1
|
Kovács KB, Bencs V, Hudák L, Oláh L, Csiba L. Hemorrhagic Transformation of Ischemic Strokes. Int J Mol Sci 2023; 24:14067. [PMID: 37762370 PMCID: PMC10531605 DOI: 10.3390/ijms241814067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Revised: 09/07/2023] [Accepted: 09/12/2023] [Indexed: 09/29/2023] Open
Abstract
Ischemic stroke, resulting from insufficient blood supply to the brain, is among the leading causes of death and disability worldwide. A potentially severe complication of the disease itself or its treatment aiming to restore optimal blood flow is hemorrhagic transformation (HT) increasing morbidity and mortality. Detailed summaries can be found in the literature on the pathophysiological background of hemorrhagic transformation, the potential clinical risk factors increasing its chance, and the different biomarkers expected to help in its prediction and clinical outcome. Clinicopathological studies also contribute to the improvement in our knowledge of hemorrhagic transformation. We summarized the clinical risk factors of the hemorrhagic transformation of ischemic strokes in terms of risk reduction and collected the most promising biomarkers in the field. Also, auxiliary treatment options in reperfusion therapies have been reviewed and collected. We highlighted that the optimal timing of revascularization treatment for carefully selected patients and the individualized management of underlying diseases and comorbidities are pivotal. Another important conclusion is that a more intense clinical follow-up including serial cranial CTs for selected patients can be recommended, as clinicopathological investigations have shown HT to be much more common than clinically suspected.
Collapse
Affiliation(s)
| | | | | | | | - László Csiba
- Department of Neurology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary; (K.B.K.); (V.B.); (L.H.); (L.O.)
| |
Collapse
|
2
|
Couret D, Planesse C, Patche J, Diotel N, Nativel B, Bourane S, Meilhac O. Lack of Neuroprotective Effects of High-Density Lipoprotein Therapy in Stroke under Acute Hyperglycemic Conditions. Molecules 2021; 26:molecules26216365. [PMID: 34770774 PMCID: PMC8588473 DOI: 10.3390/molecules26216365] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 10/11/2021] [Accepted: 10/19/2021] [Indexed: 01/01/2023] Open
Abstract
Introduction: The pleiotropic protective effects of high-density lipoproteins (HDLs) on cerebral ischemia have never been tested under acute hyperglycemic conditions. The aim of this study is to evaluate the potential neuroprotective effect of HDL intracarotid injection in a mouse model of middle cerebral artery occlusion (MCAO) under hyperglycemic conditions. Methods: Forty-two mice were randomized to receive either an intracarotid injection of HDLs or saline. Acute hyperglycemia was induced by an intraperitoneal injection of glucose (2.2 g/kg) 20 min before MCAO. Infarct size (2,3,5-triphenyltetrazolium chloride (TTC)-staining), blood–brain barrier leakage (IgG infiltration), and hemorrhagic changes (hemoglobin assay by ELISA and hemorrhagic transformation score) were analyzed 24 h post-stroke. Brain tissue inflammation (IL-6 by ELISA, neutrophil infiltration and myeloperoxidase by immunohisto-fluorescence) and apoptosis (caspase 3 activation) were also assessed. Results: Intraperitoneal D-glucose injection allowed HDL- and saline-treated groups to reach a blood glucose level of 300 mg/dl in the acute phase of cerebral ischemia. HDL injection did not significantly reduce mortality (19% versus 29% in the saline-injected group) or cerebral infarct size (p = 0.25). Hemorrhagic transformations and inflammation parameters were not different between the two groups. In addition, HDL did not inhibit apoptosis under acute hyperglycemic conditions. Conclusion: We observed a nonsignificant decrease in cerebral infarct size in the HDL group. The deleterious consequences of reperfusion such as hemorrhagic transformation or inflammation were not improved by HDL infusion. In acute hyperglycemia, HDLs are not potent enough to counteract the adverse effects of hyperglycemia. The addition of antioxidants to therapeutic HDLs could improve their neuroprotective capacity.
Collapse
Affiliation(s)
- David Couret
- UMR 1188 Diabète Athérothrombose Thérapies Réunion Océan Indien (DéTROI), Université de la Réunion, Inserm, Plateforme CYROI, F-97490 Sainte-Clotilde, France; (C.P.); (J.P.); (N.D.); (B.N.); (S.B.); (O.M.)
- Service de Neuroréanimation, Centre Hospitalo-Universitaire de La Réunion, 97410 Saint-Pierre de La Réunion, France
- Correspondence: ; Tel.: +33-262-(0)-35-90-00
| | - Cynthia Planesse
- UMR 1188 Diabète Athérothrombose Thérapies Réunion Océan Indien (DéTROI), Université de la Réunion, Inserm, Plateforme CYROI, F-97490 Sainte-Clotilde, France; (C.P.); (J.P.); (N.D.); (B.N.); (S.B.); (O.M.)
| | - Jessica Patche
- UMR 1188 Diabète Athérothrombose Thérapies Réunion Océan Indien (DéTROI), Université de la Réunion, Inserm, Plateforme CYROI, F-97490 Sainte-Clotilde, France; (C.P.); (J.P.); (N.D.); (B.N.); (S.B.); (O.M.)
| | - Nicolas Diotel
- UMR 1188 Diabète Athérothrombose Thérapies Réunion Océan Indien (DéTROI), Université de la Réunion, Inserm, Plateforme CYROI, F-97490 Sainte-Clotilde, France; (C.P.); (J.P.); (N.D.); (B.N.); (S.B.); (O.M.)
| | - Brice Nativel
- UMR 1188 Diabète Athérothrombose Thérapies Réunion Océan Indien (DéTROI), Université de la Réunion, Inserm, Plateforme CYROI, F-97490 Sainte-Clotilde, France; (C.P.); (J.P.); (N.D.); (B.N.); (S.B.); (O.M.)
| | - Steeve Bourane
- UMR 1188 Diabète Athérothrombose Thérapies Réunion Océan Indien (DéTROI), Université de la Réunion, Inserm, Plateforme CYROI, F-97490 Sainte-Clotilde, France; (C.P.); (J.P.); (N.D.); (B.N.); (S.B.); (O.M.)
| | - Olivier Meilhac
- UMR 1188 Diabète Athérothrombose Thérapies Réunion Océan Indien (DéTROI), Université de la Réunion, Inserm, Plateforme CYROI, F-97490 Sainte-Clotilde, France; (C.P.); (J.P.); (N.D.); (B.N.); (S.B.); (O.M.)
- CIC-EC 1410, Centre Hospitalo-Universitaire de La Réunion, 97410 Saint-Pierre de La Réunion, France
| |
Collapse
|
3
|
Robert J, Osto E, von Eckardstein A. The Endothelium Is Both a Target and a Barrier of HDL's Protective Functions. Cells 2021; 10:1041. [PMID: 33924941 PMCID: PMC8146309 DOI: 10.3390/cells10051041] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 04/19/2021] [Accepted: 04/26/2021] [Indexed: 12/11/2022] Open
Abstract
The vascular endothelium serves as a barrier between the intravascular and extravascular compartments. High-density lipoproteins (HDL) have two kinds of interactions with this barrier. First, bloodborne HDL must pass the endothelium to access extravascular tissues, for example the arterial wall or the brain, to mediate cholesterol efflux from macrophages and other cells or exert other functions. To complete reverse cholesterol transport, HDL must even pass the endothelium a second time to re-enter circulation via the lymphatics. Transendothelial HDL transport is a regulated process involving scavenger receptor SR-BI, endothelial lipase, and ATP binding cassette transporters A1 and G1. Second, HDL helps to maintain the integrity of the endothelial barrier by (i) promoting junction closure as well as (ii) repair by stimulating the proliferation and migration of endothelial cells and their progenitor cells, and by preventing (iii) loss of glycocalix, (iv) apoptosis, as well as (v) transmigration of inflammatory cells. Additional vasoprotective functions of HDL include (vi) the induction of nitric oxide (NO) production and (vii) the inhibition of reactive oxygen species (ROS) production. These vasoprotective functions are exerted by the interactions of HDL particles with SR-BI as well as specific agonists carried by HDL, notably sphingosine-1-phophate (S1P), with their specific cellular counterparts, e.g., S1P receptors. Various diseases modify the protein and lipid composition and thereby the endothelial functionality of HDL. Thorough understanding of the structure-function relationships underlying the multiple interactions of HDL with endothelial cells is expected to elucidate new targets and strategies for the treatment or prevention of various diseases.
Collapse
Affiliation(s)
| | | | - Arnold von Eckardstein
- Institute of Clinical Chemistry, University of Zurich and University Hospital of Zurich, 8091 Zurich, Switzerland; (J.R.); (E.O.)
| |
Collapse
|
4
|
Grisotto C, Taïlé J, Planesse C, Diotel N, Gonthier MP, Meilhac O, Couret D. High-Fat Diet Aggravates Cerebral Infarct, Hemorrhagic Transformation and Neuroinflammation in a Mouse Stroke Model. Int J Mol Sci 2021; 22:4571. [PMID: 33925459 PMCID: PMC8123851 DOI: 10.3390/ijms22094571] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 04/23/2021] [Accepted: 04/24/2021] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Stroke in context of type 2 diabetes (T2D) is associated with a poorer outcome than in non-diabetic conditions. We aimed at creating a new reproducible mouse model of stroke in impaired glucose tolerance conditions induced by high-fat diet. METHODS Adult C57BL6 mice were fed for 2 months with either normal diet (ND) or high-fat diet (HFD). We used a model of Middle Cerebral Artery Occlusion (MCAO) for 90 min. Oral Glucose Tolerance Test (OGTT) and Insulin Tolerance Test (ITT) were used to assess pre-diabetic status. Brain infarct volume, hemorrhagic transformation (HT) as well as systemic and cerebral inflammatory markers were evaluated. RESULTS HFD was associated with an increased body weight and glycemia following OGTT. The HFD group presented a significant increase in brain infarct volume (38.7 (IQR 30-46.7%) vs. 28.45 (IQR 21-30%); p = 0.016) and HT (HFD: 2 (IQR 1-5) vs. ND: 0 (IQR 0-1); p = 0.012) and higher levels of IL-6 and MCP-1 in infarcted hemisphere compared to the ND group. CONCLUSION Two months of HFD in adult mice were sufficient to alter the lipid profile and the control of hyperglycemia. These metabolic perturbations were significantly associated with increased infarct volume and hemorrhagic complications.
Collapse
Affiliation(s)
- Coline Grisotto
- Diabète Athérothrombose Thérapies Réunion Océan Indien, INSERM, UMR 1188, Université de La Réunion, 2 rue Maxime Rivière, 97400 Sainte-Clotilde, La Réunion, France; (C.G.); (J.T.); (C.P.); (N.D.); (M.-P.G.); (O.M.)
- CHU de la Réunion, Service de Neuroréanimation, 97410 Saint-Pierre de la Réunion, La Réunion, France
| | - Janice Taïlé
- Diabète Athérothrombose Thérapies Réunion Océan Indien, INSERM, UMR 1188, Université de La Réunion, 2 rue Maxime Rivière, 97400 Sainte-Clotilde, La Réunion, France; (C.G.); (J.T.); (C.P.); (N.D.); (M.-P.G.); (O.M.)
| | - Cynthia Planesse
- Diabète Athérothrombose Thérapies Réunion Océan Indien, INSERM, UMR 1188, Université de La Réunion, 2 rue Maxime Rivière, 97400 Sainte-Clotilde, La Réunion, France; (C.G.); (J.T.); (C.P.); (N.D.); (M.-P.G.); (O.M.)
| | - Nicolas Diotel
- Diabète Athérothrombose Thérapies Réunion Océan Indien, INSERM, UMR 1188, Université de La Réunion, 2 rue Maxime Rivière, 97400 Sainte-Clotilde, La Réunion, France; (C.G.); (J.T.); (C.P.); (N.D.); (M.-P.G.); (O.M.)
| | - Marie-Paule Gonthier
- Diabète Athérothrombose Thérapies Réunion Océan Indien, INSERM, UMR 1188, Université de La Réunion, 2 rue Maxime Rivière, 97400 Sainte-Clotilde, La Réunion, France; (C.G.); (J.T.); (C.P.); (N.D.); (M.-P.G.); (O.M.)
| | - Olivier Meilhac
- Diabète Athérothrombose Thérapies Réunion Océan Indien, INSERM, UMR 1188, Université de La Réunion, 2 rue Maxime Rivière, 97400 Sainte-Clotilde, La Réunion, France; (C.G.); (J.T.); (C.P.); (N.D.); (M.-P.G.); (O.M.)
- CHU de la Réunion, 97400 Saint-Denis de la Réunion, La Réunion, France
| | - David Couret
- Diabète Athérothrombose Thérapies Réunion Océan Indien, INSERM, UMR 1188, Université de La Réunion, 2 rue Maxime Rivière, 97400 Sainte-Clotilde, La Réunion, France; (C.G.); (J.T.); (C.P.); (N.D.); (M.-P.G.); (O.M.)
- CHU de la Réunion, Service de Neuroréanimation, 97410 Saint-Pierre de la Réunion, La Réunion, France
| |
Collapse
|
5
|
Sulliman NC, Ghaddar B, Gence L, Patche J, Rastegar S, Meilhac O, Diotel N. HDL biodistribution and brain receptors in zebrafish, using HDLs as vectors for targeting endothelial cells and neural progenitors. Sci Rep 2021; 11:6439. [PMID: 33742021 PMCID: PMC7979862 DOI: 10.1038/s41598-021-85183-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Accepted: 02/24/2021] [Indexed: 12/25/2022] Open
Abstract
High density lipoproteins (HDLs) display pleiotropic functions such as anti-inflammatory, antioxidant, anti-protease, and anti-apoptotic properties. These effects are mediated by four main receptors: SCARB1 (SR-BI), ABCA1, ABCG1, and CD36. Recently, HDLs have emerged for their potential involvement in brain functions, considering their epidemiological links with cognition, depression, and brain plasticity. However, their role in the brain is not well understood. Given that the zebrafish is a well-recognized model for studying brain plasticity, metabolic disorders, and apolipoproteins, it could represent a good model for investigating the role of HDLs in brain homeostasis. By analyzing RNA sequencing data sets and performing in situ hybridization, we demonstrated the wide expression of scarb1, abca1a, abca1b, abcg1, and cd36 in the brain of adult zebrafish. Scarb1 gene expression was detected in neural stem cells (NSCs), suggesting a possible role of HDLs in NSC activity. Accordingly, intracerebroventricular injection of HDLs leads to their uptake by NSCs without modulating their proliferation. Next, we studied the biodistribution of HDLs in the zebrafish body. In homeostatic conditions, intraperitoneal injection of HDLs led to their accumulation in the liver, kidneys, and cerebral endothelial cells in zebrafish, similar to that observed in mice. After telencephalic injury, HDLs were diffused within the damaged parenchyma and were taken up by ventricular cells, including NSCs. However, they failed to modulate the recruitment of microglia cells at the injury site and the injury-induced proliferation of NSCs. In conclusion, our results clearly show a functional HDL uptake process involving several receptors that may impact brain homeostasis and suggest the use of HDLs as delivery vectors to target NSCs for drug delivery to boost their neurogenic activity.
Collapse
Affiliation(s)
- Nora Cassam Sulliman
- Université de La Réunion, INSERM, UMR 1188, Diabète Athérothrombose Thérapies Réunion Océan Indien (DéTROI), Saint-Denis de La Réunion, France
| | - Batoul Ghaddar
- Université de La Réunion, INSERM, UMR 1188, Diabète Athérothrombose Thérapies Réunion Océan Indien (DéTROI), Saint-Denis de La Réunion, France
| | - Laura Gence
- Université de La Réunion, INSERM, UMR 1188, Diabète Athérothrombose Thérapies Réunion Océan Indien (DéTROI), Saint-Denis de La Réunion, France
| | - Jessica Patche
- Université de La Réunion, INSERM, UMR 1188, Diabète Athérothrombose Thérapies Réunion Océan Indien (DéTROI), Saint-Denis de La Réunion, France
| | - Sepand Rastegar
- Institute of Biological and Chemical Systems-Biological Information Processing (IBCS-BIP), Karlsruhe Institute of Technology (KIT), Postfach 3640, 76021, Karlsruhe, Germany
| | - Olivier Meilhac
- Université de La Réunion, INSERM, UMR 1188, Diabète Athérothrombose Thérapies Réunion Océan Indien (DéTROI), Saint-Denis de La Réunion, France
- CHU de La Réunion, Saint-Denis de La Réunion, France
| | - Nicolas Diotel
- Université de La Réunion, INSERM, UMR 1188, Diabète Athérothrombose Thérapies Réunion Océan Indien (DéTROI), Saint-Denis de La Réunion, France.
| |
Collapse
|
6
|
Systematical Identification of the Protective Effect of Danhong Injection and BuChang NaoXinTong Capsules on Transcription Factors in Cerebral Ischemia Mice Brain. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2020:5879852. [PMID: 33414894 PMCID: PMC7755463 DOI: 10.1155/2020/5879852] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/05/2020] [Revised: 10/20/2020] [Accepted: 11/17/2020] [Indexed: 11/17/2022]
Abstract
Cerebral ischemia has led to a high rate of both disability and mortality with massive healthcare costs. Although transcriptional regulation is typically mediated by different combinations of TFs, a combined regulatory unit to synergistically activate transcription has remained unclear in cerebral ischemia, especially in different drug treatments. In this study, TFs alterations after 6 h cerebral ischemic injury and repair were performed by a concatenated tandem array of consensus transcription factor response elements (catTFREs), and vital TFs were obtained by TFs-target imbalanced network. Drug intervention used Danhong injection (DHI) and BNC (BuChang NaoXinTong Capsules), which has been widely prescribed in Chinese herb medicine for the treatment of cerebrovascular and cardiovascular diseases. There were 198 TFs identified after 6 h MCAO operation, and six TFs (Sox2, Smad3, FoxO1, Creb1, Egr,1 and Smad4) were considered as critical TFs in response to cerebral ischemia. Moreover, Smad3 was identified as a hub TF among six vital TFs, and the transcription activity of Smad3 was further verified. These 6 TFs were all reversed by DHI or BNC, indicating different medications may regulate different transcription factors through TF synergy. Moreover, validation results indicated that Smad3 was a putative target TF for DHI and BNC-mediated protection against cerebral ischemia. The observations of the present study provide a fresh understanding of biomolecules and possible new avenues for therapeutic interventions, in addition to the new intervention pattern for different treatments for ischemia stroke.
Collapse
|
7
|
High-Density Lipoprotein Therapy in Stroke: Evaluation of Endothelial SR-BI-Dependent Neuroprotective Effects. Int J Mol Sci 2020; 22:ijms22010106. [PMID: 33374266 PMCID: PMC7796353 DOI: 10.3390/ijms22010106] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 12/21/2020] [Accepted: 12/22/2020] [Indexed: 02/07/2023] Open
Abstract
High-density lipoproteins (HDLs) display endothelial protective effects. We tested the role of SR-BI, an HDL receptor expressed by endothelial cells, in the neuroprotective effects of HDLs using an experimental model of acute ischemic stroke. After transient intraluminal middle cerebral artery occlusion (tMCAO), control and endothelial SR-BI deficient mice were intravenously injected by HDLs or saline. Infarct volume and blood-brain barrier (BBB) breakdown were assessed 24 h post tMCAO. The potential of HDLs and the role of SR-BI to maintain the BBB integrity was assessed by using a human cellular model of BBB (hCMEC/D3 cell line) subjected to oxygen-glucose deprivation (OGD). HDL therapy limited the infarct volume and the BBB leakage in control mice relative to saline injection. Interestingly, these neuroprotective effects were thwarted by the deletion of SR-BI in endothelial cells and preserved in mice deficient for SR-BI in myeloid cells. In vitro studies revealed that HDLs can preserve the integrity of the BBB in OGD conditions, and that this effect was reduced by the SR-BI inhibitor, BLT-1. The protection of BBB integrity plays a pivotal role in HDL therapy of acute ischemic stroke. Our results show that this effect is partially mediated by the HDL receptor, SR-BI expressed by endothelial cells.
Collapse
|
8
|
Ma G, Pan Z, Kong L, Du G. Neuroinflammation in hemorrhagic transformation after tissue plasminogen activator thrombolysis: Potential mechanisms, targets, therapeutic drugs and biomarkers. Int Immunopharmacol 2020; 90:107216. [PMID: 33296780 DOI: 10.1016/j.intimp.2020.107216] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 10/18/2020] [Accepted: 11/16/2020] [Indexed: 12/11/2022]
Abstract
Hemorrhagic transformation (HT) is a common and serious complication following ischemic stroke, especially after tissue plasminogen activator (t-PA) thrombolysis, which is associated with increased mortality and disability. Due to the unknown mechanisms and targets of HT, there are no effective therapeutic drugs to decrease the incidence of HT. In recent years, many studies have found that neuroinflammation is closely related to the occurrence and development of HT after t-PA thrombolysis, including glial cell activation in the brain, peripheral inflammatory cell infiltration and the release of inflammatory factors, involving inflammation-related targets such as NF-κB, MAPK, HMGB1, TLR4 and NLRP3. Some drugs with anti-inflammatory activity have been shown to protect the BBB and reduce the risk of HT in preclinical experiments and clinical trials, including minocycline, fingolimod, tacrolimus, statins and some natural products. In addition, the changes in MMP-9, VAP-1, NLR, sICAM-1 and other inflammatory factors are closely related to the occurrence of HT, which may be potential biomarkers for the diagnosis and prognosis of HT. In this review, we summarize the potential inflammation-related mechanisms, targets, therapeutic drugs, and biomarkers associated with HT after t-PA thrombolysis and discuss the relationship between neuroinflammation and HT, which provides a reference for research on the mechanisms, prevention and treatment drugs, diagnosis and prognosis of HT.
Collapse
Affiliation(s)
- Guodong Ma
- Beijing Key Laboratory of Drug Targets Identification and Drug Screening, Centre for Pharmaceutical Screening, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Zirong Pan
- Beijing Key Laboratory of Drug Targets Identification and Drug Screening, Centre for Pharmaceutical Screening, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Linglei Kong
- Beijing Key Laboratory of Drug Targets Identification and Drug Screening, Centre for Pharmaceutical Screening, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China.
| | - Guanhua Du
- Beijing Key Laboratory of Drug Targets Identification and Drug Screening, Centre for Pharmaceutical Screening, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China.
| |
Collapse
|
9
|
Ducroux C, Desilles JP, Mawhin MA, Delbosc S, Ho-Tin-Noé B, Ollivier V, Di Meglio L, Lapergue B, Michel JB, Amarenco P. Protective Effect of ApoA1 (Apolipoprotein A1)-Milano in a Rat Model of Large Vessel Occlusion Stroke. Stroke 2020; 51:1886-1890. [PMID: 32404037 DOI: 10.1161/strokeaha.119.027898] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Background and Purpose- Previous experimental studies found that the infusion of human purified nascent HDL (high-density lipoprotein) significantly reduced infarct volume and hemorrhagic transformation rate by decreasing neutrophil recruitment. ApoA1-M (apolipoprotein A1-Milano) is a natural variant of human ApoA1 that confers protection against atherosclerosis. Recombinant ApoA1-M has been formulated as a complex with phospholipids to mimic the properties of nascent HDL. The aim of this study was to assess the impact of intravenous ApoA1-M in a transient middle cerebral artery occlusion stroke model in rats. Methods- In a first experiment, rats were subjected to 120-minute transient middle cerebral artery occlusion and intravenous ApoA1-M was infused immediately or 4 hours after occlusion. In a second experiment, rats were subjected to 240-minute transient middle cerebral artery occlusion and intravenous ApoA1-M was infused with or without recombinant tPA (tissue-type plasminogen activator) immediately after recanalization. Primary outcome criteria were the infarct volume and hemorrhagic transformation rate measured at 24 hours. Platelets, coagulation, and neutrophil activation biomarkers were measured in brain homogenates and plasma. Additional in vitro experiments studied the effects of ApoA1-M on platelet aggregation and platelet-neutrophil interactions. Results- The infusion of ApoA1-M immediately or 4 hours after 120-minute transient middle cerebral artery occlusion significantly reduced the infarct volume compared with saline (P=0.034 and P=0.036, respectively). Compared with tPA alone, co-administration of ApoA1-M and tPA showed similar rates of hemorrhagic transformation. ApoA1-M had no significant inhibition effect on neutrophil activation biomarkers. Platelet activation was slightly decreased in rats treated with ApoA1-M compared with saline. In vitro, the incubation of human and rat platelet-rich plasma with ApoA1-M significantly reduced ADP-induced platelet aggregation (P=0.001 and P=0.02, respectively). Conclusions- ApoA1-Milano significantly decreased the infarct volume through an inhibition of platelet aggregation but did not reduce hemorrhagic transformation and neutrophils activation as expected after previous experimental studies with nascent HDL. Visual Overview- An online visual overview is available for this article.
Collapse
Affiliation(s)
- Célina Ducroux
- From the Department of neurology and stroke center, Bichat hospital, Paris, France (C.D., P.A.).,Laboratory of Vascular Translational Science, U1148 Institut National de la Santé et de la Recherche Médicale (INSERM), Université de Paris, Paris, France (C.D., J.-P.D., M.-A.M., S.D., B.H.-T.-N., V.O., L.D.M., B.L., J.-B.M., P.A.)
| | - Jean-Philippe Desilles
- Laboratory of Vascular Translational Science, U1148 Institut National de la Santé et de la Recherche Médicale (INSERM), Université de Paris, Paris, France (C.D., J.-P.D., M.-A.M., S.D., B.H.-T.-N., V.O., L.D.M., B.L., J.-B.M., P.A.)
| | - Marie-Anne Mawhin
- Laboratory of Vascular Translational Science, U1148 Institut National de la Santé et de la Recherche Médicale (INSERM), Université de Paris, Paris, France (C.D., J.-P.D., M.-A.M., S.D., B.H.-T.-N., V.O., L.D.M., B.L., J.-B.M., P.A.)
| | - Sandrine Delbosc
- Laboratory of Vascular Translational Science, U1148 Institut National de la Santé et de la Recherche Médicale (INSERM), Université de Paris, Paris, France (C.D., J.-P.D., M.-A.M., S.D., B.H.-T.-N., V.O., L.D.M., B.L., J.-B.M., P.A.)
| | - Benoit Ho-Tin-Noé
- Laboratory of Vascular Translational Science, U1148 Institut National de la Santé et de la Recherche Médicale (INSERM), Université de Paris, Paris, France (C.D., J.-P.D., M.-A.M., S.D., B.H.-T.-N., V.O., L.D.M., B.L., J.-B.M., P.A.)
| | - Véronique Ollivier
- Laboratory of Vascular Translational Science, U1148 Institut National de la Santé et de la Recherche Médicale (INSERM), Université de Paris, Paris, France (C.D., J.-P.D., M.-A.M., S.D., B.H.-T.-N., V.O., L.D.M., B.L., J.-B.M., P.A.)
| | - Lucas Di Meglio
- Laboratory of Vascular Translational Science, U1148 Institut National de la Santé et de la Recherche Médicale (INSERM), Université de Paris, Paris, France (C.D., J.-P.D., M.-A.M., S.D., B.H.-T.-N., V.O., L.D.M., B.L., J.-B.M., P.A.)
| | - Bertrand Lapergue
- Laboratory of Vascular Translational Science, U1148 Institut National de la Santé et de la Recherche Médicale (INSERM), Université de Paris, Paris, France (C.D., J.-P.D., M.-A.M., S.D., B.H.-T.-N., V.O., L.D.M., B.L., J.-B.M., P.A.)
| | - Jean-Baptiste Michel
- Laboratory of Vascular Translational Science, U1148 Institut National de la Santé et de la Recherche Médicale (INSERM), Université de Paris, Paris, France (C.D., J.-P.D., M.-A.M., S.D., B.H.-T.-N., V.O., L.D.M., B.L., J.-B.M., P.A.)
| | - Pierre Amarenco
- From the Department of neurology and stroke center, Bichat hospital, Paris, France (C.D., P.A.).,Laboratory of Vascular Translational Science, U1148 Institut National de la Santé et de la Recherche Médicale (INSERM), Université de Paris, Paris, France (C.D., J.-P.D., M.-A.M., S.D., B.H.-T.-N., V.O., L.D.M., B.L., J.-B.M., P.A.)
| |
Collapse
|
10
|
Ouk T, Potey C, Maestrini I, Petrault M, Mendyk AM, Leys D, Bordet R, Gautier S. Neutrophils in tPA-induced hemorrhagic transformations: Main culprit, accomplice or innocent bystander? Pharmacol Ther 2019; 194:73-83. [DOI: 10.1016/j.pharmthera.2018.09.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
11
|
Wang X, Xuan W, Zhu ZY, Li Y, Zhu H, Zhu L, Fu DY, Yang LQ, Li PY, Yu WF. The evolving role of neuro-immune interaction in brain repair after cerebral ischemic stroke. CNS Neurosci Ther 2018; 24:1100-1114. [PMID: 30350341 DOI: 10.1111/cns.13077] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Revised: 09/23/2018] [Accepted: 09/25/2018] [Indexed: 12/13/2022] Open
Abstract
Stroke is the world's leading cause of disability with limited brain repair treatments which effectively improve long-term neurological deficits. The neuroinflammatory responses persist into the late repair phase of stroke and participate in all brain repair elements, including neurogenesis, angiogenesis, synaptogenesis, remyelination and axonal sprouting, shedding new light on post-stroke brain recovery. Resident brain glial cells, such as astrocytes not only contribute to neuroinflammation after stroke, but also secrete a wide range of trophic factors that can promote post-stroke brain repair. Alternatively, activated microglia, monocytes, and neutrophils in the innate immune system, traditionally considered as major damaging factors after stroke, have been suggested to be extensively involved in brain repair after stroke. The adaptive immune system may also have its bright side during the late regenerative phase, affecting the immune suppressive regulatory T cells and B cells. This review summarizes the recent findings in the evolving role of neuroinflammation in multiple post-stroke brain repair mechanisms and poses unanswered questions that may generate new directions for future research and give rise to novel therapeutic targets to improve stroke recovery.
Collapse
Affiliation(s)
- Xin Wang
- Department of Anesthesiology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Wei Xuan
- Department of Anesthesiology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Zi-Yu Zhu
- Department of Anesthesiology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Yan Li
- Department of Anesthesiology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Hao Zhu
- Department of Anesthesiology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Ling Zhu
- Department of Anesthesiology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Dan-Yun Fu
- Department of Anesthesiology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Li-Qun Yang
- Department of Anesthesiology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Pei-Ying Li
- Department of Anesthesiology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Wei-Feng Yu
- Department of Anesthesiology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| |
Collapse
|
12
|
Gainey J, Brecthtel L, Blum B, Keels A, Madeline L, Lowther E, Nathaniel T. Functional Outcome Measures of Recombinant Tissue Plasminogen Activator-Treated Stroke Patients in the Telestroke Technology. J Exp Neurosci 2018; 12:1179069518793412. [PMID: 30245570 PMCID: PMC6144501 DOI: 10.1177/1179069518793412] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Accepted: 07/12/2018] [Indexed: 11/16/2022] Open
Abstract
The efficiency of telestroke programs in improving the rates of recombinant
tissue plasminogen activator (rtPA) in stroke patients has been reported.
Previous studies have reported favorable treatment outcomes with the use of
telestroke programs to improve the use of rtPA, but functional outcomes are not
fully understood. This study investigated the effect of telestroke technology in
the administration of rtPA and related functional outcomes associated with
baseline clinical variables. Retrospective data of a telestroke registry were
analyzed. Univariate analysis was used to compare demographic and clinical
variables in the rtPA group and the no rtPA group and between the improved
functional ambulation group and the no improvement group. A stepwise binary
logistic regression identified factors associated with improved functional
outcome in the total telestroke population and in the subset of the telestroke
population who received rtPA. In adjusted analysis and elimination of any
multicollinearity for patients who received rtPA in the telestroke setting,
obesity (odds ratio [OR] = 2.138, 95% confidence interval [CI], 1.164-3.928,
P < .05), higher systolic blood pressure at the time of
presentation (OR = 1.015, 95% CI, 1.003-1.027, P < .05), and
baseline high-density lipoprotein at the time of admission (OR = 1.032, 95% CI,
1.005-1.059, P < .05) were associated with improved
functional outcomes. Increasing age (OR = 0.940, 95% CI, 0.916-0.965,
P < .0001) and higher calculated National Institutes of
Health Stroke Scale (OR = 0.903, 95% CI, 0.869-0.937) were associated with a
poorer outcome in rtPA-treated patients. Telestroke technology improves
functional outcomes at spoke stations where neurological expertise is
unavailable. Further studies are necessary to determine how telestroke
technology can be optimized, especially to improve contraindications and
increase eligibility for thrombolysis therapy.
Collapse
Affiliation(s)
- Jordan Gainey
- School of Medicine, University of South Carolina, Greenville, SC, USA
| | - Leanne Brecthtel
- School of Medicine, University of South Carolina, Greenville, SC, USA
| | - Brice Blum
- School of Medicine, University of South Carolina, Greenville, SC, USA
| | - Aaliyah Keels
- School of Medicine, University of South Carolina, Greenville, SC, USA
| | | | | | - Thomas Nathaniel
- School of Medicine, University of South Carolina, Greenville, SC, USA
| |
Collapse
|
13
|
Chen Z, Bai S, Hu Q, Shen P, Wang T, Liang Z, Wang W, Qi X, Xie P. Ginkgo biloba extract and its diterpene ginkgolide constituents ameliorate the metabolic disturbances caused by recombinant tissue plasminogen activator in rat prefrontal cortex. Neuropsychiatr Dis Treat 2018; 14:1755-1772. [PMID: 30013348 PMCID: PMC6037272 DOI: 10.2147/ndt.s167448] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
INTRODUCTION Although recombinant tissue plasminogen activator (rtPA) is a widely used therapy in patients with acute ischemic stroke, rtPA-induced toxicity or its adverse effects have been reported in our previous studies. However, Ginkgo biloba extract (GBE) may provide neuroprotective effects against rtPA-induced toxicity. Thus, in the present study, we investigated whether a single administration of rtPA caused neurotoxicity in the prefrontal cortex (PFC) of rats and determined whether GBE or its diterpene ginkgolide (DG) constituents were neuroprotective against any rtPA-induced toxicity. MATERIALS AND METHODS We randomly divided adult Sprague-Dawley rats into four groups that were intravenously administered saline, rtPA, rtPA+DG, or rtPA+GBE. The rats were sacrificed 24 hours later and the whole brain removed. A gas chromatography-mass spectrometry metabolomic approach was used to detect molecular changes in the PFC among the groups. Multivariate statistical and pathway analyses were used to determine the relevant metabolites as well as their functions and pathways. RESULTS We found 32 metabolites differentially altered in the four groups that were primarily involved in neurotransmitter, amino acid, energy, lipid, and nucleotide metabolism. Our results indicated that a single rtPA administration caused metabolic disturbances in the PFC. Both GBE and DG effectively ameliorated these rtPA-induced disturbances, although DG better controlled the rtPA-induced glutamate and aspartate excitotoxicity and the activation of NMDA receptor. CONCLUSION Our results provide important novel mechanistic insights into the adverse effects of rtPA and offer directions for future exploration on the thrombolytic effects of rtPA combined with the administration of DG or GBE for the treatment of acute ischemic stroke in humans.
Collapse
Affiliation(s)
- Zhi Chen
- Department of Neurology, Yongchuan Hospital, Chongqing Medical University, Chongqing, China,
- Institute of Neuroscience and the Collaborative Innovation Center for Brain Science, Chongqing Medical University, Chongqing, China,
- Chongqing Key Laboratory of Neurobiology, Chongqing, China
| | - Shunjie Bai
- Department of Neurology, Yongchuan Hospital, Chongqing Medical University, Chongqing, China,
- Institute of Neuroscience and the Collaborative Innovation Center for Brain Science, Chongqing Medical University, Chongqing, China,
- Chongqing Key Laboratory of Neurobiology, Chongqing, China
- Key Laboratory of Laboratory Medical Diagnostics of Education, Department of Laboratory Medicine, Chongqing Medical University, Chongqing, China,
| | - Qingchuan Hu
- Department of Neurology, Yongchuan Hospital, Chongqing Medical University, Chongqing, China,
- Institute of Neuroscience and the Collaborative Innovation Center for Brain Science, Chongqing Medical University, Chongqing, China,
- Chongqing Key Laboratory of Neurobiology, Chongqing, China
- Key Laboratory of Laboratory Medical Diagnostics of Education, Department of Laboratory Medicine, Chongqing Medical University, Chongqing, China,
| | - Peng Shen
- Institute of Neuroscience and the Collaborative Innovation Center for Brain Science, Chongqing Medical University, Chongqing, China,
- Chongqing Key Laboratory of Neurobiology, Chongqing, China
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China,
| | - Ting Wang
- Institute of Neuroscience and the Collaborative Innovation Center for Brain Science, Chongqing Medical University, Chongqing, China,
- Chongqing Key Laboratory of Neurobiology, Chongqing, China
- Key Laboratory of Laboratory Medical Diagnostics of Education, Department of Laboratory Medicine, Chongqing Medical University, Chongqing, China,
| | - Zihong Liang
- Institute of Neuroscience and the Collaborative Innovation Center for Brain Science, Chongqing Medical University, Chongqing, China,
- Chongqing Key Laboratory of Neurobiology, Chongqing, China
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China,
- Department of Neurology, The Inner Mongolia Autonomous Region People's Hospital, Hohhot, Inner Mongolia, China,
| | - Wei Wang
- Department of Neurology, Yongchuan Hospital, Chongqing Medical University, Chongqing, China,
- Institute of Neuroscience and the Collaborative Innovation Center for Brain Science, Chongqing Medical University, Chongqing, China,
- Chongqing Key Laboratory of Neurobiology, Chongqing, China
| | - Xunzhong Qi
- Institute of Neuroscience and the Collaborative Innovation Center for Brain Science, Chongqing Medical University, Chongqing, China,
- Chongqing Key Laboratory of Neurobiology, Chongqing, China
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China,
| | - Peng Xie
- Department of Neurology, Yongchuan Hospital, Chongqing Medical University, Chongqing, China,
- Institute of Neuroscience and the Collaborative Innovation Center for Brain Science, Chongqing Medical University, Chongqing, China,
- Key Laboratory of Laboratory Medical Diagnostics of Education, Department of Laboratory Medicine, Chongqing Medical University, Chongqing, China,
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China,
- Department of Neurology, The Inner Mongolia Autonomous Region People's Hospital, Hohhot, Inner Mongolia, China,
| |
Collapse
|
14
|
Diotel N, Charlier TD, Lefebvre d'Hellencourt C, Couret D, Trudeau VL, Nicolau JC, Meilhac O, Kah O, Pellegrini E. Steroid Transport, Local Synthesis, and Signaling within the Brain: Roles in Neurogenesis, Neuroprotection, and Sexual Behaviors. Front Neurosci 2018; 12:84. [PMID: 29515356 PMCID: PMC5826223 DOI: 10.3389/fnins.2018.00084] [Citation(s) in RCA: 100] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Accepted: 02/02/2018] [Indexed: 01/18/2023] Open
Abstract
Sex steroid hormones are synthesized from cholesterol and exert pleiotropic effects notably in the central nervous system. Pioneering studies from Baulieu and colleagues have suggested that steroids are also locally-synthesized in the brain. Such steroids, called neurosteroids, can rapidly modulate neuronal excitability and functions, brain plasticity, and behavior. Accumulating data obtained on a wide variety of species demonstrate that neurosteroidogenesis is an evolutionary conserved feature across fish, birds, and mammals. In this review, we will first document neurosteroidogenesis and steroid signaling for estrogens, progestagens, and androgens in the brain of teleost fish, birds, and mammals. We will next consider the effects of sex steroids in homeostatic and regenerative neurogenesis, in neuroprotection, and in sexual behaviors. In a last part, we will discuss the transport of steroids and lipoproteins from the periphery within the brain (and vice-versa) and document their effects on the blood-brain barrier (BBB) permeability and on neuroprotection. We will emphasize the potential interaction between lipoproteins and sex steroids, addressing the beneficial effects of steroids and lipoproteins, particularly HDL-cholesterol, against the breakdown of the BBB reported to occur during brain ischemic stroke. We will consequently highlight the potential anti-inflammatory, anti-oxidant, and neuroprotective properties of sex steroid and lipoproteins, these latest improving cholesterol and steroid ester transport within the brain after insults.
Collapse
Affiliation(s)
- Nicolas Diotel
- Université de La Réunion, Institut National de la Santé et de la Recherche Médicale, UMR 1188, Diabète athérothrombose Thérapies Réunion Océan Indien, Saint-Denis de La Réunion, France
| | - Thierry D. Charlier
- Univ Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail) - UMR_S 1085, Rennes, France
| | - Christian Lefebvre d'Hellencourt
- Université de La Réunion, Institut National de la Santé et de la Recherche Médicale, UMR 1188, Diabète athérothrombose Thérapies Réunion Océan Indien, Saint-Denis de La Réunion, France
| | - David Couret
- Université de La Réunion, Institut National de la Santé et de la Recherche Médicale, UMR 1188, Diabète athérothrombose Thérapies Réunion Océan Indien, Saint-Denis de La Réunion, France
- CHU de La Réunion, Saint-Denis, France
| | | | - Joel C. Nicolau
- Univ Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail) - UMR_S 1085, Rennes, France
| | - Olivier Meilhac
- Université de La Réunion, Institut National de la Santé et de la Recherche Médicale, UMR 1188, Diabète athérothrombose Thérapies Réunion Océan Indien, Saint-Denis de La Réunion, France
- CHU de La Réunion, Saint-Denis, France
| | - Olivier Kah
- Univ Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail) - UMR_S 1085, Rennes, France
| | - Elisabeth Pellegrini
- Univ Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail) - UMR_S 1085, Rennes, France
| |
Collapse
|
15
|
Couret D, Bourane S, Catan A, Nativel B, Planesse C, Dorsemans AC, Ait-Arsa I, Cournot M, Rondeau P, Patche J, Tran-Dinh A, Lambert G, Diotel N, Meilhac O. A hemorrhagic transformation model of mechanical stroke therapy with acute hyperglycemia in mice. J Comp Neurol 2018; 526:1006-1016. [PMID: 29277912 DOI: 10.1002/cne.24386] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2017] [Revised: 12/07/2017] [Accepted: 12/07/2017] [Indexed: 12/25/2022]
Abstract
Clinical benefit for mechanical thrombectomy (MT) in stroke was recently demonstrated in multiple large prospective studies. Acute hyperglycemia (HG) is an important risk factor of poor outcome in stroke patients, including those that underwent MT. The aim of this therapy is to achieve a complete reperfusion in a short time, given that reperfusion damage is dependent on the duration of ischemia. Here, we investigated the effects of acute HG in a mouse model of ischemic stroke induced by middle cerebral artery occlusion (MCAO). Hyperglycemic (intraperitoneal [ip] injection of glucose) and control (ip saline injection) 10-week male C57BL6 mice were subjected to MCAO (30, 90, and 180 min) followed by reperfusion obtained by withdrawal of the monofilament. Infarct volume, hemorrhagic transformation (HT), neutrophil infiltration, and neurological scores were assessed at 24 hr by performing vital staining, ELISA immunofluorescence, and behavioral test, respectively. Glucose injection led to transient HG (blood glucose = 250-390 mg/dL) that significantly increased infarct volume, HT, and worsened neurological outcome. In addition, we report that HG promoted blood-brain barrier disruption as shown by hemoglobin accumulation in the brain parenchyma and tended to increase neutrophil extravasation within the infarcted area. Acute HG increased neurovascular damage for all MCAO durations tested. HTs were observed as early as 90 min after ischemia under hyperglycemic conditions. This model mimics MT ischemia/reperfusion and allows the exploration of brain injury in hyperglycemic conditions.
Collapse
Affiliation(s)
- David Couret
- Université de La Réunion, INSERM, UMR 1188 Diabète Athérothrombose Réunion Océan Indien (DéTROI), Saint-Denis de La Réunion, France.,CHU de La Réunion, Service de Neuroréanimation, Saint-Pierre de La Réunion, France
| | - Steeve Bourane
- Université de La Réunion, INSERM, UMR 1188 Diabète Athérothrombose Réunion Océan Indien (DéTROI), Saint-Denis de La Réunion, France
| | - Aurélie Catan
- Université de La Réunion, INSERM, UMR 1188 Diabète Athérothrombose Réunion Océan Indien (DéTROI), Saint-Denis de La Réunion, France
| | - Brice Nativel
- Université de La Réunion, INSERM, UMR 1188 Diabète Athérothrombose Réunion Océan Indien (DéTROI), Saint-Denis de La Réunion, France
| | - Cynthia Planesse
- Université de La Réunion, INSERM, UMR 1188 Diabète Athérothrombose Réunion Océan Indien (DéTROI), Saint-Denis de La Réunion, France
| | - Anne-Claire Dorsemans
- Université de La Réunion, INSERM, UMR 1188 Diabète Athérothrombose Réunion Océan Indien (DéTROI), Saint-Denis de La Réunion, France
| | - Imade Ait-Arsa
- Plateforme CYROI, Cyclotron Réunion Océan Indien, Sainte-Clotilde, France
| | - Maxime Cournot
- Université de La Réunion, INSERM, UMR 1188 Diabète Athérothrombose Réunion Océan Indien (DéTROI), Saint-Denis de La Réunion, France.,Hôpital Gabriel Martin, Service de Cardiologie, Saint-Paul de La Réunion, France.,CHU de La Réunion, Saint-Denis de La Réunion, France
| | - Philippe Rondeau
- Université de La Réunion, INSERM, UMR 1188 Diabète Athérothrombose Réunion Océan Indien (DéTROI), Saint-Denis de La Réunion, France
| | - Jessica Patche
- Université de La Réunion, INSERM, UMR 1188 Diabète Athérothrombose Réunion Océan Indien (DéTROI), Saint-Denis de La Réunion, France
| | | | - Gilles Lambert
- Université de La Réunion, INSERM, UMR 1188 Diabète Athérothrombose Réunion Océan Indien (DéTROI), Saint-Denis de La Réunion, France
| | - Nicolas Diotel
- Université de La Réunion, INSERM, UMR 1188 Diabète Athérothrombose Réunion Océan Indien (DéTROI), Saint-Denis de La Réunion, France
| | - Olivier Meilhac
- Université de La Réunion, INSERM, UMR 1188 Diabète Athérothrombose Réunion Océan Indien (DéTROI), Saint-Denis de La Réunion, France.,CHU de La Réunion, Service de Neuroréanimation, Saint-Pierre de La Réunion, France.,CHU de La Réunion, Saint-Denis de La Réunion, France
| |
Collapse
|
16
|
Swendeman SL, Xiong Y, Cantalupo A, Yuan H, Burg N, Hisano Y, Cartier A, Liu CH, Engelbrecht E, Blaho V, Zhang Y, Yanagida K, Galvani S, Obinata H, Salmon JE, Sanchez T, Di Lorenzo A, Hla T. An engineered S1P chaperone attenuates hypertension and ischemic injury. Sci Signal 2017; 10:10/492/eaal2722. [PMID: 28811382 DOI: 10.1126/scisignal.aal2722] [Citation(s) in RCA: 80] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Endothelial dysfunction, a hallmark of vascular disease, is restored by plasma high-density lipoprotein (HDL). However, a generalized increase in HDL abundance is not beneficial, suggesting that specific HDL species mediate protective effects. Apolipoprotein M-containing HDL (ApoM+HDL), which carries the bioactive lipid sphingosine 1-phosphate (S1P), promotes endothelial function by activating G protein-coupled S1P receptors. Moreover, HDL-bound S1P is limiting in several inflammatory, metabolic, and vascular diseases. We report the development of a soluble carrier for S1P, ApoM-Fc, which activated S1P receptors in a sustained manner and promoted endothelial function. In contrast, ApoM-Fc did not modulate circulating lymphocyte numbers, suggesting that it specifically activated endothelial S1P receptors. ApoM-Fc administration reduced blood pressure in hypertensive mice, attenuated myocardial damage after ischemia/reperfusion injury, and reduced brain infarct volume in the middle cerebral artery occlusion model of stroke. Our proof-of-concept study suggests that selective and sustained targeting of endothelial S1P receptors by ApoM-Fc could be a viable therapeutic strategy in vascular diseases.
Collapse
Affiliation(s)
- Steven L Swendeman
- Vascular Biology Program, Boston Children's Hospital, Boston, MA 02115, USA.,Department of Surgery, Harvard Medical School, Boston, MA 02115, USA
| | - Yuquan Xiong
- Vascular Biology Program, Boston Children's Hospital, Boston, MA 02115, USA.,Department of Surgery, Harvard Medical School, Boston, MA 02115, USA
| | - Anna Cantalupo
- Center for Vascular Biology, Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, Cornell University, New York, NY 10065, USA
| | - Hui Yuan
- Vascular Biology Program, Boston Children's Hospital, Boston, MA 02115, USA.,Department of Surgery, Harvard Medical School, Boston, MA 02115, USA
| | - Nathalie Burg
- Center for Vascular Biology, Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, Cornell University, New York, NY 10065, USA.,Hospital for Special Surgery, New York, NY 10021, USA
| | - Yu Hisano
- Vascular Biology Program, Boston Children's Hospital, Boston, MA 02115, USA.,Department of Surgery, Harvard Medical School, Boston, MA 02115, USA
| | - Andreane Cartier
- Vascular Biology Program, Boston Children's Hospital, Boston, MA 02115, USA.,Department of Surgery, Harvard Medical School, Boston, MA 02115, USA
| | - Catherine H Liu
- Center for Vascular Biology, Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, Cornell University, New York, NY 10065, USA
| | - Eric Engelbrecht
- Vascular Biology Program, Boston Children's Hospital, Boston, MA 02115, USA.,Department of Surgery, Harvard Medical School, Boston, MA 02115, USA
| | - Victoria Blaho
- Center for Vascular Biology, Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, Cornell University, New York, NY 10065, USA
| | - Yi Zhang
- Center for Vascular Biology, Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, Cornell University, New York, NY 10065, USA
| | - Keisuke Yanagida
- Vascular Biology Program, Boston Children's Hospital, Boston, MA 02115, USA.,Department of Surgery, Harvard Medical School, Boston, MA 02115, USA
| | - Sylvain Galvani
- Vascular Biology Program, Boston Children's Hospital, Boston, MA 02115, USA.,Department of Surgery, Harvard Medical School, Boston, MA 02115, USA
| | - Hideru Obinata
- Gunma University Initiative for Advanced Research, Gunma 371-8511, Japan
| | - Jane E Salmon
- Hospital for Special Surgery, New York, NY 10021, USA
| | - Teresa Sanchez
- Center for Vascular Biology, Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, Cornell University, New York, NY 10065, USA
| | - Annarita Di Lorenzo
- Center for Vascular Biology, Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, Cornell University, New York, NY 10065, USA
| | - Timothy Hla
- Vascular Biology Program, Boston Children's Hospital, Boston, MA 02115, USA. .,Department of Surgery, Harvard Medical School, Boston, MA 02115, USA.,Center for Vascular Biology, Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, Cornell University, New York, NY 10065, USA
| |
Collapse
|
17
|
Lu G, He Q, Shen Y, Cao F. Potential biomarkers for predicting hemorrhagic transformation of ischemic stroke. Int J Neurosci 2017; 128:79-89. [PMID: 28726570 DOI: 10.1080/00207454.2017.1349766] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Reperfusion therapy contributes to better clinical outcomes in patients with acute ischemic stroke but carries a more significant risk of hemorrhagic transformation (HT) compared to supportive care. Once HT occurs, the outcome is usually poor and this causes a dilemma in the treatment of ischemic stroke. Consequently, early prediction of HT would be extremely helpful for guiding precise treatment of ischemic stroke. In this review, we focus on summarizing biomarkers of HT and elucidating possible mechanisms so as to identify potential biomarkers for predicting HT.
Collapse
Affiliation(s)
- Guanfeng Lu
- a Department of Neurology, Union Hospital, Tongji Medical College , Huazhong University of Science and Technology , Wuhan 430022 , China
| | - Quanwei He
- a Department of Neurology, Union Hospital, Tongji Medical College , Huazhong University of Science and Technology , Wuhan 430022 , China
| | - Yan Shen
- a Department of Neurology, Union Hospital, Tongji Medical College , Huazhong University of Science and Technology , Wuhan 430022 , China
| | - Fei Cao
- a Department of Neurology, Union Hospital, Tongji Medical College , Huazhong University of Science and Technology , Wuhan 430022 , China
| |
Collapse
|
18
|
Boyce G, Button E, Soo S, Wellington C. The pleiotropic vasoprotective functions of high density lipoproteins (HDL). J Biomed Res 2017; 32:164. [PMID: 28550271 PMCID: PMC6265396 DOI: 10.7555/jbr.31.20160103] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2016] [Accepted: 12/23/2016] [Indexed: 12/19/2022] Open
Abstract
The pleiotropic functions of circulating high density lipoprotein (HDL) on peripheral vascular health are well established. HDL plays a pivotal role in reverse cholesterol transport and is also known to suppress inflammation, endothelial activation and apoptosis in peripheral vessels. Although not expressed in the central nervous system, HDL has nevertheless emerged as a potential resilience factor for dementia in multiple epidemiological studies. Animal model data specifically support a role for HDL in attenuating the accumulation of β-amyloid within cerebral vessels concomitant with reduced neuroinflammation and improved cognitive performance. As the vascular contributions to dementia are increasingly appreciated, this review seeks to summarize recent literature focused on the vasoprotective properties of HDL that may extend to cerebral vessels, discuss potential roles of HDL in dementia relative to brain-derived lipoproteins, identify gaps in current knowledge, and highlight new opportunities for research and discovery.
Collapse
Affiliation(s)
- Guilaine Boyce
- Department of Pathology and Laboratory Medicine, Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Emily Button
- Department of Pathology and Laboratory Medicine, Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Sonja Soo
- Department of Pathology and Laboratory Medicine, Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Cheryl Wellington
- Department of Pathology and Laboratory Medicine, Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| |
Collapse
|
19
|
Gomaraschi M, Calabresi L, Franceschini G. Protective Effects of HDL Against Ischemia/Reperfusion Injury. Front Pharmacol 2016; 7:2. [PMID: 26834639 PMCID: PMC4725188 DOI: 10.3389/fphar.2016.00002] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2015] [Accepted: 01/08/2016] [Indexed: 12/14/2022] Open
Abstract
Several lines of evidence suggest that, besides being a strong independent predictor of the occurrence of primary coronary events, a low plasma high density lipoprotein (HDL) cholesterol level is also associated with short- and long-term unfavorable prognosis in patients, who have recovered from a myocardial infarction, suggesting a direct detrimental effect of low HDL on post-ischemic myocardial function. Experiments performed in ex vivo and in vivo models of myocardial ischemia/reperfusion (I/R) injury have clearly shown that HDL are able to preserve cardiac function when given before ischemia or at reperfusion; the protective effects of HDL against I/R injury have been also confirmed in other tissues and organs, as brain and hind limb. HDL were shown to act on coronary endothelial cells, by limiting the increase of endothelium permeability and promoting vasodilation and neoangiogenesis, on white blood cells, by reducing their infiltration into the ischemic tissue and the release of pro-inflammatory and matrix-degrading molecules, and on cardiomyocytes, by preventing the activation of the apoptotic cascade. Synthetic HDL retains the cardioprotective activity of plasma-derived HDL and may become a useful adjunctive therapy to improve clinical outcomes in patients with acute coronary syndromes or undergoing coronary procedures.
Collapse
Affiliation(s)
- Monica Gomaraschi
- Centro E. Grossi Paoletti, Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano Milan, Italy
| | - Laura Calabresi
- Centro E. Grossi Paoletti, Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano Milan, Italy
| | - Guido Franceschini
- Centro E. Grossi Paoletti, Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano Milan, Italy
| |
Collapse
|
20
|
Wei X, Zhang B, Cheng L, Chi M, Deng L, Pan H, Yao X, Wang G. Hydrogen sulfide induces neuroprotection against experimental stroke in rats by down-regulation of AQP4 via activating PKC. Brain Res 2015; 1622:292-9. [PMID: 26168888 DOI: 10.1016/j.brainres.2015.07.001] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2015] [Revised: 06/22/2015] [Accepted: 07/03/2015] [Indexed: 12/23/2022]
Abstract
Hydrogen sulfide (H2S) is now known as an important neuromodulator in the central nervous system. The aim of the current study was to investigate whether exogenous H2S gas can attenuate brain edema induced by experimental stroke and to clarify the potential mechanisms. Rats underwent 2-h middle cerebral artery occlusion (MCAO) and received 40 ppm or 80 ppm H2S inhalation for 3h at the beginning of reperfusion. The effects of H2S were investigated by evaluating neurological function, infarct size, brain edema volume, and aquaporin4 (AQP4) protein expression at 24h after reperfusion. Moreover, to explore the possible mechanisms for the neuroprotective effects of H2S, protein kinase C (PKC) activity was detected and a PKC inhibitor, Go6983, was used via intracerebral ventricular injection. Our results showed that 40 ppm or 80 ppm H2S inhalation significantly reduced neurological deficits, infarct size, and brain edema after MCAO. The expression of AQP4 in the peri-infarct area of brain was also inhibited after inhalation of H2S. PKC was activated by H2S treatment and the PKC inhibitor attenuated the neuroprotection of H2S with an increased AQP4 expression at the same time. In conclusion, H2S inhalation attenuates brain edema, reduces infarct volume, and improves neurologic function in a rat experimental stroke model. The therapeutic benefits of H2S inhalation are associated with down-regulation of AQP4 expression via activating PKC.
Collapse
Affiliation(s)
- Xia Wei
- Department of Anesthesiology, Cancer Hospital Affiliated to Harbin Medical University, 150 Haping Road, Harbin, Heilongjiang 150081, China
| | - Bing Zhang
- Department of Anesthesiology, Second Affiliated Hospital of Harbin Medical University, 246 Xuefu Road, Harbin, Heilongjiang 150086, China
| | - Long Cheng
- Department of Anesthesiology, Second Affiliated Hospital of Harbin Medical University, 246 Xuefu Road, Harbin, Heilongjiang 150086, China
| | - Meng Chi
- Department of Anesthesiology, Cancer Hospital Affiliated to Harbin Medical University, 150 Haping Road, Harbin, Heilongjiang 150081, China
| | - Lin Deng
- Department of Anesthesiology, Cancer Hospital Affiliated to Harbin Medical University, 150 Haping Road, Harbin, Heilongjiang 150081, China
| | - Hong Pan
- Department of Anesthesiology, Second Affiliated Hospital of Harbin Medical University, 246 Xuefu Road, Harbin, Heilongjiang 150086, China
| | - Xuan Yao
- Department of Anesthesiology, Second Affiliated Hospital of Harbin Medical University, 246 Xuefu Road, Harbin, Heilongjiang 150086, China
| | - Guonian Wang
- Department of Anesthesiology, Cancer Hospital Affiliated to Harbin Medical University, 150 Haping Road, Harbin, Heilongjiang 150081, China.
| |
Collapse
|
21
|
Hafez S, Hoda MN, Guo X, Johnson MH, Fagan SC, Ergul A. Comparative Analysis of Different Methods of Ischemia/Reperfusion in Hyperglycemic Stroke Outcomes: Interaction with tPA. Transl Stroke Res 2015; 6:171-80. [PMID: 25683354 DOI: 10.1007/s12975-015-0391-0] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2014] [Revised: 02/04/2015] [Accepted: 02/04/2015] [Indexed: 12/18/2022]
Abstract
Acute hyperglycemia (HG) exacerbates reperfusion injury and aggravates tissue plasminogen activator (tPA)-induced hemorrhagic transformation (HT). Previous experimental hyperglycemic stroke studies employed very high blood glucose levels and exclusively used suture occlusion model to induce ischemia. Only few studies evaluated HG in embolic stroke and mostly involving the use of 10-fold higher dose of tPA than that is used in patients. However, the interaction between acute HG and low (human) dose tPA in different experimental models of stroke has never been reported. We first tested the impact of the severity of acute HG on stroke outcome. Building upon our findings, we then compared the impact of mild acute HG on neurovascular injury in rats subjected to suture or thromboembolic occlusion with and without low dose tPA. We assessed cerebral blood flow, neurobehavioral outcomes, infarction, hemorrhage, and edema. tPA did not change the infarct size in either control or hyperglycemic animals when compared to no tPA groups. HG increased HT and worsened functional outcomes in both suture and embolic occlusion models. The combination of HG and tPA exacerbated the vascular injury and worsened the neurological deficits more than each individual treatment in both models. Our findings show that the interaction between HG and even low dose tPA has detrimental effects on the cerebrovasculature and functional outcomes independent of the method of reperfusion.
Collapse
Affiliation(s)
- Sherif Hafez
- Charlie Norwood Veterans Administration Medical Center, Augusta, GA, USA
| | | | | | | | | | | |
Collapse
|
22
|
Abstract
Besides their well-documented function of reverse transport of cholesterol, high-density lipoproteins (HDLs) display pleiotropic effects due to their antioxidant, antithrombotic, anti-inflammatory and antiapoptotic properties that may play a major protective role in acute stroke, in particular by limiting the deleterious effects of ischaemia on the blood-brain barrier (BBB) and on the parenchymal cerebral compartment. HDLs may also modulate leukocyte and platelet activation, which may also represent an important target that would justify the use of HDL-based therapy in acute stroke. In this review, we will present an update of all the recent findings in HDL biology that could support a potential clinical use of HDL therapy in ischaemic stroke.
Collapse
|
23
|
Innovative thrombolytic strategy using a heterodimer diabody against TAFI and PAI-1 in mouse models of thrombosis and stroke. Blood 2014; 125:1325-32. [PMID: 25540192 DOI: 10.1182/blood-2014-07-588319] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Circulating thrombin-activatable fibrinolysis inhibitor (TAFI) and plasminogen activator inhibitor-1 (PAI-1) are causal factors for thrombolytic failure. Therefore, we evaluated an antibody-engineered bispecific inhibitor against TAFI and PAI-1 (heterodimer diabody, Db-TCK26D6x33H1F7) in several mouse models of thrombosis and stroke. Prophylactic administration of the diabody (0.8 mg/kg) in a thromboplastin-induced model of thromboembolism led to decreased lung fibrin deposition. In a model of cerebral ischemia and reperfusion, diabody administration (0.8 mg/kg, 1 hour postocclusion) led to a mitigated cerebral injury with a 2.3-fold reduced lesion and improved functional outcomes. In a mouse model of thrombin-induced middle cerebral artery occlusion, the efficacy of the diabody was compared to the standard thrombolytic treatment with recombinant tissue-type plasminogen activator (tPA). Early administration of diabody (0.8 mg/kg) caused a twofold decrease in brain lesion size, whereas that of tPA (10 mg/kg) had a much smaller effect. Delayed administration of diabody or tPA had no effect on lesion size, whereas the combined administration of diabody with tPA caused a 1.7-fold decrease in lesion size. In contrast to tPA, the diabody did not increase accumulative bleeding. In conclusion, administration of a bispecific inhibitor against TAFI and PAI-1 results in a prominent profibrinolytic effect in mice without increased bleeding.
Collapse
|
24
|
Tran-Dinh A, Levoye A, Lambert G, Louedec L, Journé C, Meilhac O, Amarenco P. Low levels of low-density lipoprotein-C associated with proprotein convertase subtilisin kexin 9 inhibition do not increase the risk of hemorrhagic transformation. Stroke 2014; 45:3086-8. [PMID: 25123222 DOI: 10.1161/strokeaha.114.005958] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND AND PURPOSE Low levels of low-density lipoprotein-cholesterol (LDL-C) are suspected to be associated with a risk of hemorrhagic transformation after ischemic stroke. We assessed the risk of hemorrhagic transformation after cerebral ischemia/reperfusion in mice with low levels of LDL-C resulting from proprotein convertase subtilisin kexin 9 (PCSK9) deficiency. METHODS PCSK9-/- and PCSK9+/+ mice were fed with a high-fat/high-cholesterol (21%/0.15%) diet for 1 month. Plasma lipids were measured using colorimetric assays. PCSK9-/- and PCSK9+/+ mice (n=15 per group) were subjected to a 4-hour intraluminal occlusion of the middle cerebral artery followed by 20 hours of reperfusion. Spontaneous hemorrhagic transformation was assessed by quantification of hemoglobin in ischemic tissue. In vitro, a cell model of blood-brain barrier was used to test endothelial barrier integrity in response to decreasing concentrations of LDL-C from 1 to 0.25g/L in ischemia/reperfusion conditions. RESULTS PCSK9-/- mice had lower LDL-C, high-density lipoprotein-cholesterol, and total cholesterol levels than PCSK9+/+ mice before and after 1 month on the high-fat/high-cholesterol diet. Hemoglobin concentration in ischemic cerebral tissue was not different between PCSK9-/- and PCSK9+/+ mice (31.5 [18.9-60.1] and 32.8 [14.7-69.9] ng/mg protein, respectively; P=0.81). Infarct volume was also similar in both groups (P=0.66). Incubation of human cerebral endothelial cells with decreasing concentrations of LDL-C under ischemia/reperfusion conditions did not alter blood-brain barrier permeability. CONCLUSIONS Low levels of LDL-C did not increase the risk of hemorrhagic transformation after cerebral ischemia/reperfusion in mice. Our observations suggest that PCSK9 inhibition, leading to LDL-C lowering, should not increase hemorrhagic complications after acute ischemic stroke.
Collapse
Affiliation(s)
- Alexy Tran-Dinh
- From the Inserm UMR1148, Paris7 University, Xavier Bichat Hospital, Paris, France (A.T.-D., A.L., L.L., C.J., O.M., P.A.); Paris 7 University, Université Paris Diderot, Paris, France (A.T.-D., P.A.); CHU Bichat Stroke Center, Paris, France (P.A.); CHU de La Réunion, Saint-Pierre, France (O.M.); Paris 13 University, Villetaneuse, France (A.L.); UMR PhAN Laboratory, Nantes, France (G.L.); and University of Nantes Medical School, Nantes, France (G.L.)
| | - Angélique Levoye
- From the Inserm UMR1148, Paris7 University, Xavier Bichat Hospital, Paris, France (A.T.-D., A.L., L.L., C.J., O.M., P.A.); Paris 7 University, Université Paris Diderot, Paris, France (A.T.-D., P.A.); CHU Bichat Stroke Center, Paris, France (P.A.); CHU de La Réunion, Saint-Pierre, France (O.M.); Paris 13 University, Villetaneuse, France (A.L.); UMR PhAN Laboratory, Nantes, France (G.L.); and University of Nantes Medical School, Nantes, France (G.L.)
| | - Gilles Lambert
- From the Inserm UMR1148, Paris7 University, Xavier Bichat Hospital, Paris, France (A.T.-D., A.L., L.L., C.J., O.M., P.A.); Paris 7 University, Université Paris Diderot, Paris, France (A.T.-D., P.A.); CHU Bichat Stroke Center, Paris, France (P.A.); CHU de La Réunion, Saint-Pierre, France (O.M.); Paris 13 University, Villetaneuse, France (A.L.); UMR PhAN Laboratory, Nantes, France (G.L.); and University of Nantes Medical School, Nantes, France (G.L.)
| | - Liliane Louedec
- From the Inserm UMR1148, Paris7 University, Xavier Bichat Hospital, Paris, France (A.T.-D., A.L., L.L., C.J., O.M., P.A.); Paris 7 University, Université Paris Diderot, Paris, France (A.T.-D., P.A.); CHU Bichat Stroke Center, Paris, France (P.A.); CHU de La Réunion, Saint-Pierre, France (O.M.); Paris 13 University, Villetaneuse, France (A.L.); UMR PhAN Laboratory, Nantes, France (G.L.); and University of Nantes Medical School, Nantes, France (G.L.)
| | - Clément Journé
- From the Inserm UMR1148, Paris7 University, Xavier Bichat Hospital, Paris, France (A.T.-D., A.L., L.L., C.J., O.M., P.A.); Paris 7 University, Université Paris Diderot, Paris, France (A.T.-D., P.A.); CHU Bichat Stroke Center, Paris, France (P.A.); CHU de La Réunion, Saint-Pierre, France (O.M.); Paris 13 University, Villetaneuse, France (A.L.); UMR PhAN Laboratory, Nantes, France (G.L.); and University of Nantes Medical School, Nantes, France (G.L.)
| | - Olivier Meilhac
- From the Inserm UMR1148, Paris7 University, Xavier Bichat Hospital, Paris, France (A.T.-D., A.L., L.L., C.J., O.M., P.A.); Paris 7 University, Université Paris Diderot, Paris, France (A.T.-D., P.A.); CHU Bichat Stroke Center, Paris, France (P.A.); CHU de La Réunion, Saint-Pierre, France (O.M.); Paris 13 University, Villetaneuse, France (A.L.); UMR PhAN Laboratory, Nantes, France (G.L.); and University of Nantes Medical School, Nantes, France (G.L.)
| | - Pierre Amarenco
- From the Inserm UMR1148, Paris7 University, Xavier Bichat Hospital, Paris, France (A.T.-D., A.L., L.L., C.J., O.M., P.A.); Paris 7 University, Université Paris Diderot, Paris, France (A.T.-D., P.A.); CHU Bichat Stroke Center, Paris, France (P.A.); CHU de La Réunion, Saint-Pierre, France (O.M.); Paris 13 University, Villetaneuse, France (A.L.); UMR PhAN Laboratory, Nantes, France (G.L.); and University of Nantes Medical School, Nantes, France (G.L.)
| |
Collapse
|
25
|
Cui Z, Shen L, Lin Y, Wang S, Zheng D, Tan Q. Inhibition of oxygen-glucose deprivation-induced apoptosis of human adipose-derived stem cells by genetic modification with antiapoptotic protein bcl-2. Aesthetic Plast Surg 2014; 38:779-87. [PMID: 24907101 DOI: 10.1007/s00266-014-0354-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2013] [Accepted: 05/08/2014] [Indexed: 10/25/2022]
Abstract
BACKGROUND Adipose-derived stem cells (ADSCs) have become a promising tool for a wide range of cell-based therapies. However, transplanted ADSCs do not survive well under ischemic conditions. In this study we aimed to inhibit oxygen-glucose deprivation (OGD)-induced apoptosis of human ADSCs by genetic modification with antiapoptotic protein Bcl-2. METHODS After isolation and culture, the phenotypes of human ADSCs at passage 3 were analyzed by flow cytometry. Then, genetic modification of ADSCs with Bcl-2 was carried out. Bcl-2 gene transfection was verified by Western blot analysis and multipotent differentiation properties were evaluated in Bcl-2-modified ADSCs (Bcl-2-ADSCs). Apoptosis was evaluated by a TUNEL assay under ischemic conditions induced by OGD. Apoptotic nuclei were also assessed and quantified by Hoechst staining. RESULTS The cultured ADSCs expressed stem cell-associated markers CD29, CD34, CD44, and CD90, but not fibroblast marker HLA-DR or hematopoietic stem cell marker CD133. The Bcl-2 gene was transferred into ADSCs efficiently, and Bcl-2-ADSCs differentiated into adipocytes, chondrocytes, and osteoblasts. In addition, Bcl-2 overexpression reduced the percentage of apoptotic Bcl-2-ADSCs by 38 % under OGD. CONCLUSION Our results indicate that Bcl-2 overexpression through gene transfection inhibits apoptosis of ADSCs under ischemic conditions. NO LEVEL ASSIGNED This journal requires that authors assign a level of evidence to each submission to which Evidence-Based Medicine rankings are applicable. This excludes Review Articles, Book Reviews, and manuscripts that concern Basic Science, Animal Studies, Cadaver Studies, and Experimental Studies. For a full description of these Evidence-Based Medicine ratings, please refer to the Table of Contents or the online Instructions to Authors www.springer.com/00266 .
Collapse
|
26
|
Effects of acupuncture at GV20 and ST36 on the expression of matrix metalloproteinase 2, aquaporin 4, and aquaporin 9 in rats subjected to cerebral ischemia/reperfusion injury. PLoS One 2014; 9:e97488. [PMID: 24828425 PMCID: PMC4020847 DOI: 10.1371/journal.pone.0097488] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2013] [Accepted: 04/17/2014] [Indexed: 12/04/2022] Open
Abstract
Background/Purpose Ischemic stroke is characterized by high morbidity and mortality worldwide. Matrix metalloproteinase 2 (MMP2), aquaporin (AQP) 4, and AQP9 are linked to permeabilization of the blood-brain barrier (BBB) in cerebral ischemia/reperfusion injury (CIRI). BBB disruption, tissue inflammation, and MMP/AQP upregulation jointly provoke brain edema/swelling after CIRI, while acupuncture and electroacupuncture can alleviate CIRI symptoms. This study evaluated the hypothesis that acupuncture and electroacupuncture can similarly exert neuroprotective actions in a rat model of middle cerebral artery occlusion (MCAO) by modulating MMP2/AQP4/APQ9 expression and inflammatory cell infiltration. Methods Eighty 8-week-old Sprague-Dawley rats were randomly divided into sham group S, MCAO model group M, acupuncture group A, electroacupuncture group EA, and edaravone group ED. The MCAO model was established by placement of a suture to block the middle carotid artery, and reperfusion was triggered by suture removal in all groups except group S. Acupuncture and electroacupuncture were administered at acupoints GV20 (governing vessel-20) and ST36 (stomach-36). Rats in groups A, EA, and ED received acupuncture, electroacupuncture, or edaravone, respectively, immediately after MCAO. Neurological function (assessed using the Modified Neurological Severity Score), infarct volume, MMP2/AQP4/AQP9 mRNA and protein expression, and inflammatory cell infiltration were all evaluated at 24 h post-reperfusion. Results Acupuncture and electroacupuncture significantly decreased infarct size and improved neurological function. Furthermore, target mRNA and protein levels and inflammatory cell infiltration were significantly reduced in groups A, EA, and ED vs. group M. However, MMP2/AQP levels and inflammatory cell infiltration were generally higher in groups A and EA than in group ED except MMP2 mRNA levels. Conclusions Acupuncture and electroacupuncture at GV20 and ST36 both exercised neuroprotective actions in a rat model of MCAO, with no clear differences between groups A and EA. Therefore, acupuncture and electroacupuncture might find utility as adjunctive and complementary treatments to supplement conventional therapy for ischemic stroke.
Collapse
|
27
|
Majid A. Neuroprotection in stroke: past, present, and future. ISRN NEUROLOGY 2014; 2014:515716. [PMID: 24579051 PMCID: PMC3918861 DOI: 10.1155/2014/515716] [Citation(s) in RCA: 95] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/07/2013] [Accepted: 09/16/2013] [Indexed: 01/05/2023]
Abstract
Stroke is a devastating medical condition, killing millions of people each year and causing serious injury to many more. Despite advances in treatment, there is still little that can be done to prevent stroke-related brain damage. The concept of neuroprotection is a source of considerable interest in the search for novel therapies that have the potential to preserve brain tissue and improve overall outcome. Key points of intervention have been identified in many of the processes that are the source of damage to the brain after stroke, and numerous treatment strategies designed to exploit them have been developed. In this review, potential targets of neuroprotection in stroke are discussed, as well as the various treatments that have been targeted against them. In addition, a summary of recent progress in clinical trials of neuroprotective agents in stroke is provided.
Collapse
Affiliation(s)
- Arshad Majid
- Department of Neuroscience, Sheffield Institute for Translational Neuroscience (SITraN), University of Sheffield, 385A Glossop Road, Sheffield S10 2HQ, UK
- Department of Neurology and Manchester Academic Health Sciences Centre, Salford Royal Hospital, Stott Lane, Salford M6 8HD, UK
| |
Collapse
|
28
|
Wang Y, Zhao Z, Chow N, Rajput PS, Griffin JH, Lyden PD, Zlokovic BV. Activated protein C analog protects from ischemic stroke and extends the therapeutic window of tissue-type plasminogen activator in aged female mice and hypertensive rats. Stroke 2013; 44:3529-36. [PMID: 24159062 DOI: 10.1161/strokeaha.113.003350] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND AND PURPOSE 3K3A-activated protein C (APC) protects young, healthy male rodents after ischemic stroke. 3K3A-APC is currently under development as a neuroprotectant for acute ischemic stroke in humans. Stroke Therapy Academic Industry Roundtable recommends that after initial studies in young, healthy male animals, further studies should be performed in females, aged animals, and animals with comorbid conditions. Here, we studied the effects of delayed 3KA-APC therapy alone and with tissue-type plasminogen activator (tPA) in aged female mice and spontaneously hypertensive rats. METHODS We used Stroke Therapy Academic Industry Roundtable recommendations for ensuring good scientific inquiry. Murine recombinant 3K3A-APC (0.2 mg/kg) alone or with recombinant tPA (10 mg/kg) was given intravenously 4 hours after transient middle cerebral artery occlusion in aged female mice and rats and after embolic stroke in spontaneously hypertensive rat. 3K3A-APC was additionally administered within 3 to 7 days after stroke. The neuropathological analysis and neurological scores, foot-fault, forelimb asymmetry, and adhesive removal tests were performed within 7 and 28 days of stroke. RESULTS In all models, tPA alone had no effects on the infarct volume or behavior. 3K3A-APC alone or with tPA reduced the infarct volume 7 days after the middle cerebral artery occlusion in aged female mice and embolic stroke in spontaneously hypertensive rat by 62% to 66% and 50% to 53%, respectively, significantly improved (P<0.05) behavior, and eliminated tPA-induced intracerebral microhemorrhages. In aged female mice, 3K3A-APC was protective within 4 weeks of stroke. CONCLUSIONS 3K3A-APC protects from ischemic stroke and extends the therapeutic window of tPA in aged female mice and in spontaneously hypertensive rat with a comorbid condition.
Collapse
Affiliation(s)
- Yaoming Wang
- From the Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA (Y.W., Z.Z., B.V.Z.); ZZ Biotech Research Laboratory, Rochester, NY (N.C.); Department of Neurology, Cedars-Sinai Medical Center, Los Angeles, CA (P.S.R., P.D.L.); and Department of Molecular and Experimental Medicine, The Scripps Research Institute, La Jolla, CA (J.H.G.)
| | | | | | | | | | | | | |
Collapse
|