation. Front Cardiovasc Med 2019; 6:127. [PMID: 31552271 PMCID: PMC6743416 DOI: 10.3389/fcvm.2019.00127] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Accepted: 08/12/2019] [Indexed: 12/16/2022] Open
Abstract
Atrial fibrillation (AF) is the most common heart rhythm disorder worldwide and may have serious cardiovascular health consequences. AF is associated with increased risk of stroke, dementia, heart failure, and death. There are several known robust, clinical risk predictors for AF, such as male sex, increasing age, and hypertension; however, during the last couple of decades, a substantive genetic component has also been established. Over the last 10 years, the discovery of novel AF-related genetic variants has accelerated, increasing our understanding of mechanisms behind AF. Current studies are focusing on mapping the polygenic structure of AF, improving risk prediction, therapeutic development, and patient-specific management. Nevertheless, it is still difficult for clinicians to interpret the role of genetics in AF prediction and management. Here, we provide an overview of relevant topics within the genetics of AF and attempt to provide some guidance on how to interpret genetic advances and their implementation into clinical decision-making.
Collapse
Affiliation(s)
- Silje Madeleine Kalstø
- Department of Medical Research, Bærum Hospital, Vestre Viken Hospital Trust, Rud, Norway
| | - Joylene Elisabeth Siland
- Department of Cardiology, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| | - Michiel Rienstra
- Department of Cardiology, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| | - Ingrid E Christophersen
- Department of Medical Research, Bærum Hospital, Vestre Viken Hospital Trust, Rud, Norway.,The Department of Medical Genetics, Oslo University Hospital, Oslo, Norway
| |
Collapse
|
39
|
Brandenburg S, Pawlowitz J, Eikenbusch B, Peper J, Kohl T, Mitronova GY, Sossalla S, Hasenfuss G, Wehrens XH, Kohl P, Rog-Zielinska EA, Lehnart SE. Junctophilin-2 expression rescues atrial dysfunction through polyadic junctional membrane complex biogenesis. JCI Insight 2019; 4:127116. [PMID: 31217359 DOI: 10.1172/jci.insight.127116] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Accepted: 05/16/2019] [Indexed: 12/28/2022] Open
Abstract
Atrial dysfunction is highly prevalent and associated with increased severity of heart failure. While rapid excitation-contraction coupling depends on axial junctions in atrial myocytes, the molecular basis of atrial loss of function remains unclear. We identified approximately 5-fold lower junctophilin-2 levels in atrial compared with ventricular tissue in mouse and human hearts. In atrial myocytes, this resulted in subcellular expression of large junctophilin-2 clusters at axial junctions, together with highly phosphorylated ryanodine receptor (RyR2) channels. To investigate the contribution of junctophilin-2 to atrial pathology in adult hearts, we developed a cardiomyocyte-selective junctophilin-2-knockdown model with 0 mortality. Junctophilin-2 knockdown in mice disrupted atrial RyR2 clustering and contractility without hypertrophy or interstitial fibrosis. In contrast, aortic pressure overload resulted in left atrial hypertrophy with decreased junctophilin-2 and RyR2 expression, disrupted axial junctions, and atrial fibrosis. Whereas pressure overload accrued atrial dysfunction and heart failure with 40% mortality, additional junctophilin-2 knockdown greatly exacerbated atrial dysfunction with 100% mortality. Strikingly, transgenic junctophilin-2 overexpression restored atrial contractility and survival through de novo biogenesis of polyadic junctional membrane complexes maintained after pressure overload. Our data show a central role of junctophilin-2 cluster disruption in atrial hypertrophy and identify transgenic augmentation of junctophilin-2 as a disease-mitigating rationale to improve atrial dysfunction and prevent heart failure deterioration.
Collapse
Affiliation(s)
- Sören Brandenburg
- Heart Research Center Göttingen, Department of Cardiology & Pneumology, University Medical Center Göttingen, Göttingen, Germany
| | - Jan Pawlowitz
- Heart Research Center Göttingen, Department of Cardiology & Pneumology, University Medical Center Göttingen, Göttingen, Germany
| | - Benjamin Eikenbusch
- Heart Research Center Göttingen, Department of Cardiology & Pneumology, University Medical Center Göttingen, Göttingen, Germany
| | - Jonas Peper
- Heart Research Center Göttingen, Department of Cardiology & Pneumology, University Medical Center Göttingen, Göttingen, Germany
| | - Tobias Kohl
- Heart Research Center Göttingen, Department of Cardiology & Pneumology, University Medical Center Göttingen, Göttingen, Germany
| | - Gyuzel Y Mitronova
- Department of NanoBiophotonics, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| | - Samuel Sossalla
- Heart Research Center Göttingen, Department of Cardiology & Pneumology, University Medical Center Göttingen, Göttingen, Germany
| | - Gerd Hasenfuss
- Heart Research Center Göttingen, Department of Cardiology & Pneumology, University Medical Center Göttingen, Göttingen, Germany.,DZHK (German Centre for Cardiovascular Research), partner site Göttingen, Germany
| | - Xander Ht Wehrens
- Cardiovascular Research Institute - Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, Texas, USA
| | - Peter Kohl
- University Heart Center, Faculty of Medicine, University of Freiburg, Freiburg im Breisgau, Germany
| | - Eva A Rog-Zielinska
- University Heart Center, Faculty of Medicine, University of Freiburg, Freiburg im Breisgau, Germany
| | - Stephan E Lehnart
- Heart Research Center Göttingen, Department of Cardiology & Pneumology, University Medical Center Göttingen, Göttingen, Germany.,DZHK (German Centre for Cardiovascular Research), partner site Göttingen, Germany.,BioMET, Center for Biomedical Engineering and Technology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
40
|
Zhang X, Li H, Kou W, Tang K, Zhao D, Zhang J, Zhuang J, Zhao Y, Ji S, Peng W, Xu Y. Increased plasma microfibrillar-associated protein 4 is associated with atrial fibrillation and more advanced left atrial remodelling. Arch Med Sci 2019; 15:632-640. [PMID: 31110528 PMCID: PMC6524186 DOI: 10.5114/aoms.2018.74953] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Accepted: 03/14/2018] [Indexed: 01/08/2023] Open
Abstract
INTRODUCTION This study aimed to evaluate the relationship of plasma microfibrillar-associated protein 4 (MFAP4) to atrial fibrillation (AF) and atrial structural remodelling. MATERIAL AND METHODS Plasma MFAP4 levels were measured in 92 patients with AF (61 paroxysmal AF (PAF) patients and 31 persistent AF (PersAF) patients) and 71 control subjects without AF. Linear and logistic multivariate regression analyses were performed to determine the potential value of MFAP4 for predicting the incidence of AF and left atrial size. Then, plasma and atrial protein levels of MFAP4 and its association with atrial fibrosis ratio were analysed in an atrial-specific fibrosis rat model. RESULTS There were significant differences in MFAP4 levels based on clinical group, with a gradient from control (1.71 ±0.53 ng/ml) to PAF (1.98 ±0.53 ng/ml) to PersAF (2.09 ±0.76 ng/ml) (p < 0.01). With multivariate analyses, plasma MFAP4 was found to be an independent determinant of left atrial diameter in AF patients. In atrial fibrosis rats, both plasma MFAP4 and atrial MFAP4 protein levels increased in atrial fibrosis rats and positively correlated with atrial fibrosis severity. CONCLUSIONS Plasma MFAP4 was increased in patients with AF and was highest in those with PersAF; both plasma MFAP4 and atrial MFAP4 protein expression were directly associated with the extent of LA structural remodelling.
Collapse
Affiliation(s)
- Xianlin Zhang
- Department of Cardiology, Shanghai Tenth People’s Hospital of Nanjing Medical University; Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai, China
- Department of Cardiology, the People’s Hospital of Maanshan, Maanshan City, Anhui Province, China
| | - Hailing Li
- Department of Cardiology, Shanghai Tenth People’s Hospital of Nanjing Medical University; Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai, China
| | - Wenxin Kou
- Department of Cardiology, Shanghai Tenth People’s Hospital of Nanjing Medical University; Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai, China
| | - Kai Tang
- Department of Cardiology, Shanghai Tenth People’s Hospital of Nanjing Medical University; Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai, China
| | - Dongdong Zhao
- Department of Cardiology, Shanghai Tenth People’s Hospital of Nanjing Medical University; Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai, China
| | - Jingying Zhang
- Department of Cardiology, Shanghai Tenth People’s Hospital of Nanjing Medical University; Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai, China
| | - Jianhui Zhuang
- Department of Cardiology, Shanghai Tenth People’s Hospital of Nanjing Medical University; Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai, China
| | - Yifan Zhao
- Department of Cardiology, Shanghai Tenth People’s Hospital of Nanjing Medical University; Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai, China
| | - Shuya Ji
- Department of Cardiology, Shanghai Tenth People’s Hospital of Nanjing Medical University; Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai, China
| | - Wenhui Peng
- Department of Cardiology, Shanghai Tenth People’s Hospital of Nanjing Medical University; Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai, China
| | - Yawei Xu
- Department of Cardiology, Shanghai Tenth People’s Hospital of Nanjing Medical University; Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai, China
| |
Collapse
|
41
|
|
42
|
Hammwöhner M, Bukowska A, Mahardika W, Goette A. Clinical importance of atrial cardiomyopathy. Int J Cardiol 2018; 287:174-180. [PMID: 30527991 DOI: 10.1016/j.ijcard.2018.11.121] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Revised: 10/29/2018] [Accepted: 11/27/2018] [Indexed: 01/23/2023]
Abstract
Atrial fibrillation (AF) is the most common cause of thromboembolic complications. The risk of suffering a thromboembolic complication correlates with the CHA2DS2-VASc score identifying patients at increased risk. It is based on patient age, prior thromboembolic events, and clinical comorbidities, but not based on pathophysiological changes in different types of atrial cardiomyopathy (ACM) as classified in the expert consensus on ACM published in 2016. The impact of different types of ACM has also been acknowledged in the expert consensus statement on catheter ablation of atrial fibrillation. The aim of this review is to review data on clinical importance of ACMs.
Collapse
Affiliation(s)
- Matthias Hammwöhner
- Working Group of Molecular Electrophysiology, Institute of Clinical Chemistry and Pathobiochemistry, Medical Faculty, Otto von Guericke University Magdeburg, Germany; Department of Cardiology and Intensive Care Medicine, St. Vincenz-Krankenhaus, Paderborn, Germany
| | - Alicia Bukowska
- Working Group of Molecular Electrophysiology, Institute of Clinical Chemistry and Pathobiochemistry, Medical Faculty, Otto von Guericke University Magdeburg, Germany
| | - Wisnu Mahardika
- Department of Cardiology and Intensive Care Medicine, St. Vincenz-Krankenhaus, Paderborn, Germany
| | - Andreas Goette
- Working Group of Molecular Electrophysiology, Institute of Clinical Chemistry and Pathobiochemistry, Medical Faculty, Otto von Guericke University Magdeburg, Germany; Department of Cardiology and Intensive Care Medicine, St. Vincenz-Krankenhaus, Paderborn, Germany.
| |
Collapse
|
43
|
Ahlberg G, Refsgaard L, Lundegaard PR, Andreasen L, Ranthe MF, Linscheid N, Nielsen JB, Melbye M, Haunsø S, Sajadieh A, Camp L, Olesen SP, Rasmussen S, Lundby A, Ellinor PT, Holst AG, Svendsen JH, Olesen MS. Rare truncating variants in the sarcomeric protein titin associate with familial and early-onset atrial fibrillation. Nat Commun 2018; 9:4316. [PMID: 30333491 PMCID: PMC6193003 DOI: 10.1038/s41467-018-06618-y] [Citation(s) in RCA: 94] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Accepted: 09/17/2018] [Indexed: 12/13/2022] Open
Abstract
A family history of atrial fibrillation constitutes a substantial risk of developing the disease, however, the pathogenesis of this complex disease is poorly understood. We perform whole-exome sequencing on 24 families with at least three family members diagnosed with atrial fibrillation (AF) and find that titin-truncating variants (TTNtv) are significantly enriched in these patients (P = 1.76 × 10−6). This finding is replicated in an independent cohort of early-onset lone AF patients (n = 399; odds ratio = 36.8; P = 4.13 × 10−6). A CRISPR/Cas9 modified zebrafish carrying a truncating variant of titin is used to investigate TTNtv effect in atrial development. We observe compromised assembly of the sarcomere in both atria and ventricle, longer PR interval, and heterozygous adult zebrafish have a higher degree of fibrosis in the atria, indicating that TTNtv are important risk factors for AF. This aligns with the early onset of the disease and adds an important dimension to the understanding of the molecular predisposition for AF. Common genetic variants in structural proteins contribute to risk of atrial fibrillation (AF). Here, using whole-exome sequencing, the authors identify rare truncating variants in TTN that associate with familial and early-onset AF and show defects in cardiac sarcomere assembly in ttn.2-mutant zebrafish.
Collapse
Affiliation(s)
- Gustav Ahlberg
- Laboratory for Molecular Cardiology, Department of Cardiology, The Heart Centre, Rigshospitalet, University Hospital of Copenhagen, Copenhagen, 2100 Ø, Denmark.,Department of Biomedical Sciences, University of Copenhagen, Copenhagen, 2200 N, Denmark
| | - Lena Refsgaard
- Laboratory for Molecular Cardiology, Department of Cardiology, The Heart Centre, Rigshospitalet, University Hospital of Copenhagen, Copenhagen, 2100 Ø, Denmark.,Department of Biomedical Sciences, University of Copenhagen, Copenhagen, 2200 N, Denmark
| | - Pia R Lundegaard
- Laboratory for Molecular Cardiology, Department of Cardiology, The Heart Centre, Rigshospitalet, University Hospital of Copenhagen, Copenhagen, 2100 Ø, Denmark.,Department of Biomedical Sciences, University of Copenhagen, Copenhagen, 2200 N, Denmark
| | - Laura Andreasen
- Laboratory for Molecular Cardiology, Department of Cardiology, The Heart Centre, Rigshospitalet, University Hospital of Copenhagen, Copenhagen, 2100 Ø, Denmark.,Department of Biomedical Sciences, University of Copenhagen, Copenhagen, 2200 N, Denmark
| | - Mattis F Ranthe
- Department of Epidemiology Research, Statens Serum Institute, Copenhagen, 2300 S, Denmark
| | - Nora Linscheid
- Cardiac Proteomics Group, Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, 2200 N, Denmark.,Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, 2200 N, Denmark
| | - Jonas B Nielsen
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, 2200 N, Denmark
| | - Mads Melbye
- Department of Epidemiology Research, Statens Serum Institute, Copenhagen, 2300 S, Denmark.,Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, 2200 N, Denmark.,Department of Medicine, Stanford University School of Medicine, Stanford, 94305, CA, USA
| | - Stig Haunsø
- Laboratory for Molecular Cardiology, Department of Cardiology, The Heart Centre, Rigshospitalet, University Hospital of Copenhagen, Copenhagen, 2100 Ø, Denmark
| | - Ahmad Sajadieh
- Department of Cardiology, Copenhagen University Hospital, Bispebjerg, Copenhagen, 2400, Denmark
| | - Lu Camp
- The Lundbeck Foundation Centre for Applied Medical Genomics in Personalized Disease Prediction, Prevention and Care, Copenhagen, 2200 N, Denmark
| | - Søren-Peter Olesen
- Department of Biomedical Sciences, University of Copenhagen, Copenhagen, 2200 N, Denmark
| | - Simon Rasmussen
- Department of Bio and Health Informatics, Technical University of Denmark, Kgs, Lyngby, 2800, Denmark
| | - Alicia Lundby
- Cardiac Proteomics Group, Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, 2200 N, Denmark.,Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, 2200 N, Denmark
| | - Patrick T Ellinor
- Cardiovascular Research Centre, Massachusetts General Hospital, Boston, 02114, MA, USA.,Program in Population and Medical Genetics, The Broad Institute of Harvard and MIT, Cambridge, 02114, MA, USA
| | - Anders G Holst
- Laboratory for Molecular Cardiology, Department of Cardiology, The Heart Centre, Rigshospitalet, University Hospital of Copenhagen, Copenhagen, 2100 Ø, Denmark
| | - Jesper H Svendsen
- Laboratory for Molecular Cardiology, Department of Cardiology, The Heart Centre, Rigshospitalet, University Hospital of Copenhagen, Copenhagen, 2100 Ø, Denmark.,Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, 2200 N, Denmark
| | - Morten S Olesen
- Laboratory for Molecular Cardiology, Department of Cardiology, The Heart Centre, Rigshospitalet, University Hospital of Copenhagen, Copenhagen, 2100 Ø, Denmark. .,Department of Biomedical Sciences, University of Copenhagen, Copenhagen, 2200 N, Denmark.
| |
Collapse
|
44
|
Atrial remodeling and metabolic dysfunction in idiopathic isolated fibrotic atrial cardiomyopathy. Int J Cardiol 2018; 265:155-161. [PMID: 29706431 DOI: 10.1016/j.ijcard.2018.04.080] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/28/2017] [Revised: 03/18/2018] [Accepted: 04/18/2018] [Indexed: 01/21/2023]
Abstract
BACKGROUND Idiopathic isolated fibrotic atrial cardiomyopathy (IIF-ACM) is a novel subtype of cardiomyopathy characterized by atrial fibrosis that does not involve the ventricular myocardium and is associated with significant atrial tachyarrhythmia. The mechanisms underlying its pathogenesis are unknown. METHODS Atrium samples were obtained from 3 patients with IIF-ACM via surgical intervention. Control samples were consisted of 3 atrium biopsies from patients with congenital heart disease and normal sinus rhythm, matched for gender, age and basic clinical characteristics. Comparative histology, immunofluorescence staining, electron microscopy and proteomics analyses were carried out to explore the unique pathogenesis of IIF-ACM. RESULTS IIF-ACM atria displayed disordered myofibrils, profound fibrosis and mitochondrial damages compared to the control atria. Proteomics profiling identified metabolic pathways as the most profound changes in IIF-ACM. CONCLUSIONS Our study suggested that metabolic changes in the atrial myocardium caused mitochondrial oxidative stress and potential cell damage, which further led to atrial fibrosis and myofibril disorganization, the characteristic phenotype of IIF-ACM.
Collapse
|