1
|
Cao X, Wang Z, Wang H, Zhou H, Quan J, Chen X, Yang X, Ju S, Wang Y, Guo Y. Whole-brain functional connectivity and structural network properties in stroke patients with hemiplegia. Neuroscience 2024; 565:420-430. [PMID: 39662527 DOI: 10.1016/j.neuroscience.2024.12.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 11/15/2024] [Accepted: 12/08/2024] [Indexed: 12/13/2024]
Abstract
OBJECTIVE This study explored structural and functional alterations in the whole brain of stroke patients with hemiplegia. METHODS We collected multimodal magnetic resonance images of 24 patients with ischaemic stroke and 16 age-matched controls. Resting-state functional connectivity (FC) for all brain regions was evaluated. Diffusion tensor imaging was used to construct white matter structural networks, and the graph properties of the structural network were analysed using graph theory to determine group differences. RESULTS The ipsilesional posterior parietal cortex (PPC) in the frontoparietal network accounts for more than half of the 25 brain regions with altered FC in stroke patients. The nodal efficiency of multiple ipsilesional frontal lobes and cerebellar regions, such as the ipsilateral cerebellum 8, was reduced. The contralesional cerebellum 8 showed elevated FC with the lingual gyrus and the visual network. CONCLUSIONS Our results suggest that the PPC and cerebellum 8 are regions worthy of in-depth study. The cerebellum 8 may supplement deficits in motor balance function by enhancing functional congruence with the visual area. SIGNIFICANCE This study identified key brain regions and characteristics that exhibit structural and functional changes following stroke injury.
Collapse
Affiliation(s)
- Xuejin Cao
- School of Acupuncture-Moxibustion and Tuina, School of Health Preservation and Rehabilitation, Nanjing University of Chinese Medicine, Nanjing, China
| | - Zan Wang
- Department of Neurology, Affiliated ZhongDa Hospital of Southeast University, Medical School of Southeast University, Nanjing, China
| | - Hongxing Wang
- Department of Rehabilitation, Affiliated ZhongDa Hospital of Southeast University, Nanjing, China
| | - Hengrui Zhou
- School of Acupuncture-Moxibustion and Tuina, School of Health Preservation and Rehabilitation, Nanjing University of Chinese Medicine, Nanjing, China
| | - Jia Quan
- School of Acupuncture-Moxibustion and Tuina, School of Health Preservation and Rehabilitation, Nanjing University of Chinese Medicine, Nanjing, China
| | - Xiaohui Chen
- Department of Radiology, Zhongda Hospital, Jiangsu Key Laboratory of Molecular and Functional Imaging, Medical School of Southeast University, Nanjing, China
| | - Xi Yang
- Department of Rehabilitation, Affiliated ZhongDa Hospital of Southeast University, Nanjing, China
| | - Shenghong Ju
- Department of Radiology, Zhongda Hospital, Jiangsu Key Laboratory of Molecular and Functional Imaging, Medical School of Southeast University, Nanjing, China
| | - Yuancheng Wang
- Department of Radiology, Zhongda Hospital, Jiangsu Key Laboratory of Molecular and Functional Imaging, Medical School of Southeast University, Nanjing, China
| | - Yijing Guo
- Department of Neurology, Affiliated ZhongDa Hospital of Southeast University, Medical School of Southeast University, Nanjing, China.
| |
Collapse
|
2
|
Li M, Mu B, Li M, Zhang X, Zhang J, Huang H, Wang H. Magnetic resonance imaging studies on acupuncture therapy in cerebral ischemic stroke: A systematic review. Heliyon 2024; 10:e39059. [PMID: 39497995 PMCID: PMC11532821 DOI: 10.1016/j.heliyon.2024.e39059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 09/20/2024] [Accepted: 10/07/2024] [Indexed: 11/07/2024] Open
Abstract
Research has started using Magnetic Resonance Imaging (MRI) to elucidate the action of acupuncture on neuroplasticity following ischemic stroke (IS). Acupuncture is thought to be a potentially beneficial treatment for IS. However, the results remain inconsistent because of MRI processing techniques and study design variations. Therefore, this coordinate-based meta-analysis and systematic review aimed to assess the current state of knowledge about the regional brain fMRI imaging characteristics in acupuncture-treated IS patients. Twenty studies-including 392 IS patients and 256 health controls-met the inclusion criteria after searches via Chinese and English databases. The design techniques utilized in this research were mainly owned before-and-after controlled and randomized controlled trials. Only one study used independent component analysis (ICA), while the majority of MRI analytical techniques focus on functional connectivity (FC) and fractional amplitude of low-frequency fluctuation (fALFF/ALFF). The findings demonstrated a significant rise in the ALFF value of the left supplementary motor region after treatment with acupuncture. The left cerebellum, right inferior frontal gyrus, and hemisphere lobule VIII all showed substantial activation of Reho values. The triangular portion, BA 48, the left inferior network and inferior longitudinal fasciculus, as well as other brain areas decreased in the left inferior frontal gyrus; most research has used FC analysis employing motor areas as seed regions. We found that acupuncture regulated the motor-related network and reorganized the language-related network. Furthermore, acupuncture appears therapeutic for several IS effects, which may be connected to how acupuncture regulates the brain's plasticity.
Collapse
Affiliation(s)
- Mengyuan Li
- Institute of Acupuncture and Massage, Northeast Asian Institute of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, Jilin, China
| | - Baohui Mu
- Changchun University of Chinese Medicine, Changchun, Jilin, China
| | - Mengmeng Li
- College of Acupuncture and Massage, Changchun University of Chinese Medicine, Changchun, Jilin, China
| | - Xinyu Zhang
- College of Acupuncture and Massage, Changchun University of Chinese Medicine, Changchun, Jilin, China
| | - Jing Zhang
- College of Acupuncture and Massage, Changchun University of Chinese Medicine, Changchun, Jilin, China
| | - Haipeng Huang
- Changchun University of Chinese Medicine, Changchun, Jilin, China
| | - Hongfeng Wang
- Changchun University of Chinese Medicine, Changchun, Jilin, China
| |
Collapse
|
3
|
Warioba CS, Liu M, Peñano S, Carroll TJ, Foxley S, Christoforidis G. Efficacy Assessment of Cerebral Perfusion Augmentation through Functional Connectivity in an Acute Canine Stroke Model. AJNR Am J Neuroradiol 2024; 45:1214-1219. [PMID: 38684318 PMCID: PMC11392365 DOI: 10.3174/ajnr.a8320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 04/16/2024] [Indexed: 05/02/2024]
Abstract
BACKGROUND AND PURPOSE Ischemic stroke disrupts functional connectivity within the brain's resting-state networks (RSNs), impacting recovery. This study evaluates the effects of norepinephrine and hydralazine (NEH), a cerebral perfusion augmentation therapy, on RSN integrity in a hyperacute canine stroke model. MATERIALS AND METHODS Fifteen adult purpose-bred mongrel canines, divided into treatment and control (natural history) groups, underwent endovascular induction of acute middle cerebral artery occlusion (MCAO). Postocclusion, the treatment group received intra-arterial norepinephrine (0.1-1.52 µg/kg/min, adjusted for 25-45 mm Hg above baseline mean arterial pressure) and hydralazine (20 mg). Resting-state fMRI (rs-fMRI) data were acquired with a 3T scanner by using a blood oxygen level dependent-EPI sequence (TR/TE = 1400 ms/20 ms, 2.5 mm slices, 300 temporal positions). Preprocessing included motion correction, spatial smoothing (2.5 mm full width at half maximum), and high-pass filtering (0.01 Hz cutoff). Functional connectivity within RSNs were analyzed through group-level independent component analysis and weighted whole-brain ROI-to-ROI connectome, pre- and post-MCAO. RESULTS NEH therapy significantly maintained connectivity post-MCAO in the higher-order visual and parietal RSNs, as evidenced by thresholded statistical mapping (threshold-free cluster enhancement P corr > .95). However, this preservation was network-dependent, with no significant (P corr < .95) changes in the primary visual and sensorimotor networks. CONCLUSIONS NEH demonstrates potential as a proof-of-concept therapy for maintaining RSN functional connectivity after ischemic stroke, emphasizing the therapeutic promise of perfusion augmentation. These insights reinforce the role of functional connectivity as a measurable end point for stroke intervention efficacy, suggesting clinical translatability for patients with insufficient collateral circulation.
Collapse
Affiliation(s)
- Chisondi S Warioba
- From the Department of Radiology (C.S.W., M.L., S.P., T.J.C., S.F.), University of Chicago, Chicago, Illinois
| | - Mira Liu
- From the Department of Radiology (C.S.W., M.L., S.P., T.J.C., S.F.), University of Chicago, Chicago, Illinois
| | - Sagada Peñano
- From the Department of Radiology (C.S.W., M.L., S.P., T.J.C., S.F.), University of Chicago, Chicago, Illinois
| | - Timothy J Carroll
- From the Department of Radiology (C.S.W., M.L., S.P., T.J.C., S.F.), University of Chicago, Chicago, Illinois
| | - Sean Foxley
- From the Department of Radiology (C.S.W., M.L., S.P., T.J.C., S.F.), University of Chicago, Chicago, Illinois
| | | |
Collapse
|
4
|
Warioba CS, Carroll TJ, Christoforidis G. Flow augmentation therapies preserve brain network integrity and hemodynamics in a canine permanent occlusion model. Sci Rep 2024; 14:16871. [PMID: 39043723 PMCID: PMC11266609 DOI: 10.1038/s41598-024-67361-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 07/10/2024] [Indexed: 07/25/2024] Open
Abstract
The acute phase of ischemic stroke presents a critical window for therapeutic intervention, where novel approaches such as hyper-acute cerebral flow augmentation offer promising avenues for neuroprotection. In this study, we investigated the effects of two such therapies, NEH (a combination of norepinephrine and hydralazine) and Sanguinate (pegylated bovine carboxyhemoglobin), on resting-state functional connectivity, global mean signal (GMS), and blood oxygen level-dependent (BOLD) time lag in a pre-clinical canine model of stroke via permanent occlusion of the middle cerebral artery (total of n = 40 IACUC-approved mongrel canines randomly split into control/natural history and two treatment groups). Utilizing group independent component analysis (ICA), we identified and examined the integrity of sensorimotor and visual networks both pre- and post-occlusion, across treatment and control groups. Our results demonstrated that while the control group exhibited significant disruptions in these networks following stroke, the treatment groups showed remarkable preservation of network integrity. Voxel-wise functional connectivity analysis revealed less pronounced alterations in the treatment groups, suggesting maintained neural connections. Notably, the treatments stabilized GMS, with only minimal reductions observed post-occlusion compared to significant decreases in the control group. Furthermore, BOLD time-lag unity plots indicated that NEH and Sanguinate maintained consistent hemodynamic response timing, as evidenced by tighter clustering around the line of unity, suggesting a potential neuroprotective effect. These findings were underscored by robust statistical analyses, including paired T-tests and Mann-Whitney U tests, which confirmed the significance of the connectivity changes observed. The correlation of BOLD time-lag variations with neuroimaging functional biomarkers highlighted the impact of stroke and the efficacy of early therapeutic interventions. Our study supports the further study of flow augmentation therapies such as NEH and Sanguinate in stroke treatment protocols and suggests flow augmentation therapies should be further explored in an effort to improve patient outcomes.
Collapse
Affiliation(s)
- Chisondi S Warioba
- Department of Radiology, The University of Chicago, Chicago, IL, 60615, USA.
| | - Timothy J Carroll
- Department of Radiology, The University of Chicago, Chicago, IL, 60615, USA
| | | |
Collapse
|
5
|
Gaviria E, Eltayeb Hamid AH. Neuroimaging biomarkers for predicting stroke outcomes: A systematic review. Health Sci Rep 2024; 7:e2221. [PMID: 38957864 PMCID: PMC11217021 DOI: 10.1002/hsr2.2221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 05/08/2024] [Accepted: 06/13/2024] [Indexed: 07/04/2024] Open
Abstract
Background and Aims Stroke is a prominent cause of long-term adult impairment globally and a significant global health issue. Only 14% of stroke survivors achieve full recovery, while 25% to 50% require varying degrees of support, and over half become dependent. The aftermath of a stroke brings profound changes to an individual's life, with early choices significantly impacting their quality of life. This review aims to establish the efficacy of neuroimaging data in predicting long-term outcomes and recovery rates following a stroke. Methods A scientific literature search was conducted using the Centre of Reviews and Dissemination (CRD) criteria and PRISMA guidelines for a combined meta-narrative and systematic quantitative review. The methodology involved a structured search in databases like PubMed and The Cochrane Library, following inclusion and exclusion criteria to identify relevant studies on neuroimaging biomarkers for stroke outcome prediction. Data collection utilized the Microsoft Edge Zotero plugin, with quality appraisal conducted via the CASP checklist. Studies published from 2010 to 2024, including observational, randomized control trials, case reports, and clinical trials. Non-English and incomplete studies were excluded, resulting in the identification of 11 pertinent articles. Data extraction emphasized study methodologies, stroke conditions, clinical parameters, and biomarkers, aiming to provide a thorough literature overview and evaluate the significance of neuroimaging biomarkers in predicting stroke recovery outcomes. Results The results of this systematic review indicate that integrating advanced neuroimaging methods with highly successful reperfusion therapies following a stroke facilitates the diagnosis of the condition and assists in improving neurological impairments resulting from stroke. These measures reduce the possibility of death and improve the treatment provided to stroke patients. Conclusion These findings highlight the crucial role of neuroimaging in advancing our understanding of post-stroke outcomes and improving patient care.
Collapse
|
6
|
Kenzie JM, Rajashekar D, Goodyear BG, Dukelow SP. Resting state functional connectivity associated with impaired proprioception post-stroke. Hum Brain Mapp 2024; 45:e26541. [PMID: 38053448 PMCID: PMC10789217 DOI: 10.1002/hbm.26541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 10/30/2023] [Accepted: 11/07/2023] [Indexed: 12/07/2023] Open
Abstract
Deficits in proprioception, the knowledge of limb position and movement in the absence of vision, occur in ~50% of all strokes; however, our lack of knowledge of the neurological mechanisms of these deficits diminishes the effectiveness of rehabilitation and prolongs recovery. We performed resting-state functional magnetic resonance imaging (fMRI) on stroke patients to determine functional brain networks that exhibited changes in connectivity in association with proprioception deficits determined by a Kinarm robotic exoskeleton assessment. Thirty stroke participants were assessed for proprioceptive impairments using a Kinarm robot and underwent resting-state fMRI at 1 month post-stroke. Age-matched healthy control (n = 30) fMRI data were also examined and compared to stroke data in terms of the functional connectivity of brain regions associated with proprioception. Stroke patients exhibited reduced connectivity of the supplementary motor area and the supramarginal gyrus, relative to controls. Functional connectivity of these regions plus primary somatosensory cortex and parietal opercular area was significantly associated with proprioceptive function. The parietal lobe of the lesioned hemisphere is a significant node for proprioception after stroke. Assessment of functional connectivity of this region after stroke may assist with prognostication of recovery. This study also provides potential targets for therapeutic neurostimulation to aid in stroke recovery.
Collapse
Affiliation(s)
- Jeffrey M. Kenzie
- Department of Clinical NeurosciencesUniversity of CalgaryCalgaryAlbertaCanada
- Seaman Family MR Research Centre, Foothills Medical Centre, Alberta Health ServicesCalgaryAlbertaCanada
| | - Deepthi Rajashekar
- Department of Clinical NeurosciencesUniversity of CalgaryCalgaryAlbertaCanada
| | - Bradley G. Goodyear
- Department of Clinical NeurosciencesUniversity of CalgaryCalgaryAlbertaCanada
- Seaman Family MR Research Centre, Foothills Medical Centre, Alberta Health ServicesCalgaryAlbertaCanada
- Department of RadiologyUniversity of CalgaryCalgaryAlbertaCanada
- Hotchkiss Brain InstituteUniversity of CalgaryCalgaryAlbertaCanada
| | - Sean P. Dukelow
- Department of Clinical NeurosciencesUniversity of CalgaryCalgaryAlbertaCanada
- Seaman Family MR Research Centre, Foothills Medical Centre, Alberta Health ServicesCalgaryAlbertaCanada
| |
Collapse
|
7
|
Tang C, Zhou T, Zhang Y, Yuan R, Zhao X, Yin R, Song P, Liu B, Song R, Chen W, Wang H. Bilateral upper limb robot-assisted rehabilitation improves upper limb motor function in stroke patients: a study based on quantitative EEG. Eur J Med Res 2023; 28:603. [PMID: 38115157 PMCID: PMC10729331 DOI: 10.1186/s40001-023-01565-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Accepted: 12/04/2023] [Indexed: 12/21/2023] Open
Abstract
BACKGROUND Upper limb dysfunction after stroke seriously affects quality of life. Bilateral training has proven helpful in recovery of upper limb motor function in these patients. However, studies evaluating the effectiveness of bilateral upper limb robot-assisted training on improving motor function and quality of life in stroke patients are lacking. Quantitative electroencephalography (EEG) is non-invasive, simple, and monitors cerebral cortical activity, which can be used to evaluate the effectiveness of interventions. In this study, EEG was used to evaluate the effect of end-drive bilateral upper extremity robot-assisted training on upper extremity functional recovery in stroke patients. METHODS 24 stroke patients with hemiplegia were randomly divided into a conventional training (CT, n = 12) group or a bilateral upper limb robot-assisted training (BRT, n = 12) group. All patients received 60 min of routine rehabilitation treatment including rolling, transferring, sitting, standing, walking, etc., per day, 6 days a week, for three consecutive weeks. The BRT group added 30 min of bilateral upper limb robot-assisted training per day, while the CT group added 30 min of upper limb training (routine occupational therapy) per day, 6 days a week, for 3 weeks. The primary outcome index to evaluate upper limb motor function was the Fugl-Meyer functional score upper limb component (FMA-UE), with the secondary outcome of activities of daily living (ADL), assessed by the modified Barthel index (MBI) score. Quantitative EEG was used to evaluate functional brain connectivity as well as alpha and beta power current source densities of the brain. RESULTS Significant (p < 0.05) within-group differences were found in FMA-UE and MBI scores for both groups after treatment. A between-group comparison indicated the MBI score of the BRT group was significantly different from that of the CT group, whereas the FMA-UE score was not significantly different from that of the CT group after treatment. The differences of FMA-UE and MBI scores before and after treatment in the BRT group were significantly different as compared to the CT group. In addition, beta rhythm power spectrum energy was higher in the BRT group than in the CT group after treatment. Functional connectivity in the BRT group, under alpha and beta rhythms, was significantly increased in both the bilateral frontal and limbic lobes as compared to the CT group. CONCLUSIONS BRT outperformed CT in improving ADL in stroke patients within three months, and BRT facilitates the recovery of upper limb function by enhancing functional connectivity of the bilateral cerebral hemispheres.
Collapse
Affiliation(s)
- Congzhi Tang
- Department of Rehabilitation Medicine, Zhongda Hospital Southeast University, Nanjing, 210009, China
| | - Ting Zhou
- Department of Rehabilitation Medicine, Zhongda Hospital Southeast University, Nanjing, 210009, China
| | - Yun Zhang
- Department of Rehabilitation Medicine, Zhongda Hospital Southeast University, Nanjing, 210009, China
| | - Runping Yuan
- Department of Rehabilitation Medicine, Zhongda Hospital Southeast University, Nanjing, 210009, China
| | - Xianghu Zhao
- Department of Rehabilitation Medicine, Zhongda Hospital Southeast University, Nanjing, 210009, China
| | - Ruian Yin
- Department of Rehabilitation Medicine, Zhongda Hospital Southeast University, Nanjing, 210009, China
| | - Pengfei Song
- Department of Rehabilitation Medicine, Zhongda Hospital Southeast University, Nanjing, 210009, China
| | - Bo Liu
- Department of Rehabilitation Medicine, Zhongda Hospital Southeast University, Nanjing, 210009, China
| | - Ruyan Song
- Department of Rehabilitation Medicine, Zhongda Hospital Southeast University, Nanjing, 210009, China
| | - Wenli Chen
- Department of Rehabilitation Medicine, Zhongda Hospital Southeast University, Nanjing, 210009, China.
| | - Hongxing Wang
- Department of Rehabilitation Medicine, Zhongda Hospital Southeast University, Nanjing, 210009, China.
| |
Collapse
|
8
|
De Benedictis A, Rossi-Espagnet MC, de Palma L, Sarubbo S, Marras CE. Structural networking of the developing brain: from maturation to neurosurgical implications. Front Neuroanat 2023; 17:1242757. [PMID: 38099209 PMCID: PMC10719860 DOI: 10.3389/fnana.2023.1242757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Accepted: 11/09/2023] [Indexed: 12/17/2023] Open
Abstract
Modern neuroscience agrees that neurological processing emerges from the multimodal interaction among multiple cortical and subcortical neuronal hubs, connected at short and long distance by white matter, to form a largely integrated and dynamic network, called the brain "connectome." The final architecture of these circuits results from a complex, continuous, and highly protracted development process of several axonal pathways that constitute the anatomical substrate of neuronal interactions. Awareness of the network organization of the central nervous system is crucial not only to understand the basis of children's neurological development, but also it may be of special interest to improve the quality of neurosurgical treatments of many pediatric diseases. Although there are a flourishing number of neuroimaging studies of the connectome, a comprehensive vision linking this research to neurosurgical practice is still lacking in the current pediatric literature. The goal of this review is to contribute to bridging this gap. In the first part, we summarize the main current knowledge concerning brain network maturation and its involvement in different aspects of normal neurocognitive development as well as in the pathophysiology of specific diseases. The final section is devoted to identifying possible implications of this knowledge in the neurosurgical field, especially in epilepsy and tumor surgery, and to discuss promising perspectives for future investigations.
Collapse
Affiliation(s)
| | | | - Luca de Palma
- Clinical and Experimental Neurology, Bambino Gesù Children’s Hospital, Rome, Italy
| | - Silvio Sarubbo
- Department of Neurosurgery, Santa Chiara Hospital, Azienda Provinciale per i Servizi Sanitari (APSS), Trento, Italy
| | | |
Collapse
|
9
|
Son JP, Kim EH, Shin EK, Kim DH, Sung JH, Oh MJ, Cha JM, Chopp M, Bang OY. Mesenchymal Stem Cell-Extracellular Vesicle Therapy for Stroke: Scalable Production and Imaging Biomarker Studies. Stem Cells Transl Med 2023:szad034. [PMID: 37311045 DOI: 10.1093/stcltm/szad034] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 04/15/2023] [Indexed: 06/15/2023] Open
Abstract
A major clinical hurdle to translate MSC-derived extracellular vesicles (EVs) is the lack of a method to scale-up the production of EVs with customized therapeutic properties. In this study, we tested whether EV production by a scalable 3D-bioprocessing method is feasible and improves neuroplasticity in animal models of stroke using MRI study. MSCs were cultured in a 3D-spheroid using a micro-patterned well. The EVs were isolated with filter and tangential flow filtration and characterized using electron microscopy, nanoparticle tracking analysis, and small RNA sequencing. Compared to conventional 2D culture, the production-reproduction of EVs (the number/size of particles and EV purity) obtained from 3D platform were more consistent among different lots from the same donor and among different donors. Several microRNAs with molecular functions associated with neurogenesis were upregulated in EVs obtained from 3D platform. EVs induced both neurogenesis and neuritogenesis via microRNAs (especially, miR-27a-3p and miR-132-3p)-mediated actions. EV therapy improved functional recovery on behavioral tests and reduced infarct volume on MRI in stroke models. The dose of MSC-EVs of 1/30 cell dose had similar therapeutic effects. In addition, the EV group had better anatomical and functional connectivity on diffusion tensor imaging and resting-state functional MRI in a mouse stroke model. This study shows that clinical-scale MSC-EV therapeutics are feasible, cost-effective, and improve functional recovery following experimental stroke, with a likely contribution from enhanced neurogenesis and neuroplasticity.
Collapse
Affiliation(s)
- Jeong Pyo Son
- Department of Health Sciences and Technology, Samsung Advanced Institute for Health Sciences and Technology (SAIHST), Sungkyunkwan University, Seoul, South Korea
- Stem Cell and Regenerative Medicine Institute, Samsung Medical Center, Seoul, South Korea
- Accelerator Radioisotope Research Section, Advanced Radiation Technology Institute (ARTI), Korea Atomic Energy Research Institute (KAERI), Jeongeup, South Korea
| | - Eun Hee Kim
- Stem Cell and Regenerative Medicine Institute, Samsung Medical Center, Seoul, South Korea
- R&D Division, S&E bio Co., Ltd., Seoul, South Korea
| | - Eun Kyoung Shin
- Stem Cell and Regenerative Medicine Institute, Samsung Medical Center, Seoul, South Korea
- R&D Division, S&E bio Co., Ltd., Seoul, South Korea
| | - Dong Hee Kim
- Department of Health Sciences and Technology, Samsung Advanced Institute for Health Sciences and Technology (SAIHST), Sungkyunkwan University, Seoul, South Korea
- Stem Cell and Regenerative Medicine Institute, Samsung Medical Center, Seoul, South Korea
| | - Ji Hee Sung
- Stem Cell and Regenerative Medicine Institute, Samsung Medical Center, Seoul, South Korea
- R&D Division, S&E bio Co., Ltd., Seoul, South Korea
| | - Mi Jeong Oh
- Stem Cell and Regenerative Medicine Institute, Samsung Medical Center, Seoul, South Korea
| | - Jae Min Cha
- 3D Stem Cell Bioprocessing Laboratory, Department of Mechatronics, Incheon National University, Incheon, South Korea
| | - Michael Chopp
- Department of Neurology, Henry Ford Health System, Detroit, MI, USA
| | - Oh Young Bang
- Department of Health Sciences and Technology, Samsung Advanced Institute for Health Sciences and Technology (SAIHST), Sungkyunkwan University, Seoul, South Korea
- Stem Cell and Regenerative Medicine Institute, Samsung Medical Center, Seoul, South Korea
- R&D Division, S&E bio Co., Ltd., Seoul, South Korea
- Department of Neurology, Samsung Medical Center, Sungkyunkwan University School of Medicine, South Korea
| |
Collapse
|
10
|
Peng J, Su J, Song L, Lv Q, Gao Y, Chang J, Zhang H, Zou Y, Chen X. Altered Functional Activity and Functional Connectivity of Seed Regions Based on ALFF Following Acupuncture Treatment in Patients with Stroke Sequelae with Unilateral Limb Numbness. Neuropsychiatr Dis Treat 2023; 19:233-245. [PMID: 36744205 PMCID: PMC9890273 DOI: 10.2147/ndt.s391616] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Accepted: 12/28/2022] [Indexed: 01/26/2023] Open
Abstract
OBJECTIVE Limb numbness is a frequent symptom of post-stroke somatosensory dysfunction, which may be alleviated by non-invasive therapy such as acupuncture. However, the precise mechanism via acupuncture remains unknown. The goal of this study was to investigate how the amplitude of low-frequency fluctuations (ALFF) and functional connectivity (FC) changed between stroke patients with limb numbness and healthy people, as well as how acupuncture might work. METHODS 24 stroke sequelae patients with unilateral limb numbness and 14 matched healthy controls were enrolled in the study. The patients with limb numbness received acupuncture therapy three days a week for four weeks. We mainly assessed the clinical outcomes via the visual analogue scale (VAS). In addition, fMRI data from patients with unilateral limb numbness at baseline and after treatment (4th week) were collected, as well as data from healthy controls at baseline. RESULTS Compared with the healthy subjects, the patient group demonstrated significantly decreased ALFF in several brain regions, mainly associated with the sensorimotor network (SMN) and default mode network (DMN), including left superior frontal gyrus (SFG), right temporal fusiform cortex (TFC), right middle frontal gyrus (MFG), bilateral middle temporal gyrus (MTG), right putamen (PUT), right precentral gyrus (preCG), right planum polare (PP), and left supplementary motor area (SMA). These regions were chosen as the seeds for investigating the FC alteration induced by acupuncture. Several sensorimotor-related brain regions were activated by acupuncture, and the FC of the left supramarginal gyrus (SMG) with right MTG, as well as brain-stem, cerebellum vermis 9 with right MFG showed enhancement following acupuncture in the patient group, which had a significant correlation with clinical outcomes. CONCLUSION Acupuncture treatment may be used to stimulate brain areas associated with somatosensory processing and to strengthen the FC of sensorimotor and cognitive brain networks in order to achieve therapeutic effect.
Collapse
Affiliation(s)
- Jing Peng
- Department of Encephalopathy, Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing, People's Republic of China
| | - Jiaming Su
- Department of Nephrology, Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing, People's Republic of China
| | - Lei Song
- Department of Encephalopathy, Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing, People's Republic of China
| | - Qiuyi Lv
- Department of Encephalopathy, Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing, People's Republic of China
| | - Ying Gao
- Department of Encephalopathy, Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing, People's Republic of China
| | - Jingling Chang
- Department of Encephalopathy, Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing, People's Republic of China
| | - Hua Zhang
- Department of Encephalopathy, Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing, People's Republic of China
| | - Yihuai Zou
- Department of Encephalopathy, Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing, People's Republic of China
| | - Xing Chen
- Department of Brain Function Examination, Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing, People's Republic of China
| |
Collapse
|
11
|
Dulyan L, Talozzi L, Pacella V, Corbetta M, Forkel SJ, Thiebaut de Schotten M. Longitudinal prediction of motor dysfunction after stroke: a disconnectome study. Brain Struct Funct 2022; 227:3085-3098. [PMID: 36334132 PMCID: PMC9653357 DOI: 10.1007/s00429-022-02589-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 10/20/2022] [Indexed: 06/01/2023]
Abstract
Motricity is the most commonly affected ability after a stroke. While many clinical studies attempt to predict motor symptoms at different chronic time points after a stroke, longitudinal acute-to-chronic studies remain scarce. Taking advantage of recent advances in mapping brain disconnections, we predict motor outcomes in 62 patients assessed longitudinally two weeks, three months, and one year after their stroke. Results indicate that brain disconnection patterns accurately predict motor impairments. However, disconnection patterns leading to impairment differ between the three-time points and between left and right motor impairments. These results were cross-validated using resampling techniques. In sum, we demonstrated that while some neuroplasticity mechanisms exist changing the structure-function relationship, disconnection patterns prevail when predicting motor impairment at different time points after stroke.
Collapse
Affiliation(s)
- Lilit Dulyan
- Groupe d'Imagerie Neurofonctionnelle, Institut Des Maladies Neurodégénératives-UMR 5293, CNRS, CEA, University of Bordeaux, Bordeaux, France.
- Brain Connectivity and Behaviour Laboratory, Sorbonne University, Paris, France.
- Donders Centre for Brain Cognition and Behaviour, Radboud University, Nijmegen, the Netherlands.
| | - Lia Talozzi
- Groupe d'Imagerie Neurofonctionnelle, Institut Des Maladies Neurodégénératives-UMR 5293, CNRS, CEA, University of Bordeaux, Bordeaux, France
- Brain Connectivity and Behaviour Laboratory, Sorbonne University, Paris, France
| | - Valentina Pacella
- Groupe d'Imagerie Neurofonctionnelle, Institut Des Maladies Neurodégénératives-UMR 5293, CNRS, CEA, University of Bordeaux, Bordeaux, France
- Brain Connectivity and Behaviour Laboratory, Sorbonne University, Paris, France
| | - Maurizio Corbetta
- Clinica Neurologica, Department of Neuroscience, University of Padova, Padua, Italy
- Padova Neuroscience Center (PNC), University of Padova, Padua, Italy
- Venetian Institute of Molecular Medicine, VIMM, Padua, Italy
| | - Stephanie J Forkel
- Groupe d'Imagerie Neurofonctionnelle, Institut Des Maladies Neurodégénératives-UMR 5293, CNRS, CEA, University of Bordeaux, Bordeaux, France.
- Brain Connectivity and Behaviour Laboratory, Sorbonne University, Paris, France.
- Centre for Neuroimaging Sciences, Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK.
- Donders Centre for Brain Cognition and Behaviour, Radboud University, Nijmegen, the Netherlands.
- Department of Neurosurgery, School of Medicine, Technical University of Munich, Munich, Germany.
| | - Michel Thiebaut de Schotten
- Groupe d'Imagerie Neurofonctionnelle, Institut Des Maladies Neurodégénératives-UMR 5293, CNRS, CEA, University of Bordeaux, Bordeaux, France.
- Brain Connectivity and Behaviour Laboratory, Sorbonne University, Paris, France.
| |
Collapse
|
12
|
Lv Q, Zhang J, Pan Y, Liu X, Miao L, Peng J, Song L, Zou Y, Chen X. Somatosensory Deficits After Stroke: Insights From MRI Studies. Front Neurol 2022; 13:891283. [PMID: 35911919 PMCID: PMC9328992 DOI: 10.3389/fneur.2022.891283] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 06/15/2022] [Indexed: 11/28/2022] Open
Abstract
Somatosensory deficits after stroke are a major health problem, which can impair patients' health status and quality of life. With the developments in human brain mapping techniques, particularly magnetic resonance imaging (MRI), many studies have applied those techniques to unravel neural substrates linked to apoplexy sequelae. Multi-parametric MRI is a vital method for the measurement of stroke and has been applied to diagnose stroke severity, predict outcome and visualize changes in activation patterns during stroke recovery. However, relatively little is known about the somatosensory deficits after stroke and their recovery. This review aims to highlight the utility and importance of MRI techniques in the field of somatosensory deficits and synthesizes corresponding articles to elucidate the mechanisms underlying the occurrence and recovery of somatosensory symptoms. Here, we start by reviewing the anatomic and functional features of the somatosensory system. And then, we provide a discussion of MRI techniques and analysis methods. Meanwhile, we present the application of those techniques and methods in clinical studies, focusing on recent research advances and the potential for clinical translation. Finally, we identify some limitations and open questions of current imaging studies that need to be addressed in future research.
Collapse
Affiliation(s)
- Qiuyi Lv
- Department of Neurology and Stroke Center, Dongzhimen Hospital, The First Affiliated Hospital of Beijing University of Chinese Medicine, Beijing, China
| | - Junning Zhang
- Department of Integrative Oncology, China-Japan Friendship Hospital, Beijing, China
| | - Yuxing Pan
- Institute of Neuroscience, Chinese Academy of Science, Shanghai, China
| | - Xiaodong Liu
- School of Acupuncture-Moxibustion and Tuina, Beijing University of Chinese Medicine, Beijing, China
| | | | - Jing Peng
- Department of Neurology and Stroke Center, Dongzhimen Hospital, The First Affiliated Hospital of Beijing University of Chinese Medicine, Beijing, China
| | - Lei Song
- Department of Neurology and Stroke Center, Dongzhimen Hospital, The First Affiliated Hospital of Beijing University of Chinese Medicine, Beijing, China
| | - Yihuai Zou
- Department of Neurology and Stroke Center, Dongzhimen Hospital, The First Affiliated Hospital of Beijing University of Chinese Medicine, Beijing, China
| | - Xing Chen
- Department of Neurology and Stroke Center, Dongzhimen Hospital, The First Affiliated Hospital of Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
13
|
Tian N, Liang L, Luo X, Hu R, Long W, Song R. More than just statics: Altered complexity of dynamic amplitude of low-frequency fluctuations in the resting brain after stroke. J Neural Eng 2022; 19. [PMID: 35594839 DOI: 10.1088/1741-2552/ac71ce] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Accepted: 05/20/2022] [Indexed: 11/12/2022]
Abstract
OBJECTIVE Previous neuroimaging studies mainly focused on static characteristics of brain activity, and little is known about its characteristics over time, especially in post-stroke (PS) patients. In this study, we aimed to investigate the static and dynamic characteristics of brain activity after stroke using functional magnetic resonance imaging (fMRI). APPROACH Twenty ischemic PS patients and nineteen healthy controls (HCs) were recruited to receive a resting-state fMRI scanning. The static amplitude of low-frequency fluctuations (sALFF) and fuzzy entropy of dynamic ALFF (FE-dALFF) were applied to identify the stroke-induced alterations. MAIN RESULTS Compared with the HCs, PS patients showed significantly increased FE-dALFF values in the right angular gyrus (ANG), bilateral precuneus (PCUN), and right inferior parietal lobule (IPL) as well as significantly decreased FE-dALFF values in the right postcentral gyrus (PoCG), right dorsolateral superior frontal gyrus (SFGdor), and right precentral gyrus (PreCG). The ROC analyses demonstrated that FE-dALFF and sALFF possess comparable sensitivity in distinguishing PS patients from the HCs. Moreover, a significantly positive correlation was observed between the FE-dALFF values and the Fugl-Meyer Assessment (FMA) scores in the right SFGdor (r =0.547), right IPL (r =0.522), and right PCUN (r =0.486). SIGNIFICANCE This study provided insight into the stroke-induced alterations in static and dynamic characteristics of local brain activity, highlighting the potential of FE-dALFF in understanding neurophysiological mechanisms and evaluating pathological changes.
Collapse
Affiliation(s)
- Na Tian
- Sun Yat-Sen University, Higher Mega Education Center, Guangzhou, Guangdong, 510006, CHINA
| | - Liuke Liang
- School of Biomedical Engineering, Sun Yat-Sen University, Higher Mega Education Center, Guangzhou, Guangdong, 510006, CHINA
| | - Xuemao Luo
- Department of Radiology, Jiangmen Central Hospital, Jiangmen, Guangdong, CN, Jiangmen, Guangdong, 529030, CHINA
| | - Rongliang Hu
- Department of Rehabilitation Medicine, Jiangmen Central Hospital, Jiangmen, Guangdong, CN, Jiangmen, Guangdong, 529030, CHINA
| | - Wansheng Long
- Department of Radiology, Jiangmen Central Hospital, Jiangmen, Guangdong, CN, Jiangmen, Guangdong, 529030, CHINA
| | - Rong Song
- Biomedical Engineering, National Sun Yat-sen University, Higher Mega Education Center, Guangzhou, 510006, CHINA
| |
Collapse
|
14
|
Chen Q, Huang H, Chen G, Chen J, Fang F, Lei H, Zhang Y, Lin J, Chen X, Liu N, Li J, Chen R, Du H. The Effect of Cerebellar Repetitive Transcranial Magnetic Stimulation on Dysphagia due to Posterior Circulation Stroke, a Randomized Controlled Trial Protocol. Cerebrovasc Dis 2022; 51:706-711. [PMID: 35533666 DOI: 10.1159/000524241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Accepted: 03/11/2022] [Indexed: 01/31/2023] Open
Abstract
INTRODUCTION Cerebellum might be active during the task of swallowing. Little is known whether cerebellar repetitive transcranial magnetic stimulation (rTMS) could improve post-stroke dysphagia (PSD) due to occlusion in the posterior circulation. This paper describes the rationale and design of a randomized controlled trial that aims to determine the effect of cerebellar rTMS on dysphagia due to posterior circulation stroke. METHODS AND ANALYSIS Thirty patients with PSD due to occlusion in the posterior circulation will be randomly divided to receive real (n = 20) or sham (n = 10) cerebellar rTMS. Patients in the real rTMS group will receive 250 pulses rTMS at a low intensity with 10 Hz frequency for 10 days (five consecutive days per week). The severity of dysphagia will be assessed with videofluoroscopic swallowing study (VFSS) using the Rosenbek penetration aspiration scale (PAS), the pharyngeal constriction ratio (PCR), and the dysphagia outcome and severity scale (DOSS) before and immediately after the last session and then again after 1 and 3 months. The functional magnetic resonance imaging (fMRI) will be assessed before and after the last session and then again after 1 month and 3 months. The primary outcome is the improvement of swallowing function determined by PAS, PCR, and DOSS. The secondary outcomes include changes in brain connectivity network detected using fMRI. DISCUSSION This study will determine whether cerebellar rTMS improves dysphagia due to posterior circulation stroke in Chinese patients. Our findings will contribute to a new approach for swallowing function recovery after posterior circulation stroke.
Collapse
Affiliation(s)
- Qingfa Chen
- From the Department of Rehabilitation, Fujian Medical University Union Hospital, Fuzhou, China
| | - Huayao Huang
- From the Department of Rehabilitation, Fujian Medical University Union Hospital, Fuzhou, China
| | - Guangliang Chen
- From the Department of Radiology, Fujian Medical University Union Hospital, Fuzhou, China
| | - Jianhua Chen
- From the Department of Radiology, Fujian Medical University Union Hospital, Fuzhou, China
| | - Fangshuang Fang
- From the Department of Neurology, Fujian Medical University Union Hospital, Fuzhou, China
| | - Hanhan Lei
- From the Department of Neurology, Fujian Medical University Union Hospital, Fuzhou, China
| | - Yixian Zhang
- From the Department of Rehabilitation, Fujian Medical University Union Hospital, Fuzhou, China
| | - Jilan Lin
- From the Department of Neurology, Fujian Medical University Union Hospital, Fuzhou, China
| | - Xiuyun Chen
- From the Health College, Fujian Medical University, Fuzhou, China
| | - Nan Liu
- From the Department of Rehabilitation, Fujian Medical University Union Hospital, Fuzhou, China
| | - Jing Li
- From the Department of Rehabilitation, Fujian Medical University Union Hospital, Fuzhou, China
| | - Ronghua Chen
- From the Department of Neurology, Fujian Medical University Union Hospital, Fuzhou, China.,From the Institute of Clinical Neurology, Fujian Medical University, Fuzhou, China
| | - Houwei Du
- From the Department of Neurology, Fujian Medical University Union Hospital, Fuzhou, China.,From the Institute of Clinical Neurology, Fujian Medical University, Fuzhou, China
| |
Collapse
|
15
|
Steiner L, Federspiel A, Slavova N, Wiest R, Grunt S, Steinlin M, Everts R. Cognitive outcome is related to functional thalamo-cortical connectivity after pediatric stroke. Brain Commun 2022; 4:fcac110. [PMID: 35611308 PMCID: PMC9122536 DOI: 10.1093/braincomms/fcac110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 03/07/2022] [Accepted: 04/27/2022] [Indexed: 11/12/2022] Open
Abstract
Abstract
The thalamus has complex connections with the cortex and is involved in various cognitive processes. Despite increasing interest in the thalamus and the underlying thalamo-cortical interaction, little is known about thalamo-cortical connections after pediatric arterial ischemic stroke. Therefore, the aim of this study was to investigate thalamo-cortical connections and their association with cognitive performance after arterial ischemic stroke.
Twenty patients in the chronic phase after pediatric arterial ischemic stroke (≥ 2 years after diagnosis, diagnosed <16 years; aged 5–23 years, mean 15.1 years) and twenty healthy controls matched for age and sex were examined in a cross-sectional study design. Cognitive performance (selective attention, inhibition, working memory, and cognitive flexibility) was evaluated using standardized neuropsychological tests. Resting-state functional magnetic resonance imaging was used to examine functional thalamo-cortical connectivity. Lesion masks were integrated in the preprocessing pipeline to ensure that structurally damaged voxels did not influence functional connectivity analyses.
Cognitive performance (selective attention, inhibition and working memory) was significantly reduced in patients compared to controls. Network analyses revealed significantly lower thalamo-cortical connectivity for the motor, auditory, visual, default mode network, salience, left/right executive and dorsal attention network in patients compared to controls. Interestingly, analyses revealed as well higher thalamo-cortical connectivity in some subdivisions of the thalamus for the default mode network (medial nuclei), motor (lateral nuclei), dorsal attention (anterior nuclei), and the left executive network (posterior nuclei) in patients compared to controls. Increased and decreased thalamo-cortical connectivity strength within the same networks was, however, found in different thalamic sub-divisions. Thus, alterations in thalamo-cortical connectivity strength after pediatric stroke seem to point in both directions, with stronger as well as weaker thalamo-cortical connectivity in patients compared to controls. Multivariate linear regression, with lesion size and age as covariates, revealed significant correlations between cognitive performance (selective attention, inhibition, and working memory) and the strength of thalamo-cortical connectivity in the motor, auditory, visual, default mode network, posterior default mode network, salience, left/right executive, and dorsal attention network after childhood stroke.
Our data suggest that the interaction between different sub-nuclei of the thalamus and several cortical networks relates to post-stroke cognition. The variability in cognitive outcomes after pediatric stroke might partly be explained by functional thalamo-cortical connectivity strength.
Collapse
Affiliation(s)
- Leonie Steiner
- Division of Neuropaediatrics, Development and Rehabilitation, Department of Paediatrics, Inselspital, Bern University Hospital, University of Bern, Switzerland
- Graduate School for Health Science, University of Bern, Bern, Switzerland
| | - Andrea Federspiel
- Psychiatric Neuroimaging Unit, Translational Research Center, University Hospital of Psychiatry and Psychotherapy, University of Bern, Bern, Switzerland
- Institute of Diagnostic and Interventional Neuroradiology, Inselspital, Bern University Hospital, and University of Bern, Bern, Switzerland
| | - Nedelina Slavova
- Institute of Diagnostic and Interventional Neuroradiology, Inselspital, Bern University Hospital, and University of Bern, Bern, Switzerland
- Pediatric Radiology, University Children's Hospital Basel and University of Basel, Basel, Switzerland
| | - Roland Wiest
- Institute of Diagnostic and Interventional Neuroradiology, Inselspital, Bern University Hospital, and University of Bern, Bern, Switzerland
| | - Sebastian Grunt
- Division of Neuropaediatrics, Development and Rehabilitation, Department of Paediatrics, Inselspital, Bern University Hospital, University of Bern, Switzerland
| | - Maja Steinlin
- Division of Neuropaediatrics, Development and Rehabilitation, Department of Paediatrics, Inselspital, Bern University Hospital, University of Bern, Switzerland
| | - Regula Everts
- Division of Neuropaediatrics, Development and Rehabilitation, Department of Paediatrics, Inselspital, Bern University Hospital, University of Bern, Switzerland
- Department of Diabetes, Endocrinology, Nutritional Medicine and Metabolism, Inselspital, Bern University Hospital and University of Bern, Bern, Switzerland
| |
Collapse
|
16
|
Pirovano I, Mastropietro A, Antonacci Y, Barà C, Guanziroli E, Molteni F, Faes L, Rizzo G. Resting State EEG Directed Functional Connectivity Unveils Changes in Motor Network Organization in Subacute Stroke Patients After Rehabilitation. Front Physiol 2022; 13:862207. [PMID: 35450158 PMCID: PMC9016279 DOI: 10.3389/fphys.2022.862207] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 03/14/2022] [Indexed: 01/01/2023] Open
Abstract
Brain plasticity and functional reorganization are mechanisms behind functional motor recovery of patients after an ischemic stroke. The study of resting-state motor network functional connectivity by means of EEG proved to be useful in investigating changes occurring in the information flow and find correlation with motor function recovery. In the literature, most studies applying EEG to post-stroke patients investigated the undirected functional connectivity of interacting brain regions. Quite recently, works started to investigate the directionality of the connections and many approaches or features have been proposed, each of them being more suitable to describe different aspects, e.g., direct or indirect information flow between network nodes, the coupling strength or its characteristic oscillation frequency. Each work chose one specific measure, despite in literature there is not an agreed consensus, and the selection of the most appropriate measure is still an open issue. In an attempt to shed light on this methodological aspect, we propose here to combine the information of direct and indirect coupling provided by two frequency-domain measures based on Granger’s causality, i.e., the directed coherence (DC) and the generalized partial directed coherence (gPDC), to investigate the longitudinal changes of resting-state directed connectivity associated with sensorimotor rhythms α and β, occurring in 18 sub-acute ischemic stroke patients who followed a rehabilitation treatment. Our results showed a relevant role of the information flow through the pre-motor regions in the reorganization of the motor network after the rehabilitation in the sub-acute stage. In particular, DC highlighted an increase in intra-hemispheric coupling strength between pre-motor and primary motor areas, especially in ipsi-lesional hemisphere in both α and β frequency bands, whereas gPDC was more sensitive in the detection of those connection whose variation was mostly represented within the population. A decreased causal flow from contra-lesional premotor cortex towards supplementary motor area was detected in both α and β frequency bands and a significant reinforced inter-hemispheric connection from ipsi to contra-lesional pre-motor cortex was observed in β frequency. Interestingly, the connection from contra towards ipsilesional pre-motor area correlated with upper limb motor recovery in α band. The usage of two different measures of directed connectivity allowed a better comprehension of those coupling changes between brain motor regions, either direct or mediated, which mostly were influenced by the rehabilitation, revealing a particular involvement of the pre-motor areas in the cerebral functional reorganization.
Collapse
Affiliation(s)
- Ileana Pirovano
- Istituto di Tecnologie Biomediche, Consiglio Nazionale delle Ricerche, Segrate, Italy
| | - Alfonso Mastropietro
- Istituto di Tecnologie Biomediche, Consiglio Nazionale delle Ricerche, Segrate, Italy
- *Correspondence: Alfonso Mastropietro,
| | - Yuri Antonacci
- Dipartimento di Ingegneria, Università di Palermo, Palermo, Italy
| | - Chiara Barà
- Dipartimento di Ingegneria, Università di Palermo, Palermo, Italy
| | | | - Franco Molteni
- Centro Riabilitativo Villa Beretta, Ospedale Valduce, Costa Masnaga, Italy
| | - Luca Faes
- Dipartimento di Ingegneria, Università di Palermo, Palermo, Italy
| | - Giovanna Rizzo
- Istituto di Tecnologie Biomediche, Consiglio Nazionale delle Ricerche, Segrate, Italy
| |
Collapse
|
17
|
Khan A, Chen C, Eden CH, Yuan K, Tse CY, Lou W, Tong KY. Impact of Anodal High-Definition Transcranial Direct Current Stimulation of Medial Prefrontal Cortex on Stroop Task performance and its electrophysiological correlates. A pilot study. Neurosci Res 2022; 181:46-54. [DOI: 10.1016/j.neures.2022.03.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 03/09/2022] [Accepted: 03/17/2022] [Indexed: 11/26/2022]
|
18
|
Structural Covariance of the Ipsilesional Primary Motor Cortex in Subcortical Stroke Patients with Motor Deficits. Neural Plast 2022; 2022:1460326. [PMID: 35309255 PMCID: PMC8930265 DOI: 10.1155/2022/1460326] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 02/09/2022] [Accepted: 02/11/2022] [Indexed: 11/18/2022] Open
Abstract
The analysis of structural covariance has emerged as a powerful tool to explore the morphometric correlations among broadly distributed brain regions. However, little is known about the interactions between the damaged primary motor cortex (M1) and other brain regions in stroke patients with motor deficits. This study is aimed at investigating the structural covariance pattern of the ipsilesional M1 in chronic subcortical stroke patients with motor deficits. High-resolution T1-weighted brain images were acquired from 58 chronic subcortical stroke patients with motor deficits (29 with left-sided lesions and 29 with right-sided lesions) and 50 healthy controls. Structural covariance patterns were identified by a seed-based structural covariance method based on gray matter (GM) volume. Group comparisons between stroke patients (left-sided or right-sided groups) and healthy controls were determined by a permutation test. The association between alterations in the regional GM volume and motor recovery after stroke was investigated by a multivariate regression approach. Structural covariance analysis revealed an extensive increase in the structural interactions between the ipsilesional M1 and other brain regions in stroke patients, involving not only motor-related brain regions but also non-motor-related brain regions. We also identified a slightly different pattern of structural covariance between the left-sided stroke group and the right-sided stroke group, thus indicating a lesion-side effect of cortical reorganization after stroke. Moreover, alterations in the GM volume of structural covariance brain regions were significantly correlated to the motor function scores in stroke patients. These findings indicated that the structural covariance patterns of the ipsilesional M1 in chronic subcortical stroke patients were induced by motor-related plasticity. Our findings may help us to better understand the neurobiological mechanisms of motor impairment and recovery in patients with subcortical stroke from different perspectives.
Collapse
|
19
|
Chang WK, Park J, Lee JY, Cho S, Lee J, Kim WS, Paik NJ. Functional Network Changes After High-Frequency rTMS Over the Most Activated Speech-Related Area Combined With Speech Therapy in Chronic Stroke With Non-fluent Aphasia. Front Neurol 2022; 13:690048. [PMID: 35222235 PMCID: PMC8866644 DOI: 10.3389/fneur.2022.690048] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Accepted: 01/12/2022] [Indexed: 12/04/2022] Open
Abstract
OBJECTIVE High-frequency repetitive transcranial magnetic stimulation (HF-rTMS) to the lesional hemisphere requires prudence in selecting the appropriate stimulation spot. Functional near-IR spectroscopy (fNIRS) can be used in both selecting the stimulation spot and assessing the changes of the brain network. This study aimed to evaluate the effect of HF-rTMS on the most activated spot identified with fNIRS and assess the changes of brain functional network in the patients with poststroke aphasia. METHODS A total of five patients received HF-rTMS to the most activated area on the lesional hemisphere, followed by 30 min of speech therapy for 10 days. The Korean version of the Western aphasia battery (K-WAB) and fNIRS evaluation were done 1 day before the treatment, 1 day and 1 month after the last treatment session. Changes of K-WAB and paired cortical interaction and brain network analysis using graph theory were assessed. RESULTS Aphasia quotient in K-WAB significantly increased after the treatment (P = 0.043). The correlation analysis of cortical interactions showed increased connectivity between language production and processing areas. Clustering coefficients of the left hemisphere were increased over a sparsity range between 0.45 and 0.58 (0.015 < p < 0.031), whereas the clustering coefficients of the right hemisphere, decreased over a sparsity range 0.15-0.87 (0.063 < p < 0.095). The global efficiency became lower over a network sparsity range between 0.47 and 0.75 (0.015 < p < 0.063). CONCLUSION Improvement of language function and changes of corticocortical interaction between language-related cortical areas were observed after HF-rTMS on the most activated area identified by fNIRS with combined speech therapy in the patients with poststroke aphasia.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Nam-Jong Paik
- Department of Rehabilitation Medicine, Seoul National University College of Medicine, Seoul National University Bundang Hospital, Seongnam-si, South Korea
| |
Collapse
|
20
|
Branscheidt M, Ejaz N, Xu J, Widmer M, Harran MD, Cortés JC, Kitago T, Celnik PA, Hernandez-Castillo C, Diedrichsen J, Luft AR, Krakauer JW. No evidence for motor recovery-related cortical connectivity changes after stroke using resting-state fMRI. J Neurophysiol 2021; 127:637-650. [PMID: 34965743 PMCID: PMC8896990 DOI: 10.1152/jn.00148.2021] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
It has been proposed that a form of cortical reorganization (changes in functional connectivity between brain areas) can be assessed with resting-state (rs) fMRI. Here we report a longitudinal data-set collected from 19 patients with subcortical stroke and 11 controls. Patients were imaged up to five times over one year. We found no evidence, using rs-fMRI, for post-stroke cortical connectivity changes despite substantial behavioral recovery. These results could be construed as questioning the value of resting-state imaging. Here we argue instead that they are consistent with other emerging reasons to challenge the idea of motor recovery-related cortical reorganization post-stroke when conceived of as changes in connectivity between cortical areas.
Collapse
Affiliation(s)
- Meret Branscheidt
- Brain Physiology and Stimulation Laboratory, Department of Physical Medicine and Rehabilitation, Johns Hopkins University, Baltimore, MD, United States.,Department of Neurology, University Hospital Zurich, Zürich, Switzerland.,Cereneo Center for Neurology and Rehabilitation, Vitznau, Switzerland
| | - Naveed Ejaz
- Brain and Mind Institute, Western University, London, Ontario, Canada
| | - Jing Xu
- Department of Neuroscience, Johns Hopkins University, Baltimore, MD, United States.,Malone Center for Engineering in Healthcare, Johns Hopkins University, Baltimore, MD, United States
| | - Mario Widmer
- Department of Neurology, University Hospital Zurich, Zürich, Switzerland
| | - Michelle D Harran
- Department of Neuroscience, Johns Hopkins University, Baltimore, MD, United States
| | - Juan Camilo Cortés
- Department of Neurology, Johns Hopkins University, Baltimore, MD, United States
| | - Tomoko Kitago
- Burke Neurological Institute and Weill Cornell Medicine, White Plains, NY, United States
| | - Pablo A Celnik
- Brain Physiology and Stimulation Laboratory, Department of Physical Medicine and Rehabilitation, Johns Hopkins University, Baltimore, MD, United States
| | | | - Jörn Diedrichsen
- Brain and Mind Institute, Western University, London, Ontario, Canada
| | - Andreas R Luft
- Department of Neurology, University Hospital Zurich, Zürich, Switzerland.,Cereneo Center for Neurology and Rehabilitation, Vitznau, Switzerland
| | - John W Krakauer
- Department of Neuroscience, Johns Hopkins University, Baltimore, MD, United States.,Malone Center for Engineering in Healthcare, Johns Hopkins University, Baltimore, MD, United States.,Department of Neurology, Johns Hopkins University, Baltimore, MD, United States
| |
Collapse
|
21
|
Reactive Astrocytes Prevent Maladaptive Plasticity after Ischemic Stroke. Prog Neurobiol 2021; 209:102199. [PMID: 34921928 DOI: 10.1016/j.pneurobio.2021.102199] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 10/14/2021] [Accepted: 12/13/2021] [Indexed: 12/24/2022]
Abstract
Restoration of functional connectivity is a major contributor to functional recovery after stroke. We investigated the role of reactive astrocytes in functional connectivity and recovery after photothrombotic stroke in mice with attenuated reactive gliosis (GFAP-/-Vim-/-). Infarct volume and longitudinal functional connectivity changes were determined by in vivo T2-weighted magnetic resonance imaging (MRI) and resting-state functional MRI. Sensorimotor function was assessed with behavioral tests, and glial and neural plasticity responses were quantified in the peri-infarct region. Four weeks after stroke, GFAP-/-Vim-/- mice showed impaired recovery of sensorimotor function and aberrant restoration of global neuronal connectivity. These mice also exhibited maladaptive plasticity responses, shown by higher number of lost and newly formed functional connections between primary and secondary targets of cortical stroke regions and increased peri-infarct expression of the axonal plasticity marker Gap43. We conclude that reactive astrocytes modulate recovery-promoting plasticity responses after ischemic stroke.
Collapse
|
22
|
Yu F, Huang T, Ran Y, Li D, Ye L, Tian G, Xi J, Liu Z. New Insights Into the Roles of Microglial Regulation in Brain Plasticity-Dependent Stroke Recovery. Front Cell Neurosci 2021; 15:727899. [PMID: 34421544 PMCID: PMC8374071 DOI: 10.3389/fncel.2021.727899] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2021] [Accepted: 07/13/2021] [Indexed: 01/07/2023] Open
Abstract
Stroke remains the leading cause of long-term disability worldwide with significant long-term sequelae. However, there is no highly effective treatment to enhance post-stroke recovery despite extensive efforts in exploring rehabilitative therapies. Neurorehabilitation is recognized as the cornerstone of functional restoration therapy in stroke, where treatments are focused on neuroplastic regulation to reverse neural structural disruption and improve neurofunctional networks. Post-stroke neuroplasticity changes begin within hours of symptom onset and reaches a plateau by 3 to 4 weeks within the global brain in animal studies. It plays a determining role in spontaneous stroke recovery. Microglia are immediately activated following cerebral ischemia, which has been found both proximal to the primary ischemic injury and at the remote brain regions which have functional connections to the primary injury area. Microglia exhibit different activation profiles based on the microenvironment and adaptively switch their phenotypes in a spatiotemporal manner in response to brain injuries. Microglial activation coincides with neuroplasticity after stroke, which provides the fundamental base for the microglia-mediated inflammatory responses involved in the entire neural network rewiring and brain repair. Microglial activation exerts important effects on spontaneous recovery after stroke, including structural and functional reestablishment of neurovascular networks, neurogenesis, axonal remodeling, and blood vessel regeneration. In this review, we focus on the crosstalk between microglial activation and endogenous neuroplasticity, with a special focus on the plastic alterations in the whole brain network and their implications for structural and functional restoration after stroke. We then summarize recent advances in the impacts of microglial phenotype polarization on brain plasticity, trying to discuss the potential efficacy of microglia-based extrinsic restorative interventions in promoting post-stroke recovery.
Collapse
Affiliation(s)
- Fang Yu
- Department of Neurology, University of Pittsburgh, Pittsburgh, PA, United States.,Department of Anesthesiology, Westchester Medical Center, New York Medical College, Valhalla, NY, United States
| | - Tingting Huang
- Department of Anesthesiology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yuanyuan Ran
- Department of Rehabilitation, Beijing Rehabilitation Hospital, Capital Medical University, Beijing, China
| | - Da Li
- Department of Rehabilitation, Beijing Rehabilitation Hospital, Capital Medical University, Beijing, China
| | - Lin Ye
- School of Materials Science and Engineering, Beijing Institute of Technology, Beijing, China
| | - Guiqin Tian
- Department of Rehabilitation, Beijing Rehabilitation Hospital, Capital Medical University, Beijing, China
| | - Jianing Xi
- Department of Rehabilitation, Beijing Rehabilitation Hospital, Capital Medical University, Beijing, China
| | - Zongjian Liu
- Department of Rehabilitation, Beijing Rehabilitation Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
23
|
Takeuchi N, Izumi SI. Motor Learning Based on Oscillatory Brain Activity Using Transcranial Alternating Current Stimulation: A Review. Brain Sci 2021; 11:1095. [PMID: 34439714 PMCID: PMC8392205 DOI: 10.3390/brainsci11081095] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 08/17/2021] [Accepted: 08/18/2021] [Indexed: 12/15/2022] Open
Abstract
Developing effective tools and strategies to promote motor learning is a high-priority scientific and clinical goal. In particular, motor-related areas have been investigated as potential targets to facilitate motor learning by noninvasive brain stimulation (NIBS). In addition to shedding light on the relationship between motor function and oscillatory brain activity, transcranial alternating current stimulation (tACS), which can noninvasively entrain oscillatory brain activity and modulate oscillatory brain communication, has attracted attention as a possible technique to promote motor learning. This review focuses on the use of tACS to enhance motor learning through the manipulation of oscillatory brain activity and its potential clinical applications. We discuss a potential tACS-based approach to ameliorate motor deficits by correcting abnormal oscillatory brain activity and promoting appropriate oscillatory communication in patients after stroke or with Parkinson's disease. Interpersonal tACS approaches to manipulate intra- and inter-brain communication may result in pro-social effects and could promote the teaching-learning process during rehabilitation sessions with a therapist. The approach of re-establishing oscillatory brain communication through tACS could be effective for motor recovery and might eventually drive the design of new neurorehabilitation approaches based on motor learning.
Collapse
Affiliation(s)
- Naoyuki Takeuchi
- Department of Physical Therapy, Akita University Graduate School of Health Sciences 1-1-1, Hondo, Akita 010-8543, Japan
| | - Shin-Ichi Izumi
- Department of Physical Medicine and Rehabilitation, Tohoku University Graduate School of Medicine, Sendai 980-8575, Japan;
| |
Collapse
|
24
|
Paul T, Hensel L, Rehme AK, Tscherpel C, Eickhoff SB, Fink GR, Grefkes C, Volz LJ. Early motor network connectivity after stroke: An interplay of general reorganization and state-specific compensation. Hum Brain Mapp 2021; 42:5230-5243. [PMID: 34346531 PMCID: PMC8519876 DOI: 10.1002/hbm.25612] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 07/09/2021] [Accepted: 07/20/2021] [Indexed: 02/04/2023] Open
Abstract
Motor recovery after stroke relies on functional reorganization of the motor network, which is commonly assessed via functional magnetic resonance imaging (fMRI)-based resting-state functional connectivity (rsFC) or task-related effective connectivity (trEC). Measures of either connectivity mode have been shown to successfully explain motor impairment post-stroke, posing the question whether motor impairment is more closely reflected by rsFC or trEC. Moreover, highly similar changes in ipsilesional and interhemispheric motor network connectivity have been reported for both rsFC and trEC after stroke, suggesting that altered rsFC and trEC may capture similar aspects of information integration in the motor network reflecting principle, state-independent mechanisms of network reorganization rather than state-specific compensation strategies. To address this question, we conducted the first direct comparison of rsFC and trEC in a sample of early subacute stroke patients (n = 26, included on average 7.3 days post-stroke). We found that both rsFC and trEC explained motor impairment across patients, stressing the clinical potential of fMRI-based connectivity. Importantly, intrahemispheric connectivity between ipsilesional M1 and premotor areas depended on the activation state, whereas interhemispheric connectivity between homologs was state-independent. From a mechanistic perspective, our results may thus arise from two distinct aspects of motor network plasticity: task-specific compensation within the ipsilesional hemisphere and a more fundamental form of reorganization between hemispheres.
Collapse
Affiliation(s)
- Theresa Paul
- Department of Neurology, University Hospital Cologne, Cologne, Germany
| | - Lukas Hensel
- Department of Neurology, University Hospital Cologne, Cologne, Germany
| | - Anne K Rehme
- Department of Neurology, University Hospital Cologne, Cologne, Germany
| | | | - Simon B Eickhoff
- Institute of Neuroscience and Medicine, Brain & Behaviour (INM-7), Research Centre Juelich, Juelich, Germany.,Institute of Systems Neuroscience, Medical Faculty, Heinrich Heine University Duesseldorf, Duesseldorf, Germany
| | - Gereon R Fink
- Department of Neurology, University Hospital Cologne, Cologne, Germany.,Institute of Neuroscience and Medicine, Cognitive Neuroscience (INM-3), Research Centre Juelich, Juelich, Germany
| | - Christian Grefkes
- Department of Neurology, University Hospital Cologne, Cologne, Germany.,Institute of Neuroscience and Medicine, Cognitive Neuroscience (INM-3), Research Centre Juelich, Juelich, Germany
| | - Lukas J Volz
- Department of Neurology, University Hospital Cologne, Cologne, Germany.,Institute of Neuroscience and Medicine, Cognitive Neuroscience (INM-3), Research Centre Juelich, Juelich, Germany
| |
Collapse
|
25
|
Vahdat S, Pendharkar AV, Chiang T, Harvey S, Uchino H, Cao Z, Kim A, Choy M, Chen H, Lee HJ, Cheng MY, Lee JH, Steinberg GK. Brain-wide neural dynamics of poststroke recovery induced by optogenetic stimulation. SCIENCE ADVANCES 2021; 7:eabd9465. [PMID: 34380610 PMCID: PMC8357234 DOI: 10.1126/sciadv.abd9465] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Accepted: 06/23/2021] [Indexed: 05/18/2023]
Abstract
Poststroke optogenetic stimulations can promote functional recovery. However, the circuit mechanisms underlying recovery remain unclear. Elucidating key neural circuits involved in recovery will be invaluable for translating neuromodulation strategies after stroke. Here, we used optogenetic functional magnetic resonance imaging to map brain-wide neural circuit dynamics after stroke in mice treated with and without optogenetic excitatory neuronal stimulations in the ipsilesional primary motor cortex (iM1). We identified key sensorimotor circuits affected by stroke. iM1 stimulation treatment restored activation of the ipsilesional corticothalamic and corticocortical circuits, and the extent of activation was correlated with functional recovery. Furthermore, stimulated mice exhibited higher expression of axonal growth-associated protein 43 in the ipsilesional thalamus and showed increased Synaptophysin+/channelrhodopsin+ presynaptic axonal terminals in the corticothalamic circuit. Selective stimulation of the corticothalamic circuit was sufficient to improve functional recovery. Together, these findings suggest early involvement of corticothalamic circuit as an important mediator of poststroke recovery.
Collapse
Affiliation(s)
- Shahabeddin Vahdat
- Department of Neurosurgery, Stanford University, Stanford, CA, USA
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA, USA
- Stanford Stroke Center, Stanford, CA, USA
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, FL, USA
| | - Arjun Vivek Pendharkar
- Department of Neurosurgery, Stanford University, Stanford, CA, USA
- Stanford Stroke Center, Stanford, CA, USA
| | - Terrance Chiang
- Department of Neurosurgery, Stanford University, Stanford, CA, USA
- Stanford Stroke Center, Stanford, CA, USA
| | - Sean Harvey
- Department of Neurosurgery, Stanford University, Stanford, CA, USA
- Stanford Stroke Center, Stanford, CA, USA
| | - Haruto Uchino
- Department of Neurosurgery, Stanford University, Stanford, CA, USA
- Stanford Stroke Center, Stanford, CA, USA
| | - Zhijuan Cao
- Department of Neurosurgery, Stanford University, Stanford, CA, USA
- Stanford Stroke Center, Stanford, CA, USA
| | - Anika Kim
- Department of Neurosurgery, Stanford University, Stanford, CA, USA
- Stanford Stroke Center, Stanford, CA, USA
| | - ManKin Choy
- Department of Neurosurgery, Stanford University, Stanford, CA, USA
- Stanford Stroke Center, Stanford, CA, USA
| | - Hansen Chen
- Department of Neurosurgery, Stanford University, Stanford, CA, USA
- Stanford Stroke Center, Stanford, CA, USA
| | - Hyun Joo Lee
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA, USA
| | - Michelle Y Cheng
- Department of Neurosurgery, Stanford University, Stanford, CA, USA.
- Stanford Stroke Center, Stanford, CA, USA
| | - Jin Hyung Lee
- Department of Neurosurgery, Stanford University, Stanford, CA, USA.
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA, USA
- Department of Bioengineering, Stanford University, Stanford, CA, USA
- Department of Electrical Engineering, Stanford University, Stanford, CA, USA
| | - Gary K Steinberg
- Department of Neurosurgery, Stanford University, Stanford, CA, USA.
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA, USA
- Stanford Stroke Center, Stanford, CA, USA
| |
Collapse
|
26
|
De Bruyn N, Saenen L, Thijs L, Van Gils A, Ceulemans E, Essers B, Alaerts K, Verheyden G. Brain connectivity alterations after additional sensorimotor or motor therapy for the upper limb in the early-phase post stroke: a randomized controlled trial. Brain Commun 2021; 3:fcab074. [PMID: 33937771 PMCID: PMC8072522 DOI: 10.1093/braincomms/fcab074] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 02/23/2021] [Accepted: 03/11/2021] [Indexed: 11/28/2022] Open
Abstract
Somatosensory function plays an important role for upper limb motor learning. However, knowledge about underlying mechanisms of sensorimotor therapy is lacking. We aim to investigate differences in therapy-induced resting-state functional connectivity changes between additional sensorimotor compared with motor therapy in the early-phase post stroke. Thirty first-stroke patients with a sensorimotor impairment were included for an assessor-blinded multi-centre randomized controlled trial within 8 weeks post stroke [13 (43%) females; mean age: 67 ± 13 years; mean time post stroke: 43 ± 13 days]. Patients were randomly assigned to additional sensorimotor (n = 18) or motor (n = 12) therapy, receiving 16 h of additional therapy within 4 weeks. Sensorimotor evaluations and resting-state functional magnetic resonance imaging were performed at baseline (T1), post-intervention (T2) and after 4 weeks follow-up (T3). Resting-state functional magnetic resonance imaging was also performed in an age-matched healthy control group (n = 19) to identify patterns of aberrant connectivity in stroke patients between hemispheres, or within ipsilesional and contralesional hemispheres. Mixed model analysis investigated session and treatment effects between stroke therapy groups. Non-parametric partial correlations were used to investigate brain−behaviour associations with age and frame-wise displacement as nuisance regressors. Connections within the contralesional hemisphere that showed hypo-connectivity in subacute stroke patients (compared with healthy controls) showed a trend towards a more pronounced pre-to-post normalization (less hypo-connectivity) in the motor therapy group, compared with the sensorimotor therapy group (mean estimated difference = −0.155 ± 0.061; P = 0.02). Further, the motor therapy group also tended to show a further pre-to-post increase in functional connectivity strength among connections that already showed hyper-connectivity in the stroke patients at baseline versus healthy controls (mean estimated difference = −0.144 ± 0.072; P = 0.06). Notably, these observed increases in hyper-connectivity of the contralesional hemisphere were positively associated with improvements in functional activity (r = 0.48), providing indications that these patterns of hyper-connectivity are compensatory in nature. The sensorimotor and motor therapy group showed no significant differences in terms of pre-to-post changes in inter-hemispheric connectivity or ipsilesional intrahemispheric connectivity. While effects are only tentative within this preliminary sample, results suggest a possible stronger normalization of hypo-connectivity and a stronger pre-to-post increase in compensatory hyper-connectivity of the contralesional hemisphere after motor therapy compared with sensorimotor therapy. Future studies with larger patient samples are however recommended to confirm these trend-based preliminary findings.
Collapse
Affiliation(s)
- Nele De Bruyn
- Department of Rehabilitation Sciences, KU Leuven-University of Leuven, 3001 Leuven, Belgium
| | - Leen Saenen
- Department of Rehabilitation Sciences, KU Leuven-University of Leuven, 3001 Leuven, Belgium
| | - Liselot Thijs
- Department of Rehabilitation Sciences, KU Leuven-University of Leuven, 3001 Leuven, Belgium
| | - Annick Van Gils
- Department of Rehabilitation Sciences, KU Leuven-University of Leuven, 3001 Leuven, Belgium
| | - Eva Ceulemans
- Department of Rehabilitation Sciences, KU Leuven-University of Leuven, 3001 Leuven, Belgium
| | - Bea Essers
- Department of Rehabilitation Sciences, KU Leuven-University of Leuven, 3001 Leuven, Belgium
| | - Kaat Alaerts
- Department of Rehabilitation Sciences, KU Leuven-University of Leuven, 3001 Leuven, Belgium
| | - Geert Verheyden
- Department of Rehabilitation Sciences, KU Leuven-University of Leuven, 3001 Leuven, Belgium
| |
Collapse
|
27
|
Xia Y, Huang G, Quan X, Qin Q, Li H, Xu C, Liang Z. Dynamic Structural and Functional Reorganizations Following Motor Stroke. Med Sci Monit 2021; 27:e929092. [PMID: 33707406 PMCID: PMC7962416 DOI: 10.12659/msm.929092] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Background The combined effects of bilateral corticospinal tract (CST) reorganization and interhemispheric functional connectivity (FC) reorganization on motor recovery of upper and lower limbs after stroke remain unknown. Material/Methods A total of 34 patients underwent magnetic resonance imaging (MRI) examination at weeks 1, 4, and 12 after stroke, with a control group of 34 healthy subjects receiving 1 MRI examination. Interhemispheric FC in the somatomotor network (SMN) was calculated using the resting-state functional MRI (rs-fMRI). Fractional anisotropy (FA) of bilateral CST was recorded as a measure of reorganization obtained from diffusion tensor imaging (DTI). After intergroup comparisons, multiple linear regression analysis was used to explore the effects of altered FA and interhemispheric FC on motor recovery. Results Interhemispheric FC restoration mostly occurred within 4 weeks after stroke, and FA in ipsilesional remained CST consistently elevated within 12 weeks. Multivariate linear regression analysis showed that the increase in both interhemispheric FC and ipsilesional CST-FA were significantly correlated with greater motor recovery from week 1 to week 4 following stroke. Moreover, only increased FA of ipsilesional CST was significantly correlated with greater motor recovery during weeks 4 to 12 after stroke compared to interhemispheric FC. Conclusions Our results show dynamic structural and functional reorganizations following motor stroke, and structure reorganization may be more related to motor recovery at the late subacute phase. These results may play a role in guiding neurological rehabilitation.
Collapse
Affiliation(s)
- Yumei Xia
- Department of Neurology, The First Affiliated Hospital of Guangxi Medical University and Guangxi Key Laboratory of Precision Medicine in Cardio-Cerebrovascular Diseases Control and Prevention and Guangxi Clinical Research Center for Cardio-Cerebrovascular Diseases, Nanning, Guangxi, China (mainland)
| | - Gelun Huang
- Department of Neurology, The First Affiliated Hospital of Guangxi Medical University and Guangxi Key Laboratory of Precision Medicine in Cardio-Cerebrovascular Diseases Control and Prevention and Guangxi Clinical Research Center for Cardio-Cerebrovascular Diseases, Nanning, Guangxi, China (mainland)
| | - Xuemei Quan
- Department of Neurology, The First Affiliated Hospital of Guangxi Medical University and Guangxi Key Laboratory of Precision Medicine in Cardio-Cerebrovascular Diseases Control and Prevention and Guangxi Clinical Research Center for Cardio-Cerebrovascular Diseases, Nanning, Guangxi, China (mainland)
| | - Qixiong Qin
- Department of Neurology, The First Affiliated Hospital of Guangxi Medical University and Guangxi Key Laboratory of Precision Medicine in Cardio-Cerebrovascular Diseases Control and Prevention and Guangxi Clinical Research Center for Cardio-Cerebrovascular Diseases, Nanning, Guangxi, China (mainland)
| | - Hui Li
- Department of Neurology, The First Affiliated Hospital of Guangxi Medical University and Guangxi Key Laboratory of Precision Medicine in Cardio-Cerebrovascular Diseases Control and Prevention and Guangxi Clinical Research Center for Cardio-Cerebrovascular Diseases, Nanning, Guangxi, China (mainland)
| | - Ci Xu
- Department of Neurology, The First Affiliated Hospital of Guangxi Medical University and Guangxi Key Laboratory of Precision Medicine in Cardio-Cerebrovascular Diseases Control and Prevention and Guangxi Clinical Research Center for Cardio-Cerebrovascular Diseases, Nanning, Guangxi, China (mainland)
| | - Zhijian Liang
- Department of Neurology, The First Affiliated Hospital of Guangxi Medical University and Guangxi Key Laboratory of Precision Medicine in Cardio-Cerebrovascular Diseases Control and Prevention and Guangxi Clinical Research Center for Cardio-Cerebrovascular Diseases, Nanning, Guangxi, China (mainland)
| |
Collapse
|
28
|
Steiner L, Homan S, Everts R, Federspiel A, Kamal S, Rodriguez JAD, Kornfeld S, Slavova N, Wiest R, Kaelin-Lang A, Steinlin M, Grunt S. Functional connectivity and upper limb function in patients after pediatric arterial ischemic stroke with contralateral corticospinal tract wiring. Sci Rep 2021; 11:5490. [PMID: 33750854 PMCID: PMC7943570 DOI: 10.1038/s41598-021-84671-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Accepted: 02/17/2021] [Indexed: 12/29/2022] Open
Abstract
To develop individualized motor rehabilitation, knowledge of the relationship between neuroplastic reorganization and motor recovery after pediatric arterial ischemic stroke (AIS) is crucial. Thus, we investigated functional connectivity in patients after AIS with good motor outcome and in patients with hemiparesis compared with typically developing peers. We included 18 patients (n = 9 with hemiparesis, n = 9 with good motor outcome) with pediatric AIS in the chronic phase (≥ 2 years after diagnosis, diagnosed > 16 years) and 18 peers matched by age and gender. Participants underwent a standardized motor assessment, single-pulse transcranial magnetic stimulation to determine the type of corticospinal tract wiring, and resting-state functional magnetic resonance imaging to examine motor network connectivity. Corticospinal tract wiring was contralateral in all participants. Patients with hemiparesis had lower interhemispheric connectivity strength compared with patients with good clinical outcome and peers. Patients with good clinical outcome had higher intrahemispheric connectivity strength compared with peers. Further, higher intrahemispheric connectivity was related to better motor outcome in patients. Our findings suggest that better motor outcome after pediatric AIS is related to higher motor network connectivity strength. Thus, resting-state functional connectivity might be predictive for motor recovery after pediatric AIS.
Collapse
Affiliation(s)
- Leonie Steiner
- Division of Neuropediatrics, Development and Rehabilitation, University Children's Hospital, Inselspital, Freiburgstrasse 31, 3010, Bern, Switzerland.
- Graduate School for Health Sciences, University of Bern, Bern, Switzerland.
| | - Stephanie Homan
- Division of Systems Neuroscience, Translational Research Center, University Hospital of Psychiatry and Psychotherapy, Bern, Switzerland
- Department of Psychiatry, Psychotherapy and Psychosomatics, University Hospital of Psychiatry, University of Zurich, Zurich, Switzerland
| | - Regula Everts
- Division of Neuropediatrics, Development and Rehabilitation, University Children's Hospital, Inselspital, Freiburgstrasse 31, 3010, Bern, Switzerland
| | - Andrea Federspiel
- Division of Systems Neuroscience, Translational Research Center, University Hospital of Psychiatry and Psychotherapy, Bern, Switzerland
- Psychiatric Neuroimaging Unit, Translational Research Center, University Hospital of Psychiatry and Psychotherapy, Bern, Switzerland
| | - Sandeep Kamal
- Division of Neuropediatrics, Development and Rehabilitation, University Children's Hospital, Inselspital, Freiburgstrasse 31, 3010, Bern, Switzerland
| | - Juan Antonio Delgado Rodriguez
- Division of Neuropediatrics, Development and Rehabilitation, University Children's Hospital, Inselspital, Freiburgstrasse 31, 3010, Bern, Switzerland
- Graduate School for Health Sciences, University of Bern, Bern, Switzerland
| | - Salome Kornfeld
- Division of Neuropediatrics, Development and Rehabilitation, University Children's Hospital, Inselspital, Freiburgstrasse 31, 3010, Bern, Switzerland
| | - Nedelina Slavova
- Department of Diagnostic and Interventional Neuroradiology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Roland Wiest
- Department of Diagnostic and Interventional Neuroradiology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Alain Kaelin-Lang
- Neurocenter of Southern Switzerland, Ente Ospedaliero Cantonale, Bellinzona, Switzerland
- Department of Neurology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
- Faculty of Biomedical Neurosciences, Università Della Svizzera Italiana, Lugano, Switzerland
| | - Maja Steinlin
- Division of Neuropediatrics, Development and Rehabilitation, University Children's Hospital, Inselspital, Freiburgstrasse 31, 3010, Bern, Switzerland
| | - Sebastian Grunt
- Division of Neuropediatrics, Development and Rehabilitation, University Children's Hospital, Inselspital, Freiburgstrasse 31, 3010, Bern, Switzerland
| |
Collapse
|
29
|
Brodtmann A, Hillis A. Functional Connectivity to Predict Poststroke Cognition: Networking Not Working? Neurology 2021; 96:355-356. [PMID: 33408152 DOI: 10.1212/wnl.0000000000011501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Accepted: 12/29/2020] [Indexed: 11/15/2022] Open
Affiliation(s)
- Amy Brodtmann
- From The Florey Institute of Neuroscience and Mental Health (A.B.), University of Melbourne, Australia; and Center of Excellence in Stroke Detection and Diagnosis (A.H.), Johns Hopkins University, Baltimore, MD.
| | - Argye Hillis
- From The Florey Institute of Neuroscience and Mental Health (A.B.), University of Melbourne, Australia; and Center of Excellence in Stroke Detection and Diagnosis (A.H.), Johns Hopkins University, Baltimore, MD
| |
Collapse
|
30
|
Li QG, Zhao C, Shan Y, Yin YY, Rong DD, Zhang M, Ma QF, Lu J. Dynamic Neural Network Changes Revealed by Voxel-Based Functional Connectivity Strength in Left Basal Ganglia Ischemic Stroke. Front Neurosci 2020; 14:526645. [PMID: 33071728 PMCID: PMC7533550 DOI: 10.3389/fnins.2020.526645] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Accepted: 08/24/2020] [Indexed: 01/10/2023] Open
Abstract
Objective This study intends to track whole-brain functional connectivity strength (FCS) changes and the lateralization index (LI) in left basal ganglia (BG) ischemic stroke patients. Methods Twenty-five patients (N = 25; aged 52.73 ± 10.51 years) with five visits at <7, 14, 30, 90, and 180 days and 26 healthy controls (HCs; N = 26; 51.84 ± 8.06 years) were examined with resting-state functional magnetic resonance imaging (rs-fMRI) and motor function testing. FCS and LI were calculated through constructing the voxel-based brain functional network. One-way analysis of covariance (ANOVA) was first performed to obtain longitudinal FCS and LI changes in patients among the five visits (Bonferroni corrected, P < 0.05). Then, pairwise comparisons of FCS and LI were obtained during the five visits, and the two-sample t test was used to examine between-group differences in FCS [family-wise error (FWE) corrected, P < 0.05] and LI. Correlations between connectivity metrics (FCS and LI) and motor function were further assessed. Results Compared to HCs, decreased FCS in the patients localized in the calcarine and inferior occipital gyrus (IOG), while increased FCS gathered in the middle prefrontal cortex (MPFC), middle frontal gyrus, and insula (P < 0.05). The LI and FCS of patients first decreased and then increased, which showed significant differences compared with HCs (P < 0.05) and demonstrated a transition at the 30-day visit. Additionally, LI at the third visit was significantly different from those at the other visits (P < 0.05). No significant longitudinal correlations were observed between motor function and FCS or LI (P > 0.05). Conclusion Focal ischemic stroke in the left BG leads to extensive alterations in the FCS. Strong plasticity in the functional networks could be reorganized in different temporal dynamics to facilitate motor recovery after BG stroke, contribute to diagnosing the disease course, and estimate the intervention treatment.
Collapse
Affiliation(s)
- Qiong-Ge Li
- Department of Radiology, Xuanwu Hospital, Capital Medical University, Beijing, China.,Beijing Key Laboratory of Magnetic Resonance Imaging and Brain Informatics, Beijing, China
| | - Cheng Zhao
- Department of Radiology, Xuanwu Hospital, Capital Medical University, Beijing, China.,Beijing Key Laboratory of Magnetic Resonance Imaging and Brain Informatics, Beijing, China
| | - Yi Shan
- Department of Radiology, Xuanwu Hospital, Capital Medical University, Beijing, China.,Beijing Key Laboratory of Magnetic Resonance Imaging and Brain Informatics, Beijing, China
| | - Ya-Yan Yin
- Department of Radiology, Xuanwu Hospital, Capital Medical University, Beijing, China.,Beijing Key Laboratory of Magnetic Resonance Imaging and Brain Informatics, Beijing, China
| | - Dong-Dong Rong
- Department of Radiology, Xuanwu Hospital, Capital Medical University, Beijing, China.,Beijing Key Laboratory of Magnetic Resonance Imaging and Brain Informatics, Beijing, China
| | - Miao Zhang
- Department of Radiology, Xuanwu Hospital, Capital Medical University, Beijing, China.,Beijing Key Laboratory of Magnetic Resonance Imaging and Brain Informatics, Beijing, China
| | - Qing-Feng Ma
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Jie Lu
- Department of Radiology, Xuanwu Hospital, Capital Medical University, Beijing, China.,Beijing Key Laboratory of Magnetic Resonance Imaging and Brain Informatics, Beijing, China.,Department of Nuclear Medicine, Xuanwu Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
31
|
Hartwigsen G, Volz LJ. Probing rapid network reorganization of motor and language functions via neuromodulation and neuroimaging. Neuroimage 2020; 224:117449. [PMID: 33059054 DOI: 10.1016/j.neuroimage.2020.117449] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 08/17/2020] [Accepted: 10/07/2020] [Indexed: 12/22/2022] Open
Abstract
Motor and cognitive functions are organized in large-scale networks in the human brain that interact to enable flexible adaptation of information exchange to ever-changing environmental conditions. In this review, we discuss the unique potential of the consecutive combination of repetitive transcranial magnetic stimulation (rTMS) and functional neuroimaging to probe network organization and reorganization in the healthy and lesioned brain. First, we summarize findings highlighting the flexible (re-)distribution and short-term reorganization in motor and cognitive networks in the healthy brain. Plastic after-effects of rTMS result in large-scale changes on the network level affecting both local and remote activity within the stimulated network as well as interactions between the stimulated and distinct functional networks. While the number of combined rTMS-fMRI studies in patients with brain lesions remains scarce, preliminary evidence suggests that the lesioned brain flexibly (re-)distributes its computational capacities to functionally reorganize impaired brain functions, using a similar set of mechanisms to achieve adaptive network plasticity compared to short-term reorganization observed in the healthy brain after rTMS. In general, both short-term reorganization in the healthy brain and stroke-induced reorganization seem to rely on three general mechanisms of adaptive network plasticity that allow to maintain and recover function: i) interhemispheric changes, including increased contribution of homologous regions in the contralateral hemisphere and increased interhemispheric connectivity, ii) increased interactions between differentially specialized networks and iii) increased contributions of domain-general networks after disruption of more specific functions. These mechanisms may allow for computational flexibility of large-scale neural networks underlying motor and cognitive functions. Future studies should use complementary approaches to address the functional relevance of adaptive network plasticity and further delineate how these general mechanisms interact to enable network flexibility. Besides furthering our neurophysiological insights into brain network interactions, identifying approaches to support and enhance adaptive network plasticity may result in clinically relevant diagnostic and treatment approaches.
Collapse
Affiliation(s)
- Gesa Hartwigsen
- Lise Meitner Research Group "Cognition and Plasticity", Max Planck Institute for Human Cognitive and Brain Sciences, Stephanstrasse 1a, D-04103 Leipzig, Germany.
| | - Lukas J Volz
- Department of Neurology, University of Cologne, Kerpener Str. 62, D-50937 Cologne, Germany.
| |
Collapse
|
32
|
Park E, Lee J, Chang WH, Lee A, Hummel FC, Kim YH. Differential Relationship between Microstructural Integrity in White Matter Tracts and Motor Recovery following Stroke Based on Brain-Derived Neurotrophic Factor Genotype. Neural Plast 2020; 2020:5742421. [PMID: 33029116 PMCID: PMC7527931 DOI: 10.1155/2020/5742421] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 09/07/2020] [Accepted: 09/10/2020] [Indexed: 11/17/2022] Open
Abstract
Objective The relationship between white matter integrity and the brain-derived neurotrophic factor (BDNF) genotype and its effects on motor recovery after stroke are poorly understood. We investigated the values of fractional anisotropy (FA) in the corticospinal tract (CST), the intrahemispheric connection from the primary motor cortex to the ventral premotor cortex (M1PMv), and the interhemispheric connection via the corpus callosum (CC) in patients with the BDNF genotype from the acute to the subacute phase after stroke. Methods The Fugl-Meyer assessment, upper extremity (FMA-UE), and tract-related FA were assessed at 2 weeks (T1) and 3 months (T2) after stroke using diffusion tensor imaging (DTI). Fifty-eight patients diagnosed with ischemic stroke were classified according to the BDNF genotype into a Val (valine homozygotes) or Met (methionine heterozygotes and homozygotes) group. Results The Val group exhibited a larger reduction of FA values in the ipsilesional M1PMv than the Met group from T1 to T2. The FMA-UE at T2 was negatively correlated with FA of the contralesional M1PMv at T2 in the Val group but was positively correlated with FA of the ipsilesional CST and CC at T2 in the Met group. Conclusions The integrity of the intra- and interhemispheric connections might be related to different processes of motor recovery dependent on the BDNF genotype. Thus, the BDNF genotype may need to be considered as a factor influencing neuroplasticity and functional recovery in patients with stroke. This trial is registered with http://www.clinicaltrials.gov: NCT03647787.
Collapse
Affiliation(s)
- Eunhee Park
- Department of Rehabilitation Medicine, Kyungpook National University Hospital, Daegu, Republic of Korea
- Department of Rehabilitation Medicine, School of Medicine, Kyungpook National University, Daegu, Republic of Korea
| | - Jungsoo Lee
- Department of Physical and Rehabilitation Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
- Center for Prevention and Rehabilitation, Heart Vascular Stroke Institute, Samsung Medical Center, Seoul, Republic of Korea
| | - Won Hyuk Chang
- Department of Physical and Rehabilitation Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
- Center for Prevention and Rehabilitation, Heart Vascular Stroke Institute, Samsung Medical Center, Seoul, Republic of Korea
| | - Ahee Lee
- Department of Health Sciences & Technology, Department of Medical Device Management & Research, Department of Digital Health, SAIHST, Sungkyunkwan University, Seoul, Republic of Korea
| | - Friedhelm C. Hummel
- Defitech Chair of Clinical Neuroengineering, Center for Neuroprosthetics (CNP) and Brain Mind Institute (BMI), Swiss Federal Institute of Technology (EPFL), 1202 Geneva, Switzerland
- Defitech Chair of Clinical Neuroengineering, Center for Neuroprosthetics (CNP) and Brain Mind Institute (BMI), Swiss Federal Institute of Technology (EPFL Valais), Clinique Romande de Réadaptation, 1951 Sion, Switzerland
- Clinical Neuroscience, University of Geneva Medical School, 1202 Geneva, Switzerland
| | - Yun-Hee Kim
- Department of Physical and Rehabilitation Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
- Center for Prevention and Rehabilitation, Heart Vascular Stroke Institute, Samsung Medical Center, Seoul, Republic of Korea
- Department of Health Sciences & Technology, Department of Medical Device Management & Research, Department of Digital Health, SAIHST, Sungkyunkwan University, Seoul, Republic of Korea
| |
Collapse
|
33
|
Brihmat N, Tarri M, Gasq D, Marque P, Castel-Lacanal E, Loubinoux I. Cross-Modal Functional Connectivity of the Premotor Cortex Reflects Residual Motor Output After Stroke. Brain Connect 2020; 10:236-249. [PMID: 32414294 DOI: 10.1089/brain.2020.0750] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022] Open
Abstract
Stroke is known to cause widespread activation and connectivity changes resulting in different levels of functional impairment. Recovery of motor functions is thought to rely mainly on reorganizations within the sensorimotor cortex, but increasing attention is being paid to other cerebral regions. To investigate the motor task-related functional connectivity (FC) of the ipsilesional premotor cortex (PMC) and its relation to residual motor output after stroke in a population of mostly poorly recoverd patients. Twenty-four stroke patients (23 right handed, mean age = 52.4 ± 12.6 years) with varying levels of motor deficits underwent functional magnetic resonance imaging while performing different motor tasks (passive mobilization, motor execution, and motor imagery of an extension movement of the unaffected hand [UH] or affected hand [AH]). For the different motor tasks, analyses of cerebral activation and task-related FC of the ipsilesional lateral sensorimotor network (SMN), and particularly the premotor cortex (PMC), were performed. Compared with UH data, FC of the ipsilesional lateral SMN during the passive or active motor tasks involving the AH was decreased with regions of the ipsilesional SMN and was increased with regions of the bilateral frontal and the ipsilesional posterior parietal cortices such as the precuneus (Pcu). During passive wrist mobilization, FC between the ipsilesional PMC and the contralesional SMN was negatively correlated with residual motor function, whereas that with nonmotor regions such as the bilateral Pcu and the contralesional dorsolateral prefrontal cortex was positively correlated with the residual motor function. Cross-modal FC of the ipsilesional PMC may reflect compensation strategies after stroke. The results emphasize the importance of the PMC and other nonmotor regions as prominent nodes involved in reorganization processes after a stroke.
Collapse
Affiliation(s)
- Nabila Brihmat
- ToNIC, Toulouse NeuroImaging Center, Université de Toulouse, Inserm, UPS, France
| | - Mohamed Tarri
- ToNIC, Toulouse NeuroImaging Center, Université de Toulouse, Inserm, UPS, France
| | - David Gasq
- ToNIC, Toulouse NeuroImaging Center, Université de Toulouse, Inserm, UPS, France.,Department of Functional and Physiological Explorations, University Hospital of Toulouse, Toulouse, France
| | - Philippe Marque
- ToNIC, Toulouse NeuroImaging Center, Université de Toulouse, Inserm, UPS, France.,Department of Rehabilitation and Physical Medicine, University Hospital of Toulouse, Toulouse, France
| | - Evelyne Castel-Lacanal
- ToNIC, Toulouse NeuroImaging Center, Université de Toulouse, Inserm, UPS, France.,Department of Rehabilitation and Physical Medicine, University Hospital of Toulouse, Toulouse, France
| | - Isabelle Loubinoux
- ToNIC, Toulouse NeuroImaging Center, Université de Toulouse, Inserm, UPS, France
| |
Collapse
|
34
|
Central auditory processing in adults with chronic stroke without hearing loss: A magnetoencephalography study. Clin Neurophysiol 2020; 131:1102-1118. [PMID: 32200092 DOI: 10.1016/j.clinph.2020.01.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Revised: 01/05/2020] [Accepted: 01/22/2020] [Indexed: 11/22/2022]
Abstract
OBJECTIVE Stroke lesions in non-auditory areas may affect higher-order central auditory processing. We sought to characterize auditory functions in chronic stroke survivors with unilateral arm/hand impairment using auditory evoked responses (AERs) with lesion and perception metrics. METHODS The AERs in 29 stroke survivors and 14 controls were recorded with single tones, active and passive frequency-oddballs, and a dual-oddball with pitch-contour and time-interval deviants. Performance in speech-in-noise, mistuning detection, and moving-sound detection was assessed. Relationships between AERs, behaviour, and lesion overlap with functional networks, were examined. RESULTS Despite their normal hearing, eight patients showed unilateral AER in the hemisphere ipsilateral to the affected hand with reduced amplitude compared to those with bilateral AERs. Both groups showed increasing attenuation of later components. Hemispheric asymmetry of AER sources was reduced in bilateral-AER patients. The N1 wave (100 ms latency) and P2 (200 ms) were delayed in individuals with lesions in the basal-ganglia and white-matter, while lesions in the attention network reduced the frequency-MMN (mismatch negativity) responses and increased the pitch-contour P3a response. Patients' impaired speech-in-noise perception was explained by AER measures and frequency-deviant detection performance with multiple regression. CONCLUSION AERs reflect disruption of auditory functions due to damage outside of temporal lobe, and further explain complexity of neural mechanisms underlying higher-order auditory perception. SIGNIFICANCE Stroke survivors without obvious hearing problems may benefit from rehabilitation for central auditory processing.
Collapse
|
35
|
Cheng B, Dietzmann P, Schulz R, Boenstrup M, Krawinkel L, Fiehler J, Gerloff C, Thomalla G. Cortical atrophy and transcallosal diaschisis following isolated subcortical stroke. J Cereb Blood Flow Metab 2020; 40:611-621. [PMID: 30782059 PMCID: PMC7026841 DOI: 10.1177/0271678x19831583] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Following acute ischemic stroke, isolated subcortical lesions induce gray matter atrophy in anatomically connected, yet distant cortical brain regions. We expand on previous studies by analyzing cortical thinning in contralesional, homologous regions indirectly linked to primary stroke lesions via ipsilesional cortical areas. For this purpose, stroke patients were serially studied by magnetic resonance imaging (diffusion tensor imaging and high-resolution anatomical imaging) in the acute (days 3-5) and late chronic stage one year after stroke. We analyzed changes of gray and white matter integrity in 18 stroke patients (median age 68 years) with subcortical stroke. We applied probabilistic fiber tractography to identify brain regions connected to stroke lesions and contralesional homologous areas. Cortical thickness was quantified by semi-automatic measurements, and fractional anisotropy was analyzed. One year after stroke, significant decrease of cortical thickness was detected in areas connected to ischemic lesions (mean -0.15 mm; 95% CI -0.23 to -0.07 mm) as well as homologous contralateral brain regions (mean -0.13 mm; 95% CI -0.07 to -0.19 mm). We detected reduced white matter integrity of inter- and intrahemispheric fiber tracts. There were no significant associations with clinical recovery. Our results indicate that impact of subcortical lesions extends to homologous brain areas via transcallosal diaschisis.
Collapse
Affiliation(s)
- Bastian Cheng
- Klinik und Poliklinik für Neurologie, Kopf- und Neurozentrum, Universitätsklinikum Hamburg-Eppendorf, Hamburg, Germany
| | - Philipp Dietzmann
- Klinik und Poliklinik für Neurologie, Kopf- und Neurozentrum, Universitätsklinikum Hamburg-Eppendorf, Hamburg, Germany
| | - Robert Schulz
- Klinik und Poliklinik für Neurologie, Kopf- und Neurozentrum, Universitätsklinikum Hamburg-Eppendorf, Hamburg, Germany
| | - Marlene Boenstrup
- Klinik und Poliklinik für Neurologie, Kopf- und Neurozentrum, Universitätsklinikum Hamburg-Eppendorf, Hamburg, Germany.,Human Cortical Physiology and Neurorehabilitation Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Lutz Krawinkel
- Klinik und Poliklinik für Neurologie, Kopf- und Neurozentrum, Universitätsklinikum Hamburg-Eppendorf, Hamburg, Germany
| | - Jens Fiehler
- Klinik und Poliklinik für Neuroradiologische Diagnostik und Intervention, Universitätsklinikum Hamburg-Eppendorf, Hamburg, Germany
| | - Christian Gerloff
- Klinik und Poliklinik für Neurologie, Kopf- und Neurozentrum, Universitätsklinikum Hamburg-Eppendorf, Hamburg, Germany
| | - Götz Thomalla
- Klinik und Poliklinik für Neurologie, Kopf- und Neurozentrum, Universitätsklinikum Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
36
|
Chen H, Shi M, Zhang H, Zhang YD, Geng W, Jiang L, Wang Z, Chen YC, Yin X. Different Patterns of Functional Connectivity Alterations Within the Default-Mode Network and Sensorimotor Network in Basal Ganglia and Pontine Stroke. Med Sci Monit 2019; 25:9585-9593. [PMID: 31838483 PMCID: PMC6929567 DOI: 10.12659/msm.918185] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Background The aim of this study was to investigate whether patients with basal ganglia stroke and patients with pontine stroke have different types of functional connectivity (FC) alterations in the early chronic phase. Material/Methods We included 14 patients with pontine stroke, 17 patients with basal ganglia stroke, and 20 well-matched healthy controls (HCs). All of them underwent resting-state functional magnetic resonance imaging (rs-fMRI) scanning. The independent component analysis (ICA) approach was applied to extract information regarding the default-mode network (DMN), including anterior DMN (aDMN) and posterior DMN (pDMN) components and the sensorimotor network (SMN). Results Compared with HCs, patients with basal ganglia stroke exhibited significantly reduced FC in the left precuneus of the pDMN, right supplementary motor area (SMA), and right superior frontal gyrus (SFG) of the SMN. Additionally, FC in the left medial prefrontal gyrus (MFG) of the aDMN, right precuneus and right posterior cingulate cortex (PCC) of the pDMN, and left middle cingulate gyrus (mid-CC) of the SMN decreased in patients with pontine stroke. Conclusions The different patterns of FC damage in patients with basal ganglia stroke and patients with pontine stroke in the early chronic phase may provide a new method for investigating lesion-induced network plasticity.
Collapse
Affiliation(s)
- Huiyou Chen
- Department of Radiology, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu, China (mainland)
| | - Mengye Shi
- Department of Radiology, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu, China (mainland)
| | - Hong Zhang
- Department of Radiology, The Affiliated Jiangning Hospital of Nanjing Medical University, Nanjing, Jiangsu, China (mainland)
| | - Ying-Dong Zhang
- Department of Neurology, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu, China (mainland)
| | - Wen Geng
- Department of Radiology, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu, China (mainland)
| | - Liang Jiang
- Department of Radiology, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu, China (mainland)
| | - Zhengqian Wang
- Department of Radiology, Lianshui County People's Hospital, Huai'an, Jiangsu, China (mainland)
| | - Yu-Chen Chen
- Department of Radiology, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu, China (mainland)
| | - Xindao Yin
- Department of Radiology, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu, China (mainland)
| |
Collapse
|
37
|
Allart E, Viard R, Lopes R, Devanne H, Delval A. Influence of Motor Deficiency and Spatial Neglect on the Contralesional Posterior Parietal Cortex Functional and Structural Connectivity in Stroke Patients. Brain Topogr 2019; 33:176-190. [PMID: 31832813 DOI: 10.1007/s10548-019-00749-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Accepted: 11/27/2019] [Indexed: 02/06/2023]
Abstract
The posterior parietal cortex (PPC) is a key structure for visual attention and upper limb function, two features that could be impaired after stroke, and could be implied in their recovery. If it is well established that stroke is responsible for intra- and interhemispheric connectivity troubles, little is known about those existing for the contralesional PPC. In this study, we aimed at mapping the functional (using resting state fMRI) and structural (using diffusion tensor imagery) networks from 3 subparts of the PPC of the contralesional hemisphere (the anterior intraparietal sulcus), the posterior intraparietal sulcus and the superior parieto-occipital cortex to bilateral frontal areas and ipsilesional homologous PPC parts in 11 chronic stroke patients compared to 13 healthy controls. We also aimed at assessing the relationship between connectivity and the severity of visuospatial and motor deficiencies. We showed that interhemispheric functional and structural connectivity between PPCs was altered in stroke patients compared to controls, without any specificity among seeds. Alterations of parieto-frontal intra- and interhemispheric connectivity were less observed. Neglect severity was associated with several alterations in intra- and interhemispheric connectivity, whereas we did not find any behavioral/connectivity correlations for motor deficiency. The results of this exploratory study shed a new light on the influence of the contralesional PPC in post-stroke patients, they have to be confirmed and refined in further larger studies.
Collapse
Affiliation(s)
- Etienne Allart
- Neurorehabilitation Unit, Lille University Medical Center, 59000, Lille, France. .,Inserm U1171-Degenerative and Vascular Cognitive Disorders, University Lille, 59000, Lille, France.
| | - Romain Viard
- Inserm U1171-Degenerative and Vascular Cognitive Disorders, University Lille, 59000, Lille, France.,Clinical Imaging Core FaCility, Lille University Medical Center, 59000, Lille, France
| | - Renaud Lopes
- Inserm U1171-Degenerative and Vascular Cognitive Disorders, University Lille, 59000, Lille, France.,Clinical Imaging Core FaCility, Lille University Medical Center, 59000, Lille, France
| | - Hervé Devanne
- Department of Clinical Neurophysiology, Lille University Medical Center, 59000, Lille, France.,URePSSS Unité de Recherche Pluridisciplinaire Sport Santé Société (EA7369), ULCO, 62228, Calais, France
| | - Arnaud Delval
- Inserm U1171-Degenerative and Vascular Cognitive Disorders, University Lille, 59000, Lille, France.,Department of Clinical Neurophysiology, Lille University Medical Center, 59000, Lille, France
| |
Collapse
|
38
|
Kim RK, Kang N. Bimanual Coordination Functions between Paretic and Nonparetic Arms: A Systematic Review and Meta-analysis. J Stroke Cerebrovasc Dis 2019; 29:104544. [PMID: 31818684 DOI: 10.1016/j.jstrokecerebrovasdis.2019.104544] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Accepted: 11/18/2019] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND Bimanual coordination is essential for performing many everyday interlimb actions that require successful spatiotemporal interactions between the 2 arms. This systematic review and meta-analysis investigates bimanual coordination function of the upper extremities in patients with stroke. METHODS Seventeen studies that compared bimanual coordination functions in patients with stroke and age-matched healthy controls qualified for this meta-analysis. We categorized 25 comparisons from the 17 qualified studies into 6 types of bimanual actions based on 3 task constraints: (1), symmetry versus asymmetry movements, (2) parallel versus cooperative movements, and (3) independent goals versus a common goal. RESULTS Random effects meta-analysis revealed that patients with stroke had impaired kinematic (Hedges's g = -1.232 and P < .0001) and kinetic (Hedges's g = -.712 and P = .001) control of bimanual coordination as compared with the age-matched healthy controls. The moderator variable analysis on the 6 types of bimanual actions showed that bimanual coordination impairments after stroke appeared while performing both asymmetrical bimanual movements and symmetrical bimanual movements to achieve a common goal. Moreover, we observed a potential relationship between greater time since stroke onset and increased interlimb coordination impairments for chronic patients. CONCLUSIONS These findings suggest that restoring interlimb coordination functions after stroke may be a crucial rehabilitation goal for facilitating progress toward stroke motor recovery.
Collapse
Affiliation(s)
- Rye Kyeong Kim
- Division of Sport Science & Sport Science Institute, Incheon National University, Incheon, South Korea; Neuromechanical Rehabilitation Research Laboratory, Incheon National University, Incheon, South Korea
| | - Nyeonju Kang
- Division of Sport Science & Sport Science Institute, Incheon National University, Incheon, South Korea; Neuromechanical Rehabilitation Research Laboratory, Incheon National University, Incheon, South Korea.
| |
Collapse
|
39
|
Structural and functional connectivity correlates with motor impairment in chronic supratentorial stroke: a multimodal magnetic resonance imaging study. Neuroreport 2019; 30:526-531. [PMID: 30932970 DOI: 10.1097/wnr.0000000000001247] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The aim of this study was to identify differences in structural and functional brain connectivity between poststroke mild and severe motor impairment. Twenty-four chronic stroke patients who underwent resting-state functional MRI and diffusion tensor image were retrospectively included. All patients were classified into two groups (mild motor impairment: 11 patients and severe motor impairment: 13 patients) according to their Fugl-Meyer motor assessment score. Tract-based spatial statistics and group independent component analyses were applied to investigate between-group differences in structural and functional connectivity, respectively. The fractional anisotropy values of motor-related brain regions in the affected hemisphere were significantly higher in mild motor impairment than in severe motor impairment (corrected P<0.05). The internetwork functional connectivity between (i) the supplementary motor area and primary motor cortex in the affected hemisphere, (ii) the supplementary motor area and dorsolateral prefrontal cortex in the unaffected hemisphere, and (iii) the ischemic lesion and primary motor cortex in the unaffected hemisphere was significantly higher in mild motor impairment than in severe motor impairment (PFWE<0.05). Better motor recovery after stroke could be facilitated by means of treatments aimed at enhancing structural and functional connectivity among motor-related brain regions such as noninvasive brain stimulation and neurodevelopmental therapy.
Collapse
|
40
|
Ge Y, Pan Y, Wu Q, Dou W. A Distance-Based Neurorehabilitation Evaluation Method Using Linear SVM and Resting-State fMRI. Front Neurol 2019; 10:1105. [PMID: 31736850 PMCID: PMC6838867 DOI: 10.3389/fneur.2019.01105] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Accepted: 10/02/2019] [Indexed: 11/22/2022] Open
Abstract
During neurorehabilitation, clinical measurements are widely adopted to evaluate behavioral improvements after treatment. However, it is not able to identify or monitor the change of central nervous system (CNS) of each individual patient. Resting-state functional magnetic resonance imaging (rs-fMRI) has been widely used to investigate brain functions in healthy controls (HCs) and patients with neurological diseases, which could find functional changes following neurorehabilitation. In this paper, a distance-based rehabilitation evaluation method based on rs-fMRI was proposed. Specifically, we posit that in the functional connectivity (FC) space, patients and HCs distribute separately. Linear support vector machines (SVM) were trained on the brain networks to firstly separate patients from HCs. Second, the FC similarity between patients and HCs was measured by the L2 distance of each subject's feature vector to the separating hyperplane. Finally, statistical analysis of the distance revealed rehabilitation program induced improvements in patients and predicted rehabilitation outcomes. An rs-fMRI dataset with 22 HCs and 18 spinal cord injury (SCI) patients was utilized to validate our method. We built whole-brain networks using five atlases to test the robustness of the method and search for features under different node resolutions. The classifier successfully separated patients and HCs. Significant improvements in FC after treatment were found for the patients for all five atlases using the proposed method, which was consistent with clinical measurements. Furthermore, distance obtained from individual patient's longitudinal data showed a similar trend with each one's clinical scores, implying the possibility of individual rehabilitation outcome tracking and prediction. Our method not only provides a novel perspective of applying rs-fMRI to neurorehabilitation monitoring but also proves the potential in individualized rehabilitation prediction.
Collapse
Affiliation(s)
- Yunxiang Ge
- Department of Electronic Engineering, Tsinghua University, Beijing, China.,Beijing National Research Center for Information Science and Technology (BNRist), Beijing, China
| | - Yu Pan
- School of Clinical Medicine, Tsinghua University, Beijing, China.,Department of Rehabilitation, Beijing Tsinghua Changgung Hospital, Beijing, China
| | - Qiong Wu
- School of Clinical Medicine, Tsinghua University, Beijing, China.,Department of Rehabilitation, Beijing Tsinghua Changgung Hospital, Beijing, China
| | - Weibei Dou
- Department of Electronic Engineering, Tsinghua University, Beijing, China.,Beijing National Research Center for Information Science and Technology (BNRist), Beijing, China
| |
Collapse
|
41
|
Saenger VM, Ponce-Alvarez A, Adhikari M, Hagmann P, Deco G, Corbetta M. Linking Entropy at Rest with the Underlying Structural Connectivity in the Healthy and Lesioned Brain. Cereb Cortex 2019; 28:2948-2958. [PMID: 28981635 DOI: 10.1093/cercor/bhx176] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2016] [Indexed: 01/06/2023] Open
Abstract
The brain is a network that mediates information processing through a wide range of states. The extent of state diversity is a reflection of the entropy of the network. Here we measured the entropy of brain regions (nodes) in empirical and modeled functional networks reconstructed from resting state fMRI to address the connection of entropy at rest with the underlying structure measured through diffusion spectrum imaging. Using 18 empirical and 18 modeled stroke networks, we also investigated the effect that focal lesions have on node entropy and information diffusion. Overall, positive correlations between node entropy and structure were observed, especially between node entropy and node strength in both empirical and modeled data. Although lesions were restricted to one hemisphere in all stroke patients, entropy reduction was not only present in nodes from the damaged hemisphere, but also in nodes from the contralesioned hemisphere, an effect replicated in modeled stroke networks. Globally, information diffusion was also affected in empirical and modeled strokes compared with healthy controls. This is the first study showing that artificial lesions affect local and global network aspects in very similar ways compared with empirical strokes, shedding new light into the functional nature of stroke.
Collapse
Affiliation(s)
- Victor M Saenger
- Department of Information and Communication Technologies, Center for Brain and Cognition, Computational Neuroscience Group, Universitat Pompeu Fabra, Barcelona, Spain
| | - Adrián Ponce-Alvarez
- Department of Information and Communication Technologies, Center for Brain and Cognition, Computational Neuroscience Group, Universitat Pompeu Fabra, Barcelona, Spain
| | - Mohit Adhikari
- Department of Information and Communication Technologies, Center for Brain and Cognition, Computational Neuroscience Group, Universitat Pompeu Fabra, Barcelona, Spain
| | - Patric Hagmann
- Department of Radiology, Centre Hospitalier Universitaire Vaudois (CHUV) and University of Lausanne (UNIL), Lausanne, Switzerland.,Signal Processing Laboratory 5 (LTS5), École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Gustavo Deco
- Department of Information and Communication Technologies, Center for Brain and Cognition, Computational Neuroscience Group, Universitat Pompeu Fabra, Barcelona, Spain.,Instituci Catalana de la Recerca i Estudis Avanats (ICREA), Universitat Pompeu Fabra, Barcelona, Spain.,Department of Neuropsychology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany.,School of Psychological Sciences, Monash University, Melbourne, Clayton VIC, Australia
| | - Maurizio Corbetta
- Department of Neurology, Washington University School of Medicine, Saint Louis, MO, USA
| |
Collapse
|
42
|
Chung WY, Liu SY, Gao JC, Jiang YJ, Zhang J, Qu SS, Zhang JP, Tan XL, Chen JQ, Wang SX. Modulatory effect of International Standard Scalp Acupuncture on brain activation in the elderly as revealed by resting-state fMRI. Neural Regen Res 2019; 14:2126-2131. [PMID: 31397351 PMCID: PMC6788231 DOI: 10.4103/1673-5374.262590] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
The specific mechanisms by which acupuncture affects the central nervous system are unclear. In the International Standard Scalp Acupuncture system, acupuncture needles are applied at the middle line of the vertex, anterior parietal-temporal oblique line, and the posterior parietal-temporal oblique line. We conducted a single-arm prospective clinical trial in which seven healthy elderly volunteers (three men and four women; 50–70 years old) received International Standard Scalp Acupuncture at MS5 (the mid-sagittal line between Baihui (DU20) and Qianding (DU21)), the left MS6 (line joining Sishencong (EX-HN1) and Xuanli (GB6)), and the left MS7 (line joining DU20 and Qubin (GB7)). After acupuncture, resting-state functional magnetic resonance imaging demonstrated changes in the fractional amplitude of low frequency fluctuations and regional homogeneity in various areas, showing remarkable enhancement of regional homogeneity in the bilateral anterior cingulate, left medial frontal gyrus, supramarginal gyrus, right middle frontal gyrus, and inferior frontal gyrus. Functional connectivity based on a seed region at the right middle frontal gyrus (42, 51, 9) decreased at the bilateral medial superior frontal gyrus. Our data preliminarily indicates that the international standard scalp acupuncture in healthy elderly participants specifcally enhances the correlation between the brain regions involved in cognition and implementation of the brain network regulation system and the surrounding adjacent brain regions. The study was approved by the Ethics Committee of the China-Japan Union Hospital at Jilin University, China, on July 18, 2016 (approval No. 2016ks043).
Collapse
Affiliation(s)
- Wai-Yeung Chung
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong Province; School of Chinese Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong Special Administrative Region, China
| | - Song-Yan Liu
- Department of Neurology, China-Japan Union Hospital of Jilin University, Changchun, Jilin Province, China
| | - Jing-Chun Gao
- Department of Rehabilitation Medicine, Third Affiliated Hospital of Southern Medical University, Guangzhou, Guangdong Province, China
| | - Yi-Jing Jiang
- Department of Rehabilitation Medicine, Rehabilitation Hospital, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian Province, China
| | - Jing Zhang
- Department of Neurology, China-Japan Union Hospital of Jilin University, Changchun, Jilin Province, China
| | - Shan-Shan Qu
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong Province, China
| | - Ji-Ping Zhang
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong Province, China
| | - Xiao-Long Tan
- Department of Medical Image, Third Affiliated Hospital of Southern Medical University, Guangzhou, Guangdong Province, China
| | - Jun-Qi Chen
- Department of Rehabilitation Medicine, Third Affiliated Hospital of Southern Medical University, Guangzhou, Guangdong Province, China
| | - Sheng-Xu Wang
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong Province, China
| |
Collapse
|
43
|
Chen L, Luo T, Wang K, Zhang Y, Shi D, Lv F, Li Y, Li Y, Li Q, Fang W, Zhang Z, Peng J, Yang H. Effects of thalamic infarction on the structural and functional connectivity of the ipsilesional primary somatosensory cortex. Eur Radiol 2019; 29:4904-4913. [PMID: 30840103 DOI: 10.1007/s00330-019-06068-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Revised: 01/04/2019] [Accepted: 02/04/2019] [Indexed: 01/13/2023]
Abstract
OBJECTIVES To identify regions causally influenced by thalamic stroke by measuring white matter integrity, cortical volume, and functional connectivity (FC) among patients with thalamic infarction (TI) and to determine the association between structural/functional alteration and somatosensory dysfunction. METHODS Thirty-one cases with TI-induced somatosensory dysfunction and 32 healthy controls underwent magnetic resonance imaging scanning. We reconstructed the ipsilesional central thalamic radiation (CTR) and assessed its integrity using fractional anisotropy (FA), assessed S1 ipsilesional changes with cortical volume, and identified brain regions functionally connected to TI locations and regions without TI to examine the potential effects on somatosensory symptoms. RESULTS Compared with controls, TI patients showed decreased FA (F = 17.626, p < 0.001) in the ipsilesional CTR. TI patients exhibited significantly decreased cortical volume in the ipsilesional top S1. Both affected CTR (r = 0.460, p = 0.012) and S1 volume (r = 0.375, p = 0.049) were positively correlated with somatosensory impairment in TI patients. In controls, the TI region was highly functionally connected to atrophic top S1 and less connected to the adjacent middle S1 region in FC mapping. However, T1 patients demonstrated significantly increased FC between the ipsilesional thalamus and middle S1 area, which was adjacent to the atrophic S1 region. CONCLUSIONS TI induces remote changes in the S1, and this network of abnormality underlies the cause of the sensory deficits. However, our other finding that there is stronger connectivity in pathways adjacent to the damaged ones is likely responsible for at least some of the recovery of function. KEY POINTS • TI led to secondary impairment in the CTR and cortical atrophy in the ipsilesional top of S1. • TI patients exhibited significantly higher functional connectivity with the ipsilateral middle S1 which was mainly located within the non-atrophic area of S1. • Our results provide neuroimaging markers for non-invasive treatment and predict somatosensory recovery.
Collapse
Affiliation(s)
- Li Chen
- Department of Radiology, Affiliated Hospital of North Sichuan Medical College, No. 63 Wenhua Street, Nanchong, 637000, China.,Department of Radiology, The First Affiliated Hospital of Chongqing Medical University, No. 1 Youyi Road, Yuzhong District, Chongqing, 400016, China
| | - Tianyou Luo
- Department of Radiology, The First Affiliated Hospital of Chongqing Medical University, No. 1 Youyi Road, Yuzhong District, Chongqing, 400016, China.
| | - Kangcheng Wang
- Department of Psychology, Southwest University, Chongqing, China
| | - Yong Zhang
- School of Foreign Languages, Southwest University of Political Science and Law, Chongqing, China
| | - Dandan Shi
- Department of Radiology, The First Affiliated Hospital of Chongqing Medical University, No. 1 Youyi Road, Yuzhong District, Chongqing, 400016, China
| | - Fajin Lv
- Department of Radiology, The First Affiliated Hospital of Chongqing Medical University, No. 1 Youyi Road, Yuzhong District, Chongqing, 400016, China
| | - Yang Li
- Department of Radiology, Affiliated Hospital of North Sichuan Medical College, No. 63 Wenhua Street, Nanchong, 637000, China
| | - Yongmei Li
- Department of Radiology, The First Affiliated Hospital of Chongqing Medical University, No. 1 Youyi Road, Yuzhong District, Chongqing, 400016, China
| | - Qi Li
- Department of Radiology, The First Affiliated Hospital of Chongqing Medical University, No. 1 Youyi Road, Yuzhong District, Chongqing, 400016, China
| | - Weidong Fang
- Department of Radiology, The First Affiliated Hospital of Chongqing Medical University, No. 1 Youyi Road, Yuzhong District, Chongqing, 400016, China
| | - Zhiwei Zhang
- Department of Radiology, The First Affiliated Hospital of Chongqing Medical University, No. 1 Youyi Road, Yuzhong District, Chongqing, 400016, China
| | - Juan Peng
- Department of Radiology, The First Affiliated Hospital of Chongqing Medical University, No. 1 Youyi Road, Yuzhong District, Chongqing, 400016, China
| | - Hanfeng Yang
- Department of Radiology, Affiliated Hospital of North Sichuan Medical College, No. 63 Wenhua Street, Nanchong, 637000, China
| |
Collapse
|
44
|
Woodward KE, Carlson HL, Kuczynski A, Saunders J, Hodge J, Kirton A. Sensory-motor network functional connectivity in children with unilateral cerebral palsy secondary to perinatal stroke. Neuroimage Clin 2019; 21:101670. [PMID: 30642756 PMCID: PMC6412078 DOI: 10.1016/j.nicl.2019.101670] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Revised: 12/23/2018] [Accepted: 01/07/2019] [Indexed: 11/24/2022]
Abstract
BACKGROUND Perinatal stroke is the most common cause of unilateral cerebral palsy. Mechanisms of post-stroke developmental plasticity in children are poorly understood. To better understand the relationship between functional connectivity and disability, we used resting-state fMRI to compare sensorimotor connectivity with clinical dysfunction. METHODS School-aged children with periventricular venous infarction (PVI) and unilateral cerebral palsy were compared to controls. Resting-state BOLD signal was acquired on 3 T MRI and analyzed using CONN in SPM12. Functional connectivity was computed between S1, M1, supplementary motor area (SMA), and thalamus of the left/non-lesioned and right/lesioned hemisphere. Primary outcome was connectivity expressed as a Fisher-transformed correlation coefficient. Motor function was measured using the Assisting Hand Assessment (AHA), and Melbourne Assessment (MA). Proprioceptive function was measured using a robotic position matching task (VarXY). RESULTS Participants included 15 PVI and 21 controls. AHA and MA in stroke patients were negatively correlated with connectivity (increased connectivity = poorer performance). Position sense was inversely correlated with connectivity (increased connectivity = improved performance) between the non-lesioned S1 and thalamus/SMA. In controls, VarXY was positively correlated with connectivity between the thalamus and bilateral sensorimotor regions. CONCLUSIONS Resting state fMRI measures of sensorimotor connectivity are associated with clinical sensorimotor function in children with unilateral cerebral palsy secondary to PVI. Greater insight into understanding reorganization of brain networks following perinatal stroke may facilitate personalized rehabilitation.
Collapse
Affiliation(s)
- K E Woodward
- Department of Clinical Neurosciences, Cumming School of Medicine, Alberta Children's Hospital Research Institute, University of Calgary, 2888 Shaganappi Trial NW, Calgary, AB T3B6A8, Canada.
| | - H L Carlson
- Department of Clinical Neurosciences, Cumming School of Medicine, Alberta Children's Hospital Research Institute, University of Calgary, 2888 Shaganappi Trial NW, Calgary, AB T3B6A8, Canada.
| | - A Kuczynski
- Department of Neurosciences and Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, 3330 Hospital Dr NW, Calgary, AB T2N4N1, Canada.
| | - J Saunders
- Calgary Pediatric Stroke Program, Alberta Children's Hospital, University of Calgary, 2888 Shaganappi Trial NW, Calgary, AB T3B6A8, Canada.
| | - J Hodge
- Calgary Pediatric Stroke Program, Alberta Children's Hospital, University of Calgary, 2888 Shaganappi Trial NW, Calgary, AB T3B6A8, Canada.
| | - A Kirton
- Calgary Pediatric Stroke Program, Alberta Children's Hospital, University of Calgary, 2888 Shaganappi Trial NW, Calgary, AB T3B6A8, Canada; Department of Clinical Neurosciences, Cumming School of Medicine, Alberta Children's Hospital Research Institute, University of Calgary, 2888 Shaganappi Trial NW, Calgary, AB T3B6A8, Canada; Department of Neurosciences and Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, 3330 Hospital Dr NW, Calgary, AB T2N4N1, Canada.
| |
Collapse
|
45
|
Vahdat S, Darainy M, Thiel A, Ostry DJ. A Single Session of Robot-Controlled Proprioceptive Training Modulates Functional Connectivity of Sensory Motor Networks and Improves Reaching Accuracy in Chronic Stroke. Neurorehabil Neural Repair 2018; 33:70-81. [PMID: 30595082 DOI: 10.1177/1545968318818902] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
BACKGROUND Passive robot-generated arm movements in conjunction with proprioceptive decision making and feedback modulate functional connectivity (FC) in sensory motor networks and improve sensorimotor adaptation in normal individuals. This proof-of-principle study investigates whether these effects can be observed in stroke patients. METHODS A total of 10 chronic stroke patients with a range of stable motor and sensory deficits (Fugl-Meyer Arm score [FMA] 0-65, Nottingham Sensory Assessment [NSA] 10-40) underwent resting-state functional magnetic resonance imaging before and after a single session of robot-controlled proprioceptive training with feedback. Changes in FC were identified in each patient using independent component analysis as well as a seed region-based approach. FC changes were related to impairment and changes in task performance were assessed. RESULTS A single training session improved average arm reaching accuracy in 6 and proprioception in 8 patients. Two networks showing training-associated FC change were identified. Network C1 was present in all patients and network C2 only in patients with FM scores >7. Relatively larger C1 volume in the ipsilesional hemisphere was associated with less impairment ( r = 0.83 for NSA, r = 0.73 for FMA). This association was driven by specific regions in the contralesional hemisphere and their functional connections (supramarginal gyrus with FM scores r = 0.82, S1 with NSA scores r = 0.70, and cerebellum with NSA score r = -0.82). CONCLUSION A single session of robot-controlled proprioceptive training with feedback improved movement accuracy and induced FC changes in sensory motor networks of chronic stroke patients. FC changes are related to functional impairment and comprise bilateral sensory and motor network nodes.
Collapse
Affiliation(s)
- Shahabeddin Vahdat
- 1 McGill University, Montréal, QC, Canada
- 2 University of Montréal, Montréal, QC, Canada
| | | | - Alexander Thiel
- 1 McGill University, Montréal, QC, Canada
- 3 Jewish General Hospital and Lady Davis Institute for Medical Research, Montréal, QC, Canada
| | - David J Ostry
- 1 McGill University, Montréal, QC, Canada
- 4 Haskins Laboratories, New Haven, CT, USA
| |
Collapse
|
46
|
Saunders J, Carlson HL, Cortese F, Goodyear BG, Kirton A. Imaging functional motor connectivity in hemiparetic children with perinatal stroke. Hum Brain Mapp 2018; 40:1632-1642. [PMID: 30447082 DOI: 10.1002/hbm.24474] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Revised: 11/02/2018] [Accepted: 11/05/2018] [Indexed: 01/18/2023] Open
Abstract
Perinatal stroke causes lifelong disability, particularly hemiparetic cerebral palsy. Arterial ischemic strokes (AIS) are large, cortical, and subcortical injuries acquired near birth due to acute occlusion of the middle cerebral artery. Periventricular venous infarctions (PVI) are smaller, subcortical strokes acquired prior to 34 weeks gestation involving injury to the periventricular white matter. Both stroke types can damage motor pathways, thus, we investigated resulting alterations in functional motor networks and probed function. We measured blood oxygen level dependent (BOLD) fluctuations at rest in 38 participants [10 arterial patients (age = 14.7 ± 4.1 years), 10 venous patients (age = 13.5 ± 3.7 years), and 18 typically developing controls (TDCs) (age = 15.3 ± 5.1 years)] and explored strength and laterality of functional connectivity in the motor network. Inclusion criteria included MRI-confirmed, unilateral perinatal stroke, symptomatic hemiparetic cerebral palsy, and 6-19 years old at time of imaging. Seed-based functional connectivity analyses measured temporal correlations in BOLD response over the whole brain using primary motor cortices as seeds. Laterality indices based on mean z-scores in lesioned and nonlesioned hemispheres explored laterality. In AIS patients, significant differences in both strength and laterality of motor network connections were observed compared with TDCs. In PVI patients, motor networks largely resembled those of healthy controls, albeit slightly weaker and asymmetric, despite subcortical damage and hemiparesis. Functional connectivity strengths were not related to motor outcome scores for either stroke group. This study serves as a foundation to better understand how resting-state fMRI can assess motor functional connectivity and potentially be applied to explore mechanisms of interventional therapies after perinatal stroke.
Collapse
Affiliation(s)
- Jennifer Saunders
- Neuroscience Graduate Program, University of Calgary, Calgary, Alberta, Canada.,Calgary Pediatric Stroke Program, Alberta Children's Hospital Research Institute, Calgary, Alberta, Canada
| | - Helen L Carlson
- Calgary Pediatric Stroke Program, Alberta Children's Hospital Research Institute, Calgary, Alberta, Canada
| | - Filomeno Cortese
- Seaman Family MR Research Centre, Foothills Medical Centre, Calgary, Alberta, Canada.,Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
| | - Bradley G Goodyear
- Seaman Family MR Research Centre, Foothills Medical Centre, Calgary, Alberta, Canada.,Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada.,Departments of Radiology and Clinical Neurosciences, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Adam Kirton
- Calgary Pediatric Stroke Program, Alberta Children's Hospital Research Institute, Calgary, Alberta, Canada.,Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada.,Departments of Pediatrics and Clinical Neurosciences, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
47
|
Shan Y, Wang YS, Zhang M, Rong DD, Zhao ZL, Cao YX, Wang PP, Deng ZZ, Ma QF, Li KC, Zuo XN, Lu J. Homotopic Connectivity in Early Pontine Infarction Predicts Late Motor Recovery. Front Neurol 2018; 9:907. [PMID: 30429821 PMCID: PMC6220368 DOI: 10.3389/fneur.2018.00907] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Accepted: 10/08/2018] [Indexed: 11/13/2022] Open
Abstract
Connectivity-based methods are essential to explore brain reorganization after a stroke and to provide meaningful predictors for late motor recovery. We aim to investigate the homotopic connectivity alterations during a 180-day follow-up of patients with pontine infarction to find an early biomarker for late motor recovery prediction. In our study, resting-state functional MRI was performed in 15 patients (11 males, 4 females, age: 57.87 ± 6.50) with unilateral pontine infarction and impaired motor function during a period of 6 months (7, 14, 30, 90, and 180 days after stroke onset). Clinical neurological assessments were performed using the Fugl–Meyer scale (FM).15 matched healthy volunteers were also recruited. Whole-brain functional homotopy in each individual scan was measured by voxel-mirrored homotopic connectivity (VMHC) values. Group-level analysis was performed between stroke patients and normal controls. A Pearson correlation was performed to evaluate correlations between early VMHC and the subsequent 4 visits for behavioral measures during day 14 to day 180. We found in early stroke (within 7 days after onset), decreased VMHC was detected in the bilateral precentral and postcentral gyrus and precuneus/posterior cingulate cortex (PCC), while increased VMHC was found in the hippocampus/amygdala and frontal pole (P < 0.01). During follow-up, VMHC in the precentral and postcentral gyrus increased to the normal level from day 90, while VMHC in the precuneus/PCC presented decreased intensity during all time points (P < 0.05). The hippocampus/amygdala and frontal pole presented a higher level of VMHC during all time points (P < 0.05). Negative correlation was found between early VMHC in the hippocampus/amygdala with FM on day 14 (r = −0.59, p = 0.021), day 30 (r = −0.643, p = 0.01), day 90 (r = −0.693, p = 0.004), and day 180 (r = −0.668, p = 0.007). Furthermore, early VMHC in the frontal pole was negatively correlated with FM scores on day 30 (r = −0.662, p = 0.013), day 90 (r = −0.606, p = 0.017), and day 180 (r = −0.552, p = 0.033). Our study demonstrated the potential utility of early homotopic connectivity for prediction of late motor recovery in pontine infarction.
Collapse
Affiliation(s)
- Yi Shan
- Department of Radiology, Xuanwu Hospital, Capital Medical University, Beijing, China.,Key Laboratory of Magnetic Resonance Imaging and Brain Informatics, Beijing, China
| | - Yin-Shan Wang
- Department of Psychology, University of Chinese Academy of Sciences, Beijing, China.,Key Laboratory of Behavioral Science, Magnetic Resonance Imaging Research Center, Institute of Psychology, Chinese Academy of Sciences, Beijing, China
| | - Miao Zhang
- Department of Radiology, Xuanwu Hospital, Capital Medical University, Beijing, China.,Key Laboratory of Magnetic Resonance Imaging and Brain Informatics, Beijing, China
| | - Dong-Dong Rong
- Department of Radiology, Xuanwu Hospital, Capital Medical University, Beijing, China.,Key Laboratory of Magnetic Resonance Imaging and Brain Informatics, Beijing, China
| | - Zhi-Lian Zhao
- Department of Radiology, Xuanwu Hospital, Capital Medical University, Beijing, China.,Key Laboratory of Magnetic Resonance Imaging and Brain Informatics, Beijing, China
| | - Yan-Xiang Cao
- Department of Radiology, Xuanwu Hospital, Capital Medical University, Beijing, China.,Key Laboratory of Magnetic Resonance Imaging and Brain Informatics, Beijing, China
| | - Pei-Pei Wang
- Department of Radiology, Xuanwu Hospital, Capital Medical University, Beijing, China.,Key Laboratory of Magnetic Resonance Imaging and Brain Informatics, Beijing, China
| | - Zheng-Zheng Deng
- Department of Psychology, University of Chinese Academy of Sciences, Beijing, China.,Key Laboratory of Behavioral Science, Magnetic Resonance Imaging Research Center, Institute of Psychology, Chinese Academy of Sciences, Beijing, China
| | - Qing-Feng Ma
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Kun-Cheng Li
- Department of Radiology, Xuanwu Hospital, Capital Medical University, Beijing, China.,Key Laboratory of Magnetic Resonance Imaging and Brain Informatics, Beijing, China
| | - Xi-Nian Zuo
- Key Laboratory of Behavioral Science, Magnetic Resonance Imaging Research Center, Institute of Psychology, Chinese Academy of Sciences, Beijing, China
| | - Jie Lu
- Department of Radiology, Xuanwu Hospital, Capital Medical University, Beijing, China.,Key Laboratory of Magnetic Resonance Imaging and Brain Informatics, Beijing, China.,Department of Nuclear Medicine, Xuanwu Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
48
|
De Bruyn N, Meyer S, Kessner SS, Essers B, Cheng B, Thomalla G, Peeters A, Sunaert S, Duprez T, Thijs V, Feys H, Alaerts K, Verheyden G. Functional network connectivity is altered in patients with upper limb somatosensory impairments in the acute phase post stroke: A cross-sectional study. PLoS One 2018; 13:e0205693. [PMID: 30312350 PMCID: PMC6185852 DOI: 10.1371/journal.pone.0205693] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Accepted: 09/28/2018] [Indexed: 11/19/2022] Open
Abstract
Background Aberrant functional connectivity in brain networks associated with motor impairment after stroke is well described, but little is known about the association with somatosensory impairments. Aim The objective of this cross-sectional observational study was to investigate the relationship between brain functional connectivity and severity of somatosensory impairments in the upper limb in the acute phase post stroke. Methods Nineteen first-ever stroke patients underwent resting-state functional magnetic resonance imaging (rs-fMRI) and a standardized clinical somatosensory profile assessment (exteroception and higher cortical somatosensation) in the first week post stroke. Integrity of inter- and intrahemispheric (ipsilesional and contralesional) functional connectivity of the somatosensory network was assessed between patients with severe (Em-NSA< 13/32) and mild to moderate (Em-NSA> 13/32) somatosensory impairments. Results Patients with severe somatosensory impairments displayed significantly lower functional connectivity indices in terms of interhemispheric (p = 0.001) and ipsilesional intrahemispheric (p = 0.035) connectivity compared to mildly to moderately impaired patients. Significant associations were found between the perceptual threshold of touch assessment and interhemispheric (r = -0.63) and ipsilesional (r = -0.51) network indices. Additional significant associations were found between the index of interhemispheric connectivity and light touch (r = 0.55) and stereognosis (r = 0.64) evaluation. Conclusion Patients with more severe somatosensory impairments have lower inter- and ipsilesional intrahemispheric connectivity of the somatosensory network. Lower connectivity indices are related to more impaired exteroception and higher cortical somatosensation. This study highlights the importance of network integrity in terms of inter- and ipsilesional intrahemispheric connectivity for somatosensory function. Further research is needed investigating the effect of therapy on the re-establishment of these networks.
Collapse
Affiliation(s)
- Nele De Bruyn
- KU Leuven—University of Leuven, Department of Rehabilitation Sciences, Leuven, Belgium
- * E-mail:
| | - Sarah Meyer
- KU Leuven—University of Leuven, Department of Rehabilitation Sciences, Leuven, Belgium
| | - Simon S. Kessner
- University Medical Center Hamburg-Eppendorf, Department of Neurology, Hamburg, Germany
| | - Bea Essers
- KU Leuven—University of Leuven, Department of Rehabilitation Sciences, Leuven, Belgium
| | - Bastian Cheng
- University Medical Center Hamburg-Eppendorf, Department of Neurology, Hamburg, Germany
| | - Götz Thomalla
- University Medical Center Hamburg-Eppendorf, Department of Neurology, Hamburg, Germany
| | - Andre Peeters
- Cliniques Universitaires Saint-Luc, Department of Neurology, Brussels, Belgium
| | - Stefan Sunaert
- KU Leuven—University of Leuven, Department of Imaging and Pathology, Leuven, Belgium
- University Hospitals Leuven, Department of Radiology, Leuven, Belgium
| | - Thierry Duprez
- Cliniques Universitaires Saint-Luc, Department of Radiology, Brussels, Belgium
| | - Vincent Thijs
- University of Melbourne, Florey Institute of Neuroscience and Mental Health, Victoria, Australia
- University of Melbourne, Department of Neurology, Austin Health, Victoria, Australia
| | - Hilde Feys
- KU Leuven—University of Leuven, Department of Rehabilitation Sciences, Leuven, Belgium
| | - Kaat Alaerts
- KU Leuven—University of Leuven, Department of Rehabilitation Sciences, Leuven, Belgium
| | - Geert Verheyden
- KU Leuven—University of Leuven, Department of Rehabilitation Sciences, Leuven, Belgium
| |
Collapse
|
49
|
Variability in stroke motor outcome is explained by structural and functional integrity of the motor system. Sci Rep 2018; 8:9480. [PMID: 29930399 PMCID: PMC6013462 DOI: 10.1038/s41598-018-27541-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Accepted: 05/31/2018] [Indexed: 11/08/2022] Open
Abstract
Biomarkers that represent the structural and functional integrity of the motor system enable us to better assess motor outcome post-stroke. The degree of overlap between the stroke lesion and corticospinal tract (CST Injury) is a measure of the structural integrity of the motor system, whereas the left-to-right motor cortex resting state connectivity (LM1-RM1 rs-connectivity) is a measure of its functional integrity. CST Injury and LM1-RM1 rs-connectivity each individually correlate with motor outcome post-stroke, but less is understood about the relationship between these biomarkers. Thus, this study investigates the relationship between CST Injury and LM1-RM1 rs-connectivity, individually and together, with motor outcome. Twenty-seven participants with upper limb motor deficits post-stroke completed motor assessments and underwent MRI at one time point. CST Injury and LM1-RM1 rs-connectivity were derived from T1-weighted and resting state functional MRI scans, respectively. We performed hierarchical multiple regression analyses to determine the contribution of each biomarker in explaining motor outcome. The interaction between CST Injury and LM1-RM1 rs-connectivity does not significantly contribute to the variability in motor outcome. However, inclusion of both CST Injury and LM1-RM1 rs-connectivity explains more variability in motor outcome, than either alone. We suggest both biomarkers provide distinct information about an individual’s motor outcome.
Collapse
|
50
|
Larivière S, Ward NS, Boudrias MH. Disrupted functional network integrity and flexibility after stroke: Relation to motor impairments. NEUROIMAGE-CLINICAL 2018; 19:883-891. [PMID: 29946512 PMCID: PMC6008503 DOI: 10.1016/j.nicl.2018.06.010] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Revised: 05/17/2018] [Accepted: 06/07/2018] [Indexed: 12/21/2022]
Abstract
Previous studies investigating brain activation present during upper limb movement after stroke have greatly detailed activity alterations in the ipsi- and contralesional primary motor cortices (M1). Despite considerable interest in M1, investigations into the integration and coordination of large-scale functional networks subserving motor, sensory, and cognitive control after stroke remain scarce. The purpose of this study was to assess non-static functional connectivity within whole-brain networks involved in the production of isometric, visually-paced hand grips. Seventeen stroke patients and 24 healthy controls underwent functional MRI while performing a series of 50 isometric hand grips with their affected hand (stroke patients) or dominant hand (control subjects). We used task-based multivariate functional connectivity to derive spatial and temporal information of whole-brain networks specifically underlying hand movement. This technique has the advantage of extracting within-network commonalities across groups and identifying connectivity differences between these groups. We further used a nonparametric statistical approach to identify group differences in regional activity within these task-specific networks and assess whether such alterations were related to the degree of motor impairment in stroke patients. Our whole-brain multivariate analysis revealed group differences in two networks: (1) a motor network, including pre- and postcentral gyri, dorsal and ventral premotor cortices, as well as supplementary motor area, in which stroke patients showed reduced task-related activation compared to controls, and (2) a default-mode network (DMN), including the posterior cingulate cortex, precuneus, and medial prefrontal cortex, in which patients showed less deactivation than controls. Within-network group differences revealed decreased activity in ipsilesional primary sensorimotor cortex in stroke patients, which also positively correlated with lower levels of motor impairment. Moreover, the temporal information extracted from the functional networks revealed that stroke patients did not show a reciprocal DMN deactivation peak following activation of their motor network. This finding suggests that allocation of functional resources to motor areas during hand movement may impair their ability to efficiently switch from one network to another. Taken together, our study expands our understanding of functional reorganization during motor recovery after a stroke, and suggests that modulation of ipsilesional sensorimotor activity may increase the integrity of a whole-brain motor network, contribute to better motor performance, and optimize network flexibility. We assessed connectivity in task-based brain networks underlying hand movement. We compared network properties between stroke patients and healthy controls. Stroke patients have altered default-mode and motor network connectivity. Patients also showed poorer motor performance and impaired network flexibility.
Collapse
Affiliation(s)
- Sara Larivière
- McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, McGill University, Montréal, Qc, Canada; Department of Neurology and Neurosurgery, McGill University, Montréal, Qc, Canada
| | - Nick S Ward
- Sobell Department of Motor Neuroscience, Institute of Neurology, University College, London, UK
| | - Marie-Hélène Boudrias
- School of Physical and Occupational Therapy, McGill University, Montréal, Qc, Canada; Center for Interdisciplinary Research in Rehabilitation of Greater Montreal (CRIR), Montréal, Qc, Canada.
| |
Collapse
|