1
|
Ning Y, Zhou IY, Caravan P. Quantitative in Vivo Molecular MRI. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2407262. [PMID: 39279542 DOI: 10.1002/adma.202407262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 07/29/2024] [Indexed: 09/18/2024]
Abstract
Molecular magnetic resonance imaging (MRI) combines chemistry, chemical biology, and imaging techniques to track molecular events non-invasively. Quantitative molecular MRI aims to provide meaningful, reproducible numerical measurements of molecular processes or biochemical targets within the body. In this review, the classifications of molecular MRI probes based on their signal-generating mechanism and functionality are first described. From there, the primary considerations for in vitro characterization and in vivo validation of molecular MRI probes, including how to avoid pitfalls and biases are discussed. Then, recommendations on imaging acquisition protocols and analysis methods to establish quantitative relationships between MRI signal change induced by the probes and the molecular processes of interest are provided. Finally, several representative case studies are highlighted that incorporate these features. Quantitative molecular MRI is a multidisciplinary research area incorporating expertise in chemical biology, inorganic chemistry, molecular probes, imaging physics, drug development, pathobiology, and medicine. The purpose of this review is to provide guidance to chemists developing MR imaging probes and methods in terms of in vitro and in vivo validation to accelerate the translation of these new quantitative tools for non-invasive imaging of biological processes.
Collapse
Affiliation(s)
- Yingying Ning
- Spin-X Institute, School of Chemistry and Chemical Engineering, School of Biomedical Sciences and Engineering, State Key Laboratory of Luminescent Materials and Devices, Guangdong-Hong Kong-Macao Joint Laboratory of Optoelectronic and Magnetic Functional Materials, South China University of Technology, Guangzhou, 510641, China
| | - Iris Yuwen Zhou
- Athinoula A. Martinos Center for Biomedical Imaging, Institute for Innovation in Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, 02129, USA
| | - Peter Caravan
- Athinoula A. Martinos Center for Biomedical Imaging, Institute for Innovation in Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, 02129, USA
| |
Collapse
|
2
|
Huang P, Tang Q, Li M, Yang Q, Zhang Y, Lei L, Li S. Manganese-derived biomaterials for tumor diagnosis and therapy. J Nanobiotechnology 2024; 22:335. [PMID: 38879519 PMCID: PMC11179396 DOI: 10.1186/s12951-024-02629-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 06/06/2024] [Indexed: 06/19/2024] Open
Abstract
Manganese (Mn) is widely recognized owing to its low cost, non-toxic nature, and versatile oxidation states, leading to the emergence of various Mn-based nanomaterials with applications across diverse fields, particularly in tumor diagnosis and therapy. Systematic reviews specifically addressing the tumor diagnosis and therapy aspects of Mn-derived biomaterials are lacking. This review comprehensively explores the physicochemical characteristics and synthesis methods of Mn-derived biomaterials, emphasizing their role in tumor diagnostics, including magnetic resonance imaging, photoacoustic and photothermal imaging, ultrasound imaging, multimodal imaging, and biodetection. Moreover, the advantages of Mn-based materials in tumor treatment applications are discussed, including drug delivery, tumor microenvironment regulation, synergistic photothermal, photodynamic, and chemodynamic therapies, tumor immunotherapy, and imaging-guided therapy. The review concludes by providing insights into the current landscape and future directions for Mn-driven advancements in the field, serving as a comprehensive resource for researchers and clinicians.
Collapse
Affiliation(s)
- Peiying Huang
- Department of Otorhinolaryngology Head and Neck Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
| | - Qinglai Tang
- Department of Otorhinolaryngology Head and Neck Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
| | - Mengmeng Li
- Department of Otorhinolaryngology Head and Neck Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
| | - Qian Yang
- Department of Otorhinolaryngology Head and Neck Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
| | - Yuming Zhang
- Department of Otorhinolaryngology Head and Neck Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
| | - Lanjie Lei
- Key Laboratory of Artificial Organs and Computational Medicine in Zhejiang Province, Institute of Translational Medicine, Zhejiang Shuren University, Hangzhou, Zhejiang, 310015, China.
| | - Shisheng Li
- Department of Otorhinolaryngology Head and Neck Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China.
| |
Collapse
|
3
|
Mallik R, Saha M, Sarmah A, Singh V, Mohan H, Bhat P, Kumaran SS, Mukherjee C. A Bis(Aquated) Mn(II)-Based MRI Contrast Agent with a Rigid Hydroquinazoline Unit: Synthesis, Characterization, and in Vivo MR Imaging Study. ACS APPLIED BIO MATERIALS 2024; 7:1831-1841. [PMID: 38427704 DOI: 10.1021/acsabm.3c01236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/03/2024]
Abstract
Since the finding of nephrogenic systemic fibrosis (NFS) in patients with renal impairment and the long-term accumulation of Gd(III) ions in the central nervous system, the search for nongadolinium ion-based MRI contrast agents made of nutrient metal ions has drawn paramount attention. In this context, the development of Mn(II)-based MRI contrast agents has been a subject of interest for the last few decades. Herein, we report a pentadentate ligand (Li2[BenzPic2]) composed of two picolinate moieties and a rigid 1,2,3,4-tetrahydroquinazoline unit and the corresponding bis(aquated) Mn(II) complex (Complex 1). The complex exhibited high thermodynamic stability (log Kcond = 11.62) and kinetic inertness similar to that of the clinically approved Gd(III)-based contrast agent Magnevist. Complex 1 exerted longitudinal relaxivity (r1) of 5.32 mM-1 s-1 at 1.41 T, 37 °C, pH 7.4, and it increased by 3.6-fold in the presence of serum albumin protein, confirming a substantial rigidifying interaction (albumin association constant KA = 1.66 × 103 M-1) between the protein and the amphiphilic (log P = -0.45) contrast agent. An intravenous dose of 0.08 mmol/kg in a healthy mouse, excellent MRI signal intensity enhancement in the vasculature of the mouse liver, and brightened images of the gallbladder, kidney, and liver were realized.
Collapse
Affiliation(s)
- Riya Mallik
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India
| | - Muktashree Saha
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India
| | - Amrit Sarmah
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo nam. 2, CZ-16610 Prague 6, Czech Republic
| | - Vandna Singh
- Department of Medical Biotechnology, Maharshi Dayanand University, Rohtak 124001, Haryana, India
| | - Hari Mohan
- Department of Medical Biotechnology, Maharshi Dayanand University, Rohtak 124001, Haryana, India
| | - Priyanka Bhat
- Department of NMR, All India Institute of Medical Sciences, Ansari Nagar, 110029 New Delhi, India
| | - S Senthil Kumaran
- Department of NMR, All India Institute of Medical Sciences, Ansari Nagar, 110029 New Delhi, India
| | - Chandan Mukherjee
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India
| |
Collapse
|
4
|
Abstract
ABSTRACT Recent safety concerns surrounding the use of gadolinium-based contrast agents (GBCAs) have spurred research into identifying alternatives to GBCAs for use with magnetic resonance imaging. This review summarizes the molecular and pharmaceutical properties of a GBCA replacement and how these may be achieved. Complexes based on high-spin, divalent manganese (Mn 2+ ) have shown promise as general purpose and liver-specific contrast agents. A detailed description of the complex Mn-PyC3A is provided, describing its physicochemical properties, its behavior in different animal models, and how it compares with GBCAs. The review points out that, although there are parallels with GBCAs in how the chemical properties of Mn 2+ complexes can predict in vivo behavior, there are also marked differences between Mn 2+ complexes and GBCAs.
Collapse
Affiliation(s)
- Peter Caravan
- From the Athinoula A. Martinos Center for Biomedical Imaging, Institute for Innovation in Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA
| |
Collapse
|
5
|
Abstract
ABSTRACT Next-generation gadolinium-based contrast agents (GBCAs), including both high relaxivity agents and targeted agents, and manganese-based agents with a high probably of commercial success are discussed in some depth. It is highly likely that gadopiclenol and gadoquatrane, both next-generation high relaxivity gadolinium-based compounds, will come in time to replace the current macrocyclic gadolinium chelates, despite the wide acceptance, very high safety profile, and high stability of the latter group. Current research has also made possible the development of 2 new targeted gadolinium chelates, which look very promising, with the potential to improve cancer detection (for both MT218 and ProCA32.collagen) as well as diseases of collagen (for the latter agent). Further work with manganese-based compounds, a topic left fallow for more than 20 years, has also now produced 2 agents with high potential for clinical use, one (manganese chloride tetrahydrate, administered orally) developed primarily for imaging of the liver and the other (Mn-PyC3A, administered intravenously) as a gadolinium-free replacement for the GBCAs. New detail has recently emerged regarding specific circumscribed subregions of the brain with specialized cytoarchitecture and functions in which high gadolinium concentrations are seen following injection of the linear agent gadodiamide. These findings pave the way for tailored functional neurological testing, specifically in patients at potential risk due to the continued wide use in many countries across the world of the linear GBCAs. The impact of artificial intelligence is also critically discussed, with its most likely applications being dose reduction and new clinical indications.
Collapse
Affiliation(s)
- Val M Runge
- From the Department of Diagnostic, Interventional, and Pediatric Radiology, University Hospital of Bern, Inselspital, University of Bern, Bern, Switzerland
| | | |
Collapse
|
6
|
Konwar K, Kaushik SD, Babu PD, Chaturvedi A, Kumar D, Chakraborty R, Mukhopadhyay R, Sharma P, Lodha S, Sen D, Deb P. Integrative Modulation of Magnetic Resonance Transverse and Longitudinal Relaxivity in a Cell-Viable Bimagnetic Ensemble, γ-Fe 2O 3@ZnFe 2O 4. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:1793-1803. [PMID: 38181379 DOI: 10.1021/acs.langmuir.3c03049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2024]
Abstract
The potential application of magnetic nanosystems as magnetic resonance imaging (MRI) contrast agents has been thoroughly investigated. This work seeks to attain robust MRI-contrast efficiency by designing an interacting landscape of a bimagnetic ensemble of zinc ferrite nanorods and maghemite nanoparticles, γ-Fe2O3@ZnFe2O4. Because of competing spin clusters and structural anisotropy triggered by isotropic γ-Fe2O3 and anisotropic ZnFe2O4, γ-Fe2O3@ZnFe2O4 undergoes the evolution of cluster spin-glass state as evident from the critical slowing down law. Such interacting γ-Fe2O3@ZnFe2O4 with spin flipping of 1.2 × 10-8 s and energy barrier of 8.2 × 10-14 erg reflects enhanced MRI-contrast signal. Additionally, γ-Fe2O3@ZnFe2O4 is cell-viable to noncancerous HEK 293 cell-line and shows no pro-tumorigenic activity as observed in MDA-MB-231, an extremely aggressive triple-negative breast cancer cell line. As a result, γ-Fe2O3@ZnFe2O4 is a feasible option for an MRI-contrast agent having longitudinal relaxivity, r1, of 0.46 s-1mM-1 and transverse relaxivity, r2, of 15.94 s-1mM-1, together with r2/r1 of 34.65 at 1.41 T up to a modest metal concentration of 0.1 mM. Hence, this study addresses an interacting isotropic/anisotropic framework with faster water proton decay in MR-relaxivity resulting in phantom signal amplification.
Collapse
Affiliation(s)
- Korobi Konwar
- Department of Physics, Tezpur University (Central University), Tezpur-784028, India
| | - Som Datta Kaushik
- UGC-DAE Consortium for Scientific Research, Mumbai Centre, R-5 Shed, Bhabha Atomic Research Centre, Mumbai 400085, India
| | - Peram Delli Babu
- UGC-DAE Consortium for Scientific Research, Mumbai Centre, R-5 Shed, Bhabha Atomic Research Centre, Mumbai 400085, India
| | | | - Dinesh Kumar
- Centre of Biomedical Research, SGPGIMS Campus, Lucknow 226014, India
| | - Rituraj Chakraborty
- Department of Molecular Biology and Biotechnology, Tezpur University (Central University), Tezpur784028, India
| | - Rupak Mukhopadhyay
- Department of Molecular Biology and Biotechnology, Tezpur University (Central University), Tezpur784028, India
| | - Pooja Sharma
- Department of Electrical Engineering, IIT Bombay, Mumbai 400076, India
| | - Saurabh Lodha
- Department of Electrical Engineering, IIT Bombay, Mumbai 400076, India
| | - Debasis Sen
- Solid State Physics Division, Bhabha Atomic Research Centre, Mumbai 400085, India
| | - Pritam Deb
- Department of Physics, Tezpur University (Central University), Tezpur-784028, India
| |
Collapse
|
7
|
Henoumont C, Devreux M, Laurent S. Mn-Based MRI Contrast Agents: An Overview. Molecules 2023; 28:7275. [PMID: 37959694 PMCID: PMC10648041 DOI: 10.3390/molecules28217275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 10/21/2023] [Accepted: 10/23/2023] [Indexed: 11/15/2023] Open
Abstract
MRI contrast agents are required in the clinic to detect some pathologies, such as cancers. Nevertheless, at the moment, only small extracellular and non-specific gadolinium complexes are available for clinicians. Moreover, safety issues have recently emerged concerning the use of gadolinium complexes; hence, alternatives are urgently needed. Manganese-based MRI contrast agents could be one of these alternatives and increasing numbers of studies are available in the literature. This review aims at synthesizing all the research, from small Mn complexes to nanoparticular agents, including theranostic agents, to highlight all the efforts already made by the scientific community to obtain highly efficient agents but also evidence of the weaknesses of the developed systems.
Collapse
Affiliation(s)
- Céline Henoumont
- NMR and Molecular Imaging Laboratory, Department of General, Organic and Biomedical Chemistry, University of Mons, 19 Avenue Maistriau, 7000 Mons, Belgium; (C.H.)
| | - Marie Devreux
- NMR and Molecular Imaging Laboratory, Department of General, Organic and Biomedical Chemistry, University of Mons, 19 Avenue Maistriau, 7000 Mons, Belgium; (C.H.)
| | - Sophie Laurent
- NMR and Molecular Imaging Laboratory, Department of General, Organic and Biomedical Chemistry, University of Mons, 19 Avenue Maistriau, 7000 Mons, Belgium; (C.H.)
- Center for Microscopy and Molecular Imaging (CMMI), 8 Rue Adrienne Boland, 6041 Gosselies, Belgium
| |
Collapse
|
8
|
Mallik R, Saha M, Singh V, Mohan H, Kumaran SS, Mukherjee C. Mn(II) complex impregnated porous silica nanoparticles as Zn(II)-responsive "Smart" MRI contrast agent for pancreas imaging. J Mater Chem B 2023; 11:8251-8261. [PMID: 37575086 DOI: 10.1039/d3tb01289a] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/15/2023]
Abstract
Type-1 and type-2 diabetes mellitus are metabolic disorders governed by the functional efficiency of pancreatic β-cells. The activities of the cells toward insulin production, storage, and secretion are accompanied by Zn(II) ions. Thus, for non-invasive pathology of the cell, developing Zn(II) ion-responsive MRI-contrast agents has earned considerable interest. In this report, we have synthesized a seven-coordinate, mono(aquated) Mn(II) complex (1), which is impregnated within a porous silica nanosphere of size 13.2 nm to engender the Mn(II)-based MRI contrast agent, complex 1@SiO2NP. The surface functionalization of the nanosphere by the Py2Pic organic moiety for the selective binding of Zn(II)-ions yields complex 1@SiO2-Py2PicNP, which exhibits r1 = 13.19 mM-1 s-1. The relaxivity value elevates to 20.38 mM-1 s-1 in the presence of 0.6 mM BSA protein at pH 7.4. Gratifyingly, r1 increases linearly with the increase of Zn(II) ion concentration and reaches 39.01 mM-1 s-1 in the presence of a 40 fold excess of the ions. Thus, Zn(II)-responsive contrast enhancement in vivo is envisaged by employing the nanoparticle. Indeed, a contrast enhancement in the pancreas is observed when complex 1@SiO2-Py2PicNP and a glucose stimulus are administered in fasted healthy C57BL/6 mice at 7 T.
Collapse
Affiliation(s)
- Riya Mallik
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati, 781039 Assam, India.
| | - Muktashree Saha
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India
| | - Vandna Singh
- Department of Medical Biotechnology, Maharshi Dayanand University, Rohtak, 124001, Haryana, India
| | - Hari Mohan
- Department of Medical Biotechnology, Maharshi Dayanand University, Rohtak, 124001, Haryana, India
| | - S Senthil Kumaran
- Department of NMR, All India Institute of Medical Sciences, Ansari Nagar, 110029, New Delhi, India
| | - Chandan Mukherjee
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati, 781039 Assam, India.
| |
Collapse
|