1
|
Beladan CC, Gual-Capllonch F, Popescu AC, Popescu BA. Diagnosing diastolic dysfunction and heart failure with preserved ejection fraction in patients with atrial fibrillation: a clinical challenge. Eur Heart J Cardiovasc Imaging 2024; 25:1546-1553. [PMID: 38940621 DOI: 10.1093/ehjci/jeae160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Accepted: 06/18/2024] [Indexed: 06/29/2024] Open
Abstract
Left ventricular (LV) diastolic dysfunction, atrial fibrillation (AF), and heart failure with preserved ejection fraction (HFpEF) share common risk factors and are closely related to one another and to adverse cardiovascular events. Exertional dyspnoea in patients with AF should trigger a comprehensive LV diastolic function evaluation since AF frequently precedes incident HFpEF. An echocardiographic assessment of LV diastolic function in patients with AF is challenging, mainly because of variability in cycle length, the absence of atrial contraction, and the frequent occurrence of left atrial enlargement regardless of LV filling pressures (LVFPs). The algorithm of the 2016 recommendations for the evaluation of LV diastolic function cannot be directly applied in this setting. This review discusses the modalities available for diastolic function assessment and HFpEF diagnosis in patients with AF. Based on currently available data, a reasonable clinical target of diastolic function evaluation in AF would be to reach a binary conclusion: LVFP elevated or not. Recently, a two-step algorithm that combined several echocardiographic parameters plus the inclusion of body mass index has been proposed to differentiate normal from elevated LVFP in patients with AF. The echocardiographic evaluation must be complemented by a thorough clinical evaluation along with natriuretic peptides and cardiac catheterization in selected cases. If a diagnosis of HFpEF cannot be ascertained, a close follow-up for timely identification of diastolic dysfunction markers, along with monitoring and correction of modifiable risk factors, is recommended.
Collapse
Affiliation(s)
- Carmen C Beladan
- Department of Cardiology, University of Medicine and Pharmacy 'Carol Davila' Sos. Fundeni 258, Sector 2, 022328 Bucharest, Romania
- Department of Cardiology, Emergency Institute for Cardiovascular Diseases 'Prof. Dr C. C. Iliescu', Sos. Fundeni 258, Sector 2, 022328 Bucharest, Romania
| | | | - Andreea C Popescu
- Department of Cardiology, University of Medicine and Pharmacy 'Carol Davila' Sos. Fundeni 258, Sector 2, 022328 Bucharest, Romania
- Department of Cardiology, Elias Emergency University Hospital, Bucharest, Romania
| | - Bogdan A Popescu
- Department of Cardiology, University of Medicine and Pharmacy 'Carol Davila' Sos. Fundeni 258, Sector 2, 022328 Bucharest, Romania
- Department of Cardiology, Emergency Institute for Cardiovascular Diseases 'Prof. Dr C. C. Iliescu', Sos. Fundeni 258, Sector 2, 022328 Bucharest, Romania
| |
Collapse
|
2
|
Parwani AS, Kääb S, Friede T, Tilz RR, Bauersachs J, Frey N, Hindricks G, Lewalter T, Rienstra M, Rillig A, Scherr D, Steven D, Kirchhof P, Pieske B. Catheter-based ablation to improve outcomes in patients with atrial fibrillation and heart failure with preserved ejection fraction: Rationale and design of the CABA-HFPEF-DZHK27 trial. Eur J Heart Fail 2024; 26:2203-2212. [PMID: 39023141 DOI: 10.1002/ejhf.3373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 06/05/2024] [Accepted: 06/23/2024] [Indexed: 07/20/2024] Open
Abstract
AIMS Atrial fibrillation (AF) is common in heart failure (HF) and negatively impacts outcomes. The role of ablation-based rhythm control in patients with AF and HF with preserved (HFpEF) or mildly reduced ejection fraction (HFmrEF) is not known. The CABA-HFPEF-DZHK27 (CAtheter-Based Ablation of atrial fibrillation compared to conventional treatment in patients with Heart Failure with Preserved Ejection Fraction) trial will determine whether early catheter ablation for AF can prevent adverse cardiovascular outcomes in patients with HFpEF or HFmrEF. METHODS CABA-HFPEF-DZHK27 (NCT05508256) is an investigator-initiated, prospective, randomized, open, interventional multicentre strategy trial with blinded outcome assessment. Approximately 1548 patients with paroxysmal or persistent AF diagnosed within 24 months prior to enrolment and HFpEF or HFmrEF will be randomized to early catheter ablation within 4 weeks after randomization or to usual care. All patients receive anticoagulation, rate control, and HF management according to current guideline recommendations. Usual care can include rhythm control in symptomatic patients. Patients will be followed until the end of the trial for the primary outcome, a composite of cardiovascular death, stroke, and total unplanned hospitalizations for HF or acute coronary syndrome. The safety outcome comprises complications of catheter ablation and death. The trial is powered for a rate ratio of 0.75 (two-sided alpha = 0.05, 1-beta = 0.8). CONCLUSION CABA-HFPEF-DZHK27 will define the role of systematic and early catheter ablation in patients with AF and HFpEF or HFmrEF.
Collapse
Affiliation(s)
- Abdul S Parwani
- Department of Cardiology, Angiology and Intensive Care Medicine, Deutsches Herzzentrum der Charité, Berlin, Germany
- German Centre for Cardiovascular Research (DZHK) Partner Site Berlin, Berlin, Germany
| | - Stefan Kääb
- Department of Cardiology, Ludwig-Maximilians-University Hospital Munich, Munich, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Munich Heart Alliance, Munich, Germany
| | - Tim Friede
- Department of Medical Statistics University Medical Center Göttingen, Göttingen, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Göttingen, Göttingen, Germany
| | - Roland Richard Tilz
- Clinic for Rhythmology, University Hospital Lübeck, Lübeck, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Lübeck, Lübeck, Germany
| | - Johann Bauersachs
- Department of Cardiology und Angiology, Hannover Medical School, Hannover, Germany
| | - Norbert Frey
- Department of Cardiology, Angiology and Pneumology, Heidelberg University Hospital, Heidelberg, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Heidelberg/Mannheim, Mannheim, Germany
| | - Gerhard Hindricks
- Department of Cardiology, Angiology and Intensive Care Medicine, Deutsches Herzzentrum der Charité, Berlin, Germany
- German Centre for Cardiovascular Research (DZHK) Partner Site Berlin, Berlin, Germany
| | | | - Michiel Rienstra
- Department of Cardiology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Andreas Rillig
- Department of Cardiology, Heart and Vascular Center, University Medical Center Hamburg Eppendorf, Hamburg, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Hamburg, Hamburg, Germany
| | - Daniel Scherr
- Department of Cardiology, Medical University of Graz, Graz, Austria
| | - Daniel Steven
- Department of Cardiology, Heart Center University Hospital Cologne, Cologne, Germany
| | - Paulus Kirchhof
- Department of Cardiology, Heart and Vascular Center, University Medical Center Hamburg Eppendorf, Hamburg, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Hamburg, Hamburg, Germany
| | - Burkert Pieske
- Department of Cardiology, University Medical Center Rostock, Rostock, Germany
| |
Collapse
|
3
|
Van Gelder IC, Rienstra M, Bunting KV, Casado-Arroyo R, Caso V, Crijns HJGM, De Potter TJR, Dwight J, Guasti L, Hanke T, Jaarsma T, Lettino M, Løchen ML, Lumbers RT, Maesen B, Mølgaard I, Rosano GMC, Sanders P, Schnabel RB, Suwalski P, Svennberg E, Tamargo J, Tica O, Traykov V, Tzeis S, Kotecha D. 2024 ESC Guidelines for the management of atrial fibrillation developed in collaboration with the European Association for Cardio-Thoracic Surgery (EACTS). Eur Heart J 2024; 45:3314-3414. [PMID: 39210723 DOI: 10.1093/eurheartj/ehae176] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 09/04/2024] Open
|
4
|
Demoniere F, Abdelli R, Rivard L. Could the Early Detection of Atrial Fibrillation Reduce the Risk of Developing Dementia? Biomedicines 2024; 12:1931. [PMID: 39200396 PMCID: PMC11351480 DOI: 10.3390/biomedicines12081931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 08/01/2024] [Accepted: 08/07/2024] [Indexed: 09/02/2024] Open
Abstract
Atrial fibrillation (AF) and dementia are major global public health issues and share common risk factors, especially after the age of 65 and regardless of the presence of stroke. Despite accounting for potential confounders, AF appears to be an independent risk factor for cognitive decline and dementia. The mechanisms are likely to be multifactorial and may include AF-related ischemic stroke, cerebral hypoperfusion, microbleeds, systemic inflammation, genetic factors, and small vessel disease, leading to brain atrophy and white matter damage. The early aggressive management of AF and comorbidities may reduce the risk of dementia. Indeed, the early detection of AF-related cognitive impairment should allow for the early implementation of measures to prevent the development of dementia, mainly through integrative approaches involving the correction of risk factors and maintenance of rhythm control. Well-designed prospective studies are needed to determine whether early detection and AF treatment can prevent dementia and identify whether optimal integrative measures are effective in preventing cognitive impairment and dementia.
Collapse
Affiliation(s)
| | | | - Léna Rivard
- Montreal Heart Institute, Université de Montréal, 5000 Belanger Street, Montreal, QC H1T 1C8, Canada
| |
Collapse
|
5
|
Becher N, Metzner A, Toennis T, Kirchhof P, Schnabel RB. Atrial fibrillation burden: a new outcome predictor and therapeutic target. Eur Heart J 2024; 45:2824-2838. [PMID: 38953776 PMCID: PMC11328870 DOI: 10.1093/eurheartj/ehae373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 05/13/2024] [Accepted: 05/29/2024] [Indexed: 07/04/2024] Open
Abstract
Atrial fibrillation (AF), the most common sustained cardiac arrhythmia, is not a dichotomous disease trait. Technological innovations enable long-term rhythm monitoring in many patients and can estimate AF burden. These technologies are already used to detect and monitor AF. This review describes the relation between AF burden and outcomes and potential effects of AF burden reduction. A lower AF burden is associated with a lower risk of stroke and heart failure in patients with AF: stroke risk without anticoagulation is lower in patients with device-detected AF and a low AF burden (stroke rate 1%/year) than in patients with persistent and permanent AF (stroke rate 3%/year). Paroxysmal AF shows intermediate stroke rates (2%/year). Atrial fibrillation burden-reducing interventions can reduce cardiovascular outcomes in patients with AF: early rhythm control reduces cardiovascular events including stroke and heart failure in patients with recently diagnosed AF and cardiovascular conditions. In patients with heart failure and AF, early rhythm control and AF ablation, interventions that reduce AF burden, reduce mortality and heart failure events. Recent technological innovations allow to estimate AF burden in clinical care, creating opportunities and challenges. While evidence remains limited, the existing data already suggest that AF burden reduction could be a therapeutic goal. In addition to anticoagulation and treatment of cardiovascular conditions, AF burden reduction emerges as a therapeutic goal. Future research will define the AF burden that constitutes a relevant risk of stroke and heart failure. Technologies quantifying AF burden need careful validation to advance the field.
Collapse
Affiliation(s)
- Nina Becher
- Department of Cardiology, University Heart & Vascular Center Hamburg, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246 Hamburg, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Hamburg/Kiel/Luebeck, Postdamer Str. 58, 10785 Berlin, Germany
| | - Andreas Metzner
- Department of Cardiology, University Heart & Vascular Center Hamburg, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246 Hamburg, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Hamburg/Kiel/Luebeck, Postdamer Str. 58, 10785 Berlin, Germany
| | - Tobias Toennis
- Department of Cardiology, University Heart & Vascular Center Hamburg, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246 Hamburg, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Hamburg/Kiel/Luebeck, Postdamer Str. 58, 10785 Berlin, Germany
| | - Paulus Kirchhof
- Department of Cardiology, University Heart & Vascular Center Hamburg, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246 Hamburg, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Hamburg/Kiel/Luebeck, Postdamer Str. 58, 10785 Berlin, Germany
- Institute of Cardiovascular Sciences, University of Birmingham, Birmingham, UK
| | - Renate B Schnabel
- Department of Cardiology, University Heart & Vascular Center Hamburg, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246 Hamburg, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Hamburg/Kiel/Luebeck, Postdamer Str. 58, 10785 Berlin, Germany
| |
Collapse
|
6
|
Rahmig J, Chanpura A, Schultz A, Barone FC, Gustafson D, Baird AE. Blood-based protein biomarkers during the acute ischemic stroke treatment window: a systematic review. Front Neurol 2024; 15:1411307. [PMID: 39091977 PMCID: PMC11291248 DOI: 10.3389/fneur.2024.1411307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 07/04/2024] [Indexed: 08/04/2024] Open
Abstract
Background Rapid and accurate acute ischemic stroke (AIS) diagnosis is needed to expedite emergent thrombolytic and mechanical thrombectomy treatment. Changes in blood-based protein biomarkers during the first 24 h of AIS, the time window for treatment, could complement imaging techniques and facilitate rapid diagnosis and treatment. Methods We performed a systematic review according to PRISMA guidelines. MEDLINE, EMBASE, Cochrane Library, and Web of Science databases were searched for eligible studies comparing levels of blood-based protein biomarkers in AIS patients with levels in healthy controls and stroke mimics. Protein biomarkers from the following pathophysiological categories were included: neurovascular inflammation (MMP-9, TNF-alpha), endothelial integrity (VCAM-1, ICAM-1), cell migration (E-Selectin, P-Selectin, L-Selectin), markers of glial and neuronal origin (GFAP, S100, S100B, NSE), and cardiac dysfunction (BNP, NT-proBNP). The literature search was limited to English-language publications before November 7th, 2023. Results A total of 61 studies from 20 different countries were identified, which included in total, 4,644 AIS patients, 2,242 stroke mimics, and 2,777 controls. Studies investigating TNF-alpha, MMP-9, VCAM-1, ICAM-1, E-Selectin, L-Selectin, GFAP, NSE, and S100B showed pronounced methodological heterogeneity, making between-study comparisons difficult. However, in 80% of NT-proBNP and BNP studies, and all P-selectin studies, higher biomarker levels were observed in AIS patients compared to healthy controls and/or patients with stroke mimics. Conclusion None of the biomarkers included showed sufficient evidence for additional diagnostic benefit for AIS. Comprehensive standardized global multicenter studies are needed to (1) permit comparability, (2) enable valid statements about protein-based biomarkers, and (3) reflect real-world scenarios.
Collapse
Affiliation(s)
- Jan Rahmig
- Department of Neurology, State University of New York Downstate Health Sciences University, Brooklyn, NY, United States
- Department of Neurology, University Hospital Carl Gustav Carus, Technical University Dresden, Dresden, Germany
| | - Aditya Chanpura
- Department of Neurology, State University of New York Downstate Health Sciences University, Brooklyn, NY, United States
| | - Aaliyah Schultz
- Department of Neurology, State University of New York Downstate Health Sciences University, Brooklyn, NY, United States
| | - Frank C. Barone
- Department of Neurology, State University of New York Downstate Health Sciences University, Brooklyn, NY, United States
| | - Deborah Gustafson
- Department of Neurology, State University of New York Downstate Health Sciences University, Brooklyn, NY, United States
| | - Alison E. Baird
- Department of Neurology, State University of New York Downstate Health Sciences University, Brooklyn, NY, United States
| |
Collapse
|
7
|
Fabritz L, Chua W, Cardoso VR, Al-Taie C, Borof K, Suling A, Krause L, Kany S, Magnussen C, Wegscheider K, Breithardt G, Crijns HJGM, Camm AJ, Gkoutos G, Ellinor PT, Goette A, Schotten U, Wienhues-Thelen UH, Zeller T, Schnabel RB, Zapf A, Kirchhof P. Blood-based cardiometabolic phenotypes in atrial fibrillation and their associated risk: EAST-AFNET 4 biomolecule study. Cardiovasc Res 2024; 120:855-868. [PMID: 38613511 PMCID: PMC11218688 DOI: 10.1093/cvr/cvae067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 03/27/2024] [Accepted: 04/02/2024] [Indexed: 04/15/2024] Open
Abstract
AIMS Atrial fibrillation (AF) and concomitant cardiometabolic disease processes interact and combine to lead to adverse events, such as stroke, heart failure, myocardial infarction, and cardiovascular death. Circulating biomolecules provide quantifiable proxies for cardiometabolic disease processes. The aim of this study was to test whether biomolecule combinations can define phenotypes in patients with AF. METHODS AND RESULTS This pre-specified analysis of the EAST-AFNET 4 biomolecule study assigned patients to clusters using polytomous variable latent-class analysis based on baseline concentrations of 13 precisely quantified biomolecules potentially reflecting ageing, cardiac fibrosis, metabolic dysfunction, oxidative stress, cardiac load, endothelial dysfunction, and inflammation. In each cluster, rates of cardiovascular death, stroke, or hospitalization for heart failure or acute coronary syndrome, the primary outcome of EAST-AFNET 4, were calculated and compared between clusters over median 5.1 years follow-up. Findings were independently validated in a prospective cohort of 748 patients with AF (BBC-AF; median follow-up 2.9 years).Unsupervised biomolecule analysis assigned 1586 patients (71 years old, 46% women) into four clusters. The highest risk cluster was dominated by elevated bone morphogenetic protein 10, insulin-like growth factor-binding protein 7, N-terminal pro-B-type natriuretic peptide, angiopoietin 2, and growth differentiation factor 15. Patients in the lowest risk cluster showed low concentrations of these biomolecules. Two intermediate-risk clusters differed by high or low concentrations of C-reactive protein, interleukin-6, and D-dimer. Patients in the highest risk cluster had a five-fold higher cardiovascular event rate than patients in the low-risk cluster. Early rhythm control was effective across clusters (Pinteraction = 0.63). Sensitivity analyses and external validation in BBC-AF replicated clusters and risk gradients. CONCLUSION Biomolecule concentrations identify cardiometabolic subphenotypes in patients with AF at high and low cardiovascular risk.
Collapse
Affiliation(s)
- Larissa Fabritz
- Department of Cardiology, University Heart and Vascular Center Hamburg, University Medical Center Hamburg-Eppendorf, Martinistraße 52, 20246 Hamburg, Germany
- University Center of Cardiovascular Science, University Heart and Vascular Center Hamburg, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- German Center for Cardiovascular Research (DZHK), partner site Hamburg/Kiel/Lübeck, Germany
- AFNET, Münster, Germany
- Institute of Cardiovascular Sciences, University of Birmingham, Wolfson Drive, Birmingham, UK
| | - Winnie Chua
- Institute of Cardiovascular Sciences, University of Birmingham, Wolfson Drive, Birmingham, UK
| | - Victor R Cardoso
- Institute of Cardiovascular Sciences, University of Birmingham, Wolfson Drive, Birmingham, UK
| | - Christoph Al-Taie
- Department of Cardiology, University Heart and Vascular Center Hamburg, University Medical Center Hamburg-Eppendorf, Martinistraße 52, 20246 Hamburg, Germany
- University Center of Cardiovascular Science, University Heart and Vascular Center Hamburg, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- German Center for Cardiovascular Research (DZHK), partner site Hamburg/Kiel/Lübeck, Germany
| | - Katrin Borof
- Department of Cardiology, University Heart and Vascular Center Hamburg, University Medical Center Hamburg-Eppendorf, Martinistraße 52, 20246 Hamburg, Germany
- University Center of Cardiovascular Science, University Heart and Vascular Center Hamburg, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Anna Suling
- Institute of Medical Biometry and Epidemiology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Linda Krause
- Institute of Medical Biometry and Epidemiology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Shinwan Kany
- Department of Cardiology, University Heart and Vascular Center Hamburg, University Medical Center Hamburg-Eppendorf, Martinistraße 52, 20246 Hamburg, Germany
- German Center for Cardiovascular Research (DZHK), partner site Hamburg/Kiel/Lübeck, Germany
- Cardiovascular Disease Initiative, The Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Cardiovascular Research Center, Massachusetts General Hospital, Boston, MA, USA
| | - Christina Magnussen
- Department of Cardiology, University Heart and Vascular Center Hamburg, University Medical Center Hamburg-Eppendorf, Martinistraße 52, 20246 Hamburg, Germany
- German Center for Cardiovascular Research (DZHK), partner site Hamburg/Kiel/Lübeck, Germany
- Center for Population Health Innovation (POINT), University Heart and Vascular Center Hamburg, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Karl Wegscheider
- Institute of Medical Biometry and Epidemiology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Guenter Breithardt
- University Hospital Münster, Münster, Albert-Schweitzer-Straße 1A, 48149 Münster, Germany
| | - Harry J G M Crijns
- Department of Cardiology, University Hospital Maastricht, Maastricht, The Netherlands
| | - A John Camm
- Clinical Sciences, St George´s University, London, UK
| | - George Gkoutos
- Institute of Cardiovascular Sciences, University of Birmingham, Wolfson Drive, Birmingham, UK
| | - Patrick T Ellinor
- Cardiovascular Disease Initiative, The Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Cardiovascular Research Center, Massachusetts General Hospital, Boston, MA, USA
| | - Andreas Goette
- Vincenz-Krankenhaus, Am Busdorf 2, 33098 Paderborn, Germany
| | - Ulrich Schotten
- AFNET, Münster, Germany
- Department of Physiology, Maastricht University, Maastricht, The Netherlands
| | | | - Tanja Zeller
- Department of Cardiology, University Heart and Vascular Center Hamburg, University Medical Center Hamburg-Eppendorf, Martinistraße 52, 20246 Hamburg, Germany
- University Center of Cardiovascular Science, University Heart and Vascular Center Hamburg, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- German Center for Cardiovascular Research (DZHK), partner site Hamburg/Kiel/Lübeck, Germany
| | - Renate B Schnabel
- Department of Cardiology, University Heart and Vascular Center Hamburg, University Medical Center Hamburg-Eppendorf, Martinistraße 52, 20246 Hamburg, Germany
- University Center of Cardiovascular Science, University Heart and Vascular Center Hamburg, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- German Center for Cardiovascular Research (DZHK), partner site Hamburg/Kiel/Lübeck, Germany
| | - Antonia Zapf
- Institute of Medical Biometry and Epidemiology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Paulus Kirchhof
- Department of Cardiology, University Heart and Vascular Center Hamburg, University Medical Center Hamburg-Eppendorf, Martinistraße 52, 20246 Hamburg, Germany
- University Center of Cardiovascular Science, University Heart and Vascular Center Hamburg, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- AFNET, Münster, Germany
- Institute of Cardiovascular Sciences, University of Birmingham, Wolfson Drive, Birmingham, UK
| |
Collapse
|
8
|
Chaikijurajai T, Rincon-Choles H, Tang WHW. Natriuretic peptide testing strategies in heart failure: A 2023 update. Adv Clin Chem 2023; 118:155-203. [PMID: 38280805 DOI: 10.1016/bs.acc.2023.11.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2024]
Abstract
Natriuretic peptides (NPs), including B-type natriuretic peptide (BNP) and N-terminal pro-BNP (NT-proBNP), have been recommended as standard biomarkers for diagnosing heart failure (HF), and one of the strongest risk predictors for mortality and HF hospitalization regardless of ejection fraction (EF) and etiology of HF. BNP is an active neurohormone opposing renin-angiotensin-aldosterone and sympathetic nervous system overactivated in HF, whereas NT-proBNP is an inactive prohormone released from cardiomyocytes in response to wall stress. Despite substantial advances in the development of guideline-directed medical therapy (GDMT) for HF with reduced EF, studies demonstrating direct benefits of NP-guided chronic HF therapy on mortality, HF hospitalization, and GDMT optimization have yielded conflicting results. However, accumulating evidence shows that achieving prespecified BNP or NT-proBNP target over time is significantly associated with favorable outcomes, suggesting that benefits of serially measured NPs may be limited to particular groups of HF patients, such as those with extreme levels of baseline BNP or NT-proBNP, which could represent severe phenotypes of HF associated with natriuretic peptide resistance or cardiorenal syndrome. Over the past decade, clinical utilization of BNP and NT-proBNP has been expanded, especially using serial NP measurements for guiding HF therapy, optimizing GDMT and identifying at-risk patients with HF phenotypes who may be minimally symptomatic or asymptomatic.
Collapse
Affiliation(s)
- Thanat Chaikijurajai
- Kaufman Center for Heart Failure Treatment and Recovery, Heart, Vascular and Thoracic Institute, Cleveland Clinic, Cleveland, OH, United States; Department of Medicine, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | - Hernan Rincon-Choles
- Department of Nephrology, Glickman Urological and Kidney Institute, Cleveland Clinic, Cleveland, OH, United States
| | - W H Wilson Tang
- Kaufman Center for Heart Failure Treatment and Recovery, Heart, Vascular and Thoracic Institute, Cleveland Clinic, Cleveland, OH, United States.
| |
Collapse
|
9
|
Hasegawa Y, Okada S, Sanada A, Tomii A, Sugiura H, Higuchi K, Chinushi M, Inomata T. The Atrial Natriuretic Peptide-to-brain Natriuretic Peptide Ratio Predicts Left Atrial Reverse Remodeling after Rhythm Control Therapy in Patients with Persistent Atrial Fibrillation. Intern Med 2023; 62:3283-3290. [PMID: 36823080 DOI: 10.2169/internalmedicine.1478-22] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/23/2023] Open
Abstract
Objective The association between natriuretic peptide levels in atrial fibrillation (AF) patients with advanced left atrial (LA) remodeling and reverse remodeling after rhythm control therapy has not been clarified. The present study assessed the role of atrial natriuretic peptide (ANP) and brain natriuretic peptide (BNP) measurements to predict LA reverse remodeling after catheter ablation (CA) in persistent AF patients with LA enlargement. Methods This study included 88 persistent AF patients with LA enlargement (volume index >48 mL/m2) who underwent CA. Plasma ANP and BNP levels were analyzed before CA in all patients. The study population was divided into 2 groups according to the extent of decrease in the LA volume index (LAVI) at 6 months after CA responders were those with a ≥15% reduction in the LAVI, and all others were non-responders. Results At follow-up, 58 patients (66%) were classified as responders. The preprocedural ANP level was significantly higher in the responders than in the non-responders (p=0.03). Furthermore, the ANP-to-BNP ratio (ANP/BNP) was significantly higher in the responders than in the non-responders (p<0.01). The ANP/BNP was correlated with the percentage decrease in the LAVI (r=0.391, p<0.01). A multivariate linear regression analysis revealed that the ANP/BNP before CA was an independent predictor of LA reverse remodeling (p<0.01). Conclusion The preprocedural ANP/BNP was a robust predictor of reverse remodeling of the enlarged LA after sinus rhythm restoration by rhythm control therapy in persistent AF patients.
Collapse
Affiliation(s)
- Yuki Hasegawa
- Department of Cardiovascular Medicine, Niigata University Graduate School of Medical and Dental Sciences, Japan
| | | | - Akiko Sanada
- Department of Cardiology, Niigata Medical Center, Japan
| | - Asako Tomii
- Department of Cardiology, Niigata Medical Center, Japan
| | | | | | - Masaomi Chinushi
- Niigata University, Cardiovascular Research of Graduate School of Health Sciences, Japan
| | - Takayuki Inomata
- Department of Cardiovascular Medicine, Niigata University Graduate School of Medical and Dental Sciences, Japan
| |
Collapse
|
10
|
Siegbahn A, Eriksson N, Assarsson E, Lundberg M, Ballagi A, Held C, Stewart RAH, White HD, Åberg M, Wallentin L. Development and validation of a quantitative Proximity Extension Assay instrument with 21 proteins associated with cardiovascular risk (CVD-21). PLoS One 2023; 18:e0293465. [PMID: 37963145 PMCID: PMC10645335 DOI: 10.1371/journal.pone.0293465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 10/12/2023] [Indexed: 11/16/2023] Open
Abstract
BACKGROUND Treatment of cardiovascular diseases (CVD) is a substantial burden to healthcare systems worldwide. New tools are needed to improve precision of treatment by optimizing the balance between efficacy, safety, and cost. We developed a high-throughput multi-marker decision support instrument which simultaneously quantifies proteins associated with CVD. METHODS AND FINDINGS Candidate proteins independently associated with different clinical outcomes were selected from clinical studies by the screening of 368 circulating biomarkers. We then custom-designed a quantitative PEA-panel with 21 proteins (CVD-21) by including recombinant antigens as calibrator samples for normalization and absolute quantification of the proteins. The utility of the CVD-21 tool was evaluated in plasma samples from a case-control cohort of 4224 patients with chronic coronary syndrome (CCS) using multivariable Cox regression analyses and machine learning techniques. The assays in the CVD-21 tool gave good precision and high sensitivity with lower level of determination (LOD) between 0.03-0.7 pg/ml for five of the biomarkers. The dynamic range for the assays was sufficient to accurately quantify the biomarkers in the validation study except for troponin I, which in the modeling was replaced by high-sensitive cardiac troponin T (hs-TnT). We created seven different multimarker models, including a reference model with NT-proBNP, hs-TnT, GDF-15, IL-6, and cystatin C and one model with only clinical variables, for the comparison of the discriminative value of the CVD-21 tool. All models with biomarkers including hs-TnT provided similar discrimination for all outcomes, e.g. c-index between 0.68-0.86 and outperformed models using only clinical variables. Most important prognostic biomarkers were MMP-12, U-PAR, REN, VEGF-D, FGF-23, TFF3, ADM, and SCF. CONCLUSIONS The CVD-21 tool is the very first instrument which with PEA simultaneously quantifies 21 proteins with associations to different CVD. Novel pathophysiologic and prognostic information beyond that of established biomarkers were identified by a number of proteins.
Collapse
Affiliation(s)
- Agneta Siegbahn
- Department of Medical Sciences, Clinical Chemistry, Uppsala University, Uppsala, Sweden
- Uppsala Clinical Research Center, Uppsala University, Uppsala, Sweden
- Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Niclas Eriksson
- Uppsala Clinical Research Center, Uppsala University, Uppsala, Sweden
| | | | | | | | - Claes Held
- Uppsala Clinical Research Center, Uppsala University, Uppsala, Sweden
- Department of Medical Sciences, Cardiology, Uppsala University, Uppsala, Sweden
| | - Ralph A. H. Stewart
- Green Lane Cardiovascular Service, Te Whatu Ora Health New Zealand, Te Toka Tumai Auckland and University of Auckland, Auckland, New Zealand
| | - Harvey D. White
- Green Lane Cardiovascular Service, Te Whatu Ora Health New Zealand, Te Toka Tumai Auckland and University of Auckland, Auckland, New Zealand
| | - Mikael Åberg
- Department of Medical Sciences, Clinical Chemistry, Uppsala University, Uppsala, Sweden
- Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Lars Wallentin
- Uppsala Clinical Research Center, Uppsala University, Uppsala, Sweden
- Department of Medical Sciences, Cardiology, Uppsala University, Uppsala, Sweden
| |
Collapse
|
11
|
Chua W, Cardoso VR, Guasch E, Sinner MF, Al-Taie C, Brady P, Casadei B, Crijns HJGM, Dudink EAMP, Hatem SN, Kääb S, Kastner P, Mont L, Nehaj F, Purmah Y, Reyat JS, Schotten U, Sommerfeld LC, Zeemering S, Ziegler A, Gkoutos GV, Kirchhof P, Fabritz L. An angiopoietin 2, FGF23, and BMP10 biomarker signature differentiates atrial fibrillation from other concomitant cardiovascular conditions. Sci Rep 2023; 13:16743. [PMID: 37798357 PMCID: PMC10556075 DOI: 10.1038/s41598-023-42331-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Accepted: 09/08/2023] [Indexed: 10/07/2023] Open
Abstract
Early detection of atrial fibrillation (AF) enables initiation of anticoagulation and early rhythm control therapy to reduce stroke, cardiovascular death, and heart failure. In a cross-sectional, observational study, we aimed to identify a combination of circulating biomolecules reflecting different biological processes to detect prevalent AF in patients with cardiovascular conditions presenting to hospital. Twelve biomarkers identified by reviewing literature and patents were quantified on a high-precision, high-throughput platform in 1485 consecutive patients with cardiovascular conditions (median age 69 years [Q1, Q3 60, 78]; 60% male). Patients had either known AF (45%) or AF ruled out by 7-day ECG-monitoring. Logistic regression with backward elimination and a neural network approach considering 7 key clinical characteristics and 12 biomarker concentrations were applied to a randomly sampled discovery cohort (n = 933) and validated in the remaining patients (n = 552). In addition to age, sex, and body mass index (BMI), BMP10, ANGPT2, and FGF23 identified patients with prevalent AF (AUC 0.743 [95% CI 0.712, 0.775]). These circulating biomolecules represent distinct pathways associated with atrial cardiomyopathy and AF. Neural networks identified the same variables as the regression-based approach. The validation using regression yielded an AUC of 0.719 (95% CI 0.677, 0.762), corroborated using deep neural networks (AUC 0.784 [95% CI 0.745, 0.822]). Age, sex, BMI and three circulating biomolecules (BMP10, ANGPT2, FGF23) are associated with prevalent AF in unselected patients presenting to hospital. Findings should be externally validated. Results suggest that age and different disease processes approximated by these three biomolecules contribute to AF in patients. Our findings have the potential to improve screening programs for AF after external validation.
Collapse
Affiliation(s)
- Winnie Chua
- Institute of Cardiovascular Sciences, University of Birmingham, Birmingham, UK
| | - Victor R Cardoso
- Institute of Cardiovascular Sciences, University of Birmingham, Birmingham, UK
- MRC Health Data Research UK (HDR), Midlands Site, London, UK
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, UK
| | - Eduard Guasch
- Hospital Clinic de Barcelona, Institute of Biomedical Research August Pi Sunyer (IDIBAPS), Barcelona, Spain
| | - Moritz F Sinner
- Department of Medicine I, University Hospital, LMU, Munich, Germany
- German Centre for Cardiovascular Research (DZHK), Partner Site: Munich Heart Alliance, Munich, Germany
| | - Christoph Al-Taie
- University Center of Cardiovascular Science, University Heart and Vascular Center Hamburg, University Medical Center Hamburg-Eppendorf, UKE Martinistrasse 52, 20246, Hamburg, Germany
- German Centre for Cardiovascular Research (DZHK), Partner Site: Hamburg/Kiel/Lübeck, Hamburg, Germany
- Department of Cardiology, University Heart and Vascular Center Hamburg, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Paul Brady
- Institute of Cardiovascular Sciences, University of Birmingham, Birmingham, UK
- Sandwell and West Birmingham Hospitals NHS Trust, Birmingham, UK
| | | | - Harry J G M Crijns
- Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, The Netherlands
| | - Elton A M P Dudink
- Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, The Netherlands
| | - Stéphane N Hatem
- IHU-ICAN Institute of Cardiometabolism and Nutrition, Paris, France
| | - Stefan Kääb
- Department of Medicine I, University Hospital, LMU, Munich, Germany
- German Centre for Cardiovascular Research (DZHK), Partner Site: Munich Heart Alliance, Munich, Germany
| | | | - Lluis Mont
- Hospital Clinic de Barcelona, Institute of Biomedical Research August Pi Sunyer (IDIBAPS), Barcelona, Spain
| | - Frantisek Nehaj
- Institute of Cardiovascular Sciences, University of Birmingham, Birmingham, UK
- Sandwell and West Birmingham Hospitals NHS Trust, Birmingham, UK
| | - Yanish Purmah
- Institute of Cardiovascular Sciences, University of Birmingham, Birmingham, UK
- Sandwell and West Birmingham Hospitals NHS Trust, Birmingham, UK
| | - Jasmeet S Reyat
- Institute of Cardiovascular Sciences, University of Birmingham, Birmingham, UK
| | - Ulrich Schotten
- Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, The Netherlands
| | - Laura C Sommerfeld
- Institute of Cardiovascular Sciences, University of Birmingham, Birmingham, UK
- University Center of Cardiovascular Science, University Heart and Vascular Center Hamburg, University Medical Center Hamburg-Eppendorf, UKE Martinistrasse 52, 20246, Hamburg, Germany
- German Centre for Cardiovascular Research (DZHK), Partner Site: Hamburg/Kiel/Lübeck, Hamburg, Germany
- Department of Cardiology, University Heart and Vascular Center Hamburg, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Stef Zeemering
- Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, The Netherlands
| | - André Ziegler
- Roche Diagnostics International AG, Rotkreuz, Switzerland
| | - Georgios V Gkoutos
- MRC Health Data Research UK (HDR), Midlands Site, London, UK
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, UK
| | - Paulus Kirchhof
- Institute of Cardiovascular Sciences, University of Birmingham, Birmingham, UK
- German Centre for Cardiovascular Research (DZHK), Partner Site: Hamburg/Kiel/Lübeck, Hamburg, Germany
- Department of Cardiology, University Heart and Vascular Center Hamburg, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Larissa Fabritz
- Institute of Cardiovascular Sciences, University of Birmingham, Birmingham, UK.
- University Center of Cardiovascular Science, University Heart and Vascular Center Hamburg, University Medical Center Hamburg-Eppendorf, UKE Martinistrasse 52, 20246, Hamburg, Germany.
- German Centre for Cardiovascular Research (DZHK), Partner Site: Hamburg/Kiel/Lübeck, Hamburg, Germany.
- Department of Cardiology, University Heart and Vascular Center Hamburg, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.
| |
Collapse
|
12
|
Rafaqat S, Rafaqat S, Ijaz H. The Role of Biochemical Cardiac Markers in Atrial Fibrillation. J Innov Card Rhythm Manag 2023; 14:5611-5621. [PMID: 37927395 PMCID: PMC10621624 DOI: 10.19102/icrm.2023.14101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 04/13/2023] [Indexed: 11/07/2023] Open
Abstract
Atrial fibrillation (AF) is the most common type of cardiac arrhythmia. Proteins are a component of cardiac biomarkers containing cell structures that are released into the circulation when a myocardial injury occurs. They are essential in the diagnosis, risk assessment, and treatment of patients who have chest pain, are thought to have acute coronary syndrome, or are experiencing acute heart failure exacerbations. There are numerous biochemical cardiac markers, but this article summarizes the basic role of major biochemical cardiac markers, including cardiac natriuretic peptides, cardiac troponins, C-reactive protein (CRP), creatine kinase-MB, heart-type fatty acid-binding protein, ischemia-modified albumin, lipoprotein (a), osteopontin (OPN), and soluble suppression of tumorigenicity 2 (sST2), in AF. Atrial natriuretic peptide may serve as an indicator of atrial integrity, which may help to select appropriate treatment approaches for AF. Higher levels of N-terminal pro-B-type natriuretic peptide and brain natriuretic peptide are predictive of incidental AF. Increased troponin T release may indicate better clinical results following AF ablation. Similarly, CRP increases the risk of the AF-increasing calcium (Ca) influx in atrial myocytes, but not because of atrial fibrosis. Patients with postoperative AF have lower FABP3 gene expression in the atrium. Lipoprotein (a) (Lp[a]) may play a causative role in the onset of AF and impact various cardiac tissues. Clinical trials for Lp(a)-lowering drugs should assess their impact on preventing AF. Also, OPN was highly expressed in the circulation of AF patients and further increased with the progression of AF. sST2 was a reliable predictor of new-onset AF and can improve the accuracy of the AF risk model. There is a greater chance that these cardiac biomarkers might be employed to enhance clinical risk stratification in AF.
Collapse
Affiliation(s)
- Saira Rafaqat
- Department of Zoology, Lahore College for Women University, Lahore, Pakistan
| | - Sana Rafaqat
- Department of Biotechnology, Lahore College for Women University, Lahore, Pakistan
| | - Hafsa Ijaz
- Department of Zoology, Lahore College for Women University, Lahore, Pakistan
| |
Collapse
|
13
|
Le Quilliec E, Fundere A, Al-U’datt DGF, Hiram R. Pollutants, including Organophosphorus and Organochloride Pesticides, May Increase the Risk of Cardiac Remodeling and Atrial Fibrillation: A Narrative Review. Biomedicines 2023; 11:2427. [PMID: 37760868 PMCID: PMC10525278 DOI: 10.3390/biomedicines11092427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 08/28/2023] [Accepted: 08/29/2023] [Indexed: 09/29/2023] Open
Abstract
Atrial fibrillation (AF) is the most common type of cardiac rhythm disorder. Recent clinical and experimental studies reveal that environmental pollutants, including organophosphorus-organochloride pesticides and air pollution, may contribute to the development of cardiac arrhythmias including AF. Here, we discussed the unifying cascade of events that may explain the role of pollutant exposure in the development of AF. Following ingestion and inhalation of pollution-promoting toxic compounds, damage-associated molecular pattern (DAMP) stimuli activate the inflammatory response and oxidative stress that may negatively affect the respiratory, cognitive, digestive, and cardiac systems. Although the detailed mechanisms underlying the association between pollutant exposure and the incidence of AF are not completely elucidated, some clinical reports and fundamental research data support the idea that pollutant poisoning can provoke perturbed ion channel function, myocardial electrical abnormalities, decreased action potential duration, slowed conduction, contractile dysfunction, cardiac fibrosis, and arrhythmias including AF.
Collapse
Affiliation(s)
- Ewen Le Quilliec
- Department of Medicine, Faculty of Medicine, University of Montreal, Montreal, QC H3T 1J4, Canada;
- Research Center, Montreal Heart Institute, Montreal, QC H1T 1C8, Canada;
| | - Alexia Fundere
- Research Center, Montreal Heart Institute, Montreal, QC H1T 1C8, Canada;
| | - Doa’a G. F. Al-U’datt
- Department of Physiology and Biochemistry, Faculty of Medicine, Jordan University of Science and Technology, Irbid 22110, Jordan;
| | - Roddy Hiram
- Department of Medicine, Faculty of Medicine, University of Montreal, Montreal, QC H3T 1J4, Canada;
- Research Center, Montreal Heart Institute, Montreal, QC H1T 1C8, Canada;
| |
Collapse
|
14
|
Parra-Lucares A, Villa E, Romero-Hernández E, Méndez-Valdés G, Retamal C, Vizcarra G, Henríquez I, Maldonado-Morales EAJ, Grant-Palza JH, Ruíz-Tagle S, Estrada-Bobadilla V, Toro L. Tic-Tac: A Translational Approach in Mechanisms Associated with Irregular Heartbeat and Sinus Rhythm Restoration in Atrial Fibrillation Patients. Int J Mol Sci 2023; 24:12859. [PMID: 37629037 PMCID: PMC10454641 DOI: 10.3390/ijms241612859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 08/08/2023] [Accepted: 08/09/2023] [Indexed: 08/27/2023] Open
Abstract
Atrial fibrillation (AF) is a prevalent cardiac condition predominantly affecting older adults, characterized by irregular heartbeat rhythm. The condition often leads to significant disability and increased mortality rates. Traditionally, two therapeutic strategies have been employed for its treatment: heart rate control and rhythm control. Recent clinical studies have emphasized the critical role of early restoration of sinus rhythm in improving patient outcomes. The persistence of the irregular rhythm allows for the progression and structural remodeling of the atria, eventually leading to irreversible stages, as observed clinically when AF becomes permanent. Cardioversion to sinus rhythm alters this progression pattern through mechanisms that are still being studied. In this review, we provide an in-depth analysis of the pathophysiological mechanisms responsible for maintaining AF and how they are modified during sinus rhythm restoration using existing therapeutic strategies at different stages of clinical investigation. Moreover, we explore potential future therapeutic approaches, including the promising prospect of gene therapy.
Collapse
Affiliation(s)
- Alfredo Parra-Lucares
- Critical Care Unit, Department of Medicine, Hospital Clínico Universidad de Chile, Santiago 8380420, Chile
- Cardiovascular Department, Hospital Clínico Universidad de Chile, Santiago 8380420, Chile
| | - Eduardo Villa
- School of Medicine, Faculty of Medicine, Universidad de Chile, Santiago 8380420, Chile
| | | | - Gabriel Méndez-Valdés
- School of Medicine, Faculty of Medicine, Universidad de Chile, Santiago 8380420, Chile
| | - Catalina Retamal
- School of Medicine, Faculty of Medicine, Universidad de Chile, Santiago 8380420, Chile
| | - Geovana Vizcarra
- Division of Internal Medicine, Department of Medicine, Hospital Clínico Universidad de Chile, Santiago 8380420, Chile
| | - Ignacio Henríquez
- School of Medicine, Faculty of Medicine, Universidad de Chile, Santiago 8380420, Chile
| | | | - Juan H. Grant-Palza
- School of Medicine, Faculty of Medicine, Universidad de Chile, Santiago 8380420, Chile
| | - Sofía Ruíz-Tagle
- School of Medicine, Faculty of Medicine, Universidad de Chile, Santiago 8380420, Chile
| | | | - Luis Toro
- Division of Nephrology, Department of Medicine, Hospital Clínico Universidad de Chile, Santiago 8380420, Chile
- Centro de Investigación Clínica Avanzada, Hospital Clínico, Universidad de Chile, Santiago 8380420, Chile
| |
Collapse
|
15
|
Berezin AA, Obradovic Z, Kopp K, Berezina TA, Lichtenauer M, Wernly B, Berezin AE. The Association of Glucose Control with Circulating Levels of Red Blood Cell-Derived Vesicles in Type 2 Diabetes Mellitus Patients with Atrial Fibrillation. Int J Mol Sci 2022; 24:ijms24010729. [PMID: 36614172 PMCID: PMC9820839 DOI: 10.3390/ijms24010729] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 12/26/2022] [Accepted: 12/29/2022] [Indexed: 01/03/2023] Open
Abstract
Hyperglycemia is a trigger for structural alteration of red blood cells (RBCs) and their ability to release extracellular vesicles (EVs). The aim of the study was to elucidate whether glucose control in T2DM patients with concomitant HF and AF affects a circulating number of RBC-derived EVs. We prospectively included 417 T2DM patients with HF, 51 of them had atrial fibrillation and 25 healthy volunteers and 30 T2DM non-HF individuals. Clinical assessment, echocardiography examination and biomarker measures were performed at the baseline of the study. RBC-derived EVs were determined as CD235a+ PS+ particles by flow cytometry. NT-proBNP levels were measured by ELISA. AF patients with glycosylated hemoglobin (HbA1c) < 6.9% had lower levels of CD235a+ PS+ RBC-derived vesicles than those with HbA1c ≥ 7.0%. There were no significant differences in number of CD235a+ PS+ RBC-derived vesicles between patients in entire cohort and in non-AF sub-cohort with HbA1c < 6.9% and HbA1c ≥ 7.0%, respectively. Multivariate linear regression yielded that CD235a+ PS+ RBC-derived vesicles ≥ 545 particles in µL (OR = 1.06; 95% CI = 1.01−1.11, p = 0.044) independently predicted HbA1c ≥ 7.0%. Elevated levels of CD235a+ PS+ RBC-derived EVs independently predicted poor glycaemia control in T2DM patients with HF and AF.
Collapse
Affiliation(s)
- Alexander A. Berezin
- Zaporozhye Medical Academy of Postgraduate Education, 20 Vinter Av., 69096 Zaporozhye, Ukraine
- Klinik Barmelweid, Department of Psychosomatic Medicine and Psychotherapy, 5017 Barmelweid, Switzerland
| | - Zeljko Obradovic
- Klinik Barmelweid, Department of Psychosomatic Medicine and Psychotherapy, 5017 Barmelweid, Switzerland
| | - Kristen Kopp
- Department of Internal Medicine II, Division of Cardiology, Paracelsus Medical University of Salzburg, Strubergasse 21, 5020 Salzburg, Austria
| | - Tetiana A. Berezina
- Department of Internal Medicine, Vita Center, 3 Sedov Str., 69000 Zaporozhye, Ukraine
| | - Michael Lichtenauer
- Department of Internal Medicine II, Division of Cardiology, Paracelsus Medical University of Salzburg, Strubergasse 21, 5020 Salzburg, Austria
| | - Bernhard Wernly
- Department of Internal Medicine, General Hospital of Oberndorf, Paracelsusstraβe 37, 5110 Oberndorf bei Salzburg, Austria
- Center for Public Health and Healthcare Research, Paracelsus Medical University of Salzburg, Strubergasse 21, 5020 Salzburg, Austria
- Correspondence:
| | - Alexander E. Berezin
- Department of Internal Medicine II, Division of Cardiology, Paracelsus Medical University of Salzburg, Strubergasse 21, 5020 Salzburg, Austria
- Internal Medicine Department, Zaporozhye State Medical University, 26 Mayakovsky Av., 69035 Zaporozhye, Ukraine
| |
Collapse
|
16
|
Hofer F, Pailer U, Sulzgruber P, Gerges C, Winter M, Giugliano RP, Gottsauner‐Wolf M, Hülsmann M, Kazem N, Koller L, Schönbauer R, Niessner A, Hengstenberg C, Zelniker TA. Relationship of diabetes, heart failure, and N-terminal pro-B-type natriuretic peptide with cardiovascular outcomes in patients with atrial fibrillation. ESC Heart Fail 2022; 9:2367-2377. [PMID: 35593128 PMCID: PMC9288777 DOI: 10.1002/ehf2.13930] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 03/20/2022] [Accepted: 04/04/2022] [Indexed: 12/11/2022] Open
Abstract
AIMS We aim to explore the relationship of heart failure (HF) and diabetes with cardiovascular (CV) death or hospitalization for HF (HHF) and to study the clinical utility of N-terminal pro-B-type natriuretic peptide (NT-proBNP) in an unselected patient population with atrial fibrillation (AF). METHODS AND RESULTS Patients with AF admitted to a tertiary academic center between January 2005 and July 2019 were identified through a search of electronic health records. We used Cox regression models adjusted for age, sex, estimated glomerular filtration rate, diabetes, HF, body mass index, prior myocardial infarction, coronary artery disease, hypertension, smoking, C-reactive protein, and low-density lipoprotein cholesterol. To select the most informative variables, we performed a least absolute shrinkage and selection operator Cox regression with 10-fold cross-validation. In total, 7412 patients (median age 70 years, 39.7% female) were included in this analysis and followed over a median of 4.5 years. Both diabetes [adjusted (Adj.) HR 1.87, 95% CI 1.55-2.25] and HF (Adj. HR 2.57, 95% CI 2.22-2.98) were significantly associated with CV death/HHF after multivariable adjustment. Compared with patients with diabetes, HF patients had a higher risk of HHF but a similar risk of CV and all-cause death. NT-proBNP showed good discriminatory performance (area under the curve 0.78, 95% CI 0.77-0.80) and the addition of NT-proBNP to the covariates used for adjustment resulted in a significant area under the curve improvement (Δ = 0.04, P < 0.001). With least absolute shrinkage and selection operator, the strongest associations for CV death/HHF were obtained for NT-proBNP [HR 1.91 per 1-SD in log-transformed biomarker], HF (HR 1.72), and diabetes (HR 1.56). CONCLUSIONS Diabetes and HF were independently associated with an increased risk of CV death/HHF in an unselected AF patient population, and NT-proBNP improved risk assessment. These findings suggest that AF patients with diabetes and/or HF should be managed not only for their risk of stroke and systemic embolic events but also for CV death/HHF.
Collapse
Affiliation(s)
- Felix Hofer
- Division of CardiologyMedical University of ViennaViennaAustria
| | | | | | | | - Max‐Paul Winter
- Division of CardiologyMedical University of ViennaViennaAustria
| | - Robert P. Giugliano
- TIMI Study Group, Cardiovascular Division, Brigham and Women's HospitalHarvard Medical SchoolBostonMAUSA
| | | | - Martin Hülsmann
- Division of CardiologyMedical University of ViennaViennaAustria
| | - Niema Kazem
- Division of CardiologyMedical University of ViennaViennaAustria
| | - Lorenz Koller
- Division of CardiologyMedical University of ViennaViennaAustria
| | | | | | | | | |
Collapse
|
17
|
Schnabel RB, Marinelli EA, Arbelo E, Boriani G, Boveda S, Buckley CM, Camm AJ, Casadei B, Chua W, Dagres N, de Melis M, Desteghe L, Diederichsen SZ, Duncker D, Eckardt L, Eisert C, Engler D, Fabritz L, Freedman B, Gillet L, Goette A, Guasch E, Svendsen JH, Hatem SN, Haeusler KG, Healey JS, Heidbuchel H, Hindricks G, Hobbs FDR, Hübner T, Kotecha D, Krekler M, Leclercq C, Lewalter T, Lin H, Linz D, Lip GYH, Løchen ML, Lucassen W, Malaczynska-Rajpold K, Massberg S, Merino JL, Meyer R, Mont L, Myers MC, Neubeck L, Niiranen T, Oeff M, Oldgren J, Potpara TS, Psaroudakis G, Pürerfellner H, Ravens U, Rienstra M, Rivard L, Scherr D, Schotten U, Shah D, Sinner MF, Smolnik R, Steinbeck G, Steven D, Svennberg E, Thomas D, True Hills M, van Gelder IC, Vardar B, Palà E, Wakili R, Wegscheider K, Wieloch M, Willems S, Witt H, Ziegler A, Daniel Zink M, Kirchhof P. Early diagnosis and better rhythm management to improve outcomes in patients with atrial fibrillation: the 8th AFNET/EHRA consensus conference. Europace 2022; 25:6-27. [PMID: 35894842 PMCID: PMC9907557 DOI: 10.1093/europace/euac062] [Citation(s) in RCA: 75] [Impact Index Per Article: 37.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 04/11/2022] [Indexed: 11/13/2022] Open
Abstract
Despite marked progress in the management of atrial fibrillation (AF), detecting AF remains difficult and AF-related complications cause unacceptable morbidity and mortality even on optimal current therapy. This document summarizes the key outcomes of the 8th AFNET/EHRA Consensus Conference of the Atrial Fibrillation NETwork (AFNET) and the European Heart Rhythm Association (EHRA). Eighty-three international experts met in Hamburg for 2 days in October 2021. Results of the interdisciplinary, hybrid discussions in breakout groups and the plenary based on recently published and unpublished observations are summarized in this consensus paper to support improved care for patients with AF by guiding prevention, individualized management, and research strategies. The main outcomes are (i) new evidence supports a simple, scalable, and pragmatic population-based AF screening pathway; (ii) rhythm management is evolving from therapy aimed at improving symptoms to an integrated domain in the prevention of AF-related outcomes, especially in patients with recently diagnosed AF; (iii) improved characterization of atrial cardiomyopathy may help to identify patients in need for therapy; (iv) standardized assessment of cognitive function in patients with AF could lead to improvement in patient outcomes; and (v) artificial intelligence (AI) can support all of the above aims, but requires advanced interdisciplinary knowledge and collaboration as well as a better medico-legal framework. Implementation of new evidence-based approaches to AF screening and rhythm management can improve outcomes in patients with AF. Additional benefits are possible with further efforts to identify and target atrial cardiomyopathy and cognitive impairment, which can be facilitated by AI.
Collapse
Affiliation(s)
- Renate B Schnabel
- Atrial Fibrillation Network (AFNET), Muenster, Germany,Department of Cardiology, University Heart & Vascular Center Hamburg, University Medical Center Hamburg-Eppendorf, Hamburg, Germany,German Centre for Cardiovascular Research (DZHK) partner site Hamburg/Kiel/Lübeck, Hamburg, Germany
| | | | - Elena Arbelo
- Arrhythmia Section, Cardiology Department, Hospital Clinic, Universitat de Barcelona, Barcelona, Spain,IDIBAPS, Institut d'Investigació August Pi i Sunyer, Barcelona, Spain,CIBERCV, Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares, Madrid, Spain
| | - Giuseppe Boriani
- Cardiology Division, Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Polyclinic of Modena, Modena, Italy
| | - Serge Boveda
- Cardiology—Heart Rhythm Management Department, Clinique Pasteur, 45 Avenue de Lombez, 31076 Toulouse, France,Universiteit Ziekenhuis, Vrije Universiteit Brussel (VUB), Brussels, Belgium
| | | | - A John Camm
- Cardiology Clinical Academic Group, Molecular and Clinical Sciences Institute, St. George's University of London, London, UK
| | - Barbara Casadei
- RDM, Division of Cardiovascular Medicine, British Heart Foundation Centre of Research Excellence, NIHR Oxford Biomedical Research Centre, University of Oxford, Oxford, UK
| | - Winnie Chua
- Institute of Cardiovascular Sciences, University of Birmingham, Birmingham, UK
| | - Nikolaos Dagres
- Department of Electrophysiology, Heart Center Leipzig at University of Leipzig, Leipzig, Germany
| | - Mirko de Melis
- Medtronic Bakken Research Center, Maastricht, The Netherlands
| | - Lien Desteghe
- Research Group Cardiovascular Diseases, University of Antwerp, Antwerp, Belgium,Department of Cardiology, Antwerp University Hospital, Antwerp, Belgium,Faculty of Medicine and Life Sciences, Hasselt University, Hasselt, Belgium,Heart Centre Hasselt, Jessa Hospital, Hasselt, Belgium
| | - Søren Zöga Diederichsen
- Department of Cardiology, Copenhagen University Hospital—Rigshospitalet, Copenhagen, Denmark
| | - David Duncker
- Hannover Heart Rhythm Center, Department of Cardiology and Angiology, Hannover Medical School, Hannover, Germany
| | - Lars Eckardt
- Atrial Fibrillation Network (AFNET), Muenster, Germany,Division of Electrophysiology, Department of Cardiology and Angiology, Münster, Germany
| | | | - Daniel Engler
- Department of Cardiology, University Heart & Vascular Center Hamburg, University Medical Center Hamburg-Eppendorf, Hamburg, Germany,German Centre for Cardiovascular Research (DZHK) partner site Hamburg/Kiel/Lübeck, Hamburg, Germany
| | - Larissa Fabritz
- Atrial Fibrillation Network (AFNET), Muenster, Germany,Department of Cardiology, University Heart & Vascular Center Hamburg, University Medical Center Hamburg-Eppendorf, Hamburg, Germany,German Centre for Cardiovascular Research (DZHK) partner site Hamburg/Kiel/Lübeck, Hamburg, Germany,Institute of Cardiovascular Sciences, University of Birmingham, Birmingham, UK,University Center of Cardiovascular Science Hamburg, Hamburg, Germany
| | - Ben Freedman
- Heart Research Institute, The University of Sydney, Sydney, Australia
| | | | - Andreas Goette
- Atrial Fibrillation Network (AFNET), Muenster, Germany,St Vincenz Hospital, Paderborn, Germany
| | - Eduard Guasch
- Arrhythmia Section, Cardiology Department, Hospital Clinic, Universitat de Barcelona, Barcelona, Spain,IDIBAPS, Institut d'Investigació August Pi i Sunyer, Barcelona, Spain,CIBERCV, Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares, Madrid, Spain
| | - Jesper Hastrup Svendsen
- Department of Cardiology, Copenhagen University Hospital—Rigshospitalet, Copenhagen, Denmark,Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | | | - Karl Georg Haeusler
- Atrial Fibrillation Network (AFNET), Muenster, Germany,Department of Neurology, Universitätsklinikum Würzburg, Würzburg, Germany
| | - Jeff S Healey
- Population Health Research Institute, McMaster University Hamilton, ON, Canada
| | - Hein Heidbuchel
- Research Group Cardiovascular Diseases, University of Antwerp, Antwerp, Belgium,Department of Cardiology, Antwerp University Hospital, Antwerp, Belgium
| | - Gerhard Hindricks
- Atrial Fibrillation Network (AFNET), Muenster, Germany,Department of Electrophysiology, Heart Center Leipzig at University of Leipzig, Leipzig, Germany
| | | | | | - Dipak Kotecha
- University of Birmingham & University Hospitals Birmingham NHS Foundation Trust, Birmingham, UK
| | | | | | - Thorsten Lewalter
- Atrial Fibrillation Network (AFNET), Muenster, Germany,Hospital Munich South, Department of Cardiology, Munich, Germany,Department of Cardiology, University of Bonn, Bonn, Germany
| | - Honghuang Lin
- Department of Medicine, University of Massachusetts Medical School, Worcester, MA, USA
| | - Dominik Linz
- Department of Cardiology, Maastricht University Medical Center and Cardiovascular Research Institute Maastricht, Maastricht, The Netherlands,Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Gregory Y H Lip
- Liverpool Centre for Cardiovascular Science, University of Liverpool and Liverpool Heart & Chest Hospital, Liverpool, UK,Department of Clinical Medicine, Aalborg University, Aalborg, Denmark
| | - Maja Lisa Løchen
- Department of Community Medicine, UiT The Arctic University of Norway, Tromsø, Norway
| | - Wim Lucassen
- Amsterdam UMC (location AMC), Department General Practice, Amsterdam, The Netherlands
| | | | - Steffen Massberg
- Department of Cardiology, University Hospital, LMU Munich, Munich, Germany,German Centre for Cardiovascular Research (DZHK), partner site: Munich Heart Alliance, Munich, Germany
| | - Jose L Merino
- Arrhythmia & Robotic EP Unit, La Paz University Hospital, IDIPAZ, Madrid, Spain
| | | | - Lluıs Mont
- Arrhythmia Section, Cardiology Department, Hospital Clinic, Universitat de Barcelona, Barcelona, Spain,IDIBAPS, Institut d'Investigació August Pi i Sunyer, Barcelona, Spain,CIBERCV, Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares, Madrid, Spain
| | | | - Lis Neubeck
- Arrhythmia & Robotic EP Unit, La Paz University Hospital, IDIPAZ, Madrid, Spain
| | - Teemu Niiranen
- Medtronic, Dublin, Ireland,Centre for Cardiovascular Health Edinburgh Napier University, Edinburgh, UK
| | - Michael Oeff
- Atrial Fibrillation Network (AFNET), Muenster, Germany
| | - Jonas Oldgren
- University of Turku and Turku University Hospital, Turku, Finland
| | | | - George Psaroudakis
- Uppsala Clinical Research Center and Department of Medical Sciences, Uppsala University, Uppsala, Sweden
| | - Helmut Pürerfellner
- School of Medicine, Belgrade University, Cardiology Clinic, University Clinical Centre of Serbia, Belgrade, Serbia
| | - Ursula Ravens
- Atrial Fibrillation Network (AFNET), Muenster, Germany,Bayer AG, Leverkusen, Germany
| | - Michiel Rienstra
- Ordensklinikum Linz, Elisabethinen, Cardiological Department, Linz, Austria
| | - Lena Rivard
- Institute of Experimental Cardiovascular Medicine, University Hospital Freiburg, Freiburg, Germany
| | - Daniel Scherr
- Department of Cardiology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Ulrich Schotten
- Atrial Fibrillation Network (AFNET), Muenster, Germany,Montreal Heart Institute, University of Montreal, Montreal, Canada
| | - Dipen Shah
- Division of Cardiology, Medical University of Graz, Graz, Austria
| | - Moritz F Sinner
- Atrial Fibrillation Network (AFNET), Muenster, Germany,Amsterdam UMC (location AMC), Department General Practice, Amsterdam, The Netherlands,Royal Brompton Hospital, London, UK
| | | | - Gerhard Steinbeck
- Atrial Fibrillation Network (AFNET), Muenster, Germany,MUMC+, Maastricht, The Netherlands
| | - Daniel Steven
- Atrial Fibrillation Network (AFNET), Muenster, Germany,University Hospital of Geneva, Cardiac Electrophysiology Unit, Geneva, Switzerland
| | - Emma Svennberg
- Center for Cardiology at Clinic Starnberg, Starnberg, Germany
| | - Dierk Thomas
- Atrial Fibrillation Network (AFNET), Muenster, Germany,University Hospital Cologne, Heart Center, Department of Electrophysiology, Cologne, Germany,Karolinska Institutet, Department of Medicine Huddinge, Karolinska University Hospital, Stockholm, Sweden,Department of Cardiology, Medical University Hospital, Heidelberg, Germany
| | - Mellanie True Hills
- HCR (Heidelberg Center for Heart Rhythm Disorders), Medical University Hospital Heidelberg, Heidelberg, Germany
| | - Isabelle C van Gelder
- DZHK (German Center for Cardiovascular Research), partner site Heidelberg/Mannheim, Heidelberg, Germany
| | - Burcu Vardar
- Uppsala Clinical Research Center and Department of Medical Sciences, Uppsala University, Uppsala, Sweden
| | - Elena Palà
- StopAfib.org, American Foundation for Women’s Health, Decatur, TX, USA
| | - Reza Wakili
- Atrial Fibrillation Network (AFNET), Muenster, Germany,Department of Cardiology, University Medical Center Groningen, University of Groningen, The Netherlands
| | - Karl Wegscheider
- Atrial Fibrillation Network (AFNET), Muenster, Germany,German Centre for Cardiovascular Research (DZHK) partner site Hamburg/Kiel/Lübeck, Hamburg, Germany,Neurovascular Research Laboratory, Vall d’Hebron Institute of Research (VHIR), Autonomous University of Barcelona, Barcelona, Spain
| | - Mattias Wieloch
- Department of Cardiology and Vascular Medicine, Westgerman Heart and Vascular Center, University of Duisburg-Essen, Essen, Germany,Institute of Medical Biometry and Epidemiology, University Medical Center Hamburg-Eppendorf, Germany
| | - Stephan Willems
- Atrial Fibrillation Network (AFNET), Muenster, Germany,German Centre for Cardiovascular Research (DZHK) partner site Hamburg/Kiel/Lübeck, Hamburg, Germany,Department of Coagulation Disorders, Skane University Hospital, Lund University, Malmö, Sweden
| | | | | | - Matthias Daniel Zink
- Asklepios Hospital St Georg, Department of Cardiology and Internal Intensive Care Medicine, Faculty of Medicine, Semmelweis University Campus Hamburg, Hamburg, Germany
| | - Paulus Kirchhof
- Corresponding author. Tel: +49 40 7410 52438; Fax: +49 40 7410 55862. E-mail address:
| |
Collapse
|