1
|
Li S, Yang M, Zhao Y, Zhai Y, Sun C, Guo Y, Zhang X, Zhang L, Tian T, Yang Y, Pei Y, Li J, Li C, Xuan L, Li X, Zhao D, Yang H, Zhang Y, Yang B, Zhang Z, Pan Z, Lu Y. Deletion of ASPP1 in myofibroblasts alleviates myocardial fibrosis by reducing p53 degradation. Nat Commun 2024; 15:8425. [PMID: 39341821 PMCID: PMC11439048 DOI: 10.1038/s41467-024-52739-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 09/20/2024] [Indexed: 10/01/2024] Open
Abstract
In the healing process of myocardial infarction, cardiac fibroblasts are activated to produce collagen, leading to adverse remodeling and heart failure. Our previous study showed that ASPP1 promotes cardiomyocyte apoptosis by enhancing the nuclear trafficking of p53. We thus explored the influence of ASPP1 on myocardial fibrosis and the underlying mechanisms. Here, we observed that ASPP1 was increased after 4 weeks of MI. Both global and myofibroblast knockout of ASPP1 in mice mitigated cardiac dysfunction and fibrosis after MI. Strikingly, ASPP1 produced the opposite influence on p53 level and cell fate in cardiac fibroblasts and cardiomyocytes. Knockdown of ASPP1 increased p53 levels and inhibited the activity of cardiac fibroblasts. ASPP1 accumulated in the cytoplasm of fibroblasts while the level of p53 was reduced following TGF-β1 stimulation; however, inhibition of ASPP1 increased the p53 level and promoted p53 nuclear translocation. Mechanistically, ASPP1 is directly bound to deubiquitinase OTUB1, thereby promoting the ubiquitination and degradation of p53, attenuating myofibroblast activity and cardiac fibrosis, and improving heart function after MI.
Collapse
Affiliation(s)
- Shangxuan Li
- State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD), Department of Pharmacology (State Key Labratoray-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, P.R. China
| | - Meng Yang
- State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD), Department of Pharmacology (State Key Labratoray-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, P.R. China
| | - Yinfeng Zhao
- State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD), Department of Pharmacology (State Key Labratoray-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, P.R. China
| | - Yinghe Zhai
- State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD), Department of Pharmacology (State Key Labratoray-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, P.R. China
| | - Chongsong Sun
- State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD), Department of Pharmacology (State Key Labratoray-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, P.R. China
| | - Yang Guo
- State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD), Department of Pharmacology (State Key Labratoray-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, P.R. China
| | - Xiaofang Zhang
- State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD), Department of Pharmacology (State Key Labratoray-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, P.R. China
| | - Lingmin Zhang
- State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD), Department of Pharmacology (State Key Labratoray-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, P.R. China
| | - Tao Tian
- State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD), Department of Pharmacology (State Key Labratoray-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, P.R. China
| | - Ying Yang
- State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD), Department of Pharmacology (State Key Labratoray-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, P.R. China
| | - Yao Pei
- State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD), Department of Pharmacology (State Key Labratoray-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, P.R. China
| | - Jialiang Li
- State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD), Department of Pharmacology (State Key Labratoray-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, P.R. China
| | - Chenhong Li
- State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD), Department of Pharmacology (State Key Labratoray-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, P.R. China
| | - Lina Xuan
- State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD), Department of Pharmacology (State Key Labratoray-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, P.R. China
| | - Xingda Li
- State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD), Department of Pharmacology (State Key Labratoray-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, P.R. China
| | - Deli Zhao
- Department of Medical Imaging, The Sixth Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Huike Yang
- Department of Anatomy, Harbin Medical University, Harbin, P.R. China
| | - Yang Zhang
- State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD), Department of Pharmacology (State Key Labratoray-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, P.R. China.
| | - Baofeng Yang
- State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD), Department of Pharmacology (State Key Labratoray-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, P.R. China.
- Research Unit of Noninfectious Chronic Diseases in Frigid Zone, Chinese Academy of Medical Sciences, Harbin, P. R. China.
| | - Zhiren Zhang
- Department of Cardiology, The First Affiliated Hospital of Harbin Medical University (HMU), NHC Key Laboratory of Cell Transplantation, Key Laboratories of Education Ministry for Myocardial Ischemia Mechanism and Treatment, Harbin, China.
| | - Zhenwei Pan
- State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD), Department of Pharmacology (State Key Labratoray-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, P.R. China.
- Key Laboratory of Cell Transplantation, The First Affiliated Hospital, Harbin Medical University, Harbin, P. R. China.
- School of Basic Medical Sciences, Harbin Medical University, Harbin, P.R. China.
| | - Yanjie Lu
- State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD), Department of Pharmacology (State Key Labratoray-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, P.R. China.
| |
Collapse
|
2
|
Erlandson S, Wang J, Jiang H, Osei-Owusu J, Rockman HA, Kruse AC. Engineering and Characterization of a Long-Half-Life Relaxin Receptor RXFP1 Agonist. Mol Pharm 2024; 21:4441-4449. [PMID: 39134056 PMCID: PMC11372834 DOI: 10.1021/acs.molpharmaceut.4c00368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 06/17/2024] [Accepted: 06/17/2024] [Indexed: 09/03/2024]
Abstract
Relaxin-2 is a peptide hormone with important roles in human cardiovascular and reproductive biology. Its ability to activate cellular responses such as vasodilation, angiogenesis, and anti-inflammatory and antifibrotic effects has led to significant interest in using relaxin-2 as a therapeutic for heart failure and several fibrotic conditions. However, recombinant relaxin-2 has a very short serum half-life, limiting its clinical applications. Here, we present protein engineering efforts targeting the relaxin-2 hormone in order to increase its serum half-life while maintaining its ability to activate the G protein-coupled receptor RXFP1. To achieve this, we optimized a fusion between relaxin-2 and an antibody Fc fragment, generating a version of the hormone with a circulating half-life of around 3 to 5 days in mice while retaining potent agonist activity at the RXFP1 receptor both in vitro and in vivo.
Collapse
Affiliation(s)
- Sarah
C. Erlandson
- Department
of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston, Massachusetts 02115, United States
| | - Jialu Wang
- Department
of Medicine, Duke University Medical Center, Durham, North Carolina 27710, United States
| | - Haoran Jiang
- Department
of Medicine, Duke University Medical Center, Durham, North Carolina 27710, United States
| | - James Osei-Owusu
- Department
of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston, Massachusetts 02115, United States
| | - Howard A. Rockman
- Department
of Medicine, Duke University Medical Center, Durham, North Carolina 27710, United States
- Department
of Cell Biology, Duke University Medical
Center, Durham, North Carolina 27710, United States
| | - Andrew C. Kruse
- Department
of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston, Massachusetts 02115, United States
| |
Collapse
|
3
|
Agoulnik IU, Kaftanovskaya EM, Myhr C, Bathgate RAD, Kocan M, Peng Y, Lindsay RM, DiStefano PS, Agoulnik AI. Engineering a long acting, non-biased relaxin agonist using Protein-in-Protein technology. Biochem Pharmacol 2024; 227:116401. [PMID: 38945278 DOI: 10.1016/j.bcp.2024.116401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 06/25/2024] [Accepted: 06/27/2024] [Indexed: 07/02/2024]
Abstract
The peptide hormone relaxin plays a critical role in tissue remodeling in a variety of tissues through activation of its cognate receptor, RXFP1. Relaxin's ability to modify extracellular matrices has provided a strong rationale for treating fibrosis in a variety of tissues. Treatment with recombinant relaxin peptides in clinical studies of heart failure has not yet proven useful, likely due to the short half-life of infused peptide. To circumvent this particular pharmacokinetic pitfall we have used a Protein-in-Protein (PiP) antibody technology described previously, to insert a single-chain human relaxin construct into the complementarity-determining region (CDR) of an immunoglobulin G (IgG) backbone, creating a relaxin molecule with a half-life of ∼4-5 days in mice. Relaxin-PiP biologics displaced Europium-labeled human relaxin in RXFP1-expressing cells and demonstrated full agonist activity on both human and mouse RXFP1 receptors. Relaxin-PiPs did not show signal transduction bias, as they activated cAMP in THP-1 cells, and cGMP and pERK signaling in primary human cardiac fibroblasts. In an induced carbon tetrachloride mouse model of liver fibrosis one relaxin-PiP, R2-PiP, caused reduction of liver lesions, ameliorated collagen accumulation in the liver with the corresponding reduction of Collagen1a1 gene expression, and increased cell proliferation in hepatic parenchyma. These relaxin biologics represent a novel approach to the design of a long-acting RXFP1 agonist to probe the clinical utility of relaxin/RXFP1 signaling to treat a variety of human fibrotic diseases.
Collapse
Affiliation(s)
- Irina U Agoulnik
- Department of Human and Molecular Genetics, Herbert Wertheim College of Medicine, Florida International University, Miami, FL 33199, USA
| | - Elena M Kaftanovskaya
- Department of Human and Molecular Genetics, Herbert Wertheim College of Medicine, Florida International University, Miami, FL 33199, USA
| | - Courtney Myhr
- Department of Human and Molecular Genetics, Herbert Wertheim College of Medicine, Florida International University, Miami, FL 33199, USA
| | - Ross A D Bathgate
- Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Victoria 3010, Australia; Department of Biochemistry and Pharmacology, The University of Melbourne, Victoria 3010, Australia
| | - Martina Kocan
- Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Victoria 3010, Australia
| | - Yingjie Peng
- Scripps Research, 10550 N Torrey Pines Rd, La Jolla, CA 92037 USA
| | - Ronald M Lindsay
- Zebra Biologics, Inc., 1041 Old Marlboro Road, Concord, MA 01742 USA
| | - Peter S DiStefano
- Zebra Biologics, Inc., 1041 Old Marlboro Road, Concord, MA 01742 USA.
| | - Alexander I Agoulnik
- Department of Human and Molecular Genetics, Herbert Wertheim College of Medicine, Florida International University, Miami, FL 33199, USA.
| |
Collapse
|
4
|
Shan X, Zhao Z, Lai P, Liu Y, Li B, Ke Y, Jiang H, Zhou Y, Li W, Wang Q, Qin P, Xue Y, Zhang Z, Wei C, Ma B, Liu W, Luo C, Lu X, Lin J, Shu L, Jie Y, Xian X, Delcassian D, Ge Y, Miao L. RNA nanotherapeutics with fibrosis overexpression and retention for MASH treatment. Nat Commun 2024; 15:7263. [PMID: 39191801 DOI: 10.1038/s41467-024-51571-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 08/07/2024] [Indexed: 08/29/2024] Open
Abstract
Metabolic dysfunction-associated steatohepatitis (MASH) poses challenges for targeted delivery and retention of therapeutic proteins due to excess extracellular matrix (ECM). Here we present a new approach to treat MASH, termed "Fibrosis overexpression and retention (FORT)". In this strategy, we design (1) retinoid-derivative lipid nanoparticle (LNP) to enable enhanced mRNA overexpression in fibrotic regions, and (2) mRNA modifications which facilitate anchoring of therapeutic proteins in ECM. LNPs containing carboxyl-retinoids, rather than alcohol- or ester-retinoids, effectively deliver mRNA with over 10-fold enhancement of protein expression in fibrotic livers. The carboxyl-retinoid rearrangement on the LNP surface improves protein binding and membrane fusion. Therapeutic proteins are then engineered with an endogenous collagen-binding domain. These fusion proteins exhibit increased retention in fibrotic lesions and reduced systemic toxicity. In vivo, fibrosis-targeting LNPs encoding fusion proteins demonstrate superior therapeutic efficacy in three clinically relevant male-animal MASH models. This approach holds promise in fibrotic diseases unsuited for protein injection.
Collapse
Affiliation(s)
- Xinzhu Shan
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, China
- Beijing Key Laboratory of Molecular Pharmaceutics, School of Pharmaceutical Sciences, Peking University, Beijing, China
| | - Zhiqiang Zhao
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, China
- Beijing Key Laboratory of Molecular Pharmaceutics, School of Pharmaceutical Sciences, Peking University, Beijing, China
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, China
| | - Pingping Lai
- Institute of Cardiovascular Sciences and State Key Laboratory of Vascular Homeostasis and Remodeling, School of Basic Medical Sciences, Peking University, Beijing, China
| | - Yuxiu Liu
- Chinese Institute for Brain Research, Beijing, China
| | - Buyao Li
- Beijing Key Laboratory of Molecular Pharmaceutics, School of Pharmaceutical Sciences, Peking University, Beijing, China
| | - Yubin Ke
- China Spallation Neutron Source, Institute of High Energy Physics, Chinese Academy of Science, Dongguan, China
| | - Hanqiu Jiang
- China Spallation Neutron Source, Institute of High Energy Physics, Chinese Academy of Science, Dongguan, China
| | - Yilong Zhou
- Department of Surgery, Nantong Tumor Hospital, Tumor Hospital Affiliated to Nantong University, Nantong, China
| | - Wenzhe Li
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, China
| | - Qian Wang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, China
| | - Pengxia Qin
- Beijing Key Laboratory of Molecular Pharmaceutics, School of Pharmaceutical Sciences, Peking University, Beijing, China
| | - Yizhe Xue
- Beijing Key Laboratory of Molecular Pharmaceutics, School of Pharmaceutical Sciences, Peking University, Beijing, China
| | - Zihan Zhang
- Beijing Key Laboratory of Molecular Pharmaceutics, School of Pharmaceutical Sciences, Peking University, Beijing, China
| | - Chenlong Wei
- Beijing Key Laboratory of Molecular Pharmaceutics, School of Pharmaceutical Sciences, Peking University, Beijing, China
| | - Bin Ma
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, China
- Beijing Key Laboratory of Molecular Pharmaceutics, School of Pharmaceutical Sciences, Peking University, Beijing, China
| | - Wei Liu
- Keymed Biosciences (Chengdu) Limited, Chengdu, Sichuan, China
| | - Cong Luo
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, China
| | - Xueguang Lu
- Key Laboratory of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, Beijing, China
| | - Jiaqi Lin
- MOE Key Laboratory of Bio-Intelligent Manufacturing, School of Bioengineering, Dalian University of Technology, Dalian, China
| | - Li Shu
- Interdisplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, China
| | - Yin Jie
- Chinese Institute for Brain Research, Beijing, China
| | - Xunde Xian
- Institute of Cardiovascular Sciences and State Key Laboratory of Vascular Homeostasis and Remodeling, School of Basic Medical Sciences, Peking University, Beijing, China
| | | | - Yifan Ge
- Interdisplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, China
| | - Lei Miao
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, China.
- Beijing Key Laboratory of Molecular Pharmaceutics, School of Pharmaceutical Sciences, Peking University, Beijing, China.
- Peking University-Yunnan Baiyao International Medical Research Center, Beijing, China.
| |
Collapse
|
5
|
Pavelec CM, Young AP, Luviano HL, Orrell EE, Szagdaj A, Poudel N, Wolpe AG, Thomas SH, Yeudall S, Upchurch CM, Okusa MD, Isakson BE, Wolf MJ, Leitinger N. Cardiomyocyte PANX1 Controls Glycolysis and Neutrophil Recruitment in Hypertrophy. Circ Res 2024; 135:503-517. [PMID: 38957990 PMCID: PMC11293983 DOI: 10.1161/circresaha.124.324650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 06/21/2024] [Indexed: 07/04/2024]
Abstract
BACKGROUND PANX1 (pannexin 1), a ubiquitously expressed ATP release membrane channel, has been shown to play a role in inflammation, blood pressure regulation, and myocardial infarction. However, the possible role of PANX1 in cardiomyocytes in the progression of heart failure has not yet been investigated. METHOD We generated a novel mouse line with constitutive deletion of PANX1 in cardiomyocytes (Panx1MyHC6). RESULTS PANX1 deletion in cardiomyocytes had no effect on unstressed heart function but increased the glycolytic metabolism and resulting glycolytic ATP production, with a concurrent decrease in oxidative phosphorylation, both in vivo and in vitro. In vitro, treatment of H9c2 (H9c2 rat myoblast cell line) cardiomyocytes with isoproterenol led to PANX1-dependent release of ATP and Yo-Pro-1 uptake, as assessed by pharmacological blockade with spironolactone and siRNA-mediated knockdown of PANX1. To investigate nonischemic heart failure and the preceding cardiac hypertrophy, we administered isoproterenol, and we demonstrated that Panx1MyHC6 mice were protected from systolic and diastolic left ventricle volume increases as a result of cardiomyocyte hypertrophy. Moreover, we found that Panx1MyHC6 mice showed decreased isoproterenol-induced recruitment of immune cells (CD45+), particularly neutrophils (CD11b+ [integrin subunit alpha M], Ly6g+ [lymphocyte antigen 6 family member G]), to the myocardium. CONCLUSIONS Together, these data demonstrate that PANX1 deficiency in cardiomyocytes increases glycolytic metabolism and protects against cardiac hypertrophy in nonischemic heart failure at least in part by reducing immune cell recruitment. Our study implies PANX1 channel inhibition as a therapeutic approach to ameliorate cardiac dysfunction in patients with heart failure.
Collapse
Affiliation(s)
- Caitlin M Pavelec
- Department of Pharmacology (C.M.P., H.L.L., E.E.O., A.S., S.H.T., S.Y., C.M.U., N.L.), University of Virginia School of Medicine, Charlottesville
- Robert M. Berne Cardiovascular Research Center (C.M.P., A.P.Y., B.E.I., M.J.W., N.L.), University of Virginia School of Medicine, Charlottesville
| | - Alexander P Young
- Cardiovascular Medicine, Department of Medicine (A.P.Y., M.J.W.), University of Virginia School of Medicine, Charlottesville
- Robert M. Berne Cardiovascular Research Center (C.M.P., A.P.Y., B.E.I., M.J.W., N.L.), University of Virginia School of Medicine, Charlottesville
| | - Hannah L Luviano
- Department of Pharmacology (C.M.P., H.L.L., E.E.O., A.S., S.H.T., S.Y., C.M.U., N.L.), University of Virginia School of Medicine, Charlottesville
| | - Emily E Orrell
- Department of Pharmacology (C.M.P., H.L.L., E.E.O., A.S., S.H.T., S.Y., C.M.U., N.L.), University of Virginia School of Medicine, Charlottesville
| | - Anna Szagdaj
- Department of Pharmacology (C.M.P., H.L.L., E.E.O., A.S., S.H.T., S.Y., C.M.U., N.L.), University of Virginia School of Medicine, Charlottesville
| | - Nabin Poudel
- Division of Nephrology and Center for Immunity, Inflammation and Regenerative Medicine (N.P., M.D.O.), University of Virginia School of Medicine, Charlottesville
| | - Abigail G Wolpe
- Department of Cell Biology (A.G.W.), University of Virginia School of Medicine, Charlottesville
| | - Samantha H Thomas
- Department of Pharmacology (C.M.P., H.L.L., E.E.O., A.S., S.H.T., S.Y., C.M.U., N.L.), University of Virginia School of Medicine, Charlottesville
| | - Scott Yeudall
- Department of Pharmacology (C.M.P., H.L.L., E.E.O., A.S., S.H.T., S.Y., C.M.U., N.L.), University of Virginia School of Medicine, Charlottesville
| | - Clint M Upchurch
- Department of Pharmacology (C.M.P., H.L.L., E.E.O., A.S., S.H.T., S.Y., C.M.U., N.L.), University of Virginia School of Medicine, Charlottesville
| | - Mark D Okusa
- Division of Nephrology and Center for Immunity, Inflammation and Regenerative Medicine (N.P., M.D.O.), University of Virginia School of Medicine, Charlottesville
| | - Brant E Isakson
- Robert M. Berne Cardiovascular Research Center (C.M.P., A.P.Y., B.E.I., M.J.W., N.L.), University of Virginia School of Medicine, Charlottesville
- Department of Molecular Physiology and Biological Physics (B.E.I.), University of Virginia School of Medicine, Charlottesville
| | - Matthew J Wolf
- Cardiovascular Medicine, Department of Medicine (A.P.Y., M.J.W.), University of Virginia School of Medicine, Charlottesville
- Robert M. Berne Cardiovascular Research Center (C.M.P., A.P.Y., B.E.I., M.J.W., N.L.), University of Virginia School of Medicine, Charlottesville
| | - Norbert Leitinger
- Department of Pharmacology (C.M.P., H.L.L., E.E.O., A.S., S.H.T., S.Y., C.M.U., N.L.), University of Virginia School of Medicine, Charlottesville
- Robert M. Berne Cardiovascular Research Center (C.M.P., A.P.Y., B.E.I., M.J.W., N.L.), University of Virginia School of Medicine, Charlottesville
| |
Collapse
|
6
|
Roman B, Mastoor Y, Sun J, Villanueva HC, Hinojosa G, Springer D, Liu JC, Murphy E. MICU3 Regulates Mitochondrial Calcium and Cardiac Hypertrophy. Circ Res 2024; 135:26-40. [PMID: 38747181 PMCID: PMC11189743 DOI: 10.1161/circresaha.123.324026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 05/01/2024] [Indexed: 06/22/2024]
Abstract
BACKGROUND Calcium (Ca2+) uptake by mitochondria occurs via the mitochondrial Ca2+ uniporter. Mitochondrial Ca2+ uniporter exists as a complex, regulated by 3 MICU (mitochondrial Ca2+ uptake) proteins localized in the intermembrane space: MICU1, MICU2, and MICU3. Although MICU3 is present in the heart, its role is largely unknown. METHODS We used CRISPR-Cas9 to generate a mouse with global deletion of MICU3 and an adeno-associated virus (AAV9) to overexpress MICU3 in wild-type mice. We examined the role of MICU3 in regulating mitochondrial calcium ([Ca2+]m) in ex vivo hearts using an optical method following adrenergic stimulation in perfused hearts loaded with a Ca2+-sensitive fluorophore. Additionally, we studied how deletion and overexpression of MICU3, respectively, impact cardiac function in vivo by echocardiography and the molecular composition of the mitochondrial Ca2+ uniporter complex via Western blot, immunoprecipitation, and Blue native-PAGE analysis. Finally, we measured MICU3 expression in failing human hearts. RESULTS MICU3 knock out hearts and cardiomyocytes exhibited a significantly smaller increase in [Ca2+]m than wild-type hearts following acute isoproterenol infusion. In contrast, heart with overexpression of MICU3 exhibited an enhanced increase in [Ca2+]m compared with control hearts. Echocardiography analysis showed no significant difference in cardiac function in knock out MICU3 mice relative to wild-type mice at baseline. However, mice with overexpression of MICU3 exhibited significantly reduced ejection fraction and fractional shortening compared with control mice. We observed a significant increase in the ratio of heart weight to tibia length in hearts with overexpression of MICU3 compared with controls, consistent with hypertrophy. We also found a significant decrease in MICU3 protein and expression in failing human hearts. CONCLUSIONS Our results indicate that increased and decreased expression of MICU3 enhances and reduces, respectively, the uptake of [Ca2+]m in the heart. We conclude that MICU3 plays an important role in regulating [Ca2+]m physiologically, and overexpression of MICU3 is sufficient to induce cardiac hypertrophy, making MICU3 a possible therapeutic target.
Collapse
Affiliation(s)
- Barbara Roman
- Cardiac Physiology Lab NHLBI, NIH, Bethesda, Maryland
| | - Yusuf Mastoor
- Cardiac Physiology Lab NHLBI, NIH, Bethesda, Maryland
| | - Junhui Sun
- Cardiac Physiology Lab NHLBI, NIH, Bethesda, Maryland
| | - Hector Chapoy Villanueva
- Department of Integrative Biology and Physiology, University of Minnesota Medical School, Minneapolis, MN
| | | | | | - Julia C. Liu
- Department of Integrative Biology and Physiology, University of Minnesota Medical School, Minneapolis, MN
| | | |
Collapse
|
7
|
Gabris-Weber B, Forghani R, Bernd Dschietzig T, Romero G, Salama G. Periodic injections of Relaxin 2, its pharmacokinetics and remodeling of rat hearts. Biochem Pharmacol 2024; 223:116136. [PMID: 38494063 DOI: 10.1016/j.bcp.2024.116136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 03/12/2024] [Accepted: 03/14/2024] [Indexed: 03/19/2024]
Abstract
Relaxin-2 (RLX), a critical hormone in pregnancy, has been investigated as a therapy for heart failure. In most studies, the peptide was delivered continuously, subcutaneously for 2 weeks in animals or intravenously for 2-days in human subjects, for stable circulating [RLX]. However, pulsatile hormone levels may better uncover the normal physiology. This premise was tested by subcutaneously injecting Sprague Dawley rats (250 g, N = 2 males, 2 females/group) with human RLX (0, 30, 100, or 500 µg/kg), every 12 h for 1 day, then measuring changes in Nav1.5, connexin43, and β-catenin, 24 h later. Pulsatile RLX was measured by taking serial blood draws, post-injection. After an injection, RLX reached a peak in ∼ 60 min, fell to 50 % in 5-6 h; injections of 0, 30, 100 or 500 µg/kg yielded peak levels of 0, 11.26 ± 3.52, 58.33 ± 16.10, and 209.42 ± 29.04 ng/ml and residual levels after 24-hrs of 0, 4.9, 45.1 and 156 pg/ml, respectively. The 30 µg/kg injections had no effect and 100 µg/kg injections increased Nav1.5 (25 %), Cx43 (30 %) and β-catenin (90 %). The 500 µg/kg injections also increased Nav1.5 and Cx43 but were less effective at upregulating β-catenin (up by 25 % vs. 90 %). Periodic injections of 100 µg/kg were highly effective at increasing the expression of Nav1.5 and Cx43 which are key determinants of conduction velocity in the heart and the suppression of arrhythmias. Periodic RLX is effective at eliciting changes in cardiac protein expression and may be a better strategy for its longer-term delivery in the clinical setting.
Collapse
Affiliation(s)
- Beth Gabris-Weber
- University of Pittsburgh, School of Medicine, Department of Medicine, Heart and Vascular Medicine Institute, Pittsburgh, PA 15261, United States
| | - Rameen Forghani
- University of Pittsburgh, School of Medicine, Department of Medicine, Heart and Vascular Medicine Institute, Pittsburgh, PA 15261, United States
| | - Thomas Bernd Dschietzig
- Relaxera Pharmazeutische Gesellschaft mbH & Co. KG, Stubenwald-Allee 8a, 64625 Bensheim, Germany
| | - Guillermo Romero
- University of Pittsburgh, School of Medicine, Department of Medicine, Heart and Vascular Medicine Institute, Pittsburgh, PA 15261, United States; University of Pittsburgh, School of Medicine, Department of Pharmacology and Chemical Biology, Pittsburgh, PA 15261, United States
| | - Guy Salama
- University of Pittsburgh, School of Medicine, Department of Medicine, Heart and Vascular Medicine Institute, Pittsburgh, PA 15261, United States.
| |
Collapse
|
8
|
Pavelec CM, Young AP, Luviano HL, Orrell EE, Szagdaj A, Poudel N, Wolpe AG, Thomas SH, Yeudall S, Upchurch CM, Okusa MD, Isakson BE, Wolf MJ, Leitinger N. Pannexin 1 Channels Control Cardiomyocyte Metabolism and Neutrophil Recruitment During Non-Ischemic Heart Failure. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.12.29.573679. [PMID: 38234768 PMCID: PMC10793433 DOI: 10.1101/2023.12.29.573679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2024]
Abstract
Pannexin 1 (PANX1), a ubiquitously expressed ATP release membrane channel, has been shown to play a role in inflammation, blood pressure regulation, and myocardial infarction. However, a possible role of PANX1 in cardiomyocytes in the progression of heart failure has not yet been investigated. We generated a novel mouse line with constitutive deletion of PANX1 in cardiomyocytes (Panx1 MyHC6 ). PANX1 deletion in cardiomyocytes had no effect on unstressed heart function but increased the glycolytic metabolism both in vivo and in vitro . In vitro , treatment of H9c2 cardiomyocytes with isoproterenol led to PANX1-dependent release of ATP and Yo-Pro-1 uptake, as assessed by pharmacological blockade with spironolactone and siRNA-mediated knock-down of PANX1. To investigate non-ischemic heart failure and the preceding cardiac hypertrophy we administered isoproterenol, and we demonstrate that Panx1 MyHC6 mice were protected from systolic and diastolic left ventricle volume increases and cardiomyocyte hypertrophy. Moreover, we found that Panx1 MyHC6 mice showed decreased isoproterenol-induced recruitment of immune cells (CD45 + ), particularly neutrophils (CD11b + , Ly6g + ), to the myocardium. Together these data demonstrate that PANX1 deficiency in cardiomyocytes impacts glycolytic metabolism and protects against cardiac hypertrophy in non-ischemic heart failure at least in part by reducing immune cell recruitment. Our study implies PANX1 channel inhibition as a therapeutic approach to ameliorate cardiac dysfunction in heart failure patients.
Collapse
|
9
|
Hossain MA, Praveen P, Noorzi NA, Wu H, Harrison IP, Handley T, Selemidis S, Samuel CS, Bathgate RAD. Development of Novel High-Affinity Antagonists for the Relaxin Family Peptide Receptor 1. ACS Pharmacol Transl Sci 2023; 6:842-853. [PMID: 37200817 PMCID: PMC10186362 DOI: 10.1021/acsptsci.3c00053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Indexed: 05/20/2023]
Abstract
H2 relaxin is a peptide hormone that exerts its biological actions through the G protein-coupled receptor, RXFP1. The numerous important biological functions of H2 relaxin, including potent renal, vasodilatory, cardioprotective, and anti-fibrotic actions, have resulted in considerable interest in its use as a therapeutic for various cardiovascular diseases and other fibrotic indications. Interestingly though, H2 relaxin and RXFP1 have been shown to be overexpressed in prostate cancer, allowing for the downregulation or blocking of relaxin/RXFP1 to decrease prostate tumor growth. These findings suggest the application of an RXFP1 antagonist for the treatment of prostate cancer. However, these therapeutically relevant actions are still poorly understood and have been hindered by the lack of a high-affinity antagonist. In this study, we chemically synthesized three novel H2 relaxin analogues that have complex insulin-like structures with two chains (A and B) and three disulfide bridges. We report here the structure-activity relationship studies on H2 relaxin that resulted in the development of a novel high-affinity RXFP1 antagonist, H2 B-R13HR (∼40 nM), that has only one extra methylene group in the side chain of arginine 13 in the B-chain (ArgB13) of H2 relaxin. Most notably, the synthetic peptide was shown to be active in a mouse model of prostate tumor growth in vivo where it inhibited relaxin-mediated tumor growth. Our compound H2 B-R13HR will be an important research tool to understand relaxin actions through RXFP1 and may be a potential lead compound for the treatment of prostate cancer.
Collapse
Affiliation(s)
- Mohammed Akhter Hossain
- Florey
Institute of Neuroscience and Mental Health, University of Melbourne, Parkville 3010, Victoria, Australia
- School
of Chemistry, University of Melbourne, Parkville 3010, Victoria, Australia
- Department
of Biochemistry and Pharmacology, University
of Melbourne, Parkville 3010, Victoria, Australia
| | - Praveen Praveen
- Florey
Institute of Neuroscience and Mental Health, University of Melbourne, Parkville 3010, Victoria, Australia
| | - Nurhayati Ahmad Noorzi
- Cardiovascular
Disease Program, Monash Biomedicine Discovery Institute, Monash University, Clayton 3800, Victoria, Australia
- Department
of Pharmacology, Monash University, Clayton 3800, Victoria, Australia
| | - Hongkang Wu
- Florey
Institute of Neuroscience and Mental Health, University of Melbourne, Parkville 3010, Victoria, Australia
- Department
of Biochemistry and Pharmacology, University
of Melbourne, Parkville 3010, Victoria, Australia
| | - Ian P. Harrison
- Cardiovascular
Disease Program, Monash Biomedicine Discovery Institute, Monash University, Clayton 3800, Victoria, Australia
- Department
of Pharmacology, Monash University, Clayton 3800, Victoria, Australia
| | - Thomas Handley
- Florey
Institute of Neuroscience and Mental Health, University of Melbourne, Parkville 3010, Victoria, Australia
| | - Stavros Selemidis
- School
of
Health and Biomedical Sciences, RMIT University, Bundoora 3083, Victoria, Australia
| | - Chrishan S. Samuel
- Cardiovascular
Disease Program, Monash Biomedicine Discovery Institute, Monash University, Clayton 3800, Victoria, Australia
- Department
of Pharmacology, Monash University, Clayton 3800, Victoria, Australia
| | - Ross A. D. Bathgate
- Florey
Institute of Neuroscience and Mental Health, University of Melbourne, Parkville 3010, Victoria, Australia
- Department
of Biochemistry and Pharmacology, University
of Melbourne, Parkville 3010, Victoria, Australia
| |
Collapse
|
10
|
Verdino P, Lee SL, Cooper FN, Cottle SR, Grealish PF, Hu CC, Meyer CM, Lin J, Copeland V, Porter G, Schroeder RL, Thompson TD, Porras LL, Dey A, Zhang HY, Beebe EC, Matkovich SJ, Coskun T, Balciunas AM, Ferrante A, Siegel R, Malherbe L, Bivi N, Paavola CD, Hansen RJ, Abernathy MM, Nwosu SO, Carr MC, Heuer JG, Wang X. Development of a long-acting relaxin analogue, LY3540378, for treatment of chronic heart failure. Br J Pharmacol 2023. [PMID: 36780899 DOI: 10.1111/bph.16055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 01/06/2023] [Accepted: 02/02/2023] [Indexed: 02/15/2023] Open
Abstract
BACKGROUND AND PURPOSE Chronic heart failure, a progressive disease with limited treatment options currently available, especially in heart failure with preserved ejection fraction (HFpEF), represents an unmet medical need as well as an economic burden. The development of a novel therapeutic to slow or reverse disease progression would be highly impactful to patients and society. Relaxin-2 (relaxin) is a human hormone regulating cardiovascular, renal, and pulmonary adaptations during pregnancy. A short-acting recombinant relaxin, Serelaxin, demonstrated short-term heart failure symptom relief and biomarker improvement in acute heart failure trials. Here, we present the development of a long-acting relaxin analogue to be tested in the treatment of chronic heart failure. EXPERIMENTAL APPROACH LY3540378 is a long-acting protein therapeutic composed of a human relaxin analogue and a serum albumin-binding VHH domain. KEY RESULTS LY3540378 is a potent agonist of the relaxin family peptide receptor 1 (RXFP1) and maintains selectivity against RXFP2/3/4 comparable to native relaxin. The half-life of LY3540378 in preclinical species is extended through high affinity binding of the albumin-binding VHH domain to serum albumin. When tested in a single dose administration, LY3540378 elicited relaxin-mediated pharmacodynamic responses, such as reduced serum osmolality and increased renal blood flow in rats. In an isoproterenol-induced cardiac hypertrophy mouse model, treatment with LY3540378 significantly reduced cardiac hypertrophy and improved isovolumetric relaxation time. In a monkey cardiovascular safety study, there were no adverse observations from administration of LY3540378. CONCLUSION AND IMPLICATIONS LY3540378 demonstrated to be a suitable clinical development candidate, and is progressing in clinical trials.
Collapse
Affiliation(s)
- Petra Verdino
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, Indiana, USA
| | - Stacey L Lee
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, Indiana, USA
| | - Fariba N Cooper
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, Indiana, USA
| | - Steven R Cottle
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, Indiana, USA
| | - Patrick F Grealish
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, Indiana, USA
| | - Charlie C Hu
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, Indiana, USA
| | - Catalina M Meyer
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, Indiana, USA
| | - Joanne Lin
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, Indiana, USA
| | - Victoria Copeland
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, Indiana, USA
| | - Gina Porter
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, Indiana, USA
| | - Richard L Schroeder
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, Indiana, USA
| | - Tyran D Thompson
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, Indiana, USA
| | - Leah L Porras
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, Indiana, USA
| | - Asim Dey
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, Indiana, USA
| | - Hong Y Zhang
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, Indiana, USA
| | - Emily C Beebe
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, Indiana, USA
| | - Scot J Matkovich
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, Indiana, USA
| | - Tamer Coskun
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, Indiana, USA
| | - Aldona M Balciunas
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, Indiana, USA
| | - Andrea Ferrante
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, Indiana, USA
| | - Robert Siegel
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, Indiana, USA
| | - Laurent Malherbe
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, Indiana, USA
| | - Nicoletta Bivi
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, Indiana, USA
| | - Chad D Paavola
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, Indiana, USA
| | - Ryan J Hansen
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, Indiana, USA
| | - Matthew M Abernathy
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, Indiana, USA
| | - Sylvia O Nwosu
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, Indiana, USA
| | - Molly C Carr
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, Indiana, USA
| | - Josef G Heuer
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, Indiana, USA
| | - Xiaojun Wang
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, Indiana, USA
| |
Collapse
|
11
|
Zhu X, Chen X, Qiu L, Zhu J, Wang J. Norcantharidin induces ferroptosis via the suppression of NRF2/HO‑1 signaling in ovarian cancer cells. Oncol Lett 2022; 24:359. [PMID: 36168316 PMCID: PMC9478624 DOI: 10.3892/ol.2022.13479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Accepted: 05/19/2022] [Indexed: 11/05/2022] Open
Abstract
Increasing evidence has indicated a crucial role of ferroptosis in ovarian cancer (OC). Norcantharidin (NCTD), a normethyl compound of cantharidin, is extensively used in clinical practice as an optional anticancer drug. However, whether NCTD leads to ferroptosis in OC has not been previously explored, at least to the best of our knowledge. In the present study, the effect of NCTD on SKOV3 and OVCAR-3 cells was evaluated. The experimental data of the present study revealed that NCTD significantly suppressed SKOV3 and OVCAR-3 cell viability in a concentration- and time-dependent manner. The results of Cell Counting Kit-8 assay revealed that NCTD treatment decreased SKOV3 and OVCAR-3 cell viability. In comparison, pre-incubation with ferrostatin-1 (Fer-1) significantly reversed the NCTD-induced reduction in SKOV3 and OVCAR-3 cell viability; however, no changes in cell viability were observed when the SKOV3 and OVCAR-3 cells were treated with NCTD, in combination with the apoptosis inhibitor, Z-VAD-FMK, the ferroptosis inhibitor, necrostatin-1, and the autophagy inhibitor, 3-methyladenine. Additionally, it was observed that NCTD markedly enhanced reactive oxygen species production and malondialdehyde and ferrous ion levels in the SKOV3 and OVCAR-3 cells; however, pre-incubation with Fer-1 abolished these effects. Flow cytometry also demonstrated a significant increase in cell death following treatment of the SKOV3 and OVCAR-3 cells with NCTD; however, pre-incubation with Fer-1 also reversed these effects. In vivo experiments demonstrated that NCTD significantly reduced tumor volume and weight. More importantly, it was revealed that nuclear factor erythroid 2-related factor 2 (NRF2), heme oxygenase 1 (HO-1), glutathione peroxidase 4 (GPX4) and solute carrier family 7 member 11 (xCT) expression levels were significantly decreased following NCTD treatment. Collectively, NCTD may represent a potent anticancer agent in OC cells, and NCTD-induced ferroptotic cell death may be achieved by inhibiting the NRF2/HO-1/GPX4/xCT axis.
Collapse
Affiliation(s)
- Xiaoyan Zhu
- Department of Obstetrics and Gynecology, Jianhu Hospital Affiliated to Nantong University, Yancheng, Jiangsu 224700, P.R. China
| | - Xiaohong Chen
- Department of Gynecology, People's Hospital of Gansu Province, Lanzhou, Gansu 730000, P.R. China
| | - Longshan Qiu
- Department of Obstetrics and Gynecology, Jianhu Hospital Affiliated to Nantong University, Yancheng, Jiangsu 224700, P.R. China
| | - Jianhua Zhu
- Department of Obstetrics and Gynecology, Jianhu Hospital Affiliated to Nantong University, Yancheng, Jiangsu 224700, P.R. China
| | - Jiancai Wang
- Department of Obstetrics and Gynecology, Jianhu Hospital Affiliated to Nantong University, Yancheng, Jiangsu 224700, P.R. China
| |
Collapse
|
12
|
Chunduri P, Patel SA, Levick SP. Relaxin/serelaxin for cardiac dysfunction and heart failure in hypertension. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2022; 94:183-211. [PMID: 35659372 DOI: 10.1016/bs.apha.2022.04.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The pregnancy related hormone relaxin is produced throughout the reproductive system. However, relaxin also has important cardiovascular effects as part of the adaptation that the cardiovascular system undergoes in response to the extra demands of pregnancy. These effects are primarily mediated by the relaxin family peptide receptor 1, which is one of four known relaxin receptors. The effects of relaxin on the cardiovascular system during pregnancy, as well as its anti-fibrotic and anti-inflammatory properties, have led to extensive studies into the potential of relaxin therapy as an approach to treat heart failure. Cardiomyocytes, cardiac fibroblasts, and endothelial cells all possess relaxin family peptide receptor 1, allowing for direct effects of therapeutic relaxin on the heart. Many pre-clinical animal studies have demonstrated a beneficial effect of exogenous relaxin on adverse cardiac remodeling including inflammation, fibrosis, cardiomyocyte hypertrophy and apoptosis, as well as effects on cardiac contractile function. Despite this, clinical studies have yielded disappointing results for the synthetic seralaxin, even though seralaxin was well tolerated. This article will provide background on relaxin in the context of normal physiology, as well as the role of relaxin in pregnancy-related adaptations of the cardiovascular system. We will also present evidence from pre-clinical animal studies that demonstrate the potential benefits of relaxin therapy, as well as discussing the results from clinical trials. Finally, we will discuss possible reasons for the failure of these clinical trials as well as steps being taken to potentially improve relaxin therapy for heart failure.
Collapse
Affiliation(s)
- Prasad Chunduri
- School of Biomedical Sciences, The University of Queensland, Brisbane, QLD, Australia
| | - Shrey A Patel
- School of Biomedical Sciences, The University of Queensland, Brisbane, QLD, Australia
| | - Scott P Levick
- Physiology and Pharmacology, West Virginia University, Morgantown, WV, United States.
| |
Collapse
|
13
|
Samuel CS, Bennett RG. Relaxin as an anti-fibrotic treatment: Perspectives, challenges and future directions. Biochem Pharmacol 2021; 197:114884. [PMID: 34968489 DOI: 10.1016/j.bcp.2021.114884] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 12/13/2021] [Accepted: 12/15/2021] [Indexed: 02/07/2023]
Abstract
Fibrosis refers to the scarring and hardening of tissues, which results from a failed immune system-coordinated wound healing response to chronic organ injury and which manifests from the aberrant accumulation of various extracellular matrix components (ECM), primarily collagen. Despite being a hallmark of prolonged tissue damage and related dysfunction, and commonly associated with high morbidity and mortality, there are currently no effective cures for its regression. An emerging therapy that meets several criteria of an effective anti-fibrotic treatment, is the recombinant drug-based form of the human hormone, relaxin (also referred to as serelaxin, which is bioactive in several other species). This review outlines the broad anti-fibrotic and related organ-protective roles of relaxin, mainly from studies conducted in preclinical models of ageing and fibrotic disease, including its ability to ameliorate several aspects of fibrosis progression and maturation, from immune cell infiltration, pro-inflammatory and pro-fibrotic cytokine secretion, oxidative stress, organ hypertrophy, cell apoptosis, myofibroblast differentiation and ECM production, to its ability to facilitate established ECM degradation. Studies that have compared and/or combined these therapeutic effects of relaxin with current standard of care medication have also been discussed, along with the main challenges that have hindered the translation of the anti-fibrotic efficacy of relaxin to the clinic. The review then outlines the future directions as to where scientists and several pharmaceutical companies that have recognized the therapeutic potential of relaxin are working towards, to progress its development as a treatment for human patients suffering from various fibrotic diseases.
Collapse
Affiliation(s)
- Chrishan S Samuel
- Cardiovascular Disease Program, Monash Biomedicine Discovery Institute and Department of Pharmacology, Monash University, Clayton, Victoria 3800, Australia; Department of Biochemistry and Molecular Biology, University of Melbourne, Parkville, Victoria 3052, Australia.
| | - Robert G Bennett
- Research Service, Nebraska-Western Iowa Health Care System, Omaha, NE 68105, USA; Department of Internal Medicine, Division of Diabetes, Endocrinology & Metabolism, University of Nebraska Medical Center, Omaha, NE 68198-4130, USA.
| |
Collapse
|
14
|
Zhao T, Wang Z, Chi Y, Ni C, Zheng X. TFEC contributes to cardiac hypertrophy by inhibiting AMPK/mTOR signaling. Exp Ther Med 2021; 22:1271. [PMID: 34594408 PMCID: PMC8456502 DOI: 10.3892/etm.2021.10706] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Accepted: 07/09/2021] [Indexed: 12/14/2022] Open
Abstract
The underlying mechanism of cardiac hypertrophy has not yet been fully elucidated. The present study aimed to explore the function of transcription factor EC (TFEC) in mouse models of cardiac hypertrophy and to determine the underlying mechanism. Pressure-overload cardiac hypertrophy and angiotensin II (AngII) infusion-induced animal models of cardiac hypertrophy were established in vivo. The expression of TFEC was explored via western blotting. The results demonstrated that TFEC expression was significantly increased in the hearts of mice with pressure overload- and AngII-induced hypertrophy. Injection of rAd-short hairpin (sh)-TFEC significantly decreased the expression of TFEC in heart tissues compared with group injected with rAd-negative control (NC). Furthermore, the expression levels of atrial natriuretic peptide (ANP), brain natriuretic peptide (BNP) and β-myosin heavy chain (β-MHC) were increased in the hearts of AngII-treated mice; however, compared with rAd-NC transfection, transfection with rAd-sh-TFEC decreased the expression levels of ANP, BNP and β-MHC. The results from echocardiographic analysis indicated that transfection with rAd-sh-TFEC improved the cardiac function of AngII-treated mice compared with transfection with rAd-NC. In addition, the AngII-induced increase in cardiomyocyte size could be reversed by TFEC knockdown in primary cardiomyocytes. The elevated expression levels of ANP, BNP and β-MHC induced by AngII could be partially abolished following TFEC knockdown. The results from western blotting demonstrated that TFEC overexpression decreased the expression of phosphorylated AMP-activated protein kinase (AMPK)/acetyl-CoA carboxylase (ACC) but increased the expression of phosphorylated mechanistic target of rapamycin (mTOR). Furthermore, Compound C significantly suppressed the activation of AMPK/ACC but increased the activation of mTOR, even in primary cardiomyocytes transfected with rAd-sh-TFEC. In conclusion, the findings from this study demonstrated that TFEC was overexpressed in the hearts of mice with cardiac hypertrophy and that silencing TFEC may improve AngII-induced cardiac hypertrophy and dysfunction by activating AMPK/mTOR signaling.
Collapse
Affiliation(s)
- Ting Zhao
- Department of Cardiology, Weapon Industry 521 Hospital, Xi'an, Shanxi 710065, P.R. China
| | - Zhenyu Wang
- Department of Cardiology, Weapon Industry 521 Hospital, Xi'an, Shanxi 710065, P.R. China
| | - Yehong Chi
- Department of Cardiology, Weapon Industry 521 Hospital, Xi'an, Shanxi 710065, P.R. China
| | - Chunmei Ni
- Department of Cardiology, Weapon Industry 521 Hospital, Xi'an, Shanxi 710065, P.R. China
| | - Xudan Zheng
- Department of Cardiology, Weapon Industry 521 Hospital, Xi'an, Shanxi 710065, P.R. China
| |
Collapse
|
15
|
Abstract
Insulin-like 3 peptide (INSL3) is a member of the insulin-like peptide superfamily and is the only known physiological ligand of relaxin family peptide receptor 2 (RXFP2), a G protein-coupled receptor (GPCR). In mammals, INSL3 is primarily produced both in testicular Leydig cells and in ovarian theca cells, but circulating levels of the hormone are much higher in males than in females. The INSL3/RXFP2 system has an essential role in the development of the gubernaculum for the initial transabdominal descent of the testis and in maintaining proper reproductive health in men. Although its function in female physiology has been less well-characterized, it was reported that INSL3 deletion affects antral follicle development during the follicular phase of the menstrual cycle and uterus function. Since the discovery of its role in the reproductive system, the study of INSL3/RXFP2 has expanded to others organs, such as skeletal muscle, bone, kidney, thyroid, brain, and eye. This review aims to summarize the various advances in understanding the physiological function of this ligand-receptor pair since its first discovery and elucidate its future therapeutic potential in the management of various diseases.
Collapse
Affiliation(s)
- Maria Esteban-Lopez
- Department of Human and Molecular Genetics, Herbert Wertheim College of Medicine, Miami, Florida, USA
| | - Alexander I Agoulnik
- Department of Human and Molecular Genetics, Herbert Wertheim College of Medicine, Miami, Florida, USA
- Biomolecular Science Institute, Florida International University, Miami, Florida, USA
| |
Collapse
|
16
|
Chen TY, Li X, Hung CH, Bahudhanapati H, Tan J, Kass DJ, Zhang Y. The relaxin family peptide receptor 1 (RXFP1): An emerging player in human health and disease. Mol Genet Genomic Med 2020; 8:e1194. [PMID: 32100955 PMCID: PMC7196478 DOI: 10.1002/mgg3.1194] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Accepted: 02/11/2020] [Indexed: 12/14/2022] Open
Abstract
Background Relaxin/relaxin family peptide receptor 1 (RXFP1) signaling is important for both normal physiology and disease. Strong preclinical evidence supports relaxin as a potent antifibrotic molecule. However, relaxin‐based therapy failed in clinical trial in patients with systemic sclerosis. We and others have discovered that aberrant expression of RXFP1 may contribute to the abnormal relaxin/RXFP1 signaling in different diseases. Reduced RXFP1 expression and alternative splicing transcripts with potential functional consequences have been observed in fibrotic tissues. A relative decrease in RXFP1 expression in fibrotic tissues—specifically lung and skin—may explain a potential insensitivity to relaxin. In addition, receptor dimerization also plays important roles in relaxin/RXFP1 signaling. Methods This review describes the tissue specific expression, characteristics of the splicing variants, and homo/heterodimerization of RXFP1 in both normal physiological function and human diseases. We discuss the potential implications of these molecular features for developing therapeutics to restore relaxin/RXFP1 signaling and to harness relaxin's potential antifibrotic effects. Results Relaxin/RXFP1 signaling is important in both normal physiology and in human diseases. Reduced expression of RXFP1 in fibrotic lung and skin tissues surrenders both relaxin/RXFP1 signaling and their responsiveness to exogenous relaxin treatments. Alternative splicing and receptor dimerization are also important in regulating relaxin/RXFP1 signaling. Conclusions Understanding the molecular mechanisms that drive aberrant expression of RXFP1 in disease and the functional roles of alternative splicing and receptor dimerization will provide insight into therapeutic targets that may restore the relaxin responsiveness of fibrotic tissues.
Collapse
Affiliation(s)
- Ting-Yun Chen
- Division of Pulmonary, Allergy and Critical Care Medicine and the Dorothy P. and Richard P. Simmons Center for Interstitial Lung Disease, University of Pittsburgh, Pittsburgh, PA, USA.,Institute of Allied Health Sciences, National Cheng Kung University, Tainan, Taiwan
| | - Xiaoyun Li
- Division of Pulmonary, Allergy and Critical Care Medicine and the Dorothy P. and Richard P. Simmons Center for Interstitial Lung Disease, University of Pittsburgh, Pittsburgh, PA, USA
| | - Ching-Hsia Hung
- Institute of Allied Health Sciences, National Cheng Kung University, Tainan, Taiwan
| | - Harinath Bahudhanapati
- Division of Pulmonary, Allergy and Critical Care Medicine and the Dorothy P. and Richard P. Simmons Center for Interstitial Lung Disease, University of Pittsburgh, Pittsburgh, PA, USA
| | - Jiangning Tan
- Division of Pulmonary, Allergy and Critical Care Medicine and the Dorothy P. and Richard P. Simmons Center for Interstitial Lung Disease, University of Pittsburgh, Pittsburgh, PA, USA
| | - Daniel J Kass
- Division of Pulmonary, Allergy and Critical Care Medicine and the Dorothy P. and Richard P. Simmons Center for Interstitial Lung Disease, University of Pittsburgh, Pittsburgh, PA, USA
| | - Yingze Zhang
- Division of Pulmonary, Allergy and Critical Care Medicine and the Dorothy P. and Richard P. Simmons Center for Interstitial Lung Disease, University of Pittsburgh, Pittsburgh, PA, USA.,Department of Human Genetics, University of Pittsburgh, Pittsburgh, PA, USA
| |
Collapse
|
17
|
Sun J, Hao W, Fillmore N, Ma H, Springer D, Yu ZX, Sadowska A, Garcia A, Chen R, Muniz-Medina V, Rosenthal K, Lin J, Kuruvilla D, Osbourn J, Karathanasis SK, Walker J, Murphy E. Human Relaxin-2 Fusion Protein Treatment Prevents and Reverses Isoproterenol-Induced Hypertrophy and Fibrosis in Mouse Heart. J Am Heart Assoc 2019; 8:e013465. [PMID: 31818212 PMCID: PMC6951077 DOI: 10.1161/jaha.119.013465] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Background Heart failure is one of the leading causes of death in Western countries, and there is a need for new therapeutic approaches. Relaxin‐2 is a peptide hormone that mediates pleiotropic cardiovascular effects, including antifibrotic, angiogenic, vasodilatory, antiapoptotic, and anti‐inflammatory effects in vitro and in vivo. Methods and Results We developed RELAX10, a fusion protein composed of human relaxin‐2 hormone and the Fc of a human antibody, to test the hypothesis that extended exposure of the relaxin‐2 peptide could reduce cardiac hypertrophy and fibrosis. RELAX10 demonstrated the same specificity and similar in vitro activity as the relaxin‐2 peptide. The terminal half‐life of RELAX10 was 7 days in mouse and 3.75 days in rat after subcutaneous administration. We evaluated whether treatment with RELAX10 could prevent and reverse isoproterenol‐induced cardiac hypertrophy and fibrosis in mice. Isoproterenol administration in mice resulted in increased cardiac hypertrophy and fibrosis compared with vehicle. Coadministration with RELAX10 significantly attenuated the cardiac hypertrophy and fibrosis compared with untreated animals. Isoproterenol administration significantly increased transforming growth factor β1 (TGF‐β1)–induced fibrotic signaling, which was attenuated by RELAX10. We found that RELAX10 also significantly increased protein kinase B/endothelial NO synthase signaling and protein S‐nitrosylation. In the reversal study, RELAX10‐treated animals showed significantly reduced cardiac hypertrophy and collagen levels. Conclusions These findings support a potential role for RELAX10 in the treatment of heart failure.
Collapse
Affiliation(s)
- Junhui Sun
- Cardiac Physiology Section/Cardiovascular Branch National Heart, Lung, and Blood Institute/National Institutes of Health Bethesda MD
| | | | - Natasha Fillmore
- Cardiac Physiology Section/Cardiovascular Branch National Heart, Lung, and Blood Institute/National Institutes of Health Bethesda MD
| | - Hanley Ma
- Cardiac Physiology Section/Cardiovascular Branch National Heart, Lung, and Blood Institute/National Institutes of Health Bethesda MD
| | - Danielle Springer
- Murine Phenotyping Core National Heart, Lung, and Blood Institute/National Institutes of Health Bethesda MD
| | - Zu-Xi Yu
- Pathology Core National Heart, Lung, and Blood Institute/National Institutes of Health Bethesda MD
| | | | | | | | | | | | | | | | | | | | | | - Elizabeth Murphy
- Cardiac Physiology Section/Cardiovascular Branch National Heart, Lung, and Blood Institute/National Institutes of Health Bethesda MD
| |
Collapse
|