1
|
Yin D, Wang C, Singh V, Tuz AA, Doeppner TR, Gunzer M, Hermann DM. Delayed DNase-I Administration but Not Gasdermin-D Inhibition Induces Hemorrhagic Transformation After Transient Focal Cerebral Ischemia in Mice. Stroke 2024; 55:e297-e299. [PMID: 39344516 DOI: 10.1161/strokeaha.124.047862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Affiliation(s)
- Dongpei Yin
- Department of Neurology, University Hospital Essen, University of Duisburg-Essen, Germany (D.Y., C.W., D.M.H.)
- Center for Translational and Behavioral Neurosciences, University Hospital Essen, University of Duisburg-Essen, Germany (D.Y., C.W., D.M.H.)
| | - Chen Wang
- Department of Neurology, University Hospital Essen, University of Duisburg-Essen, Germany (D.Y., C.W., D.M.H.)
- Center for Translational and Behavioral Neurosciences, University Hospital Essen, University of Duisburg-Essen, Germany (D.Y., C.W., D.M.H.)
| | - Vikramjeet Singh
- Institute of Experimental Immunology and Imaging, University Hospital Essen, University of Duisburg-Essen, Germany (V.S., A.A.T., M.G.)
| | - Ali Ata Tuz
- Institute of Experimental Immunology and Imaging, University Hospital Essen, University of Duisburg-Essen, Germany (V.S., A.A.T., M.G.)
| | - Thorsten R Doeppner
- Department of Neurology, University Hospital Gießen, Justus-Liebig-University Gießen, Germany (T.R.D.)
| | - Matthias Gunzer
- Institute of Experimental Immunology and Imaging, University Hospital Essen, University of Duisburg-Essen, Germany (V.S., A.A.T., M.G.)
- Leibniz-Institut für Analytische Wissenschaften e.V. (ISAS), Dortmund, Germany (M.G.)
| | - Dirk M Hermann
- Department of Neurology, University Hospital Essen, University of Duisburg-Essen, Germany (D.Y., C.W., D.M.H.)
- Center for Translational and Behavioral Neurosciences, University Hospital Essen, University of Duisburg-Essen, Germany (D.Y., C.W., D.M.H.)
| |
Collapse
|
2
|
Wang R, Yang Z, Huang Y, Hu Y, Wang Y, Yan F, Zheng Y, Han Z, Fan J, Tao Z, Zhao H, Li S, Luo Y. Erythropoietin-derived peptide ARA290 mediates brain tissue protection through the β-common receptor in mice with cerebral ischemic stroke. CNS Neurosci Ther 2024; 30:e14676. [PMID: 38488446 PMCID: PMC10941562 DOI: 10.1111/cns.14676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 12/25/2023] [Accepted: 02/12/2024] [Indexed: 03/18/2024] Open
Abstract
AIM To explore the neuroprotective effects of ARA290 and the role of β-common receptor (βCR) in a mouse model of middle cerebral artery occlusion (MCAO). METHODS This study included male C57BL/6J mice that underwent MCAO and reperfusion. The neuroprotective effect of ARA290 on MCAO-induced brain injury was investigated using neurological function tests (Longa and modified neurological severity score). Cerebral infarction was examined by 2, 3, 5-triphenyl tetrazolium chloride staining, neuronal apoptosis was assessed by immunofluorescence staining, blood parameters were measured using a flow cytometry-based automated hematology analyzer, liquid chromatography with tandem mass spectrometry was used to identify the serum metabolomics signature, inflammatory cytokines and liver index were detected by commercially available kits, and the protein levels of the erythropoietin (EPO) receptor and βCR were measured by western blot. RESULTS ARA290 exerted a qualitatively similar neuroprotective effect after MCAO as EPO. ARA290 significantly reduced neuronal apoptosis and the level of inflammatory cytokines in the brain tissue. However, ARA290's neuroprotective effect was significantly suppressed following the injection of siRNA against βCR. CONCLUSION ARA290 provided a neuroprotective effect via βCR in cerebral ischemic mice without causing erythropoiesis. This study provides novel insights into the role of ARA290 in ischemic stroke intervention.
Collapse
Affiliation(s)
- Rong‐Liang Wang
- Institute of Cerebrovascular Diseases Research and Department of NeurologyXuanwu Hospital of Capital Medical UniversityBeijingChina
- Center of StrokeBeijing Institute for Brain DisordersBeijingChina
- Beijing Key Laboratory of Translational Medicine for Cerebrovascular DiseasesBeijingChina
| | - Zhen‐Hong Yang
- Institute of Cerebrovascular Diseases Research and Department of NeurologyXuanwu Hospital of Capital Medical UniversityBeijingChina
| | - Yu‐You Huang
- Institute of Cerebrovascular Diseases Research and Department of NeurologyXuanwu Hospital of Capital Medical UniversityBeijingChina
| | - Yue Hu
- Institute of Cerebrovascular Diseases Research and Department of NeurologyXuanwu Hospital of Capital Medical UniversityBeijingChina
| | - Yi‐Lin Wang
- Institute of Cerebrovascular Diseases Research and Department of NeurologyXuanwu Hospital of Capital Medical UniversityBeijingChina
| | - Feng Yan
- Institute of Cerebrovascular Diseases Research and Department of NeurologyXuanwu Hospital of Capital Medical UniversityBeijingChina
- Center of StrokeBeijing Institute for Brain DisordersBeijingChina
- Beijing Key Laboratory of Translational Medicine for Cerebrovascular DiseasesBeijingChina
| | - Yang‐Min Zheng
- Institute of Cerebrovascular Diseases Research and Department of NeurologyXuanwu Hospital of Capital Medical UniversityBeijingChina
- Center of StrokeBeijing Institute for Brain DisordersBeijingChina
- Beijing Key Laboratory of Translational Medicine for Cerebrovascular DiseasesBeijingChina
| | - Zi‐Ping Han
- Institute of Cerebrovascular Diseases Research and Department of NeurologyXuanwu Hospital of Capital Medical UniversityBeijingChina
- Center of StrokeBeijing Institute for Brain DisordersBeijingChina
- Beijing Key Laboratory of Translational Medicine for Cerebrovascular DiseasesBeijingChina
| | - Jun‐Fen Fan
- Institute of Cerebrovascular Diseases Research and Department of NeurologyXuanwu Hospital of Capital Medical UniversityBeijingChina
- Center of StrokeBeijing Institute for Brain DisordersBeijingChina
- Beijing Key Laboratory of Translational Medicine for Cerebrovascular DiseasesBeijingChina
| | - Zhen Tao
- Institute of Cerebrovascular Diseases Research and Department of NeurologyXuanwu Hospital of Capital Medical UniversityBeijingChina
- Center of StrokeBeijing Institute for Brain DisordersBeijingChina
- Beijing Key Laboratory of Translational Medicine for Cerebrovascular DiseasesBeijingChina
| | - Hai‐Ping Zhao
- Institute of Cerebrovascular Diseases Research and Department of NeurologyXuanwu Hospital of Capital Medical UniversityBeijingChina
- Center of StrokeBeijing Institute for Brain DisordersBeijingChina
- Beijing Key Laboratory of Translational Medicine for Cerebrovascular DiseasesBeijingChina
| | - Si‐Jie Li
- Center of StrokeBeijing Institute for Brain DisordersBeijingChina
- Beijing Key Laboratory of Translational Medicine for Cerebrovascular DiseasesBeijingChina
- Emergency DepartmentXuanwu Hospital of Capital Medical UniversityBeijingChina
| | - Yu‐Min Luo
- Institute of Cerebrovascular Diseases Research and Department of NeurologyXuanwu Hospital of Capital Medical UniversityBeijingChina
- Center of StrokeBeijing Institute for Brain DisordersBeijingChina
- Beijing Key Laboratory of Translational Medicine for Cerebrovascular DiseasesBeijingChina
| |
Collapse
|
3
|
Sun X, Liu Z, Zhou L, Ma R, Zhang X, Wang T, Fu F, Wang Y. Escin avoids hemorrhagic transformation in ischemic stroke by protecting BBB through the AMPK/Cav-1/MMP-9 pathway. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 120:155071. [PMID: 37716034 DOI: 10.1016/j.phymed.2023.155071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 08/10/2023] [Accepted: 09/04/2023] [Indexed: 09/18/2023]
Abstract
BACKGROUND Hemorrhagic transformation (HT) seriously affects the clinical application of recombinant tissue plasminogen activator (rt-PA). The main strategy for combating HT is to keep the blood-brain barrier (BBB) stable. Escin is the active ingredient of Aesculus hippocastanum and a natural mixture of triterpene saponins, and may play a part in mitigation of HT. PURPOSE This study sought to investigate the effect of Escin in improving rt-PA-induced HT, explore possible mechanisms, and provide new ideas for the treatment of clinical HT. STUDY DESIGN AND METHODS In in vivo experiments, transient middle cerebral artery occlusion (tMCAO) was undertaken in 6-week-old and 12-month-old mice, and rt-PA was administered to induce HT injury. The inhibitory effect of Escin on HT and its protective effect on neurobehavior, the BBB, and cerebrovascular endothelial cells was determined. In in vitro experiments, bEnd.3 cells were injured by oxygen-glucose deprivation/reperfusion (OGD/R) and rt-PA. The protective effect of Escin was measured by the CCK8 assay, release of lactate dehydrogenase (LDH), and expression of tight junction (TJ) proteins. In mechanistic studies, the effect of Escin on the adenosine monophosphate-activated kinase / caveolin-1 / matrix metalloprotease-9 (AMPK/Cav-1/MMP-9) pathway was investigated by employing AMPK inhibitor and Cav-1 siRNA. RESULTS In mice suffering from ischemia, rt-PA caused HT as well as damage to the BBB and cerebrovascular endothelial cells. Escin reduced the infarct volume, cerebral hemorrhage, improved neurobehavioral deficits, and maintained BBB integrity in rt-PA-treated tMCAO mice while attenuating bEnd.3 cells damage caused by rt-PA and OGD/R injury. Under physiological and pathological conditions, Escin increased the expression of p-AMPK and Cav-1, leading to decreased expression of MMP-9, which further attenuated damage to cerebrovascular endothelial cells, and these effects were verified with AMPK inhibitor and Cav-1 siRNA. CONCLUSION We revealed important details of how Escin protects cerebrovascular endothelial cells from HT, these effects were associated with the AMPK/Cav-1/MMP-9 pathway. This study provides experimental foundation for the development of new drugs to mitigate rt-PA-induced HT and the discovery of new clinical application for Escin.
Collapse
Affiliation(s)
- Xiaohui Sun
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Qingquan Road 30, Yantai, Shandong 264005, PR China
| | - Zhaofeng Liu
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Qingquan Road 30, Yantai, Shandong 264005, PR China
| | - Lin Zhou
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Qingquan Road 30, Yantai, Shandong 264005, PR China
| | - Runchen Ma
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Qingquan Road 30, Yantai, Shandong 264005, PR China
| | - Xiaofan Zhang
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Qingquan Road 30, Yantai, Shandong 264005, PR China
| | - Tian Wang
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Qingquan Road 30, Yantai, Shandong 264005, PR China
| | - Fenghua Fu
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Qingquan Road 30, Yantai, Shandong 264005, PR China
| | - Yunjie Wang
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Qingquan Road 30, Yantai, Shandong 264005, PR China.
| |
Collapse
|
4
|
The Biological Behaviors of Neural Stem Cell Affected by Microenvironment from Host Organotypic Brain Slices under Different Conditions. Int J Mol Sci 2023; 24:ijms24044182. [PMID: 36835592 PMCID: PMC9964775 DOI: 10.3390/ijms24044182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 02/14/2023] [Accepted: 02/17/2023] [Indexed: 02/22/2023] Open
Abstract
Therapeutic strategies based on neural stem cells (NSCs) transplantation bring new hope for neural degenerative disorders, while the biological behaviors of NSCs after being grafted that were affected by the host tissue are still largely unknown. In this study, we engrafted NSCs that were isolated from a rat embryonic cerebral cortex onto organotypic brain slices to examine the interaction between grafts and the host tissue both in normal and pathological conditions, including oxygen-glucose deprivation (OGD) and traumatic injury. Our data showed that the survival and differentiation of NSCs were strongly influenced by the microenvironment of the host tissue. Enhanced neuronal differentiation was observed in normal conditions, while significantly more glial differentiation was observed in injured brain slices. The process growth of grafted NSCs was guided by the cytoarchitecture of host brain slices and showed the distinct difference between the cerebral cortex, corpus callosum and striatum. These findings provided a powerful resource for unraveling how the host environment determines the fate of grafted NSCs, and raise the prospect of NSCs transplantation therapy for neurological diseases.
Collapse
|
5
|
Wang R, Zhang S, Yang Z, Zheng Y, Yan F, Tao Z, Fan J, Zhao H, Han Z, Luo Y. Mutant erythropoietin enhances white matter repair via the JAK2/STAT3 and C/EBPβ pathway in middle-aged mice following cerebral ischemia and reperfusion. Exp Neurol 2021; 337:113553. [PMID: 33309747 DOI: 10.1016/j.expneurol.2020.113553] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 11/06/2020] [Accepted: 12/07/2020] [Indexed: 01/20/2023]
Abstract
Previous studies have indicated that EPO maintains the M2 microglia phenotype that contributes to white matter repair after ischemic stroke in young mice (2 months old). However, the underlying mechanisms that regulate microglial polarization are poorly defined. This study investigated the neuroprotective effects of nonerythropoietic mutant EPO (MEPO) on white matter and the underlying mechanism in middle-aged (9-month-old) male mice following cerebral ischemia. Middle-aged male C57 BL/6 mice were treated with MEPO (5000 IU/kg) or vehicle after middle cerebral artery occlusion (MCAO) and reperfusion. The specific inhibitor AG490 was used to block the JAK2/STAT3 pathway. Neurological function was assessed by beam walking and adhesive removal tests. Immunofluorescence staining and western blotting were used to assess the severity of white matter injury, phenotypic changes in the microglia and the expression of the signaling molecules. MEPO significantly improved neurobehavioral outcomes, alleviated brain tissue loss, and ameliorated white matter injury after MCAO compared with the vehicle group. Moreover, MEPO promoted oligodendrogenesis by shifting microglia toward M2 polarization by promoting JAK2/STAT3 activation and inhibiting the expression of C/EBPβ at 14 days after cerebral ischemia-reperfusion. However, the MEPO's effect on microglial M2 polarization and oligodendrogenesis was largely suppressed by AG490 treatment. Collectively, these data indicate that MEPO treatment improves white matter integrity after cerebral ischemia, which may be partly explained by MEPO facilitating microglia toward the beneficial M2 phenotype to promote oligodendrogenesis via JAK2/STAT3 and the C/EBPβ signaling pathway. This study provides novel insight into MEPO treatment for ischemic stroke.
Collapse
Affiliation(s)
- Rongliang Wang
- Institute of Cerebrovascular Diseases Research and Department of Neurology, Xuanwu Hospital of Capital Medical University, Beijing 100053, China
| | - Sijia Zhang
- Institute of Cerebrovascular Diseases Research and Department of Neurology, Xuanwu Hospital of Capital Medical University, Beijing 100053, China
| | - Zhenhong Yang
- Institute of Cerebrovascular Diseases Research and Department of Neurology, Xuanwu Hospital of Capital Medical University, Beijing 100053, China
| | - Yangmin Zheng
- Institute of Cerebrovascular Diseases Research and Department of Neurology, Xuanwu Hospital of Capital Medical University, Beijing 100053, China
| | - Feng Yan
- Institute of Cerebrovascular Diseases Research and Department of Neurology, Xuanwu Hospital of Capital Medical University, Beijing 100053, China
| | - Zhen Tao
- Institute of Cerebrovascular Diseases Research and Department of Neurology, Xuanwu Hospital of Capital Medical University, Beijing 100053, China
| | - Junfen Fan
- Institute of Cerebrovascular Diseases Research and Department of Neurology, Xuanwu Hospital of Capital Medical University, Beijing 100053, China
| | - Haiping Zhao
- Institute of Cerebrovascular Diseases Research and Department of Neurology, Xuanwu Hospital of Capital Medical University, Beijing 100053, China
| | - Ziping Han
- Institute of Cerebrovascular Diseases Research and Department of Neurology, Xuanwu Hospital of Capital Medical University, Beijing 100053, China.
| | - Yumin Luo
- Institute of Cerebrovascular Diseases Research and Department of Neurology, Xuanwu Hospital of Capital Medical University, Beijing 100053, China; Center of Stroke, Beijing Institute for Brain Disorders, Beijing 100053, China; Beijing Key Laboratory of Translational Medicine for Cerebrovascular Diseases, Beijing 100053, China.
| |
Collapse
|
6
|
Patel AMR, Apaijai N, Chattipakorn N, Chattipakorn SC. The Protective and Reparative Role of Colony-Stimulating Factors in the Brain with Cerebral Ischemia/Reperfusion Injury. Neuroendocrinology 2021; 111:1029-1065. [PMID: 33075777 DOI: 10.1159/000512367] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2020] [Accepted: 10/19/2020] [Indexed: 11/19/2022]
Abstract
Stroke is a debilitating disease and has the ability to culminate in devastating clinical outcomes. Ischemic stroke followed by reperfusion entrains cerebral ischemia/reperfusion (I/R) injury, which is a complex pathological process and is associated with serious clinical manifestations. Therefore, the development of a robust and effective poststroke therapy is crucial. Granulocyte colony-stimulating factor (GCSF) and erythropoietin (EPO), originally discovered as hematopoietic growth factors, are versatile and have transcended beyond their traditional role of orchestrating the proliferation, differentiation, and survival of hematopoietic progenitors to one that fosters brain protection/neuroregeneration. The clinical indication regarding GCSF and EPO as an auspicious therapeutic strategy is conferred in a plethora of illnesses, including anemia and neutropenia. EPO and GCSF alleviate cerebral I/R injury through a multitude of mechanisms, involving antiapoptotic, anti-inflammatory, antioxidant, neurogenic, and angiogenic effects. Despite bolstering evidence from preclinical studies, the multiple brain protective modalities of GCSF and EPO failed to translate in clinical trials and thereby raises several questions. The present review comprehensively compiles and discusses key findings from in vitro, in vivo, and clinical data pertaining to the administration of EPO, GCSF, and other drugs, which alter levels of colony-stimulating factor (CSF) in the brain following cerebral I/R injury, and elaborates on the contributing factors, which led to the lost in translation of CSFs from bench to bedside. Any controversial findings are discussed to enable a clear overview of the role of EPO and GCSF as robust and effective candidates for poststroke therapy.
Collapse
Affiliation(s)
- Aysha Mohamed Rafik Patel
- Neurophysiology Unit, Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
- Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, Thailand
| | - Nattayaporn Apaijai
- Neurophysiology Unit, Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
- Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, Thailand
| | - Nipon Chattipakorn
- Neurophysiology Unit, Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
- Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, Thailand
- Cardiac Electrophysiology Unit, Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Siriporn C Chattipakorn
- Neurophysiology Unit, Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand,
- Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, Thailand,
- Department of Oral Biology and Diagnostic Sciences, Faculty of Dentistry, Chiang Mai University, Chiang Mai, Thailand,
| |
Collapse
|
7
|
Kuan CY, Chen HR, Gao N, Kuo YM, Chen CW, Yang D, Kinkaid MM, Hu E, Sun YY. Brain-targeted hypoxia-inducible factor stabilization reduces neonatal hypoxic-ischemic brain injury. Neurobiol Dis 2020; 148:105200. [PMID: 33248237 PMCID: PMC10111204 DOI: 10.1016/j.nbd.2020.105200] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 11/12/2020] [Accepted: 11/23/2020] [Indexed: 12/31/2022] Open
Abstract
Hypoxia-inducible factor-1α (HIF1α) is a major regulator of cellular adaptation to hypoxia and oxidative stress, and recent advances of prolyl-4-hydroxylase (P4H) inhibitors have produced powerful tools to stabilize HIF1α for clinical applications. However, whether HIF1α provokes or resists neonatal hypoxic-ischemic (HI) brain injury has not been established in previous studies. We hypothesize that systemic and brain-targeted HIF1α stabilization may have divergent effects. To test this notion, herein we compared the effects of GSK360A, a potent P4H inhibitor, in in-vitro oxygen-glucose deprivation (OGD) and in in-vivo neonatal HI via intracerebroventricular (ICV), intraperitoneal (IP), and intranasal (IN) drug-application routes. We found that GSK360A increased the erythropoietin (EPO), heme oxygenase-1 (HO1) and glucose transporter 1 (Glut1) transcripts, all HIF1α target-genes, and promoted the survival of neurons and oligodendrocytes after OGD. Neonatal HI insult stabilized HIF1α in the ipsilateral hemisphere for up to 24 h, and either ICV or IN delivery of GSK360A after HI increased the HIF1α target-gene transcripts and decreased brain damage. In contrast, IP-injection of GSK360A failed to reduce HI brain damage, but elevated the risk of mortality at high doses, which may relate to an increase of the kidney and plasma EPO, leukocytosis, and abundant vascular endothelial growth factor (VEGF) mRNAs in the brain. These results suggest that brain-targeted HIF1α-stabilization is a potential treatment of neonatal HI brain injury, while systemic P4H-inhibition may provoke unwanted adverse effects.
Collapse
Affiliation(s)
- Chia-Yi Kuan
- Department of Neuroscience, Center for Brain Immunology and Glia (BIG), University of Virginia School of Medicine, Charlottesville, VA 22908, United States of America.
| | - Hong-Ru Chen
- Department of Neuroscience, Center for Brain Immunology and Glia (BIG), University of Virginia School of Medicine, Charlottesville, VA 22908, United States of America
| | - Ning Gao
- Division of Neurology, Department of Pediatrics, Emory University School of Medicine, Atlanta, GA 30322, United States of America
| | - Yi-Min Kuo
- Department of Anesthesiology, Taipei Veterans General Hospital and National Yang-Ming University School of Medicine, Taipei, Taiwan
| | - Ching-Wen Chen
- Department of Neuroscience, Center for Brain Immunology and Glia (BIG), University of Virginia School of Medicine, Charlottesville, VA 22908, United States of America
| | - Dianer Yang
- Division of Neurology, Department of Pediatrics, Emory University School of Medicine, Atlanta, GA 30322, United States of America
| | - Melissa M Kinkaid
- Department of Neuroscience, Center for Brain Immunology and Glia (BIG), University of Virginia School of Medicine, Charlottesville, VA 22908, United States of America
| | - Erding Hu
- Cardiac Biology, Heart Failure Discovery Performance Unit, GlaxoSmithKline Pharmaceuticals, King of Prussia, PA 19406, United States of America
| | - Yu-Yo Sun
- Department of Neuroscience, Center for Brain Immunology and Glia (BIG), University of Virginia School of Medicine, Charlottesville, VA 22908, United States of America.
| |
Collapse
|
8
|
Juenemann M, Braun T, Schleicher N, Yeniguen M, Schramm P, Gerriets T, Ritschel N, Bachmann G, Obert M, Schoenburg M, Kaps M, Tschernatsch M. Neuroprotective mechanisms of erythropoietin in a rat stroke model. Transl Neurosci 2020; 11:48-59. [PMID: 33312715 PMCID: PMC7702138 DOI: 10.1515/tnsci-2020-0008] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Revised: 12/15/2019] [Accepted: 01/02/2020] [Indexed: 11/15/2022] Open
Abstract
Objective This study was designed to investigate the indirect neuroprotective properties of recombinant human erythropoietin (rhEPO) pretreatment in a rat model of transient middle cerebral artery occlusion (MCAO). Methods One hundred and ten male Wistar rats were randomly assigned to four groups receiving either 5,000 IU/kg rhEPO intravenously or saline 15 minutes prior to MCAO and bilateral craniectomy or sham craniectomy. Bilateral craniectomy aimed at elimination of the space-consuming effect of postischemic edema. Diagnostic workup included neurological examination, assessment of infarct size and cerebral edema by magnetic resonance imaging, wet–dry technique, and quantification of hemispheric and local cerebral blood flow (CBF) by flat-panel volumetric computed tomography. Results In the absence of craniectomy, EPO pretreatment led to a significant reduction in infarct volume (34.83 ± 9.84% vs. 25.28 ± 7.03%; p = 0.022) and midline shift (0.114 ± 0.023 cm vs. 0.083 ± 0.027 cm; p = 0.013). We observed a significant increase in regional CBF in cortical areas of the ischemic infarct (72.29 ± 24.00% vs. 105.53 ± 33.10%; p = 0.043) but not the whole hemispheres. Infarct size-independent parameters could not demonstrate a statistically significant reduction in cerebral edema with EPO treatment. Conclusions Single-dose pretreatment with rhEPO 5,000 IU/kg significantly reduces ischemic lesion volume and increases local CBF in penumbral areas of ischemia 24 h after transient MCAO in rats. Data suggest indirect neuroprotection from edema and the resultant pressure-reducing and blood flow-increasing effects mediated by EPO.
Collapse
Affiliation(s)
- Martin Juenemann
- Department of Neurology, Justus-Liebig-University Giessen, Klinikstrasse 33, 35392, Giessen, Germany.,Heart & Brain Research Group, Justus-Liebig-University Giessen and Kerckhoff Clinic, Benekestrasse 2-8, 61231, Bad Nauheim, Germany
| | - Tobias Braun
- Department of Neurology, Justus-Liebig-University Giessen, Klinikstrasse 33, 35392, Giessen, Germany.,Heart & Brain Research Group, Justus-Liebig-University Giessen and Kerckhoff Clinic, Benekestrasse 2-8, 61231, Bad Nauheim, Germany
| | - Nadine Schleicher
- Heart & Brain Research Group, Justus-Liebig-University Giessen and Kerckhoff Clinic, Benekestrasse 2-8, 61231, Bad Nauheim, Germany
| | - Mesut Yeniguen
- Department of Neurology, Justus-Liebig-University Giessen, Klinikstrasse 33, 35392, Giessen, Germany.,Heart & Brain Research Group, Justus-Liebig-University Giessen and Kerckhoff Clinic, Benekestrasse 2-8, 61231, Bad Nauheim, Germany
| | - Patrick Schramm
- Department of Neurology, Justus-Liebig-University Giessen, Klinikstrasse 33, 35392, Giessen, Germany.,Heart & Brain Research Group, Justus-Liebig-University Giessen and Kerckhoff Clinic, Benekestrasse 2-8, 61231, Bad Nauheim, Germany
| | - Tibo Gerriets
- Department of Neurology, Justus-Liebig-University Giessen, Klinikstrasse 33, 35392, Giessen, Germany.,Heart & Brain Research Group, Justus-Liebig-University Giessen and Kerckhoff Clinic, Benekestrasse 2-8, 61231, Bad Nauheim, Germany.,Department of Neurology, Gesundheitszentrum Wetterau, Chaumontplatz 1, 61231, Bad Nauheim, Germany
| | - Nouha Ritschel
- Max-Planck-Institute for Heart and Lung Research, Ludwigstraße 43, 61231, Bad Nauheim, Germany
| | - Georg Bachmann
- Department of Radiology, Kerckhoff Clinic, 61231, Bad Nauheim, Germany
| | - Martin Obert
- Department of Radiology, Justus-Liebig-University Giessen, Klinikstrasse 33, 35392, Giessen, Germany
| | - Markus Schoenburg
- Department of Cardiac Surgery, Kerckhoff Clinic, 61231, Bad Nauheim, Germany
| | - Manfred Kaps
- Department of Neurology, Justus-Liebig-University Giessen, Klinikstrasse 33, 35392, Giessen, Germany
| | - Marlene Tschernatsch
- Department of Neurology, Justus-Liebig-University Giessen, Klinikstrasse 33, 35392, Giessen, Germany.,Heart & Brain Research Group, Justus-Liebig-University Giessen and Kerckhoff Clinic, Benekestrasse 2-8, 61231, Bad Nauheim, Germany.,Department of Neurology, Gesundheitszentrum Wetterau, Chaumontplatz 1, 61231, Bad Nauheim, Germany
| |
Collapse
|
9
|
Léger C, Dupré N, Aligny C, Bénard M, Lebon A, Henry V, Hauchecorne M, Galas L, Frebourg T, Leroux P, Vivien D, Lecointre M, Marret S, Gonzalez BJ. Glutamate controls vessel-associated migration of GABA interneurons from the pial migratory route via NMDA receptors and endothelial protease activation. Cell Mol Life Sci 2020; 77:1959-1986. [PMID: 31392351 PMCID: PMC7229000 DOI: 10.1007/s00018-019-03248-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Revised: 07/08/2019] [Accepted: 07/23/2019] [Indexed: 12/20/2022]
Abstract
During cortex development, fine interactions between pyramidal cells and migrating GABA neurons are required to orchestrate correct positioning of interneurons, but cellular and molecular mechanisms are not yet clearly understood. Functional and age-specific expression of NMDA receptors by neonate endothelial cells suggests a vascular contribution to the trophic role of glutamate during cortical development. Associating functional and loss-of-function approaches, we found that glutamate stimulates activity of the endothelial proteases MMP-9 and t-PA along the pial migratory route (PMR) and radial cortical microvessels. Activation of MMP-9 was NMDAR-dependent and abrogated in t-PA-/- mice. Time-lapse recordings revealed that glutamate stimulated migration of GABA interneurons along vessels through an NMDAR-dependent mechanism. In Gad67-GFP mice, t-PA invalidation and in vivo administration of an MMP inhibitor impaired positioning of GABA interneurons in superficial cortical layers, whereas Grin1 endothelial invalidation resulted in a strong reduction of the thickness of the pial migratory route, a marked decrease of the glutamate-induced MMP-9-like activity along the PMR and a depopulation of interneurons in superficial cortical layers. This study supports that glutamate controls the vessel-associated migration of GABA interneurons by regulating the activity of endothelial proteases. This effect requires endothelial NMDAR and is t-PA-dependent. These neurodevelopmental data reinforce the debate regarding safety of molecules with NMDA-antagonist properties administered to preterm and term neonates.
Collapse
Affiliation(s)
- Cécile Léger
- Normandie University, UNIROUEN, INSERM U1245 and Rouen University Hospital, Department of Neonatal Paediatrics and Intensive Care, F 76000, Normandy Centre for Genomic and Personalized Medicine, Rouen, France
| | - Nicolas Dupré
- Normandie University, UNIROUEN, INSERM U1245 and Rouen University Hospital, Department of Neonatal Paediatrics and Intensive Care, F 76000, Normandy Centre for Genomic and Personalized Medicine, Rouen, France
| | - Caroline Aligny
- Normandie University, UNIROUEN, INSERM U1245 and Rouen University Hospital, Department of Neonatal Paediatrics and Intensive Care, F 76000, Normandy Centre for Genomic and Personalized Medicine, Rouen, France
| | - Magalie Bénard
- Normandie University, UNIROUEN, INSERM, PRIMACEN, Rouen, France
| | - Alexis Lebon
- Normandie University, UNIROUEN, INSERM, PRIMACEN, Rouen, France
| | - Vincent Henry
- Normandie University, UNIROUEN, INSERM U1245 and Rouen University Hospital, Department of Neonatal Paediatrics and Intensive Care, F 76000, Normandy Centre for Genomic and Personalized Medicine, Rouen, France
| | - Michelle Hauchecorne
- Normandie University, UNIROUEN, INSERM U1245 and Rouen University Hospital, Department of Neonatal Paediatrics and Intensive Care, F 76000, Normandy Centre for Genomic and Personalized Medicine, Rouen, France
| | - Ludovic Galas
- Normandie University, UNIROUEN, INSERM, PRIMACEN, Rouen, France
| | - Thierry Frebourg
- Normandie University, UNIROUEN, INSERM U1245 and Rouen University Hospital, Department of Neonatal Paediatrics and Intensive Care, F 76000, Normandy Centre for Genomic and Personalized Medicine, Rouen, France
| | - Philippe Leroux
- Normandie University, UNIROUEN, INSERM U1245 and Rouen University Hospital, Department of Neonatal Paediatrics and Intensive Care, F 76000, Normandy Centre for Genomic and Personalized Medicine, Rouen, France
| | - Denis Vivien
- Inserm, Université Caen-Normandie, Inserm, UMR-S U1237 "Physiopathology and Imaging of Neurological Disorders" (PhIND), GIP Cyceron, Caen, France
- Department of Clinical Research, Caen University Hospital, CHU Caen, Caen, France
| | - Maryline Lecointre
- Normandie University, UNIROUEN, INSERM U1245 and Rouen University Hospital, Department of Neonatal Paediatrics and Intensive Care, F 76000, Normandy Centre for Genomic and Personalized Medicine, Rouen, France
| | - Stéphane Marret
- Normandie University, UNIROUEN, INSERM U1245 and Rouen University Hospital, Department of Neonatal Paediatrics and Intensive Care, F 76000, Normandy Centre for Genomic and Personalized Medicine, Rouen, France
| | - Bruno J Gonzalez
- Normandie University, UNIROUEN, INSERM U1245 and Rouen University Hospital, Department of Neonatal Paediatrics and Intensive Care, F 76000, Normandy Centre for Genomic and Personalized Medicine, Rouen, France.
| |
Collapse
|
10
|
Zechariah A, Tran CHT, Hald BO, Sandow SL, Sancho M, Kim MSM, Fabris S, Tuor UI, Gordon GR, Welsh DG. Intercellular Conduction Optimizes Arterial Network Function and Conserves Blood Flow Homeostasis During Cerebrovascular Challenges. Arterioscler Thromb Vasc Biol 2020; 40:733-750. [PMID: 31826653 PMCID: PMC7058668 DOI: 10.1161/atvbaha.119.313391] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
OBJECTIVE Cerebral arterial networks match blood flow delivery with neural activity. Neurovascular response begins with a stimulus and a focal change in vessel diameter, which by themselves is inconsequential to blood flow magnitude, until they spread and alter the contractile status of neighboring arterial segments. We sought to define the mechanisms underlying integrated vascular behavior and considered the role of intercellular electrical signaling in this phenomenon. Approach and Results: Electron microscopic and histochemical analysis revealed the structural coupling of cerebrovascular cells and the expression of gap junctional subunits at the cell interfaces, enabling intercellular signaling among vascular cells. Indeed, robust vasomotor conduction was detected in human and mice cerebral arteries after focal vessel stimulation: a response attributed to endothelial gap junctional communication, as its genetic alteration attenuated this behavior. Conducted responses were observed to ascend from the penetrating arterioles, influencing the contractile status of cortical surface vessels, in a simulated model of cerebral arterial network. Ascending responses recognized in vivo after whisker stimulation were significantly attenuated in mice with altered endothelial gap junctional signaling confirming that gap junctional communication drives integrated vessel responses. The diminishment in vascular communication also impaired the critical ability of the cerebral vasculature to maintain blood flow homeostasis and hence tissue viability after stroke. CONCLUSIONS Our findings highlight the integral role of intercellular electrical signaling in transcribing focal stimuli into coordinated changes in cerebrovascular contractile activity and expose, a hitherto unknown mechanism for flow regulation after stroke.
Collapse
Affiliation(s)
- Anil Zechariah
- Robarts Research Institute and the Department of Physiology and Pharmacology, University of Western Ontario, London, Ontario, Canada N6A 5B7
| | - Cam Ha T. Tran
- Hotchkiss Brain Institute, Libin Cardiovascular Institute and the Department of Physiology and Pharmacology, University of Calgary, Calgary, Alberta, Canada T2N 4N1
- Department of Physiology and Cell Biology, University of Nevada, Reno, Nevada, USA 89557
| | - Bjorn O. Hald
- Department of Neuroscience, Translational Neurobiology, University of Copenhagen, Blegdamsvej 3, DK-2200 Copenhagen N, Denmark
| | - Shaun L. Sandow
- University of the Sunshine Coast, Locked Bag 4, Maroochydore DC, Queensland 4558 Australia
| | - Maria Sancho
- Robarts Research Institute and the Department of Physiology and Pharmacology, University of Western Ontario, London, Ontario, Canada N6A 5B7
| | - Michelle Sun Mi Kim
- Robarts Research Institute and the Department of Physiology and Pharmacology, University of Western Ontario, London, Ontario, Canada N6A 5B7
| | - Sergio Fabris
- Robarts Research Institute and the Department of Physiology and Pharmacology, University of Western Ontario, London, Ontario, Canada N6A 5B7
| | - Ursula I. Tuor
- Hotchkiss Brain Institute, Libin Cardiovascular Institute and the Department of Physiology and Pharmacology, University of Calgary, Calgary, Alberta, Canada T2N 4N1
| | - Grant R.J. Gordon
- Hotchkiss Brain Institute, Libin Cardiovascular Institute and the Department of Physiology and Pharmacology, University of Calgary, Calgary, Alberta, Canada T2N 4N1
| | - Donald G. Welsh
- Robarts Research Institute and the Department of Physiology and Pharmacology, University of Western Ontario, London, Ontario, Canada N6A 5B7
- Hotchkiss Brain Institute, Libin Cardiovascular Institute and the Department of Physiology and Pharmacology, University of Calgary, Calgary, Alberta, Canada T2N 4N1
| |
Collapse
|
11
|
Nrf2 Plays an Essential Role in Long-Term Brain Damage and Neuroprotection of Korean Red Ginseng in a Permanent Cerebral Ischemia Model. Antioxidants (Basel) 2019; 8:antiox8080273. [PMID: 31382635 PMCID: PMC6721128 DOI: 10.3390/antiox8080273] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Revised: 07/30/2019] [Accepted: 07/30/2019] [Indexed: 12/20/2022] Open
Abstract
Cerebral ischemia is a devastating disease with a high incidence of death and disability; however, effective therapeutics remain limited. The transcriptional factor Nrf2 has been shown to play a pivotal role in the endogenous defense against brain oxidative stress and inflammation, and therefore represents a promising target for stroke intervention. However, the long-term effects of Nrf2 and the standardized Korean red ginseng (ginseng), a potent Nrf2 natural inducer, on permanent cerebral ischemic damage have not yet been reported. Wildtype (WT) and Nrf2-/- adult mice were pretreated with either vehicle or ginseng, and were subjected to permanent distal middle cerebral artery occlusion (pdMCAO). The infarct volume, the reactive astrocytes and microglia, and the water regulatory protein aquaporin 4 (AQP4) were examined at 28 days after stroke. When compared with the WT matched controls, the Nrf2 disruption significantly enlarged the infarct volume (40.4 ± 10.1%) and exacerbated the progression of reactive gliosis and AQP4 protein levels after pdMCAO. In contrast, ginseng significantly reduced the infarct volume and attenuated the reactive gliosis and AQP4 in the ischemic WT mice (47.3 ± 6.9%), but not in the Nrf2-/- mice (25.5 ± 5.6%). In conclusion, Nrf2 plays an important role in the long-term recovery of permanent cerebral ischemic damage and the neuroprotection of ginseng.
Collapse
|
12
|
Moderate Protein Restriction Protects Against Focal Cerebral Ischemia in Mice by Mechanisms Involving Anti-inflammatory and Anti-oxidant Responses. Mol Neurobiol 2019; 56:8477-8488. [PMID: 31257559 PMCID: PMC6835038 DOI: 10.1007/s12035-019-01679-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Accepted: 06/10/2019] [Indexed: 12/02/2022]
Abstract
Food composition influences stroke risk, but its effects on ischemic injury and neurological deficits are poorly examined. While severe reduction of protein content was found to aggravate neurological impairment and brain injury as a consequence of combined energy-protein malnutrition, moderate protein restriction not resulting in energy deprivation was recently suggested to protect against perinatal hypoxia-ischemia. Male C57BL6/j mice were exposed to moderate protein restriction by providing a normocaloric diet containing 8% protein (control: 20% protein) for 7, 14, or 30 days. Intraluminal middle cerebral artery occlusion was then induced. Mice were sacrificed 24 h later. Irrespective of the duration of food modification (that is, 7–30 days), protein restriction reduced neurological impairment of ischemic mice revealed by a global and focal deficit score. Prolonged protein restriction over 30 days also reduced infarct volume, brain edema, and blood-brain barrier permeability and increased the survival of NeuN+ neurons in the core of the stroke (i.e., striatum). Neuroprotection by prolonged protein restriction went along with reduced brain infiltration of CD45+ leukocytes and reduced expression of inducible NO synthase and interleukin-1β. As potential mechanisms, increased levels of the NAD-dependent deacetylase sirtuin-1 and anti-oxidant glutathione peroxidase-3 were noted in ischemic brain tissue. Irrespective of the protein restriction duration, a shift from pro-oxidant oxidative stress markers (NADPH oxidase-4) to anti-oxidant markers (superoxide dismutase-1/2, glutathione peroxidase-3 and catalase) was found in the liver. Moderate protein restriction protects against ischemia in the adult brain. Accordingly, dietary modifications may be efficacious strategies promoting stroke outcome.
Collapse
|
13
|
Kunze R, Marti HH. Angioneurins - Key regulators of blood-brain barrier integrity during hypoxic and ischemic brain injury. Prog Neurobiol 2019; 178:101611. [PMID: 30970273 DOI: 10.1016/j.pneurobio.2019.03.004] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Accepted: 03/29/2019] [Indexed: 12/14/2022]
Abstract
The loss of blood-brain barrier (BBB) integrity leading to vasogenic edema and brain swelling is a common feature of hypoxic/ischemic brain diseases such as stroke, but is also central to the etiology of other CNS disorders. In the past decades, numerous proteins, belonging to the family of angioneurins, have gained increasing attention as potential therapeutic targets for ischemic stroke, but also other CNS diseases attributed to BBB dysfunction. Angioneurins encompass mediators that affect both neuronal and vascular function. Recently, increasing evidence has been accumulated that certain angioneurins critically determine disease progression and outcome in stroke among others through multifaceted effects on the compromised BBB. Here, we will give a concise overview about the family of angioneurins. We further describe the most important cellular and molecular components that contribute to structural integrity and low permeability of the BBB under steady-state conditions. We then discuss BBB alterations in ischemic stroke, and highlight underlying cellular and molecular mechanisms. For the most prominent angioneurin family members including vascular endothelial growth factors, angiopoietins, platelet-derived growth factors and erythropoietin, we will summarize current scientific literature from experimental studies in animal models, and if available from clinical trials, on the following points: (i) spatiotemporal expression of these factors in the healthy and hypoxic/ischemic CNS, (ii) impact of loss- or gain-of-function during cerebral hypoxia/ischemia for BBB integrity and beyond, and (iii) potential underlying molecular mechanisms. Moreover, we will highlight novel therapeutic strategies based on the activation of endogenous angioneurins that might improve BBB dysfuntion during ischemic stroke.
Collapse
Affiliation(s)
- Reiner Kunze
- Institute of Physiology and Pathophysiology, Heidelberg University, Germany.
| | - Hugo H Marti
- Institute of Physiology and Pathophysiology, Heidelberg University, Germany
| |
Collapse
|
14
|
Zhang SJ, Wang RL, Zhao HP, Tao Z, Li JC, Ju F, Han ZP, Ma QF, Liu P, Ma SB, Cao GD, Luo YM. MEPO promotes neurogenesis and angiogenesis but suppresses gliogenesis in mice with acute ischemic stroke. Eur J Pharmacol 2019; 849:1-10. [PMID: 30716313 DOI: 10.1016/j.ejphar.2019.01.066] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Revised: 01/04/2019] [Accepted: 01/17/2019] [Indexed: 02/04/2023]
Abstract
Previously study has proved the non-erythropoietic mutant erythropoietin (MEPO) exerted neuroprotective effects against ischemic cerebral injury, with an efficacy similar to that of wild-type EPO. This study investigates its effects on neurogenesis, angiogenesis, and gliogenesis in cerebral ischemic mice. Male C57BL/6 mice were subjected to middle cerebral artery occlusion (MCAO) and reperfusion. EPO (5000 U/kg), MEPO (5000 U/kg) or equal volume of normal saline was injected intraperitoneally. Neurological function was evaluated by Rota-rod test, Neurological severity scores (NSS) and Adhesive removal test. After ischemia and reperfusion (I/R), the survival rate, brain tissue loss, neurogenesis, angiogenesis and gliogenesis were detected by Nissl staining, Immunofluorescence and Western blot, respectively. The results shown that MEPO significantly increased survival rate, reduced brain tissue loss, and improved neurological function after MCAO (P < 0.05). Furthermore, MEPO obviously enhanced the proliferation of neuronal precursors (DCX) and promoted its differentiation into mature neurons (NeuN) (P < 0.05). In addition, compared to normal saline treatment mice, MEPO increased the number of BrdU-positive cells in the cerebral vasculature (P < 0.05). Whereas, MEPO treatment also reduced the numbers of newly generated astrocytes (GFAP) and microglia (Iba1) (P < 0.05). Among all the tests in this study, there was no significant difference between EPO group and MEPO group. Taken together, MEPO promoted the regeneration of neurons and blood vessels in peripheral area of infarction, and suppressed the gliogenesis, thus promoting neurogenesis, improving neurological function and survival rate. Our findings suggest that the MEPO may be a therapeutic drug for ischemic stroke intervention.
Collapse
Affiliation(s)
- Si-Jia Zhang
- Institute of Cerebrovascular Disease Research and Department of Neurology, Xuanwu Hospital of Capital Medical University, Beijing, China; Beijing Geriatric Medical Research Center and Beijing Key Laboratory of Translational Medicine for Cerebrovascular Diseases, Beijing, China
| | - Rong-Liang Wang
- Institute of Cerebrovascular Disease Research and Department of Neurology, Xuanwu Hospital of Capital Medical University, Beijing, China; Beijing Geriatric Medical Research Center and Beijing Key Laboratory of Translational Medicine for Cerebrovascular Diseases, Beijing, China
| | - Hai-Ping Zhao
- Institute of Cerebrovascular Disease Research and Department of Neurology, Xuanwu Hospital of Capital Medical University, Beijing, China; Beijing Geriatric Medical Research Center and Beijing Key Laboratory of Translational Medicine for Cerebrovascular Diseases, Beijing, China; Beijing Institute for Brain Disorders, Beijing, China
| | - Zhen Tao
- Institute of Cerebrovascular Disease Research and Department of Neurology, Xuanwu Hospital of Capital Medical University, Beijing, China; Beijing Geriatric Medical Research Center and Beijing Key Laboratory of Translational Medicine for Cerebrovascular Diseases, Beijing, China
| | - Jin-Cheng Li
- Department of Neurology, Zibo Central Hospital, Zibo 255036, China
| | - Fei Ju
- Institute of Cerebrovascular Disease Research and Department of Neurology, Xuanwu Hospital of Capital Medical University, Beijing, China; Beijing Geriatric Medical Research Center and Beijing Key Laboratory of Translational Medicine for Cerebrovascular Diseases, Beijing, China
| | - Zi-Ping Han
- Institute of Cerebrovascular Disease Research and Department of Neurology, Xuanwu Hospital of Capital Medical University, Beijing, China; Beijing Geriatric Medical Research Center and Beijing Key Laboratory of Translational Medicine for Cerebrovascular Diseases, Beijing, China; Beijing Institute for Brain Disorders, Beijing, China
| | - Qing-Feng Ma
- Institute of Cerebrovascular Disease Research and Department of Neurology, Xuanwu Hospital of Capital Medical University, Beijing, China
| | - Ping Liu
- Institute of Cerebrovascular Disease Research and Department of Neurology, Xuanwu Hospital of Capital Medical University, Beijing, China
| | - Shu-Bei Ma
- Institute of Cerebrovascular Disease Research and Department of Neurology, Xuanwu Hospital of Capital Medical University, Beijing, China
| | - Guo-Dong Cao
- Department of Neurology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15260, USA; Veterans Affairs Pittsburgh Healthcare System, Pittsburgh, PA 15240, USA
| | - Yu-Min Luo
- Institute of Cerebrovascular Disease Research and Department of Neurology, Xuanwu Hospital of Capital Medical University, Beijing, China; Beijing Geriatric Medical Research Center and Beijing Key Laboratory of Translational Medicine for Cerebrovascular Diseases, Beijing, China; Beijing Institute for Brain Disorders, Beijing, China.
| |
Collapse
|
15
|
Zhang L, Xu J, Gao J, Chen P, Yin M, Zhao W. Decreased immunoglobulin G in brain regions of elder female APOE4-TR mice accompany with Aβ accumulation. IMMUNITY & AGEING 2019; 16:2. [PMID: 30700991 PMCID: PMC6347753 DOI: 10.1186/s12979-018-0142-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Accepted: 12/20/2018] [Indexed: 11/25/2022]
Abstract
Background Apolipoprotein E4 (APOE4) and ageing are the most important known risk factors for late-onset Alzheimer’s disease (AD). In the present study, we determined the alterations of IgG, CD19, and Aβ in various brain regions of uninfected male and female APOE3- and APOE4-TR mice at the age of 3 and 10 months to elucidate impacts of AD risk factors on alterations of brain IgG. Results Positive staining for IgG was distributed across the brain, including neocortex, entorhinal cortex, hippocampus, thalamus and cerebellum. IgG positive staining was mainly located on microglia, but not astrocytes. Some IgG positive neurons were also observed, but only in mediodorsal thalamic nucleus. Compared with APOE3-TR mice, 10-month-old female APOE4-TR mice had lower IgG level in AD susceptible brain regions such as neocortex, entorhinal cortex and hippocampus, but no significant changes in thalamus and cerebellum, two regions nearly intact in AD. In addition, the expression of CD19, a specific marker for mature B cells, was significantly reduced in the hippocampus of 10-month-old female APOE4-TR mice. Although there were no obvious differences in plasma IgG levels between APOE4- and age matched female APOE3-TR mice, significant decreased B cell amount in blood of 10-month-old female APOE4-TR mice have also been found. Moreover, more obvious positive staining for Aβ was observed in the cortex of 10-month-old female APOE4-TR mice than other groups. Conclusions Our study demonstrated that AD risk factors were associated with IgG alterations in various brain regions, which might result from the defects of humoral immunity and lead to the impairment of IgG-mediated clearance of Aβ by microglia, therefore facilitated AD progression.
Collapse
Affiliation(s)
- Lihang Zhang
- School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240 China
| | - Juan Xu
- School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240 China
| | - Jinchao Gao
- School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240 China
| | - Peiqing Chen
- School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240 China
| | - Ming Yin
- School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240 China
| | - Wenjuan Zhao
- School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240 China
| |
Collapse
|
16
|
Liu L, Vollmer MK, Fernandez VM, Dweik Y, Kim H, Doré S. Korean Red Ginseng Pretreatment Protects Against Long-Term Sensorimotor Deficits After Ischemic Stroke Likely Through Nrf2. Front Cell Neurosci 2018; 12:74. [PMID: 29628876 PMCID: PMC5876314 DOI: 10.3389/fncel.2018.00074] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Accepted: 03/02/2018] [Indexed: 12/15/2022] Open
Abstract
Endogenous neuroprotective mechanisms by which the brain protects itself against noxious stimuli and recovers from ischemic damage are key targets of stroke research, ultimately facilitating functional recovery. Transcriptional factor Nrf2, enriched in astrocytes, is a master regulator of endogenous defense systems against oxidative stress and inflammation. Korean Red Ginseng (Ginseng), one most widely used herbal medicine, has exhibited promising potentials in neuroprotection. Our study aimed to determine whether the standardized Ginseng extract pretreatment could attenuate acute sensorimotor deficits and improve long-term functional recovery after ischemic stroke though Nrf2 pathway and whether reactive astrogliosis is associated with such effect. Adult Nrf2−/− and matched wildtype control (WT) mice were pretreated with Ginseng orally for 7 days prior to permanent distal middle cerebral artery occlusion (pdMCAO). Using an optimized method that can accurately assess either severe or mild pdMCAO-induced sensorimotor deficits, neurobehavioral tests were performed over 28 days. The progression of lesion volume and the evolution of astrocytic and microglial activation were determined in the acute stage of ischemic stroke after pdMCAO (0–3 days). Nrf2-downstream target antioxidant genes expression levels was assessed by Western blot. We found that Ginseng pretreatment ameliorated acute sensorimotor deficits and promoted long-term functional recovery, prevented the acute enlargement of lesion volume (36.37 ± 7.45% on day 3), attenuated reactive astroglial progression but not microglia activation, and enhanced the induction of Nrf2-downstream target proteins after ischemic insult in WT mice, an effect which was lost in Nrf2 knockouts. The spatiotemporal pattern of reactive astrogliosis evaluation correlated well with acute ischemic damage progression in an Nrf2-dependent fashion during the acute phase of ischemia. In contrast, Nrf2 deficiency mice exhibited exacerbated ischemic condition compared to WT controls. Together, Ginseng pretreatment protects against acute sensorimotor deficits and promotes its long-term recovery after pdMCAO, at least partly, through Nrf2 activation, highlighting the potential efficacy of oral consumption of Ginseng for stroke preventative intervention in patients who are at great risk of recurrent stroke or transient ischemic attack. The attenuated reactive astrogliosis contributes to the Nrf2 pathway related neuroprotection against acute ischemic outcome and substantially long-term sensorimotor deficits in the context of ischemic stroke under pdMCAO.
Collapse
Affiliation(s)
- Lei Liu
- Department of Anesthesiology, Center for Translational Research in Neurodegenerative Disease and McKnight Brain Institute, University of Florida, Gainesville, FL, United States
| | - Mary K Vollmer
- Department of Anesthesiology, Center for Translational Research in Neurodegenerative Disease and McKnight Brain Institute, University of Florida, Gainesville, FL, United States
| | - Victoria M Fernandez
- Department of Anesthesiology, Center for Translational Research in Neurodegenerative Disease and McKnight Brain Institute, University of Florida, Gainesville, FL, United States
| | - Yasmin Dweik
- Department of Anesthesiology, Center for Translational Research in Neurodegenerative Disease and McKnight Brain Institute, University of Florida, Gainesville, FL, United States
| | - Hocheol Kim
- Department of Herbal Pharmacology, College of Korean Medicine, Kyung Hee University, Seoul, South Korea
| | - Sylvain Doré
- Department of Anesthesiology, Center for Translational Research in Neurodegenerative Disease and McKnight Brain Institute, University of Florida, Gainesville, FL, United States.,Departments of Neurology, Psychiatry, Pharmaceutics, Psychology and Neuroscience, University of Florida, Gainesville, FL, United States
| |
Collapse
|
17
|
Komnig D, Gertz K, Habib P, Nolte KW, Meyer T, Brockmann MA, Endres M, Rathkolb B, Hrabě de Angelis M, Schulz JB, Falkenburger BH, Reich A. Faim2 contributes to neuroprotection by erythropoietin in transient brain ischemia. J Neurochem 2018; 145:258-270. [PMID: 29315561 DOI: 10.1111/jnc.14296] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Revised: 12/22/2017] [Accepted: 12/23/2017] [Indexed: 11/28/2022]
Abstract
Delayed cell death in the penumbra region of acute ischemic stroke occurs through apoptotic mechanisms, making it amenable to therapeutic interventions. Fas/CD95 mediates apoptotic cell death in response to external stimuli. In mature neurons, Fas/CD95 signaling is modulated by Fas-apoptotic inhibitory molecule 2 (Faim2), which reduces cell death in animal models of stroke, meningitis, and Parkinson disease. Erythropoietin (EPO) has been studied as a therapeutic strategy in ischemic stroke. Erythropoietin stimulates the phosphatidylinositol-3 kinase/Akt (PI3K/Akt) pathway, which regulates Faim2 expression. Therefore, up-regulation of Faim2 may contribute to neuroprotection by EPO. Male Faim2-deficient mice (Faim2-/- ) and wild-type littermates (WT) were subjected to 30 min of middle cerebral artery occlusion (MCAo) followed by 72 h of reperfusion. EPO was applied before (30 min) and after (24 and 48 h) MCAo. In WT mice application of EPO at a low dose (5000 U/kg) significantly reduced stroke volume, whereas treatment with high dose (90 000 U/kg) did not. In Faim2-/- animals administration of low-dose EPO did not result in a significant reduction in stroke volume. Faim2 expression as measured by quantitative reverse transcription polymerase chain reaction (qRT-PCR) increased after low-dose EPO but not with high dose. An extensive phenotyping including analysis of cerebral vessel architecture did not reveal confounding differences between the genotypes. In human post-mortem brain Faim2 displayed a differential expression in areas of penumbral ischemia. Faim2 up-regulation may contribute to the neuroprotective effects of low-dose erythropoietin in transient brain ischemia. The dose-dependency may explain mixed effects of erythropoietin observed in clinical stroke trials.
Collapse
Affiliation(s)
- Daniel Komnig
- Department of Neurology, RWTH Aachen University, Aachen, Germany
| | - Karen Gertz
- Department of Neurology, Charité Universitätsmedizin Berlin, Berlin, Germany.,Center for Stroke Research Berlin, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Pardes Habib
- Department of Neurology, RWTH Aachen University, Aachen, Germany
| | - Kay W Nolte
- Institute of Neuropathology, RWTH Aachen University, Aachen, Germany
| | - Tareq Meyer
- Department of Diagnostic and Interventional Neuroradiology, University Hospital RWTH Aachen, Aachen, Germany
| | - Marc A Brockmann
- Department of Neuroradiology, University Medical Centre of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Matthias Endres
- Department of Neurology, Charité Universitätsmedizin Berlin, Berlin, Germany.,Center for Stroke Research Berlin, Charité Universitätsmedizin Berlin, Berlin, Germany.,Excellence Cluster NeuroCure, Berlin, Germany.,German Center for Neurodegenerative Disease (DZNE), Berlin, Germany.,German Center for Cardiovascular Research (DZHK), Berlin, Germany
| | - Birgit Rathkolb
- German Mouse Clinic, Institute of Experimental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health GmbH, Neuherberg, Germany.,Ludwig-Maximilians-Universität München, Gene Center, Institute of Molecular Animal Breeding and Biotechnology, München, Germany.,German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - Martin Hrabě de Angelis
- German Mouse Clinic, Institute of Experimental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health GmbH, Neuherberg, Germany.,German Center for Diabetes Research (DZD), Neuherberg, Germany.,Chair of Experimental Genetics, Center of Life and Food Sciences Weihenstephan, Technische Universität München, Freising-Weihenstephan, Germany
| | | | - Jörg B Schulz
- Department of Neurology, RWTH Aachen University, Aachen, Germany.,JARA-BRAIN Institute Molecular Neuroscience and Neuroimaging, Forschungszentrum Jülich GmbH and RWTH Aachen University, Aachen, Germany
| | - Björn H Falkenburger
- Department of Neurology, RWTH Aachen University, Aachen, Germany.,JARA-BRAIN Institute Molecular Neuroscience and Neuroimaging, Forschungszentrum Jülich GmbH and RWTH Aachen University, Aachen, Germany
| | - Arno Reich
- Department of Neurology, RWTH Aachen University, Aachen, Germany
| |
Collapse
|
18
|
Thériault P, Le Béhot A, ElAli A, Rivest S. Sub-acute systemic erythropoietin administration reduces ischemic brain injury in an age-dependent manner. Oncotarget 2018; 7:35552-35561. [PMID: 27248662 PMCID: PMC5094944 DOI: 10.18632/oncotarget.9652] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Accepted: 05/19/2016] [Indexed: 12/26/2022] Open
Abstract
Stroke is associated with neuroinflammation, neuronal loss and blood-brain barrier (BBB) breakdown. Thus far, recombinant tissue-type plasminogen activator (rtPA), the only approved treatment for acute ischemic stroke, increases the risk of intracerebral hemorrhage and is poorly efficient in disaggregating platelet-rich thrombi. Therefore, the development of safer and more efficient therapies is highly awaited. Encouraging neuroprotective effects were reported in mouse models of ischemic stroke following administration of erythropoietin (EPO). However, previous preclinical studies did not investigate the effects of EPO in focal ischemic stroke induced by a platelet-rich thrombus and did not consider the implication of age. Here, we performed middle cerebral artery occlusion by inducing platelet-rich thrombus formation in chimeric 5- (i.e. young) and 20- (i.e. aged) months old C57BL/6 mice, in which hematopoietic stem cells carried the green fluorescent protein (GFP)-tag. Recombinant human EPO (rhEPO) was administered 24 hours post-occlusion and blood-circulating monocyte populations were studied by flow cytometry 3 hours post-rhEPO administration. Twenty-four hours following rhEPO treatment, neuronal loss and BBB integrity were assessed by quantification of Fluoro-Jade B (FJB)-positive cells and extravasated serum immunoglobulins G (IgG), respectively. Neuroinflammation was determined by quantifying infiltration of GFP-positive bone marrow-derived cells (BMDC) and recruitment of microglial cells into brain parenchyma, along with monocyte chemotactic protein-1 (MCP-1) brain protein levels. Here, rhEPO anti-inflammatory properties rescued ischemic injury by reducing neuronal loss and BBB breakdown in young animals, but not in aged littermates. Such age-dependent effects of rhEPO must therefore be taken into consideration in future studies aiming to develop new therapies for ischemic stroke.
Collapse
Affiliation(s)
- Peter Thériault
- Neuroscience Laboratory, CHU de Québec Research Center and Department of Molecular Medicine, Faculty of Medicine, Laval University, Québec City, QC, Canada
| | - Audrey Le Béhot
- Neuroscience Laboratory, CHU de Québec Research Center and Department of Molecular Medicine, Faculty of Medicine, Laval University, Québec City, QC, Canada
| | - Ayman ElAli
- Neuroscience Laboratory, CHU de Québec Research Center and Department of Psychiatry and Neuroscience, Faculty of Medicine, Laval University, Québec City, QC, Canada
| | - Serge Rivest
- Neuroscience Laboratory, CHU de Québec Research Center and Department of Molecular Medicine, Faculty of Medicine, Laval University, Québec City, QC, Canada
| |
Collapse
|
19
|
Annexin A2 Plus Low-Dose Tissue Plasminogen Activator Combination Attenuates Cerebrovascular Dysfunction After Focal Embolic Stroke of Rats. Transl Stroke Res 2017; 8:549-559. [PMID: 28580536 DOI: 10.1007/s12975-017-0542-6] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Revised: 05/18/2017] [Accepted: 05/23/2017] [Indexed: 02/06/2023]
Abstract
Previous studies showed recombinant annexin A2 (rA2) in combination with low-dose tissue-type plasminogen activator (tPA) improved thrombolytic efficacy and long-term neurological outcomes after embolic focal ischemia in rats. The objective of this study was to investigate the effects and mechanisms of the combination in early BBB integrity and cerebrovascular patency in the rat focal embolic stroke model. Ischemic brain infarct volume and hemorrhagic transformation were quantified at 24 h after stroke. At an earlier time point, 16 h after stroke, BBB integrity was evaluated by IgG extravasation, and the involved mechanisms were assessed for tight junction ZO-1 and adhesion junction ve-cadherin protein expression, matrix metalloproteinase activation, extracellular matrix collagen IV and endothelial barrier antigen expression, and activation of microglia/macrophages and astrocytes. While at the same time point, cerebrovascular patency was assessed by intravascular fibrin and platelet depositions. At 24 h after stroke, the combination showed significant reduction in brain infarction and intracerebral hemorrhage. At 16 h after stroke onset, the combination therapy significantly reduced BBB disruption, and improved preservation of the junction proteins ZO-1 and ve-cadherin, decreased activation of matrix metalloproteinase, inhibited degradation of extracellular matrix collagen IV and endothelial barrier antigen, and reduced microglia/macrophage and astrocytes activations. Meanwhile, the combination also significantly improved cerebrovascular patency by reducing intravascular fibrin and platelet depositions in the peri-infarct brain tissues. These results suggest the beneficial effects of the rA2 plus low-dose tPA combination may be mediated in part by the amelioration of BBB disruption and improvement of cerebrovascular patency.
Collapse
|
20
|
Endogenous regeneration: Engineering growth factors for stroke. Neurochem Int 2017; 107:57-65. [PMID: 28411103 DOI: 10.1016/j.neuint.2017.03.024] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Revised: 03/30/2017] [Accepted: 03/31/2017] [Indexed: 12/31/2022]
Abstract
Despite the efforts in developing therapeutics for stroke, recombinant tissue plasminogen activator (rtPA) remains the only FDA approved drug for ischemic stroke. Regenerative medicine targeting endogenous growth factors has drawn much interest in the clinical field as it provides potential restoration for the damaged brain tissue without being limited by a narrow therapeutic window. To date, most of the translational studies using regenerative medicines have encountered problems and failures. In this review, we discuss the effects of some trophic factors which include of erythropoietin (EPO), brain derived neurotrophic factor (BDNF), granulocyte-colony stimulating factor (G-CSF), vascular endothelial growth factor (VEGF), fibroblast growth factor (FGF), epidermal growth factor (EGF) and heparin binding epidermal growth factor (HB-EGF) in experimental ischemic stroke models and elaborate the lost in translation of the candidate growth factors from bench to bedside. Several new methodologies have been developed to overcome the caveats in translational studies. This review highlights the latest bioengineering approaches including the controlled release and delivery of growth factors by hydrogel-based scaffolds and the enhancement of half-life and selectivity of growth factors by a novel approach facilitated by glycosaminoglycans.
Collapse
|
21
|
Wu WJ, Jiang CJ, Zhang ZY, Xu K, Li W. Diffusion-weighted magnetic resonance imaging reflects activation of signal transducer and activator of transcription 3 during focal cerebral ischemia/reperfusion. Neural Regen Res 2017; 12:1124-1130. [PMID: 28852395 PMCID: PMC5558492 DOI: 10.4103/1673-5374.211192] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Signal transducer and activator of transcription (STAT) is a unique protein family that binds to DNA, coupled with tyrosine phosphorylation signaling pathways, acting as a transcriptional regulator to mediate a variety of biological effects. Cerebral ischemia and reperfusion can activate STATs signaling pathway, but no studies have confirmed whether STAT activation can be verified by diffusion-weighted magnetic resonance imaging (DWI) in rats after cerebral ischemia/reperfusion. Here, we established a rat model of focal cerebral ischemia injury using the modified Longa method. DWI revealed hyperintensity in parts of the left hemisphere before reperfusion and a low apparent diffusion coefficient. STAT3 protein expression showed no significant change after reperfusion, but phosphorylated STAT3 expression began to increase after 30 minutes of reperfusion and peaked at 24 hours. Pearson correlation analysis showed that STAT3 activation was correlated positively with the relative apparent diffusion coefficient and negatively with the DWI abnormal signal area. These results indicate that DWI is a reliable representation of the infarct area and reflects STAT phosphorylation in rat brain following focal cerebral ischemia/reperfusion.
Collapse
Affiliation(s)
- Wen-Juan Wu
- Department of Radiology, Nanjing Medical Unversity Affiliated Wuxi Second People's Hospital, Wuxi, Jiangsu Province, China.,Department of Radiology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu Province, China
| | - Chun-Juan Jiang
- Department of Radiology, Nanjing Medical Unversity Affiliated Wuxi Second People's Hospital, Wuxi, Jiangsu Province, China
| | - Zhui-Yang Zhang
- Department of Radiology, Nanjing Medical Unversity Affiliated Wuxi Second People's Hospital, Wuxi, Jiangsu Province, China
| | - Kai Xu
- Department of Radiology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu Province, China
| | - Wei Li
- Department of Radiology, Nanjing Medical Unversity Affiliated Wuxi Second People's Hospital, Wuxi, Jiangsu Province, China
| |
Collapse
|
22
|
Zhang X, Chen XP, Lin JB, Xiong Y, Liao WJ, Wan Q. Effect of enriched environment on angiogenesis and neurological functions in rats with focal cerebral ischemia. Brain Res 2016; 1655:176-185. [PMID: 27818208 DOI: 10.1016/j.brainres.2016.11.001] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2016] [Revised: 10/25/2016] [Accepted: 11/01/2016] [Indexed: 12/14/2022]
Abstract
The purpose of this study was to investigate the effect of enriched environment (EE) on cerebral angiogenesis after ischemia-reperfusion injury. Middle cerebral artery occlusion (MCAO) followed by reperfusion was performed in rats to set up an animal model of ischemia-reperfusion injury. In a set of behavioral tests, we demonstrated that the animals in the IEE (ischemia + enriched environment) group exhibited significantly improved neurological functions compared to those in the standard housing condition group. In consistent with the functional tests, smaller infarction volumes were observed in the animals of IEE group. Laser scanning confocal microscopy and 3D quantitative analysis of cerebral microvessels revealed that EE treatment increased the total vessel surface area and number of branch point in the ischemic boundary zone. IgG extraction assay showed that the blood brain barrier (BBB) leakage in the ischemic brain was attenuated after EE treatment. EE treatment also enhanced endothelial cells (ECs) proliferation and increased the expression levels of VEGF and its receptor Flk-1 after ischemia-reperfusion injury. Analyses of Spearman's correlation coefficients indicated a correlation of mNSS scores with enhanced cerebral angiogenesis. Together, the results suggest that EE treatment-induced cerebral angiogenesis may contribute to the improved neurological outcome of stroke animals after ischemia-reperfusion injury.
Collapse
Affiliation(s)
- Xin Zhang
- Department of Rehabilitation Medicine, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Xiu-Ping Chen
- Department of Rehabilitation Medicine, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Jun-Bin Lin
- Department of Rehabilitation Medicine, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Yu Xiong
- Institute of Hepatobiliary Diseases of Wuhan University, Transplant Center of Wuhan University, Hubei Key Laboratory of Medical Technology on Transplantation, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Wei-Jing Liao
- Department of Rehabilitation Medicine, Zhongnan Hospital of Wuhan University, Wuhan 430071, China.
| | - Qi Wan
- Department of Physiology, Center for Brain Clinic, Zhongnan Hospital, Collaborative Innovation Center for Brain Science, School of Medicine, Wuhan University, Wuhan 430071, China.
| |
Collapse
|
23
|
Jiang CJ, Wang ZJ, Zhao YJ, Zhang ZY, Tao JJ, Ma JY. Erythropoietin reduces apoptosis of brain tissue cells in rats after cerebral ischemia/reperfusion injury: a characteristic analysis using magnetic resonance imaging. Neural Regen Res 2016; 11:1450-1455. [PMID: 27857749 PMCID: PMC5090848 DOI: 10.4103/1673-5374.191219] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/03/2016] [Indexed: 11/23/2022] Open
Abstract
Some in vitro experiments have shown that erythropoietin (EPO) increases resistance to apoptosis and facilitates neuronal survival following cerebral ischemia. However, results from in vivo studies are rarely reported. Perfusion-weighted imaging (PWI) and diffusion-weighted imaging (DWI) have been applied successfully to distinguish acute cerebral ischemic necrosis and penumbra in living animals; therefore, we hypothesized that PWI and DWI could be used to provide imaging evidence in vivo for the conclusion that EPO could reduce apoptosis in brain areas injured by cerebral ischemia/reperfusion. To validate this hypothesis, we established a rat model of focal cerebral ischemia/reperfusion injury, and treated with intra-cerebroventricular injection of EPO (5,000 U/kg) 20 minutes before injury. Brain tissue in the ischemic injury zone was sampled using MRI-guided localization. The relative area of abnormal tissue, changes in PWI and DWI in the ischemic injury zone, and the number of apoptotic cells based on TdT-mediated dUTP-biotin nick end-labeling (TUNEL) were assessed. Our findings demonstrate that EPO reduces the relative area of abnormally high signal in PWI and DWI, increases cerebral blood volume, and decreases the number of apoptotic cells positive for TUNEL in the area injured by cerebral ischemia/reperfusion. The experiment provides imaging evidence in vivo for EPO treating cerebral ischemia/reperfusion injury.
Collapse
Affiliation(s)
- Chun-juan Jiang
- Department of Radiology, Wuxi Second People's Hospital Affiliated to Nanjing Medical University, Wuxi, Jiangsu Province, China
| | - Zhong-juan Wang
- Department of Radiology, Wuxi Second People's Hospital Affiliated to Nanjing Medical University, Wuxi, Jiangsu Province, China
| | - Yan-jun Zhao
- Department of Radiology, Wuxi Second People's Hospital Affiliated to Nanjing Medical University, Wuxi, Jiangsu Province, China
| | - Zhui-yang Zhang
- Department of Radiology, Wuxi Second People's Hospital Affiliated to Nanjing Medical University, Wuxi, Jiangsu Province, China
| | - Jing-jing Tao
- Department of Radiology, Wuxi Second People's Hospital Affiliated to Nanjing Medical University, Wuxi, Jiangsu Province, China
| | - Jian-yong Ma
- Department of Radiology, Wuxi Second People's Hospital Affiliated to Nanjing Medical University, Wuxi, Jiangsu Province, China
| |
Collapse
|
24
|
Dong MX, Hu QC, Shen P, Pan JX, Wei YD, Liu YY, Ren YF, Liang ZH, Wang HY, Zhao LB, Xie P. Recombinant Tissue Plasminogen Activator Induces Neurological Side Effects Independent on Thrombolysis in Mechanical Animal Models of Focal Cerebral Infarction: A Systematic Review and Meta-Analysis. PLoS One 2016; 11:e0158848. [PMID: 27387385 PMCID: PMC4936748 DOI: 10.1371/journal.pone.0158848] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2016] [Accepted: 06/22/2016] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND AND PURPOSE Recombinant tissue plasminogen activator (rtPA) is the only effective drug approved by US FDA to treat ischemic stroke, and it contains pleiotropic effects besides thrombolysis. We performed a meta-analysis to clarify effect of tissue plasminogen activator (tPA) on cerebral infarction besides its thrombolysis property in mechanical animal stroke. METHODS Relevant studies were identified by two reviewers after searching online databases, including Pubmed, Embase, and ScienceDirect, from 1979 to 2016. We identified 6, 65, 17, 12, 16, 12 and 13 comparisons reporting effect of endogenous tPA on infarction volume and effects of rtPA on infarction volume, blood-brain barrier, brain edema, intracerebral hemorrhage, neurological function and mortality rate in all 47 included studies. Standardized mean differences for continuous measures and risk ratio for dichotomous measures were calculated to assess the effects of endogenous tPA and rtPA on cerebral infarction in animals. The quality of included studies was assessed using the Stroke Therapy Academic Industry Roundtable score. Subgroup analysis, meta-regression and sensitivity analysis were performed to explore sources of heterogeneity. Funnel plot, Trim and Fill method and Egger's test were obtained to detect publication bias. RESULTS We found that both endogenous tPA and rtPA had not enlarged infarction volume, or deteriorated neurological function. However, rtPA would disrupt blood-brain barrier, aggravate brain edema, induce intracerebral hemorrhage and increase mortality rate. CONCLUSIONS This meta-analysis reveals rtPA can lead to neurological side effects besides thrombolysis in mechanical animal stroke, which may account for clinical exacerbation for stroke patients that do not achieve vascular recanalization with rtPA.
Collapse
Affiliation(s)
- Mei-Xue Dong
- Department of Neurology, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Institute of Neuroscience and the Collaborative Innovation Center for Brain Science, Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Neurobiology, Chongqing, China
| | - Qing-Chuan Hu
- Chongqing Key Laboratory of Neurobiology, Chongqing, China
| | - Peng Shen
- Department of Neurology, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Jun-Xi Pan
- Chongqing Key Laboratory of Neurobiology, Chongqing, China
| | - You-Dong Wei
- Department of Neurology, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yi-Yun Liu
- Department of Neurology, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yi-Fei Ren
- Department of Neurology, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Zi-Hong Liang
- Department of Neurology, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Hai-Yang Wang
- Chongqing Key Laboratory of Neurobiology, Chongqing, China
| | - Li-Bo Zhao
- Department of Neurology, Yongchuan Hospital of Chongqing Medical University, Chongqing, China
| | - Peng Xie
- Department of Neurology, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Institute of Neuroscience and the Collaborative Innovation Center for Brain Science, Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Neurobiology, Chongqing, China
| |
Collapse
|
25
|
Wang R, Wu X, Zhao H, Min L, Tao Z, Ji X, Luo Y. Effects of erythropoietin combined with tissue plasminogen activator on the rats following cerebral ischemia and reperfusion. Brain Circ 2016; 2:54-60. [PMID: 30276273 PMCID: PMC6126244 DOI: 10.4103/2394-8108.178552] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2015] [Revised: 01/18/2016] [Accepted: 01/27/2016] [Indexed: 11/04/2022] Open
Abstract
OBJECTIVES: Exogenously administered recombinant human erythropoietin (rhEPO) has been reported to exhibit neuroprotective effects in animal models. However, there are still have some controversies that combination of EPO and tissue plasminogen activator (tPA) in acute ischemic stroke. In the present study, we investigated the effects of local intra-arterial infusion of low-dose EPO in combination with tPA on focal cerebral ischemic stroke. MATERIALS AND METHODS: Sixty adult male Sprague–Dawley rats were randomly divided into five groups, including sham, vehicle, EPO, tPA, and EPO+tPA groups. Rats were subjected to middle cerebral artery occlusion (MCAO) and administrated with EPO (800 U/kg, middle cerebral artery injection), tPA (10 mg/kg, tail vein injection), EPO+tPA, or saline (vehicle) onset of reperfusion. Neurobehavioral deficits, infarct volume, brain edema, the expression of tight junction proteins (Claudin-5, Occludin), and AQP4 were assessed following 2 h ischemia and 24 h reperfusion. The number of apoptotic cells in the periinfarct region was detected by the terminal deoxyribonucleotide transferase dUTP nick end labeling (TUNEL) staining. RESULTS: The neurobehavioral deficits, brain infarct volume, edema volume, TUNEL-positive cells and downregulation of Claudin-5 and Occludin were alleviated by EPO or EPO plus tPA, following the ischemia/reperfusion (I/R) in rats. The EPO and EPO plus tPA both reduced the upregulation of AQP4 in the ischemic brain tissue. CONCLUSION: Our data demonstrate local intra-arterial infusion of low-dose EPO in combination with tPA protected against focal cerebral ischemia in rats manifested by a decrease in brain edema and blood-brain barrier (BBB) disruption after 2 h ischemia and 24 h reperfusion.
Collapse
Affiliation(s)
- Rongliang Wang
- Cerebrovascular Diseases Research Institute, Xuanwu Hospital of Capital Medical University, Beijing, China.,Beijing Institute for Brain Disorders, Beijing, China
| | - Xiaoning Wu
- Department of Neurology, Yingkou Central Hospital, Liaoning Province, China
| | - Haiping Zhao
- Cerebrovascular Diseases Research Institute, Xuanwu Hospital of Capital Medical University, Beijing, China.,Beijing Institute for Brain Disorders, Beijing, China
| | - Lianqiu Min
- Department of Neurology, Yingkou Central Hospital, Liaoning Province, China
| | - Zhen Tao
- Cerebrovascular Diseases Research Institute, Xuanwu Hospital of Capital Medical University, Beijing, China.,Beijing Institute for Brain Disorders, Beijing, China
| | - Xunming Ji
- Cerebrovascular Diseases Research Institute, Xuanwu Hospital of Capital Medical University, Beijing, China.,Beijing Institute for Brain Disorders, Beijing, China
| | - Yumin Luo
- Cerebrovascular Diseases Research Institute, Xuanwu Hospital of Capital Medical University, Beijing, China.,Beijing Institute for Brain Disorders, Beijing, China
| |
Collapse
|
26
|
Ingberg E, Dock H, Theodorsson E, Theodorsson A, Ström JO. Method parameters' impact on mortality and variability in mouse stroke experiments: a meta-analysis. Sci Rep 2016; 6:21086. [PMID: 26876353 PMCID: PMC4753409 DOI: 10.1038/srep21086] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2015] [Accepted: 01/13/2016] [Indexed: 12/17/2022] Open
Abstract
Although hundreds of promising substances have been tested in clinical trials,
thrombolysis currently remains the only specific pharmacological treatment for
ischemic stroke. Poor quality, e.g. low statistical power, in the preclinical
studies has been suggested to play an important role in these failures. Therefore,
it would be attractive to use animal models optimized to minimize unnecessary
mortality and outcome variability, or at least to be able to power studies more
exactly by predicting variability and mortality given a certain experimental setup.
The possible combinations of methodological parameters are innumerous, and an
experimental comparison of them all is therefore not feasible. As an alternative
approach, we extracted data from 334 experimental mouse stroke articles and, using a
hypothesis-driven meta-analysis, investigated the method parameters’
impact on infarct size variability and mortality. The use of Swiss and C57BL6 mice
as well as permanent occlusion of the middle cerebral artery rendered the lowest
variability of the infarct size while the emboli methods increased variability. The
use of Swiss mice increased mortality. Our study offers guidance for researchers
striving to optimize mouse stroke models.
Collapse
Affiliation(s)
- Edvin Ingberg
- Division of Microbiology and Molecular Medicine, Department of Clinical and Experimental Medicine, Linköping University, Department of Clinical Chemistry, Center for Diagnostics, Region Östergötland, Sweden
| | - Hua Dock
- Division of Microbiology and Molecular Medicine, Department of Clinical and Experimental Medicine, Linköping University, Department of Clinical Chemistry, Center for Diagnostics, Region Östergötland, Sweden
| | - Elvar Theodorsson
- Division of Microbiology and Molecular Medicine, Department of Clinical and Experimental Medicine, Linköping University, Department of Clinical Chemistry, Center for Diagnostics, Region Östergötland, Sweden
| | - Annette Theodorsson
- Division of Microbiology and Molecular Medicine, Department of Clinical and Experimental Medicine, Linköping University, Department of Clinical Chemistry, Center for Diagnostics, Region Östergötland, Sweden.,Division of Neuro and Inflammation Science, Department of Clinical and Experimental Medicine, Linköping University, Department of Neurosurgery, Anaesthetics, Operations and Specialty Surgery Center, Region Östergötland, Sweden
| | - Jakob O Ström
- Division of Microbiology and Molecular Medicine, Department of Clinical and Experimental Medicine, Linköping University, Department of Clinical Chemistry, Center for Diagnostics, Region Östergötland, Sweden.,Vårdvetenskapligt Forskningscentrum/Centre for Health Sciences, Örebro University Hospital, County Council of Örebro, Örebro, Sweden.,School of Health and Medical Sciences, Örebro University, Örebro, Sweden
| |
Collapse
|
27
|
Collino M, Thiemermann C, Cerami A, Brines M. Flipping the molecular switch for innate protection and repair of tissues: Long-lasting effects of a non-erythropoietic small peptide engineered from erythropoietin. Pharmacol Ther 2015; 151:32-40. [DOI: 10.1016/j.pharmthera.2015.02.005] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2015] [Accepted: 02/18/2015] [Indexed: 01/25/2023]
|
28
|
Cannabinoids in experimental stroke: a systematic review and meta-analysis. J Cereb Blood Flow Metab 2015; 35:348-58. [PMID: 25492113 PMCID: PMC4348386 DOI: 10.1038/jcbfm.2014.218] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2014] [Revised: 11/04/2014] [Accepted: 11/05/2014] [Indexed: 11/08/2022]
Abstract
Cannabinoids (CBs) show promise as neuroprotectants with some agents already licensed in humans for other conditions. We systematically reviewed CBs in preclinical stroke to guide further experimental protocols. We selected controlled studies assessing acute administration of CBs for experimental stroke, identified through systematic searches. Data were extracted on lesion volume, outcome and quality, and analyzed using random effect models. Results are expressed as standardized mean difference (SMD) with 95% confidence intervals (CIs). In all, 144 experiments (34 publications) assessed CBs on infarct volume in 1,473 animals. Cannabinoids reduced infarct volume in transient (SMD -1.41 (95% CI -1.71), -1.11) P<0.00001) and permanent (-1.67 (-2.08, -1.27), P<0.00001) ischemia and in all subclasses: endocannabinoids (-1.72 (-2.62, -0.82), P=0.0002), CB1/CB2 ligands (-1.75 (-2.19, -1.31), P<0.00001), CB2 ligands (-1.65 (-2.09, -1.22), P<0.00001), cannabidiol (-1.20 (-1.63, -0.77), P<0.00001), Δ(9)-tetrahydrocannabinol (-1.43 (-2.01, -0.86), P<0.00001), and HU-211 (-2.90 (-4.24, -1.56), P<0.0001). Early and late neuroscores significantly improved with CB use (-1.27 (-1.58, -0.95), P<0.00001; -1.63 (-2.64, -0.62), P<0.002 respectively) and there was no effect on survival. Statistical heterogeneity and publication bias was present, median study quality was 4 (range 1 to 6/8). Overall, CBs significantly reduced infarct volume and improve functional outcome in experimental stroke. Further studies in aged, female and larger animals, with other co-morbidities are required.
Collapse
|
29
|
Affiliation(s)
- Wolf-Rüdiger Schäbitz
- From the Department of Neurology, EvKB-Bethel, Bielefeld, Germany (W.-R.S.); and Center for Stroke Research, Charite Universitätsmedizin, Berlin, Germany (U.D.)
| | - Ulrich Dirnagl
- From the Department of Neurology, EvKB-Bethel, Bielefeld, Germany (W.-R.S.); and Center for Stroke Research, Charite Universitätsmedizin, Berlin, Germany (U.D.)
| |
Collapse
|
30
|
Dirnagl U, Endres M. Found in translation: preclinical stroke research predicts human pathophysiology, clinical phenotypes, and therapeutic outcomes. Stroke 2014; 45:1510-8. [PMID: 24652307 DOI: 10.1161/strokeaha.113.004075] [Citation(s) in RCA: 109] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Affiliation(s)
- Ulrich Dirnagl
- From the Departments of Neurology and Experimental Neurology, Center for Stroke Research Berlin, and Excellence Cluster NeuroCure, Charité-Universitätsmedizin Berlin, Berlin, Germany (U.D., M.E.); German Center for Neurodegeneration Research (DZNE), Partner Site, Berlin, Germany (U.D.); and German Center for Cardiovascular Diseases (DZHK), Partner Site, Berlin, Germany (U.D., M.E.)
| | | |
Collapse
|
31
|
Candesartan reduces the hemorrhage associated with delayed tissue plasminogen activator treatment in rat embolic stroke. Neurochem Res 2013; 38:2668-77. [PMID: 24194350 DOI: 10.1007/s11064-013-1185-y] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2013] [Revised: 10/17/2013] [Accepted: 10/21/2013] [Indexed: 12/28/2022]
Abstract
We have previously reported that angiotensin receptor blockade reduces reperfusion hemorrhage in a suture occlusion model of stroke, despite increasing matrix metalloproteinase (MMP-9) activity. We hypothesized that candesartan will also decrease hemorrhage associated with delayed (6 h) tissue plasminogen activator (tPA) administration after embolic stroke, widening the therapeutic time window of tPA. Adult male Wistar rats were subjected to embolic middle cerebral artery occlusion (eMCAO) and treated with either candesartan (1 mg/kg) alone early at 3 h, delayed tPA (10 mg/kg) alone at 6 h, the combination of candesartan and tPA, or vehicle control. Rats were sacrificed at 24 and 48 h post-eMCAO and brains perfused for evaluation of neurological deficits, cerebral hemorrhage in terms of hemoglobin content, occurrence rate of hemorrhage, infarct size, tissue MMP activity and protein expression. The combination therapy of candesartan and tPA after eMCAO reduced the brain hemorrhage, and improved neurological outcome compared with rats treated with tPA alone. Further, candesartan in combination with tPA increased activity of MMP-9 but decreased MMP-3, nuclear factor kappa-B and tumor necrosis factor-α expression and enhanced activation of endothelial nitric oxide synthase. An activation of MMP-9 alone is insufficient to cause increased hemorrhage in embolic stroke. Combination therapy with acute candesartan plus tPA may be beneficial in ameliorating tPA-induced hemorrhage after embolic stroke.
Collapse
|
32
|
Jiang C, Xu Q, Xu K, Dai H, Zhang Z, Wu W, Ni J. Effects of erythropoietin on STAT1 and STAT3 levels following cerebral ischemia–reperfusion in rats. Int J Neurosci 2013; 123:684-90. [PMID: 23786492 DOI: 10.3109/00207454.2013.817409] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Chunjuan Jiang
- 1Department of Radiology, Wuxi No. 2 People's Hospital,
Wuxi, Jiangsu Province, P.R. China
- 2Department of Radiology, Affiliated Hospital of Xuzhou Medical College,
Xuzhou, Jiangsu Province, P.R. China
| | - Qian Xu
- 2Department of Radiology, Affiliated Hospital of Xuzhou Medical College,
Xuzhou, Jiangsu Province, P.R. China
| | - Kai Xu
- 2Department of Radiology, Affiliated Hospital of Xuzhou Medical College,
Xuzhou, Jiangsu Province, P.R. China
| | - Haiyang Dai
- 3Department of Radiology, Huizhou Municipal Central Hospital,
Huizhou, GuangDong Province, P.R. China
| | - Zhuiyang Zhang
- 4Department of Radiology, Wuxi No. 2 People's Hospital,
Wuxi, Jiangsu Province, P.R. China
| | - Wenjuan Wu
- 4Department of Radiology, Wuxi No. 2 People's Hospital,
Wuxi, Jiangsu Province, P.R. China
| | - Jianming Ni
- 4Department of Radiology, Wuxi No. 2 People's Hospital,
Wuxi, Jiangsu Province, P.R. China
| |
Collapse
|
33
|
Bath PMW, Sprigg N, England T. Colony stimulating factors (including erythropoietin, granulocyte colony stimulating factor and analogues) for stroke. Cochrane Database Syst Rev 2013; 2013:CD005207. [PMID: 23797623 PMCID: PMC11441151 DOI: 10.1002/14651858.cd005207.pub4] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
BACKGROUND Colony stimulating factors (CSFs), also called haematopoietic growth factors, regulate bone marrow production of circulating red and white cells, and platelets. Some CSFs also mobilise the release of bone marrow stem cells into the circulation. CSFs have been shown to be neuroprotective in experimental stroke. OBJECTIVES To assess (1) the safety and efficacy of CSFs in people with acute or subacute ischaemic or haemorrhagic stroke, and (2) the effect of CSFs on circulating stem and blood cell counts. SEARCH METHODS We searched the Cochrane Stroke Group Trials Register (last searched September 2012), the Cochrane Central Register of Controlled Trials (CENTRAL) (The Cochrane Library 2012, Issue 4), MEDLINE (1985 to September 2012), EMBASE (1985 to September 2012) and Science Citation Index (1985 to September 2012). In an attempt to identify further published, unpublished and ongoing trials we contacted manufacturers and principal investigators of trials (last contacted April 2012). We also searched reference lists of relevant articles and reviews. SELECTION CRITERIA We included randomised controlled trials recruiting people with acute or subacute ischaemic or haemorrhagic stroke. CSFs included stem cell factor (SCF), erythropoietin (EPO), granulocyte colony stimulating factor (G-CSF), granulocyte-macrophage colony stimulating factor (GM-CSF), macrophage-colony stimulating factor (M-CSF, CSF-1), thrombopoietin (TPO), or analogues of these. The primary outcome was functional outcome at the end of the trial. Secondary outcomes included safety at the end of treatment, death at the end of follow-up, infarct volume and haematology measures. DATA COLLECTION AND ANALYSIS Two review authors (TE and NS) independently extracted data and assessed trial quality. We contacted study authors for additional information. MAIN RESULTS We included a total of 11 studies involving 1275 participants. In three trials (n = 782), EPO therapy was associated with a significant increase in death by the end of the trial (odds ratio (OR) 1.98, 95% confidence interval (CI) 1.19 to 3.3, P = 0.009) and a non-significant increase in serious adverse events. EPO significantly increased the red cell count with no effect on platelet or white cell count, or infarct volume. Two small trials of carbamylated EPO have been completed but have yet to be reported. We included eight small trials (n = 548) of G-CSF. G-CSF was associated with a non-significant reduction in early impairment (mean difference (MD) -0.4, 95% CI -1.82 to 1.01, P = 0.58) but had no effect on functional outcome at the end of the trial. G-CSF significantly elevated the white cell count and the CD34+ cell count, but had no effect on infarct volume. Further trials of G-CSF are ongoing. AUTHORS' CONCLUSIONS There are significant safety concerns regarding EPO therapy for stroke. It is too early to know whether other CSFs improve functional outcome.
Collapse
Affiliation(s)
- Philip M W Bath
- Division of Stroke Medicine, University of Nottingham, Nottingham, UK.
| | | | | |
Collapse
|
34
|
Worthmann H, Martens-Lobenhoffer J, Joumaah M, Li N, Lichtinghagen R, Hecker H, Kielstein JT, Ehrenreich H, Bode-Böger SM, Weissenborn K. Asymmetric dimethylarginine in response to recombinant tissue-type plasminogen activator and erythropoietin in acute stroke. Stroke 2013; 44:2128-33. [PMID: 23788583 DOI: 10.1161/strokeaha.113.001145] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND AND PURPOSE In the German Multicenter Erythropoietin (EPO) Stroke Trial, patients not receiving thrombolysis most likely benefited from EPO on clinical recovery, whereas a combination of rtPA and EPO was associated with increased mortality. We investigated whether the combination of rtPA and EPO increased release of the endogenous NO synthase inhibitor asymmetric dimethylarginine (ADMA), and thereby potentially deteriorated ischemic stroke outcome, as suggested from experimental data. METHODS ADMA was determined in serum samples from 90 patients of the German Multicenter EPO Stroke Trial taken at days 1 (within 6 hours after symptom onset), 2, 3, 4, and 7 after stroke using high-performance liquid chromatography-tandem mass spectrometry. ADMA was analyzed for the different treatment groups (EPO, n=25; placebo, n=30; rtPA+placebo, n=18; EPO+rtPA, n=17). Clinical outcome was expressed as difference between National Institutes of Health Stroke Scale at baseline and 90 days. RESULTS ADMA levels significantly increased during the observation time in EPO, EPO+rtPA, and placebo groups (P<0.05). A treatment effect on ADMA levels was revealed by repeated measures ANOVA only in the rtPA+placebo group (P=0.027). Here, ADMA levels were decreased compared with the placebo group (P<0.05). Both the EPO and the rtPA+placebo groups in the Hannover subgroup of the EPO trial had better outcome than the placebo group (P<0.05). CONCLUSIONS Our data underscore the potential benefit of EPO in ischemic stroke. The hypothesis from experimental data, that EPO treatment increases ADMA in stroke patients, was disproved. Further studies are needed to clarify whether decreased ADMA might contribute to therapeutic rtPA effects.
Collapse
Affiliation(s)
- Hans Worthmann
- Department of Neurology, Hannover Medical School, Hannover, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Zechariah A, ElAli A, Doeppner TR, Jin F, Hasan MR, Helfrich I, Mies G, Hermann DM. Vascular endothelial growth factor promotes pericyte coverage of brain capillaries, improves cerebral blood flow during subsequent focal cerebral ischemia, and preserves the metabolic penumbra. Stroke 2013; 44:1690-7. [PMID: 23632977 DOI: 10.1161/strokeaha.111.000240] [Citation(s) in RCA: 99] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND AND PURPOSE Therapeutic angiogenesis aims at improving cerebral blood flow by amplification of vascular sprouting, thus promoting tissue survival under conditions of subsequent ischemia. It remains unknown whether induced angiogenesis leads to the formation of functional vessels that indeed result in hemodynamic improvements. Observations of hemodynamic steal phenomena and disturbed neurovascular integrity after vascular endothelial growth factor delivery questioned the concept of therapeutic angiogenesis. METHODS Mice were treated with recombinant human vascular endothelial growth factor (0.02 μg/d; intracerebroventricular) for 3 to 21 days and subsequently exposed to 90-minute middle cerebral artery occlusion. Angiogenesis, histological brain injury, IgG extravasation, cerebral blood flow, protein synthesis and energy state, and pericyte coverage on brain capillaries were evaluated in a multiparametric approach combining histochemical, autoradiographic, and regional bioluminescence techniques. RESULTS Vascular endothelial growth factor increased brain capillary density within 10 days and reduced infarct volume and inflammation after subsequent middle cerebral artery occlusion, and, when delivered for prolonged periods of 21 days, enhanced postischemic blood-brain barrier integrity. Increased cerebral blood flow was noted in ischemic brain areas exhibiting enhanced angiogenesis and was associated with preservation of the metabolic penumbra, defined as brain tissue in which protein synthesis has been suppressed but ATP preserved. Vascular endothelial growth factor enhanced pericyte coverage of brain endothelial cells via mechanisms involving increased N-cadherin expression on cerebral microvessels. CONCLUSIONS That cerebral blood flow is increased during subsequent ischemic episodes, leading to the stabilization of cerebral energy state, fosters hope that by promoting new vessel formation brain tissue survival may be improved.
Collapse
Affiliation(s)
- Anil Zechariah
- Department of Neurology, University Hospital Essen, Hufelandstrasse 55, D-45122 Essen, Germany
| | | | | | | | | | | | | | | |
Collapse
|
36
|
Dirnagl U, Hakim A, Macleod M, Fisher M, Howells D, Alan SM, Steinberg G, Planas A, Boltze J, Savitz S, Iadecola C, Meairs S. A concerted appeal for international cooperation in preclinical stroke research. Stroke 2013; 44:1754-60. [PMID: 23598526 DOI: 10.1161/strokeaha.113.000734] [Citation(s) in RCA: 82] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Ulrich Dirnagl
- Department of Neurology and Experimental Neurology, Center for Stroke Research Berlin, Charité University Medicine, Campus Mitte, D-10098 Berlin, Germany.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Abstract
OPINION STATEMENT Erythropoietin (EPO) is an approved drug that is used in the treatment of chronic anemia associated with chronic renal failure. In the Neuro ICU, there are 2 potential uses for treatment with EPO. Anemia is common in patients with acute neurological disorders and may be a cause of secondary insults. Studies of EPO to treat anemia associated with critical illness have not conclusively shown a beneficial risk/benefit ratio. The relatively small reduction in transfusion requirement with EPO in critically ill patients is likely due to the 7-10 days required to see an effect of EPO on hematocrit. For these reasons, EPO is not recommended to treat anemia of critical illness. Neuroprotection is the other potential use for EPO in the Neuro ICU. Many experimental studies demonstrate neuroprotective effects with EPO in a variety of acute neurological disorders. To date, no clinical studies have confirmed beneficial effects of EPO on neurological outcome although some studies have suggested a reduction in mortality rate in trauma patients treated with EPO. Additional clinical studies are needed before EPO administration can be recommended for cytoprotection in neurological disorders.
Collapse
Affiliation(s)
- Claudia Robertson
- Department of Neurosurgery, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA,
| | | |
Collapse
|
38
|
Abstract
Traumatic brain injury (TBI) is a leading cause of mortality and morbidity both in civilian life and on the battlefield worldwide. Survivors of TBI frequently experience long-term disabling changes in cognition, sensorimotor function and personality. Over the past three decades, animal models have been developed to replicate the various aspects of human TBI, to better understand the underlying pathophysiology and to explore potential treatments. Nevertheless, promising neuroprotective drugs that were identified as being effective in animal TBI models have all failed in Phase II or Phase III clinical trials. This failure in clinical translation of preclinical studies highlights a compelling need to revisit the current status of animal models of TBI and therapeutic strategies.
Collapse
Affiliation(s)
- Ye Xiong
- Department of Neurosurgery, E&R Building, Room 3096, Henry Ford Health System, 2799 West Grand Boulevard, Detroit, Michigan 48202, USA.
| | | | | |
Collapse
|
39
|
Ishrat T, Soliman S, Guan W, Saler M, Fagan SC. Vascular protection to increase the safety of tissue plasminogen activator for stroke. Curr Pharm Des 2012; 18:3677-84. [PMID: 22574982 DOI: 10.2174/138161212802002779] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2012] [Accepted: 01/24/2012] [Indexed: 12/22/2022]
Abstract
Thrombolytic therapy with tissue plasminogen activator (tPA) remains the most effective treatment for acute ischemic stroke, but can cause vascular damage leading to edema formation and hemorrhagic transformation (HT). In this review, we discuss how tPA contributes to the pathogenesis of vascular damage and highlight evidence to support combination therapy of tPA with pharmacological agents that are vascular protective. There is an unmet need to develop therapeutic interventions which target the underlying mechanisms of vascular damage after acute ischemic stroke in order to prevent HT and improve the safety and impact of tPA.
Collapse
Affiliation(s)
- Tauheed Ishrat
- Program in Clinical and Experimental Therapeutics, University of Georgia College of Pharmacy, 1120 15th St., Augusta, GA 30912, USA
| | | | | | | | | |
Collapse
|
40
|
Tang Z, Sun X, Huo G, Xie Y, Shi Q, Chen S, Wang X, Liao Z. Protective effects of erythropoietin on astrocytic swelling after oxygen-glucose deprivation and reoxygenation: mediation through AQP4 expression and MAPK pathway. Neuropharmacology 2012; 67:8-15. [PMID: 23142737 DOI: 10.1016/j.neuropharm.2012.10.017] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2012] [Revised: 08/02/2012] [Accepted: 10/13/2012] [Indexed: 11/29/2022]
Abstract
Recent in vivo studies have shown that erythropoietin (EPO) offers strong protection against brain edema. However, the intracellular and molecular mechanisms behind this beneficial effect have not been specified. The aim of this study was to determine whether human erythropoietin (rhEPO) reduces the astrocytic swelling created by oxygen-glucose deprivation followed by reoxygenation (OGD/Reox) in vitro and whether this effect can be mediated through the modulation of aquaporin4 (AQP4) expression in the plasma membrane (PM) and phosphorylation of the mitogen-activated protein kinase pathway (MAPK) pathway. Our results showed that OGD/Reox produced increase in cell volume, morphological swelling, and mitochondrial swelling. These changes were associated with the up-regulation of AQP4 in PM and the over-activation of MAPK. Silencing AQP4 expression using small interfering ribonucleic acid for AQP4 was found to block astrocytic swelling. Inhibition of the over-activation of MAPK mitigated the PM AQP4 overabundance and cellular swelling. As expected, treatment with rhEPO significantly reduced the OGD/Reox-induced increase in cell volume, morphological swelling, and mitochondrial swelling as well as the up-regulation of AQP4 in PM. In addition, cultures treated with the neutralizing anti-EPO antibody worsened the PM AQP4 abundance and cellular swelling, abolishing the protective effects mediated by rhEPO treatment. Furthermore, the over-activation of these MAPK after OGD/Reox was attenuated by rhEPO treatment significantly. In conclusion, our data strongly suggest that rhEPO can protect astrocytes from swelling caused by ischemia and reperfusion-like injury. This neuroprotective capacity is partially mediated by diminishing the MAPK-activity-dependent overabundance of AQP4 in PM.
Collapse
Affiliation(s)
- Zhaohua Tang
- Department of Neurosurgery, The First Affiliated Hospital of Chongqing Medical University, No. 1 Youyi Road, Chongqing 400016, China
| | | | | | | | | | | | | | | |
Collapse
|
41
|
Sühs KW, Hein K, Sättler MB, Görlitz A, Ciupka C, Scholz K, Käsmann-Kellner B, Papanagiotou P, Schäffler N, Restemeyer C, Bittersohl D, Hassenstein A, Seitz B, Reith W, Fassbender K, Hilgers R, Heesen C, Bähr M, Diem R. A randomized, double-blind, phase 2 study of erythropoietin in optic neuritis. Ann Neurol 2012; 72:199-210. [PMID: 22926853 DOI: 10.1002/ana.23573] [Citation(s) in RCA: 116] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
OBJECTIVE Based on findings in animal models of autoimmune optic nerve inflammation, we have assessed the safety and efficacy of erythropoietin in patients presenting with a first episode of optic neuritis. METHODS Patients with optic neuritis who attended the University Hospitals of Homburg/Saar, Göttingen, or Hamburg (Germany) were included in this double-blind, placebo-controlled, phase 2 study (ClinicalTrials.gov, NCT00355095). They were randomly assigned to groups receiving either 33,000IU recombinant human erythropoietin intravenously daily for 3 days or placebo as an add-on therapy to methylprednisolone. The primary outcome parameter was change in retinal nerve fiber layer (RNFL) thickness after 16 weeks. Secondary outcome parameters included optic nerve atrophy as assessed by magnetic resonance imaging, and changes in visual acuity, visual field, and visual evoked potentials (VEPs). RESULTS Forty patients were assigned to the treatment groups (21/19 erythropoietin/placebo). Safety monitoring revealed no relevant issues. Thirty-seven patients (20/17 erythropoietin/placebo) were analyzed for the primary endpoint according to the intention-to-treat protocol. RNFL thinning was less apparent after erythropoietin treatment. Thickness of the RNFL decreased by a median of 7.5μm by week 16 (mean ± standard deviation, 10.55 ± 17.54μm) compared to a median of 16.0μm (22.65 ± 29.18μm) in the placebo group (p = 0.0357). Decrease in retrobulbar diameter of the optic nerve was smaller in the erythropoietin group (p = 0.0112). VEP latencies at week 16 were shorter in erythropoietin-treated patients than in the placebo group (p = 0.0011). Testing of visual functions revealed trends toward an improved outcome after erythropoietin treatment. INTERPRETATION These results give the first indications that erythropoietin might be neuroprotective in optic neuritis.
Collapse
|
42
|
Tang Z, Sun X, Shi Q, Wang X, Xie Y, Huo G, Zhou S, Liao Z. Beneficial effects of carbamylated erythropoietin against oxygen–glucose deprivation/reperfusion-induced astrocyte swelling: Proposed molecular mechanisms of action. Neurosci Lett 2012; 530:23-8. [DOI: 10.1016/j.neulet.2012.09.029] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2012] [Revised: 09/10/2012] [Accepted: 09/13/2012] [Indexed: 12/27/2022]
|
43
|
Pekna M, Pekny M, Nilsson M. Modulation of neural plasticity as a basis for stroke rehabilitation. Stroke 2012; 43:2819-28. [PMID: 22923444 DOI: 10.1161/strokeaha.112.654228] [Citation(s) in RCA: 159] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Marcela Pekna
- Center for Brain Repair and Rehabilitation, Department of Clinical Neuroscience and Rehabilitation, Institute of Neuroscience and Physiology, Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden.
| | | | | |
Collapse
|
44
|
Affiliation(s)
- Adviye Ergul
- Program in Clinical and Experimental Therapeutics, University of Georgia College of Pharmacy, Augusta, GA 30912, USA
| | | | | |
Collapse
|
45
|
Zhang L, Zhang ZG, Chopp M. The neurovascular unit and combination treatment strategies for stroke. Trends Pharmacol Sci 2012; 33:415-22. [PMID: 22595494 DOI: 10.1016/j.tips.2012.04.006] [Citation(s) in RCA: 82] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2012] [Revised: 04/06/2012] [Accepted: 04/18/2012] [Indexed: 01/01/2023]
Abstract
Tissue plasminogen activator (tPA) administered within 4.5h of symptom onset restores cerebral blood flow (CBF) and promotes neurological recovery of stroke patients. However, the narrow therapeutic time window and the risk of intracerebral hemorrhage after tPA treatment pose major hurdles to its clinical usage. In light of the failures of neuroprotective therapies in clinical trials, emerging concepts suggest that neuroprotection alone without restoration of tissue perfusion and vascular integrity may not be adequate for treatment of acute stroke. Here we review evidence of the use of adjuvant pharmacological agents to extend the therapeutic window for tPA via targeting the neurovascular unit and the underlying mechanisms of the combination therapy in experimental stroke.
Collapse
Affiliation(s)
- Li Zhang
- Department of Neurology, Henry Ford Hospital, 2799 West Grand Boulevard, Detroit, MI 48202, USA.
| | | | | |
Collapse
|
46
|
Subirós N, Del Barco DG, Coro-Antich RM. Erythropoietin: still on the neuroprotection road. Ther Adv Neurol Disord 2012; 5:161-73. [PMID: 22590480 PMCID: PMC3349080 DOI: 10.1177/1756285611434926] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Acute stroke is one of the major causes of death and disabilities. Since the 1980s many clinical studies have been conducted to evaluate neuroprotective approaches to treat this important brain vascular event. However, to date the only drug approved (recombinant tissue plasminogen activator [rtPA]) represents a thrombolytic, nonneuroprotective approach. An important neuroprotective strategy is based on erythropoietin (EPO). Exogenously administered EPO exhibits neuroprotective effects in numerous animal models, through the activation of anti-apoptotic, anti-oxidant and anti-inflammatory pathways as well as through the stimulation of angiogenic and neurogenic events. The capability of EPO to cross the blood-brain barrier after systemic administration and its effective therapeutic window are advantages for human acute stroke therapy. However, a multicenter stroke trial where recombinant human EPO (rhEPO) was combined with rtPA had negative outcomes. The present paper reviews the EPO neuroprotective strategy and its mechanisms in ischemic stroke and in other human nervous system diseases.
Collapse
Affiliation(s)
- Nelvys Subirós
- Center for Genetic Engineering and Biotechnology, 31 Avenue, P.O. Box 6162, Cubanacán, Playa 10600, Havana, Cuba
| | | | | |
Collapse
|
47
|
Hermann DM, Chopp M. Promoting brain remodelling and plasticity for stroke recovery: therapeutic promise and potential pitfalls of clinical translation. Lancet Neurol 2012; 11:369-80. [PMID: 22441198 DOI: 10.1016/s1474-4422(12)70039-x] [Citation(s) in RCA: 246] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Recent laboratory findings suggest that it might be possible to promote cerebral plasticity and neurological recovery after stroke by use of exogenous pharmacological or cell-based treatments. Brain microvasculature and glial cells respond in concert to ischaemic stressors and treatment, creating an environment in which successful recovery can ensue. Neurons remote from and adjacent to the ischaemic lesion are enabled to sprout, and neural precursor cells that accumulate with cerebral microvessels in the perilesional tissue further stimulate brain plasticity and neurological recovery. These factors interact in a highly dynamic way, facilitating temporally and spatially orchestrated responses of brain networks. In view of the complexity of the systems involved, stroke treatments that stimulate and amplify these endogenous restorative mechanisms might also provoke unwanted side-effects. In experimental studies, adverse effects have been identified when neurorestorative treatments were administered to animals with severe associated illnesses, after thrombolysis with alteplase, and when therapies were initiated outside appropriate time windows. Balancing the opportunities and possible risks, we provide suggestions for the translation of restorative therapies from the laboratory to the clinic.
Collapse
Affiliation(s)
- Dirk M Hermann
- Department of Neurology, University Hospital Essen, Essen, Germany.
| | | |
Collapse
|
48
|
Erythropoietin in brain development and beyond. ANATOMY RESEARCH INTERNATIONAL 2012; 2012:953264. [PMID: 22567318 PMCID: PMC3335485 DOI: 10.1155/2012/953264] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/13/2011] [Revised: 10/27/2011] [Accepted: 11/11/2011] [Indexed: 01/17/2023]
Abstract
Erythropoietin is known as the requisite cytokine for red blood cell production. Its receptor, expressed at a high level on erythroid progenitor/precursor cells, is also found on endothelial, neural, and other cell types. Erythropoietin and erythropoietin receptor expression in the developing and adult brain suggest their possible involvement in neurodevelopment and neuroprotection. During ischemic stress, erythropoietin, which is hypoxia inducible, can contribute to brain homeostasis by increasing red blood cell production to increase the blood oxygen carrying capacity, stimulate nitric oxide production to modulate blood flow and contribute to the neurovascular response, or act directly on neural cells to provide neuroprotection as demonstrated in culture and animal models. Clinical studies of erythropoietin treatment in stroke and other diseases provide insight on safety and potential adverse effects and underscore the potential pleiotropic activity of erythropoietin. Herein, we summarize the roles of EPO and its receptor in the developing and adult brain during health and disease, providing first a brief overview of the well-established EPO biology and signaling, its hypoxic regulation, and role in erythropoiesis.
Collapse
|
49
|
Abstract
The prospects for stem cell-derived therapy in stroke look promising, with a myriad of cell therapy products developed from brain, blood, bone marrow, and adipose tissue in early clinical development. Eight clinical trials have now reported final results, and several are currently registered recruiting patients or pending to start. Products passing the safety hurdle are recruiting patients for large efficacy studies. Besides identifying the most appropriate cell type, other issues to resolve include optimal timing for intervention, optimal delivery route, cell dose, patient selection, relevant clinical endpoints, and monitoring for effectiveness, to advance cell therapy through the hurdles of clinical research. In this chapter, we present the products and strategies used in the current cell therapy trials in ischemic stroke, provide an update on relevant preclinical research, and discuss the vital developments still needed to advance their clinical application as a future therapeutic option.
Collapse
Affiliation(s)
- John D Sinden
- ReNeuron Limited, Surrey Research Park, Guildford, Surrey, UK.
| | | | | |
Collapse
|
50
|
Harada S, Fujita-Hamabe W, Tokuyama S. Ischemic Stroke and Glucose Intolerance: a Review of the Evidence and Exploration of Novel Therapeutic Targets. J Pharmacol Sci 2012; 118:1-13. [DOI: 10.1254/jphs.11r04cr] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2011] [Accepted: 09/21/2011] [Indexed: 10/14/2022] Open
|