1
|
Jackson EK, Tofovic SP, Chen Y, Birder LA. 8-Aminopurines: A Promising New Direction for Purine-Based Therapeutics. Hypertension 2024; 81:2410-2414. [PMID: 39429198 PMCID: PMC11578759 DOI: 10.1161/hypertensionaha.124.21726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2024]
Abstract
Research in purinergic pharmacology has yielded major advances in cardiovascular therapeutics such as adenosine for terminating atrioventricular reentrant tachycardia, regadenoson for pharmacological ischemic stress testing, and selective P2Y12 receptor antagonists for prevention of stroke and myocardial infarction. Mechanistically, these FDA-approved purine-based therapeutics activate or antagonize receptors having endogenous ligands containing the purine nucleobase adenine. Recent discoveries suggest a novel direction for purine-based therapeutics. An investigation of the cardiorenal effects of 8-substituted guanosine and guanine derivatives revealed that 8-aminoguanosine and 8-aminoguanine acutely trigger diuresis, natriuresis, and glucosuria, with the effects of 8-aminoguanosine being mediated by its rapid conversion to 8-aminoguanine. Mechanistic studies showed that 8-aminoguanine induces diuresis/natriuresis/glucosuria in part by inhibiting purine nucleoside phosphorylase (PNPase). Inhibition of PNPase increases its substrates (inosine and guanosine) while decreasing its products (hypoxanthine and guanine), thus “rebalancing” the purine metabolome. Additional mechanistic studies revealed that inosine activates adenosine A2B receptors which increases renal medullary blood flow thus enhancing renal excretory function. 8-Aminoguanine also reduces potassium excretion by an incompletely understood mechanism independent of PNPase inhibition. Emerging evidence suggests the existence of a family of endogenous and pharmacologically active 8-aminopurines that may include not only 8-aminoguanosine and 8-aminoguanine, but also 8-aminoinosine, 8-aminohypoxanthine and 8-aminoxanthine. 8-Aminopurines have beneficial effects in animal models of systemic and pulmonary hypertension, the metabolic syndrome, chronic kidney disease, strokes, and sickle cell disease. Also, 8-aminopurines reverse age-associated lower urinary tract dysfunction and retinal degeneration. 8-Aminopurines hold promise for treating cardiovascular and renal diseases and may “turning back the clock” on age-associated disorders.
Collapse
Affiliation(s)
- Edwin K. Jackson
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15219
- Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15219
| | - Stevan P. Tofovic
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15219
- Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15219
| | - Yuanyuan Chen
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15219
- Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15219
| | - Lori A. Birder
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15219
- Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15219
| |
Collapse
|
2
|
Jackson EK, Gillespie DG, Mi Z, Birder LA, Tofovic SP. 8-Aminoguanine and its actions in the metabolic syndrome. Sci Rep 2024; 14:22652. [PMID: 39349636 PMCID: PMC11442972 DOI: 10.1038/s41598-024-73159-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Accepted: 09/16/2024] [Indexed: 10/04/2024] Open
Abstract
The metabolic syndrome is characterized by obesity, insulin resistance, dyslipidemia and hypertension and predisposes to cardiorenal injury. Here, we tested our hypothesis that 8-aminoguanine, an endogenous purine, exerts beneficial effects in Zucker Diabetic-Sprague Dawley (ZDSD) rats, a preclinical model of the metabolic syndrome. ZDSD rats were instrumented for blood pressure radiotelemetry and randomized to vehicle or 8-aminoguanine (10 mg/kg/day, po). The protocol was divided into four phases: Phase 1: 17 days of tap water/normal diet; Phase 2: 30 days of 1% saline/normal diet; Phase 3: 28 days of 1% saline/diabetogenic diet; Phase 4: acute/terminal measurements. 8-Aminoguanine: (1) decreased mean arterial blood pressure (P = 0.0004; 119.5 ± 1.0 (vehicle) versus 116.3 ± 1.0 (treated) mmHg) throughout all three phases of the radiotelemetry study; (2) rebalanced the purine metabolome away from hypoxanthine (pro-inflammatory) and towards inosine (anti-inflammatory); (3) reduced by 71% circulating IL-1β, a cytokine that contributes to hypertension-induced adverse cardiovascular events and type 2 diabetes; (4) attenuated renovascular responses to angiotensin II; (5) improved cardiac and renal histopathology; (6) attenuated diet-induced polydipsia/polyuria; and (7) reduced HbA1c. In the metabolic syndrome, 8-aminoguanine lowers blood pressure, improves diabetes and reduces organ damage, likely by rebalancing the purine metabolome leading to reductions in injurious cytokines such as IL-1β.
Collapse
Affiliation(s)
- Edwin K Jackson
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15219, USA.
- Department of Pharmacology and Chemical Biology, 100 Technology Drive, Room 514, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15219, USA.
| | - Delbert G Gillespie
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15219, USA
| | - Zaichuan Mi
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15219, USA
| | - Lori A Birder
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15219, USA
- Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15261, USA
| | - Stevan P Tofovic
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15219, USA
| |
Collapse
|
3
|
Chen Y, Vats A, Xi Y, Wolf-Johnston A, Clinger O, Arbuckle R, Dermond C, Li J, Stolze D, Sahel JA, Jackson E, Birder L. Oral 8-aminoguanine against age-related retinal degeneration. RESEARCH SQUARE 2024:rs.3.rs-4022389. [PMID: 38765984 PMCID: PMC11100887 DOI: 10.21203/rs.3.rs-4022389/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
Visual decline in the elderly is often attributed to retinal aging, which predisposes the tissue to pathologies such as age-related macular degeneration. Currently, effective oral pharmacological interventions for retinal degeneration are limited. We present a novel oral intervention, 8-aminoguanine (8-AG), targeting age-related retinal degeneration, utilizing the aged Fischer 344 rat model. A low-dose 8-AG regimen (5 mg/kg body weight) via drinking water, beginning at 22 months for 8 weeks, demonstrated significant retinal preservation. This was evidenced by increased retinal thickness, improved photoreceptor integrity, and enhanced electroretinogram responses. 8-AG effectively reduced apoptosis, oxidative damage, and microglial/macrophage activation associated with aging retinae. Age-induced alterations in the retinal purine metabolome, characterized by elevated levels of inosine, hypoxanthine, and xanthine, were partially mitigated by 8-AG. Transcriptomics highlighted 8-AG's anti-inflammatory effects on innate and adaptive immune responses. Extended treatment to 17 weeks further amplified the retinal protective effects. Moreover, 8-AG showed temporary protective effects in the RhoP23H/+ mouse model of retinitis pigmentosa, reducing active microglia/macrophages. Our study positions 8-AG as a promising oral agent against retinal aging. Coupled with previous findings in diverse disease models, 8-AG emerges as a promising anti-aging compound with the capability to reverse common aging hallmarks.
Collapse
|
4
|
Jackson EK, Tofovic SP, Chen Y, Birder LA. 8-Aminopurines in the Cardiovascular and Renal Systems and Beyond. Hypertension 2023; 80:2265-2279. [PMID: 37503660 PMCID: PMC10592300 DOI: 10.1161/hypertensionaha.123.20582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/29/2023]
Abstract
Screening of compounds comprising 8-substituted guanine revealed that 8-aminoguanosine and 8-aminoguanine cause diuresis/natriuresis/glucosuria, yet decrease potassium excretion. Subsequent investigations demonstrated that 8-aminoguanosine's effects are mediated by its metabolite 8-aminoguanine. The mechanism by which 8-aminoguanine causes diuresis/natriuresis/glucosuria involves inhibition of PNPase (purine nucleoside phosphorylase), which increases renal interstitial inosine levels. Additional evidence suggests that inosine, via indirect or direct adenosine A2B receptor activation, increases renal medullary blood flow which enhances renal excretory function. Likely, 8-aminoguanine has pleiotropic actions that also alter renal excretory function. Indeed, the antikaliuretic effects of 8-aminoguanine are independent of PNPase inhibition. 8-Aminoguanine is an endogenous molecule; nitrosative stress leads to production of biomolecules containing 8-nitroguanine moieties. Degradation of these biomolecules releases 8-nitroguanosine and 8-nitro-2'-deoxyguanosine which are converted to 8-aminoguanine. Also, guanosine and guanine per se may contribute to 8-aminoguanine formation. 8-Aminoinosine, 8-aminohypoxanthine, and 8-aminoxanthine likewise induce diuresis/natriuresis/glucosuria, yet do not reduce potassium excretion. Thus, there are several pharmacologically active 8-aminopurines with nuanced effects on renal excretory function. Chronic treatment with 8-aminoguanine attenuates hypertension in deoxycorticosterone/salt rats, prevents strokes, and increases lifespan in Dahl salt-sensitive rats on a high salt diet and attenuates the metabolic syndrome in rats; 8-aminoguanosine retards progression of pulmonary hypertension in rats and anemia and organ damage in sickle cell mice. 8-Aminoguanine reverses age-associated lower urinary tract dysfunction and retinal degeneration. 8-Aminopurines represent a new class of agents (and potentially endogenous factors) that have beneficial effects on the cardiovascular system and kidneys and may turn back the clock in age-associated diseases.
Collapse
Affiliation(s)
- Edwin K. Jackson
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15219
- Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15219
| | - Stevan P. Tofovic
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15219
- Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15219
| | - Yuanyuan Chen
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15219
- Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15219
| | - Lori A. Birder
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15219
- Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15219
| |
Collapse
|
5
|
Birder LA, Jackson EK. Purine nucleoside phosphorylase as a target to treat age-associated lower urinary tract dysfunction. Nat Rev Urol 2022; 19:681-687. [PMID: 36071153 PMCID: PMC9842101 DOI: 10.1038/s41585-022-00642-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/01/2022] [Indexed: 01/18/2023]
Abstract
The lower urinary tract (LUT), including the bladder, urethra and external striated muscle, becomes dysfunctional with age; consequently, many older individuals suffer from lower urinary tract disorders (LUTDs). By compromising urine storage and voiding, LUTDs degrade quality of life for millions of individuals worldwide. Treatments for LUTDs have been disappointing, frustrating both patients and their physicians; however, emerging evidence suggests that partial inhibition of the enzyme purine nucleoside phosphorylase (PNPase) with 8-aminoguanine (an endogenous PNPase inhibitor that moderately reduces PNPase activity) reverses age-associated defects in the LUT and restores the LUT to that of a younger state. Thus, 8-aminoguanine improves LUT biochemistry, structure and function by rebalancing the LUT purine metabolome, making 8-aminoguanine a novel potential treatment for LUTDs.
Collapse
Affiliation(s)
- Lori A Birder
- Department of Medicine, Renal-Electrolyte Division, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.
| | - Edwin K Jackson
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| |
Collapse
|
6
|
Jackson EK, Kitsios GD, Lu MY, Schaefer CM, Kessinger CJ, McVerry BJ, Morris A, Macatangay BJC. Suppressed renoprotective purines in COVID-19 patients with acute kidney injury. Sci Rep 2022; 12:17353. [PMID: 36253495 PMCID: PMC9574168 DOI: 10.1038/s41598-022-22349-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Accepted: 10/13/2022] [Indexed: 01/10/2023] Open
Abstract
Acute kidney injury (AKI) is common in patients hospitalized for COVID-19, complicating their clinical course and contributing to worse outcomes. Animal studies show that adenosine, inosine and guanosine protect the kidney against some types of AKI. However, until now there was no evidence in patients supporting the possibility that abnormally low kidney levels of adenosine, inosine and guanosine contribute to AKI. Here, we addressed the question as to whether these renoprotective purines are altered in the urine of COVID-19 patients with AKI. Purines were measured by employing ultra-high-performance liquid chromatography-tandem mass spectrometry with stable-isotope-labeled internal standards for each purine of interest. Compared with COVID-19 patients without AKI (n = 23), COVID-19 patients with AKI (n = 20) had significantly lower urine levels of adenosine (P < 0.0001), inosine (P = 0.0008), and guanosine (P = 0.0008) (medians reduced by 85%, 48% and 61%, respectively) and lower levels (P = 0.0003; median reduced by 67%) of the 2nd messenger for A2A and A2B adenosine receptors, i.e., 3',5'-cAMP. Moreover, in COVID-19 patients with AKI, urine levels of 8-aminoguanine (endogenous inhibitor of inosine and guanosine metabolism) were nearly abolished (P < 0.0001). In contrast, the "upstream" precursors of renoprotective purines, namely 5'-AMP and 5'-GMP, were not significantly altered in COVID-19 patients with AKI, suggesting defective conversion of these precursors by CD73 (converts 5'-AMP to adenosine and 5'-GMP to guanosine). These findings imply that an imbalance in renoprotective purines may contribute to AKI in COVID-19 patients and that pharmacotherapy targeted to restore levels of renoprotective purines may attenuate the risk of AKI in susceptible patients with COVID-19.
Collapse
Affiliation(s)
- Edwin K Jackson
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, 100 Technology Drive, Room 514, Pittsburgh, PA, 15219, USA.
| | - Georgios D Kitsios
- Department of Medicine, Division of Pulmonary, Allergy and Critical Care Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Michael Y Lu
- Department of Medicine, Division of Pulmonary, Allergy and Critical Care Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Caitlin M Schaefer
- Department of Medicine, Division of Pulmonary, Allergy and Critical Care Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Cathy J Kessinger
- Department of Medicine, Division of Pulmonary, Allergy and Critical Care Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Bryan J McVerry
- Department of Medicine, Division of Pulmonary, Allergy and Critical Care Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Alison Morris
- Department of Medicine, Division of Pulmonary, Allergy and Critical Care Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Bernard J C Macatangay
- Department of Medicine, Division of Infectious Disease, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| |
Collapse
|
7
|
Jackson EK, Menshikova EV, Ritov VB, Mi Z, Birder LA. 8-Aminoinosine and 8-Aminohypoxanthine Inhibit Purine Nucleoside Phosphorylase and Exert Diuretic and Natriuretic Activity. J Pharmacol Exp Ther 2022; 382:135-148. [PMID: 35609923 PMCID: PMC9639651 DOI: 10.1124/jpet.122.001221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Accepted: 05/12/2022] [Indexed: 01/01/2023] Open
Abstract
8-Aminoguanine and 8-aminoguanosine (via metabolism to 8-aminoguanine) are endogenous 8-aminopurines that induce diuresis, natriuresis, and glucosuria by inhibiting purine nucleoside phosphorylase (PNPase); moreover, both 8-aminopurines cause antikaliuresis by other mechanisms. Because 8-aminoinosine and 8-aminohypoxanthine are structurally similar to 8-aminoguanosine and 8-aminoguanine, respectively, we sought to define their renal excretory effects. First, we compared the ability of 8-aminoguanine, 8-aminohypoxanthine, and 8-aminoinosine to inhibit recombinant PNPase. These compounds inhibited PNPase with a potency order of 8-aminoguanine > 8-aminohypoxanthine = 8-aminoinosine. Additional studies showed that 8-aminoinosine is a competitive substrate that is metabolized to a competitive PNPase inhibitor, namely 8-aminohypoxanthine. Administration of each 8-aminopurine (33.5 µmol/kg) reduced the guanine-to-guanosine and hypoxanthine-to-inosine ratios in urine, a finding confirming their ability to inhibit PNPase in vivo. All three 8-aminopurines induced diuresis, natriuresis, and glucosuria; however, the glucosuric effects of 8-aminohypoxanthine and 8-aminoinosine were less pronounced than those of 8-aminoguanine. Neither 8-aminohypoxanthine nor 8-aminoinosine altered potassium excretion, whereas 8-aminoguanine caused antikaliuresis. In vivo administration of 8-aminoinosine increased 8-aminohypoxanthine excretion, indicating that 8-aminohypoxanthine mediates, in part, the effects of 8-aminoinosine. Finally, 8-aminohypoxanthine was metabolized to 8-aminoxanthine by xanthine oxidase. Using ultraperformance liquid chromatography-tandem mass spectrometry, we identified 8-aminoinosine as an endogenous 8-aminopurine. In conclusion, 8-aminopurines have useful pharmacological profiles. To induce diuresis, natriuresis, glucosuria, and antikaliuresis, 8-aminoguanine (or its prodrug 8-aminoguanosine) would be preferred. If only diuresis and natriuresis, without marked glucosuria or antikaliuresis, is desired, 8-aminohypoxanthine or 8-aminoinosine might be useful. Finally, here we report the in vivo existence of another pharmacologically active 8-aminopurine, namely 8-aminoinosine. SIGNIFICANCE STATEMENT: Here, we report that a family of 8-aminopurines affects renal excretory function: effects that may be useful for treating multiple diseases including hypertension, heart failure, and chronic kidney disease. For diuresis and natriuresis accompanied by glucosuria and antikaliuresis, 8-aminoguanine (or its prodrug 8-aminoguanosine) would be useful; if only diuresis and natriuresis is called for, 8-aminohypoxanthine or 8-aminoinosine would be useful. Previously, we identified 8-aminoguanine and 8-aminoguanosine as endogenous 8-aminopurines; here, we extend the family of endogenous 8-aminopurines to include 8-aminoinosine.
Collapse
Affiliation(s)
- Edwin K Jackson
- Department of Pharmacology and Chemical Biology (E.K.J., E.V.M., V.B.R., Z.M.) and Department of Medicine (L.A.B.), University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Elizabeth V Menshikova
- Department of Pharmacology and Chemical Biology (E.K.J., E.V.M., V.B.R., Z.M.) and Department of Medicine (L.A.B.), University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Vladimir B Ritov
- Department of Pharmacology and Chemical Biology (E.K.J., E.V.M., V.B.R., Z.M.) and Department of Medicine (L.A.B.), University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Zaichuan Mi
- Department of Pharmacology and Chemical Biology (E.K.J., E.V.M., V.B.R., Z.M.) and Department of Medicine (L.A.B.), University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Lori A Birder
- Department of Pharmacology and Chemical Biology (E.K.J., E.V.M., V.B.R., Z.M.) and Department of Medicine (L.A.B.), University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| |
Collapse
|
8
|
Jackson EK, Menshikova EV, Ritov VB, Gillespie DG, Mi Z. Biochemical Pathways of 8-Aminoguanine Production In Sprague-Dawley and Dahl Salt-Sensitive Rats. Biochem Pharmacol 2022; 201:115076. [PMID: 35551915 DOI: 10.1016/j.bcp.2022.115076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 04/30/2022] [Accepted: 05/03/2022] [Indexed: 11/02/2022]
Abstract
BACKGROUND 8-Aminoguanine exerts natriuretic and antihypertensive activity. Whether and how "free" 8-aminoguanine exists in vivo is unclear. Because 8-nitroguanosine is naturally occurring, we tested the hypothesis that 8-aminoguanine can arise from: pathway 1, 8-nitroguanosine→8-aminoguanosine→8-aminoguanine; and pathway 2, 8-nitroguanosine→8-nitroguanine→8-aminoguanine. METHODS 8-Aminoguanine biosynthesis was explored in rats using renal microdialysis, mass spectrometry and enzyme kinetics. RESULTS In Sprague-Dawley rats, 8-nitroguanosine infusions increased kidney levels of 8-nitroguanine, 8-aminoguanosine and 8-aminoguanine; 8-nitroguanine infusions increased 8-aminoguanine. Purine nucleoside phosphorylase (PNPase) converted 8-nitroguanosine to 8-nitroguanine and 8-aminoguanosine to 8-aminoguanine. Forodesine (PNPase inhibitor) reduced metabolism of 8-nitroguanosine by pathway 2 and shunted metabolism of 8-nitroguanosine to 8-aminoguanosine. In Dahl salt-sensitive rats, 8-nitroguanosine infusions increased kidney levels of 8-nitroguanine, 8-aminoguanosine and 8-aminoguanine. These results indicate that both pathways 1 and 2 participate in the biosynthesis of 8-aminoguanine in Sprague-Dawley and Dahl rats. Endogenous 8-aminoguanine in kidneys and urine were elevated many-fold in Dahl, compared to Sprague-Dawley, rats. The increased levels of 8-aminoguanine in Dahl rats were not due to alterations in pathways 1 and 2 but were associated with increased urine levels of endogenous 8-nitroguanosine suggesting that the "upstream" production of 8-nitroguanosine was increased in Dahl rats. Dahl rats are known to have high levels of peroxynitrite, and peroxynitrite is known to nitrate guanosine in biomolecules. Here we confirm that a peroxynitrite donor increases kidney levels of 8-aminoguanine. CONCLUSION 8-Aminoguanine occurs naturally via two distinct pathways and kidney levels of 8-aminoguanine are increased in Dahl rats, likely due to increased production of 8-nitroguanosine, a by-product of peroxynitrite chemistry.
Collapse
Affiliation(s)
- Edwin K Jackson
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15219.
| | - Elizabeth V Menshikova
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15219
| | - Vladimir B Ritov
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15219
| | - Delbert G Gillespie
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15219
| | - Zaichuan Mi
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15219
| |
Collapse
|
9
|
Liu W, Wu D, Li S, Xu J, Li P, Jiang A, Zhang Y, Liu Z, Jiang L, Gao X, Yang Z, Wei Z. Glycolysis and Reactive Oxygen Species Production Participate in T-2 Toxin-Stimulated Chicken Heterophil Extracellular Traps. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:12862-12869. [PMID: 34694797 DOI: 10.1021/acs.jafc.1c05371] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
T-2 toxin (T-2) is a kind of trichothecene toxin produced from Fusarium fungi, which is an environmental pollutant that endangers poultry and human health. Heterophil extracellular traps (HETs) are not only a form of chicken immune defense against pathogen infection but also involved in pathophysiological mechanisms of several diseases. However, the immunotoxicity of T-2 on HET formation in vitro has not yet been reported. In this study, heterophils were exposed to T-2 at doses of 20, 40, and 80 ng/mL for 90 min. Observation of the structure of HETs by immunofluorescence staining and the mechanism of HET formation was analyzed by inhibitors and PicoGreen. These results showed that T-2-triggered HET formation consisted of DNA, elastase, and citH3. Furthermore, T-2 increased reactive oxygen species (ROS) generation, and the formation of T-2-triggered HETs was also decreased by the inhibitors of glycolysis, nicotinamide adenine dinucleotide phosphate (NADPH) oxidase, p38 and extracellular signal-regulated kinase (ERK)1/2 signaling pathways, suggesting that T-2-induced HETs are associated with glycolysis, ROS production, ERK1/2 and p38 signaling pathways, and NADPH oxidase. Taken together, this study elucidates the mechanism of T-2-triggered HET formation, and it may provide new insight into understanding the immunotoxicity of T-2 to early innate immunity in chickens.
Collapse
Affiliation(s)
- Wei Liu
- School of Life Sciences and Engineering, Foshan University, Foshan 528225, Guangdong Province, China
| | - Di Wu
- School of Life Sciences and Engineering, Foshan University, Foshan 528225, Guangdong Province, China
- Key Laboratory of Zoonosis, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun 130062, Jilin Province, China
| | - Shuangqiu Li
- School of Life Sciences and Engineering, Foshan University, Foshan 528225, Guangdong Province, China
- Key Laboratory of Zoonosis, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun 130062, Jilin Province, China
| | - Jingnan Xu
- School of Life Sciences and Engineering, Foshan University, Foshan 528225, Guangdong Province, China
- Key Laboratory of Zoonosis, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun 130062, Jilin Province, China
| | - Peixuan Li
- School of Life Sciences and Engineering, Foshan University, Foshan 528225, Guangdong Province, China
| | - Aimin Jiang
- School of Life Sciences and Engineering, Foshan University, Foshan 528225, Guangdong Province, China
- Key Laboratory of Zoonosis, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun 130062, Jilin Province, China
| | - Yong Zhang
- School of Life Sciences and Engineering, Foshan University, Foshan 528225, Guangdong Province, China
- Key Laboratory of Zoonosis, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun 130062, Jilin Province, China
| | - Ziyi Liu
- School of Life Sciences and Engineering, Foshan University, Foshan 528225, Guangdong Province, China
- Key Laboratory of Zoonosis, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun 130062, Jilin Province, China
| | - Liqiang Jiang
- School of Life Sciences and Engineering, Foshan University, Foshan 528225, Guangdong Province, China
| | - Xinxin Gao
- School of Life Sciences and Engineering, Foshan University, Foshan 528225, Guangdong Province, China
| | - Zhengtao Yang
- School of Life Sciences and Engineering, Foshan University, Foshan 528225, Guangdong Province, China
| | - Zhengkai Wei
- School of Life Sciences and Engineering, Foshan University, Foshan 528225, Guangdong Province, China
| |
Collapse
|
10
|
Jackson EK, Gillespie DG, Cheng D, Mi Z, Menshikova EV. Characterization of the N 6-etheno-bridge method to assess extracellular metabolism of adenine nucleotides: detection of a possible role for purine nucleoside phosphorylase in adenosine metabolism. Purinergic Signal 2020; 16:187-211. [PMID: 32367441 PMCID: PMC7367995 DOI: 10.1007/s11302-020-09699-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2019] [Accepted: 04/08/2020] [Indexed: 12/11/2022] Open
Abstract
The goal of this study was to determine the validity of using N6-etheno-bridged adenine nucleotides to evaluate ecto-nucleotidase activity. We observed that the metabolism of N6-etheno-ATP versus ATP was quantitatively similar when incubated with recombinant CD39, ENTPD2, ENTPD3, or ENPP-1, and the quantitative metabolism of N6-etheno-AMP versus AMP was similar when incubated with recombinant CD73. This suggests that ecto-nucleotidases process N6-etheno-bridged adenine nucleotides similarly to endogenous adenine nucleotides. Four cell types rapidly (t1/2, 0.21 to 0.66 h) metabolized N6-etheno-ATP. Applied N6-etheno-ATP was recovered in the medium as N6-etheno-ADP, N6-etheno-AMP, N6-etheno-adenosine, and surprisingly N6-etheno-adenine; intracellular N6-etheno compounds were undetectable. This suggests minimal cellular uptake, intracellular metabolism, or deamination of these compounds. N6-etheno-ATP, N6-etheno-ADP, N6-etheno-AMP, N6-etheno-adenosine, and N6-etheno-adenine had little affinity for recombinant A1, A2A, or A2B receptors, for a subset of P2X receptors (3H-α,β-methylene-ATP binding to rat bladder membranes), or for a subset of P2Y receptors (35S-ATP-αS binding to rat brain membranes), suggesting minimal pharmacological activity. N6-etheno-adenosine was partially converted to N6-etheno-adenine in four different cell types; this was blocked by purine nucleoside phosphorylase (PNPase) inhibition. Intravenous N6-etheno-ATP was quickly metabolized, with N6-etheno-adenine being the main product in naïve rats, but not in rats pretreated with a PNPase inhibitor. PNPase inhibition reduced the urinary excretion of endogenous adenine and attenuated the conversion of exogenous adenosine to adenine in the renal cortex. The N6-etheno-bridge method is a valid technique to assess extracellular metabolism of adenine nucleotides by ecto-nucleotidases. Also, rats express an enzyme with PNPase-like activity that metabolizes N6-etheno-adenosine to N6-etheno-adenine.
Collapse
Affiliation(s)
- Edwin K. Jackson
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, 100 Technology Drive, Room 514, Pittsburgh, PA 15219 USA
| | - Delbert G. Gillespie
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, 100 Technology Drive, Room 514, Pittsburgh, PA 15219 USA
| | - Dongmei Cheng
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, 100 Technology Drive, Room 514, Pittsburgh, PA 15219 USA
| | - Zaichuan Mi
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, 100 Technology Drive, Room 514, Pittsburgh, PA 15219 USA
| | - Elizabeth V. Menshikova
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, 100 Technology Drive, Room 514, Pittsburgh, PA 15219 USA
| |
Collapse
|
11
|
Jackson EK, Mi Z, Kleyman TR, Cheng D. 8-Aminoguanine Induces Diuresis, Natriuresis, and Glucosuria by Inhibiting Purine Nucleoside Phosphorylase and Reduces Potassium Excretion by Inhibiting Rac1. J Am Heart Assoc 2019; 7:e010085. [PMID: 30608204 PMCID: PMC6404173 DOI: 10.1161/jaha.118.010085] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Background 8-Aminoguanosine and 8-aminoguanine are K+-sparing natriuretics that increase glucose excretion. Most effects of 8-aminoguanosine are due to its metabolism to 8-aminoguanine. However, the mechanism by which 8-aminoguanine affects renal function is unknown and is the focus of this investigation. Methods and Results Because 8-aminoguanine has structural similarities with inhibitors of the epithelial sodium channel (ENaC), Na+/H+ exchangers, and adenosine A1 receptors, we examined the effects of 8-aminoguanine on EN aC activity in mouse collecting duct cells, on intracellular pH of human proximal tubular epithelial cells, on responses to a selective A1-receptor agonist in vivo, and on renal excretory function in A1-receptor knockout rats. These experiments showed that 8-aminoguanine did not block EN aC, Na+/H+ exchangers, or A1 receptors. Because Rac1 enhances activity of mineralocorticoid receptors and some guanosine analogues inhibit Rac1, we examined the effects of 8-aminoguanine on Rac1 activity in mouse collecting duct cells. Rac1 activity was significantly inhibited by 8-aminoguanine. Because in vitro 8-aminoguanine is a purine nucleoside phosphorylase ( PNP ase) inhibitor, we examined the effects of a natriuretic dose of 8-aminoguanine on urinary excretion of PNP ase substrates and products. 8-Aminoguanine increased and decreased, respectively, urinary excretion of PNP ase substrates and products. Next we compared in rats the renal effects of intravenous doses of 9-deazaguanine ( PNP ase inhibitor) versus 8-aminoguanine. 8-Aminoguanine and 9-deazaguanine induced similar increases in urinary Na+ and glucose excretion, yet only 8-aminoguanine reduced K+ excretion. Nsc23766 (Rac1 inhibitor) mimicked the effects of 8-aminoguanine on K+ excretion. Conclusions 8-Aminoguanine increases Na+ and glucose excretion by blocking PNP ase and decreases K+ excretion by inhibiting Rac1.
Collapse
Affiliation(s)
- Edwin K Jackson
- 2 Department of Pharmacology and Chemical Biology University of Pittsburgh School of Medicine Pittsburgh PA
| | - Zaichuan Mi
- 2 Department of Pharmacology and Chemical Biology University of Pittsburgh School of Medicine Pittsburgh PA
| | - Thomas R Kleyman
- 1 Renal-Electrolyte Division Department of Medicine University of Pittsburgh School of Medicine Pittsburgh PA
| | - Dongmei Cheng
- 2 Department of Pharmacology and Chemical Biology University of Pittsburgh School of Medicine Pittsburgh PA
| |
Collapse
|