1
|
Garner RM, Molines AT, Theriot JA, Chang F. Vast heterogeneity in cytoplasmic diffusion rates revealed by nanorheology and Doppelgänger simulations. Biophys J 2023; 122:767-783. [PMID: 36739478 PMCID: PMC10027447 DOI: 10.1016/j.bpj.2023.01.040] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 12/22/2022] [Accepted: 01/30/2023] [Indexed: 02/05/2023] Open
Abstract
The cytoplasm is a complex, crowded, actively driven environment whose biophysical characteristics modulate critical cellular processes such as cytoskeletal dynamics, phase separation, and stem cell fate. Little is known about the variance in these cytoplasmic properties. Here, we employed particle-tracking nanorheology on genetically encoded multimeric 40 nm nanoparticles (GEMs) to measure diffusion within the cytoplasm of individual fission yeast (Schizosaccharomyces pombe) cellscells. We found that the apparent diffusion coefficients of individual GEM particles varied over a 400-fold range, while the differences in average particle diffusivity among individual cells spanned a 10-fold range. To determine the origin of this heterogeneity, we developed a Doppelgänger simulation approach that uses stochastic simulations of GEM diffusion that replicate the experimental statistics on a particle-by-particle basis, such that each experimental track and cell had a one-to-one correspondence with their simulated counterpart. These simulations showed that the large intra- and inter-cellular variations in diffusivity could not be explained by experimental variability but could only be reproduced with stochastic models that assume a wide intra- and inter-cellular variation in cytoplasmic viscosity. The simulation combining intra- and inter-cellular variation in viscosity also predicted weak nonergodicity in GEM diffusion, consistent with the experimental data. To probe the origin of this variation, we found that the variance in GEM diffusivity was largely independent of factors such as temperature, the actin and microtubule cytoskeletons, cell-cyle stage, and spatial locations, but was magnified by hyperosmotic shocks. Taken together, our results provide a striking demonstration that the cytoplasm is not "well-mixed" but represents a highly heterogeneous environment in which subcellular components at the 40 nm size scale experience dramatically different effective viscosities within an individual cell, as well as in different cells in a genetically identical population. These findings carry significant implications for the origins and regulation of biological noise at cellular and subcellular levels.
Collapse
Affiliation(s)
- Rikki M Garner
- Biophysics Program, Stanford University School of Medicine, Stanford, California; Department of Biology and Howard Hughes Medical Institute, University of Washington, Seattle, Washington; Marine Biological Laboratory, Woods Hole, Massachusetts.
| | - Arthur T Molines
- Department of Cell and Tissue Biology, University of California San Francisco, San Francisco, California; Marine Biological Laboratory, Woods Hole, Massachusetts.
| | - Julie A Theriot
- Biophysics Program, Stanford University School of Medicine, Stanford, California; Department of Biology and Howard Hughes Medical Institute, University of Washington, Seattle, Washington; Marine Biological Laboratory, Woods Hole, Massachusetts
| | - Fred Chang
- Department of Cell and Tissue Biology, University of California San Francisco, San Francisco, California; Marine Biological Laboratory, Woods Hole, Massachusetts
| |
Collapse
|
2
|
Birkedal R, Laasmaa M, Branovets J, Vendelin M. Ontogeny of cardiomyocytes: ultrastructure optimization to meet the demand for tight communication in excitation-contraction coupling and energy transfer. Philos Trans R Soc Lond B Biol Sci 2022; 377:20210321. [PMID: 36189816 PMCID: PMC9527910 DOI: 10.1098/rstb.2021.0321] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The ontogeny of the heart describes its development from the fetal to the adult stage. In newborn mammals, blood pressure and thus cardiac performance are relatively low. The cardiomyocytes are thin, and with a central core of mitochondria surrounded by a ring of myofilaments, while the sarcoplasmic reticulum (SR) is sparse. During development, as blood pressure and performance increase, the cardiomyocytes become more packed with structures involved in excitation–contraction (e-c) coupling (SR and myofilaments) and the generation of ATP (mitochondria) to fuel the contraction. In parallel, the e-c coupling relies increasingly on calcium fluxes through the SR, while metabolism relies increasingly on fatty acid oxidation. The development of transverse tubules and SR brings channels and transporters interacting via calcium closer to each other and is crucial for e-c coupling. However, for energy transfer, it may seem counterintuitive that the increased structural density restricts the overall ATP/ADP diffusion. In this review, we discuss how this is because of the organization of all these structures forming modules. Although the overall diffusion across modules is more restricted, the energy transfer within modules is fast. A few studies suggest that in failing hearts this modular design is disrupted, and this may compromise intracellular energy transfer. This article is part of the theme issue ‘The cardiomyocyte: new revelations on the interplay between architecture and function in growth, health, and disease’.
Collapse
Affiliation(s)
- Rikke Birkedal
- Laboratory of Systems Biology, Department of Cybernetics, Tallinn University of Technology, Akadeemia 15, room SCI-218, 12618 Tallinn, Estonia
| | - Martin Laasmaa
- Laboratory of Systems Biology, Department of Cybernetics, Tallinn University of Technology, Akadeemia 15, room SCI-218, 12618 Tallinn, Estonia
| | - Jelena Branovets
- Laboratory of Systems Biology, Department of Cybernetics, Tallinn University of Technology, Akadeemia 15, room SCI-218, 12618 Tallinn, Estonia
| | - Marko Vendelin
- Laboratory of Systems Biology, Department of Cybernetics, Tallinn University of Technology, Akadeemia 15, room SCI-218, 12618 Tallinn, Estonia
| |
Collapse
|
3
|
Garcia A, Pochinda S, Elgaard-Jørgensen PN, Khandelia H, Clarke RJ. Evidence for ATP Interaction with Phosphatidylcholine Bilayers. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:9944-9953. [PMID: 31291108 DOI: 10.1021/acs.langmuir.9b01240] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
ATP is a fundamental intracellular molecule and is thought to diffuse freely throughout the cytosol. Evidence obtained from nucleotide-sensing sarcolemmal ion channels and red blood cells, however, suggest that ATP is compartmentalized or buffered, especially beneath the sarcolemma, but no definitive mechanism for restricted diffusion or potential buffering system has been postulated. In this study, we provide evidence from alterations to membrane dipole potential, membrane conductance, changes in enthalpy of phospholipid phase transition, and from free energy calculations that ATP associates with phospholipid bilayers. Furthermore, all-atom molecular dynamics simulations show that ATP can form aggregates in the aqueous phase at high concentrations. ATP interaction with membranes provides a new model to understand the diffusion of ATP through the cell. Coupled with previous reports of diffusion restriction in the subsarcolemmal space, these findings support the existence of compartmentalized or buffered pools of ATP.
Collapse
Affiliation(s)
- Alvaro Garcia
- School of Life Sciences , University of Technology Sydney , Ultimo , NSW 2007 , Australia
| | - Simon Pochinda
- PHYLIFE: Physical Life Sciences at SDU, Department of Physics, Chemistry and Pharmacy and MEMPHYS: Center for Biomembrane Physics , University of Southern Denmark , DK-5230 Odense M , Denmark
| | - Paninnguaq N Elgaard-Jørgensen
- PHYLIFE: Physical Life Sciences at SDU, Department of Physics, Chemistry and Pharmacy and MEMPHYS: Center for Biomembrane Physics , University of Southern Denmark , DK-5230 Odense M , Denmark
| | - Himanshu Khandelia
- PHYLIFE: Physical Life Sciences at SDU, Department of Physics, Chemistry and Pharmacy and MEMPHYS: Center for Biomembrane Physics , University of Southern Denmark , DK-5230 Odense M , Denmark
| | - Ronald J Clarke
- School of Chemistry , University of Sydney , Sydney , NSW 2006 , Australia
- The University of Sydney Nano Institute , Sydney , NSW 2006 , Australia
| |
Collapse
|
4
|
Ušaj M, Henn A. Kinetic adaptation of human Myo19 for active mitochondrial transport to growing filopodia tips. Sci Rep 2017; 7:11596. [PMID: 28912602 PMCID: PMC5599584 DOI: 10.1038/s41598-017-11984-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2017] [Accepted: 08/29/2017] [Indexed: 11/09/2022] Open
Abstract
Myosins are actin-based molecular motors which are enzymatically adapted for their cellular functions such as transportation and membrane tethering. Human Myo19 affects mitochondrial motility, and promotes their localization to stress-induced filopodia. Therefore, studying Myo19 enzymology is essential to understand how this motor may facilitate mitochondrial motility. Towards this goal, we have purified Myo19 motor domain (Myo19-3IQ) from a human-cell expression system and utilized transient kinetics to study the Myo19-3IQ ATPase cycle. We found that Myo19-3IQ exhibits noticeable conformational changes (isomerization steps) preceding both ATP and ADP binding, which may contribute to nucleotide binding regulation. Notably, the ADP isomerization step and subsequent ADP release contribute significantly to the rate-limiting step of the Myo19-3IQ ATPase cycle. Both the slow ADP isomerization and ADP release prolong the time Myo19-3IQ spend in the strong actin binding state and hence contribute to its relatively high duty ratio. However, the predicted duty ratio is lower than required to support motility as a monomer. Therefore, it may be that several Myo19 motors are required to propel mitochondria movement on actin filaments efficiently. Finally, we provide a model explaining how Myo19 translocation may be regulated by the local ATP/ADP ratio, coupled to the mitochondria presence in the filopodia.
Collapse
Affiliation(s)
- Marko Ušaj
- Faculty of Biology, Technion- Israel Institute of Technology, Haifa, 3200003, Israel
| | - Arnon Henn
- Faculty of Biology, Technion- Israel Institute of Technology, Haifa, 3200003, Israel.
| |
Collapse
|
5
|
Gupta A, Houston B. A comprehensive review of the bioenergetics of fatty acid and glucose metabolism in the healthy and failing heart in nondiabetic condition. Heart Fail Rev 2017; 22:825-842. [DOI: 10.1007/s10741-017-9623-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
6
|
Simson P, Jepihhina N, Laasmaa M, Peterson P, Birkedal R, Vendelin M. Restricted ADP movement in cardiomyocytes: Cytosolic diffusion obstacles are complemented with a small number of open mitochondrial voltage-dependent anion channels. J Mol Cell Cardiol 2016; 97:197-203. [PMID: 27261153 DOI: 10.1016/j.yjmcc.2016.04.012] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Accepted: 04/19/2016] [Indexed: 12/17/2022]
Abstract
Adequate intracellular energy transfer is crucial for proper cardiac function. In energy starved failing hearts, partial restoration of energy transfer can rescue mechanical performance. There are two types of diffusion obstacles that interfere with energy transfer from mitochondria to ATPases: mitochondrial outer membrane (MOM) with voltage-dependent anion channel (VDAC) permeable to small hydrophilic molecules and cytoplasmatic diffusion barriers grouping ATP-producers and -consumers. So far, there is no method developed to clearly distinguish the contributions of cytoplasmatic barriers and MOM to the overall diffusion restriction. Furthermore, the number of open VDACs in vivo remains unknown. The aim of this work was to establish the partitioning of intracellular diffusion obstacles in cardiomyocytes. We studied the response of mitochondrial oxidative phosphorylation of permeabilized rat cardiomyocytes to changes in extracellular ADP by recording 3D image stacks of NADH autofluorescence. Using cell-specific mathematical models, we determined the permeability of MOM and cytoplasmatic barriers. We found that only ~2% of VDACs are accessible to cytosolic ADP and cytoplasmatic diffusion barriers reduce the apparent diffusion coefficient by 6-10×. In cardiomyocytes, diffusion barriers in the cytoplasm and by the MOM restrict ADP/ATP diffusion to similar extents suggesting a major role of both barriers in energy transfer and other intracellular processes.
Collapse
Affiliation(s)
- Päivo Simson
- Laboratory of Systems Biology, Institute of Cybernetics, Tallinn University of Technology, Akadeemia Rd 21, 12618 Tallinn, Estonia
| | - Natalja Jepihhina
- Laboratory of Systems Biology, Institute of Cybernetics, Tallinn University of Technology, Akadeemia Rd 21, 12618 Tallinn, Estonia
| | - Martin Laasmaa
- Laboratory of Systems Biology, Institute of Cybernetics, Tallinn University of Technology, Akadeemia Rd 21, 12618 Tallinn, Estonia
| | - Pearu Peterson
- Laboratory of Systems Biology, Institute of Cybernetics, Tallinn University of Technology, Akadeemia Rd 21, 12618 Tallinn, Estonia
| | - Rikke Birkedal
- Laboratory of Systems Biology, Institute of Cybernetics, Tallinn University of Technology, Akadeemia Rd 21, 12618 Tallinn, Estonia
| | - Marko Vendelin
- Laboratory of Systems Biology, Institute of Cybernetics, Tallinn University of Technology, Akadeemia Rd 21, 12618 Tallinn, Estonia.
| |
Collapse
|
7
|
The structural and functional coordination of glycolytic enzymes in muscle: evidence of a metabolon? BIOLOGY 2014; 3:623-44. [PMID: 25247275 PMCID: PMC4192631 DOI: 10.3390/biology3030623] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/14/2014] [Revised: 09/05/2014] [Accepted: 09/08/2014] [Indexed: 12/22/2022]
Abstract
Metabolism sustains life through enzyme-catalyzed chemical reactions within the cells of all organisms. The coupling of catalytic function to the structural organization of enzymes contributes to the kinetic optimization important to tissue-specific and whole-body function. This coupling is of paramount importance in the role that muscle plays in the success of Animalia. The structure and function of glycolytic enzyme complexes in anaerobic metabolism have long been regarded as a major regulatory element necessary for muscle activity and whole-body homeostasis. While the details of this complex remain to be elucidated through in vivo studies, this review will touch on recent studies that suggest the existence of such a complex and its structure. A potential model for glycolytic complexes and related subcomplexes is introduced.
Collapse
|
8
|
Tight coupling of Na+/K+-ATPase with glycolysis demonstrated in permeabilized rat cardiomyocytes. PLoS One 2014; 9:e99413. [PMID: 24932585 PMCID: PMC4059654 DOI: 10.1371/journal.pone.0099413] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2013] [Accepted: 05/14/2014] [Indexed: 12/19/2022] Open
Abstract
The effective integrated organization of processes in cardiac cells is achieved, in part, by the functional compartmentation of energy transfer processes. Earlier, using permeabilized cardiomyocytes, we demonstrated the existence of tight coupling between some of cardiomyocyte ATPases and glycolysis in rat. In this work, we studied contribution of two membrane ATPases and whether they are coupled to glycolysis--sarcoplasmic reticulum Ca2+ ATPase (SERCA) and plasmalemma Na+/K+-ATPase (NKA). While SERCA activity was minor in this preparation in the absence of calcium, major role of NKA was revealed accounting to ∼30% of the total ATPase activity which demonstrates that permeabilized cell preparation can be used to study this pump. To elucidate the contribution of NKA in the pool of ATPases, a series of kinetic measurements was performed in cells where NKA had been inhibited by 2 mM ouabain. In these cells, we recorded: ADP- and ATP-kinetics of respiration, competition for ADP between mitochondria and pyruvate kinase (PK), ADP-kinetics of endogenous PK, and ATP-kinetics of total ATPases. The experimental data was analyzed using a series of mathematical models with varying compartmentation levels. The results show that NKA is tightly coupled to glycolysis with undetectable flux of ATP between mitochondria and NKA. Such tight coupling of NKA to PK is in line with its increased importance in the pathological states of the heart when the substrate preference shifts to glucose.
Collapse
|
9
|
Branovets J, Sepp M, Kotlyarova S, Jepihhina N, Sokolova N, Aksentijevic D, Lygate CA, Neubauer S, Vendelin M, Birkedal R. Unchanged mitochondrial organization and compartmentation of high-energy phosphates in creatine-deficient GAMT-/- mouse hearts. Am J Physiol Heart Circ Physiol 2013; 305:H506-20. [PMID: 23792673 DOI: 10.1152/ajpheart.00919.2012] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Disruption of the creatine kinase (CK) system in hearts of CK-deficient mice leads to changes in the ultrastructure and regulation of mitochondrial respiration. We expected to see similar changes in creatine-deficient mice, which lack the enzyme guanidinoacetate methyltransferase (GAMT) to produce creatine. The aim of this study was to characterize the changes in cardiomyocyte mitochondrial organization, regulation of respiration, and intracellular compartmentation associated with GAMT deficiency. Three-dimensional mitochondrial organization was assessed by confocal microscopy. On populations of permeabilized cardiomyocytes, we recorded ADP and ATP kinetics of respiration, competition between mitochondria and pyruvate kinase for ADP produced by ATPases, ADP kinetics of endogenous pyruvate kinase, and ATP kinetics of ATPases. These data were analyzed by mathematical models to estimate intracellular compartmentation. Quantitative analysis of morphological and kinetic data as well as derived model fits showed no difference between GAMT-deficient and wild-type mice. We conclude that inactivation of the CK system by GAMT deficiency does not alter mitochondrial organization and intracellular compartmentation in relaxed cardiomyocytes. Thus, our results suggest that the healthy heart is able to preserve cardiac function at a basal level in the absence of CK-facilitated energy transfer without compromising intracellular organization and the regulation of mitochondrial energy homeostasis. This raises questions on the importance of the CK system as a spatial energy buffer in unstressed cardiomyocytes.
Collapse
Affiliation(s)
- Jelena Branovets
- Laboratory of Systems Biology, Institute of Cybernetics, Tallinn University of Technology, Tallinn, Estonia; and
| | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Schryer DW, Peterson P, Illaste A, Vendelin M. Sensitivity analysis of flux determination in heart by H₂ ¹⁸O -provided labeling using a dynamic Isotopologue model of energy transfer pathways. PLoS Comput Biol 2012; 8:e1002795. [PMID: 23236266 PMCID: PMC3516558 DOI: 10.1371/journal.pcbi.1002795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2011] [Accepted: 08/09/2012] [Indexed: 11/21/2022] Open
Abstract
To characterize intracellular energy transfer in the heart, two organ-level methods have frequently been employed: inversion and saturation transfer, and dynamic labeling. Creatine kinase (CK) fluxes obtained by following oxygen labeling have been considerably smaller than the fluxes determined by saturation transfer. It has been proposed that dynamic labeling determines net flux through CK shuttle, whereas saturation transfer measures total unidirectional flux. However, to our knowledge, no sensitivity analysis of flux determination by oxygen labeling has been performed, limiting our ability to compare flux distributions predicted by different methods. Here we analyze oxygen labeling in a physiological heart phosphotransfer network with active CK and adenylate kinase (AdK) shuttles and establish which fluxes determine the labeling state. A mathematical model consisting of a system of ordinary differential equations was composed describing enrichment in each phosphoryl group and inorganic phosphate. By varying flux distributions in the model and calculating the labeling, we analyzed labeling sensitivity to different fluxes in the heart. We observed that the labeling state is predominantly sensitive to total unidirectional CK and AdK fluxes and not to net fluxes. We conclude that measuring dynamic incorporation of into the high-energy phosphotransfer network in heart does not permit unambiguous determination of energetic fluxes with a higher magnitude than the ATP synthase rate when the bidirectionality of fluxes is taken into account. Our analysis suggests that the flux distributions obtained using dynamic labeling, after removing the net flux assumption, are comparable with those from inversion and saturation transfer. In heart, the movement of energy metabolites between force-producing myosin, other ATPases, and mitochondria is vital for its function and closely related to heart pathologies. In addition to diffusion, transport of ATP, ADP, Pi, and phosphocreatine occurs along parallel pathways such as the adenylate kinase and creatine kinase shuttles. Two organ-level methods have been developed to study the relative flux through these pathways. However, their results differ. It was recently demonstrated that studies often suffer from the exclusion of compartmentation from their metabolic models. One study overcame this limitation by using compartmental models and statistical methods on multiple experiments. Here, we analyzed the sensitivity of the other method - dynamic labeling of phosphoryl groups and inorganic phosphate. For that, we composed a mathematical model tracking enrichment of the metabolites and evaluated sensitivity of labeling to different flux distribution scenarios. Our study shows that the dynamic method provides a measure of total flux, and not net flux as presumed previously, making the fluxes predicted from both methods consistent. Importantly, conclusions derived on the basis of labeling analysis, particularly those regarding the net flux through the shuttles in control and pathological cases, need to be reevaluated.
Collapse
Affiliation(s)
| | | | | | - Marko Vendelin
- Laboratory of Systems Biology, Institute of Cybernetics, Tallinn University of Technology, Tallinn, Estonia
- * E-mail:
| |
Collapse
|
11
|
|
12
|
Alekseev AE, Reyes S, Selivanov VA, Dzeja PP, Terzic A. Compartmentation of membrane processes and nucleotide dynamics in diffusion-restricted cardiac cell microenvironment. J Mol Cell Cardiol 2012; 52:401-9. [PMID: 21704043 PMCID: PMC3264845 DOI: 10.1016/j.yjmcc.2011.06.007] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2011] [Revised: 06/07/2011] [Accepted: 06/08/2011] [Indexed: 01/08/2023]
Abstract
Orchestrated excitation-contraction coupling in heart muscle requires adequate spatial arrangement of systems responsible for ion movement and metabolite turnover. Co-localization of regulatory and transporting proteins into macromolecular complexes within an environment of microanatomical cell components raises intracellular diffusion barriers that hamper the mobility of metabolites and signaling molecules. Compared to substrate diffusion in the cytosol, diffusional restrictions underneath the sarcolemma are much larger and could impede ion and nucleotide movement by a factor of 10(3)-10(5). Diffusion barriers thus seclude metabolites within the submembrane space enabling rapid and vectorial effector targeting, yet hinder energy supply from the bulk cytosolic space implicating the necessity for a shunting transfer mechanism. Here, we address principles of membrane protein compartmentation, phosphotransfer enzyme-facilitated interdomain energy transfer, and nucleotide signal dynamics at the subsarcolemma-cytosol interface. This article is part of a Special Issue entitled "Local Signaling in Myocytes".
Collapse
Affiliation(s)
- Alexey E. Alekseev
- Marriott Heart Disease Research Program, Division of Cardiovascular Diseases, Mayo Clinic, 200 First St. SW, Rochester, MN, USA
- Department of Internal Medicine, Mayo Clinic, 200 First St. SW, Rochester, MN, USA
- Department of Molecular Pharmacology & Experimental Therapeutics, Mayo Clinic, 200 First St. SW, Rochester, MN, USA
- Department of Medical Genetics, Mayo Clinic, 200 First St. SW, Rochester, MN, USA
| | - Santiago Reyes
- Marriott Heart Disease Research Program, Division of Cardiovascular Diseases, Mayo Clinic, 200 First St. SW, Rochester, MN, USA
- Department of Internal Medicine, Mayo Clinic, 200 First St. SW, Rochester, MN, USA
- Department of Molecular Pharmacology & Experimental Therapeutics, Mayo Clinic, 200 First St. SW, Rochester, MN, USA
- Department of Medical Genetics, Mayo Clinic, 200 First St. SW, Rochester, MN, USA
| | - Vitaly A. Selivanov
- Marriott Heart Disease Research Program, Division of Cardiovascular Diseases, Mayo Clinic, 200 First St. SW, Rochester, MN, USA
- Department of Internal Medicine, Mayo Clinic, 200 First St. SW, Rochester, MN, USA
- Department of Molecular Pharmacology & Experimental Therapeutics, Mayo Clinic, 200 First St. SW, Rochester, MN, USA
- Department of Medical Genetics, Mayo Clinic, 200 First St. SW, Rochester, MN, USA
- Departament de Bioquimica i Biologia Molecular, Facultat de Biologia, Universitat de Barcelona, and IBUB Barcelona, Gran Via de les Corts Catalanes 585, 08007 Barcelona, Spain
| | - Petras P. Dzeja
- Marriott Heart Disease Research Program, Division of Cardiovascular Diseases, Mayo Clinic, 200 First St. SW, Rochester, MN, USA
- Department of Internal Medicine, Mayo Clinic, 200 First St. SW, Rochester, MN, USA
- Department of Molecular Pharmacology & Experimental Therapeutics, Mayo Clinic, 200 First St. SW, Rochester, MN, USA
- Department of Medical Genetics, Mayo Clinic, 200 First St. SW, Rochester, MN, USA
| | - Andre Terzic
- Marriott Heart Disease Research Program, Division of Cardiovascular Diseases, Mayo Clinic, 200 First St. SW, Rochester, MN, USA
- Department of Internal Medicine, Mayo Clinic, 200 First St. SW, Rochester, MN, USA
- Department of Molecular Pharmacology & Experimental Therapeutics, Mayo Clinic, 200 First St. SW, Rochester, MN, USA
- Department of Medical Genetics, Mayo Clinic, 200 First St. SW, Rochester, MN, USA
| |
Collapse
|
13
|
Ventura-Clapier R, Garnier A, Veksler V, Joubert F. Bioenergetics of the failing heart. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2011; 1813:1360-72. [DOI: 10.1016/j.bbamcr.2010.09.006] [Citation(s) in RCA: 135] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2010] [Revised: 08/24/2010] [Accepted: 09/14/2010] [Indexed: 10/19/2022]
|
14
|
Reyes S, Park S, Terzic A, Alekseev AE. K(ATP) channels process nucleotide signals in muscle thermogenic response. Crit Rev Biochem Mol Biol 2010; 45:506-19. [PMID: 20925594 DOI: 10.3109/10409238.2010.513374] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Uniquely gated by intracellular adenine nucleotides, sarcolemmal ATP-sensitive K(+) (K(ATP)) channels have been typically assigned to protective cellular responses under severe energy insults. More recently, K(ATP) channels have been instituted in the continuous control of muscle energy expenditure under non-stressed, physiological states. These advances raised the question of how K(ATP) channels can process trends in cellular energetics within a milieu where each metabolic system is set to buffer nucleotide pools. Unveiling the mechanistic basis of the K(ATP) channel-driven thermogenic response in muscles thus invites the concepts of intracellular compartmentalization of energy and proteins, along with nucleotide signaling over diffusion barriers. Furthermore, it requires gaining insight into the properties of reversibility of intrinsic ATPase activity associated with K(ATP) channel complexes. Notwithstanding the operational paradigm, the homeostatic role of sarcolemmal K(ATP) channels can be now broadened to a wider range of environmental cues affecting metabolic well-being. In this way, under conditions of energy deficit such as ischemic insult or adrenergic stress, the operation of K(ATP) channel complexes would result in protective energy saving, safeguarding muscle performance and integrity. Under energy surplus, downregulation of K(ATP) channel function may find potential implications in conditions of energy imbalance linked to obesity, cold intolerance and associated metabolic disorders.
Collapse
Affiliation(s)
- Santiago Reyes
- Marriott Heart Diseases Research Program, Division of Cardiovascular Diseases, Department of Medicine, Mayo Clinic, Rochester, Minnesota 55905, USA
| | | | | | | |
Collapse
|
15
|
Rottlaender D, Boengler K, Wolny M, Michels G, Endres-Becker J, Motloch LJ, Schwaiger A, Buechert A, Schulz R, Heusch G, Hoppe UC. Connexin 43 acts as a cytoprotective mediator of signal transduction by stimulating mitochondrial KATP channels in mouse cardiomyocytes. J Clin Invest 2010; 120:1441-53. [PMID: 20364086 DOI: 10.1172/jci40927] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Potassium (K+) channels in the inner mitochondrial membrane influence cell function and survival. Increasing evidence indicates that multiple signaling pathways and pharmacological actions converge on mitochondrial ATP-sensitive K+ (mitoKATP) channels and PKC to confer cytoprotection against necrotic and apoptotic cell injury. However, the molecular structure of mitoKATP channels remains unresolved, and the mitochondrial phosphoprotein(s) that mediate cytoprotection by PKC remain to be determined. As mice deficient in the main sarcolemmal gap junction protein connexin 43 (Cx43) lack this cytoprotection, we set out to investigate a possible link among mitochondrial Cx43, mitoKATP channel function, and PKC activation. By patch-clamping the inner membrane of subsarcolemmal murine cardiac mitochondria, we found that genetic Cx43 deficiency, pharmacological connexin inhibition by carbenoxolone, and Cx43 blockade by the mimetic peptide 43GAP27 each substantially reduced diazoxide-mediated stimulation of mitoKATP channels. Suppression of mitochondrial Cx43 inhibited mitoKATP channel activation by PKC. MitoKATP channels of interfibrillar mitochondria, which do not contain any detectable Cx43, were insensitive to both PKC activation and diazoxide, further demonstrating the role of Cx43 in mitoKATP channel stimulation and the compartmentation of mitochondria in cell signaling. Our results define a role for mitochondrial Cx43 in protecting cardiac cells from death and provide a link between cytoprotective stimuli and mitoKATP channel opening, making Cx43 an attractive therapeutic target for protection against cell injury.
Collapse
Affiliation(s)
- Dennis Rottlaender
- Department of Internal Medicine III, University of Cologne, Cologne, Germany
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Diffusion restrictions surrounding mitochondria: a mathematical model of heart muscle fibers. Biophys J 2009; 97:443-52. [PMID: 19619458 PMCID: PMC2711342 DOI: 10.1016/j.bpj.2009.04.062] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2008] [Revised: 04/20/2009] [Accepted: 04/21/2009] [Indexed: 01/21/2023] Open
Abstract
Several experiments on permeabilized heart muscle fibers suggest the existence of diffusion restrictions grouping mitochondria and surrounding ATPases. The specific causes of these restrictions are not known, but intracellular structures are speculated to act as diffusion barriers. In this work, we assume that diffusion restrictions are induced by sarcoplasmic reticulum (SR), cytoskeleton proteins localized near SR, and crowding of cytosolic proteins. The aim of this work was to test whether such localization of diffusion restrictions would be consistent with the available experimental data and evaluate the extent of the restrictions. For that, a three-dimensional finite-element model was composed with the geometry based on mitochondrial and SR structural organization. Diffusion restrictions induced by SR and cytoskeleton proteins were varied with other model parameters to fit the set of experimental data obtained on permeabilized rat heart muscle fibers. There are many sets of model parameters that were able to reproduce all experiments considered in this work. However, in all the sets, <5–6% of the surface formed by SR and associated cytoskeleton proteins is permeable to metabolites. Such a low level of permeability indicates that the proteins should play a dominant part in formation of the diffusion restrictions.
Collapse
|
17
|
Joubert F, Wilding JR, Fortin D, Domergue-Dupont V, Novotova M, Ventura-Clapier R, Veksler V. Local energetic regulation of sarcoplasmic and myosin ATPase is differently impaired in rats with heart failure. J Physiol 2008; 586:5181-92. [PMID: 18787038 DOI: 10.1113/jphysiol.2008.157677] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Local control of ATP/ADP ratio is essential for efficient functioning of cellular ATPases. Since creatine kinase (CK) activity and mitochondrial content are reduced in heart failure (HF), and cardiomyocyte ultrastructure is altered, we hypothesized that these changes may affect the local energetic control of two major cardiac ATPases, the sarcoplasmic reticulum (SR) Ca2+-ATPase (SERCA) and the myosin ATPase. Heart failure was induced by aortic stenosis in rats. Electron microscopy confirmed that failing cardiomyocytes had intracellular disorganization, with fewer contacts between mitochondria and myofibrils. Despite normal SERCA protein content, spontaneous Ca2+ release measurements using Fluo-4 on saponin-permeabilized cardiomyocytes showed a lower SR loading in HF even when endogenous CK and mitochondria were fully activated. Similarly, in permeabilized fibres, SR Ca2+ loading supported by SR-bound CK and mitochondria was significantly reduced in HF (by 49% and 40%, respectively, 43% when both systems were activated, P < 0.05). Alkaline phosphatase treatment had no effect, but glycolytic substrates normalized calcium loading in HF to the sham level. The control by CK and mitochondria of the local ATP/ADP ratio close to the myosin ATPase (estimated by rigor tension) was also significantly impaired in HF fibres (by 32% and 46%, respectively). However, while the contributions of mitochondria and CK to local ATP regeneration were equally depressed in HF for the control of SERCA, mitochondrial contribution was more severely impaired than CK (P < 0.05) with respect to myofilament regulation. These data show that local energetic regulation of essential ATPases is severely impaired in heart failure, and undergoes a complex remodelling as a result of a decreased activity of the ATP-generating systems and cytoarchitecture disorganization.
Collapse
Affiliation(s)
- Frederic Joubert
- INSERM, UMR-S 769, Faculté de Pharmacie, Université Paris-Sud, 5 rue J-B Clément, F-92296 Châtenay-Malabry, France.
| | | | | | | | | | | | | |
Collapse
|
18
|
Abstract
Mitochondria often reside in subcellular regions with high metabolic demands. We examined the mechanisms that can govern the relocation of mitochondria to these sites in respiratory neurons. Mitochondria were visualized using tetramethylrhodamineethylester, and their movements were analyzed by applying single-particle tracking. Intracellular ATP ([ATP](i)) was assessed by imaging the luminescence of luciferase, the fluorescence of the ATP analog TNP-ATP, and by monitoring the activity of K(ATP) channels. Directed movements of mitochondria were accompanied by transient increases in TNP-ATP fluorescence. Application of glutamate and hypoxia reversibly decreased [ATP](i) levels and inhibited the directed transport. Injections of ATP did not rescue the motility of mitochondria after its inhibition by hypoxia. Introduction of ADP suppressed mitochondrial movements and occluded the effects of subsequent hypoxia. Mitochondria decreased their velocity in the proximity of synapses that correlated with local [ATP](i) depletions. Using a model of motor-assisted transport and Monte Carlo simulations, we showed that mitochondrial traffic is more sensitive to increases in [ADP](i) than to [ATP](i) depletions. We propose that consumption of synaptic ATP can produce local increases in [ADP](i) and facilitate the targeting of mitochondria to synapses.
Collapse
Affiliation(s)
- Sergej L Mironov
- DFG-Center Molecular Physiology of the Brain, Department of Neuro and Sensory Physiology, Georg-August-University, Göttingen, Germany.
| |
Collapse
|
19
|
Dellen BK, Barber MJ, Ristig ML, Hescheler J, Sauer H, Wartenberg M. oscillations in a model of energy-dependent uptake by the endoplasmic reticulum. J Theor Biol 2005; 237:279-90. [PMID: 15975599 DOI: 10.1016/j.jtbi.2005.04.015] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2004] [Revised: 04/01/2005] [Accepted: 04/22/2005] [Indexed: 10/25/2022]
Abstract
Active Ca2+ transport in living cells necessitates controlled supply of metabolic energy. Direct coupling between sarco/endoplasmic reticulum (ER) Ca2+ ATPases (SERCA) and intracellular energy-generation sites has been well established experimentally. On the basis of these experimental findings we propose a pump-driven model to investigate complex dynamic properties of a cell system. The model describes the pump process both by the Ca2+ ATPase itself and by a suitable description of the glycolysis. The associated set of differential equations shows a rich behavior, the solutions ranging from simple periodic oscillations to complex patterns such as bursting and spiking. Recent experimental results on calcium oscillations in Xenopus laevis oocytes and on dynamic patterns of intracellular Ca2+ concentrations in electrically non-excitable cells are well described by corresponding theoretical results derived within the proposed model. The simulation results are further compared to spontaneous [Ca2+] oscillations in primitive endodermal cells.
Collapse
Affiliation(s)
- B K Dellen
- Institut für Theoretische Physik, Universität zu Köln, D-50937 Köln, Germany.
| | | | | | | | | | | |
Collapse
|
20
|
Seppet E, Eimre M, Peet N, Paju K, Orlova E, Ress M, Kõvask S, Piirsoo A, Saks VA, Gellerich FN, Zierz S, Seppet EK. Compartmentation of energy metabolism in atrial myocardium of patients undergoing cardiac surgery. Mol Cell Biochem 2005; 270:49-61. [PMID: 15792353 DOI: 10.1007/s11010-005-3780-y] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The parameters of oxidative phosphorylation and its interaction with creatine kinase (CK)- and adenylate kinase (AK)-phosphotransfer networks in situ were studied in skinned atrial fibers from 59 patients undergoing coronary artery bypass surgery, valve replacement/correction and atrial septal defect correction. In atria, the mitochondrial CK and AK are effectively coupled to oxidative phosphorylation, the MM-CK is coupled to ATPases and there exists a direct transfer of adenine nucleotides between mitochondria and ATPases. Elimination of cytoplasmic ADP with exogenous pyruvate kinase was not associated with a blockade of the stimulatory effects of creatine and AMP on respiration, neither could it abolish the coupling of MM-CK to ATPases and direct transfer of adenine nucleotides. Thus, atrial energy metabolism is compartmentalized so that mitochondria form functional complexes with adjacent ATPases. These complexes isolate a part of cellular adenine nucleotides from their cytoplasmic pool for participating in energy transfer via CK- and AK-networks, and/or direct exchange. Compared to atria in sinus rhythm, the fibrillating atria were larger and exhibited increased succinate-dependent respiration relative to glutamate-dependent respiration and augmented proton leak. Thus, alterations in mitochondrial oxidative phosphorylation may contribute to pathogenesis of atrial fibrillation.
Collapse
Affiliation(s)
- Evelin Seppet
- Department of Pathophysiology, Human Genetics and Biology and Cardiovascular and Thoracic Surgery, Centre of Molecular and Clinical Medicine, Faculty of Medicine, University of Tartu, Tartu, Estonia
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Vendelin M, Lemba M, Saks VA. Analysis of functional coupling: mitochondrial creatine kinase and adenine nucleotide translocase. Biophys J 2005; 87:696-713. [PMID: 15240503 PMCID: PMC1304393 DOI: 10.1529/biophysj.103.036210] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The mechanism of functional coupling between mitochondrial creatine kinase (MiCK) and adenine nucleotide translocase (ANT) in isolated heart mitochondria is analyzed. Two alternative mechanisms are studied: 1), dynamic compartmentation of ATP and ADP, which assumes the differences in concentrations of the substrates between intermembrane space and surrounding solution due to some diffusion restriction and 2), direct transfer of the substrates between MiCK and ANT. The mathematical models based on these possible mechanisms were composed and simulation results were compared with the available experimental data. The first model, based on a dynamic compartmentation mechanism, was not sufficient to reproduce the measured values of apparent dissociation constants of MiCK reaction coupled to oxidative phosphorylation. The second model, which assumes the direct transfer of substrates between MiCK and ANT, is shown to be in good agreement with experiments--i.e., the second model reproduced the measured constants and the estimated ADP flux, entering mitochondria after the MiCK reaction. This model is thermodynamically consistent, utilizing the free energy profiles of reactions. The analysis revealed the minimal changes in the free energy profile of the MiCK-ANT interaction required to reproduce the experimental data. A possible free energy profile of the coupled MiCK-ANT system is presented.
Collapse
Affiliation(s)
- Marko Vendelin
- Laboratory of Fundamental and Applied Bioenergetics, Institut National de la Santé et de la Recherche Médicale E0221, Joseph Fourier University, Grenoble, France.
| | | | | |
Collapse
|
22
|
Ritov VB, Menshikova EV, He J, Ferrell RE, Goodpaster BH, Kelley DE. Deficiency of subsarcolemmal mitochondria in obesity and type 2 diabetes. Diabetes 2005; 54:8-14. [PMID: 15616005 DOI: 10.2337/diabetes.54.1.8] [Citation(s) in RCA: 628] [Impact Index Per Article: 33.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
The current study addresses a novel hypothesis of subcellular distribution of mitochondrial dysfunction in skeletal muscle in type 2 diabetes. Vastus lateralis muscle was obtained by percutaneous biopsy from 11 volunteers with type 2 diabetes; 12 age-, sex-, and weight-matched obese sedentary nondiabetic volunteers; and 8 lean volunteers. Subsarcolemmal and intermyofibrillar mitochondrial fractions were isolated by differential centrifugation and digestion techniques. Overall electron transport chain activity was similar in type 2 diabetic and obese subjects, but subsarcolemmal mitochondria electron transport chain activity was reduced in type 2 diabetic subjects (0.017 +/- 0.003 vs. 0.034 +/- 0.007 units/mU creatine kinase [CK], P = 0.01) and sevenfold reduced compared with lean subjects (P < 0.01). Electron transport chain activity in intermyofibrillar mitochondria was similar in type 2 diabetic and obese subjects, though reduced compared with lean subjects. A reduction in subsarcolemmal mitochondria was confirmed by transmission electron microscopy. Although mtDNA was lower in type 2 diabetic and obese subjects, the decrement in electron transport chain activity was proportionately greater, indicating functional impairment. Because of the potential importance of subsarcolemmal mitochondria for signal transduction and substrate transport, this deficit may contribute to the pathogenesis of muscle insulin resistance in type 2 diabetes.
Collapse
Affiliation(s)
- Vladimir B Ritov
- Division of Endocrinology and Metabolism, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | | | | | | | | | | |
Collapse
|
23
|
Murphy E. Primary and secondary signaling pathways in early preconditioning that converge on the mitochondria to produce cardioprotection. Circ Res 2004; 94:7-16. [PMID: 14715531 DOI: 10.1161/01.res.0000108082.76667.f4] [Citation(s) in RCA: 161] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Cardioprotective mechanisms such as acute or early preconditioning activate several primary signaling pathways that seem to converge on mitochondrial targets, leading to altered cell metabolism and inhibition of apoptosis. Acute preconditioning leads to generation of agonists, which bind to G protein-coupled receptors, and initiates a signaling cascade that involves activation of phosphoinositide-3-kinase, endothelial NO synthase, protein kinase C, glycogen synthase kinase 3beta, mitogen-activated protein kinases, and other signaling pathways. Activation of these signaling pathways along with generation of reactive oxygen species leads to alterations in the activity of key mitochondrial proteins such as mitochondrial ATP-sensitive K(+) channels, the mitochondrial permeability transition pore, and bcl-2 family members. Alterations in these mitochondrial proteins results in altered metabolism and inhibition of cell death, thus resulting in cardioprotection.
Collapse
Affiliation(s)
- Elizabeth Murphy
- Laboratory of Signal Transduction, National Institute of Environmental Health Sciences, National Institutes of Health, US Department of Health and Human Services, Research Triangle Park, NC, USA.
| |
Collapse
|
24
|
Andrienko T, Kuznetsov AV, Kaambre T, Usson Y, Orosco A, Appaix F, Tiivel T, Sikk P, Vendelin M, Margreiter R, Saks VA. Metabolic consequences of functional complexes of mitochondria, myofibrils and sarcoplasmic reticulum in muscle cells. J Exp Biol 2003; 206:2059-72. [PMID: 12756288 DOI: 10.1242/jeb.00242] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Regulation of mitochondrial respiration both by endogenous and exogenous ADP in the cells in situ was studied in isolated and permeabilized cardiomyocytes, permeabilized cardiac fibers and 'ghost' fibers (all with a diameter of 10-20 micro m) at different (0-3 micro moll(-1)) free Ca(2+) concentrations in the medium. In all these preparations, the apparent K(m) of mitochondrial respiration for exogenous ADP at free Ca(2+) concentrations of 0-0.1 micro moll(-1) was very high, in the range of 250-350 micro moll(-1), in contrast to isolated mitochondria in vitro (apparent K(m) for ADP is approximately 20 micro moll(-1)). An increase in the free Ca(2+) concentration (up to 3 micro moll(-1), which is within physiological range), resulted in a very significant decrease of the apparent K(m) value to 20-30 micro moll(-1), a decrease of V(max) of respiration in permeabilized intact fibers and a strong contraction of sarcomeres. In ghost cardiac fibers, from which myosin was extracted but mitochondria were intact, neither the high apparent K(m) for ADP (300-350 micro moll(-1)) nor V(max) of respiration changed in the range of free Ca(2+) concentration studied, and no sarcomere contraction was observed. The exogenous-ADP-trapping system (pyruvate kinase + phosphoenolpyruvate) inhibited endogenous-ADP-supported respiration in permeabilized cells by no more than 40%, and this inhibition was reversed by creatine due to activation of mitochondrial creatine kinase. These results are taken to show strong structural associations (functional complexes) among mitochondria, sarcomeres and sarcoplasmic reticulum. Inside these complexes, mitochondrial functional state is controlled by channeling of ADP, mostly via energy- and phosphoryl-transfer networks, and apparently depends on the state of sarcomere structures.
Collapse
Affiliation(s)
- T Andrienko
- Laboratory of Fundamental and Applied Bioenergetics, INSERM E0221, Joseph Fourier University, Grenoble, France
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Kindzelskii AL, Huang JB, Chaiworapongsa T, Fahmy RM, Kim YM, Romero R, Petty HR. Pregnancy alters glucose-6-phosphate dehydrogenase trafficking, cell metabolism, and oxidant release of maternal neutrophils. J Clin Invest 2003. [PMID: 12488430 DOI: 10.1172/jci200215973] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Pregnancy is associated with changes in host susceptibility to infections and inflammatory disease. We hypothesize that metabolic enzyme trafficking affects maternal neutrophil activation. Specifically, immunofluorescence microscopy has shown that glucose-6-phosphate dehydrogenase (G-6-PDase), the rate-controlling step of the hexose monophosphate shunt (HMS), is located near the cell periphery in control neutrophils but is found near the microtubule-organizing centers in cells from pregnant women. Cytochemical studies confirmed that the distribution of the G-6-PDase antigen is coincident with functional G-6-PDase activity. Metabolic oscillations within activated pregnancy neutrophils are higher in amplitude, though lower in frequency, than activated control neutrophils, suggesting limited HMS activity. Analysis of radioisotope-labeled carbon flux from glucose to CO(2) indicates that the HMS is intact in leukocytes from pregnant women, but its level is not enhanced by cell stimulation. Using extracellular fluorescent markers, activated pregnancy neutrophils were found to release reactive oxygen metabolites (ROMs) at a lower rate than activated control neutrophils. However, basal levels of ROM production in polarized pregnancy neutrophils were greater than in control neutrophils. Microtubule-disrupting agents reversed the observed changes in G-6-PDase trafficking, metabolic oscillations, and ROM production by maternal neutrophils. G-6-PDase trafficking appears to be one mechanism regulating ROM production by maternal neutrophils.
Collapse
Affiliation(s)
- Andrei L Kindzelskii
- Department of Biological Sciences, Wayne State University, Detroit, Michigan 48202, USA
| | | | | | | | | | | | | |
Collapse
|
26
|
Yi CS, Fogelson AL, Keener JP, Peskin CS. A mathematical study of volume shifts and ionic concentration changes during ischemia and hypoxia. J Theor Biol 2003; 220:83-106. [PMID: 12453453 DOI: 10.1006/jtbi.2003.3154] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The response of tissue to ischemia (cessation of blood flow and deprivation of oxygen) includes swelling of the intracellular space, shrinkage of the extracellular space, and an increase in the extracellular potassium concentration. The responses of cardiac and brain tissue to ischemia are qualitatively different in that cardiac tissue shows a rise in extracellular potassium over several minutes from about 5 to 10-12 mM followed by a plateau, while brain tissue shows a similar initial rise followed by a very rapid increase in extracellular potassium to levels of 50-80 mM. During hypoxia the flow of blood (or perfusate) is maintained and, while there is a substantial efflux of potassium from cells, there is little accumulation of potassium in the interstitium. A mathematical model is proposed and studied to try to elucidate the mechanism(s) underlying the increase in extracellular potassium, and the different time courses seen in neural and cardiac tissue. The model involves a Hodgkin-Huxley-type description of transmembrane ion currents, allows for ion concentrations as well as volumes to change for both the intracellular and extracellular space, and includes coupling of damaged tissue to nearby healthy tissue. The model produces a response to ischemia much like that seen in neural tissue, and the mechanism underlying this response in the model is determined. The same mechanism is not present in cardiac ion models, and this may explain the qualitative difference in response shown in cardiac tissue.
Collapse
Affiliation(s)
- Chung Seon Yi
- Department of Mathematics, University of Utah, 155 South 1400 East, 233 JWB, Salt Lake City, Utah 84112, USA
| | | | | | | |
Collapse
|
27
|
Dzeja PP, Bortolon R, Perez-Terzic C, Holmuhamedov EL, Terzic A. Energetic communication between mitochondria and nucleus directed by catalyzed phosphotransfer. Proc Natl Acad Sci U S A 2002; 99:10156-61. [PMID: 12119406 PMCID: PMC126640 DOI: 10.1073/pnas.152259999] [Citation(s) in RCA: 129] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Exchange of information between the nucleus and cytosol depends on the metabolic state of the cell, yet the energy-supply pathways to the nuclear compartment are unknown. Here, the energetics of nucleocytoplasmic communication was determined by imaging import of a constitutive nuclear protein histone H1. Translocation of H1 through nuclear pores in cardiac cells relied on ATP supplied by mitochondrial oxidative phosphorylation, but not by glycolysis. Although mitochondria clustered around the nucleus, reducing the distance for energy transfer, simple nucleotide diffusion was insufficient to meet the energetic demands of nuclear transport. Rather, the integrated phosphotransfer network was required for delivery of high-energy phosphoryls from mitochondria to the nucleus. In neonatal cardiomyocytes with low creatine kinase activity, inhibition of adenylate kinase-catalyzed phosphotransfer abolished nuclear import. With deficient adenylate kinase, nucleoside diphosphate kinase, which secures phosphoryl exchange between ATP and GTP, was unable to sustain nuclear import. Up-regulation of creatine kinase phosphotransfer, to mimic metabolic conditions of adult cardiac cells, rescued H1 import, suggesting a developmental plasticity of the cellular energetic system. Thus, mitochondrial oxidative phosphorylation coupled with phosphotransfer relays provides an efficient energetic unit in support of nuclear transport.
Collapse
Affiliation(s)
- Petras P Dzeja
- Division of Cardiovascular Diseases, Department of Medicine, Mayo Clinic, Rochester, MN 55905, USA
| | | | | | | | | |
Collapse
|
28
|
Abraham MR, Selivanov VA, Hodgson DM, Pucar D, Zingman LV, Wieringa B, Dzeja PP, Alekseev AE, Terzic A. Coupling of cell energetics with membrane metabolic sensing. Integrative signaling through creatine kinase phosphotransfer disrupted by M-CK gene knock-out. J Biol Chem 2002; 277:24427-34. [PMID: 11967264 DOI: 10.1074/jbc.m201777200] [Citation(s) in RCA: 120] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Transduction of metabolic signals is essential in preserving cellular homeostasis. Yet, principles governing integration and synchronization of membrane metabolic sensors with cell metabolism remain elusive. Here, analysis of cellular nucleotide fluxes and nucleotide-dependent gating of the ATP-sensitive K+ (K(ATP)) channel, a prototypic metabolic sensor, revealed a diffusional barrier within the submembrane space, preventing direct reception of cytosolic signals. Creatine kinase phosphotransfer, captured by 18O-assisted 31P NMR, coordinated tightly with ATP turnover, reflecting the cellular energetic status. The dynamics of high energy phosphoryl transfer through the creatine kinase relay permitted a high fidelity transmission of energetic signals into the submembrane compartment synchronizing K(ATP) channel activity with cell metabolism. Knock-out of the creatine kinase M-CK gene disrupted signal delivery to K(ATP) channels and generated a cellular phenotype with increased electrical vulnerability. Thus, in the compartmentalized cell environment, phosphotransfer systems shunt diffusional barriers and secure regimented signal transduction integrating metabolic sensors with the cellular energetic network.
Collapse
Affiliation(s)
- M Roselle Abraham
- Division of Cardiovascular Diseases, Departments of Medicine, Molecular Pharmacology, and Experimental Therapeutics, Mayo Clinic, Rochester, Minnesota 55905, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Huang JB, Kindzelskii AL, Petty HR. Hexokinase translocation during neutrophil activation, chemotaxis, and phagocytosis: disruption by cytochalasin D, dexamethasone, and indomethacin. Cell Immunol 2002; 218:95-106. [PMID: 12470617 DOI: 10.1016/s0008-8749(02)00582-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Neutrophils expend large amounts of energy to perform demanding cell functions. To better understand energy production and flow during cell activation, immunofluorescence microscopy was employed to determine the location of the key metabolic enzyme hexokinase during various conditions. Hexokinase is translocated from the neutrophil's cytosol to its periphery in response to N-formyl-methionyl-leucyl-phenylalanine (fMLP) and other activating stimuli, but not during exposure to the formyl peptide receptor antagonist N-tert-BOC-phe-leu-phe-leu-phe (Boc-PLPLP). Translocation was observed from 10(-6) to 10(-9)M fMLP. However, fMLP did not affect the intracellular distribution of lactate dehydrogenase. Hexokinase accumulated at the lamellipodium of cells exposured to an fMLP gradient whereas it localized to the phagosome after latex bead uptake. Thus, hexokinase is differentially translocated within cells depending upon the prevailing physiological conditions. Further studies noted that cytochalasin D, dexamethasone, and indomethacin blocked hexokinase translocation. Parallel regulation of reactive oxygen metabolite (ROM) production was shown. We speculate that hexokinase translocation participates in neutrophil activation.
Collapse
Affiliation(s)
- Ji-Biao Huang
- Department of Biological Sciences, Wayne State University, Detroit, MI 48202, USA
| | | | | |
Collapse
|